

國 立 交 通 大 學

資訊科學與工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

利用資訊隱藏技術在 PDF 檔案上做秘密傳

輸、驗證及分享之研究

A Study on Information Hiding Techniques for PDF Files

and Their Applications for Secret Transmission,

Authentication, and Sharing

研 究 生：賴以晟

指導教授：蔡文祥 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 八八八八 年年年年 六六六六 月月月月

 i

利用資訊隱藏技術在利用資訊隱藏技術在利用資訊隱藏技術在利用資訊隱藏技術在 PDF 檔案上做秘密傳輸檔案上做秘密傳輸檔案上做秘密傳輸檔案上做秘密傳輸、、、、驗證及驗證及驗證及驗證及

分享之研究分享之研究分享之研究分享之研究

研究生：賴以晟 指導教授：蔡文祥 博士

國立交通大學資訊科學與工程研究所

摘要摘要摘要摘要

隨著網路技術的發展，今人皆利用網路來交換資訊。PDF 檔案格式有各種優

異特性，如合乎開放標準、跨平台及提供高品質的閱覽與列印，因此已變得非常

普及。在本論文中我們利用 PDF 檔案做為掩護檔案，提出數種資訊隱藏的方法，

並將其應用在秘密傳輸、驗證以及分享之上。在秘密傳輸方面，我們提出了兩種

基於資訊隱藏的傳輸技術。第一種是將秘密資訊編碼，成為 PDF 檔案中代表空白

的 16 進位碼，用以取代原本的空白。而第二種則是將文字區塊插入到 PDF 檔案

當中，使其不會顯現在 PDF 的瀏覽畫面之中。對於秘密驗證，我們修改 PDF 檔案

中的產生數(generation numbers)來藏入驗證訊號，以達到驗證秘密資訊真偽性

的目的。在秘密分享方面，我們將秘密 PDF 文件和數個 PDF 掩護檔案，利用“互

斥或”(exclusive-OR) 和 “重合”(coincidence)兩種運算，產生一份中間的

秘密資訊，並將它藏入這些 PDF 掩護檔案中得到分享檔案。最後我們將這些分享

檔案分發給每一位參與者。藉由收集每一份分享檔案，我們可將秘密 PDF 文件復

原回來。實驗結果證明以上所提出各方法的可行性。

 ii

A Study on Information Hiding Techniques for PDF

Files and Their Applications for Secret Transmission,

Authentication, and Sharing

Student: Yi-Cheng Lai Advisor: Wen-Hsiang Tsai

Institute of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

With the development of network techniques, people exchange information on

the Internet nowadays. The PDF becomes very popular today because of its

outstanding capabilities like open-standard, cross-platform, and high-quality viewing

and printing. In this study, several data hiding methods for applications of secret

transmission, authentication, and sharing are proposed using PDF files as cover media.

For secret transmission, we propose a method for secret transmission by two data

hiding techniques. The first is a technique based on a space coding scheme and the

second is a technique of inserting invisible texts into PDF files. For secret

authentication, we propose a method for authentication of secret messages for fidelity

by modifying the generation numbers in a PDF file to embed authentication signals of

the secret messages. For secret sharing, we use a secret PDF document and cover PDF

files to create an intermediate secret message by exclusive-OR and coincidence

operations, and hide it into the cover PDF files by the second previously-mentioned

data hiding technique to get shares. The shares are then distributed to the participants

for them to keep. By collecting all the shares, the secret PDF document can be

recovered. Experimental results show the feasibility of the all proposed methods.

 iii

ACKNOWLEDGEMENTS

The author is in hearty appreciation of the continuous guidance, discussions,

support, and encouragement received from my advisor, Dr. Wen-Hsiang Tsai, not only

in the development of this thesis, but also in every aspect of my personal growth.

Thanks are due to Mr. Jiun-Tsung Wang, Mr. Jian-Yuan Wang, Miss. Shu-Hung

Hung, Mr. Chun-Pei Chang, Miss Mei-Fen Chen, Miss Chiao-Chun Huang and Miss

Chih-Ting Yang for their valuable discussions, suggestions, and encouragement.

Appreciation is also given to the colleagues of the Computer Vision Laboratory in the

Institute of Computer Science and Engineering at National Chiao Tung University for

their suggestions and help during my thesis study.

Finally, the author also extends his profound thanks to his family for their lasting

love, care, and encouragement. He dedicates this dissertation to his beloved parents

and friends.

 iv

CONTENTS

ABSTRACT (in Chinese) .. i

ABSTRACT (in English) .. ii

ACKNOWLEDGEMENTS .. iii

CONTENTS.. iv

LIST OF FIGURES ... vi

LIST OF TABLES... vii

Chapter 1 Introduction..1

1.1 Motivation..1

1.2 Overview of Related Works...2

1.3 Overview of Proposed Methods...3

1.3.1 Terminology..3

1.3.2 Brief Descriptions of Proposed Methods ..3

1.4 Contributions..6

1.5 Thesis Organization ...6

Chapter 2 Review of PDF Standard and Survey of Related Works7

2.1 Introduction..7

2.2 Review of PDF Standard ...7

2.2.1 Overview...7

2.2.2 Basic Types of Objects..8

2.2.3 Indirect Objects ...10

2.2.4 File Structure...11

2.3 Review of Techniques for Data Hiding in PDF files13

2.4 Review of Techniques for Secret Sharing..14

Chapter 3 Secret Transmission via PDF Files by Space Coding and Insertion of

Invisible Texts...16

3.1 Introduction..16

3.2 Data Hiding Techniques in PDF Files..16

3.2.1 Data Hiding in PDF Files by Space Coding17

3.2.2 Data Hiding in PDF Files by Insertion of Invisible Texts...............19

3.3 Proposed Data Hiding Algorithm...22

3.4 Proposed Data Recovery Algorithm ..24

3.5 Experimental Results ...25

 v

3.6 Discussions and Summary ...30

Chapter 4 Authentication of Secret Messages for Fidelity Verification in PDF

Files ...32

4.1 Introduction..32

4.2 Idea of Secret Message Authentication by Modifying Generation

Numbers in the PDF File ...32

4.3 Proposed Authentication Processes for Secret Messages in PDF files35

4.4 Experimental Results ...37

4.5 Discussions and Summary ...42

Chapter 5 Secret Sharing via PDF Documents by Data Hiding Techniques43

5.1 Introduction..43

5.2 Overview of Proposed Method of Secret Sharing via PDF Documents ..44

5.3 Proposed Secret Sharing Algorithm...49

5.4 Proposed Secret Recovery Algorithm..50

5.5 Experimental Results ...52

5.6 Discussions and Summary ...60

Chapter 6 Conclusions and Suggestions for Future Works61

6.1 Conclusions..61

6.2 Suggestions for Future Works..62

References ...64

 vi

LIST OF FIGURES

Figure 2.1 Initial structure of a PDF file..13

Figure 3.1 The flowchart of the proposed data hiding algorithm.26

Figure 3.2 The flowchart of the proposed data recovery algorithm.27

Figure 3.3 The window of the user interface. ..28

Figure 3.4 The result of secret recovery with the correct user key.28

Figure 3.5 The cover PDF. ...29

Figure 3.6 The stego-PDF. ...29

Figure 3.7 The result of secret recovery with the incorrect user key.30

Figure 4.1 The example of generation numbers. ...33

Figure 4.2 The flowchart of embedding authentication signals...................................38

Figure 4.3 The flowchart of the authentication processes. ..39

Figure 4.4 The window of the user interface for secret authentication........................40

Figure 4.5 The result of successful authentication...40

Figure 4.6 The cover PDF. ...41

Figure 4.7 The stego-PDF. ...41

Figure 4.8 The result of failure authentication...42

Figure 5.1 Illustration of proposed method of secret sharing via PDF documents......45

Figure 5.2 Illustration of proposed secret sharing process. ...48

Figure 5.3 Illustration of proposed secret recovery process.51

Figure 5.4 The window of inputting the number of PDF documents.53

Figure 5.5 The window of the user interface. ..53

Figure 5.6 The window of the user interface with a secret PDF document and three

cover PDFs with user keys as input ...54

Figure 5.7 The first cover PDF ..54

Figure 5.8 The second cover PDF..55

Figure 5.9 The third cover PDF ...55

Figure 5.10 The secret PDF document. ...56

Figure 5.11 The first stego-PDF. ...57

Figure 5.12 The second stego-PDF..57

Figure 5.13 The third stego-PDF. ..58

Figure 5.14 The window of the user interface with three stego-PDFs and user keys as

input. ..58

Figure 5.15 The recovered PDF document. ...59

Figure 5.16 The incorrect secret PDF document. ..60

 vii

LIST OF TABLES

Table 3.1 White-space characters...17

Table 3.2 Proposed data encoding scheme. ...18

Table 3.3 The transformation between binary bits and decimal numbers.21

 1

Chapter 1

Introduction

1.1 Motivation

Information communication plays a very important role in the development of

science and technology. Initially, humans exchange information by talking to one

another. Later, people write messages on paper and send them to others. Today, people

can exchange information on the Internet without face-to-face meeting. The exchange

process is time-saving and convenient, but we need to pay attention to the safety and

accuracy of the information which we send.

