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摘要 

 

        為了避免發生格式化字串弱點所引起的問題，相關字串處理函式的行為必須

有所規範，不應有超越界限存取參數的行為。若攻擊者有能力控制格式化字串函

式的字串參數，便能利用此弱點，提供超出參數數量的轉換符號，進行不同型態

的攻擊。 

在本論文中，我們提出一個對 printf與 vprintf系列函式的偵測攻擊方

法，發展一檢查函式存取參數是否超出界限的工具，稱為 FormatDefense。此工

具對格式化字串函式進行完整保護，藉由在記憶體上定義防禦線的方式，判斷此

型態函式存取參數的合法性；若存取參數超越此防禦線則視為攻擊行為。我們將

此方法實作在 UNIX 環境下，建立一個共享函式庫，並分析除錯資訊與追蹤堆疊

變化，取得函式存取參數的界限，當程式執行時，只要連結此函式庫，便能保護

格式化字串函式的運作。 

        我們考慮格式化字串儲存位置的變化，共歸納出六種可能的情境，評估偵測

方法的有效性。實驗結果顯示，此工具皆能成功偵測到所有情境中的違法存取行

為，且超越其他現存的偵測工具，證明我們的方法有更高的精確度；此外，我們

將偵測方法應用在已知含有弱點的程式，皆能成功偵測到相關攻擊，驗證此方法

的有效性；最後我們利用微型基準測試與巨型基準測試，評估工具所引起的執行

負擔，實驗結果發現其負擔是可忽略的，顯示此工具能夠實際應用在真實程式

中，防止格式化字串攻擊。 
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Abstract 

 

In order to prevent format string vulnerabilities, the behavior of accessing 

arguments for variadic functions should be regulated. A format string attack occurs 

because variadic functions rely on the format string argument to determine the 

number of arguments. Therefore, if an attacker has ability to control the format string 

argument, he can exploit format string vulnerabilities to attack programs by providing 

more conversion specifiers than needed. In this thesis, we develop an attack-detecting 

tool called FormatDefense for printf-like and vprintf-like functions to check if 

a variadic function accesses arguments outside its argument list. FormatDefense 

defines the access bound in the memory via offline analysis of debugging information 

and runtime tracking of the stack. It is implemented as a shared library in the UNIX 

environment. We consider six scenarios based on format string locations to evaluate 

the effectiveness of FormatDefense. The result shows that FormatDefense surpasses 

several existing detection tools in detecting invalid memory access in the six scenarios. 

Furthermore, FormatDefense can detect exploits successfully on several programs 

with known format string vulnerabilities. Eventually, we use various 

microbenchmarks and macrobenchmarks to evaluate the performance overhead. The 

overhead is negligible so that FormatDefense can be applied to real programs 

practically to avoid format string attacks. 
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1. Introduction 

1.1 Problem Description 

In 2000, the format string vulnerability was discovered in WU-FTP that acts like 

a buffer overflow vulnerability. Format string vulnerabilities [1] occur because 

attackers take advantage of a program’s trust in format strings. If an attacker can 

control a program’s format string, he can access extra arguments, thereby viewing or 

overwriting data in the program’s memory. Format string vulnerabilities are not easy 

to be detected by manual testing because they usually occur in corner codes, such as 

those used to log errors. As of January 2008, MITRE's CVE project listed nearly 500 

programs with format string vulnerabilities [2] and ranked the format string 

vulnerability as the ninth most-reported type of vulnerability [3] between 2001 and 

2006. Thus in recent years, researchers have developed various static and dynamic 

tools to detect format string vulnerabilities. Many tools track the data flow of a 

program to determine whether a format string is tainted (i.e., it can be modified by an 

outside user) statically [4, 5] or dynamically [6, 7, 8]. Although these tools are capable 

of finding new bugs, they generate false positives or incur high overheads. 

Fine-grained and low-overhead dynamic detection is thus indispensable for protecting 

programs against format string attacks. 
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1.2 Background 

1.2.1 Attack Models of the Format String Vulnerability 

Format string vulnerabilities arise because the aim between strong type checking 

and convenient passing arguments method is opposite. The decision of C language is 

the unsafe varargs mechanism for convenience. 

Format string functions in the C Standard Library, such as printf and 

vprintf, are variadic functions, which take an arbitrary number of arguments. 

These functions rely solely on the format string argument to determine the number 

and types of other arguments. When parsing the format string, they rely on the 

conversion specifier to retrieve the argument on the stack.  

A format string usually contains ordinary text and conversion specifiers. The 

format string function prints the format string whose conversion specifiers have been 

replaced with the corresponding arguments. The function maintains two internal 

pointers: (1) FMTPTR, which points to the next character of the format string; and (2) 

ARGPTR, which points to the next argument in the stack. FMTPTR initially points to 

the beginning of the format string and advances with the function until the end of the 

string. When FMTPTR points to a normal character, the format string function simply 

prints the character into the destination stream. However, when it points to a 

conversion specifier (starting with a % sign), the function prints the argument 
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indicated by ARGPTR. The type of the conversion specifier determines how many 

bytes ARGPTR will advance to the next argument. For example, with the %d specifier, 

the format string function retrieves the word indicated by ARGPTR, prints the word 

as a signed decimal notation, and then advances ARGPTR by four bytes. Table 1 

describes the output corresponding to each conversion specifier. 

Table 1: Conversion specifiers 

Character %c

Pointer address %p

Unsigned decimal integer %u

Unsigned hexadecimal integer %x

String of characters %s

Signed octal %o

Conversion Specifier

Nothing printed. The argument must be a pointer to a signed 
int, where the number of characters written so far is stored 

%n

Signed decimal integer %d or %i

Output

 

Although convenient for programmers, the above formatted output mechanism 

permits two types of bugs. First, the format string function accesses arguments 

without type checking. If the conversion type does not match the corresponding 

argument, the format string function will misinterpret the argument, e.g., it will regard 

an argument of type int as one of type float. However, it is difficult, if not 

impossible, to exploit this kind of bug. Second, the format string function retrieves 

arguments without bound checking so that it is possible to access more arguments 

than those passed to the function. 
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A typical example is that programmers tend to use printf(str) as shorthand 

for printf("%s", str). Although the two function calls are almost equivalent, 

the former triggers undefined behavior when the str contains a conversion specifier. 

It is also common to find that programmers, even experienced ones, implement a 

wrapper function for vprintf() and allow users to provide the format string. If an 

attacker can control the format string passed to printf or vprintf, the program 

contains a format string vulnerability. By directing the format string function to access 

extra arguments, the attacker can view the stack or crash the program; by directing the 

function to access tainted variables, the attacker can read or overwrite any address in 

the program’s memory. 

