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Run-Time Detection of Format String Attacks

Student : Hui-Lan Hung Advisor : Dr. Shih-Kun Huang

Department of Computer Science and Engineering

National Chiao Tung University
Abstract

In order to prevent format string vulnerabilities, the behavior of accessing
arguments for variadic functions should be regulated. A format string attack occurs
because variadic functions rely on the format string argument to determine the
number of arguments. Therefore, if an attacker has ability to control the format string
argument, he can exploit format string vulnerabilities to attack programs by providing
more conversion specifiers than needed. In this thesis, we develop an attack-detecting
tool called FormatDefense for pr i ntfislikerand vprint £-like functions to check if
a variadic function accesses arguments..outsideits argument list. FormatDefense
defines the access bound in the memory via:offline analysis of debugging information
and runtime tracking of the stack. It 1s implemented as a shared library in the UNIX
environment. We consider six scenarios based on format string locations to evaluate
the effectiveness of FormatDefenSe. The result: shows that FormatDefense surpasses
several existing detection tools in detecting invalid memory access in the six scenarios.
Furthermore, FormatDefense can detect exploits successfully on several programs
with known format string vulnerabilities. Eventually, we use various
microbenchmarks and macrobenchmarks to evaluate the performance overhead. The
overhead is negligible so that FormatDefense can be applied to real programs

practically to avoid format string attacks.
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1. Introduction

1.1 Problem Description

In 2000, the format string vulnerability was discovered in WU-FTP that acts like

a buffer overflow vulnerability. Format string vulnerabilities [1] occur because

attackers take advantage of a program’s trust in format strings. If an attacker can

control a program’s format string, he can access extra arguments, thereby viewing or

overwriting data in the program’s memory. Format string vulnerabilities are not easy

to be detected by manual testing because they usually occur in corner codes, such as

those used to log errors. As of January 2008, MITRE's CVE project listed nearly 500

programs with format string- vulnerabiliti€es [2] -and ranked the format string

vulnerability as the ninth most-tfeported type of vulnerability [3] between 2001 and

2006. Thus in recent years, researchers have developed various static and dynamic

tools to detect format string vulnerabilities. Many tools track the data flow of a

program to determine whether a format string is tainted (i.e., it can be modified by an

outside user) statically [4, 5] or dynamically [6, 7, 8]. Although these tools are capable

of finding new bugs, they generate false positives or incur high overheads.

Fine-grained and low-overhead dynamic detection is thus indispensable for protecting

programs against format string attacks.



1.2 Background

1.2.1 Attack Models of the Format String Vulnerability

Format string vulnerabilities arise because the aim between strong type checking

and convenient passing arguments method is opposite. The decision of C language is

the unsafe varargs mechanism for convenience.

Format string functions in the C Standard Library, such as printf and

vprintf, are variadic functions, which take an arbitrary number of arguments.

These functions rely solely on the format string argument to determine the number

and types of other arguments. When parsing the format string, they rely on the

conversion specifier to retrieve the argument-on the stack.

A format string usually contains”ordinary text and conversion specifiers. The

format string function prints the format string whose conversion specifiers have been

replaced with the corresponding arguments. The function maintains two internal

pointers: (1) FMTPTR, which points to the next character of the format string; and (2)

ARGPTR, which points to the next argument in the stack. FMTPTR initially points to

the beginning of the format string and advances with the function until the end of the

string. When FMTPTR points to a normal character, the format string function simply

prints the character into the destination stream. However, when it points to a

conversion specifier (starting with a % sign), the function prints the argument



indicated by ARGPTR. The type of the conversion specifier determines how many
bytes ARGPTR will advance to the next argument. For example, with the $d specifier,
the format string function retrieves the word indicated by ARGPTR, prints the word
as a signed decimal notation, and then advances ARGPTR by four bytes. Table 1

describes the output corresponding to each conversion specifier.

Table 1: Conversion specifiers

Conversion Specifier Output
$d or %i Signed decimal integer
%0 Signed octal

su Unsigned decimal integer

%X Unsigned hexadecimal integer

sc Character

%s String of characters

E3e) Pointer address

%n Nothing printed. The argument must be a pointer to a signed

int, where the number of characters written so far is stored

Although convenient for programmers, the above formatted output mechanism
permits two types of bugs. First, the format string function accesses arguments
without type checking. If the conversion type does not match the corresponding
argument, the format string function will misinterpret the argument, e.g., it will regard
an argument of type int as one of type float. However, it is difficult, if not
impossible, to exploit this kind of bug. Second, the format string function retrieves
arguments without bound checking so that it is possible to access more arguments

than those passed to the function.



A typical example is that programmers tend to use printf (str) as shorthand

for printf ("%$s", str). Although the two function calls are almost equivalent,

the former triggers undefined behavior when the str contains a conversion specifier.

It is also common to find that programmers, even experienced ones, implement a

wrapper function for vprintf () and allow users to provide the format string. If an

attacker can control the format string passed to printf or vprintf, the program

contains a format string vulnerability. By directing the format string function to access

extra arguments, the attacker can view the stack or crash the program; by directing the

function to access tainted variables, the attackercan read or overwrite any address in

the program’s memory.

1.2.1.1 Accessing Arguments outside the Real Argument List

If an attacker provides too many specifiers in a format string, he will be able to

direct the format string function to view the stack or crash the program.

Viewing the Stack

does not provide corresponding arguments to those specified in the format string,

outputs three integers in the stack in unsigned hexadecimal notations. As a result, an

attacker can view the content above the stack frame of printf in the stack and



possibly obtain important data, e.g., the password.

high address

0x0804829d | " %x
Oxbfa2cbf8 | + %x
0x080495bc | "+ %x
FMTPTR 1> %x%x%x

ARGPTR—*

low address

Figure 1: Using printf ("$x%$x%x") to view the stack
Crashing a Program
Denial of service is another type of trivial attack. For instance, the call to
printf ("$s%$s%n%n") crashesmearly every program. The $s specifier reads a
pointer in the stack and displays-a string in the address, whereas the $n specifier reads
a pointer in the stack and writes the current number-of characters output in the address.
Without corresponding arguments, the format string can easily trigger invalid memory

access via arbitrary pointers in the stack.

