應用於 IEEE 802.11a/b/g 無線區域網路中 雙頻帶射頻接收器模組電路之設計與實現

學生:陳國章

指導教授:溫瓌岸 博士

羅正忠 博士

國立交通大學

電子工程學系 電子研究所碩士班

在這篇論文中設計並製作了兩大類的雙頻帶射頻接收器,第一類包含"切 換模式"和"並行模式",而第二類則是由"共存模式"和"寬頻模式"所組 成。設計部分完成了 2.4GHz 和 5GHz 頻帶的"切換模式"和"並行模式"前端接 受器以及 2.4/5GHz 雙頻帶"共存模式"前端接受器和"寬頻模式"低雜訊放大 器。而實作電路則包含一個 5.25GHz 頻帶的射頻前端接受器以及一個"共存式" 雙頻帶低雜訊放大器,並採用聯電 0.18 μ m 1P6M mixed-mode/RF CMOS 製程,智 森高頻元件模組和矽品 QFN 系列封裝。量測結果顯示當前端接收器消耗 30mA 電 流的同時,可以提供 18dB 的電壓增益(Av),1dB 增益壓縮點(P1dB)為-27dBm, 三階交調點(IIP3)和二階交調點(IIP2)分別為-3dBm 以及-12dBm,而雜訊指數 (NF)則為 6.4dB。低雜訊放大器有 27mW 功率消耗,可同時在 2.4GH 提供 6.7dB 的功率增益(S21),在 5.25GHz 則為-7.2dB,但由於輸入阻抗匹配的偏移,最大 增益點則發生在 2.74GHz,有 11.9dB 以及在 5.25GHz 為-5.1dB。

The Design and Implementation of Dual Band RF Receiver

Module for IEEE 802.11a/b/g WLAN Applications

Student: Guo-Jhang Chen

Advisor: Kuei-Ann Wen

Jen-Chung Lou

Department of Electronics Engineering & Institute of Electronics National Chiao-Tung University

Abstract

In this thesis, two groups of dual band receiver are designed and fabricated. The first group consists of "switched mode" and "parallel mode". The other group is composed of "concurrent mode" and "wideband mode". The circuit design comprises 2.4 GHz and 5 GHz dual band receiver frontend for "switched mode" and "parallel mode", and 2.4/5 GHz dual band receiver frontend for "concurrent mode" as well as "wideband mode" LNA. The chip implementations include a 5.25 GHz receiver frontend and a concurrent dual band LNA employing UMC 0.18µm 1P6M mixed-mode/RF CMOS process, RF device models, and QFN series package provided by Giga-solution and SPIL respectively. The experimental results show that the receiver drains 30 mA of current and achieves the voltage gain of 18 dB, P1dB of -27 dBm, IIP3 of -12 dBm, IIP2 of -3 dBm, and NF of 6.4 dB. The LNA has a power gain of 6.7 dB at 2.4 GHz band, -7.2 dB at 5 GHz band having power dissipation of 18 mW, while the maximum power gain of this LNA is 11.9 dB at 2.74 GHz, -5.1 dB at 5.25 GHz due to the shift of input matching.

誌謝

回首二年前的自己,抱著懵懂無知的心情進了交大,如今卻滿載行囊而 歸,除了歸功於學風鼎盛的校園環境以外,首要感謝的人則是我的指導教授溫瓌 岸博士,提供了充足的實驗室資源使我得以全心專注在研究上。而對於羅正忠博 士在半導體製程技術的啟蒙,更深感醍醐灌頂,獲益匪淺。此外,也感謝口試委 員詹益仁教授、郭建男教授以及高曜煌教授對論文內容的指正,啟發了我做學問 的嚴謹態度。

在這二年間受到了許許多多人的幫忙,有記得名字的,也有不知名的,有 在學業上的,也有在生活方面的,對於這些幫助過我的人,我深深地感謝你們, 因為你們,這篇論文才得以順利完成。但最重要的還是我的家人在背後默默地支 持,提供了我永不倦怠的動力來源,僅以此論文獻給我的家人們!

鳳凰花開,代表著人生一個階段的結束,但也意味著人生的下一章新頁即 將展開。朋友們,讓我們一起加油迎向未來吧!