 

1.2.1.1 Accessing Arguments outside the Real Argument List 

If an attacker provides too many specifiers in a format string, he will be able to 

direct the format string function to view the stack or crash the program. 

Viewing the Stack 

For example, as shown in Figure 1, the call to printf("%x%x%x"), which 

does not provide corresponding arguments to those specified in the format string, 

outputs three integers in the stack in unsigned hexadecimal notations. As a result, an 

attacker can view the content above the stack frame of printf in the stack and 
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possibly obtain important data, e.g., the password. 

 

0x0804829d

0xbfa2cbf8

0x080495bc

FMTPTR

……

……

%x%x%x

ARGPTR

%x

%x

%x

high address

low address  

Figure 1: Using printf("%x%x%x") to view the stack 

Crashing a Program 

Denial of service is another type of trivial attack. For instance, the call to 

printf("%s%s%n%n") crashes nearly every program. The %s specifier reads a 

pointer in the stack and displays a string in the address, whereas the %n specifier reads 

a pointer in the stack and writes the current number of characters output in the address. 

Without corresponding arguments, the format string can easily trigger invalid memory 

access via arbitrary pointers in the stack. 

 

1.2.1.2 Accessing Tainted Variables 

In addition to the attacks described above, if an attacker can direct the format 

string function to access tainted data (i.e., data that is manipulated by the attacker), he 

can either view (by the %s specifier) or overwrite (by the %n specifier) any address in 

the memory. For example, assume a function foo calls printf(fmt), as shown in 
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Figure 2. The array fmt contains the format string, “\x3c\xe2\x88\xbf%n”, and 

the return address of the function foo is stored in the address 0xbf88e23c. When 

printf handles the %n specifier, ARGPTR points to the beginning of the format 

string, which is 0xbf88e23c in little-endian format, and the return address of foo 

will be overwritten by the %n specifier. An attacker can write any desired value via 

multiple overwrite operations. A typical exploit overwrites an entry in the Global 

Offset Table (GOT) to gain control of the program. 

 

void foo( char *user_fmt ) {  

char fmt[ 8 ];

strcpy( fmt, user_fmt );

printf( fmt );

}

saved frame ptr

return address

user_fmt

……

&fmt

saved frame ptr

return address

……

n   %

bf  88  e2  3c
ARGPTR

high address

low address

0xbf88e23c

 

Figure 2: Overwriting the return address of the function foo 

 

1.3 Motivation 

Current fine-grained dynamic detection tools, such as FormatGuard [9], Libsafe 

2.0 [10], and Kimchi [11], cannot detect every kind of format string attack, especially 

those against vprintf-like functions. In fact, most fine-grained tools actually enable 

successful attacks because they are inaccurate. We present a dynamic detection tool 
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called FormatDefense, which tries to detect out-of-bound access of arguments in a 

format string function in order to prevent format string attacks. 

 

1.4 Objective 

We implement FormatDefense in the UNIX environment because format string 

vulnerabilities appear more frequently in open source software [3] and we need to 

analyze some information contained in the source code of a target program. The tool 

intercepts every format string function and finds the function (e.g., foo) that holds 

the argument list for the intercepted function. To determine the access bound, 

FormatDefense uses the frame pointer of the function foo less the size of its local 

variable region as the bound. The intercepted format string function should not be 

able to access arguments outside this bound; otherwise, it will be deemed an attack. 

The main advantage of FormatDefense over other bound checking tools is that it is 

capable of protecting the local variables above the variable-length argument list.  

FormatDefense has the following features: 

1. Full protection: FormatDefense can protect both printf-like and 

vprintf-like functions against format string attacks.  

2. High accuracy: FormatDefense can prevent format string functions from 

accessing arguments outside the argument list so that typical format string attacks 
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fail. 

3. Light weight: The runtime overhead of FormatDefense is lower than that of 

Lisbon, which provides the best protection for the Win32 platform. 

 

1.5 Synopsis 

In Section 2, we present a review of related work. We present our proposed 

method, FormatDefense, in Section 3, and discuss its implementation in Section 4. A 

detailed evaluation of FormatDefense is given in Section 5. Then, in Section 6, we 

present some concluding remarks.  
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2. Related Work 

A number of tools can protect printf-like functions against format string 

attacks, but only a few provide protection for vprintf-like functions. Some tools 

detect the non-static format string, while others specifically protect against attacks on 

the format string with the %n specifier. Other tools resolve vulnerabilities by applying 

bound checking methods.  

 

2.1 Detection of a Non-static Format String 

If a format string function is called with a static string, e.g., “hello %s”, it is 

immune to the format string vulnerability because an attacker has no way of 

controlling the format string. On the other hand, if the format string is non-static, the 

call to the format string function may be vulnerable. 

PScan [12] and the GNU Compiler Collection (GCC) can warn programmers 

about non-static format strings. PScan scans the C source code to search the call to the 

printf-like function whose last argument is a non-static format string. GCC 

provides a similar capability with a compiler flag, “-Wformat=2”. These two tools 

are effective in detecting the printf(fmt) vulnerability, but they generate a false 

positive if an attacker cannot control the format string. 

Rao [13] uses the following macro to check whether the format string is a 
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pointer:  

#define printf(fmt, ...) \ 

        ((sizeof(fmt)==4) \ 

       ?incorrect_printf():correct_printf()) 

The method can trigger a false positive when the size of a static format string is 4 

bytes, e.g., printf(“abc”). In this case, the format string is mistaken as a pointer. 

 

2.2 Protection of a Format String Containing a %n Specifier 

The format string vulnerability is particularly dangerous when the format string 

contains a %n specifier, which can be used to overwrite the memory. Corrupting 

important control data, e.g., the GOT, will very likely lead to a successful exploit. 

Several tools can detect such vulnerabilities. For example, Libformat [14] intercepts 

calls to printf-like functions and prevents them from using a potentially malicious 

format string that is non-static and contains a %n specifier. Although the method is 

effective in preventing format string attacks, it generates false positives for normal 

format strings containing a %n specifier. 

Libsafe [10] protects unsafe functions in the C library. It uses a black-list 

approach to protect format string functions, i.e., the designated address of the %n 

specifier cannot point to a return address or a frame pointer in the stack. In contrast, 
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Ringenburg and Grossman [15] propose a white-list approach that registers all valid 

integers at runtime. If the designated address of the %n specifier does not point to the 

valid integers, it is considered an attack. 