1.2.1.2 Accessing Tainted Variables

In addition to the attacks described above, if an attacker can direct the format
string function to access tainted data (i.e., data that is manipulated by the attacker), he
can either view (by the % s specifier) or overwrite (by the $n specifier) any address in

the memory. For example, assume a function foo calls printf (fmt), as shown in



Figure 2. The array fmt contains the format string, “\x3c\xe2\x88\xbf%n”, and

the return address of the function foo is stored in the address Oxbf88e23c. When

printf handles the $n specifier, ARGPTR points to the beginning of the format

string, which is 0xbf88e23c in little-endian format, and the return address of foo

will be overwritten by the $n specifier. An attacker can write any desired value via

multiple overwrite operations. A typical exploit overwrites an entry in the Global

Offset Table (GOT) to gain control of the program.

high address
user_fmt
void foo( char *user_fmt ) { return address | 0xbf88e23c
char fmt[ 8 ]; saved frame ptr
strcpy( fmt, user_fmt ); n %
printf( fmt ); bf 88 e2 3c
ARGPTR
} &fmt
return address
saved frame ptr

low address

Figure 2: Overwriting the return address of the function foo

1.3 Motivation

Current fine-grained dynamic detection tools, such as FormatGuard [9], Libsafe

2.0 [10], and Kimchi [11], cannot detect every kind of format string attack, especially

those against vpr int f£-like functions. In fact, most fine-grained tools actually enable

successful attacks because they are inaccurate. We present a dynamic detection tool



called FormatDefense, which tries to detect out-of-bound access of arguments in a

format string function in order to prevent format string attacks.

1.4 Objective

We implement FormatDefense in the UNIX environment because format string

vulnerabilities appear more frequently in open source software [3] and we need to

analyze some information contained in the source code of a target program. The tool

intercepts every format string function and finds the function (e.g., foo) that holds

the argument list for the intercepted function. To determine the access bound,

FormatDefense uses the frame-pointer of the function foo less the size of its local

variable region as the bound. The intercepted format string function should not be

able to access arguments outside this bound; otherwise, it will be deemed an attack.

The main advantage of FormatDefense over other bound checking tools is that it is

capable of protecting the local variables above the variable-length argument list.

FormatDefense has the following features:

1. Full protection: FormatDefense can protect both printf-like and

vprint f£-like functions against format string attacks.

2. High accuracy: FormatDefense can prevent format string functions from

accessing arguments outside the argument list so that typical format string attacks



fail.

3. Light weight: The runtime overhead of FormatDefense is lower than that of

Lisbon, which provides the best protection for the Win32 platform.

1.5 Synopsis

In Section 2, we present a review of related work. We present our proposed

method, FormatDefense, in Section 3, and discuss its implementation in Section 4. A

detailed evaluation of FormatDefense is given in Section 5. Then, in Section 6, we

present some concluding remarks.



2. Related Work

A number of tools can protect printf-like functions against format string

attacks, but only a few provide protection for vprintf-like functions. Some tools

detect the non-static format string, while others specifically protect against attacks on

the format string with the $n specifier. Other tools resolve vulnerabilities by applying

bound checking methods.

2.1 Detection of a Non-static Format String

If a format string function is called with a static string, e.g., “hello %$s”, itis

immune to the format string- valnerability  because an attacker has no way of

controlling the format string. On'the other hand, if the format string is non-static, the

call to the format string function may be vulnerable.

PScan [12] and the GNU Compiler Collection (GCC) can warn programmers

about non-static format strings. PScan scans the C source code to search the call to the

printf-like function whose last argument is a non-static format string. GCC

provides a similar capability with a compiler flag, “~Wformat=2". These two tools

are effective in detecting the printf (fmt) vulnerability, but they generate a false

positive if an attacker cannot control the format string.

Rao [13] uses the following macro to check whether the format string is a



pointer:

#define printf (fmt, ...) \

((sizeof (fmt)==4) \

?incorrect_printf () :correct_printf())

The method can trigger a false positive when the size of a static format string is 4

bytes, e.g., printf (“abc”). In this case, the format string is mistaken as a pointer.

2.2 Protection of a Format String Containing a $n Specifier

The format string vulnerability:is particularly dangerous when the format string

contains a %n specifier, which can be used to overwrite the memory. Corrupting

important control data, e.g., the"GOT;, will very likely lead to a successful exploit.

Several tools can detect such vulnerabilities. For example, Libformat [14] intercepts

calls to print f-like functions and prevents them from using a potentially malicious

format string that is non-static and contains a $n specifier. Although the method is

effective in preventing format string attacks, it generates false positives for normal

format strings containing a $n specifier.

Libsafe [10] protects unsafe functions in the C library. It uses a black-list

approach to protect format string functions, i.e., the designated address of the $n

specifier cannot point to a return address or a frame pointer in the stack. In contrast,

10



Ringenburg and Grossman [15] propose a white-list approach that registers all valid

integers at runtime. If the designated address of the $n specifier does not point to the

valid integers, it is considered an attack.

FASTYV [16] checks whether a tainted format string contains a $n specifier by

using a dynamic taint technique to gather information about untrustworthy data. To

detect attacks, FASTV provides two policies, a default policy and a fine-grained

policy. The former deems that a tainted format string with a $n specifier is an attack,

whereas the latter examines an untainted format string further. If the format string

contains a $n specifier whose designated address points to a return address, a frame

pointer, a DTOR, or an entry in the GOT, it'is also-considered an attack. However,

FASTYV cannot protect other control-sensitive data [17] against a $n specifier attack.

2.3 Bound Checking Method

In contrast to the above-mentioned tools, which either generate many false

positives or do not prevent an attacker from viewing the program’s memory, the

bound checking approach tries to detect all kinds of format string attacks at runtime.

Essentially, this approach defines a line of defense in the stack. If ARGPTR accesses

arguments beyond this line, it is considered a format string attack. There is some prior

work on keeping the conversion specifiers from accessing superfluous arguments. We

11



review three types of defense lines considered in the literature and compare their

accuracy.

2.3.1 The Saved Frame Pointer as the Defense Line (line-Sfp)

In addition to verifying the safety of the $n specifier, it is claimed that Libsafe

2.0 [18] checks whether the argument list is contained within the same stack frame to

avoid accessing arguments exceeding the current stack frame. However, we cannot

find the related implementation in the source package.

