

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

支 援 語 義 搜 尋 之 自 組 式 同 儕 網 路

A Self-Organizing P2P Network for Semantic Search

研 究 生：鄭仁傑

指導教授：陳俊穎 教授

中 華 民 國 九 十 八 年 八 月

支援語義搜尋之自組式同儕網路

A Self-Organizing P2P Network for Semantic Search

研 究 生：鄭仁傑 Student：Jen-Chieh Cheng

指導教授：陳俊穎 Advisor：Jing-Ying Chen

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

August 2009

Hsinchu, Taiwan, Republic of China

i

中華民國九十八年八月

支援語義搜尋之自組式同儕網路

研究生: 鄭仁傑 指導教授: 陳俊穎 博士

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

摘要

 在最近幾年裡，同儕網路已成為網路上檔案管理與分享平台的重要技術之一。而隨

著網路資訊的急遽累積，如何在網路上快速有效的搜尋相關文件以符合使用者的要求變

的更加重要。然而，在同儕網路中，資訊是由大量的電腦主機共同管理，如何以關鍵字

搜尋文件且避免浪費過多電腦資源已是一個很大的挑戰，要進一步搜尋語義相關的文件

將更為困難。針對此問題，我們設計一種自組式同儕網路，讓網路中每個節點觀察所有

經過的信息，不斷學習與替換所管理的檔案以及其他同儕的資訊，藉此讓自己所管理的

檔案能逐漸偏向某一類相關的資料。 除此之外，整個同儕網路也能逐漸演進並具有

small world 的特性，使搜尋更加快速準確。有別於其他以 DHT 為基礎的同儕網路像是

pSearch 及 SSW，我們的方法是採用 Freenet 的概念讓網路能自我組織。我們進行了大

量的實驗，並且與 pSearch 做比較。實驗結果顯示我們的系統能有效的自我的組織，讓

搜尋能以更快的速度得到比 pSearch更精確的資料。

關鍵字：同儕網路、語義搜尋、自組式

ii

A Self-Organizing P2P Network for Semantic Search

Student: Jen-Chieh Cheng Advisor: Dr. Jing-Ying Chen

Institute of Computer Science and Engineering

National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

P2P network has become a popular platform for distributed file sharing and management

in recent years. As the information accumulated in the network growing exponentially,

targeted content-based search is becoming a necessary feature for P2P networks to be viable.

However, because information in a P2P system is usually dispersed among a large number of

peers, providing efficient keyword-based search is already challenging, not to mention

supporting semantic search which allows users to query information using high-level concepts.

To address this challenge, we propose a self-organizing P2P network, by letting each peer

continuously observe query and response information passed by and update information about

related documents and other peers gradually. Because each peer also keeps several references

to other peers that hold completely unrelated documents, the resulting network can gradually

evolve into a small-world network where a query can be routed to the set of related peers

quickly following very simple greedy strategy. Our method adopts some of the key principles

from Freenet, and is architecturally different from other DHT-based P2P networks such as

pSearch and SSW. We conduct extensive simulation and compare our approach with pSearch.

The simulation results show that our network keeps improving itself, and can achieve better

search quality even with a smaller number of search steps when compared to pSearch.

Keywords: peer-to-peer, semantic search, self-organization, small world

iii

誌謝

 對於碩士論文的完成，首先要感謝我的指導教授陳俊穎老師，在這兩年研究生涯中，

不斷地給予我詳盡的指導與適時的鼓勵，讓我在解決問題與研究方法上得到許多豐富的

經驗和技巧。同時也感謝口試委員江清泉教授、陳健教授以及易志偉教授，提供許多寶

貴的意見，使得我的論文內容能夠更加完備和充實。

 其次，感謝實驗室共同奮鬥的學長以及同學，在研究生涯裡給我許多的支持與鼓勵，

並且當我遇到困難時，也提供了需多意見，讓我能順利的完成碩士論文。

 最後，由衷地感謝我的家人，由於他們全力的支持，提供一個無後顧之憂的學習環

境，使我能順利的完成碩士學位，我願將這份榮耀獻給我的家人

鄭仁傑 謹誌 2009 年 8 月

於交通大學協同合作實驗室

iv

Table of Contents

摘要 ... i

Abstract ... ii

誌謝 .. iii

Table of Contents ... iv

List of Tables ... vi

List of Figures .. vii

List of Algorithm ... viii

Chapter 1. Introduction ... 1

Chapter 2. Background and Related Work .. 5

 2.1. Key-based Search………………………………………………………………….... 5

 2.1.1. Napster and Gnutella…………………………………………………….… 5

 2.1.2. Freenet……………………………………………………………………... 6

 2.1.3. Small-World Networks...…………..……………………………………… 7

 2.1.4. Content addressable Network (CAN).………………………………….. 8

 2.2. Semantic-based Search…………..…………………………………………………. 9

2.2.1. Semantic Vector………………………………………………………….... 9

 2.2.2. pSearch……………………………………………….………………..… 10

 2.2.3. Semantic Small World…………………………………………………… 11

Chapter 3. Self-Organizing P2P Network Architecture... 14

 3.1. Overview………………………………………………………………………..… 14

 3.2. Overlay Construction…………………………………………………………… 15

 3.3. Semantic Search………………………..……………………………………… 16

 3.4. Document Cache Swapping…………………………………………………… 22

Chapter 4. Peer Movement.. 24

v

Chapter 5. Experiments ………………………………………... 27

 5.1. Performance Result for 2-Dimensional Synthetic Data………………………… 28

 5.2. Performance Evaluation………………………………………………………… 31

 5.2.1. The Effect of Data Distribution…………………………………………….. 31

 5.2.2. The Effect of Flocking………….…………………………………………. 32

 5.2.3. Search Performance……………………………………………………... 33

Chapter 6. Discussion and Future Work ………………….. 35

Chapter 7. Conclusion ... 36

Reference 37

vi

List of Tables

Table 5.1: The detailed parameters used in simulation: .. 27

vii

List of Figures

Fig 2-1: Locating files in Napster and Gnutella.. 5

Fig 2-2: An illustrative example of Freenet’s routing table..................................... 6