FASTV [16] checks whether a tainted format string contains a %n specifier by 

using a dynamic taint technique to gather information about untrustworthy data. To 

detect attacks, FASTV provides two policies, a default policy and a fine-grained 

policy. The former deems that a tainted format string with a %n specifier is an attack, 

whereas the latter examines an untainted format string further. If the format string 

contains a %n specifier whose designated address points to a return address, a frame 

pointer, a DTOR, or an entry in the GOT, it is also considered an attack. However, 

FASTV cannot protect other control-sensitive data [17] against a %n specifier attack. 

 

2.3 Bound Checking Method 

In contrast to the above-mentioned tools, which either generate many false 

positives or do not prevent an attacker from viewing the program’s memory, the 

bound checking approach tries to detect all kinds of format string attacks at runtime. 

Essentially, this approach defines a line of defense in the stack. If ARGPTR accesses 

arguments beyond this line, it is considered a format string attack. There is some prior 

work on keeping the conversion specifiers from accessing superfluous arguments. We 
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review three types of defense lines considered in the literature and compare their 

accuracy. 

 

2.3.1 The Saved Frame Pointer as the Defense Line (line-Sfp)  

In addition to verifying the safety of the %n specifier, it is claimed that Libsafe 

2.0 [18] checks whether the argument list is contained within the same stack frame to 

avoid accessing arguments exceeding the current stack frame. However, we cannot 

find the related implementation in the source package. 

Kimchi [11] is a binary-rewriting tool that protects format string functions. It 

uses the stack frame address of the parent function as the bound for printf-like 

functions and defines the stack frame depth as an offset relative to the stack frame of 

the parent function. If a program uses the frame pointer, the depth of the stack frame 

is calculated from the frame pointer and the stack pointer; otherwise, it is calculated 

via static analysis of the change in the stack pointer. Kimchi implements a 

safe_printf function that replaces the printf call. The depth of the stack frame 

is passed to safe_printf to verify whether the format string is safe. If the string is 

deemed safe, the tool calls the real printf; otherwise, it is defined as an attack. 

The major drawback of using line-Sfp as the defense line is that it cannot protect 

the local variables below the saved frame pointer. If an attacker can control those 
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local variables, an exploit is possible. 

 

2.3.2 The Format String as the Defense Line (line-Fmt) 

Unlike tools that protect against format string bugs, the tool developed by 

Ganapathy et al. [19] analyzes whether a printf call is exploitable by considering 

the relationship among ARGPTR, FMTPTR, and the length of the format string. If 

ARGPTR can reach the beginning of the format string before FMTPTR reaches the 

end of the same string, then an exploit is possible. Thus the beginning of the format 

string can be used as the defense line to thwart exploits. 

The limitation of this approach is that it cannot discover exploits when ARGPTR 

reaches other variables controlled by the attacker before it reaches the format string. 

In addition, the method cannot resolve cases where the format string is stored in the 

heap or other areas below the stack. 

 

2.3.3 The Argument List as the Defense Line (line-Arg) 

FormatGuard [9] is a modified implementation of glibc that checks whether the 

number of arguments specified by the format string matches the number of actual 

arguments passed to a printf-like function, and uses a macro production to provide 

a safe wrapper to obtain the number of arguments required by the format string. When 
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the number of actual arguments is less than the number of arguments specified by the 

format string, it is considered a format string attack. In other words, FormatGuard 

attempts to discover a bound that prevents printf from accessing arguments beyond 

the region of actual arguments. Nevertheless, if a program calls printf indirectly 

via a function pointer, FormatGuard cannot protect printf because it does not 

trigger a safely wrapped printf to expand the macro. 

Lisbon [20] is a Win32 binary-rewriting tool used to detect whether a format 

string function accesses arguments outside the argument list. For printf-like and 

vprintf-like functions, Lisbon attempts to recognize the argument list and insert a 

“canary” above the list as a sentinel. For argument-list bound checking, the tool 

provides a wrapper, called stub wrapper, which duplicates the original arguments, 

puts the canary above the argument list, and then calls the format string function. If 

the canary, which is monitored by the debug register, is accessed at runtime, it is 

regarded as an argument list bound violation.  
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void foo( char *user_fmt ) {

char fmt[ 8 ];

int var;

strcpy( fmt, user_fmt );

printf( fmt, 1, 2 );

……

}

saved frame ptr

2

return address

1

user_fmt

&fmt

saved frame ptr

return address

line-Arg

line-Fmt

line-Sfp

high address

low address

var

fmt[ 8 ]

 

Figure 3: Illustration of the three types of defense lines 

 

2.3.4 The Accuracy of the Defense Lines 

The effectiveness of the bound checking method depends on whether the defense 

line is accurate. The closer the defense line is to the end of the argument list 

downward, the better the defense line will be, because ARGPTR advances toward 

higher addresses in the stack. If the defense line is not close to the end of the 

argument list, the gap between the line and the end of the list becomes an attack space; 

the defense line cannot protect the variables in that space. Hence if an attacker can 

control any variable in the space, he can launch the type of attack described in Section 

1.2.1. 

In Figure 3, we present a typical scenario to illustrate the attack spaces defined 

by the above three defense lines. The function foo takes a user-supplied format string 
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and copies it into the array fmt. Then, printf is called with a format string fmt, an 

integer 1, and an integer 2. In this example, line-Arg is the best of the three defense 

lines because it allows the smallest attack space.  

 

2.4 Comparison 

Table 2 describes detailed comparisons between FormatDefense and other bound 

checking tools. Even though several tools have been developed for handling the 

format string vulnerabilities, few of them provide protection for vprintf-like 

functions. FormatGuard and Kimchi are unable to count the variable argument list 

that is dynamically constructed. Some tools are format string content-based protection, 

e.g., Libformat and FASTV. They deal with the format string with %n specifiers, but 

they have no concern with the problem of accessing extra arguments by 

vprintf-like functions. For vprintf-like functions, Libsafe performs two checks, 

%n specifiers and the range of the argument list. In spite of checking the argument list, 

it incurs false negatives because of the lower accuracy of the defense line method. 

Besides, a program may store the address of a format string function in a function 

pointer variable, and then call the format string function later. FormatDefense is able 

to protect such format string function calls because of the interception of vulnerable 

functions. 
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For Lisbon, it assumes that the variadic function never skips any argument in its 

argument list. In other words, the variadic function does not allow itself to access one 

of arguments directly. If there is a varadic function that can skip any argument in its 

argument list, FormatDefense can prevent this kind of attack. 