Kimchi [11] is a binary-rewriting tool that.protects format string functions. It

uses the stack frame address of the parent function-as the bound for printf-like

functions and defines the stack frame depth as an offset relative to the stack frame of

the parent function. If a program uses the frame pointer, the depth of the stack frame

is calculated from the frame pointer and the stack pointer; otherwise, it is calculated

via static analysis of the change in the stack pointer. Kimchi implements a

safe_printf function that replaces the printf call. The depth of the stack frame

is passed to safe_printf to verify whether the format string is safe. If the string is

deemed safe, the tool calls the real print f; otherwise, it is defined as an attack.

The major drawback of using line-Sfp as the defense line is that it cannot protect

the local variables below the saved frame pointer. If an attacker can control those

12



local variables, an exploit is possible.

2.3.2 The Format String as the Defense Line (line-Fmt)

Unlike tools that protect against format string bugs, the tool developed by

Ganapathy et al. [19] analyzes whether a printf call is exploitable by considering

the relationship among ARGPTR, FMTPTR, and the length of the format string. If

ARGPTR can reach the beginning of the format string before FMTPTR reaches the

end of the same string, then an exploit is possible. Thus the beginning of the format

string can be used as the defense line to thwart exploits.

The limitation of this approach is that it-Cannot discover exploits when ARGPTR

reaches other variables controlled by the attacker before it reaches the format string.

In addition, the method cannot resolve cases where the format string is stored in the

heap or other areas below the stack.

2.3.3 The Argument List as the Defense Line (line-Arg)

FormatGuard [9] is a modified implementation of glibc that checks whether the

number of arguments specified by the format string matches the number of actual

arguments passed to a print f-like function, and uses a macro production to provide

a safe wrapper to obtain the number of arguments required by the format string. When

13



the number of actual arguments is less than the number of arguments specified by the

format string, it is considered a format string attack. In other words, FormatGuard

attempts to discover a bound that prevents print £ from accessing arguments beyond

the region of actual arguments. Nevertheless, if a program calls printf indirectly

via a function pointer, FormatGuard cannot protect printf because it does not

trigger a safely wrapped printf to expand the macro.

Lisbon [20] is a Win32 binary-rewriting tool used to detect whether a format

string function accesses arguments outside the argument list. For print f-like and

vprint f-like functions, Lisbon attempts to recognize the argument list and insert a

“canary” above the list as a sentinel. For argument-list bound checking, the tool

provides a wrapper, called stub®wrapper, which duplicates the original arguments,

puts the canary above the argument list, and then calls the format string function. If

the canary, which is monitored by the debug register, is accessed at runtime, it is

regarded as an argument list bound violation.

14



high address

user_fmt

void foo( char *user_fmt ) { return address

char fmt[ 8 1; o saved frame ptr

= = = line-Sfp

strcpy( fmt, user_fmt ); -- = = = line-Fmt
var

printf( fmt, 1, 2 ); = — = line-Arg

return address

saved frame ptr

low address

Figure 3: Illustration of the three types of defense lines

2.3.4 The Accuracy of the Defense Lines

The effectiveness of the bound checking method depends on whether the defense

line is accurate. The closer the defense-line“is to the end of the argument list

downward, the better the defense line will be, because ARGPTR advances toward

higher addresses in the stack. If the defense line is not close to the end of the

argument list, the gap between the line and the end of the list becomes an attack space;

the defense line cannot protect the variables in that space. Hence if an attacker can

control any variable in the space, he can launch the type of attack described in Section

1.2.1.

In Figure 3, we present a typical scenario to illustrate the attack spaces defined

by the above three defense lines. The function foo takes a user-supplied format string

15



and copies it into the array fmt. Then, printf is called with a format string fmt, an

integer 1, and an integer 2. In this example, line-Arg is the best of the three defense

lines because it allows the smallest attack space.

2.4 Comparison

Table 2 describes detailed comparisons between FormatDefense and other bound

checking tools. Even though several tools have been developed for handling the

format string vulnerabilities, few of them provide protection for vprintf-like

functions. FormatGuard and Kimchi are unable to count the variable argument list

that is dynamically constructed.-Some tools are format string content-based protection,

e.g., Libformat and FASTV. They deal*with the format string with %n specifiers, but

they have no concern with the problem of accessing extra arguments by

vprint f-like functions. For vpr int f-like functions, Libsafe performs two checks,

9on specifiers and the range of the argument list. In spite of checking the argument list,

it incurs false negatives because of the lower accuracy of the defense line method.

Besides, a program may store the address of a format string function in a function

pointer variable, and then call the format string function later. FormatDefense is able

to protect such format string function calls because of the interception of vulnerable

functions.

16



For Lisbon, it assumes that the variadic function never skips any argument in its

argument list. In other words, the variadic function does not allow itself to access one

of arguments directly. If there is a varadic function that can skip any argument in its

argument list, FormatDefense can prevent this kind of attack.

Table 2: Comparisons between FormatDefense and other bound-checking tools

Tool
Feature Kimchi | Libsafe | FormatGuard | Lisbon | FormatDefense
protection of vprintf-like functions Y Y* Y
indirect calls Y Y
no false positives Y Y Y Y
prevention of read attacks Y ¥ Y Y Y
protection of current stack frame Y Y Y Y
availability of ‘%n’ specifiers Y Y Y Y
read-only format string support Y Y Y

Y*: depend on the precision of the heuristic Y**: cannot find the related implementation
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3. Method

FormatDefense adopts the bound checking approach to protect both

printf-like and vprint f-like functions. Based on the comparison of the defense

lines shown in Figure 3, FormatDefense uses line-Arg as the bound, similar to the

FormatGuard approach. However, unlike FormatGuard, which works for

printf-like functions, but not vprintf-like functions, our proposed approach

employs a novel means for finding line-Arg.