陳國章 筆于2004年仲夏夜

致謝:

學長唐偉烝、林柏年、王仲益、范振麟、陳明章、張德威、莊源欣、陳哲生、溫 文燊、彭嘉笙、周美芬.......同學林木山、林永正、林佳欣、龔敬文.......學弟 吳建銘、宋兆鈞、林格輝、黃相霖、趙皓名、楊富昌......專班同學吳昌慶、李 家維、楊書結、陳聯興、潘宏良......助理何卉蓁、呂宜樺、李苑佳、李清音...... 晶片製造及量測支援聯華電子公司、矽品精密工業、智森科技、國家奈米元件實 驗室

Contents

中文摘要	I
Abstract	II
誌謝	III
Contents	IV
List of Tables	VI
List of Figures	VII
Chapter 1 Introduction	1
Chapter 2 System Planning	3
2.1 Standard Overview	3
2.1.1 IEEE 802.11a	3
2.1.2 IEEE 802.11b	4
2.1.3 IEEE 802.11g	5
2.1.4 Comparisons	6
2.2 From Standard to System Specification	7
2.2.1 Standard Requirement	7
2.2.2 Design Parameters	9
2.3 From Receiver Specification to Circuit Specification	17
Chapter 3 Receiver Architecture	
3.1 Switched Dual Band Architecture	22
3.1.1 Comparisons of Receiver Architectures	25
3.2 Concurrent Dual Band Architecture	36
Chapter 4 Device Characteristic and RF Modeling	44
4.1 Device Characteristic	44
4.1.1 Technology Comparisons	45
4.2 RF Modeling	
4.2.1 MOSFET Modeling	
4.2.2 Noise Modeling	
4.2.3 Modeling of Passive Devices	58
Chapter 5 Circuit Design	71
5.1 Low Noise Amplifier	71

5.1.1 Topologies	72
5.1.2 Power matching	73
5.1.3 Noise matching	74
5.1.4 Stability	76
5.2 Mixer	77
5.2.1 Active Mixer	77
5.2.2 Passive Mixer	78
5.3 Switched Dual Band Receiver	80
5.4 Concurrent Dual Band Receiver	86
5.5 Wideband LNA	91

Chapter 6 Chip Implementation	97
6.1 Layout Consideration	97
6.2 ESD Protection	102
6.3 Package and Modeling	103
Chapter 7 Measurement	105
7.1 Testing Plan	106
7.1.1 Matching Measurement	106
7.1.2 Power Measurement	107
7.1.3 Noise Measurement	
7.2 Experimental Results	
7.2.1 Packaged 5 GHz Band Receiver	110
7.2.2 On-wafer 5 GHz Band Receiver	114
7.2.3 Concurrent 2.4/5 GHz Dual Band LNA	117
7.3 Discussion	118
Chapter 8 Conclusions	121
8.1 Conclusions	121
8.2 Future Work	122
Appendix-A Package Data Sheet	126
Appendix-B PCB Data Sheet	128
Bibliography	130

List of Tables

Table 2-1 WLAN standard overview 6
Table 2-2 Receiver specification of IEEE 802.11a standard
Table 2-3 Noise Figure versus Data Rate 11
Table 2-4 IIP3 versus Data Rate 13
Table 2-5 IIP2 versus Data Rate 14
Table 2-6 System specification summaries
Table 2-7 Receiver link budget calculation 20
Table 2-8 802.11a/b/g receiver front-end specifications21
Table 5-1 The comparisons between common source and common gate topologies73
Table 5-2 Comparisons of some published LNAs at 5 GHz ranges [17]
Table 5-3 Comparisons between published papers and concurrent dual-band LNA88
Table 5-4 The summaries of simulation between switched and concurrent dual-band
receiver91
Table 5-5 Comparisons of the ideal and practical wideband LNAs 96
Table 7-1 Comparisons between simulation and measurement of 5 GHz receiver
frontend117

List of Figures

Fig. 2-1 Channel allocation and power levels of the IEEE 802.11a standard w	within
the UNII band	4
Fig. 2-2 IEEE 802.11a data rate versus modulation	4
Fig. 2-3 IEEE 802.11b channel location for 2.4GHz ISM band	5
Fig. 2-4 Receiving band distribution of WLAN in the range of 2.4~6 GHz	7
Fig. 2-5 Adjacent channel rejection example	9
Fig. 2-6 (a)IP3 curve (b)Desired signal corrupted by third order intermodulation-	11
Fig. 2-7 Interference specification in WLAN 802.11b receiver	16
Fig. 2-8 Out-of-band emission specification in WLAN 802.11b receiver	16
Fig. 2-9 Out-of-band blocking specification in WLAN 802.11b receiver	16
Fig. 2-10 Intermodulation specification in WLAN 802.11b receiver	17
Fig. 2-11 Behavior simulation of 802.11a standard	21
Fig. 2-12 Behavior simulation of 802.11b/g standard	21
Fig. 3-1 Switched dual-band receiver (a)Switched mode (b)Parallel mode	24
Fig. 3-2 Dual-IF heterodyne receiver	26
Fig. 3-3 (a)Image problem (b)The function of image reject filter	26
Fig. 3-4 Conceptual architecture of a switched dual-band receiver [16]	27
Fig. 3-5 (a)Simple direct-conversion receiver (b)Direct-conversion receiver	with
quadrature downconversion	28
Fig. 3-6 DC offsets in direct conversion receiver	29
Fig. 3-7 DC offset cancellation techniques	29
Fig. 3-8 Effect of even-order distortion	30
Fig. 3-9 Signal constellations due to gain and phase mismatch	31
Fig. 3-10 Effect of I/Q phase imbalance on demodulated QPSK data	32
Fig. 3-11 Power spectral density of flicker noise	33
Fig. 3-12 The proposed switched dual-band architecture	33
Fig. 3-13 Hartley image-reject receiver	34
Fig. 3-14 Weaver image-reject receiver	34
Fig. 3-15 Dual-band implementation of the Weaver architecture [13]	35
Fig. 3-16 Dual-band direct-conversion architecture (wideband mode) [15]	37
Fig. 3-17 Evolution process of two parallel receivers to a concurrent dual-band	
receiver [11]	38

