Hg s Bifl* ez fhirizy myapisi
[RE S
H-Buffer: An Efficient History-Based and Overflow Sharing

Transparent Fragment Storage Method

i
LERE W F R

2 I -~

Higrtg s Bflr fre sede2 0432 4 %3 BP s> 2
H-Buffer: An Efficient History-Based and Overflow Sharing

Transparent Fragment Storage Method

Student : Tung-Lin Lu

Advisor - Deng-Jyi Chen

Bz 2 i < 7
EARCU ol G R A
e i | N
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
In

Computer Science
June 2009

Hsinchu, Taiwan, Republic of China

PERR 4 L o~ E® 4 7

HZ s Bl B eded Flioiz g oy dmifigs- 2
gi:ga\ﬁ(hEREREE k&

R 4 F RS R 4 AT

¥ 2

B8 WALRE < BT F 2R 2 Ft U1 g8 5

Th

i x5\ ;}L‘t_%_ P2 B E - 27 ﬁgi‘i‘ﬁb AR R FEE AR %"T’?ﬁﬂg *
Beng Mg e SRS T A % 1 RS B R i 3 en
Fh oAt g e BE - e ARG AP R REE T &

o FPLAN PRI - AR ITAEN g

&
L+
E)
38

—H¥ 3 %

@R

S o
WEP R ER TR HY S BRGS0 TR G HOP RS e
PR B R SR £ R B R A o AR o AP g

diehs - R B G AP PR P KR T-%E S b

Bl T O E H g RS TN R i A e B o AR i
#500% QUAKE4 2 DOOM3 % & » & ¥ 220 % #7F 3 | T
GEBERL R o AQUAKEA? » A gkt T G % 8 1 5 4259
FPReRETZIFZ &L £DOOM3® » 1 20% i PP et F s

H-Buffer: An Efficient History-Based and Overflow Sharing

Transparent Fragment Storage Method

Student : Tung-Lin Lu Advisor : Deng-Jyi Chen

Institute of Computer Science and Engineering
National Chiao-Tung University

Abstract

Graphics rendering requires various huge amounts of temporary data storages,
prohibiting this feature from being implemented on slim embedded devices. To overcome this
difficulty, we focus our effort on storage of transparent fragments after rasterization stage.
We base our design on the fact that: successive frames typically will have the same or very
similar number of transparent fragments located at the same screen pixel location, except in
the rare case of scene change. We propose a history based transparent fragment buffer called
H-Buffer. Note that transparent fragments arrive in any arbitrary order, making the design
challenging. And the storage pressure comes from necessary storage plus internal
fragmentation, the latter being resulted from fix-size storage allocation and can be reduced. In
this design, transparent fragment counts at all pixel locations are collected for every frame,
and be used for storage allocation for the next frame. For the unavoidable case of
insufficient storage allocation, our overflow storage allocation assigns neighbor pixel
locations to share a given overflow area, in an attempt to reduce internal fragmentation. Easy
management and quick access are two major concerns in our design. In evaluation, we used
500 frames from QUAKE4 and DOOM3. Storage requirements are compared against the
W-buffer, and the T buffer methods. Compared with the strongest competitor, the T-buffer,

results show that our method reduces storage pressure by 25% in QUAKE4 benchmark, and

20% in DOOMS3 benchmark. This design idea can be extended to applications where the

load change is typically mild and only occasionally abrupt.

>+ 2
B 7

o # ORI LY AR o L AR By B MR o B
Bofgrmfocdp > R AN LAT Y EFFIFRERE S0 > X 2 FY T
e ek R g EATEF S HEBT A HRIRD TR A FR S
ALY 2R R Eocp e ptb s BB L e 24 RO HATR R R
epe s E LR d R PR R F SR AT [b m A

PR BRHFHTOE L R FEES P AL 6 BAR o g
HEHART R R AR GRS R R e {2 R
B eGPUR 3¢ e + ~ 2 B2 2 gt it AT I F B A o G iyl
B AL e E A L o B R 8 5 (PRIZFSa ek F %
LRI AR X s g5 1) e

Btk R BEA R AR S BR B SR TR P Py T

1

44

vk

(-m\&
N
e
=i
R
=
F_‘.
o
=
¢
At
5
¥
S
At
b
=
b=
)Cﬂ.\
g

T T S R 2 B

& &5 2009.9

Contents

R oo i
ADSTFACT ... bbbttt b et bbb ereeneas i
5t TR iv
I TS o) T U SO USPSS SR vii
LIST OF TADIES ...t viii
Chapter 1] 8 oo (101 o] o SR 1
Chapter 2 Background and Related WOrkK..............cccooiviiiiieiieie e 3
2.1 GraphiCs PIPEIINE.......oceeiice e e 3

2.2 Transparency and alpha blending...........ccccccooveiiiii i 4

2.3 Transparency rendering Problemcccoeiiiiiiie i 5

2.4 Order-independent tranSPArENCYc.cocviieieerieiiieieesreseesee e eesreesresreesraeneeas 6

2.5 RElAtEd WOIKS.....ccuiiiiiiiiee et 7
2.5.1 R-Buffer hardware architeCture............cocovviiiiiiniiineeee s 7

2.5.2 Hardware oriented algorithm based on weight factors computations 9

2.5.3 T-buffer transparent fragment storage Systemccccoeevveviviievecsieennn, 13

(O T 0] (=1 g B I 1] [[OSSPSR 15
3.1 Statistics and 0DSErVAtIONScccoiiiiiiiiieiiiie e 15
3.1.1 Statistics of transparent fragment storage internal fragmentation 15

3.1.2 Statistics of transparent fragment amount similarityccccccoceeeennen. 16

3.1.3 Observation on T-buffer overflow section using mechanism..................... 17

KB B 1= o £ oAV =T T PSP TS 18

3.3 HiStory-based SECLONccviiieiicieiieie ettt 19
3.3.1 Structure of history-based SECIOFcccccviiiiiiiicccce e 19

3.3.2 An example of history-based SECtOrcccevvevieiieiicce e 21

3.4 Overflow-handling SECLON..........coiiiiiice et 23
341 OVErflowW SECHION SIZE ...ocvveeieiieiecie e 23

3.4.2 Overflow section sharing meahaniSm...........ccccocvivieiiie i 23

3.4.3 Structure of overflow-handling SECOrccccv v 25

3.5 Access preocess and disscussion on timing requirement............ccccceceeveeinene 28
K RS (0]] g To o] 0 [o0 -t PSP 28

3.5.2 RELFIBVING PIOCESS. ...eiiiieiieiieeitte et e see ettt ettt e be e st e e e sraeasbeesraeenbeesree s 29
Chapter4 Evaluation RESUILSccoviiiiiiiiecc et 31
4.1 Evaluation eNVIFONMENT...........ccoiiiiiiii s 31

4.2 Overflow section Size analySiS.........ccoeiiiiiiiiiii i 32

4.3 SIMUIALION FESUILS ...c.eeiiiiie e 34
4.3.1 MEMOIY FEQUITEMENTcoiuiiiiiiiieiiieie sttt sttt st et sbe e 34

4.3.2 TIMING FEQUITEMENT.......cciiiiiiieie e ae et e e e e 37

Chapter5 Conclusion and FUtUre WOrKcccoovviiiiiiic i 41
o T00 A ©o 1 (0] 11] o] o SR 41
5.2 FUTUIE WOTK ...ttt et et be e ne 41
] (= =T 0TSSR 42

Vi

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 3-1
Figure 3-2
Figure 3-3

Figure 3-4-1
Figure 3-4-1

Figure 3-5

Figure 3-6-1
Figure 3-6-2
Figure 3-6-3

Figure 3-7
Figure 3-8
Figure 3-9

Figure 3-10-1
Figure 3-10-2
Figure 3-10-3

Figure 3-11
Figure 3-12
Figure 3-13
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4