To determine a stack’s defense line, one can traverse the stack in either the

upward or the downward direction: FormatGuard uses the upward approach to

calculate how many arguments-a format string function accepts. However, it cannot

calculate the number of arguments in"vprint f<hike functions because they take a

va_list pointer to the real arguments passed through many layers of wrapper

functions. FormatDefense follows the downward direction to locate the local variable

region of the stack frame that holds the argument list. Although FormatDefense does

not know the actual number of arguments passed to the format string function, it can

still set the correct bound.
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3.1 Stack Walking

We first perform stack walking to find the target function, i.e., the function that

accepts the real argument list. When a print f-like function is called, the function

itself is the target function (e.g., the print £ function in Figure 4). On the other hand,

when a vprintf-like function is called, the target function is one of its wrapper

functions (e.g., the vprintf_wrapper function in Figure 5), because the argument

list is not directly next to the stack frame of the format string function. In a typical

stack layout of a program without optimization, every stack frame is identified by a

frame pointer that points upward to:the previous.stack frame. Therefore, we need to

perform the frame pointer backtrace operation repeatedly until we find the target

function.
high address
return address
void foo() { saved frame ptr
int var = 5; size of local N %ebp (.,
printf( "%d", var ); variables to foo I - - v:r = = = line-Arg
}

ARGP[IR
FMTPTR > %d

return address

A

4(%ebp primf)

saved frame ptr
%ebp printf

A

local variables
toprintf

low address

Figure 4: Determining line-Arg for print £-like functions
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high address

return address
void foo() { 15
i = 5; saved frame ptr
int ver Si vo am size of local Joebp (.,
vprintf_wrapper ( "%d", var ); variables to foo _/ var i
} 5 ine-Arg
ARGHTR—»
o FMTPTR - %d
void vprintf_wrapper ( char *fmt, .. ) { : return address
va_list ap; '\\ \\ saved frame ptr 4(%ebD \yini wrapper)
va_start ( apy fmt ) i \\\ > « %ebp vprintf_wrapper
vprintf ( fmt, ap ); A ap
va_end( ap ); ) ap
} fmt - %d
return address
saved frame ptr -
< o€ .
local variables P vprinet
to vprintf

low address

Figure 5: Determining line-Arg for vpr int f£-like functions

3.2 Determining Line-Arg and Detecting Attacks

After locating the target function, we use its return address to find its parent

function, which holds the real argument list (€.g., the function foo in Figure 4 and

Figure 5). Then, we can determine line-Arg by using the frame pointer and the size of

the local variable region of the function foo.

We can use the debugging symbols of the target program to obtain the size of the

local variable region of each function. By subtracting the size of the local variable

region from foo’s frame pointer, we can derive line-Arg, which defines the bound for

accessing arguments by format string functions. If the intercepted format string

function accesses arguments outside line-Arg, the event is considered an attack.
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3.3 Examples for Illustrating How to Find Line-Arg

In this section, we provide two examples, calls to printf and vprintf, and

illustrate how to find line-Arg.

The mechanism of finding line-Arg for print f£-like functions is illustrated by

the example as shown in Figure 4. In the function foo, a local variable var of type

int is declared and initialized to 5. Next, printf is then called with a format string,

“%d”, and the variable var with value 5 as its arguments. We can refer to 4(%ebp printr)

as the return address of printf and recognizes the function which holds the actual

argument list for printf, i.e., the function f£oo. FormatDefense uses the size of

local variable region of £oo and %ebp oo to.figure out line-Arg.

The process of finding “line-Arg for vprintf-like functions is more

complicated than print f£-like ones due to the different kinds of input arguments. In

Figure 5, we show an example involving a vprintf function and its mechanism to

find line-Arg. In this example, vprint f accepts an object of type va_11ist, which

points to a variable-length argument list. The object is initialized by the macro

va_start which adjusts ARGPTR to point to the first argument in the argument list.

In addition, the object of type va_list can be passed among several layers of

wrapper functions. Therefore, the argument list is not adjacent to the stack frame of

the intercepted format string function. Consider the code segment in Figure 5, the
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2

function foo passes a format string, “$d”, and the variable var with value 5 to
vprintf_wrapper. The function vprintf_wrapper declares a local object ap
of type va_list, which is prepared for the argument list of vprintf. After
invoking the macro va_start to initialize ap for use, vprintf is called with ap
as one of its arguments. Now ARGPTR is equivalent to ap.

We traverse the frame pointer, %ebp, until we find the stack frame of foo where
ARGPTR points to, in order to locate a certain frame pointer that points to a higher
address than ARGPTR. The procedure proceeds as follows. As shown in Figure 5, we
refer to %0ebp ypringt to Tealize wherei%ebp printt_wipper poOiNts to, and then we compare
the location where %ebp printt whapper POINts to with the location where ARGPTR
points to. Because the address is not higher than AARGPTR, the process continues.
Finally, we compare the location where %ebp main points to with the location where
ARGPTR points to and the former is higher than the latter. Subsequently, we use the
return address of vprintf_ wrapper through 4(%ebp vprintf wrapper) t0 find the

function foo which holds the actual argument list, the integer with value 5, and to

determine line-Arg similar to the procedure for print f£-like functions.
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3.4 An Algorithm for Detecting Attacks

We summarize the above-mentioned process in the DETECT_ATTACK

algorithm shown in Figure 6. For input, the algorithm takes the frame pointer of a

format string function, represented as framePtr, as well as the format string

format and the ap of type va_list. The while loop in lines 1-2 traverses the

frame pointers in the stack by comparing them with the ap until the location that the

dereferenced framePtr points to is higher than the ap. Then, we obtain the frame

pointer that indicates the stack frame that the ap points to. Line 3 takes the return

address of the function that prepares the argument list that the ap points to. In line 4,

the algorithm uses the return address to query the reference table about the size of the

local variable region. Line 5 calculates the address of line-Arg. Line 6 determines

how many bytes the ap will advance according to the format string. Line 7 obtains

the final address of the ap. Line 8 then checks whether the address is higher than

line-Arg. If it is higher, the function LOG_ATTACK is called in line 9 to log the

attack. Then, in line 10, DETECT_ATTACK returns TRUE to indicate that an attack

has been detected.
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DETECT_ATTACK( framePtr, format, ap )

1 while *framePtr < ap

2 do framePtr <— *( framePtr )

3 returnAddress <— *( framePtr + 1)

4 sizeOfLocalVars < QUERY-LOCAL-SIZE( returnAddress )
5 addressOfLine-Arg < framePtr — sizeOflLocalVars
6 sizeOfArgs <— PARSE( format )

7 final ARGPTR < ap + sizeOfArgs

8 if final ARGPTR > addressOfLine-Arg

9 then LOG_ATTACK()

10 return TRUE

11 return FALSE

Figure 6: The DETECT_ATTACK algorithm
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4. Implementation
We now present the architecture of FormatDefense and explain how we obtain
the required debugging information, i.e., relevant information regarding the size of the

local variable region. We also consider the optimization for the static format string.