Fig. 3-18 An architecture for the concurrent dual-band receiver employing image
rejection [11]38
Fig. 3-19 Frequency-domain signal evolution of the concurrent dual-band receiver
in Fig. 3-18 [11]40
Fig. 3-20 Evolution process of concurrent dual-band direct-conversion receiver42
Fig. 3-21 Block diagrams of concurrent dual-band direct-conversion receiver
(concurrent mode)42
Fig. 3-22 Downconversion operation of concurrent dual-band direct-conversion
receiver43
Fig. 4-1 The definition of ft46
Fig. 4-2 The definition of fmax47
Fig. 4-3 Comparison of ft and fmax versus Collector/Drain current and voltage[29]-47
Fig.4-4 The illustration of thermal noise48
Fig.4-5 The model of thermal noise48
Fig. 4-6 The illustration of shot noise49
Fig. 4-7 The illustration of shot noise49
Fig. 4-8 The characteristic of flicker noise51
Fig. 4-9 (a)Noise model of BJT (b)Noise model of MOSFET51
Fig. 4-10 Gain-to-DC power ratio plotted versus noise figure for 2-GHz LNA [29]52
Fig. 4-11 Linearity versus DC power for 2-GHz LNA [29]52
Fig. 4-12 (a)Distributed transmission line effect on the gate (b)Channel induced
gate resistance54
Fig. 4-13 Elmore non-quasi-static equivalent circuit56
Fig. 4-14 RF N/P MOSFET extension model of UMC 0.18µm mixed-mode/RF
CMOS process56
Fig. 4-15 An equivalent circuit to illustrate the noise source in a MOSFET57
Fig. 4-16 Equivalent circuit of a well resistor59
Fig. 4-17 Layout and equivalent circuit of N+/P+ non-salicided poly resistor in UMC
0.18 µ m mixed-mode/RF CMOS process61
Fig. 4-18 Circuit model of resistors62
Fig. 4-19 Vertical cross section of a poly-poly capacitor structure63
Fig. 4-20 (a)Top view of a fringe capacitor with fractal geometry and equivalent
lumped circuit model64
(b)Cross-section view of fringe capacitor using five metal layers65
Fig. 4-21 Cross section view of general MIM capacitor with equivalent
circuit model65

Fig. 4-22 Cross section view of MIM capacitor with equivalent circuit model	
by UMC 0.18 µ m CMOS process	65
Fig. 4-23 Capacitance-voltage characteristics and circuit model of MOS capacito	or65
Fig. 4-24 Layout and equivalent model of spiral inductor	67
Fig. 4-25 The illustration of eddy current	68
Fig. 4-26 Two-layer stacked inductor [16]	68
Fig. 4-27 Patterned ground shield	68
Fig. 4-28 Monolithic transformer (a)Physical layout (b)Schematic symbol	69
Fig. 4-29 (a)Planar transformer layout (b)Transformer model	70
Fig. 4-30 Stacked transformer [17]	70
Fig. 5-1 Commonly used single-band CMOS LNAs (a)Common-gate	
(b)Common-source with inductive degeneration	73
Fig. 5-2 Inductively degenerated LNA	74
Fig. 5-3 Trade off between power matching and noise matching	76
Fig. 5-4 (a)Single balanced mixer (b)Double balanced mixer	78
Fig. 5-5 Passive mixer	79
Fig. 5-6 (a)Time varying conductance model for passive mixer	
(b)Thevenin model of (a)	79
Fig. 5-7 Topologies of receiver frontend in this design	80
Fig. 5-8 2.4 and 5 GHz LNA circuits	81
Fig. 5-9 S-parameter and noise figure simulation of switched dual-band LNA	82
Fig. 5-10 Compromise between gain and NF simulation of switched dual-band	
LNA	82
Fig. 5-11 Stability factor of switched dual-band LNA	83
Fig. 5-12 Linearity simulation of switched dual-band LNA	83
Fig. 5-13 The simulation of 5 GHz mixer	85
Fig. 5-14 Simplified receiver circuit	85
Fig. 5-15 The simulation of switched dual-band receiver circuit	86
Fig. 5-16 NF simulation of switched dual-band receiver circuit at IF=5 MHz	86
Fig. 5-17 Simplified concurrent dual-band LNA	87
Fig. 5-18 The S-parameter and NF simulation (concurrent dual-band LNA)	88
Fig. 5-19 The input matching of differential RF and LO port (concurrent dual-bar	nd
receiver)	89
Fig. 5-20 The gain and P1dB simulation (concurrent dual-band receiver)	89
Fig. 5-21 NF simulation of concurrent dual-band receiver at $IF = 5 MHz$	90
Fig. 5-22 IP3 and IP2 simulation of concurrent dual-band receiver	90
Fig. 5-23 The ideal wideband LNA covering 2.4 and 5 GHz	92