List of Figures

3D graphics PIPEIINE.........oiiiiiieee e 3
Example of fragment blending proCessingccocoovreririniieiene s 5
Example of processing alpha blending in depth order and arbitrary order......... 6
R-buffer graphics architecture scheme [Witt01]cccovvieiiiiiiiiiiiiiie 7
R-buffer high level algorithm [WittO1]cccccoiiiiiiiiiiiiceecee e 8
Generic structure of WF hardware oriented algorithm.............cccocoviiininnnnns 10
WEF hardware oriented algorithm............cccooeiiiiiiiinieee s 11
Organized memory scheme of WF algorithmccocooviiiiiiiinincies 12
The design diagram of transparent fragment storage Systemc.ccocvevvvenene 14
Ratio of internal fragmentation size to section size in T-buffer 15
Ratio of transparent fragment amount Similarity...........cccoccevvvieniviiniiernennn 16
Example of overflow Section SNaringcccceeevenerininieieieese e 17
Design diagram of H-buffer system and the location in pipeline................... 18
The diagram of T-buffer system correspond to H-buffer system. 19
Diagram of hiStory-Dased SECTON...........cccuiiiiirieieie e 20
Upon first appearance of a (0,2) transparent fragment............ccccceeevvvervrnene. 22
Upon second appearance of (0,1) transparent fragment.ccccocvvvevvrnenee. 22
Upon third appearance of (0,2) transparent fragment.cccoecvevvvivernrnnne. 23
An example of sharing overflow SECHIONScccceiiiiririinieiee e 24
INAEeX INFOIMALTION ...t 25
Diagram of overflow handling SECtOr...........ccooviiiiiiiiiii e 25

Screen coordinate (2,3) transparent fragment iNCOMINGcceeevverveeenee. 27

Screen coordinate (2,2) transparent fragment iNCOMINGccccevvevverereenne. 27

Screen coordinate (2,2) transparent fragment iNCOMINGcccoeevevverereenee. 27
The flowchart of storing fragments into H-buffe ..., 28
Concept of bIENdING QUEUE.oviiviiiiiieeeee e 29
The flowchart of retrieving fragments from H-buffer............cccccociviiinns 30
Simulation flow and ATTILA architecture [Moya06]cccceverenireninnnnns 31
Memory requirement comparison (QUAKEZ).........cccocvviiiniiiniencnc e 35
Memory requirement comparison (DOOMS3).......cccooeviiiiinieinienene e 35
Memory requirement comparison (QUAKE4)cccccereririiiieieienene e 36

vii

List of Tables

Table 4-1-1 AV(Q. and S.D SEALISTICSeeiivieiiieiieeiic e 33
Table 4-1-2 Overflow section size in different NUM. ... 33
Table 4-2 Storing ProCess CONTITIONocviiiiiiiiiiieie e 38
Table 4-3 H-buffer system storing timing requirement turn to T-buffer system 39
Table 4-3 Systems storing timing requirement COMPAriSONccovrvreeriereeriesrenieseseseens 39

viii

Chapter 1 Introduction

In recently years, a special purpose processor, Graphics Processing Unit (GPU), is used
to render 3D computer graphics. Due to increase demand of high realistically rendering
quality, the support for transparent effect becomes more important for visual reality.
Transparency effect operation is implemented in GPU which called alpha blending:
combining a translucent foreground with a background. In the process of alpha blending, all
transparent fragments at the same screen coordinate must be rendered in correct depth order
(from back to front with respect to the viewpoint). However, fragment stream after Z-test
process is in arbitrary order. For this reason, the transparent objects are sorted to get the
correct depth order in the application level in tradition. However, it is difficult for software
application developers to sort transparent objects since objects may intersect each other. In
addition, as the number of transparent primitives increases rapidly, the application sorting
becomes more and more complicated. For fast rendering, the recent research is focus on
order-independent transparency rendering algorithm and implemented on the GPU

architecture with additional hardware support for temporary storing transparent fragments.

The earliest hardware oriented order-independent transparency rendering design is Z°
hardware technique [Joup99], but it only renders a fixed number of transparency layers
correctly. The first hardware rendering full transparency layers design is R-buffer. R-buffer
[Witt01] implements A-buffer software algorithm [Carp84] into hardware by adding an extra
storage system to stores transparent fragments in their arriving order. After all the fragments
of the frame past Z-test, the alpha blending process will render the entire scene by iteratively
blending furthest visible transparent fragment with background until the R-buffer is empty.
Another hardware oriented order-independent transparency rendering design is M-buffer

[Amor06] which based on WF (Weight Factor) algorithm. Every pixel stores transparent
1

fragments into their corresponding section in M-buffer according to their screen coordinate.
T-buffer transparent fragment storage system [Lin08] is another hardware oriented design
based on the WF algorithm. T-buffer improves the utilization of transparent fragment storage

of M-buffer.

Once the scene complexity arises, transparent fragment amount and the storage space for
transparent fragments increase significantly. For this reason, how to minimum the demand for
memory becomes important. In addition, the past design of transparent fragment storage is not
efficiency for storing transparent fragments. T-buffer, the highest utilization of transparent
fragment storage still have nearly thirty percent memory which be wasted by internal
fragmentation in QUAKE4 benchmark. Our objective is to design a flexible and economic
transparent fragment storage system based on WF algorithm which can provide the memory

size of transparent fragment storage system which needs to be least.

Chapter 2 Background and Related work

In this chapter, we will give an overview of graphics pipeline. Then, we will introduce
the definition of transparency, alpha blending operation, explain the transparency rendering
problem, and expatiate on order-independent transparency. At the end of this chapter, we will
present the details of three previous works related to hardware support techniques for

order-independent transparency.

2.1 Graphics pipeline

Transparent effect is generated in blending process

Vertex —y ertex —»| Rasterization [— Pixel . —> Depth . Blending

Processing Processing | |Processing 1
2 i Final
®..... ® pd S ey Pixel

Y
fragment Frame Buffer

A

L1

4 1

| |

Figure 2-1 3D graphics pipeline

Graphics pipeline can be roughly divided into five stages: vertex processing,
rasterization, pixel (fragment) processing, depth processing, and blending processing, as
shown in Figure 2-1. At vertex processing stage, coordinate transformation, lighting, assemble
vertex into primitive, clipping, culling operations will be processed, and output primitive
stream. After vertex processing stage, these primitives are sent into rasterization stage.

Rasterization stage is to determine which squares of an integer grid in screen coordinate are

occupied by the triangle and to assign a color and a depth value to each such square. Such
generated image square is called fragment. Fragments are then sent into pixel processing
stage. At pixel processing stage, the interpolation and texture mapping process generate
fragment color [Watt00]. And the next stage, depth process, will cut those fragments which
occluded by other fragment. Until all the fragments are pass the depth processing stage, the
blending stage will process. Some backend operation like alpha blending, anti-Aliasing, fog

will process at this stage.

Noticed that transparency effect is generated in blending stage, and our system is
designed for storing transparent fragments, which pass the depth processing stage; therefore,
we are only concerned about the process between depth processing stage and blending stage

in graphics pipeline in this thesis.
2.2 Transparency and alpha blending

All the fragments have alpha (a) value attribute to represent the degree of transparency,
which range is from 0.0 to 1.0. The alpha value 0.0 represent the completely transparent, and
1.0 represent the completely opaque. To obtain the final color of a pixel, the transparent
fragments belonging to the pixel (i.e., transparent fragments have the same x-y coordinate) are
typically assumed to be rendered from back to front in visibility order, or depth order. The
process of blending a translucent foreground with a background color to generate the effect of
transparency is called alpha blending. The alpha blending equation [Watt84] is used for

alpha blending, as shown below:
C=aC; +(-a)c, Eq. (1)

where c is the final color of a pixel, ¢, and «, are the color and the alpha value of

foreground transparent fragment, and c, is the color of background fragment.

4

To clarify, consider an example of fragment blending processing shown in Figure 2-2.
There are two fragments at the same screen coordinate. The front of fragment is a transparent
fragment, and the back of fragment is a opaque fragment. Assume each color attributes
(R,GB,A) are (1,0,0,0.5) and(1,1,0,1.0).When alpha blending process, the front fragment will
blending with the background fragment. According to Eq.(1), the final color c of the pixel is

equal to:

C(R,G,B)=0.5%(1,0,0)+(1-0.5)(1,1,0)=(1,0.5,0).