4.1 The Architecture of FormatDefense

The architecture of FormatDefense is illustrated in Figure 7. Given a target
program, we use GCC with the —g flag to compile the program and then use
dwarfdump to extract the debugging informationfrom the executable file. In addition,
we implement FormatDefense -as'a shared library, formatDefense.so, and use
the LD_PRELOAD mechanism to intercept format string functions. After a program
has been loaded, FormatDefense uses the debugging information to create a reference
table.

When a format string function is called, it is intercepted with a corresponding
wrapper function. Subsequently, FormatDefense uses the DETECT_ATTACK
algorithm to identify format string attacks. If a format string function is suspected of
accessing an argument beyond line-Arg, the function LOG-ATTACK will be

triggered.
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Figure 7: The architecture of FormatDefense

4.2 Obtaining the Debugging Information

As mentioned earlier, FormatDefenseneeds to determine the size of the local

variable region of the function that holds the actual argument list. We use dwarfdump

to dump the debugging information contained in the target program’s executable file.

The dwarfdump tool dumps the various elements of DWARF debugging information

in ELF object files. DWAREF is a debugging format to support source level debugging.

It defines the format for the information generated by compilers, assemblers and

linkage editors including the information content of the debugging entries and the way

the debugging information is encoded and represented in an object file. For each

program, the DWARF description is a tree structure with nodes which represent types,
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variables, or functions. It is a brief representation because only the information which

is required to characterize a viewpoint of a program is contained. In DWARF, the

basic descriptive element is the Debugging Information Entry (DIE). A DIE has a tag

which indicates what the DIE describes and a list of attributes which further describes

the element.

Figure 8 shows a sample program and its corresponding DWARF description

[21]. The attributes, DW_AT _low_pc and DW_AT _high_pc, indicate the range of code

addresses for main. Variables varl and var?2 are at offset -20 and -16 relative to

the stack frame of main, respectively. By subtracting the size of the return address

and the saved frame pointer from/the absolute value of the largest offset, we obtain

the size of the local variable région.“We then parse the output of dwarfdump and

create a reference table, as shown in Table 3.

<I>< 297> DW_TAG_subprogram

DW_AT_name main
ma i n . C ......
. . DW_AT low_pc 0x8048354
int main() { DW_AT_high_pc 0x804838f

int varl, var2; | e
<2>< 322> DW_TAG_variable

printf( “%d%d”, 1, 2 ); DW_AT_name varl
return O0O; e
DW_AT location DW_OP_fbreg -20
} <2>< 334> DW_TAG_variable
DW_AT_name var2
DW_AT location DW_OP_fbreg -16

Figure 8: The DWAREF description for main.c
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Table 3: The reference table for main.c

function name

low_pc

high_pc

size of local variable region (byte)

main

0x8048354

0x804838f

12

4.3 Skipping Read-only Format Strings

If a format string is static (i.e., it resides in the read-only section), an attacker

cannot control it and no attack is possible. Therefore, we adopt the optimization

process proposed in [11, 15] to avoid bound checking for static format strings. In

FormatDefense, if FMTPTR points to the .rodata section, the intercepted function is

immune to attacks, and we can call the real format string function directly without

checking further.
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5. Effectiveness and Performance Evaluation

In Section 5.1, we consider six possible scenarios of format string locations to

evaluate the effectiveness of our line-Arg bound. There are three types of defense

lines. We compare line-Arg, which is used by FormatDefense, with line-Sfp and

line-Fmt. In the six scenarios, only the following three kinds of address relationship

hold: (1) Arg < Fmt < Sfp for Scenarios 1 and 2, (2) Arg < Sfp < Fmt for Scenarios 3

and 4, and (3) Fmt < Arg < Sfp for Scenarios 5 and 6. In Section 5.2, we consider

programs with known format string vulnerabilities to compare the attack space

between the three defense lines. In Section 5.3; we evaluate the performance overhead.

Some evaluation discussions are given in Section 5.4.

5.1 All Possible Scenarios

Scenario 1: The caller of the pr int f-like function contains the format string.

In this case, line-Fmt sits between line-Arg and line-Sfp. Figure 9 shows an

example where the user provides “$d$d%d” as the input user_fmt. ARGPTR can

access the local variable var when FMTPTR meets the third $d specifier. As shown

in the figure, line-Fmt cannot protect var and line-Sfp cannot protect either var or

fmt. Both variables open an attack space, hence an exploit is possible if an attacker

controls these variables.
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high address

user_fmt

return address

void Scenariol( char *user_fmt ) { saved frame ptr

- = = = line-Sfp
char fmt[ 8 ];
int wvar; fmt[ 8]
strcpy ( fmt, user_fmt ); ARGPTR— = = = — — = line-Fmt
: . var
printf( fmt, 1, 2 ); _ L & - oC line-Arg
...... 2 & %d
} 1 T %d
&fmt

return address

saved frame ptr

low address

Figure 9: Arg < Fmt < Sfp for printf

Scenario 2: The format string and real argument list of the vprint f-like function

reside in the same stack frame.

This case is similar to Scenario. 1,-but the- function is vprint f-like. Figure 10

shows an example where the argument list for vprint £ is composed of two integers:

1 and 2. If the pointer user_fmt is “$d%d%$d”, ARGPTR will access an argument

outside the region of the argument list; that is, it will access the local variable var.

The consequence is the same as that of Scenario 1.
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high address

user_fmt

return address

saved frame ptr

void Scenario2( char *user_fmt ) { - = = = line-Sfp
char fmt[ 8 ]; fmt[ 8 |
int var; ARGPTR—> — — =, - — — line-Fmt
strcpy( fmt, user_fmt ); var A %
vprintf_wrapper( fmt, 1, 2 ); =7 > _ 0_ line-Arg
1 Y %d
&fmt
void vprintf_wrapper ( char *fmt, .. ) { return address
va_list ap; saved frame ptr
va_start( ap, fmt );
vprintf ( fmt, ap ); ap
va_end( ap ); ap
} &fmt

return address

saved frame ptr

Figure 10: Arg < Fmt < Sfp for vprintf

low address

Scenario 3: One of the ancestors jof the printf-like function in the call chain

contains the format string.