Fig 2-3: An illustrative example of small world... 7

Fig 2-4: A 2-dimension CAN... 8

Fig 2-4: A rolling index of pSearch.. 10

Fig 2-6: An illustrative example for SSW... 11

Fig 2-7: An illustrative example of SSW-1D……………................................... 12

Fig 3-1: A key idea…………….……......... 14

Fig 3-2: Peer positioning using mediums………………………… 16

Fig 3-3: The flow chart of request procedure………..……………………….. 17

Fig 3-4: The flow chart of response procedure…… . .…………………… . . . 21

Fig 4-1: Three basic flocking rules………………… ..…..…………………… 25

Fig 5-1: The distribution of peers and documents……………………… 28

Fig 5-2: Distribution of documents peer managed……………………… 29

Fig 5-3: The change of search path length…………................................. 30

Fig 5-4: The effect of flocking........... 30

Fig 5-5: The effect of data distribution………………… .……. 31

Fig 5-6: The effect of flocking... 32

Fig 5-7: Document overlap.... 32

Fig 5-8: Result quality... 33

Fig 5-9: Recall per hop... 34

viii

List of Algorithm

Algorithm 3-1: Algorithm for RDP …………..………... 18

Algorithm 3-2: Algorithm for RRP... 19

Algorithm 3-3: Algorithm for search procedure... 20

Algorithm 3-4: Algorithm for response procedure... 21

1

Chapter 1. Introduction

With the development of network technologies progressing vigorously and the use of

Internet applications becoming more popular during the past few years, information is

accumulating in an alarming speed. Consequently, how to sieve through this vast amount of

information residing in the network and make the best sense out of it efficiently becomes

important and valuable for both individuals and companies. However, the technical

challenges are becoming more difficult to deal with not only because the volume of

information is extremely large, but also the semantic relations embedded within them cannot

be analyzed and queried timely.

Recently, peer-to-peer (P2P) architecture has shown its strength in handling large

volume of data in a fully decentralized, scalable, and robust way. A typical P2P system

consists of a dynamic network of machines each of which can serve as a client and a server at

the same time. When a user connects to and interacts with a P2P system, his/her machine

often becomes part of the network in which member machines communicate with each other

in a prescribed protocol. Typical P2P systems in active use today enable users to contribute

and share some kind of information, such as multimedia files.

 Although P2P networks can effectively manage large volume of data, how to search

information efficiently and meaningfully in such networks is still an active research topic

pursued by many researchers. To facilitate document search, earlier P2P applications either

use centralized servers to maintain document indexes, or rely on query flooding to probe the

participating machines for documents requested by the user. The former is not fully

decentralized and exhibits a single point of failure, while the latter is not scalable because of

the amount of messages generated for each query, especially when the network grows larger.

2

To improve the search performance while preserving the desirable characteristics of P2P

architecture, many modern P2P networks employ the so-called distributed hash tables (DHTs).

Notable examples include CAN [Ratnasamy, et al], Chord [Stoica, et al], Pastry [Rowstron, et

al], and Tapestry [Zhao, et al]. In these approaches, documents are first mapped to certain

hashed keys, and some network overlays are established on top of which keys can be searched

efficiently.

DHT-based P2P networks are promising alternatives when what one want is a simple

document storage system, where the user can recall a document if he/she knows the document

name or even the hashed key. These systems fall short when content-based search is

concerned, that is, when the user wants to search for documents that contain content satisfying

some criteria. This is because the key-hashing step has removed the content information. To

add content-based search capability, additional mechanisms are needed on top of the

DHT-based overlay.

 Many approaches have been proposed to support content-based or semantic-based

search in P2P architecture. For example, [Shen, et al] proposes hybrid architecture in which

peers are divided into super nodes and ordinary ones, and the super nodes maintain index

information. In contrast, other researchers adapt existing DHTs approach, but replace the key

hashing with semantics-preserving mapping. Notable examples include pSearch [Tang, et al]

and SSW [Li, et al], which make use of Vector Space Model [Berry, et al] in conjunction with

Latent Semantic Indexing [Deerwester, et al] that can effectively map a set of documents into

points in a semantic space. Because the closeness between two documents in the semantic

space also suggests the semantic similarity between them, semantic-based search is supported

simply by allowing the user to query documents that fall in a certain range in the semantic

space. This approach is conceptually straightforward, and can be implemented easily when

the dimension of the key space is small. When the dimension is high, the incurred

3

maintenance overhead become large, and additional engineering effort is needed to cope with

the high dimensionality, therefore making the network more complicated to implement.

Furthermore, these DHT-based approaches often proceed by successively dividing the

semantic space in a top-down manner, driven by the sequence of joining or leaving events of

peers. This partition strategy may not respect the natural clustering of documents, even when

the document distribution is considered when partitioning the semantic space.

In this paper, we investigate the use of the same semantic-preserving document-key

mapping in unstructured P2P architecture to support efficient content-based search.

Specifically, our P2P architecture resembles Freenet [Clarke, et al.] with many design

principles drawn from it. In Freenet, documents are also hashed not only to permit anonymity

but also to preserve P2P characteristics. A greedy search heuristic is used to guide search; that

is, when receiving a query either locally from the user or relayed from another peer, each

machine either responses to the query if it has the corresponding document, or redirects the

request to peers that to its knowledge has best chance to host the document, based on the

closeness of the query (key) and the keys maintained in the local cache. Furthermore, each

machine also updates its routing table to reflect new knowledge it learned. Such a distributed

learning process permits Freenet to evolve gradually into a so-called small-world network

[Kleinberg] with small network diameter, making the greedy search heuristic highly efficient.

Not surprisingly, the principles behind Freenet fits well with the abovementioned

semantic-based search approach using semantics-preserving key mapping. The main issue

needs to be addressed is the uneven distribution of the keys because the documents

themselves are semantically clustered. No other drastic architectural change is needed even

when data dimension is high, as long as the network can still self-organize into some

small-world network. To achieve the goal, in our architecture each machine is associated with

a point in the semantic space based on the documents it hosts (for example by choosing their

4

geometric center). Since the set of documents hosted by a machine changes over time, the

machine’s position also changes accordingly. In our architecture, each machine simply learns

the positions of other machines continuously based on the information passing by, as in the

original Freenet, and the greedy search heuristic remains the same. To retain small-world

network characteristics, the size of the routing table in each peer is limited. Each peer then

attempts to keep track of the other peers closer to it in its routing table, possibly by kicking

out more distant ones. In addition, the peer also makes room in its routing table to maintain a

certain number of distant peers in order to provide “short-cuts” for queries; this is essential to

keep the overall network diameter low.