Table 2: Comparisons between FormatDefense and other bound-checking tools 

YYYYavailability of ‘%n’ specifiers

YYYread-only format string support

Tool

Feature

YYYYprotection of current stack frame

YYYY**prevention of read attacks

YYYYno false positives

YYindirect calls

YY*Yprotection of vprintf-like functions 

FormatDefenseLisbonFormatGuardLibsafeKimchi

Y*: depend on the precision of the heuristic  Y**: cannot find the related implementation 
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3. Method 

FormatDefense adopts the bound checking approach to protect both 

printf-like and vprintf-like functions. Based on the comparison of the defense 

lines shown in Figure 3, FormatDefense uses line-Arg as the bound, similar to the 

FormatGuard approach. However, unlike FormatGuard, which works for 

printf-like functions, but not vprintf-like functions, our proposed approach 

employs a novel means for finding line-Arg. 

To determine a stack’s defense line, one can traverse the stack in either the 

upward or the downward direction. FormatGuard uses the upward approach to 

calculate how many arguments a format string function accepts. However, it cannot 

calculate the number of arguments in vprintf-like functions because they take a 

va_list pointer to the real arguments passed through many layers of wrapper 

functions. FormatDefense follows the downward direction to locate the local variable 

region of the stack frame that holds the argument list. Although FormatDefense does 

not know the actual number of arguments passed to the format string function, it can 

still set the correct bound. 
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3.1 Stack Walking 

We first perform stack walking to find the target function, i.e., the function that 

accepts the real argument list. When a printf-like function is called, the function 

itself is the target function (e.g., the printf function in Figure 4). On the other hand, 

when a vprintf-like function is called, the target function is one of its wrapper 

functions (e.g., the vprintf_wrapper function in Figure 5), because the argument 

list is not directly next to the stack frame of the format string function. In a typical 

stack layout of a program without optimization, every stack frame is identified by a 

frame pointer that points upward to the previous stack frame. Therefore, we need to 

perform the frame pointer backtrace operation repeatedly until we find the target 

function.  

void foo() {

int var = 5;

printf( "%d", var );

}

return address

saved frame ptr

var

FMTPTR

5

return address

saved frame ptr

local variables 
to printf

%ebp printf

%ebp foosize of local 
variables to foo

%ebp : frame pointer

4(%ebp printf) 

%d

high address

low address

line-Arg

ARGPTR

 

Figure 4: Determining line-Arg for printf-like functions 
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void vprintf_wrapper( char *fmt, … ) {

va_list ap;

va_start( ap, fmt );

vprintf( fmt, ap );

va_end( ap );

}

return address

saved frame ptr

5

FMTPTR

return address

saved frame ptr

ap

ap

return address

saved frame ptr

fmt

local variables
to vprintf

%ebp vprintf

%ebp vprintf_wrapper

%ebp foo

4(%ebp vprintf_wrapper) 

high address

low address

%d

%d

line-Arg

void foo() {

int var = 5;

vprintf_wrapper( "%d", var );

}

ARGPTR

var
size of local 

variables to foo

 

Figure 5: Determining line-Arg for vprintf-like functions 

 

3.2 Determining Line-Arg and Detecting Attacks 

After locating the target function, we use its return address to find its parent 

function, which holds the real argument list (e.g., the function foo in Figure 4 and 

Figure 5). Then, we can determine line-Arg by using the frame pointer and the size of 

the local variable region of the function foo.  

We can use the debugging symbols of the target program to obtain the size of the 

local variable region of each function. By subtracting the size of the local variable 

region from foo’s frame pointer, we can derive line-Arg, which defines the bound for 

accessing arguments by format string functions. If the intercepted format string 

function accesses arguments outside line-Arg, the event is considered an attack. 
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3.3 Examples for Illustrating How to Find Line-Arg 

    In this section, we provide two examples, calls to printf and vprintf, and 

illustrate how to find line-Arg. 

 The mechanism of finding line-Arg for printf-like functions is illustrated by 

the example as shown in Figure 4. In the function foo, a local variable var of type 

int is declared and initialized to 5. Next, printf is then called with a format string, 

“%d”, and the variable var with value 5 as its arguments. We can refer to 4(%ebp printf) 

as the return address of printf and recognizes the function which holds the actual 

argument list for printf, i.e., the function foo. FormatDefense uses the size of 

local variable region of foo and %ebp foo to figure out line-Arg. 

    The process of finding line-Arg for vprintf-like functions is more 

complicated than printf-like ones due to the different kinds of input arguments. In 

Figure 5, we show an example involving a vprintf function and its mechanism to 

find line-Arg. In this example, vprintf accepts an object of type va_list, which 

points to a variable-length argument list. The object is initialized by the macro 

va_start which adjusts ARGPTR to point to the first argument in the argument list. 

In addition, the object of type va_list can be passed among several layers of 

wrapper functions. Therefore, the argument list is not adjacent to the stack frame of 

the intercepted format string function. Consider the code segment in Figure 5, the 
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function foo passes a format string, “%d”, and the variable var with value 5 to 

vprintf_wrapper. The function vprintf_wrapper declares a local object ap 

of type va_list, which is prepared for the argument list of vprintf. After 

invoking the macro va_start to initialize ap for use, vprintf is called with ap 

as one of its arguments. Now ARGPTR is equivalent to ap. 

We traverse the frame pointer, %ebp, until we find the stack frame of foo where 

ARGPTR points to, in order to locate a certain frame pointer that points to a higher 

address than ARGPTR. The procedure proceeds as follows. As shown in Figure 5, we 

refer to %ebp vprintf to realize where %ebp vprintf_wrapper points to, and then we compare 

the location where %ebp vprintf_wrapper points to with the location where ARGPTR 

points to. Because the address is not higher than ARGPTR, the process continues. 

Finally, we compare the location where %ebp main points to with the location where 

ARGPTR points to and the former is higher than the latter. Subsequently, we use the 

return address of vprintf_wrapper through 4(%ebp vprintf_wrapper) to find the 

function foo which holds the actual argument list, the integer with value 5, and to 

determine line-Arg similar to the procedure for printf-like functions. 
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3.4 An Algorithm for Detecting Attacks 

We summarize the above-mentioned process in the DETECT_ATTACK 

algorithm shown in Figure 6. For input, the algorithm takes the frame pointer of a 

format string function, represented as framePtr, as well as the format string 

format and the ap of type va_list. The while loop in lines 1-2 traverses the 

frame pointers in the stack by comparing them with the ap until the location that the 

dereferenced framePtr points to is higher than the ap. Then, we obtain the frame 

pointer that indicates the stack frame that the ap points to. Line 3 takes the return 

address of the function that prepares the argument list that the ap points to. In line 4, 

the algorithm uses the return address to query the reference table about the size of the 

local variable region. Line 5 calculates the address of line-Arg. Line 6 determines 

how many bytes the ap will advance according to the format string. Line 7 obtains 

the final address of the ap. Line 8 then checks whether the address is higher than 

line-Arg. If it is higher, the function LOG_ATTACK is called in line 9 to log the 

attack. Then, in line 10, DETECT_ATTACK returns TRUE to indicate that an attack 

has been detected. 
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DETECT_ATTACK( framePtr, format, ap )

1  while *framePtr < ap

2 do framePtr← *( framePtr )

3  returnAddress← *( framePtr + 1 )                    

4  sizeOfLocalVars← QUERY-LOCAL-SIZE( returnAddress )

5  addressOfLine-Arg← framePtr – sizeOfLocalVars

6 sizeOfArgs← PARSE( format )

7  finalARGPTR← ap + sizeOfArgs

8  if finalARGPTR > addressOfLine-Arg

9          then LOG_ATTACK()

10 return TRUE

11  return FALSE  

Figure 6: The DETECT_ATTACK algorithm 
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4. Implementation 

We now present the architecture of FormatDefense and explain how we obtain 

the required debugging information, i.e., relevant information regarding the size of the 

local variable region. We also consider the optimization for the static format string. 