Many kinds of file formats can be used in information communication. The PDF

(portable document format) is one of the most common formats and becomes more

and more popular nowadays because of its advantages in various applications, such as

high-quality printing and cross-platform applicability. In addition to using PDF files

directly to exchange information, it is also advantageous to use them as cover media

to hide data for transmitting secret messages and other uses. Although PDF files are

very popular, there are yet not many researches on data hiding in PDF files. It is

desirable to have more kinds of data hiding techniques for various application

purposes.

Furthermore, it is not safe for people to transmit secret messages on the Internet.

The messages which people send may be intercepted and tampered with even if data

hiding techniques are used. So it is better to design certain schemes for protections of

the security of the transmitted secret message. Furthermore, to check the fidelity and

 2

integrity of the secret messages which are hidden in PDF files, it also is desired to

design techniques to authenticate the secret messages.

Sometimes the secret which we want to protect is the PDF file itself. For

example, it may happen that three persons want to publish a new research paper and

save their paper in a PDF file, like most people do. It is desired to design an

information sharing technique to share the PDF file so that before the publication of

this paper, only when the three people bring their shares together can the secret PDF

file be recovered.

In this study, we want to develop techniques of data hiding, message

authentication, and secret sharing for PDF files.

1.2 Overview of Related Works

In this study, some new data hiding techniques in PDF files and their applications

are proposed. Before focusing on the methods proposed in this study, we will make an

overview of related works in Chapter 2. First, a review of the PDF standard will be

described, and then the basic types of objects and file structure of the PDF will be

introduced.

Data hiding is a technique to embed concerned data in a cover medium with little

or no change on the appearance of the medium so that other people cannot be aware

of the existence of the hidden data. Data hiding techniques have been studied for a

long time. Some are used in the PDF in recent years.

In addition, secret sharing is a method used to distribute a secret into some shares.

In traditional secret sharing, only when a pre-defined threshold number of these

shares are collected can the secret be recovered. A more detailed review of techniques

for data hiding in PDF files and secret sharing will also be described in Chapter 2.

 3

1.3 Overview of Proposed Methods

1.3.1 Terminology

The definitions of some related terminologies used in this study are described as

follows.

1. Cover media: cover media, such as images, documents, or videos, are files in

which messages are embedded.

2. White-space characters: white-space characters are used to separate syntactic

constructs from each other in PDF documents.

3. Cover PDF: a cover PDF is a PDF document in which messages or signals will be

embedded.

4. Stego-PDF: a stego-PDF is a PDF document with some secret messages or signals

embedded in.

5. Text matrix: a text matrix is an object in a PDF document, which is used to

describe transformations of the texts in the document.

6. Generation number: A generation number of an object in a PDF file is used to

keep track of the times for which the object has been updated.

1.3.2 Brief Descriptions of Proposed Methods

1.3.2.1 Secret Transmission via PDF Files by Space Coding

and Insertion of Invisible Texts

In this study, we propose two data hiding techniques via PDF files for secret

transmission. The first is based on a space coding scheme. When opening a PDF file

with some text editor, we can see the initial code of the PDF file, in which there are

 4

many white-space characters used to separate syntactic constructs from one another.

According to the PDF standard, many distinct characters are treated as white-space

characters. We can use this property to embed secret messages. First, we encrypt a

given secret message with a user key and then embed it into a cover PDF by space

coding so that we can get a stego-PDF. A sender can then send this stego-PDF to a

receiver. When the receiver wants to get the secret message, he/she should extract it

from the stego-PDF with a correct user key. An advantage of the proposed method is

that it will not change the size of the cover PDF.

The second method is based on a scheme of inserting invisible texts into a cover

PDF. In the PDF, a text matrix is used to describe transformations of the texts. We can

insert text matrices with their coordinates being outside the visible area of the PDF so

that the corresponding text will not show on the displayed PDF documents. The basic

idea is to encode each secret message as decimal numbers, put them in text matrices,

and process these numbers to make sure that the position of texts is outside the visible

area. Since the embedded data will not appear in the displayed document, the capacity

of the data which we embed is unlimited.

Furthermore, we can combine the two methods together to enhance data hiding

effects. More details will be described in Chapter 3.

1.3.2.2 Authentication of Secret Messages for Fidelity

Verification in PDF Files

In order to check if a secret message has been tampered with or not, we propose

a method to authenticate the secret message for fidelity verification. Since what we

want to authenticate is a secret message, we need to embed authentication signals by a

different way from that we use to embed the secret message. In the PDF, a generation

 5

number of an object is used to keep track of the times for which the object has been

updated. It has no influence on the display of the PDF file. So, we propose to alter

generation numbers to embed authentication signals.

First, we use a secret message to generate authentication signals and then embed

them into the generation numbers of some objects of the PDF files. When extracting

the secret message from a stego-PDF, we generate the authentication signals again

and compare them to the signals which we embedded in the stego-PDF. If they are not

the same, it indicates that the secret messages might have been tampered with by

some illicit user and the secret message is not believable. More details will be

described in Chapter 4.

1.3.2.3 Secret Sharing via PDF Documents by Data Hiding

Techniques

In this study, we propose a method for secret sharing via PDF documents. Given

a secret PDF document, first we prepare n PDF documents randomly. From each PDF

document, we extract a portion of data with the same size as the secret PDF file.

Every portion of data is regarded as a preliminary share. Then we use these

preliminary shares and the secret PDF document to generate an intermediate secret

message by using exclusive-OR and coincidence operators randomly. And then we

use the data hiding techniques proposed in this study to hide the intermediate secret

message in the n PDF documents. In this way, we get n stego-PDFs as shares for each

participant to keep one of them.

When we want to recover the secret PDF document, we need every stego-PDF

from the participants. We extract the intermediate secret message and preliminary

shares from these stego-PDF files, and then use them to recover the secret PDF

 6

document. More details will be described in Chapter 5.

1.4 Contributions

Several contributions are made in this study, as described in the following:

1. A data hiding method for PDF documents with the advantage of preserving the

size of the PDF document is proposed.

2. Another data hiding method for PDF documents with unlimited data hiding

capacity is proposed.

3. A secret transmission method via PDF documents based on the use of the

proposed data hiding techniques is proposed.

4. A secret authentication method for PDF documents is proposed for verifying the

fidelity of secret messages.

5. A secret sharing method based on the use of the proposed data hiding techniques

for PDF documents is proposed.

1.5 Thesis Organization

In the remainder of this thesis, a review of related works about data hiding, secret

sharing, and the PDF standard is described in Chapter 2. In Chapter 3, the proposed

method for secret transmission is described. In Chapter 4, the proposed secret

authentication method for fidelity verification in PDF documents is described. In

Chapter 5, the proposed secret sharing method for PDF documents based on the

proposed data hiding techniques is described. Finally, conclusions and some

suggestions for future works are given in Chapter 6.

 7

Chapter 2

Review of PDF Standard and Survey

of Related Works

2.1 Introduction

Since we use PDF files as cover media to implement the data hiding techniques

which we proposed in this study, we need to know the framework of the PDF first. A

review of the PDF standard will be described in Section 2.2.

In Section 2.3, a review of existing techniques for data hiding in PDF files will

be described, and then a review of existing techniques for secret sharing is presented

in Section 2.4.

2.2 Review of PDF Standard

2.2.1 Overview

The Adobe portable document format (PDF) is a file format of the Adobe®

Acrobat® family of products [1]. The contents in PDF files are described by a

context-free grammar which is modified from PostScript®. PDF is a file format for

representing documents in a manner independent of the application software,

hardware, and operating systems used to create them and of the output device on

which they are to be displayed or printed.

The basic elements in the PDF are objects. A PDF document consists of a

 8

collection of objects that together describe the appearance of one or more pages of the

PDF. A document’s pages can contain any combination of text, graphics, and images.

A page’s appearance is described by a PDF content stream, which contains a sequence

of graphics objects to be painted on the page.