We have conducted extensive simulation using synthetic data and the TREC data set.

The simulation results showed that our system can self-organize into a small-world network

and provide efficient semantic-based search. Several performance comparisons are also

conducted against pSearch; the results show that our system can quickly converge and

perform much better even with a smaller number of search steps.

 The rest of the paper is organized as follows: In Chapter 2 we will describe the

background about semantic search and small work network, and survey related research on

semantic-based P2P network. In Chapter 3 we will provide an overview about the architecture

of our system. In Chapter 4 we will present an improvement in our system. In Chapter 5 we

perform various experiments via simulation and discuss the results. In Chapter 6 we discuss

some issues and outline possible future work, and then conclude the thesis in Chapter 7.

5

Chapter 2. Background and Related Work

2.1. Key-based Search

2.1.1. Napster and Gnutella

Napster [Fanning] is a well-known online music file sharing service which is is the first

P2P file sharing network employed extensively. Instead of storing the files on a central

computer, the files are placed on users’ machines. Napster utilizes a central server to maintain

the indexes of the files that are currently being shared by connected peers. Each peer

maintains a connection to the central server, to which it send file requests. Upon receiving a

file request, the central server then informs the peer where to find the requested file, and it is

the peer who initiates file download directly from other peer. An illustrative example is

shown in Fig. 2-1 (a). As a centralized network, Napster is unreliable due to the single point

of failure, and its scalability is also limited.

Different from Napster, Gnutella [Frankel] is a file sharing system employing a fully

decentralized architecture. To locate a file, peer initiates a controlled flood by sending query

central server

Q: query

R: response

D: download

(a) Napster (b) Gnutella

Fig. 2-1. Locating files in Napster and Gnutella. (a) Napster. (b) Gnutella

6

to all of its neighbors. Upon receiving a query, a peer checks if any locally stored files match

the query. If so, the peer sends a query response back towards the query originator through the

overlay. If the file is not found, the peer continues to flood the query through the overlay. An

illustrative example is shown in Fig. 2-1 (b). Although Gnutella has better reliability and is

fault tolerance, it incurs excessive query traffic and is not scalable.

2.1.2. Freenet

Freenet is an unstructured and fully decentralized anonymous P2P network originally

designed by Ian Clarke. In Freenet, each file is identified by the binary key by applying a hash

function (e.g. SHA-1). A Freenet peer maintains a routing table about documents and their

sources. As illustrated in Fig. 2-2, each entry in the routing table contains the document key

and the peer that contains the document (or at least knows where the document comes from).

Some of the entries also contain the actual documents, meaning the peer is caching the

document locally. When new information comes in and the routing table is full, some kind of

replacement policy is applied to decide which entry to kick out. A common policy is to

replace the entry that has not been accessed for the longest time.

Key Ref Data

abc

wrw

etw

fsv

sdfg

124

142

344

465

125

D1

D2

D3

D6

D8

fgf

dhd

zvs

ewt

jeo

198

153

463

576

244

New data

Fig. 2-2. An illustrative example of Freenet’s routing table

7

Users search for documents by giving the document keys explicitly. When searching a

document, if the peer receiving the query does not contain the document, it looks up the

documents in its routing table and find the one with closest keys (e.g. using simple bit-by-bit

comparison), and forwards the query to the peer that own or knows more about the document.

Observation shows that Freenet indeed evolves into a small-world network gradually, such

that the greedy search heuristic mentioned above works quite efficiently.

2.1.3. Small-World Networks

Small-world networks are an important concept and need further description. A small

world network [Kleinberg] consists of many clusters. Peers among a cluster have intensive

connection, called short-range link. In addition, there are also shortcuts, called long-range

links that connect different clusters. To meet the small-world criteria, the network should have

two properties: (1) the intensive connection among a cluster is far higher than between

different clusters. (2) Two peers from two different clusters can reach each other in a small

number of hops. In this network, a search can be performed in O(log
2
N) steps, where N is the

number of peers in a network. An illustrative example is shown in Fig. 2-3, in which the black

links represent short-range links while the red dotted links represent long-range links.

 Fig. 2-3. An illustrative example of small world

8

2.1.4. Content addressable Network (CAN)

CAN is a well-known structured network using the distributed hash table (DHT) to

organize the P2P overlay. CAN partitions the k-dimensional Cartesian space into zones. Each

zone is assigned to a peer. A data object is mapped a point in the Cartesian space using certain

hash function (e.g. SHA-1), and is managed by the peer whose zone contains the point. When

a peer joins the network, it randomly selects a point in the Cartesian space and routes to the

zone that contains the point. Then the current owner of this zone would split the zone into two

smaller zones and hands over one of the subzone to the new peer. Two peers are neighbors if

their coordinate spans overlap along d-1 dimensions. During search, the peer always routes

message to the neighbor whose zone is the closest to a query. For a k-dimensional space

partitioned into n equal zones, the average routing path length is thus (k/4)(n
1/k

) and each peer

maintain 2k neighbors. An example 2-dimentsion CAN is shown in Fig. 2-4, in which there

are six peers A-G in the network. Each peer has a zone in Cartesian space. Peer A has four

neighbors B, C, D and E. When peer G request a data object with point (x, y), it would send

request to F, and F forwards the request to E, and finally E forwards the request to A.

 Fig. 2-4. A 2-dimension CAN

A

B

C

D

E F G

(x, y)

9

2.2. Semantic-based Search

2.2.1. Semantic Vector

Various digital data, including documents, pictures and multimedia, can be presented

with k-element vectors. Each element represents a particular feature or attribute. In the

information retrieval community, Vector Space Model (VSM) is well-known for document

indexing. In VSM, the k-element vectors are called term vectors, and each element

corresponds to an important word or phrase in the document or query. The weight of an

element is computed using the term frequency - inverse document frequency (TF-IDF) scheme.