'

back

front
front(R,G,B,A)=(1,0, 0, 0.5)
back(R,G,B,A)=(1, 1,0, 1.0)

View point

After alpha blending:
(R,G,B)=0.5x(1,0,0Y+1-0.5)(1,1, 0)=(1, 0.5, 0)

Figure 2-2 Example of fragment blending processing

2.3 Transparency rendering problem

The blending equation EQ.(1) is order-dependent, which means that transparent
fragments require to be processed in their depth order, not in their arrival order. Thus, if we
render transparent fragments in arbitrary order, it will produce an artificial result. Figure 2-3 is
an example of processing alpha blending in depth order and arbitrary order. There are two

transparent fragments and one opaque fragment at the same screen coordinate. We can found

that if we did not blend transparent fragment from back to front in depth order, the final pixel

color may different.

fragment depth order : T1-T2—03

Correct blending order:
[T2 —-T1

03 —> | (R,G.B)=0.5x(1,0,0)+(1-0.5)(1, 1, 0)=(1, 0.5, 0)
— T2 (R.G.B)=0.2x(1,0.5,0)+(1-0.2)(1,0, 1)=(1, 0.1, 0.8)
View point
‘Wrong blending order:

) T1 T2
) —3> | (R,G,B)=0.2x(1,0,1)+(1-0.2)(1, 1, 0)=(1, 0.8, 0.2)

(R,G,B)=0.5%(1,0,0)+(1-0.5)(1,0.8, 0.2)=(1, 0.4, 0.1)

TI(R,G,B,A)=(1,0, 1, 0.
T2(R,G,B,A)=(1, 0, 0, 0.
03(R,G,B,A)=(1, 1,0, 1.

Figure 2-3 Example of processing alpha blending in depth order and arbitrary order.

However, fragments are generated in arbitrary order at rasterization, not in depth order.
several algorithms [Mamm89][Snyd98][Ever01] are proposed for correct transparent
rendering. These algorithms can be classified as sorting based algorithms and
order-independent transparency algorithms. Sorting based algorithms require the primitives
(polygons) to be sorted from back to front with respect to the viewpoint. However, for
application sorting algorithms, it is time-consuming for depth sorting since objects in a scene
may intersect each other and intersected parts need to be divided into several polygons.

Therefore, it comes out order-independent transparency.

24 Order-independent transparency

Order-independent transparency is defined as a process which renders transparent
fragment in arbitrary order instead of sorting them in advance. There are several different

kinds of order-independent transparency algorithms.

Most order-independent transparency algorithms modified the traditional GPU
architecture to solve time-consuming problem. Z* hardware technique [Joup99] is one of these

modified hardware architecture which only renders a fixed number of transparency layers

6

correctly. R-buffer [Witt01] is a modified hardware architecture which implements A-buffer
[Carp84] software algorithm into hardware by adding an extra storage system to store
transparent fragments associated with each pixel. WF (Weight Factor) hardware oriented
algorithms [Amor06] precomputes the contribution factor of each fragment to the final color
of pixel and propose an organized strategy to sequentially store transparent fragments
corresponding to the same pixel. T-buffer transparent fragment storage system [Lin08] has
modified the WF hardware oriented algorithm and improve the utilization of transparent
fragment storage. Since our research focuses on hardware storage support for
order-independent transparency, we will introduce more details of R-buffer hardware
architecture, WF hardware oriented algorithm, and T-buffer hardware architecture which are

more related to our system design.

25 Related works

2.5.1 R-Buffer hardware architecture

R-buffer

|| X,Y.Z.RGBA
|| X,Y.ZRGBA

Geometry o Fragment Compare /
: . Rasterization P
> Processing [+ (R) — and P
' (&) Compositing \ Zbuffer |
: bl and

2nd Z Buffer
Pixel State

Memory |

Figure 2-4 R-buffer graphics architecture scheme [Witt01]

R-buffer [Witt01] is a graphics hardware architecture which implements A-buffer

software algorithm [Carp84]. Figure 2-4 shows the R-buffer graphics architecture. The
7

R-buffer architecture is a standard graphics pipeline with additional hardware support: a
proposed recirculating fragment buffer, called R-buffer, pixel state memory, and a second
z-buffer. In rasterization stage, the objects are rasterized into fragments in arbitrary
depth-order. After rasterization, a transparent fragment is sent to the R-buffer, and the depth
value of an opaque fragment is compared with the depth value in z-buffer to find the closest
opaque fragment which needs to be placed into frame buffer. The transparent fragments
behind the closest opaque one are discarded. Then, each transparent fragment in R-buffer is

read out iteratively to find the furthest one to be blended with the fragment in frame buffer.

Figure 2-5 shows the high level R-buffer algorithm. Phase 1 rasterizes the primitives into
fragments and places the closest opaque fragment into frame buffer, the furthest transparent
fragment’s depth value into second z-buffer. Phase 1 is equivalent to early z test with the
exception that unoccluded transparent fragments are sent into R-buffer and second z-buffer is
updated with the depth value of the furthest visible transparent fragment. After all fragments
are generated, in phase2, the transparent fragments in R-buffer are discarded if they are
occluded by the opaque fragments in frame buffer. If the R-buffer is not empty, the phase3 is
processed iteratively to find the transparent fragment whose depth value matches the depth in
the second z-buffer from R-buffer and blend that transparent fragment with the fragment in
frame buffer, and then, drop that transparent fragment from R-buffer. When the R-buffer is

empty, the whole process is finished.

initialize frame buffer
Phasel(geometry, framebufter, R-bufferNext)
While(!empty(R-bufferNext))
{
swap(R-bufferNext,R-buffercurrent)
Phase2/phase3 X(R-bufferCurrent, framebuffer, R-bufferNext)

h

Figure 2-5 R-buffer high level algorithm [Witt01]

8

The R-buffer is a FIFO (first-in-first-out) memory which stores transparent fragments in
the sequence that they arrive. The information of each transparent fragment —the location (X,
y), the depth value (z), the color value (RGB) with alpha value(A or a)— needs to be stored
in the R-buffer. Pixel state memory stores each pixel’s current state. The second z-buffer
stores the depth value of the furthest visible transparent fragments per pixel. The memory size
of the R-buffer is proportional to the number of transparent fragments after early z test. The
memory size of the second z-buffer is equivalent to the original z-buffer. In pixel state
memory, each pixel needs three bits to record its current value; thus, the memory size of the
pixel state memory is equal to three multiplied by the screen size. To sum up the memory
requirement of R-buffer architecture, we list the R-buffer memory requirement equation as

follow:

MemorYtotal = MR-puffer + Mand-z-buffer + Mstate-memory
2.5.2 Hardware oriented algorithm based on weight factors computations

For the convenience of explaining this algorithm [Amor06], we called it WF (Weight
Factor) hardware oriented algorithm in brief. WF hardware oriented algorithm is based on the
precomputation of the contribution of each fragment to the final color of the pixel with the
specialized storage scheme. Figure 2-6 shows the generic structure of WF hardware oriented
algorithm. Phase 1 and phase 2 of WF hardware oriented algorithm are similar to those of
R-buffer high level algorithm, shown in Figure 2-5. In phase 1, fragments are sequentially
generated and the current closest opaque transparent is placed into frame buffer while the
transparent fragments are stored into another buffer, called Mpyser. In phase 2, all transparent
fragments stored in Myumer are analyzed and discarded if they are occluded by the closest
opaque fragment stored in frame buffer. In phase 3, each transparent fragment in Myyger IS
compared with other fragments belonging to the same pixel in order to compute its weight

factor and the blending of the fragment is performed.
9

Weigth Factor

I Occluded —Fiichizer | Computation
Rasterization Fragment Transparent Fragment and —»pixel
(phase 1) Fragments i
| “stransparent—» }? stransparent — Blending
M-buffer (phase 2) M-bufer (phase 3)
Figure 2-6 Generic structure of WF hardware oriented algorithm

The weight factor computation is based on the analysis of the blending equation (1). By

breaking the recursivity of the blending equation (1), the equation can be revised as:

n
C=) Wac
i=0

Eq. (2)

where there are n transparent fragments and one opaque fragment belonging to the pixel

which has the final color ¢, c; is the color of the transparent fragment i, ¢; is the alpha value

of fragment i, and w, is the weight factor of the transparent fragment i. The weight factor

transparent fragment i (Z; < Z;). The equation of w, can be written as:

with

l-a; if Z,<Z,

a. =
ek

otherwise.