2.2.2 Basic Types of Objects

A PDF document is a data structure composed from a small set of basic types of

data objects. Objects may be labeled so that they can be referred to by other objects. A

labeled object is called an indirect object. PDF supports eight basic types of objects:

Boolean values, integer and real numbers, strings, names, arrays, dictionaries, streams,

and the null object. Each object type and the indirect object are briefly described

below.

1. Boolean Objects

The PDF provides boolean objects identified by the keywords true and false.

2. Numeric Objects

The PDF provides two types of numeric objects: integer and real. The range

and precision of numbers are limited by the internal representations used in

the computer on which the PDF consumer application is running. For

example, 17, +99, −3. 18.9, −.005, 0.0, and 5. are all numeric objects.

3. String Objects

A string object consists of a series of bytes — unsigned integer values in the

range 0 to 255. The length of a string may be subject to implementation

limits. String objects can be written in two ways:

 9

(1) As a sequence of literal characters enclosed in parentheses (). For

example: (This is a string).

(2) As hexadecimal data enclosed in angle brackets < >. For example:

< 762073686D602E >.

4. Name Objects

A name object is a symbol uniquely defined by a sequence of characters. A

slash character (/) introduces a name. The slash is not part of the name but is

a prefix indicating that the following sequence of characters constitutes a

name. For example: /NameOne.

5. Array Objects

An array object is a one-dimensional collection of objects arranged

sequentially. An array’s elements may be any combination of numbers,

strings, dictionaries, or any other objects, including other arrays. An array is

written as a sequence of objects enclosed in square brackets ([and]). For

example: [true 17.417 (Hello World) /SomeName].

6. Dictionary Objects

A dictionary object is an associative table containing pairs of objects, known

as the dictionary’s entries. The first element of each entry is the key and the

second element is the value. The key must be a name and the value can be

any kind of object, including another dictionary. A dictionary is written as a

sequence of key-value pairs enclosed in double angle brackets (<< … >>).

For example: << /Type /Example

 /Version 3.02

/String1 (Hello World)

 10

/Array1 [1 0 0 1]

 >>

7. Stream Objects

A stream object, like a string object, is a sequence of bytes. But it’s unlike a

string is subject to an implementation limit; a stream can be of unlimited

length. A stream consists of a dictionary followed by zero or more bytes

bracketed between the keywords stream and endstream. For examples:

<<…>>

stream

…Zero or more bytes…

endstream

8. Null Object

A null object has a type and value that are unequal to those of any other

object. There is only one object of type null, denoted by the keyword null.

2.2.3 Indirect Objects

Any object in a PDF file may be labeled as an indirect object. This gives the

object a unique object identifier by which other objects can refer to it. The object

identifier consists of two parts as follows.

1. A positive integer object number. Indirect objects are often numbered

sequentially within a PDF file, but this is not required; object numbers may

be assigned in any arbitrary order.

2. A non-negative integer generation number. In a newly created file, all

indirect objects have generation numbers of 0. Nonzero generation numbers

 11

may be introduced when the file is later updated.

The combination of an object number and a generation number uniquely

identifies an indirect object. The definition of an indirect object in a PDF file consists

of its object number and generation number, followed by the value of the object

bracketed between the keywords obj and endobj. The object can be referred to from

elsewhere in the file by an indirect reference consisting of the object number, the

generation number, and the keyword R. An example of indirect objects is as follows:

5 0 obj

<< /Length 3 0 R >>

stream

…

endstream

endobj

The example defines an indirect object with an object number of 5, a generation

number of 0 and a stream object with its dictionary. According to the dictionary of the

stream object, the length of the stream refers to another indirect object which has an

object number of 3 and a generation number of 0.

2.2.4 File Structure

In this section, we will describe how objects are organized in a PDF file. A

canonical PDF file initially consists of four elements (see Figure 2.1) briefly

described as follows.

1. A one-line header identifying the version of the PDF specification to which

the file conforms.

For example, for a file conforming to PDF 1.4, the header should be

 12

“%PDF-1.4.”

2. A body consists of a sequence of indirect objects representing the contents

of a document.

3. A cross-reference table containing information about the indirect objects in

the file.

The cross-reference table is the only part of a PDF file with a fixed format.

The table comprises one or more cross-reference sections. Each section

begins with a line containing the key word xref. Following this line are one

or more cross-reference subsections. Each subsection begins with a line

containing two numbers separated by a space: the object number of the first

object in this subsection and the number of entries in the subsection.

Following this line are the cross-reference entries themselves, one per line.

Each entry containing a 10-digit byte offset, a 5-digit generation number and

a key word n (for an in-use entry) or f (for a free entry). The 10-digit byte

offset gives the number of bytes from the beginning of the file to the

beginning of the object when the entry is in use. If the entry is free, it gives

the object number of the next free object. The following example has 7

cross-reference entries, object 12 is the first object and its offset is 16.

Object 15 and 17 are free.

xref

12 7

0000000016 00000 n

0000000321 00000 n

0000000972 00000 n

0000000017 00007 f

0000001314 00000 n

0000000000 00003 f

0000001843 00001 n

 13

4. A trailer giving the location of the cross-reference table and of certain

special objects within the body of the file.

Figure 2.1 Initial structure of a PDF file.

2.3 Review of Techniques for Data

Hiding in PDF files

Techniques for data hiding have been studied for a long time and applied to

various media of various image formats, videos, and documents [2-9]. The PDF

becomes one of the most popular formats for people to exchange information

nowadays and several techniques for data hiding in PDF files have been proposed in

recent years [10-13].

Zhong and Chen [10] proposed an information steganography algorithm on PDF

 14

documents by hiding data between indirect objects of PDF documents. The algorithm

can embed data of unlimited lengths into PDF documents and the embedded PDF

documents keep transparent when being displayed in PDF readers. Zhong, Cheng and

Chen [11] proposed a steganographic technique for hiding data in a kind of PDF

English texts. They modified integer numerals which are used to position characters

in the PDF text. Because the perceptual difference is very small, people cannot be

aware of the hidden data in the PDF document. Liu et al. [12] proposed an algorithm

based on equivalent transformations in PDF files. They discovered that the effect of

the page display of a PDF file is extraneous to the seriation of the dictionary’s entries

so that data hiding can be achieved by special array of entries, instead of by

operations of adding any other data to the cover PDF. Wang and Tsai [13] proposed a

data hiding method by slight modifications of the values of various PDF object

parameters, yielding a difference of appearance very difficult to notice by human

vision.

2.4 Review of Techniques for Secret

Sharing

Secret sharing is a method for distributing a secret into several shares which are

then distributed to some participants. Each of them keeps one of the shares and every

share is meaningless alone. Only when a pre-defined threshold number of these shares

are collected together can the secret be recovered.

Blakley [14] was the first to publish an approach to solving the secret sharing

problem. His is a probabilistic approach based on linear projective geometry. Each vi

specifies a hyperplane and the secret s is the unique point of intersection of the n

hyperplanes. Shamir [15] proposed a simple and efficient secret sharing scheme

 15

which is called a (k, n)-threshold scheme, where k is the threshold number of how

many shares should be collected at least and n indicates the number of participants.

Lin and Tsai [16] proposed an efficient (n, n)-threshold method by using

exclusive-OR operations. It simply applies the exclusive-OR operation to a secret

image as well as n − 1 other images to generate the nth image. The n − 1 images and

the nth image are all regarded as shares and are distributed to n participants,

respectively. The secret image can be recovered only by exclusive-ORing the n

images which are kept by the n participants. Huang and Tsai [17] [18] proposed secret

sharing methods for pure texts, HTML documents, and e-mail documents. For pure

texts, they transformed a secret text into several shares, which are meaningful articles

and can be authenticated. For HTML documents, the method was designed to extract

important parts of the components in a secret HTML document and share them, and

then transform the share data into an HTML document of the same appearance of the

secret HTML document so that each share is still a HTML-type share. For e-mail

documents, a secret e-mail is encoded and distributed into several authenticable

e-mail shares by hierarchical sharing with data magnitude control, steganography

methods, and authentication techniques. In addition, a secret H.264/AVC video

sharing scheme was proposed by Huang and Tsai [19] to extract prediction modes

from given cover videos and the secret video, then share the intra-prediction modes of

the secret video based on the exclusive-OR operation, and hide finally the resulting

share data into the prediction modes of the cover videos.

 16

Chapter 3

Secret Transmission via PDF Files by

Space Coding and Insertion of

Invisible Texts

3.1 Introduction

With the development of network techniques, people can exchange information

by writing e-mails or sending files on the Internet. Secret messages can even be

transmitted by data hiding techniques, using some types of files as cover media. There

are many data hiding methods for secret transmission via images, videos, and other

types of files. Because the PDF has become a very popular file format nowadays, it

also is a suitable type of file for use in secret transmission as cover media.