The term frequency is the number of times a term occurs in a document, and the document

frequency is number of documents containing this term. A term is importance for a document

if a term appears in a document with high frequency, and only appears in a few documents.

The semantic vector of document d is defined as Vd = [w1,d, w2,d, …, wk,d] , where

t

tdt
df

D
tfw log, (1)

However, VSM suffers from synonyms and noise in the documents. Latent Semantic

Indexing (LSI) is a well-known approach that overcomes this problem by using the singular

value decomposition (SVD) to identify patterns in the relationships between the terms. More

importantly, LSI transforms the high-dimension space of term vectors into a lower-dimension

concept space, such that documents that are semantically closer tend to be close to each other

in the concept space after the transformation. Many P2P networks use this feature to support

semantic search.

10

2.2.2. pSearch

pSearch is a semantic-based P2P network proposed in [Tang, et al]. It is a structured

network that organizes a semantic overlay using LSI and content-addressable network (CAN)

technology. The major feature of pSearch is to combine the efficiency of DHT systems and

accuracy of information retrieval algorithm.

pSearch uses LSI to obtain documents’ semantic vectors, which in turn are maintained

using a CAN overlay. When the dimension is high, however, CAN suffers from the problem

of high maintenance overhead, because the neighbor links a peer needs to maintain increases

drastically. To address this problem, pSearch propose a dimension reduction technique, called

rolling index. Rolling index partitions a small portion of a semantic vector into p subvectors.

Each subvector consists of m dimensions corresponding to an m-dimensional space. An

example is shown in Fig. 2-5, in which the first six elements of a semantic vector is

partitioned into three 2-dimensional vectors and are separately mapped to three 2-dimensional

CAN spaces.

data
0

2

4

6

100

p1

p2

p3

Fig. 2-5. Rolling index in pSearch

11

Because each semantic vector needs to publish and search p times, rolling index still

incurs high publishing overhead and search cost. Because CAN is a structured network,

imbalance distribution of document over the peers may still happen.

2.2.3. Semantic Small World

Semantic small world (SSW) is presented by [Mei Li et al] in 2004 and is closely related

to pSearch. It is also a structured network using CAN as the underlying overlay. SSW

introduces two new features: semantic clustering and small world. In the SSW overlay, a zone

not only represents a peer, but also consists of several peers to share the responsible of

managing a semantic zone. To reduce average search path, SSW adopts the small world

property: each peer maintains short-range links and long-range links. An illustrative example

for SSW is shown in Fig. 2-6.

Like pSearch, to address the high maintenance overhead associated with high

dimensional semantic space, SSW proposes the dimension reduction technique, called

SSW-1D. The idea is to linearize the peer clusters from high dimensional semantic space to a

one-dimensional naming space. Specifically, SSW assigns a unique ClusterID to each cluster

5

4

0

6

2

3

13

8

1

14

12

10

11

A

B
C

D

Fig. 2-6. An illustrative example for SSW

12

using a virtual binary tree (GPT). An illustrative example of SSW-1D is shown in Fig. 2-7.

The root node of GPT represents the initial space. Each partition generates two subtrees. The

left subtree attaches bit 0 and the right subtree attaches bit 1. The subspace corresponds to a

leaf node in the GPT. With this set up, the tree label of a leaf node is used as the clusterID for

a cluster. SSW-1D is constructed as a ring consisting of clusters. Two peer in two neighbor

clusters connect via a short-range link. Each peer has several long-range links to connect to

other clusters.

 Although SSW reduces the high maintenance overhead associated with CAN and the

high publishing cost required by pSearch, the imbalance distribution of documents still exists

5(0101)

4(0100)

6(0110)

0(0000) 2(0010)

12(1100) 15(1111)

14(1110)

11(1011)

10(1010) 8(1000)

0000

1000 0000

0000 0100

0000 0010 0100 0110

1000

1000 1010

0100 0101 1010 1011 1100 1101

1100 1110

1100

0

0

0 0

0

0

0

0

0

0

1

1

1 1

1

1

1 1

1 1

(a) (b)

(c)

Fig. 2-7. An illustrative example of SSW-1D. (a) clusterID. (b) GPT. (c) SSW-1D

13

in SSW. Furthermore, as a structured network based on DHT, implementing SSW is still a

complex task.

14

Chapter 3. Self-Organizing P2P Network Architecture

3.1. Overview

We design an unstructured P2P overlay supporting semantic search. Our approach adopts

many design principles from the P2P networks discussed in earlier chapters, notably the

Freenet architecture and the use of LSI. In the overlay, each document is assigned a

k-dimensional semantic vector obtained using the LSI transformation. Each peer is also

assigned a point in the semantic space based on the documents it contains. Initially, a peer

may contain documents with diverse topics such that their corresponding semantic vectors

show not many patterns. Our goal is to make each peer focused. When a peer finds out that

there is a document closer to its center than some of the documents in its routing table, the

one in the routing table will be replaced with the new document if the routing table is full.

Because changing the routing table in turn changes the peer’s position, it is as though the peer

continuously moves in the semantic space, with the document set it contains becoming more

focused gradually. The idea is illustrated in Fig. 3-1.

Fig. 3-1. The key idea for self-organizing

15

3.2. Overlay Construction

Document table and routing table. Document table records information about the

documents managed by a peer. There are two types of information in the document table:

document link and document cache. Document link contains is the reference information,

including the semantic vector and information about the owner’s information. In case the

document owner is the peer itself, the actual document content is stored in the document

cache. Routing table records information of all neighboring peers known to the peer. Two

types of links are maintained: short-range links and long-range links. Short-range links always

reference to the peers whose (current) positions are within a given range in the semantic space

(i.e. within the peer’s proximity). Short-range links enable efficient retrieval of relevant

documents in a few hops. In contrast, long-range links reference distant peers in the semantic

space, allowing a query to be routed quickly to the target regions.