In this case, line-Sfp sits between line-Arg and line-Fmt. Figure 11 shows an

example, where the content of fmt is “$d%d%d.” ARGPTR can access the local

variable var when FMTPTR is at the third $d specifier. The figure shows that

line-Sfp cannot protect var and line-Fmt allows an even wider attack space.
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void Scenario3(

int wvar;
printf (

fmt,

1,

2

char *fmt

)i

{
ARGPTR—

high address

fmt[ ]
= — = line-Fmt
&fmt
return address
saved frame ptr
— — = line-Sfp
var 4 %d
v — = line-Arg
2 A %d
1 T %d
&fmt

return address

saved frame ptr

Figure 11: Arg < Sfp < Fmt for printf

low address

Scenario 4: The format string and real argument list of the vprint f-like function

reside in different stack frames.

As this case is similar to“Scenatrio 3, WesShow a vprintf-like version of

Scenario 3 in Figure 12. When the content of fmt is

‘G%

d%d%d”, the last argument

accessed by ARGPTR is the local variable var. The analysis follows that for

Scenario 3.

32



high address

fmt[ ]
-- = — = line-Fmt
&fmt
return address
void Scenario4( char *fmt ) { ARGPTR - - saved ;fllzme P - line-Sfp
igziz?;;wrapper( fmt, 1, 2 ); N\ 2 _%_d line-Arg
} 1 " %d
&fmt
void vprintf_wrapper ( char *fmt, .. ) { return address

va_list ap;

saved frame ptr
va_start ( ap, fmt );

vprintf ( fmt, ap ); ap
va_end( ap ); ap
} &fmt

return address

saved frame ptr

low address

Figure 12: Arg <Sfp < Fmt.for ¢printf

Scenarios S: The format string-of the print £ function is stored in the Block Started

by Symbol (BSS) segment, the data segment, or the heap.

In this case, line-Arg sits between line-Sfp and line-Fmt. Figure 13 shows an

example where the input user_fmt, “$d$d%d”, is copied into the static array fmt

located in the BSS segment. ARGPTR never reaches the format string itself because

the BSS segment is below the stack segment and ARGPTR moves towards higher

addresses in the memory. In this scenario, line-Fmt fails completely. Thus an exploit

is possible if an attacker can control the variables in the space between var and the

environment variables.
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high address

user_fmt

void Scenario5( char *user_fmt ) {

return address

saved frame ptr

static char fmt[ 8 ]; ARGPTR— — — — = = line-Sfp
int var; - e — = Ine-Arg
strcpy ( fmt, user_fmt ); 2 %d
printf( fmt, 1, 2 ); ) " opd
)
&fmt
return address
saved frame ptr
fmt[ 8 |
BSS
- = = = line-Fmt

Figure 13: Fmt < Arg < Sfp for printf

low address

Scenarios 6: The format string' of|the vyprintE: function is stored in the Block

Started by Symbol (BSS) segment, the data segment, or the heap.

As this case is similar to Scenario;5; " we show a vprintf-like version of

Scenario 5 in Figure 14. ARGPTR also never reaches the format string itself, so

line-Fmt fails completely. The consequence is the same as that of Scenario 5.
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high address

user_fmt

return address

void Scerliario6 ( char *user_fmt ) { saved frame ptr
static char fmt[ 8 ]; e — — — line-Sfp
int var; ARGPTR ——— ar "."J‘:— - line-Arg
strcpy( fmt, user_fmt ); 2 %
} vprintf_wrapper( fmt, 1, 2 ); 1 %d
&fmt
void vprintf_wrapper( char *fmt, .. ) { return address
va_list ap; saved frame ptr
va_start( ap, fmt ); ap
vprintf ( fmt, ap );
va_end( ap ); ap
} &fmt

return address

saved frame ptr

low address

- = = = line-Fmt

Figure 14: Fmt < Arg < Sfp forvprintf

Table 4 compares the different detéction tools nsed in the above six scenarios.
The detection level of each tool is rated from good to bad and denoted by A, B, or C.
The tools are ranked in decreasing order; e.g., a tool rated A can detect all the attacks
that can be detected by the tools rated C, but the latter cannot detect all the attacks
detected by the tools rated A. Kimchi and Libsafe 2.0 use line-Sfp as the defense line
and cannot protect the local variables between line-Arg and line-Sfp. The defense line
line-Fmt provides better protection in Scenarios 1 and 2, but fails when the format
string does not reside in the stack. The major weakness of FormatGuard is that it
cannot handle vprintf-like functions. The only drawback of Lisbon is that it

searches for the macro “va_start (ap, fmt)” as a heuristic to recognize the

35



function where the object va_1ist is created, hence it may generate false negatives

for protecting vpr int f£-like functions.

Table 4: Comparisons of various detection tools in the six scenarios

Tool
Scenario | Kimchi | Libsafe | Line-Fmt | FormatGuard | Lisbon | FormatDefense
1 C C B A A A
2 C B X A* A
3 B B C A A A
4 B B C X A* A
5 B B X A A A
6 B B X A A A

A-C: the level of detection; A*: depend on the precision of the heuristic; X: not detected

5.2 Effectiveness of FormatDefense’s Protection against Known Format String

Attacks

To evaluate FormatDefense, we use the" following programs, which are all

susceptible to known format string attacks: Splitvt-1.6.4 [22], Pfinger-0.7.5 [23], and

Tcpflow-0.20 [24]. Splitvt-1.6.4 is a VT100 window splitter that is susceptible to a

format string attack when a malicious format string is passed to sprintf via the

“—rcfile” command line flag. Pfinger-0.7.5 is a daemon for the standard finger

protocol. It contains a format string vulnerability that can be exploited by a malicious

format string in a .plan file passed to printf. Tcpflow-0.20 is a network

debugging tool that is susceptible to a format string attack when it opens an undefined

device that triggers the error message passed to vfprintf. The vulnerabilities of
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these programs belong to Scenario 5 and Scenario 6, in which relationship Fmt < Arg

< Sfp holds. Figure 15 shows the vulnerable code segments in above programs.