The proposed method for secret transmission via PDF files is described in this

chapter. In Section 3.2, the proposed two data hiding techniques are described. In

Section 3.3, the proposed data hiding processes are described, and the recovery

processes are stated in Section 3.4. In Section 3.5, several experimental results are

shown and a summary and some discussions of the proposed method are made in

Section 3.6.

3.2 Data Hiding Techniques in PDF

Files

In this section, the proposed two different kinds of data hiding techniques are

 17

described. The first is based on a space coding scheme and the other is based on a

scheme of inserting invisible texts into a cover PDF.

3.2.1 Data Hiding in PDF Files by Space

Coding

As mentioned in Chapter 1, white-space characters are used to separate syntactic

constructs from one another in the PDF file. According to the PDF standard, many

distinct characters are treated as white-space characters. Table 3.1 shows this property

of the PDF.

Table 3.1 White-space characters.

Decimal Hexadecimal Name

0 00 Null (NUL)

9 09 Tab (HT)

10 0A Line feed (LF)

12 0C Form feed (FF)

13 0D Carriage return (CR)

32 20 Space (SP)

All white-space characters are equivalent, except in comments, strings, and

streams. So that if white-space characters are not in comments, strings, and streams,

they all available as white spaces in PDF documents. We can use this property to

embed secret messages into cover PDFs.

More specifically, according to Table 3.1 a white-space character may have six

 18

kinds of codes, which are the hexadecimal numbers 00, 09, 0A, 0C, 0D, and 20. After

some experiments, we found out that in some text editors, 0C will show as a line and

0A will cause line feeding on the display of the original code of a PDF document. If

we use these two codes to embed secret messages, people may be aware of the

existence of the hidden data more easily. So we only use 00, 09, 0D and 20 to embed

the secret message. Thus, if the four kinds of white-space characters are not in

comments, strings, and streams, they are all usable to embed the secret message.

Accordingly, a white-space character has four different codes to use now, so we

can embed 2 bits of message data using a single white-space character. More

specifically, we use the hexadecimal codes 00, 09, 0D and 20 to represent the 2-bit

message data 00, 01, 10, and 11, respectively.

Table 3.2 Proposed data encoding scheme.

Data to embed Hexadecimal code

00 00

01 09

10 0D

11 20

For example, if the secret message is 0011011110, we need to use five white

space characters to embed the message and the codes of them are 00, 20, 09, 20, and

0D, respectively.

Besides, in order to tell how many white-space characters have been modified

for data hiding, we use two bytes to embed the length of the secret message before

embedding the secret data. These two bytes will be used in the message data recovery

process.

 19

Since we do not insert any other data into the cover PDF in the above-described

message data embedding process, the size of the PDF file will not change so that it is

difficult for a reader of the displayed stego-PDF file to be aware of the existence of

the hidden data. But obviously the capacity of the data which we embed, called data

embedding capacity in the sequel, is limited by how many usable white-space

characters does the cover PDF have.

3.2.2 Data Hiding in PDF Files by Insertion of

Invisible Texts

In this section, the other proposed data hiding technique based on a scheme of

inserting invisible texts into a cover PDF is described. The basic idea is that we can

insert into the PDF file some text matrices whose coordinates are outside the visible

area of the PDF so that the corresponding texts will not show on the displayed PDF

document. The details are described as follows.

By definition, a text matrix is used to set the state of the corresponding text and

locate it in a PDF file. The structure of a text matrix is shown below:

a b c d e f Tm

where a through f are all numbers and Tm indicates the end of the text matrix. The

first four numbers “a b c d ” are used for text scaling, rotation, and skew in the

following way.

1. Scaling is obtained by “Sx 0 0 Sy”. This scales the coordinates so that 1 unit

in the horizontal and vertical dimensions of the new coordinate system is

the same size as Sx and Sy units, respectively, in the previous coordinate

system.

 20

2. Rotations are produced by “cosθ sinθ
−

sinθ cosθ ”, which has the effect

of rotating the coordinate system axes by an angle θ counterclockwisely.

3. Skew is specified by “1 tanα tanβ 1”, which skews the x-axis by an angle α

and the y-axis by an angle β.

The initial values of a, b, c and d are 1, 0, 0 and 1, respectively. The other two

numbers e and f are the distances to translate the origin of the coordinate system in the

horizontal and vertical dimensions, respectively. The proposed method is designed to

transform secret data into decimal numbers. The transformation specified by Table 3.3.

After the transformation, the secret data become a long string of decimal digits, which

we regard as a big integer number. Then we process this integer number, say denoted

as N, by distinct ways according to the following three conditions.

1. Set e to N if N does not cause an overflow and set f to 0. (Note that, as

mentioned in Section 2.2.2, the range and precision of numbers are limited

by the internal representations used in the computer on which the PDF

consumer application is running. So when we set e to N, an overflow may

occur.)

2. If N causes an overflow, separate N into two numbers N1and N2. Let N be

n1n2n3…nknk+1…nl, where ni is a decimal digit, i is from 1 to l, l is the

number of decimal digits in N, and k is the largest number which does not

make N causing an overflow. Then, set n1n2n3…nk as N1 and nk+1…nl as N2;

and treat N1 as e and N2 as f.

3. If either N1 or N2 or both of them cause overflows, insert more text matrices

to embed the secret data.

 21

Table 3.3 The transformation between binary bits and decimal numbers.

Bit stream Decimal number Bit stream Decimal number

000 1 100 5

001 2 101 6

010 3 110 7

011 4 111 8

In a PDF document, each page of the document is represented by a page

object—a dictionary that includes references to the page’s contents and other

attributes. Each page object has a parameter named MediaBox which defines the

boundaries of the physical medium on which the page is intended to be displayed or

printed. In short, the MediaBox decides the visible area of the page. A common

visible area of a PDF page is 595×842. In order to guarantee that the position of texts

is outside the visible area to create invisibility to the observer, we concatenate “999”

before the decimal numbers. An example is given as follows.

Suppose the secret message is “010001110.” Then, according to Table 3.3, we

can transform it into “327”. And then we concatenate “999” before “327”, yielding

“999327”. Finally, we insert a text matrix and put “999327” in it. The final text matrix

is shown below:

1 0 0 1 999327 0 Tm.

In addition, in order to reduce the file size, the PDF supports two compression

filters, LZW and Flate compressions, for the content streams describing texts and

graphics in the PDF document. So when we want to insert the text matrices, we need

to decompress the page’s content stream first, and after inserting the text matrices in

 22

which we embed the secret message, we should compress the modified page’s content

stream again by the default compression filter.

Because we insert more data in the cover PDF, the offset of each indirect object

and the offset of the cross-reference table may change. A wrong offset of the indirect

objects in the cross-reference table and trailer can cause a wrong display of the PDF

document. So we need to update the cross-reference table and trailer of the cover

PDF to get the desired stego-PDF. More specifically, suppose we embed the secret

message in an indirect object B to get B′. Since we insert more data in B, the size of

B′ is bigger than B. So the offsets of the indirect objects whose location are behind B

need to be updated by increasing them for a value D which is the difference of the

size between B and B′. And if the cross-reference table is also behind B, the trailer

needs to be updated by the same way, too.

Since the embedded data will not appear in the displayed PDF document, the

capacity of the data which we embed is unlimited, at the sacrifice of the resulting size

of the stego-PDF file.

3.3 Proposed Data Hiding Algorithm

We have proposed two data hiding techniques via PDF files. We may use only

one of them or both for secret transmission. For the latter case, if the secret message is

short enough, then the first technique suffices to embed all the message data into the

cover PDF; or if we cannot embed data just by the first technique, then the second

technique is used further to embed the remaining data. The flowchart of this combined

data hiding method is illustrated by Figure 3.1 and the detail is described below as an

algorithm.

 23

Algorithm 3.1. Encoding a message and hiding the result in a PDF file.

Input: a user key K, a secret message S, and a cover PDF P.

Output: a stego-PDF P′.

Steps:

1. Encrypt S by some method with K, for example by the DES algorithm, to get

encrypted secret data S′ and let l be the length of S′ in bytes.

2. Find out the number m of all usable white-space characters to get the capacity n

in bytes as n = m/4.

3. Separate S′ into two parts S1 and S2 by the following way.

3.1 If n ≥ l+2, take S1 to be S′ concatenated by its length information and S2 to

be null.

3.2 Else, take S1 to be the first n − 2 bytes of S′ concatenated by its length

information and S2 to be the remaining bytes of S′.