10

w; is computed by the accumulative contribution of all transparent fragments j in front of the

Eq. (3)

Eq. (4)

/* SETUP */
Zbu e 20
for(i=0; i Zn; i++){
(7, < Z)
ifla, <D{E, — M,g; w=c*a,.}
e, =D{Z,, 572 c=c. }
h

h
/* OCCLUDED TRANSPARENT FRAGMENTS */

for all B, in M, ., {
lf(Zx < Zbujﬁr) { Mbuﬁ"er - Ez ;}
else{ c¢*=(1-a): }
}
/* WEIGHT FACTOR COMPUTATION */
for all E; in My, {
for all E; in Mbufer withj > i {
Z<Z) { wr=(1-a)i}
else {w*=(1-a)}
b
/* additional of contributions */
ct=w,
Mbu]ﬁr - Ex >

W ooo = Oy Wb =

[T S J N J g Sy S U S S Y
b — OO0 o - kW~ D
—

Figure 2-7 WF hardware oriented algorithm

The WF hardware oriented algorithm is outlined in Figure 2-7. It can be basically
divided into three stages: SETUP (line 1-6), OCCLUDED TRANSPARENT FRAGMENTS
(line 9-12), WEIGHT FACTOR COMPUTATION (line 14-22). Assume that there are n+1
fragments are processed sequentially to the same pixel. In SETUP stage, if a fragment is
transparent, it is placed into Myser; Otherwise, if a fragment is opaque and closest to the view
point at the time, it is stored into frame buffer and Z-buffer is updated by its depth value. Note
that some transparent fragments are visible when they are compared to the front-most opaque
fragment at the time they arrive, but a closer opaque fragment may arrive later and occlude
them. Therefore, in the second stage, OCCLUDED TRANSPARENT FRAGMENTS, those
transparent fragments in Mpyer are discarded for the reason that they are occluded by the
closest opaque fragment. In the last stage, WEIGHT FACTOR COMPUTATION, each
fragment is compared with all those following in the Myyser in Order to compute its weight
factor. Obviously, these three stages in Figure 2-7 are the same as the three phases in Figure

2-6.

11

Mbuffer POINTER MEMORY
Section 0
. Section 1
Section 0 Davg Section 2
e o @
Section 1
Section 2
LI)

Figure 2-8 Organized memory scheme of WF algorithm

The organized memory scheme of WF algorithm is shown in Figure 2-8. It suggests that
transparent fragments belonging to the same pixel are stored sequentially and connectedly in
the Mpytter. Mbutrer IS Organized in sections of Dayg Words, where Dayg is the average number of
fragments per pixel. Each pixel has it corresponding storage section, with capacity for Dayg
fragments; that is, for a system with Wx H pixels, Wx H sections would be required and a
pixel i in a system has a corresponding section i in Myyser. TO extend the storage capabilities, a
pointer memory is added so that more than one section can be dynamically assigned to a
given pixel. The information stored per section of a pointer memory indicates that whether
one section is sufficient (by storing a NULL pointer) or whether the following-coming
fragments are stored in another section (by storing the section index). For example, if there
are F transparent fragments belonging to a pixel i, where F is larger than Dayg, the first Dayg
fragments are stored in section i of Myuer, and the following F- Dayq fragments are stored in
another section j (; = WxH). The section i of a pointer memory stores the section j index. If
section j is still insufficient to store F- Dayg fragments (i.e., F- Dayg> Day), the rest F-2xDayg

fragments are stored to another section k (k>j), and so on.
12

2.5.3 T-buffer transparent fragment storage system

T-buffer transparent fragment storage system is based on WF hardware oriented
algorithm. In WF hardware oriented algorithm, each pixel is assigned the same size of
memory space, no matter whether the pixel has transparent fragments or not. Thus, the main
idea of T-buffer is only pixel with transparent fragment(s) will assign memory space in
T-buffer. Figure 2-9 is the diagram of transparent fragment storage system, and it consists of

SSA table, T-buffer, and NSA table.

SSA Table has W times H entries, where W is defined as the width of a screen, and H is
defined as the height of a screen. Each pixel p in a screen has a corresponding entry ep in SSA
Table and each entry in SSA Table stores the address of start section for pixel p. Namely, pixel
p has assigned the entry ep in SSA Table. If a pixel does not have the start section— the pixel
does not have transparent fragments— a nullified address is stored in the corresponding entry

in SSA Table.

T-buffer is a storage space for transparent fragments which organized in sections of
Lnum, where Lnum represents the maximum number of transparent fragments that can be
stored in a section. Each section stores transparent fragments with the same x-y coordinate;
that is, fragments belonging to the same pixel are stored gregarious within one section in
T-buffer. There might be more than Lnum transparent fragments which have the same x-y
coordinate. Thus, more than one section should be assigned to a pixel to extend the capability
for storing variable number of fragments. We use NSA Table to record the address of next

section which is assigned to store the following fragments.

13

(0.0)
(0.1}

{(W-111-1)

Figure 2-9

58A Table

Slarl section addr

7 TR Y S ————

Section 1

........................ [Lm.uu (| Next scetion addr
........................... 1
Sectionn |- n

Transparent Fragment Storage System
T-buffer INSA Table

The design diagram of transparent fragment storage system

14

Chapter 3 Design

In this chapter, our design, H-buffer transparent fragment storage system is proposed.
The objective of our design is to provide memory size of storage system which needs to be
least. This chapter is organized as follows: in section 3.1, the statistics and observation from
T-buffer transparent fragment storage system is introduced; in section 3.2, the system design
overview is introduced; in the last section of this chapter (section 3.3), we present the

H-buffer transparent fragment storage system.

3.1 Statistics and observations

3.1.1Statistics of transparent fragment storage internal fragmentation

Benchmark: Quake4
Resolution: 640*480

Fixed section size: (2 TFs)

Internal fragmentation in T-buffer

5.00

2 4.00

gs.oo

5.2.00

o

£ 1.00

Q

= 0.00
\) Q \) \9 W A\
R A D I A
& ‘b@ ‘2;& D ‘1;& ’b®
T < rame index)

B Memory size for storing transparent fragments
B Memory size of internal fragmentation (start section)
B Memory size of internal fragmentation (overflow section)

Figure 3-1 Ratio of internal fragmentation size to section size in T-buffer

15

Due to T-buffer is the lowest memory requirement in recently design, we have made
some statistics and observation. The top 10 frames of T-buffer memory requirement is shown
in Figure 3-1, and it also shows the internal fragmentation memory size in each frame, where
internal fragmentation means the fixed section has been assigned in T-buffer for storing a
screen coordinate’s transparent fragments, but the entries of section are not fully used. The X
axis is frame index, and the Y axis is the memory requirement. The black is the actually
memory size for storing transparent fragment size, blue is the memory size of internal
fragmentation in start section, and the red is the memory size of internal fragmentation in
overflow section. The start section is defined as the first section in T-buffer which screen
coordinate used, and overflow section is defined as the section used to store transparent
fragments which overflow from start section. We can find the T-buffer size is 5.2MB at least,
but there are about 30% memory size is wasted by internal fragmentation. If we can reduce
the internal fragmentation of start section and overflow section, the requirement of storage

memory can be lower.