Peer positioning. As mentioned previously, each peer is assigned a semantic vector that

may change based on the network state. Although there are many ways the semantic vector

can be determined, in this thesis we focus on the case that the semantic vector should only be

based on the documents it contains as well as other peers’ positions. Ideally, we want to

position the peer at the center of the documents. We achieve this by simply using the median

of documents’ semantic vectors, which prevents the position of the peer from changing too

much within a short period of time, especially when a document with large distance from the

peer’s current position is swapped out the routing table. The detailed equation as follows:

)2(

,,, 21

i
Dd

i

ksv

dmedianp

wherepppP

link

where Dlink is the set of document links P manages. Fig. 3-2 shows a simple example about

the calculation of the medium.

16

3.3. Semantic Search

When performing a semantic search, the user needs to provide both a range (a sphere

with a center and a radius) in the semantic space and the number of documents to be returned.

In addition, the maximum number of hops (i.e. TTL value) should also be given. The search

procedure will continue collecting documents that fall into the given range until either the

required number of documents has been collected, or the TTL is reached. Clearly, the quality

of the query depends on the document distribution and the parameters provided by the user.

However, in reality, it is possible for the user to provide only the center, and the system can

fill in the other parameters probably, possibly after conducting several “sampling” queries and

gaining sufficient knowledge about the distribution of documents around the center.

Below we describe the search procedure in more details.

document

peer

median

Fig. 3-2. Peer positioning using mediums

17

Fig. 3-3. The flow chart of the request procedure

As shown in Fig. 3-3, the procedure mainly consists of six steps:

Put document’s information into result set. When a query is initiated, it contains an

empty result set used to hold documents collected so far, as well as the peers that contain the

documents, respectively. The result set has an upper bound limiting the number of documents

it can contain. We can conveniently set the limit to the required number of documents given

in the query. When a peer receives a query, it first looks up its own document link table and

whether to put some related documents it finds into the result set. If the result set is full, the

peer can replace documents in the result set with better ones in its document link table. If the

result set is not full, there are two choices. First, a document is put in the result set only if it

falls in the query region. In the second choice, the result set is simply filled as many

documents as possible, but following the same replacement strategy mentioned above. The

latter approach is what we focus on because, doing so propagate more document information

as well as peer information along the query path, allowing more peers to learn the network

topology and their inter-relations in the network more quickly.

Replace Document Procedure (RDP). This procedure mainly replaces a document link

in the document table whenever a peer gains knowledge about a new document in the network.

Often the knowledge comes from the query (actually, its result set) passing by. RDP is

performed to make the documents of a peer more focused. However, RDP does not drop a

document link when its document is cached in the peer, to prevent the document from being

Put
document's
information
into result

set

Issue RDP Issue RRP
Update own
information

Put
neighbor

information
into

candidate
queue

Forward
message

18

dropped from the network all together. In RDP, if the document table is not full, the new

document is simply added to the document table. If the document table is full, RDP then

calculate the distance (similarity) between the peer and the document, where the distance

between two semantic vectors is computed using Euclidean distance:

)3(),(
22

22

2

11 kk qpqpqpQPd

RDP then compares the distance with dmax, i.e. the document that is most distant from the peer.

If the new document is closer than dmax, then replace dmax with the document. Algorithm 3-1

shows the pseudo codes of RDP:

Algorithm 3-1: Algorithm for RDP

RRP(Peer p, Document d) :

1: if document table isn’t full then

2: add d to document table

3: else

4: if d(d, p) < d(dmax, p) where dmax has maximum distance in the

document table of p then

5: replace dmax with d

6: end if

7: end if

Replace Routing Procedure (RRP). This procedure mainly updates and replaces routing

table in a way similar to RDP. In this case, a peer gains new knowledge about a new peer also

from the query passing by. This also implies that whenever a peer receives and/or redirects a

query, it attempts to “inject” information about itself, including its current position. However,

if we only keep near-by peers in the routing table, the network may gradually evolve into

disjoint clusters. To avoid this, we divide the routing table into short-range link set and

long-range link set. The replacement of short-range links is similar to RDP. In contrast, when

19

the new peer under consideration falls outside the short-range link set, RRP checks to see if

adding the new peer can help the peer “expand” its horizon. This is done by computing, for

each peer in the long-range link set as well as the new peer, its total distance between it and

the rest, then keep the combination which has the maximum total distance. Of course, if

original combination of long-range link set has the maximum total distance, no replacement is

done. Algorithm 3-2 shows the RPP pseudo code:

Algorithm 3-2: Algorithm for RRP

RPP(Peer p, ResultSet rs) : for each peer np in rs

1: if np exists in routing table then

2: update np’s information in the routing table

3: else

4: if d(np, p) < d(s, p) where s has maximum distance among the

 short-range link set then

5: replace peer s with peer np

6: else

7: calculate total distance of all combination between np and

 all long-range links

8: if long-range link set has minimum total distance when

 replacing peer l with peer np then

9: replace peer l with peer np

10: end if

11: end if

12: end if

 Update own information. This procedure mainly re-calculates the new semantic vector,

because after RDP and RRP are performed, the peer’s position may change.

 Put neighbor information into candidate queue. In request procedure, the search path

is along the greedy path. The request message is always forwarded to the peer that it has not

20

been visited and its position is closest to query. So the request message uses a candidate

queue to store top k peers’ information closest to query.

 Forward the message. The search procedure stops if the result set has accumulated

required number of documents, or the query has traversed TTL hops given in the query. In

either case the query will be sent back along the request path. Otherwise, the peer will

forward the query to the peer in its routing table that is closest to query. The algorithm 3-3

shows the complete pseudo code for request procedure as follows:

Algorithm 3-3: Algorithm for search procedure

search(Peer p, Query Q):

Q.RS: result set, Q.CQ: candidate queue, Q.TTL: TTL

Q.S: similarity threshold, Q.TS: travel stack

1: for all d in the document table do

2: add d to Q.RS

3: end for

4: for all document d in the Q.RS do

5: do RDP(p, d)

6: end for

7: for all known peer r in Q do

8: do RRP(p, r)

9: end for

10: re-calculate position for p

11: for all n in the routing table do

12: add n to Q.CQ

13: end for

14: if Q.TTL = 0 or all d(r.d, Q.q) <= Q.S then

15: return Q back to previous peer according to Q.TS

16: else

17: forward Q to the peer i among Q.CQ that is closest to Q

15: end if

21

 In order to reduce the maintenance overhead, we make use of the query as much as

possible by packing document and peer information into the query. This is also the case when

the query is returned along the search path towards the source, where all the peers along the

path can still learn knowledge about new documents and other peers and update themselves

accordingly. Fig. 3-4 shows the steps done when a query is returned:

Fig. 3-4. The flow chart of the response procedure

 When peer p receives the returning query, it first executes RDP and RRP again and

re-calculates its own position. To send response message back along the search path, the peer

still update its own entry in the query (mostly in the travel stack carried by the query).