4. Embed S2 into P by the following way.

4.1 If S2 is not null, transform it into 3-bit groups (if the number of bits is not

divisible by 3, pad 1 or 2 zeros after the last group).

4.2 Map the 3-bit groups into decimal numbers g1, g2…, gk by Table 3.3.

4.3 Embed g1 through gk into P by the way of inserting them as invisible texts,

as mentioned before in Section 3.2.2.

5. Embed S1 into P by the following way.

5.1 Divide each 2 bits of S1 into groups of bitstream f1, f2…, f4w, where w denotes

the length of S1.

5.2 Transform f1 through f4w into hexadecimal codes h1, h2…, h4w, respectively,

by Table 3.2.

5.3 Replace the code of each usable white-space character by h1 through h4w.

6. Update the cross-reference table and trailer, if needed, to get P′.

 24

3.4 Proposed Data Recovery Algorithm

We have introduced the proposed data hiding algorithm in the last section. After

implementing the algorithm, we can get a stego-PDF with a secret message embedded

in it. A sender can then send this stego-PDF to a receiver. When the receiver wants to

recover the secret message, he/she should extract it from the stego-PDF with a correct

user key. For this, we should find out all usable white-space characters first. Next, we

extract the length of the hidden data by decoding the first eight usable white-space

characters. And then we decode the hidden data in the white-space characters and

concatenate the data, which we embed in the PDF file by the way of inserting

invisible texts, to recover the whole encrypted data. Finally, we decrypt the data by

the user key and get the secret message. A flowchart of the proposed data recovery

algorithm is shown in Figure 3.2 and the detail is described below.

Algorithm 3.2. Recovering a message from a stego-PDF.

Input: a user key K and a stego-PDF P′.

Output: a secret message S.

Steps:

1. Find out all usable white-space characters in P′ and decode the first eight

characters by Table 3.2 to get the number n of the characters embedded in P′.

2. Get the hexadecimal codes h1, h2…, hn of the n white-space characters which are

used to embed S.

3. Transform h1 through hn into secret data S1 by Table 3.2.

4. Scan P′ and find out all text matrices inserted and extract the decimal numbers g1,

g2…, gk from them.

5. Transform g1 through gk into secret data S2 by Table 3.3.

 25

6. Concatenate S1 and S2 into S′.

7. Decrypt S′ with K to recover the desired secret message S.

3.5 Experimental Results

In order to implement the proposed method for secret transmission, we designed

a user interface for the program we have written in the language of Java. It supports

the following three ways to hide and recover secret messages.

1. Using the proposed space coding technique only.

2. Using the proposed technique of inserting invisible texts only.

3. Using the proposed method of combining the two techniques together.

By the way, we can see the function of authentication in the user interface. It is

used for authenticating the secret message which we embedded in the PDF file.

Authentication of secret messages will be described investigated in the next chapter,

so we will not discuss it in this chapter.

Figure 3.3 shows the window of the user interface with a secret message and a

user key as input, which means the user embeds the secret message in a cover PDF by

the proposed combined method. The result of the secret recovery with a correct user

key is shown in Figure 3.4. The cover PDF is shown in Figure 3.5 and the stego-PDF

is shown in Figure 3.6. Comparing the two figures, no change can be seen on the

display of the PDF document. In addition, Figure 3.7 shows the result of the secret

recovery with an incorrect user key.

 26

Secret message S

User key K

Separate S

 into S1 and S2 according to

the number of usable white-

space characters

Stego-PDF P

Embed S2 by insertion of

invisible texts if needed

Embed S1 by space coding

Update the cross-reference

table and trailer if needed

Calculate the number of

usable white-space

characters

Encrypt S into S

Cover PDF P

Figure 3.1 The flowchart of the proposed data hiding algorithm.

 27

Secret message S

User key K

Stego-PDF P

Extract and decode the

hidden data into S1

Find out all text matrices

which we insert and extract

the hidden data

Decode the hidden data into

S2

Concatenate S1 and S2 into

S

Decrypt S Into S

Find out all usable white-

space characters then get

the length of hidden data by

decoding the first eight

available characters

Figure 3.2 The flowchart of the proposed data recovery algorithm.

 28

Figure 3.3 The window of the user interface.

Figure 3.4 The result of secret recovery with the correct user key.

 29

Figure 3.5 The cover PDF.

Figure 3.6 The stego-PDF.

 30

Figure 3.7 The result of secret recovery with the incorrect user key.

3.6 Discussions and Summary

In this chapter, we have proposed two data hiding techniques via PDF files for

secret transmission. The first is based on a space coding scheme and the second is

based on a scheme of inserting invisible texts into a PDF file.

For the first technique, the capacity of the embedded data is limited by the

number of usable white-space characters in the cover PDF while the size of the cover

PDF will not change after data embedding because we do not insert any other data in

it. For the second technique, the capacity of the embedded data is unlimited so that we

can embed a large amount of secret data, which even can be another PDF file. That is

just the property we utilize to implement secret PDF document sharing which will be

described in Chapter 5.

Furthermore, we can combine these two techniques together for secret

 31

transmission. If the secret message is short enough, we just use the first technique,

which does not change the size of the cover PDF; else, the second technique is used

subsequently to embed the remaining secret data.

No matter which technique we use to implement secret transmission, or both of

them are used, it has no influence on the display of the PDF file so that people cannot

be aware of the existence of the hidden data. Even if an illicit user knows that there is

a secret message in the PDF file, the covert message can be protected by a user key,

and the illicit user still cannot extract the original secret message. The idea has been

proved by our experiments.

 32

Chapter 4

Authentication of Secret Messages

for Fidelity Verification in PDF Files

4.1 Introduction

It is not safe for people to transmit messages on the Internet because the

messages might be intercepted and tampered with by illicit users. Even if data hiding

techniques may be used to embed a secret message, the cover medium in which the

secret message is embedded still has chance to be altered. So we designed a method in

this study to authenticate the secret message to check if it is believable.

More specifically, the proposed method can be used to authenticate a secret

message embedded in a PDF file for fidelity verification. The basic idea will be

described in Section 4.2. Basically, we modify the generation numbers in the PDF

structure as authentication signals. In Section 4.3, the proposed authentication

algorithm for secret messages in PDF files will be stated. Several experimental results

will be shown in Section 4.4, and then a summary of the proposed method and some

discussions are given in Section 4.5.

4.2 Idea of Secret Message

Authentication by Modifying

 33

Generation Numbers in the PDF

File

Since what we want to authenticate is a secret message, we need to embed

authentication signals by a different way from that we use to embed the secret

message. The proposed data hiding technique for embedding authentication signals is

to modify the generation numbers in the PDF file.

As mentioned in Section 2.2, an identifier of an indirect object in a PDF file

consists of two parts: a positive integer object number and a non-negative integer

generation number. The generation number is used to keep track of the times for

which the object has been updated. It also appears in the cross-reference table.

Figure 4.1 The example of generation numbers.

More specifically, in Figure 4.1 we can see a cross-reference table. The second

object in the table is object 7, its offset is 719, and its generation number is 0 on

 34

which we use a red rectangle to highlight. Except the cross-reference table, we can

know the generation number of object 7 in other places like “7 0 R”, which is used to

refer to the object 7, and “7 0 obj”, the identifier of object 7. All generation numbers

of the same indirect object in the PDF file must be the same value or it can cause a

wrong display of the PDF document.

After some experiments, we find out that the value of a generation number of an

indirect object has nothing to do with the display of the PDF document. So we can

modify some generation numbers to embed authentication signals. First, we use the

secret message to generate authentication signals by applying exclusive-OR

operations on each byte of the secret message. Then, we transform the authentication

signal into a bitstream and then use each bit in the bitstream to replace the generation

numbers of some indirect objects in the PDF file.

For example, suppose the authentication signal is “10011000.” Then, we use

each bit of the authentication signal to replace the generation numbers of object 1 to 8,

respectively. So the modified generation numbers of these indirect objects are 1, 0, 0,

1, 1, 0, 0 and 0, respectively. Note that all the generation numbers of the same indirect

object in the PDF file must be the same value, so we need to modify all generation

numbers of the indirect objects which we use to embed the authentication signal.

When we get a stego-PDF, extract a secret message from it, and want to know if

the secret message is believable, we use the secret message which we extract from the

stego-PDF to generate the authentication signal by the same way. Then we compare it

with the signal which is extracted from the generation numbers in the PDF file. If they

are the same, the authentication is successful. Else, the secret message is not

believable and it is decided to have been tampered with by illicit users.