3.1.2 Statistics of transparent fragment amount similarity

Similarity ratio
100%
90% ﬂ
80% \/\’M'\M
70%
60%
50%
40%

30%
20% /

Ratio of similarity

10%
0%

200
204
208
212
216
220
224
228
232
236
240
244
248
252
256
260
264
268
272
276
280
284
288
292
296

ol
o
on
F

— Similarity ratio rame index

Figure 3-2 Ratio of transparent fragment amount similarity
16

Figure 3-2 shows frame-similarity of 500 continuous Quake4 frames. The X axis is the
frame number, and the Y axis is the transparent fragment amount similarity ratio. The

equation of transparent fragment amount similarity ratio is shown below:

o _ I:)same
Transparent fragment amount similarity ratio: —— Eq.(5)

transparent

Where Pyansparent 1S the number of screen coordinates which have transparent fragments
and the number of screen coordinate do not have transparent fragment but the same screen
coordinate in previous one frame have. Psme iS the number of screen coordinates which have
T.F. amount error in one with previous one frame. In 500 continuous frames, the
frame-similarity higher than 70% has 417 frames. It means most of pixels have the same
transparent fragment amount with the same screen coordinate in previous one frame. Due to
frame-similarity, for start section, if we statistic every pixel’s transparent fragment amount in
current frame, and use this information to assign start section size for next frame, the internal

fragmentation by start section may be reduced.

3.1.3 Observation on T-buffer overflow section using mechanism

T-buffer Our idea

Overflow section A =»F========1 Overflow section A = | SESEE————
Overflow section B—> | EE-————— Overflow section A’ =y | m————"
Overflow section C -3 | S——

Cost 6 T-buffer entries Cost 4 entries

Figure 3-3 Example of overflow section sharing

We also observation on T-buffer overflow section. In T-buffer, each screen coordinate use
17

their own overflow section(s) to store overflow transparent fragments, so that, each screen
coordinate’s last overflow section may face internal fragmentation problem. For reducing
internal fragmentation in overflow section, our idea is let multiple screen coordinates sharing
(@) fixed size overflow section(s), in order to reduce the overflow section amount which
may face internal fragmentation. Figure 3-3 is an example of overflow section sharing. The

different color of rectangles represent different screen coordinate’s transparent fragment.

3.2 Design overview

our objective is to reduce the memory requirement by eliminating internal fragmentation.
The overview of our proposed transparent fragment storage system is shown in figure 3-4 (a),
and figure 3-5 is shown the diagram of T-buffer correspond to H-buffer transparent fragment

storage system.

Z buffer

opaque fragments | Pixel
Rasterization —

Processing

WF Blending L/F:ame Buffer

History- based Sector Overflow-handling Sector

i |
i :
: ', Start section addr accumulator _ |
| \ﬁ— . :
i| : | SOA table addr accumulator |\ i
ol :
I H-buff : |
i1 |SSATable -bulier | SDAIndex |SOATable¢ |
L I Thable ;
11 ! :
i _____.._m__al i
: i

\ Overflow section addr accumulator J
e e —————————— |

Figure 3-4-1 Design diagram of H-buffer system and the location in pipeline.

18

/4

(0.0)
0,1)

W-11I-1)

’--------

SSA Table

Start section addr

T-buffer

Section 0

Scetion 1

Section n

NSA Table

Next section addr

---———-—i

Figure 3-4-1 The diagram of T-buffer system correspond to H-buffer system.

After rasterization stage, fragments are output in arbitrary order. The opaque fragments
are sending to pixel shader, and the transparent fragments are send to our transparent fragment
storage system. There are two sectors in our system: The first sector is called “history-based”
which includes start-section address table (SSA table), start section address accumulator, and
H-buffer. Another sector is called “overflow-handling”. It includes share overflow section
address table (SOA table), SOA table address accumulator, SOA index table, overflow section

address accumulator, and H-buffer. Notice that H-buffer is shared among the two sectors. The

detail of the two parts will be introduced in section 3.3 and section 3.4

3.3 History-based sector

3.3.1 Structure of history-based sector

19

Start section address accumulator

erflow bit H-buffer

SSA Table

ssa TF

Figure 3-5 Diagram of history-based sector

As shown in the Figure 3-5, the SSA table has W X H entries, and each entry has three
fields: SSA (start-section-address) field, TF (transparent fragment) amount field, and overflow
bit field, where W is defined as the width of screen, and H is defined as the height of a screen.
Each pixel p has a corresponding entry Ep in SSA table, and the SSA field is store the start
address of start section within H-buffer for pixel p. If a pixel does not have any transparent
fragments, a nullified address is stored in the corresponding entry of SSA field. Another field
iIs TF amount field, and it stores the transparent fragment amount for pixel p. When pixel p
have an incoming transparent fragment and its corresponding entry of SSA field is null, then
the TF amount field will be used as a hint to allocate the section size in H-buffer. If not, it will
be used as a counter to record how many transparent fragments appear on this pixel
coordinate. The overflow bit is used to indicate the corresponding start section is full or not.
The reason we add overflow bit is to reduce timing for searching empty entry in start section.
For example, once a screen coordinate corresponding SSA table entry of SSA field has stored
a start section start address, if there is no overflow bit field, we may take multiple cycles to
search the empty entry in start section. If there are overflow bit field and the overflow bit

indicate the section not full, so that, we can sure the start section is not full, then use the start

20

section start address plus TF amout field value us the incoming transparent fragment storing

address.

H-buffer is organized by numbers of entry, and each entry can store a transparent
fragment. When a screen coordinate’s first transparent fragment incoming, it has to assign a
section in H-buffer for storing transparent fragment. The H-buffer address accumulator
always indicates the first none assigned entry in H-buffer, and we will use the accumulator
value as the start address of new section, and section size is decided by TF amount field value
in SSA table. Noticed that the new start section assign direction is always from H-buffer top

to bottom.

3.3.2 An example of history-based sector

Figure 3-6 are examples to show how to assign a start section in H-buffer by SSA table.
In figure 3-6 (a), suppose the first incoming transparent fragment with screen coordinate (0,2),
and its corresponding SSA field in SSA table is NULL. Hence we will use the H-buffer
address accumulator and the TF-amount value to assign a new start section in H-buffer, after
that, the address accumulator will accumulate the TF-amount value. After storing the
transparent fragment data into start section, the corresponding SSA field will record the
start section start address, and TF-amount field will start counting the transparent fragments

on this screen coordinate.

21

Start section address accumulator
Start Addr —>» Start Addr+2

SSA Table

0,0 w~No |1 (=|,/ ___RGBA_____

(0,1)] NuLL 0

—> (0,2)] StartAddr”|] > > |- -----TTTTT
(0,3) NULL i1 -

(W-1,H-1)] NULL 1o

Figure 3-6-1 Upon first appearance of a (0,2) transparent fragment.

In figure 3-6 (b), suppose the second incoming transparent fragment with screen
coordinate (0,1), and the process is same with figure 3-6 (a). In figure 3-6 (c), suppose the
third incoming transparent fragment with screen coordinate (0,2). The corresponding SSA
field has stored start section address, and the overflow bit is “0”, so that, we can use SSA field
value plus TF amount field value as the transparent fragment storing address. Finally, update

the TF amount field and overflow bit.

Start section address accumulator
Start Addr+2 —> Start Addr+5

SSA Table

H-buffer

(0,0) NULL

1

—> (0,1)] Start Addr+24 3% ---->w
- _ ———
1

(0,2)| StartAddr
(0,3)] NULL |

=
—

=

(W-1,H-1)] NULL |3 |0

Figure 3-6-2 Upon second appearance of (0,1) transparent fragment.

22

Start section address accumulator
Start Addr+35

SSA Table

(0,0) NULL

(0,1)] start Addr+2
—> (0,2)| StartAddr-

(0,3)L. _NuLL |1 1

(W-1,H-1)] NULL 1o

Figure 3-6-3 Upon third appearance of (0,2) transparent fragment.

34 Overflow-handling sector

Before present the overflow-handling sector, we will make some discussion about our

sharing overflow section mechanism.

3.4.1 Overflow section size

Due to fix size overflow section, we have to assign a sensible value as section size. We
estimate the overflow section size by using the average value of overflow transparent
fragment amount per overflow pixel and standard deviation. Assume the average value is a,
standard deviation is o, and shared pixel amount is f. Therefore, the overflow transparent
fragment amount per pixel is between (a-0) and (a+o), and the overflow section size is

between fS(a-o0) and f(a+o).