 

4.1 The Architecture of FormatDefense 

The architecture of FormatDefense is illustrated in Figure 7. Given a target 

program, we use GCC with the –g flag to compile the program and then use 

dwarfdump to extract the debugging information from the executable file. In addition, 

we implement FormatDefense as a shared library, formatDefense.so, and use 

the LD_PRELOAD mechanism to intercept format string functions. After a program 

has been loaded, FormatDefense uses the debugging information to create a reference 

table. 

When a format string function is called, it is intercepted with a corresponding 

wrapper function. Subsequently, FormatDefense uses the DETECT_ATTACK 

algorithm to identify format string attacks. If a format string function is suspected of 

accessing an argument beyond line-Arg, the function LOG-ATTACK will be 

triggered.  
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Is there an attack?

YESNO

formatDefense.so

Executable file

compiled with 

the –g flag

Debugging

information
Parsing script Reference table

DETECT_ATTACK

LOG_ATTACK

Call format 

string functions

Run the

executable file

Dwarfdump

Start

Continue

Intercept

data flow

control flow

existing tool

 

Figure 7: The architecture of FormatDefense 

 

4.2 Obtaining the Debugging Information 

As mentioned earlier, FormatDefense needs to determine the size of the local 

variable region of the function that holds the actual argument list. We use dwarfdump 

to dump the debugging information contained in the target program’s executable file. 

The dwarfdump tool dumps the various elements of DWARF debugging information 

in ELF object files. DWARF is a debugging format to support source level debugging. 

It defines the format for the information generated by compilers, assemblers and 

linkage editors including the information content of the debugging entries and the way 

the debugging information is encoded and represented in an object file. For each 

program, the DWARF description is a tree structure with nodes which represent types, 
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variables, or functions. It is a brief representation because only the information which 

is required to characterize a viewpoint of a program is contained. In DWARF, the 

basic descriptive element is the Debugging Information Entry (DIE). A DIE has a tag 

which indicates what the DIE describes and a list of attributes which further describes 

the element.  

Figure 8 shows a sample program and its corresponding DWARF description 

[21]. The attributes, DW_AT_low_pc and DW_AT_high_pc, indicate the range of code 

addresses for main. Variables var1 and var2 are at offset -20 and -16 relative to 

the stack frame of main, respectively. By subtracting the size of the return address 

and the saved frame pointer from the absolute value of the largest offset, we obtain 

the size of the local variable region. We then parse the output of dwarfdump and 

create a reference table, as shown in Table 3. 

main.c

int main() {

int var1, var2;

printf( “%d%d”, 1, 2 );

return 0;

}

<1><  297>      DW_TAG_subprogram

……

DW_AT_name main
……

DW_AT_low_pc 0x8048354

DW_AT_high_pc 0x804838f

……

<2><  322>      DW_TAG_variable

DW_AT_name var1

……

DW_AT_location DW_OP_fbreg -20

<2><  334>      DW_TAG_variable

DW_AT_name var2
……

DW_AT_location DW_OP_fbreg -16
 

Figure 8: The DWARF description for main.c 
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Table 3: The reference table for main.c 

120x804838f0x8048354main

size of local variable region (byte)high_pclow_pcfunction name

 

 

4.3 Skipping Read-only Format Strings 

If a format string is static (i.e., it resides in the read-only section), an attacker 

cannot control it and no attack is possible. Therefore, we adopt the optimization 

process proposed in [11, 15] to avoid bound checking for static format strings. In 

FormatDefense, if FMTPTR points to the .rodata section, the intercepted function is 

immune to attacks, and we can call the real format string function directly without 

checking further. 
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5. Effectiveness and Performance Evaluation 

In Section 5.1, we consider six possible scenarios of format string locations to 

evaluate the effectiveness of our line-Arg bound. There are three types of defense 

lines. We compare line-Arg, which is used by FormatDefense, with line-Sfp and 

line-Fmt. In the six scenarios, only the following three kinds of address relationship 

hold: (1) Arg < Fmt < Sfp for Scenarios 1 and 2, (2) Arg < Sfp < Fmt for Scenarios 3 

and 4, and (3) Fmt < Arg < Sfp for Scenarios 5 and 6. In Section 5.2, we consider 

programs with known format string vulnerabilities to compare the attack space 

between the three defense lines. In Section 5.3, we evaluate the performance overhead. 

Some evaluation discussions are given in Section 5.4. 

 

5.1 All Possible Scenarios 

Scenario 1: The caller of the printf-like function contains the format string. 

In this case, line-Fmt sits between line-Arg and line-Sfp. Figure 9 shows an 

example where the user provides “%d%d%d” as the input user_fmt. ARGPTR can 

access the local variable var when FMTPTR meets the third %d specifier. As shown 

in the figure, line-Fmt cannot protect var and line-Sfp cannot protect either var or 

fmt. Both variables open an attack space, hence an exploit is possible if an attacker 

controls these variables. 
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saved frame ptr

return address

user_fmt

……

&fmt

saved frame ptr

return address

……

fmt[ 8 ]

var

void Scenario1( char *user_fmt ) {

char fmt[ 8 ];

int var;

strcpy( fmt, user_fmt );

printf( fmt, 1, 2 );

……

}

ARGPTR
%d

2

1

%d

%d

high address

low address

line-Arg

line-Sfp

line-Fmt

 

Figure 9: Arg < Fmt < Sfp for printf 

Scenario 2: The format string and real argument list of the vprintf-like function 

reside in the same stack frame. 

This case is similar to Scenario 1, but the function is vprintf-like. Figure 10 

shows an example where the argument list for vprintf is composed of two integers: 

1 and 2. If the pointer user_fmt is “%d%d%d”, ARGPTR will access an argument 

outside the region of the argument list; that is, it will access the local variable var. 