 35

4.3 Proposed Authentication Processes

for Secret Messages in PDF files

In the proposed authentication process, we use the generation numbers of objects

1 through 16 to embed every two bytes of the authentication signal. We separate the

authentication process into two parts, which are described here. The first part is the

embedding of the authentication signal. Its flowchart is illustrated by Figure 4.2 and

the detail is described below as an algorithm.

Algorithm 4.1. Generating and embedding authentication signals in PDF files.

Input: a secret message S and a cover PDF P.

Output: a stego-PDF P′′ with an authentication signal for the secret message

embedded.

Steps:

1 Apply exclusive-OR operations on all bytes of S to get an authentication signal A

by the following way.

1.1 Transform S into S = s1s2s3…sn, where s1 through sn are the bytes of S and n

is the length of S in bytes.

1.2 Compute

A1 = s2 ⊕ s4 ⊕ s6…⊕ s2k, where k = n/2;

A2 = s1 ⊕ s3 ⊕ s5…⊕ s2k+1, if n is odd; or

A2 = s1 ⊕ s3 ⊕ s5…⊕ s2k-1, if n is even.

1.3 Concatenate A1 and A2 to get A.

2 Embed S into P by a certain data hiding technique to get a stego-PDF P′.

3 Embed A into P′ by the following way.

3.1 Transform A into a bitstream a1a2…a16 with ai = 0 or 1 where i is from 1 to

 36

16.

3.2 Replace the last digit of the generation numbers of objects 1 through 16 in

the cross-reference table by a1, a2, …and a16, respectively.

3.3 Replace all generation numbers of object i in P′ by the modified generation

numbers, where i is from 1 to 16.

4 Take the resulting stego-PDF as the desired output P′′.

The second part of the proposed authentication process is extracting the

authentication signal and verifying the secret message for fidelity. Its flowchart is

illustrated by Figure 4.3 and the detail is described below as an algorithm.

Algorithm 4.2. Extracting authentication signals and verifying the secret message in a

stego-PDF.

Input: a stego-PDF P′′.

Output: an authentication report R of the secret message in P′′.

Steps:

1 Extract the secret message S in P′′.

2 Apply exclusive-OR operations on all bytes of S to get an authentication signal A′

by the following way.

2.1 Transform S into S = s1s2s3…sn, where s1 through sn are the bytes of S and n

is the length of S in bytes.

2.2 Compute

A1 = s2 ⊕ s4 ⊕ s6…⊕ s2k, where k = n/2;

A2 = s1 ⊕ s3 ⊕ s5…⊕ s2k+1, if n is odd; or

A2 = s1 ⊕ s3 ⊕ s5…⊕ s2k-1, if n is even.

2.3 Concatenate A1 and A2 to get A′.

 37

3 Extract the embedded authentication signal A in P′′ by the following way.

3.1 Find out the last digit of the generation numbers of objects 1 through 16 in

the cross-reference table to get a1, a2, …and a16, respectively, where ai = 0

or 1 with i from 1 to 16.

3.2 Concatenate a1 through a16 to get A.

4 Compare A and A′.

4.1 If A = A′, regard the authentication to be successful and mark it so in R.

4.2 Else, A ≠ A′, decide that the secret message has been tampered with by

illicit users and mark it so in R.

4.4 Experimental Results

We use the same program which was described in Chapter 3 for secret

transmission to implement the authentication of the secret message in a stego-PDF. In

Figure 4.4, we embed a secret message and its authentication signal into the cover

PDF. In Figure 4.5, we extract the secret message first and then authenticate it to get

the result of successful authentication. Figures 4.6 and 4.7 show the cover PDF and

the stego-PDF with the secret message and authentication signal embedded,

respectively. Comparing the two figures, no change can be seen on the display of the

PDF document. If the secret message has been tampered with by illicit users, we will

extract the wrong secret message. The result of the authentication is shown in Figure

4.8. It warns us that the secret message is not believable.

 38

Figure 4.2 The flowchart of embedding authentication signals.

 39

Figure 4.3 The flowchart of the authentication processes.

 40

Figure 4.4 The window of the user interface for secret authentication

Figure 4.5 The result of successful authentication

 41

Figure 4.6 The cover PDF.

Figure 4.7 The stego-PDF.

 42

Figure 4.8 The result of failure authentication

4.5 Discussions and Summary

We have proposed a method for authentication of secret messages for fidelity

verification in PDF files in this chapter. We generate authentication signals by

applying exclusive-OR operations on each byte of the secret message and embed it

into the secret-embedded PDF file by modifying generation numbers. It has no

influence on the display of the PDF file. We use two bytes to embed the

authentication signal in this study; however, if the secret message is long, we can

generate more bytes of the authentication signals for secret authentication.

If we want to authenticate the secret message extracted from a stego-PDF, we

just need to compare the authentication signal embedded in the stego-PDF and which

is generated from the extracted secret message. Then we can know the result. The idea

has been proved by our experiments.

 43

Chapter 5

Secret Sharing via PDF Documents

by Data Hiding Techniques

5.1 Introduction

Secret sharing is an interesting subject. For example, suppose that a treasure map

is divided into several parts and distributed to some participants. Only when all the

participants bring their partial maps together can the complete treasure map be

recovered so that they can go to find the treasure. This way can prevent someone from

finding and taking the treasure alone. Although a treasure map may only occur in

stories, many things in the real word nowadays are just like the treasure map which

needs protections, for example, certain copyrighted products which are not devised by

single persons but a group of people in cooperation.

Many secret sharing methods have been proposed for different kinds of digital

formats [8-10]. Because the PDF has become a very popular file format nowadays,

many research papers and publications are saved as PDF documents. In addition to

being used as cover files, the PDF document can be treated as a secret file to share as

well.

In this chapter, the proposed method of secret sharing via PDF documents is

described. An overview of the proposed method is stated in Section 5.2. And the

proposed secret sharing and recovery algorithms are described in Sections 5.3 and 5.4,

respectively. In Section 5.5, some experimental results of the proposed method is

shown. Finally, a summary of the proposed method and some discussions are given in

 44

Section 5.6.

5.2 Overview of Proposed Method of

Secret Sharing via PDF Documents

In this section, the idea of the proposed method of secret sharing via PDF

documents by data hiding techniques is described. The secret which we want to share

is a PDF document, and the size of the secret PDF document is big in general. We use

the data hiding technique based on the scheme of inserting invisible texts into cover

PDFs, which is discussed in Section 3.2.2, to implement the proposed method.

The general idea of the proposed method is illustrated in Figure 5.1. We have a

secret PDF document and select n cover PDFs randomly, denoted as P1 through Pn,

respectively. After applying the proposed secret sharing process, we transform them

into n stego-PDFs which are regarded as shares and denoted as P1′ through Pn′,

respectively. Then we distribute the n shares to a group of participants of the same

number, each participant with a share.

When the participants want to recover the secret PDF document, they should

bring their shares all together. After applying the proposed secret recovery process,

they can get the original secret PDF document.

From each cover PDF, we extract a portion of data with the same size as that of

the secret PDF file. Every portion of data is regarded as a preliminary share. Let the

length of the secret PDF document in bytes be denoted as l. The idea of extracting

data from each cover PDF to prepare the preliminary share is described below.

 45

Secret sharing processes

P1

Secret PDF

documentPn

P1 Pn

Secret PDF

document

Secret recovery processes

Figure 5.1 Illustration of proposed method of secret sharing via PDF documents.

 46

1. If the size of the cover PDF is larger than or equal to that of the secret PDF

document, we extract data whose length is l from the beginning of the cover

PDF.

2. If the size of the cover PDF is smaller than that of the secret PDF document,

we extract data from the beginning of the cover PDF to its end and repeat

this operation, until the total length of the extracted data is l.

3. As mentioned in Section 3.2.2, after embedding data into an indirect object

by the data hiding technique of inserting invisible texts, we need to update

the cross-reference table and the trailer in the cover PDF. It means that the

indirect object in the stego-PDF where we embed data, the cross-reference

table, and the trailer are not the same as they are in the cover PDF. Because

we will use the data hiding technique of inserting invisible texts in the later

processes to embed the intermediate secret message, when we extract data

from each cover PDF to get preliminary shares, we skip the indirect object

with data embedded, the cross-reference table, and the trailer to guarantee

that when we extract the preliminary shares from the stego-PDFs, they are

still the same as those extracted from the cover PDFs, so that the recovered

PDF document is correct.

After the above process, we can get n preliminary shares with the same size. We

then use them and the secret PDF document to generate the intermediate secret

message by using exclusive-OR and coincidence operators. Which operator should be

used is decided by a key K generated from the user keys selected and kept by the

participants, respectively. Let the user key of participant Pi be denoted as Ki, where i

is from 1 to n. Then, we generate K as K = K1⊕K2…⊕ Kn.