Algorithm 3-4 shows the pseudo code for the response procedure as follows:

Algorithm 3-4: Algorithm for response procedure

response(Peer p, Query Q):

4: for all document d in the Q.RS do

5: do RDP(p, d)

6: end for

7: for all peer r in Q do

8: do RRP(p, r)

9: end for

 5: re-calculate own position

 6: pop peer i from Q.TS and forward Q toward peer i

Issue RDP Issue RRP
Update

own
information

Forward
message

22

3.4. Document Cache Swapping

In the search procedure, we use RDP to re-organize document links in the document

table. Because the peer does not store the actual content locally, we can drop a document link

if it falls outside the peer’s range of focus. Because the actual document is still stored

somewhere in the network, it can still be reached. However, if for a document there are few

links to it from other peers (so no one knows about it other than its owner), and the document

is kept by a peer whose position is far from the document’s, it is less likely for the document

to be reached using the simple greedy search heuristic. Accordingly, we augment the P2P

network with some document swapping mechanism so that any document has chance to be

moved to the peer closer to it. We implement two simple swap procedures: Two-side

beneficial swap procedure (TBS) and one-side beneficial swap procedure (OBS), which are

performed periodically. That is, from time to time, a peer will try to exchange the documents

it caches but outside its interest region, with another peer which has documents closer to its

interests .

Two-side beneficial swap procedure (TBS). This procedure lets two peers exchange

documents that are mutually beneficial. From time to time, when peer P learns that a

document link D (assume its source peer is Q), is closer to P’s own position than some of the

documents cached in P. Peer P can pick, among such documents, one that is closest to Q, say

E, and sends a request-for-swap message to Q with D and the suggested document E. Peer Q

accepts the swap request if document E is indeed better than some of its cached documents

(other than D). If the request for document swap is granted, peer P and Q can subsequently

exchange the documents E and D and update their routing tables correspondingly.

One side beneficial swap procedure (OBS). This procedure is also used for a peer to

get rid of a cached document it does not want. Unlike TBS where the peer knows the actual

23

document it wants and can contact the document’s source peer, OBS is initiated by the peer

unilaterally. In OBS, peer P picks one of its cached document, say D, that is farthest to P’s

position; peer P then issues another kind of request-for-swap message which will be

forwarded in the same path like initiating a query for document D from P. However, when a

peer receives such a message, it can propose one of its own cached documents closest to P’s

position by packing this proposal into the message. When the message eventually comes back

to P, the message may collect multiple proposals from the peers in the search path. Peer P can

pick the document that is most suitable for itself, and contact the document’s source to

complete the document swap as in TBS.

24

Chapter 4. Peer Movement

In Chapter 3, we describe the basic self-organization mechanism for our P2P network.

Each peer tries to make its collection of documents focused by replacing and swapping

documents on its own. Doing this continuously, it is possible that many peers will simply

converge to a small region in the semantic space. Consequently, the document links maintain

by these peers may overlap significantly. Consequently, more and more documents will have

few or no corresponding document links maintained by the other peers. This will degrade the

search performance for the whole network. To address this problem, we can make a peer to

take into consideration its relations with other close-by peers when the peer changes its

position. We study a flocking behavior [Reynolds] in the bio-inspired field and adopt some of

their ideas in our system.

The flocking behavior was first simulated on the computer in 1986 by Craig Reynolds.

He models the flocking behavior into three simple rules: Separation, Alignment and

Cohesion.

Rule 1: Separation. This rule prevents a bird from collision with other birds when

steering.

Rule 2: Alignment. This rule makes a bird steer towards the average moving direction

of its neighboring birds.

Rule 3: Cohesion. This rule makes a bird steer towards the average position of its

neighboring birds.

Fig. 4-1 illustrates the three basic rules. The gray circle is the sight range of the central

bird (full triangle). In the gray circle, the other birds (hollow triangle) would affect the central

25

bird with the three basic rules. Finally the movement of the central bird is the sum of three

forces generated by three rules.

Following the flocking concept, we define two forces to affect the peer’s movement:

separation force and interest force:

Separation force. This force can separate two peers when they are too close to each

other in the semantic space. There is a repulsive force between a peer and each of its

neighbors. We define the repulsive force to be inversely proportional to the square of distance

between two peers, as shown below:

)4(
),(2

Nn

s
cnpd

np
V

where N is the set of neighbors for peer p, c is a positive constant used to avoid singularity.

 Interest force. This force makes each peer move to its interest zone in the semantic

space. The interest zone for peer p is defined as the area surrounding by top α% document

links closest to p’s position in the document table. The idea behind the definition of interest

zone is that if there is a document cluster near peer p, the center of the zone is often closer to

the cluster center than p is, unless peer p is already at the cluster center. Therefore, we define

(a) (b) (c)

Fig. 4-1. Three basic flocking rules. (a) separation rule, (b) alignment rule, (c)

cohesion rule

26

the attraction force between the peer p and the center of the interest zone, and make it

proportional to the distance between them. The interest force is calculated as below:

)5(pdVi

where dα is the center of top α% document links closest to p. In our system, α is 40.

 The force vector is the sum of separation force and interest force, which represents the

peer’s moving direction. Unlike Algorithm 1 where documents are replaced purely based on

distance, here we try to kick out the document that does not help the peer move in the force

vector’s direction the most. To achieve this, we define the improvement score for each of the

document in peer p as below:

)6(
)(

),,(
v

vpd
vpds

where p is the peer’s position and v is the peer’s force vector.