The consequence is the same as that of Scenario 1. 
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saved frame ptr

return address

user_fmt

&fmt

saved frame ptr

return address

var

void vprintf_wrapper( char *fmt, … ) {

va_list ap;

va_start( ap, fmt );

vprintf( fmt, ap );

va_end( ap );

}

ARGPTR

2

1

return address

saved frame ptr

ap

ap

&fmt

fmt[ 8 ]

high address

low address

%d

%d

%d

line-Fmt

line-Sfp

line-Arg

void Scenario2( char *user_fmt ) {

char fmt[ 8 ];

int var;

strcpy( fmt, user_fmt );

vprintf_wrapper( fmt, 1, 2 );

}

 

Figure 10: Arg < Fmt < Sfp for vprintf 

Scenario 3: One of the ancestors of the printf-like function in the call chain 

contains the format string. 

In this case, line-Sfp sits between line-Arg and line-Fmt. Figure 11 shows an 

example, where the content of fmt is “%d%d%d.” ARGPTR can access the local 

variable var when FMTPTR is at the third %d specifier. The figure shows that 

line-Sfp cannot protect var and line-Fmt allows an even wider attack space. 
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saved frame ptr

return address

&fmt

1

return address

&fmt

saved frame ptr

var

void Scenario3( char *fmt ) {

int var;

printf( fmt, 1, 2 );

……

}

……

ARGPTR

……

2

fmt[ ]

high address

low address

%d

%d

%d

line-Sfp

line-Fmt

line-Arg

 

Figure 11: Arg < Sfp < Fmt for printf 

Scenario 4: The format string and real argument list of the vprintf-like function 

reside in different stack frames. 

As this case is similar to Scenario 3, we show a vprintf-like version of 

Scenario 3 in Figure 12. When the content of fmt is “%d%d%d”, the last argument 

accessed by ARGPTR is the local variable var. The analysis follows that for 

Scenario 3. 
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saved frame ptr

return address

&fmt

saved frame ptr

return address

var

void vprintf_wrapper( char *fmt, … ) {

va_list ap;

va_start( ap, fmt );

vprintf( fmt, ap );

va_end( ap );

}

ARGPTR

2

1

return address

saved frame ptr

ap

ap

&fmt

&fmt

……

fmt[ ]

high address

low address

%d

%d

%d

line-Sfp

line-Fmt

line-Arg

void Scenario4( char *fmt ) {

int var;

vprintf_wrapper( fmt, 1, 2 );

}

 

Figure 12: Arg < Sfp < Fmt for vprintf 

Scenarios 5: The format string of the printf function is stored in the Block Started 

by Symbol (BSS) segment, the data segment, or the heap. 

In this case, line-Arg sits between line-Sfp and line-Fmt. Figure 13 shows an 

example where the input user_fmt, “%d%d%d”, is copied into the static array fmt 

located in the BSS segment. ARGPTR never reaches the format string itself because 

the BSS segment is below the stack segment and ARGPTR moves towards higher 

addresses in the memory. In this scenario, line-Fmt fails completely. Thus an exploit 

is possible if an attacker can control the variables in the space between var and the 

environment variables. 
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saved frame ptr

return address

user_fmt

……

&fmt

saved frame ptr

return address

……

fmt[ 8 ]

var

void Scenario5( char *user_fmt ) {

static char fmt[ 8 ];

int var;

strcpy( fmt, user_fmt );

printf( fmt, 1, 2 );

}

ARGPTR

2

1

……

BSS

high address

low address

%d

%d

%d

line-Sfp

lne-Arg

line-Fmt

 

Figure 13: Fmt < Arg < Sfp for printf 

Scenarios 6: The format string of the vprintf function is stored in the Block 

Started by Symbol (BSS) segment, the data segment, or the heap. 

As this case is similar to Scenario 5, we show a vprintf-like version of 

Scenario 5 in Figure 14. ARGPTR also never reaches the format string itself, so 

line-Fmt fails completely. The consequence is the same as that of Scenario 5. 
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saved frame ptr

return address

user_fmt

&fmt

saved frame ptr

return address

var

void vprintf_wrapper( char *fmt, … ) {

va_list ap;

va_start( ap, fmt );

vprintf( fmt, ap );

va_end( ap );

}

ARGPTR
2

1

return address

saved frame ptr

ap

ap

&fmt

high address

low address

%d

%d

%d

line-Fmt

line-Sfp

line-Arg

void Scenario6( char *user_fmt ) {

static char fmt[ 8 ];

int var;

strcpy( fmt, user_fmt );

vprintf_wrapper( fmt, 1, 2 );

}

……

fmt[ 8 ]

……

BSS

Figure 14: Fmt < Arg < Sfp for vprintf 

Table 4 compares the different detection tools used in the above six scenarios. 

The detection level of each tool is rated from good to bad and denoted by A, B, or C. 

The tools are ranked in decreasing order; e.g., a tool rated A can detect all the attacks 

that can be detected by the tools rated C, but the latter cannot detect all the attacks 

detected by the tools rated A. Kimchi and Libsafe 2.0 use line-Sfp as the defense line 

and cannot protect the local variables between line-Arg and line-Sfp. The defense line 

line-Fmt provides better protection in Scenarios 1 and 2, but fails when the format 

string does not reside in the stack. The major weakness of FormatGuard is that it 

cannot handle vprintf-like functions. The only drawback of Lisbon is that it 

searches for the macro “va_start(ap, fmt)” as a heuristic to recognize the 



 36

function where the object va_list is created, hence it may generate false negatives 

for protecting vprintf-like functions. 

Table 4: Comparisons of various detection tools in the six scenarios 

AAAXBB6

Tool

Scenario

AAAXBB5

AA*XCBB4

AAACBB3

AA*XBCC2

AAABCC1

FormatDefenseLisbonFormatGuardLine-FmtLibsafeKimchi

A-C: the level of detection; A*: depend on the precision of the heuristic; X: not detected 

 

5.2 Effectiveness of FormatDefense’s Protection against Known Format String 

Attacks 

To evaluate FormatDefense, we use the following programs, which are all 

susceptible to known format string attacks: Splitvt-1.6.4 [22], Pfinger-0.7.5 [23], and 

Tcpflow-0.20 [24]. Splitvt-1.6.4 is a VT100 window splitter that is susceptible to a 

format string attack when a malicious format string is passed to sprintf via the 

“–rcfile” command line flag. Pfinger-0.7.5 is a daemon for the standard finger 

protocol. It contains a format string vulnerability that can be exploited by a malicious 

format string in a .plan file passed to printf. Tcpflow-0.20 is a network 

debugging tool that is susceptible to a format string attack when it opens an undefined 

device that triggers the error message passed to vfprintf. The vulnerabilities of 
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these programs belong to Scenario 5 and Scenario 6, in which relationship Fmt < Arg 

< Sfp holds. Figure 15 shows the vulnerable code segments in above programs. 