Splitvt-1.6.4
char *startupfile = “%s/.splitvtrc"; //store in the data segment
char *rcfile_buf;

void splitvtrc() {

sprintf ( rcfile_buf, startupfile, home );
puts( rcfile_buf );

Pfinger-0.7.5
void DoFingerl( char *hostname, char *query ) {
static char buf[ 80*20 + 1 ]; //store in the BSS segment

while( read( s, buf, 80*20 ) > 0 ) {
buf[ 80*20 1 = “\0';
printf( buf );

}

Tcpflow-0.20
char error|[ PCAP_ERRBUF_SIZE ]; //store in the BSS segment

void print_debug_message( char *fmt, va_list ap ) {

viprintf ( stderr, fmt, ap );

Figure 15: The vulnerable code segments of Splitvt, Pfinger, and Tcpflow

FormatDefense succeeds in detecting attacks that try to exploit the vulnerability

of each type of software. Furthermore, as shown in Table 5 and Table 6, line-Arg

minimizes the possibility of format string attacks. The two tables detail the range

between the end of the argument list and each type of defense line in Linux and BSD

platforms, i.e., the attack space. Clearly, line-Arg yields the smallest attack space

among the three defense lines. In addition, the attack space in BSD platform is smaller

than the one in Linux platform because the ways of code generation across platforms
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are different. The attack space of line-Arg in BSD platform is zero-byte in particular.

It means that FormatDefense can find the exact defense line in BSD platform.

Table 5: The attack space in Linux platform

Attack Space Software
(word) Splitvt-1.6.4 Pfinger-0.7.5 Tcpflow-0.20
Line-Arg 12 6 7
Line-Sfp 6484 10 20
Line-Fmt 8629 52 22
Table 6: The attack space in BSD platform
Attack Space Software
(word) Splitvt-1.6.4 Pfinger-0.7.5 Tcpflow-0.20
Line-Arg 0 0 0
Line-Sfp 1089 4 8
Line-Fmt 1394 46 10

5.3 Performance Benchmark

5.3.1 Microbenchmarks

To evaluate the performance overhead of FormatDefense, we apply a series of

microbenchmark programs with a loop involving one format string function call, as

shown in Figure 16(a) for pr int f-like functions and Figure 16(b) for vprint f-like

functions. The programs compiled with GCC 4.1.2 were run on a 1.86 GHz Intel Core

2 with 1.5GB of RAM. We ran each microbenchmark program twice in single-user

mode, with and without FormatDefense. The performance overheads of the other

tools were obtained from the literature. Table 7 shows the performance of
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FormatGuard, White-listing, Lisbon, FormatDefense, and Optimized-FormatDefense
on the six microbenchmarks. The overhead of the “sprintf with no specifiers”
program is 0% for FormatDefense because the sprintf is compiled into a series of
“mov” instructions for optimization. However, because FormatGuard and
White-listing use a wrapper for sprintf, GCC cannot apply the above optimization.
Lisbon performs poorly because it needs to make a system call to set the debug

registers. The static-string optimization in FormatDefense outperforms that of each

benchmark.
int main() {
vsprintf_wrapper( "abcdef%d%d", 1, 2 );
. . return 0;
int main() { }
int i; . .
void vsprintf_wrapper ( const char *fmt, .. ) {
char buf[ 32 ]; . .
va_list ap;

for( i = 0; i < 10000000; i++ ) va start( ap, fmt );
sprintf ( buf, "abcdef%d%d", 1, 2 ); int i ! !
;

} return 0; char buf[ 32 1;
for( i = 0; 1 < 10000000; i++ )
vsprintf ( buf, fmt, ap );

(a) (b)

Figure 16: Microbenchmark programs

Table 7: Performance Overhead of Applying Different Detection Tools on the Microbenchmarks

Benchmark FormatGuard | White-listing Lisbon FormatDefense Optimized-
FormatDefense

sprintf with no specifiers 7.5% 10.2% 217.7% 0% 0%
sprintf with 2 %d specifiers 20.9% 28.6% 67.9% 64.7% 0.63%
sprintf with 2 %n specifiers 38.1% 60.0% 142.3% 95% 1.3%

vsprintf with no specifiers cannot handle 26.4% 223.4% 68.2% 3.6%
vsprintf with 2 %d specifiers | cannot handle 39.8% 63.2% 69.1% 1.2%
vsprintf with 2 %n specifiers | cannot handle 74.7% 154.7% 100% 2.4%
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5.3.2 Macrobenchmarks

The machine employed for macrobenchmarks is the same as that used for

microbenchmarks. The performance overhead for FormatDefense is measured without

read-only string optimization. We use Man2html-1.6, Pfinger-0.7.5 and Splitvt-1.6.4

to evaluate the performance of FormatDefense. Man2html is a print f-intensive

software that converts UNIX man page files to HTML web pages. We ran Man2html

79 times to translate a 596 KB man page file. For Pfinger, we fingered a user

whose .plan file was 9784 KB. In addition, we tested Splitvt by executing the shell

command “ls -1" in each splitiwindow 100. times. As shown in Table 8, the

overhead of FormatDefense is-so low that-it is negligible, even without read-only

string optimization.

Table 8: FormatDefense’s overhead on the macrobenchmarks

Software Latency Penalty
Man2html-1.6 0.91%
Pfinger-0.7.5 0.7%
Splitvt-1.6.4 0.6%

5.4 Evaluation Discussion

Stack alignment and the implications of sibling functions generate unused spaces

in the stack for Linux platform. In this section, we show that such spaces are not

critical to FormatDefense because it tries to protect the local variables behind the
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argument list, and attackers find it hard to control unused spaces. Moreover, we

discuss the attack space of line-Fmt in Fmt < Arg < Sfp relationship.

5.4.1 Stack Alignment

The stack layout of a program complied by the current GCC in Linux platform is
shown in Figure 17. (Note that it is different from the layout in Figure 4.) GCC 4.1.2
enforces two kinds of stack alignments [25], thereby causing us to find an
approximate line-Arg, not a precise one, as shown in Figure 17. The unused space
between the local variable region of a function and the arguments of its callee results

from the codes generated by GCC 4.1.2.

high address
return address
saved frame ptr
size of local I
. . var
void foo() { variables to foo - — — — approximate line-Arg
int var = 5;
printf( "sd", i ); N
| - . = = = precise line-Arg

FMTPTR > %d

return address

saved frame ptr

local variables
toprintf

low address
Figure 17: Stack alignment of the current GCC
In the first kind of stack alignment enforced by GCC, the stack is aligned at the
program entry point, as exemplified by the assembly code for main shown in Figure

18. At <main+4>, the program adjusts the stack pointer to 16-alignment by default to
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ensure that the stack at the program entry point, i.e., at main, is aligned. Under the

second kind of stack alignment, the stack frame size of each non-leaf function is

aligned, as exemplified by the assembly code for the function foo shown in Figure

19. At <foo+3>, the program allocates enough space for the local variables of foo

and the arguments passed to printf to ensure that the stack frame size of the

non-leaf function, i.e., the function foo, is aligned.