27

Chapter 5. Experiment

In this chapter, we evaluate the self-organizing effect of our system and compare our

system with pSearch via simulation using both synthetic and real data set. When simulating

pSearch, we take four groups of subvectors with dimension 2.3lnN where N is number of peer

in the network and all peers are joined sequentially in a circle when simulation starts. The

synthetic data set includes 30000 documents divided into 30 clusters. The real data set

contains 26337 documents derived from the federal register (1994) in TREC version 4. We

use Terrir system developed by University of Glasgow to obtain term vectors and use

SVDLIBC developed by Doug Rohd to compute the SVD and obtain semantic vectors. The

main metrics we use are average search hops and average precision. The other parameters

used in the simulation are summarized in Table. 5-1.

Descriptions Default

Dimensionality of semantic vector 100

Number of peers in the network 1000

Number of initial data per peer 40

Max. document table size per peer 120

Max. routing table size per peer 30

Number of results for a query 25

Similarity threshold for a query 10

Max. TTL for a query 120

Table. 5-1. The detailed parameters used in simulation

28

5.1. Performance Results for 2-Dimensional Synthetic Data

To demonstrate the behavior of our network, we use a 2D synthetic data set first. The

data set consists of 4200 documents grouped into 6 clusters. And there are 120 peers in the

network. Fig. 5-1 (a) shows the initial position of all peers and the distribution of all

documents in the semantic space. Initially, 40 % of all documents a peer managed distributes

over the same cluster. A gray square point represents the semantic point of a document. A

black point represents the position of a peer. Fig. 5-1 (a) shows that all documents are divided

into 6 clusters and initial positions of the peers are also clustered. Fig. 5-1 (b) shows the

network distribution after a period of time. From the figure, we see that all peers have already

dispersed around each cluster gradually.

Fig 5-2 shows the change of documents owned by a particular peer over time. The peer’s

initial state is shown in Fig. 5-2 (a). Each black point represents a peer and the black circle

represents the average distance of the top 60% documents managed by that peer; the squares

represent the documents owned by the peer. Fig. 5-2 (b) and (c) shows the change of

Fig. 5-1. The distribution of peers and documents. (a) initial distribution (b) the

distribution after 2000 queries.

(a) (b)

29

document distribution for the peer over time, and the black circle becomes smaller gradually,

showing that the peer is more focused about the documents it keeps.

 Fig. 5-3 shows that our system is self-learning by observing a query at T and T+n time.

In Fig. 5-3 (a), a peer S initiates a query for a region depicted by the black circle. It shows that

the query has been forwarded to a peer very close to the region after three hops. But because

the peer is not focused enough yet, the query is still passed around afterwards. At T+n time,

Fig. 5-2. Distribution of documents peer managed. (a) Initial (b) After 2000 queries (c)

After 4000 queries

(a)

(b) (c)

30

the same query is sent, but because the peer has become focused, the requested documents are

collected more quickly.

Fig. 5-4 shows the effect of the flocking. In fig. 5-4 (a), we can find that most peers

concentrate in six small regions, and the regions they cover overlap too much. Fig. 5-4 (b)

shows the case after we add the flocking mechanism. We can find that all peers scatter

effectively around six document clusters.

(b) (a)

(b) (a)

Fig. 5-4. The effect of flocking. (a) Without flocking (b) With flocking

Fig. 5-3. The change of search path length. (a) At T time. (b) At T + n time

31

5.2. Performance Evaluation

In section 5.1, we show that our system can make the peer move to an area and manage

documents around this area gradually under the simulation of 2D data set. In this section we

will carry out additional simulation using synthetic and real data set.

5.2.1. The Effect of Data Distribution

Fig. 5-5 shows the effect of data distribution per peer under synthetic and real data set.

To control the initial assignment of the documents to the peers, the documents are grouped

into 30 clusters first. For synthetic data this is easily done by controlling the generation of

document points. For the real data, we divide the documents into 30 clusters using the

K-Mean algorithm in advance. With the document grouping, each peer is given a specific

group initially, x% of the documents it contains is drawn from the group, where we set x to be

0 (means totally randomly), 40, and 60. The results show that, although in the case of random

document assignment (x = 0) the system needs more hops to finish a request in the beginning,

but the required hops drop quickly as the system evolves, and eventually the search efficiency

approximates the case where x = 40 and 60.

(a) (b)

Fig. 5-5. The effect of data distribution. (a) Synthetic data set. (b) Real data set

32

5.2.2. The Effect of Flocking

Fig. 5-6 shows the effect of flocking on average search hops. In Fig. 5-6, we can find

that the self-organizing behavior without flocking is limited since many peers concentrate on

the small region. Fig. 5-7 shows the degrees of document overlap with and without flocking.

In the figure, documents are ranked, along the x-axis, by the number of peers that index them.

As shown in the figure, without flocking, the top 100 documents are managed by over 150

peers, and after about the 11000-th document the documents are not indexed by more than

one peer.

(a) (b)

Fig. 5-6. The effect of flocking. (a) Synthetic data set. (b) Real data set

Fig. 5-7. Document overlap.

33

5.2.3. Search Performance

Fig. 5-8 shows the system performance compared with pSearch. In this experiment, we

request the same document from the same peer at regular time intervals. In order to observe

the recall rate of a request, we assume that the user knows the number of documents related to

a document and asks for that number of documents. The recall metric is defined as follows:

)7(
rel

relret
R

where ret is set of the returned result and rel is set of the documents related to the query. We

observe the recall rates of our system and pSearch when the TTL is set to 20 hops and 10

hops, respectively. In the Fig. 5-8 (a), although our system has lower recall before two time

slots when TTL=20, but the recall surpasses pSearch after 3
rd

 time slot. Because pSearch is a

structured network that does not adjust the network organization over time, the recall will

remain the same. When TTL=20, pSearch only has 60 % recall. But our system has 75 %

recall at 3
rd

 time slot; our system even reaches 90 % recall at 19
th

 rime slot. Furthermore,

pSearch only has 30 % recall when TTL=10, but our system can reach about 70 % recall

when TTL=10. Fig.5-8 (b) shows the result quality under real data set and it still has better

recall than pSearch after the system evolves sufficiently.