 47

We know that p⊙q = −(p⊕q), where “⊕” is the exclusive-OR operator and “⊙”

is the coincidence operator. Because “⊕” is commutative, p⊙q = −(p⊕q) = −(q⊕p) =

q⊙p, “⊙” is also commutative. So we can use exclusive-OR and coincidence

operators to generate the intermediate secret message S′.

Denote each preliminary share as Si = si1si2…sil where i is from 1 to n and si1

through sil are the bytes of Si, and the intermediate secret message as S′ = s′1s′2…s′l

where s′1 through s′l are the bytes of S′. Also, denote the secret PDF document as S =

s1s2…sl where s1 through sl are the bytes of S. Also, let K = k1k2…kh where h is the

length of K in bits and k1 through kh are the bits of K. Then, we generate S′ by the

following way:

s′1 = s1 ○1 s11 ○2 s21 ○3 s31… ○n sn1

s′2 = s2 ○2 s12 ○3 s22 ○4 s32… ○n+1 sn2

…

s′l = sl ○l s1l ○l+1 s2l ○l+2 s3l… ○n+l-1 snl,

where ○j with j is from 1 to n+l−1 is either “⊕” or “⊙,” determined by the

following rule:

○j = ⊕, if the value of k(j mod h) is 1; or

○j = ⊙, if the value of k(j mod h) is 0.

After we get the intermediate secret message S′, we separate S′ into n parts with

the length of each part being l/n in bytes. Then, we embed each part into one of P1

through Pn, respectively, by the scheme of inserting invisible texts which is discussed

in Section 3.2.2, to get the stego-PDF’s P1′ through Pn′, respectively. Figure 5.2 shows

an illustration of this secret sharing process.

 48

separate S into n parts and

embed into the cover PDFs

P1

Secret PDF

document

Pn

P1 Pn

S1 Sn

Extracting Extracting

Apply exclusive-OR and

coincidence operators

Intermediate

secret message S

Figure 5.2 Illustration of proposed secret sharing process.

If we want to recover the secret PDF document, the participants should bring the

n stego-PDFs all together. First, we extract n parts of the intermediate secret message

from the stego-PDFs and concatenate them to get S′ with length l. Then, we get n

 49

preliminary shares from the stego-PDFs by a reverse process of the way mentioned in

Section 5.2.1 and generate K as K = K1⊕K2…⊕Kn. Denote each preliminary share as

Si = si1si2…sil where i is from 1 to n and si1 through sil are the bytes of Si, and the

intermediate secret message as S′ = s′1s′2…s′l where s′1 through s′l are the bytes of S′.

Also denote the recovered secret PDF document as S = s1s2…sl where s1 through sl are

the bytes of S. Let K = k1k2…kh where h is the length of K in bits and k1 through kh are

the bits of K. Then, we recover S by the following way:

s1 = s′1 ○1 s11 ○2 s21 ○3 s31… ○n sn1

s2 = s′2 ○2 s12 ○3 s22 ○4 s32… ○n+1 sn2

…

sl = s′l ○l s1l ○l+1 s2l ○l+2 s3l… ○n+l-1 snl,

where ○j with j is from 1 to n+l−1 is either “⊕” or “⊙,” determined by the rule:

○j = ⊕, if the value of k(j mod h) is 1; or

○j = ⊙, if the value of k(j mod h) is 0.

Finally, we recover the secret PDF document S. An illustration of the proposed

secret recovery process is shown in Figure 5.3.

5.3 Proposed Secret Sharing Algorithm

The idea of the proposed secret PDF document sharing has been described in the

last section and the detail is described below as an algorithm.

Algorithm 5.1. Sharing a secret PDF document.

Input: a secret PDF document S and n cover PDFs P1, P2,…, Pn with n user-selected

keys K1, K2, …, Kn.

 50

Output: n stego-PDFs P1′, P2′,…, Pn′.

Steps:

1 Extract S1, S2,…, Sn from P1, P2,…, Pn, respectively, by the way mentioned in

Section 5.2.1 to get Si = si1si2…sil, where i is from 1 to n, l is the length of S and

si1 through sil are the bytes of Si.

2 Transform S into S = s1s2s3…sl, where s1 through sl are the bytes of S.

3 Generate the key K = K1⊕K2…⊕Kn.

4 Generate the intermediate secret message S′ = s′1s′2…s′l , where s′1 through s′l are

the bytes of S′, by the following way:

s′1 = s1 ○1 s11 ○2 s21 ○3 s31… ○n sn1

s′2 = s2 ○2 s12 ○3 s22 ○4 s32… ○n+1 sn2

…

s′l = sl ○l s1l ○l+1 s2l ○l+2 s3l… ○n+l-1 snl,

where ○j with j is from 1 to n+l−1 is either “⊕” or “⊙,” determined by:

○j = ⊕, if the value of k(j mod h) is 1; or

○j = ⊙, if the value of k(j mod h) is 0.

5 Separate S′ into n parts S′1, S′2,…, S′n with the length of each part being l/n in

bytes.

6 Embed S′i into Pi by inserting invisible texts to get Pi′, where i is from 1 to n.

5.4 Proposed Secret Recovery

Algorithm

The detail of the proposed secret recovery processes via PDF documents is

described below as an algorithm.

 51

Secret PDF

document

P1 Pn

S1 Sn

Extracting Extracting

Apply exclusive-OR and

coincidence operators

Extracting

Intermediate

secret

message S

Figure 5.3 Illustration of proposed secret recovery process.

Algorithm 5.2. Recovering a secret PDF document.

Input: n stego-PDFs P1′, P2′,…, Pn′ with n user-selected keys K1, K2, …, Kn.

Output: a secret PDF document S.

Steps:

1 Extract the embedded data S′1, S′2,…, S′n from P1′, P2′,…, Pn′, respectively.

2 Concatenate S′1 through S′n to get intermediate secret message S′ with length l.

3 Transform S′ into S′ = s′1s′2…s′l , where s′1 through s′l are the bytes of S′.

 52

4 Extract S1, S2,…, Sn from P1′, P2′,…, Pn′, respectively, by the way mentioned in

Section 5.2.1 to get Si = si1si2…sil, where i is from 1 to n and si1 through sil are the

bytes of Si.

5 Generate the key K = K1⊕K2…⊕Kn.

6 Recover S = s1s2…sl where s1 through sl are the bytes of S by the following way.

s1 = s′1 ○1 s11 ○2 s21 ○3 s31… ○n sn1

s2 = s′2 ○2 s12 ○3 s22 ○4 s32… ○n+1 sn2

…

sl = s′l ○l s1l ○l+1 s2l ○l+2 s3l… ○n+l-1 snl,

where ○j with j is from 1 to n+l−1 is either “⊕” or “⊙,” determined by:

○j = ⊕, if the value of k(j mod h) is 1; or

○j = ⊙, if the value of k(j mod h) is 0.

5.5 Experimental Results

In order to implement the proposed method for secret sharing via PDF

documents, we designed a user interface for the program we have written in the

language of Java. It supports both the secret sharing and recovery functions. In one of

our experiments, we used three cover PDFs to share a secret PDF document.

Figure 5.4 shows the dialog window for keying in the number of participants in

the secret sharing activity, We can decide the number of cover PDFs according to this

number of participants. We use three cover PDFs in this experiment. Figure 5.5 shows

the window of the user interface, and Figure 5.6 shows this window with a secret PDF

document and three cover PDFs with user keys as input. The three cover PDFs are

shown in Figures 5.7, 5.8 and 5.9, respectively, and the secret PDF document is

 53

shown in Figure 5.10.

After the proposed secret sharing process was conducted, we get three

stego-PDFs, as shown in Figures 5.11, 5.12 and 5.13, respectively. No change can be

seen on the displays of the stego-PDF documents, compared with those of the original

cover PDF. And then we can distribute them to the three participants, each participant

with a share.

Figure 5.14 shows the window of the user interface with the three stego-PDFs

and user keys as input to recover the secret PDF document. And the recovered PDF

document is shown in Figure 5.15. We can find out that the recovered PDF document

is just the same one as the original secret PDF document shown in Figure 5.10. As

long as one of the shares or the user keys is incorrect, the recovered PDF document

cannot be opened, as shown in Figure 5.16.

Figure 5.4 The window of inputting the number of PDF documents.

Figure 5.5 The window of the user interface.

 54

Figure 5.6 The window of the user interface with a secret PDF document and three

cover PDFs with user keys as input

.

Figure 5.7 The first cover PDF

 55

Figure 5.8 The second cover PDF

Figure 5.9 The third cover PDF

 56

Figure 5.10 The secret PDF document.