Splitvt-1.6.4

char *startupfile = “%s/.splitvtrc";  //store in the data segment

char *rcfile_buf;

void splitvtrc() {

……

sprintf( rcfile_buf, startupfile, home );

puts( rcfile_buf );

……

}

Pfinger-0.7.5
void DoFinger1( char *hostname, char *query ) {

static char buf[ 80*20 + 1 ];  //store in the BSS segment

……

while( read( s, buf, 80*20 ) > 0 ) {

buf[ 80*20 ] = ‘\0';

printf( buf );   

} 

}

Tcpflow-0.20
char error[ PCAP_ERRBUF_SIZE ];  //store in the BSS segment

void print_debug_message( char *fmt, va_list ap ) {

……

vfprintf( stderr, fmt, ap );

……

}
 

Figure 15: The vulnerable code segments of Splitvt, Pfinger, and Tcpflow 

FormatDefense succeeds in detecting attacks that try to exploit the vulnerability 

of each type of software. Furthermore, as shown in Table 5 and Table 6, line-Arg 

minimizes the possibility of format string attacks. The two tables detail the range 

between the end of the argument list and each type of defense line in Linux and BSD 

platforms, i.e., the attack space. Clearly, line-Arg yields the smallest attack space 

among the three defense lines. In addition, the attack space in BSD platform is smaller 

than the one in Linux platform because the ways of code generation across platforms 
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are different. The attack space of line-Arg in BSD platform is zero-byte in particular. 

It means that FormatDefense can find the exact defense line in BSD platform. 

Table 5: The attack space in Linux platform 

Software

20106484Line-Sfp

22528629Line-Fmt

7612Line-Arg

Tcpflow-0.20Pfinger-0.7.5Splitvt-1.6.4

Attack Space 

(word)

 
 

Table 6: The attack space in BSD platform 

Software

841089Line-Sfp

10461394Line-Fmt

000Line-Arg

Tcpflow-0.20Pfinger-0.7.5Splitvt-1.6.4

Attack Space 

(word)

 

 

5.3 Performance Benchmark 

5.3.1 Microbenchmarks 

To evaluate the performance overhead of FormatDefense, we apply a series of 

microbenchmark programs with a loop involving one format string function call, as 

shown in Figure 16(a) for printf-like functions and Figure 16(b) for vprintf-like 

functions. The programs compiled with GCC 4.1.2 were run on a 1.86 GHz Intel Core 

2 with 1.5GB of RAM. We ran each microbenchmark program twice in single-user 

mode, with and without FormatDefense. The performance overheads of the other 

tools were obtained from the literature. Table 7 shows the performance of 



 39

FormatGuard, White-listing, Lisbon, FormatDefense, and Optimized-FormatDefense 

on the six microbenchmarks. The overhead of the “sprintf with no specifiers” 

program is 0% for FormatDefense because the sprintf is compiled into a series of 

“mov” instructions for optimization. However, because FormatGuard and 

White-listing use a wrapper for sprintf, GCC cannot apply the above optimization. 

Lisbon performs poorly because it needs to make a system call to set the debug 

registers. The static-string optimization in FormatDefense outperforms that of each 

benchmark. 

int main() {

vsprintf_wrapper( "abcdef%d%d", 1, 2 );

return 0;

}

void vsprintf_wrapper( const char *fmt, … ) {

va_list ap;

va_start( ap, fmt );

int i;

char buf[ 32 ];

for( i = 0; i < 10000000; i++ )

vsprintf( buf, fmt, ap );

}

int main() {

int i;

char buf[ 32 ];

for( i = 0; i < 10000000; i++ ) 

sprintf( buf, "abcdef%d%d", 1, 2 );

return 0;

}

(a) (b)  

Figure 16: Microbenchmark programs 

 

Table 7: Performance Overhead of Applying Different Detection Tools on the Microbenchmarks 

100%

69.1%

68.2%

95%

64.7%

0%

FormatDefense

2.4%154.7%74.7%cannot handlevsprintf with 2 %n specifiers

Benchmark

1.2%63.2%39.8%cannot handlevsprintf with 2 %d specifiers

3.6%223.4%26.4%cannot handlevsprintf with no specifiers

1.3%142.3%60.0%38.1%sprintf with 2 %n specifiers

0.63%67.9%28.6%20.9%sprintf with 2 %d specifiers

0%217.7%10.2%7.5%sprintf with no specifiers 

Optimized-

FormatDefense

Lisbon White-listingFormatGuard
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5.3.2 Macrobenchmarks 

The machine employed for macrobenchmarks is the same as that used for 

microbenchmarks. The performance overhead for FormatDefense is measured without 

read-only string optimization. We use Man2html-1.6, Pfinger-0.7.5 and Splitvt-1.6.4 

to evaluate the performance of FormatDefense. Man2html is a printf-intensive 

software that converts UNIX man page files to HTML web pages. We ran Man2html 

79 times to translate a 596 KB man page file. For Pfinger, we fingered a user 

whose .plan file was 9784 KB. In addition, we tested Splitvt by executing the shell 

command “ls –l” in each split window 100 times. As shown in Table 8, the 

overhead of FormatDefense is so low that it is negligible, even without read-only 

string optimization. 

Table 8: FormatDefense’s overhead on the macrobenchmarks 

0.7%Pfinger-0.7.5

Software

0.6%Splitvt-1.6.4

0.91%Man2html-1.6

Latency Penalty

 

 

5.4 Evaluation Discussion 

Stack alignment and the implications of sibling functions generate unused spaces 

in the stack for Linux platform. In this section, we show that such spaces are not 

critical to FormatDefense because it tries to protect the local variables behind the 
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argument list, and attackers find it hard to control unused spaces. Moreover, we 

discuss the attack space of line-Fmt in Fmt < Arg < Sfp relationship. 