(a) (b)

Fig. 5-8. Result quality. (a) Synthetic data set. (b) Real data set

34

 Fig. 5-9 provides additional evidence that our network evolves into an efficient

small-world network, by showing the recall hop by hop. In the Fig.5-9 (a), we observe the

requests of 1
st

(T=1), 2
nd

 (T=2), and 10
th

 (T=10) time slot under TTL=20 and synthetic data

set in Fig.5-8. When T=1, because the network has not stabilized yet, the recall is almost 0 %

among 10 hop. When T=2, because the network has been self-organizing, the recall increases

slowly. When T=10, the network has self-organized sufficiently, and a request can already

collect about 80 % of the documents after just three hops. Fig.5-9 (b) shows the effect of

small world under the real data set, and it also has similar behavior.

(a) (b)

Fig. 5-9. Recall per hop. (a) Synthetic data set. (b) Real data set.

35

Chapter 6 Discussion and Future Work

We have shown that our system can improve search performance by letting similar

documents be concentrated on few peers naturally. Fig 5-8 shows that, a request can recall

about 90 % of the relevant documents after six hops when the network self-organizes

sufficiently. By observing a lot of the simulation results, we also detect that a request is

forwarded to fewer and fewer peers which have the documents related to the query in about

ten hops.

We have applied the flocking idea in our system to address the problem that peers may

overlap each other too much. However, we find that some peers are still very close to each

other on the semantic space, and documents may still be distributed unevenly even when the

network evolves for a long time. This is because even though two peers may be close to each

other, neither peer knows the fact because it is not aware of the other (in its routing table),

unless there is a suitable query passing them by. An idea to address this problem is to select a

leader to manage several near peers. Each peer can then send its information, including his

position, or even the documents it manages to the leader. This way, the overlapping problem

can be reduced because two peers have more chance to know that they are overlapping too

much through their common leader.

36

Chapter 7 Conclusion

We have proposed a novel self-organizing P2P network for semantic search. We adopt

key principles from Freenet to make peer caches and replace document during the search.

With the help of semantic-preserving document-key mapping, peers learn to concentrate on

the documents in focused regions in the semantic space. In addition, peers also maintain links

to other peers, including both close-by peers and distant peers in the semantic space, so that

the whole network can evolve into a small-world network that permits efficient search. We

also studied the flocking model and adopt some of its ideas into the system to make peers

scatter more effectively on the semantic space. Simulation using synthetic data and TREC

data all confirms that our method is effective. In the future, we still need to take more

experiments under a large-scalar data set and prove our semantic overlay is efficiency under

various situations.

37

References

[Berry, et al] M. Berry, Z. Drmac, and E. Jessup. “Matrices, Vector Spaces, and Information

Retrieval”, SIAM Review, 41(2):335–362, 1999.

[Clarke, et al.] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong, “Freenet: A Distributed

Anonymous Information Storage and Retrieval System”, In International Workshop on

Design Issues in Anonymity and Unobservability, LNCS 2009, vol. 2009 of Lecture Notes in

Computer Science, Springer, pp. 46-66.

[Clarke] Ian Clarke, “A Distributed Decentralized Information Storage and Retrieval System”,

Division of Informatics, University of Edinburgh, 1999

[Cui, et al.] X. Cui, J. Gao, and T. E. Potok, “A Flocking Based Algorithm for Document

Clustering Analysis”, Journal of System Architecture 52 (2006) 505-515.

[Deerwester, et al] S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A.

Harshman, “Indexing by Latent Semantic Analysis”, Journal of the American Society of

Information Science, 41(6):391–407, 1990.

[Fanning] Shawn Fanning, Napster. (2000), available at http://www.napster.com/.

[Frankel] J. Frankel and T. Pepper, The Annotated Gnutella Protocol Specification v0.4

[Kleinberg] J. Kleinberg, “The Small-World Phenomenon: An Algorithm Perspective”, Proc.

32
nd

 Ann. ACM Symp. Theory of Computing (SOTC ‘00), pp. 163-170, May. 2000.

[Kundur, et al] Deepa Kundur, Zhu Liu, Madjid Merabti, and Heather Yu, “Advances In

Peer-To-Peer Content Search”, IEEE International Conference on Multimedia and Expo,

2007, pp. 404-407.

[Li, et al] M. Li, W.-C. Lee, A. Sivasubramaniam, and J. Zhao, “SSW: A Small-World-Based

Overlay for Peer-to-Peer Search”, IEEE TRANSACTIONS ON PARALLEL AND

DISTRIBUTED SYSTEM, VOL. 19, NO 5, MAY 2008.

[Reynolds] C. Reynolds, “Flocks, herds, and schools: a distributed behavioral model”,

Computer Graphics 21 (4) (1987) 25-34.

[Rowstron, et al] A. Rowstron and P. Druschel, “Pastry: Scalable, Distributed Object

Location and Routing for Large-scale Peer-to-peer Systems”, IFIP/ACM International

Conference on Distributed Systems Platforms (Middleware), 2001, Heidelberg, Germany

http://www.napster.com/

38

[Ratnasamy, et al] S. Ratnasamy, P. Francis, M. Handdley, R. M. Karp, and S. Schenker, “A

Scalable Content-Addressable Network”, Proc. ACM SIGCOMM ’01, pp. 161-172, Aug.

2001.

[Sandberg] Oskar Sandberg, “Distributed Routing in Small-World Networks”, Proceedings of

the eighth Workshop on Algorithm Engineering and Experiments, Dec. 2005, pp. 144-155.

[Shen, et al] Heng Tao Shen, Yanfeng Shu, and Bei Yu, “Efficient Semantic-Based Content

Search in P2P Network”, IEEE Transaction on Knowledge and Data Engineering, Vol. 16,

No. 7, July 2004, pp. 813-826.

[Stoica, et al] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H.Balakrishnan, “Chord:

A scalable Peer-to-Peer Lookup Service for Internet Applications”, Proc. ACM

SIGCOMM ’01, pp. 149-160, Aug. 2001.

[Tang, et al] C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-Peer Information Retrieval Using

Self-Organizing Semantic Overlay Network”, proc. ACM SIGCOMM ’03, pp.175-186, Aug.

2003.

[Zhao et al] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and J. Kubiatowicz,

“Tapestry: A Resilient Global-Scale Overlay for Service Deployment”, IEEE J. Selected

Areas in Comm., vol. 22, no. 1, pp. 41-53, Jan. 2004.