Fig. 5-24 Matching techniques of a wideband LNA	92
Fig. 5-25 The S-parameter and NF simulation of the ideal wideband LNA	93
Fig. 5-26 IP3 simulation of the ideal wideband LNA	93
Fig. 5-27 Capacitor-tapped impedance transformation technique	94
Fig. 5-28 The practical wideband LNA covering 2.4 and 5 GHz	94
Fig. 5-29 S-parameter & NF simulation of the practical wideband LNA	95
Fig. 5-30 IP3 simulation of the practical wideband LNA	95
Fig. 6-1 Fabricated circuits in this thesis	97
Fig. 6-2 Common centroid layout	98
Fig. 6-3 (a)5GHz receiver frontend (packaged) (b)2.4/5GHz dual-band	
LNA(packaged)	98
Fig. 6-4 Parasitic effects caused by microstrip discontinuities	99
Fig. 6-5 The PCB layout technique	-100
Fig. 6-6 The EM simulation of a 180° balun	-100
Fig. 6-7 The phase and impedance measurements of a 180° balun	-101
Fig. 6-8 Board design of (a)5GHz receiver frontend	
(b)2.4/5GHz dual-band LNA	-102
Fig. 6-9 ESD protection circuits	-103
Fig. 6-10 I-V characteristic of gate-grounded NMOS	-103
Fig. 6-11 Package model	-103
Fig. 6-12 Pin-to-Pin isolation for package model	-104
Fig. 7-1 Measurement environment	-105
Fig. 7-2 Matching measurement setup	-106
Fig. 7-3 Power measurement setup	-108
Fig. 7-4 (a)The comparison between the two measurement conditions for package	d
5 GHz Rx	-108
(b)The comparison between the two measurement conditions for on-wafe	r
5 GHz Rx	-109
Fig. 7-5 Noise measurement setup	-110
Fig. 7-6 Gain & P1dB measurement of packaged 5 GHz receiver	-111
Fig. 7-7 (a)IP3 measurement of packaged 5 GHz receiver	-112
(b)IP2 measurement of packaged 5 GHz receiver	-113
Fig. 7-8 Noise figure measurement of packaged 5 GHz receiver	-113
Fig. 7-9 (a)RF port matching of differential 5 GHz receiver (b)LO port matching	
of differential 5 GHz receiver	-114
Fig. 7-10 Gain&P1dB measurement of on-wafer 5 GHz receiver	-115

Fig. 7-11 (a)IP3 measurement of on-wafer 5 GHz receiver	115
(b)IP2 measurement of on-wafer 5 GHz receiver	116
Fig. 7-12 Noise figure measurement of on-wafer 5 GHz receiver	116
Fig. 7-13 S-parameter measurement of concurrent dual band LNA	117
Fig. 7-14 Bond wire used as source inductor of LNA	118
Fig. 7-15 Inductance of two wires as a function of spacing	118
Fig. 7-16 Layout issues of on-wafer 5 GHz receiver	119
Fig. 7-17(a) 3-port inductor (b) Monolithic transformer	120
Fig. 7-18 Device modeling flow	120
Fig. 8-1 IP-revise design mythology proposed in this thesis	124

Fig. 8-2 The interconnection between 5 GHz receiver and 5 GHz synthesizer12	25
Fig. 8-3 The measurement of connecting 5 GHz receiver and 5 GHz synthesizer	
design12	25
Fig. 8-4 Embed VCO into receiver frontend12	25

STATE STATE