 57

Figure 5.11 The first stego-PDF.

Figure 5.12 The second stego-PDF.

 58

Figure 5.13 The third stego-PDF.

Figure 5.14 The window of the user interface with three stego-PDFs and user keys as

input.

 59

Figure 5.15 The recovered PDF document.

 60

Figure 5.16 The incorrect secret PDF document.

5.6 Discussions and Summary

We have proposed a method for secret sharing via PDF documents in this chapter.

We use exclusive-OR and coincidence operators to share the secret PDF document

and embed the intermediate secret message into cover PDFs by the data hiding

technique which is mentioned in Chapter 3. By the proposed secret sharing method,

we can select cover PDFs and user keys randomly. After applying the proposed

sharing method, we can get shares and distribute them to a group of participants of the

same number, each participant with a share. Only when all the participants bring their

shares with correct user keys together can the secret PDF document be recovered. So

this way of secret keeping can prevent someone from occupying the secret PDF

document alone. Even if an illicit user steals all the shares, he/she still cannot recover

the secret PDF document without the correct user keys from other participants. The

idea has been proved by our experiments. Compared with the cover PDFs, the shares

created in our experiments showed to have no change on the displays of the PDF

documents, and the recovered secret PDF document was intact.

 61

Chapter 6

Conclusions and Suggestions for

Future Works

6.1 Conclusions

In this study, we have proposed a data hiding method for PDF files as cover

media. It is useful for some applications, such as secret transmission, document

authentication, and secret sharing.

For secret transmission, we have proposed two data hiding techniques via PDF

files. We can transmit a secret message by using one of them or both. The first is a

technique based on the space coding scheme. Although the capacity of the embedded

data is limited by the number of usable white-space characters in the cover PDF, the

size of the cover-PDF will not change after embedding the secret message. The

second is a technique of inserting invisible texts into a cover PDF. The capacity of the

data which we can embed in a PDF file may be said to be unlimited, at the sacrifice of

the resulting size of the stego-PDF file. No matter which technique, or both of them,

are used to implement secret transmission, it has no influence on the display of the

PDF file so that people will not be aware of the existence of the hidden data. Even if

an illicit user knows the algorithm which we use to embed the secret message, he/she

still cannot extract it without the correct user key.

For secret authentication, we have proposed a method for authentication of secret

messages for fidelity verification in PDF files. We use another data hiding technique

for modifying the generation numbers of an indirect object in the PDF file. By this

 62

method, we can authenticate the secret message for fidelity verification. As long as

the secret message has been tampered with by an illicit user, the authentication will

fail. We use two bytes to embed the authentication signal in this study; however, if the

secret message is long, we can generate more bytes of the authentication signals for

secret authentication.

For secret sharing, we have proposed a method via PDF documents by the data

hiding technique mentioned before. In this method, the secret which we want to share

is a PDF document. We can select cover PDFs and user keys randomly. After applying

the proposed secret sharing algorithm, we can get shares and distribute them to a

group of participants of the same number, each participant with a share. If we want to

recover the secret PDF document, we can collect the shares from each participant with

the correct user key and apply the proposed recovery algorithm to get it. Even if an

illicit user steals all the shares, he/she still cannot recover the secret PDF document

without the correct user keys from other participants. The method offers a way to

protect the PDF documents which are not owned by single persons but a group of

people in cooperation.

6.2 Suggestions for Future Works

Several suggestions for future research works are listed as follows.

1. The proposed data hiding technique of space coding may be improved by

inserting more white-space characters to raise the capacity of the embedded

data; or by randomizing the white-space characters which we use for

embedding data to strengthen the security of the hidden data.

2. The proposed data hiding technique of inserting invisible texts may be

improved by modifying more parameters of text matrices for embedding

 63

secret messages to reduce the redundancy of the embedding data.

3. The proposed secret transmission method may be improved by hiding secret

messages in other types of objects to strengthen the security of the hidden

data.

4. The proposed secret authentication method may be improved by generating

more authentication signals of the secret message to provide the ability of

verifying the integrity.

5. The proposed secret sharing method may be integrated with the proposed

secret authentication method to provide the ability of verifying the integrity

and fidelity of the secret PDF document.

 64

References

[1] Adobe Systems Incorporated, PDF Reference, Sixth Edition, Addison-Wesley,

California, USA, Nov. 2006.

[2] H. K. Pan, Y. Y. Chen, and Y. C. Tseng, “A Secure Data Hiding Scheme for

Two-Color Images,” IEEE ISCC 2000, Antibes-Juan les Pins, France, pp.

750-755, July 1999.

[3] J. J. Chae and B. S. Manjunath, “Data Hiding in Video,” Proceedings of IEEE

International Conference of Image Processing, Kobe, Japan, vol. 1, pp. 311-315,

Dec 1999.

[4] M. Wu, E. Tang, and B. Liu, “Data hiding in digital binary images,” presented at

the IEEE International Conference on Multimedia and Exposition, New York,

2000.

[5] Jeanne Chen , Tung-Shon Chen and Meng-Wen Cheng, “A New Data Hiding

Method in Binary Image,” Multimedia Software Engineering ,Proceedings. Fifth

International Symposium, 2003, pp. 88 – 93.

[6] T. Y. Liu and W. H. Tsai, “A New steganographic method for data hiding in

Microsoft Word documents by a change tracking technique,” IEEE Transactions

on Information Forensics and Security, Vol. 2, No. 1, pp. 24-30, March, 2007.

[7] C. C. Wang and W. H. Tsai, "Creation of Tile-overlapping mosaic images for

information hiding," Proceedings of 2007 National Computer Symposium,

Taichung, Taiwan, R. O. C., pp. 119-126, December, 2007.

[8] G. L. Huang and W. H. Tsai, “Optimal Data Hiding in H.264/AVC Videos for

Covert Communication,” Proceedings of 2008 Conference on Computer Vision,

Graphics and Image Processing, Yilan, Taiwan, R. O. C., Aug. 24-26, 2008.

 65

[9] I. S. Lee and W. H. Tsai, “Data hiding in grayscale images by dynamic

programming based on a human visual model,” Pattern Recognition, Vol. 42, No.

7, pp. 1604-1611. July, 2009.

[10] S. Zhong and T. Chen, “Information steganography algorithm based on PDF

documents,” Computer Engineering, vol. 32, No. 3, pp. 161-163, Feb. 2006.

[11] S. Zhong, X. Cheng and T. Chen, “Data hiding in a kind of PDF texts for secret

communication,” International Journal of Network Security, Vol. 4, No. 1, pp.

17-26, January, 2007.

[12] X. Liu et al., “A steganographic algorithm for hiding data in PDF files based on

equivalent transformation,” Proceedings of 2008 International Symposiums on

Information Processing (ISIP), pp. 417-421, Moscow, Russia, May 23-25, 2008.

[13] J. T. Wang and W. H. Tsai, “Data hiding in PDF files and applications by

imperceptible modifications of PDF object parameters,” Proceedings of 2008

Conference on Computer Vision, Graphics and Image Processing, Yilan, Taiwan,

R. O. C., August, 24-26, 2008.

[14] G. R. Blakley, “Safeguarding Cryptographic Keys,” Proceedings of AFIPS

National Computer Conference, Vol. 48, pp. 313-317, New York, U.S.A., June

4-7, 1979.

[15] A. Shamir, “How to share a secret,” Communications of Association for

Computing Machinery , Vol. 22, No. 11, pp. 612- 613, Nov., 1979.

[16] C. C. Lin and W. H. Tsai, “Secret multimedia information sharing with data

hiding capacity by simple logic operations,” Proceedings of 5th World

Multiconference on Systemics, Cybernetics, and Informatics, Vol. I: Information

Systems Development, pp. 50-55, Orlando, Florida, U. S. A., 2001.

[17] K. L. Huang, “Secret Sharing with Steganographic Effects for HTML

Documents,” Proceedings of 2004 Conference on Computer Vision, Graphics

 66

and Image Processing, Hualien, Taiwan, R. O. C., Aug. 15-17, 2004.

[18] K. L. Huang, “A study on information sharing of text-type documents with

steganography and authentication capabilities,” MS Thesis, Department of

Computer Science, National Chiao Tung University, Hsinchu, Taiwan, R. O. C.,

June 2004.

[19] G. L. Huang, “A study on data hiding in H.264-AVC videos and its applications,”

MS Thesis, Department of Computer Science, National Chiao Tung University,

Hsinchu, Taiwan, R. O. C., June 2008.

	論文封面_by Lai_
	論文完整版v5加浮水印.pdf