<main+0>:
int main() { <main+4>:
int a = 2; <main+7>:
foo( a ); <main+10>:
return 0; <main+11>:
}
void foo( int b ) { <main+17>:
char bufl 4 1; <main+24>:
printf( "%d", b );
} <main+42>: ret
End of assembler dump.

Dump of assembler code for function main:
lea 0x4(%esp), % ecx

and  $Oxfffffff0, % esp
pushl Oxfffffffc(%ecx)

push %ebp

mov  %esp,%ebp

movl $0x2,(%esp)
call 0x8048354 <foo>

high address

>‘—%esp 0xbf84025¢

return address

“—%esp 0xbf840250

saved frame ptr

low address

Figure 18: Assembly code for the function main

<foo+0>:
<foo+1>:
<foo+3>:
<foo+6>:
<f00+9>:
<foo+13>:
<foo+20>:
<foo+25>:
<f00+26>:

Dump of assembler code for function foo:

push %ebp

mov  %esp,%ebp

sub  $0x18,%esp

mov  0x8(%ebp),%eax

mov  %eax,0x4(%esp)

movl $0x804846¢,(%esp)
call 0x8048290 <printf@plt>
leave

ret

End of assembler dump.

Figure 19: Assembly code for the function foo

return address

saved frame ptr

buf[ 4 ]

0x20

FMTPTR

high address

<+— %esp 0xbf840248

0x18

%d
<+— %esp 0xbf840230
low address

However, the compiler flag “—mpreferred-stack-boundary=num” in

GCC keeps the stack boundary aligned to a 2 raised to num byte boundary. In other
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words, the stack frame size of non-leaf functions is aligned. The default is 4

(16-alignment), unless otherwise specified. Consequently, FormatDefense uses the

“—mpreferred-stack-boundary=2" flag to avoid creating unused spaces. If

there are no unused spaces, we can find the precise line-Arg, as shown in Figure 4.

5.4.2 Interaction between Sibling Functions

If the format string function has sibling functions in Linux platform, there may

be unused spaces. For example, main calls two functions, sibling_func and

printf; the former accepts more arguments than the latter, as shown in Figure 20.

As noted in Section 5.4.1, a function should immediately allocate enough space for its

local variables and the argumerits of “all the callees. Hence the amount of space is

determined by the callee with the most arguments, i.e., the function sibling_func

in this case. Therefore, main allocates the exact amount of space for its local

variables and the arguments passed to sibling_func, as shown in Figure 20(a).

When printf is called after sibling_func returns, FormatDefense obtains

the calculated line-Arg instead of the real line, as shown in Figure 20(b). Even so, the

unused space is not a critical issue for FormatDefense unless an attacker can control

the arguments passed to sibling_func. FormatDefense thus makes it more

difficult for attackers to implement successful format string attacks.
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int main() {
int aj;
a = sibling_func( 1, 2, 3 );
printf( “%d%d”, a );
return 0;

int sibling_func( int nl, int n2, int n3 ) {
return nl + n2 + n3;

high address high address
return address return address
saved frame ptr saved frame ptr
size of local I <+— Pesp 0xbff88938 <+— %esp 0xbff88938
. ; a a
variables tomain 3 - - 3 = = = calculated line-Arg
0x10 0x10 —(~ — = = = real line-Arg
2 6
1 FMTPTR - %d%d
<+— %esp 0xbff88928 <+— %esp 0xbff88928
low address low address

() (®)

Figure 20: A format string function with sibling functions

5.4.3 Attack Space of Line-Fmt in'Fmt < Arg < Sfp Relationship

In previous section, we define ‘an attack space as the gap between the defense line

and the end of the argument list. In"addition, /ARGPTR advances toward higher

addresses in the stack. However, in Scenarios 5, 6 of Section 5.1, line-Fmt is under

the stack, namely, under ARGPTR. In this situation, the attack space is defined

specifically.

Figure 21 shows the detailed view of a program’s stack layout [26]. There is a

block of zero-filled padding whose size is determined randomly, so the locations of

parameters of the function main and environment variables are not guessed easily in

the stack. We consider that attackers are hard to control those data in this way.

Therefore, we define the upper bound of the attack space in Scenarios 5, 6 of Section
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5.1 as the program entry point as shown in Figure 22.

low address

argc

Parameters to main argv

envp

envp points to the first

pointer in the array of runtime data

env pointers arg pointers |,
\
/| envpointers |
/
7 \
. . \
env pointers array ,/ ELF interpreter '
contains pointers to info !
1 1
each of the null ' . /
. \ padding Y’
terminated . R
. . \ .
environment strings arg strings ~ f

¥ env strings

€X€ name

4 byte null

argv points to the first
pointer in the array of
arg pointers

arg pointers array
contains pointers to
each of the null
terminated arg strings

high address

Figure 21: Detailed view.of a program’s stack layout

high address

argv

argc

Program entry point—»
return address

saved frame ptr

ARGPTR—

argument list

return address

saved frame ptr

= = = line-Fmt

low address

Figure 22: The attack space in Scenarios 5,6 of Section 5.1
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6. Conclusion

In this thesis, we propose an approach called FormatDefense to prevent format

string attacks at runtime. At first, FormatDefense can locate the stack frame that holds

the argument list via tracking the stack. Then, FormatDefense can determine the

access bound, line-Arg, for format string functions by analyzing the debugging

symbols. If a format string function accesses arguments outside line-Arg, it is

considered an attack. We evaluate FormatDefense on six possible scenarios and real

programs vulnerable to known format string attacks to prove its effectiveness by

comparing with other tools and: measuringthe attack space. In conclusion,

FormatDefense is able to detect'all format string exploits and provides the most

accurate approach of avoiding'-format string -attacks. Therefore, FormatDefense

becomes a practical tool for preventing format string attacks due to high accuracy,

low overhead and easy deployment.
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