3.4.2 Overflow section sharing meahanism

We have two mechanisms: (a) Choose separate pixels (b) Chose neighbor pixels. For

mechanism (a), the advantage is each group of share pixels’ overflow transparent amount is

23

close, but the disadvantage is hardware hard to implement. The advantage of mechanism (b)
is to exploit the characteristic of neighbor pixel will have same transparent fragment amount,
but still have chance cause internal fragmentation in overflow section. For this reason, the
mechanism (b) seems to be easily implement, and the internal fragmentation in overflow
section may reduce. The Figure 3-7 has shown an example for multiple pixels share overflow
sections. Each pixel in the same block will share the same overflow section. In this example,
pixels in 2x2 block A share one or more overflow sections in H-buffer, and the block B is

also.

H-buffer Screen
——S{art section—— T, A :Block A
—-Start section — | B:Block B

D : Block

Figure 3-7 An example of sharing overflow sections

Due to sharing, we have to indicate which pixel and which block use which entry
in overflow section. As shown in figure 3-8, we will use the X coordinate last M bits,
and Y coordinate last N bits as block pixels’ coordinate, where M and N is the block

width and height. And remain bits of screen coordinate is used to index block.

24

Lx bits logMDbit(s)
[| //—._‘__] :
[Block coordimme 30 Mlock pixel | Screen coordinate X
coordinate 3
. log,N bit(s .
Ly bits 2N bitls) Screen coordinate Y
! Block cobrdinate Y’ 'Block pixel
coordinate Y~ MxN: Block width x Block height

WxH: Screen width x Screen height

Figure 3-8 Index information

3.4.3 Structure of overflow-handling sector

H-buffer SOA table address accumulator
————————————— SOA Table
- T"T-TTTTC SOA Index Table)
_____________ Addr Block pixel PRE Addr
_____________ 0 1 « wMm number
—————————— 0 0 M IR

:] 1 il
_____________ : 2 R
S R \ —
Overflow section address accumulator . - —

Figure 3-9 Diagram of overflow handling sector

As shown in Figure 3-9, the SOA table has (WxH / MxN) entries, and we use the block
number to index this table, where WxH is defined as screen resolution, and MxN is defined as
the block size. Each SOA index table entry records the latest use of SOA table entry address.

So that, any screen coordinate can fast to get the corresponding SOA table entry.

The SOA table records the overflow section using information. Each used SOA table

entry will correspond to a overflow section. The Addr field is used to record the overflow

25

section start address. The block pixel number field amount is equal to overflow section size.
Each block pixel number field record the block number to identify which pixel use the
corresponding entry in overflow section. The PRE(previous) field is to record the previous
one SOA table entry address which used by same block pixels. If a section in H-buffer face
overflow condition, a new fixed size overflow section in H-buffer will be assigned to store
overflow transparent fragments. In addition, we will use the SOA table address accumulator to
find the first unused SOA table entry to record overflow section information. Once the SOA
table entry E corresponding overflow section also face overflow situation, we will assign
another overflow section in H-buffer and a new SOA table entry E’. After that, the PRE addr
field of SOA table entry E> will record the address of SOA table entry E. Finally, the
corresponding SOA index table entry will update to E’. Thus we can retrieve transparent

fragments fast by this recording information.

Noticed that new overflow section assign direction is from H-buffer bottom to top. The
benefit is to reduce the overflow section start address recording overhead. Due to fixed size
overflow section, we can eliminate the last few bits of overflow section start address, so that,

the Addr field requirement bits in SOA table can be reduced.

The Figure 3-10 is an example for overflow-handling sector process. Suppose the block
size is 2x2; the overflow section size is 2; the start sections of screen coordinate (2,2), (2,3)
are full, and the incoming transparent fragments screen coordinate sequence are (2,3), (2,2),

and (2,2). Each overflow handling process are figure 3-10 (a), (b), and (c).

26

0
H-buffer | SOA table address accumulator
Upqate
_____________ SOA Table
SOA Index Table .
_____________ Addr Block pixel PRE Addr
0 e WM number
0 [addn ; ,
| 1 b, 5
L 2 :
_____________ /N 3 i
RGBA !
Addrn
Overflow section address accumulator |

Figure 3-10-1 Screen coordinate (2,3) transparent fragment incoming

H-buffer | SOA table address accumulator
_____________ SOA Table
SOA Index Table Block bt
———————————— Addr DOEPEE oy Addr
0 1 e WM number
OlAadde’] 1 ! () B
| lo 1 '
: : 2 :
| ___RGBA ___] wunw 3 l
RGRBA : |
Overflow section address accumulator |

Figure 3-10-2 Screen coordinate (2,2) transparent fragment incoming

1
H-buffer | SOA table address accumulator
_____________ Upflate SOA Table
_____________ SOA Index Table Hlockpixe
0] . WIM Addr nomber PRE Addr
0 oladanT 1 ' O .
______________ 1 1| Add —i 0
RGBA : 2 i
| ___RGBA_ ___N\ wn 3 i
ROGBA '
Addr>
Overflow section address accumulator |

Figure 3-10-3 Screen coordinate (2,2) transparent fragment incoming

27

35 Access preocess and disscussion on timing requirement

3.5.1 Storing process

Transparent fragment

[> cal
Processing next > (X, Y, Z.R,G, B, A)
transparent fragment

SSATable
Check SSA Table Entryixy) ssa ¥ it
0.0 [Yvur]
0.1 suLn
0.2y NuLL
(0,3)_ NuLL

tart

(W-T.I11 NULL

L.

\ J
1 .Assign New section size by TF amount
field of SSA table entry (X, Y) { Lookup the SA from Entry(X, Y) ‘
2. Update SSA table

3

h J
Write fragment data into N /l@cn(SA
corresponding section full?

[

Y
Blogk size N*N
C= XN
f= YN
Assign new z SOA Index Table
Update SOA Index table | | fixed size :l;c\m;-“ﬂc-)
& SOA table overflow section T : NLLELLT" —
in H-buffer) 1
[} .
N s
ndex table(X",Y")
N
SOATable
Addr ORI ooy sadr

Figure 3-11 The flowchart of storing fragments into H-buffer

Figure 3-11 shows the process of storing transparent fragments into H-buffer. Before a
transparent fragment with the location (X,Y) is stored into H-buffer, the address of
start-section S(X,Y) is read from the SSA table entry(X,Y). If the start-section address field is
NULL, the new empty section in H-buffer is assigned for that pixel to store transparent
fragments, and the section size is decided by TF amount field. Otherwise, we will check

whether the section S(X,Y) is full. If NO, the fragment is stored into section S(X,Y); if YES,
28

it means the start section overflow, so that, we will check the SOA index table and SOA table
to find a H-buffer overflow section, and store transparent fragment into that overflow section.
Due to storing process timing can be hidden in pixel processing timing, so we do not

discussion on storing process timing here.

3.5.2 Retrieving process

Due to overflow section sharing, we cannot retrieve overflow transparent fragments from
overflow-handling directly, and cause many cycles to search corresponding pixel’s transparent
fragments. For balance retrieving time, we need temporary buffer to keep each block pixel’s
transparent fragment H-buffer memory address. After that, alpha blending process will

capture transparent fragments from each blending queue.

Blending Queue

Queue 1| [Queue 2||Queue 3| ...

| |
| 1
1 — -]
i szséFTaE}%vﬂ?‘,m H-buffer | SOA\blead s accumulator | i
v 0.0 [Y 2 = == SOA Tabl :
i Eo,1)) o 2 ~-----—-----7| SOAIndexTable p,, G"‘:,lﬂ“‘“emmdr
wee 5Ls = !
i (0.2) 9 O o e I P SRR RRE] 01
1 (0.3) NULL 2 ——— |
1 1 N o — :
s : :) : P
| . . <11 bAe_ e a - " h 1
rOverflow seetion_J 1+ R
(V?-I,H-l) L. | 2] [KLy NA:ddr PATRES M i
| —— . ! vt |
| 1
1

Figure 3-12 Concept of blending queue.