 

5.4.1 Stack Alignment 

The stack layout of a program complied by the current GCC in Linux platform is 

shown in Figure 17. (Note that it is different from the layout in Figure 4.) GCC 4.1.2 

enforces two kinds of stack alignments [25], thereby causing us to find an 

approximate line-Arg, not a precise one, as shown in Figure 17. The unused space 

between the local variable region of a function and the arguments of its callee results 

from the codes generated by GCC 4.1.2. 

return address

saved frame ptr

var

FMTPTR

5

return address

saved frame ptr

local variables 
to printf

approximate line-Arg

unused space

precise line-Arg

high address

low address

void foo() {

int var = 5;

printf( "%d", i );

}

%d

size of local 
variables to foo

 

Figure 17: Stack alignment of the current GCC 

In the first kind of stack alignment enforced by GCC, the stack is aligned at the 

program entry point, as exemplified by the assembly code for main shown in Figure 

18. At <main+4>, the program adjusts the stack pointer to 16-alignment by default to 
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ensure that the stack at the program entry point, i.e., at main, is aligned. Under the 

second kind of stack alignment, the stack frame size of each non-leaf function is 

aligned, as exemplified by the assembly code for the function foo shown in Figure 

19. At <foo+3>, the program allocates enough space for the local variables of foo 

and the arguments passed to printf to ensure that the stack frame size of the 

non-leaf function, i.e., the function foo, is aligned. 

Dump of assembler code for function main:

<main+0>:    lea    0x4(%esp),%ecx

<main+4>:    and    $0xfffffff0,%esp

<main+7>:    pushl 0xfffffffc(%ecx)

<main+10>:   push   %ebp

<main+11>:   mov %esp,%ebp

……

<main+17>:   movl $0x2,(%esp)

<main+24>:   call   0x8048354 <foo>

……

<main+42>:   ret

End of assembler dump.

int main() {

int a = 2;

foo( a );

return 0;

}

void foo( int b ) {

char buf[ 4 ];

printf( "%d", b );

}

return address

saved frame ptr

……

%esp 0xbf840250

……

%esp 0xbf84025c

high address

low address

%esp : stack pointer
 

Figure 18: Assembly code for the function main 

 

Dump of assembler code for function foo:

<foo+0>:     push   %ebp

<foo+1>:     mov %esp,%ebp

<foo+3>:     sub    $0x18,%esp

<foo+6>:     mov 0x8(%ebp),%eax

<foo+9>:     mov %eax,0x4(%esp)

<foo+13>:    movl $0x804846c,(%esp)

<foo+20>:    call   0x8048290 <printf@plt>

<foo+25>:    leave

<foo+26>:    ret

End of assembler dump.

return address

saved frame ptr

buf[ 4 ]

FMTPTR

%esp 0xbf840248

%esp 0xbf840230

0x18
0x20

2

unused space

high address

low address

%d

 

Figure 19: Assembly code for the function foo 

However, the compiler flag “-mpreferred-stack-boundary=num” in 

GCC keeps the stack boundary aligned to a 2 raised to num byte boundary. In other 
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words, the stack frame size of non-leaf functions is aligned. The default is 4 

(16-alignment), unless otherwise specified. Consequently, FormatDefense uses the 

“-mpreferred-stack-boundary=2” flag to avoid creating unused spaces. If 

there are no unused spaces, we can find the precise line-Arg, as shown in Figure 4. 

 

5.4.2 Interaction between Sibling Functions 

If the format string function has sibling functions in Linux platform, there may 

be unused spaces. For example, main calls two functions, sibling_func and 

printf; the former accepts more arguments than the latter, as shown in Figure 20. 

As noted in Section 5.4.1, a function should immediately allocate enough space for its 

local variables and the arguments of all the callees. Hence the amount of space is 

determined by the callee with the most arguments, i.e., the function sibling_func 

in this case. Therefore, main allocates the exact amount of space for its local 

variables and the arguments passed to sibling_func, as shown in Figure 20(a). 

When printf is called after sibling_func returns, FormatDefense obtains 

the calculated line-Arg instead of the real line, as shown in Figure 20(b). Even so, the 

unused space is not a critical issue for FormatDefense unless an attacker can control 

the arguments passed to sibling_func. FormatDefense thus makes it more 

difficult for attackers to implement successful format string attacks. 
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int main() {

int a;

a = sibling_func( 1, 2, 3 );

printf( “%d%d”, a );

return 0;

}

int sibling_func( int n1, int n2, int n3 ) {

return n1 + n2 + n3;

}

return address

saved frame ptr

a
%esp 0xbff88938

0x103

high address

low address

2

1

return address

saved frame ptr

a 
%esp 0xbff88938

0x10 3

high address

low address

6

FMTPTR %d%d
%esp 0xbff88928 %esp 0xbff88928

(a) (b)

real line-Arg

calculated line-Arg

size of local 
variables to main

 

Figure 20: A format string function with sibling functions 

 

5.4.3 Attack Space of Line-Fmt in Fmt < Arg < Sfp Relationship 

In previous section, we define an attack space as the gap between the defense line 

and the end of the argument list. In addition, ARGPTR advances toward higher 

addresses in the stack. However, in Scenarios 5, 6 of Section 5.1, line-Fmt is under 

the stack, namely, under ARGPTR. In this situation, the attack space is defined 

specifically.  

Figure 21 shows the detailed view of a program’s stack layout [26]. There is a 

block of zero-filled padding whose size is determined randomly, so the locations of 

parameters of the function main and environment variables are not guessed easily in 

the stack. We consider that attackers are hard to control those data in this way. 

Therefore, we define the upper bound of the attack space in Scenarios 5, 6 of Section 
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5.1 as the program entry point as shown in Figure 22. 

argc

argv

envp

runtime data

arg pointers

env pointers

ELF interpreter

info

padding

arg strings

env strings

exe name

4 byte null

low address

high address

Parameters to main argv points to the first 

pointer in the array of 

arg pointersenvp points to the first 

pointer in the array of 

env pointers

arg pointers array 

contains pointers to 

each of the null 

terminated arg strings

env pointers array 

contains pointers to 

each of the null 

terminated 

environment strings

padding inserted by 

Linux kernel elf loader

 

Figure 21: Detailed view of a program’s stack layout 

 

saved frame ptr

return address

argc

argv

saved frame ptr

return address

……

……

ARGPTR

argument list

……

high address

low address

line-Fmt

Program entry point

 

Figure 22: The attack space in Scenarios 5,6 of Section 5.1  
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6. Conclusion 

In this thesis, we propose an approach called FormatDefense to prevent format 

string attacks at runtime. At first, FormatDefense can locate the stack frame that holds 

the argument list via tracking the stack. Then, FormatDefense can determine the 

access bound, line-Arg, for format string functions by analyzing the debugging 

symbols. If a format string function accesses arguments outside line-Arg, it is 

considered an attack. We evaluate FormatDefense on six possible scenarios and real 

programs vulnerable to known format string attacks to prove its effectiveness by 

comparing with other tools and measuring the attack space. In conclusion, 

FormatDefense is able to detect all format string exploits and provides the most 

accurate approach of avoiding format string attacks. Therefore, FormatDefense 

becomes a practical tool for preventing format string attacks due to high accuracy, 

low overhead and easy deployment. 
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