In figure 3-12, alpha blending process is block by block, and the blending queue amount
is equal to block pixel amount. When retrieving, the process block will look up SOA table for
generating all the overflow transparent fragments’ H-buffer address in the block. In the same
time, the generating H-buffer address will depend on their block pixel number to decide

sending which blending queue. Until the process block finish alpha blending, then the next
29

block may start the retrieving process.

Look up the next

Block number
E— black

Block number=—+;

Mext block pixel
i++;
J++;

Entry Num = SOA Index table; -, value

y — ¥ -
Retrieving H-buffer address from || Retrieving SOA table(Entry Num)
scction(slﬁ) 1o cg.rrcsp.onding block all H-buffer address to COTI'&SPOI'Idlﬂg W

pixel Queue block pixel queue

s PRE addr field o
SOA table(Entry Num)
NULL?

Entry Num = PRE addr field

Figure 3-13 The flowchart of retrieving fragments from H-buffer

Figure 3-13 is the flowchart of retrieving process. When a block start retrieving
transparent fragments, the history-based sector and the overflow-handling sector will process
at same time. History-based sector will look up SSA table, and generate transparent fragment
H-buffer address which in its start section. History-based sector process will sent their start
section transparent fragment H-buffer address to correspond bending queue until all the block
pixels done. The overflow-handling sector will look up SOA Index table to find the last
used SOA table entry. After that, we will use PRE field to continuously look up SOA table for

generating overflow transparent fragment H-buffer address, and sent them to the

30

corresponding queue.

Chapter 4 Evaluation Results

In this chapter, we first show our evaluation environment and the characteristic of input
frame data (in section 4.1 and 4.2). Then, we show and analyze simulation results of memory
requirement and execution time during rendering of each method: R-buffer, WF hardware
oriented algorithm, and our TFSS design in section 4.3. In the last section, we briefly

summarize our conclusion from the results.

4.1 Evaluation environment

Vertex Fetch

' v ¥ 1
Vertex Vertex Vertex Vertex
Shader Shader Shader Shader

')) '

Transparent fragment (R,G,B,A)

—

)

Hierarchical Z

' 1) 1

‘ ROPz ‘ | ROPz | ‘ ROPz ‘ | ROPz |

Vertex
Shader

‘ Interpolation ‘

v v | v '
Fragment| |Fragment| |Fragment| [Fragment]
Shader Shader Shader Shader
[v I I v T T+ 1 T v 1
‘ ROP- ‘ | ROP- | ‘ ROP ‘ | ROP- |
| 2 2 2 O T
Memory Memory Memory Memory

— | |Controller| | Controller| |Controller| |Controller

Figure 4-1 Simulation flow and ATTILA architecture [Moya06]

31

Figure 4-1 shows the architecture of ATTILA simulator and we dump trace of fragment
data from ATTILA simulator rasterization for our software behavioral simulator. We
implemented a behavioral simulator of the architecture with the transparent fragment storage
system in C, and modified ATTILA simulator [Moya06] to output fragment information to a
tracefile. The benchmark used in ATTILA simulator is QUAKE4 and DOOMS3, two modern
graphics applications. The tracefile outputted from ATTILA simulator contains the
coordinates and RGBA color components of fragments in frames. Our simulator reads the
tracefile and evaluates each sector memory requirement of H-buffer transparent fragment

storage system.
The simulation parameters are listed below:

B Display resolution: the number of distinct pixels in each dimension that can be
displayed.

B Color component bit-width: the bit-width of each of the RGBA color components

B Block size : block width, block height; Number of pixels share overflow section

B Overflow section size: the memory size of a overflow section in H-buffer

In our simulator, the display resolution are 640x480, the bit-width of each of RGBA
color components is 8 bits, and modulate the value of Block size to observe the memory

requirements. The overflow section sizes will analysis at next section.

4.2 Overflow section size analysis

As we mention in section 3.4.1, w will statistic number of overflow transparent fragment,

average, and standard deviation in QUAKE4 and DOOMS graphic applications.

32

Table 4-1-1 Avg. and S.D statistics

Avg. S.D. (Avg.-S.D.) (Avg.+S.D.)
QUAKE4(640x480) 1.10 0.25 0.85 1.35
DOOM3(640x480) 1.19 0.49 0.7 1.68
Table 4-1-2 Overflow section size in different Num.

Block size 2X2 2x2 4x4 4x4 8x8 8x8 16x16 16x16
Num.(Avg.-S.D.) 3.4 2.8 13.6 11.2 54.4 44.8 217.6 179.2
Num.(Avg.+S.D.) | 54 | 67 | 216 | 264 | 864 | 1075 | 345.6 430.0

Probably overflow 2,48 8,16,32 32,64,128 128,256,512
section size

Table 4-1 (a) is 500 frames of QUAKE4 and DOOMBS statistics. The “Avg.” is average of

overflow transparent fragment amount per overflow pixel, and “S.D.” is standard deviation.

33

The statistic result shows the overflow transparent fragment is about 1 to 2, and the variation
in DOOMS3 is bigger than QUAKEA4. Table 4-1 (b) is a rough estimate about overflow section
size. We observe the distribution of screen coordinates’ overflow transparent fragment amount
in average of 600 frames. In QUAKE4 benchmark, with a standard deviation, there are 90
percent screen coordinates locate in; In DOOM3 benchmark, with a standard deviation, there
are 87 percent screen coordinates locate in. So that, the average value with a standard
deviation value might close the overflow transparent fragment amount per screen coordinate
in application. After that, we will get the probably overflow section size. The two smaller size
in each column has possibility to be the optimization value. The reason is the biggest one
would cause more than 60% block with internal fragmentation. Even if the overflow handling
sector memory requirement may smaller, but after tradeoff, it is not benefit. In the next

section, we will show the simulation result to prove our viewpoint.

4.3 Simulation results

In this section, we show the simulation results of memory requirements of H-buffer
transparent fragments storage system and compare with the strongest competitor: T-buffer

transparent fragment storage system.

4.3.1 Memory requirement

We obtained the simulation result of memory requirement of our design and T-buffer, as
shown in Figure 4-2 and Figure 4-3. The X-axis is the memory requirement at least in 600
frames; the Y-axis indicates different systems, and different sharing mechanism. Notice that
the management part in T-buffer system includes SSA table and NSA table; in H-buffer

system includes SSA table and overflow-handling part’s table.

34

8 303 BmTE memory size

% 7 803 B Internal fragmentation-Start section
= . B Internal fragmentation-Overflow section
= 7.303 B Management part
UJ 6.803 Blending queue
5 6303
‘5 5.803
g 5.303
o 4.803
o 4.303
é 3.803
7 IR R . S A G PG
S & 30 40 A0 N0 00 o o o o ¢ o o
S & &7 L > W Mmoo S Do) p p p
PN . L N AN N W T\ TN TN
& T PP P N NN FTEEE
&:00 D7 R R R DR TR AR \Z*? Q? Q\Q' q’\‘l}
Qs D QD

*Blending queue: (Block width x Block height) x (Index bits) x 20

*T-buffer: the highest transparent storage utilization design, and it’s memory requirement
has been optimized

*H MxN_Num.: H-buffer system Block width x Block height Overflow section size

Figure 4-2 Memory requirement comparison (QUAKE4)

10.186 . /s
® Internal fragmentation-Start section
9.186 N Internal fragmentation-Overflow section

B Management part
8.186 4—I‘Btend1gng—q[re£e

Most memory requirement : MB

7.186
6.186
5.186
4.186
> I N S, VN R I S T)
AR R I N RO G G S
oQ'° \&Q/@ /\Q v b«*’b‘/bf!}/ bf"b'/ %@O/ o;?’ %9 69 ‘09 ‘o/o
F T T T T FFFF I
SRR SR 2R SRRV AR SR S
Q7 R R

Figure 4-3 Memory requirement comparison (DOOM3)

35

Due to simulation result have same number of transparent fragments, so we ignore the
T.F memory size in Figure 4-2 and Figure 4-3. Compare with the T-buffer system, our
H-buffer transparent fragment storage system has lower the memory requirement about 25%
in Quake4, and 20% in DOOMB3. Furthermore, the overhead of blending queue is small even
use bigger block. Notice that in smaller block, like 2x2 and 4x4, the internal fragmentation
increase obviously with the overflow section size also increase. Otherwise, due to sharing, the
bigger block and overflow section size use less overflow-handling part. In another side, the
small block cause many overflow, so that, the overflow-handling sector memory requirement
has increased. From figure 4-2 and figure 4-3, we can find H-buffer system not only reduce

internal fragmentation but also decrease the management part memory requirement.

QUAKE4
6.500

% 6.000

= 5.500

)

5 5.000

S, 4.500

2 4.000

2 3.500

é 3.000

7 H Blk4x4 Ove8 History-based Overflow-shared

§ only Ove2 only Blkdx4 OveS8
B T.F. memory size B Internal fragmentation
® Management part ¥ Blending queue

Figure 4-4 Memory requirement comparison (Quake4)

36

DOOM3
% 7.000
B 6.500
5 6.000
5 5.500
g 5.000
3 4.500
E‘ 4.000
% 3.500
£ 3.000
%‘ H Blk4x4 Ove8 History-based Overflow-shared
> only Ove2 only Blkdx4 Ove8
B T.F. memory size B Internal fragmentation
B Management part B Blending queue

Figure 4-5 Memory requirement comparison (DOOM3)

We also consider the memory requirement of separate history-based and overflow-shared.
Figure 4-4 and Figure 4-5 show the history-based only and overflow-shared memory
requirement. It shows the history-based method reduce internal fragmentation less than
overflow-shared method. The probably reason is history-based method still face the view
change problem. We can find the memory requirement of overflow-shared method is better

even use the two methods together.

4.3.2 Timing requirement

For emulating the timing requirement, we list all storing process condition of each table
and transparent fragment buffer access. Table 4-2 shows the storing process condition of

T-buffer system and H-buffer system.

37

Table 4-2 Storing process condition

T-buffer store process
SSA table T-buffer NSA table Overlap access
eliminate
Start section X 2 1 0 SSA table:1
Overflow section X T-buffer:1
Start section V 1 N+1 1 SSA table:1
Overflow section X T-buffer:'N+1
Start section O 1 M+(N-1)+1 M+1 SSA table:1
Overflow section X T-buffer: M+N
Start section O 1 MH(N+1)+1 M SSA table:1
Overflow section V T-buffer: M+N+2
X: Section none use N: Number of transparent fragments store in section
V: Section none full M: Number of sections used by a screen coordinate
O: Section overflow

H-buffer store process

SSA | H-buffer | GOAindex | GOA table Timing
table table require
Start section X 3 3 1 0 SSA table: 2
Overflow section X H-buffer: 3
Start section V 2 2 1 0 SSA table: 2
Overflow section X H-buffer: 2
Start section O 1 2 7) 1 SSA table: 1
Overflow section X (GOA index ntry store null) H-buffer: 2
1 2 2 2 SSA table: 1
GOA table: 1
(GOA |ndex entry store a GOA tablg entry address) H-buffer: 2
Start section O 1 1 1 2 SSA table: 1
Overflow section V GOA table: 1
H-buffer: 1

For comparing the timing of two different systems, we change the H-buffer timing
require to T-buffer timing requirement by memory access time ratio. For example, the
T-buffer access time is 2ns, and H-buffer access time is 1ns, and the original H-buffer access
times should multiply 0.5. Notice that the memory access time was estimated by CACTI.

Table 4-3 is H-buffer system storing timing requirement and turn to T-buffer system.

38

Table 4-3 H-buffer system storing timing requirement turn to T-buffer system

H-buffer store process

Timing require
Start section X SSA table: 2 SSA table: 2.12
Overflow section X H-buffer: 3 T-buffer: 2.7
Start section V SSAtable: 2 SSAtable: 2.12
Overflow section X H-buffer: 2 T-buffer: 1.8
Start section O SSAtable: 1 SSA table: 1.06
Overflow section X H-buffer: 2 T-buffer: 1.8
SSA table: 1 SSA table: 1.06
GOA table: 1 NSA table: 0.7
H-buffer: 2 T-buffer: 1.8
Start section O SSA table: 1 SSA table: 1.06
Overflow section V GOA table: 1 NSA table: 0.7
H-buffer: 1 T-buffer: 0.9

We use timing requirement as our simulation parameter, and simulate each table and
transparent fragment buffer access times requirement per pixel. Table 4-3 shows the two

different system timing requirement and H-buffer timing increase ration.

Table 4-3 Systems storing timing requirement comparison

Storing process timing comparison

SSA table Transparent Overflow-
{ragments handling
buffer table
H-buffer system 2.08* 2.26* 0.02*
T-buffer system 1* 1.96* 0*
Timing increase 1.08 0.15 =0
ratio

*: Average memory access times per transparent fragment
)

We can found the H-buffer system memory access time is more than T-buffer system.

But in fact, the overhead is not serious. The overhead is about 10 thousand ns, and it is more

39

smaller than ten millions ns of blending a frame.

40

Chapter 5 Conclusion and Future Work

5.1 Conclusion

In this thesis, we propose a transparent fragment storage system for order-independent
transparency. For reducing internal fragmentation in past design, the main ideas are

transparent fragment amount similarity and overflow section sharing.

For QUAKE4 benchmark, our transparent fragment storage system, in comparison with
T-buffer transparent fragment storage system, reduces 22% memory requirement in average,
From the evaluation result, we find that as the number of transparent fragments per pixel

increases, our storage system has more advantages on memory requirements.

5.2 Future work

In the overflow-handing sector, we propose a blending queue for temporary storing
retrieving transparent fragment. The reason is we want to reduce searching corresponding
pixel’s transparent fragment time. But once the blending queue full, retrieving time may

increase. Therefore, the blending queue overflow—handling mechanism is worth to discuss.

41

References

[Lin08] Hui-Chen Lin. Transparent Fragment Storage System for Order-Independent
Transparency in GPU. Institute of Computer Science and Engineering, National Chiao-Tung

University, 2008.

[Amor06] M. Amor, M. Boo, E.J. Padron and D. Bartz. Hardware Oriented Algorithms for

Rendering Order-Independent Transparency. The Computer Journal, vol. 49, issue 2, 2006.

[Witt01] Craig M. Wittenbrink. R-buffer: a Pointerless A-buffer Hardware Architecture. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hardware,

pages 73-80. ACM Press, 2001

[Carp84] L. Carpenter. The A-buffer, an Antialiased Hidden Surface Method. In Proceedings

of ACM SIGGRAPH, pp.103-108,1984.

[Moya06] Victor Moya, Carlos Gonzélez, Jordi Roca, Agustin Fernandez and Roger Espasa.
ATTILA: A Cycle-Level Execution-Driven Simulator for Modern GPU Architectures. IEEE
International Symposium on Performance Analysis of Systems and Software (ISPASS-2006),

March 2006.

[Watt00] Alan Watt. 3D Computer Graphics. 3rd edition. Pearson Addison-Wesley publishing.

2000

[Watt84] T. Porter and T. Duff. Compositing Digital Images. ACM Computer Graphics

(Siggraph 84 Proc.), pp. 253-259, 1984.

[Mamm89] A. Mammen. Transparency and Antialiasing Algorithms Implemented with the
Virtual Pixel Maps Technique. In IEEE Computer Graphics and Applications, Vol. 9, No. 4,

pp. 43-55, 1989.

42

[Snyd98] John Snyder and Jed Lengyel. Visibility Sorting and Compositing without Splitting
for Image Layer Decompositions. In Proceedings of the 25th annual conferenceon Computer

graphics and interactive techniques, pp. 219-230, 1998.

[Ever01] Cass Everitt. Interactive Order-Independent Transparency. In Technical report,

NVIDIA Corporation. ACM Press, 2001.

[Joup99] N. P. Jouppi and C.-F. Chang. Z3 : an Economical hardware Technique Rendering
for High-quality Antialising and Transparency. In Proceesings of Graphics Hardware, pp.

85-93, ACM/Eurographics, 1999.

43

