AR B EIR 2 B R 48 B E R

Abnormal Domain Detection by Discovering Mutual
Associations from Large-Scale Traffic Logs

R OAE D EIRHE

BRI BXE HEK

PERB ht+N\F +— A

FR AR AL B B MR B 2 B F IR AR R

Abnormal Domain Detection by Discovering Mutual Associations from
Large-Scale Traffic Logs

HOR A EIRIE

Student : Tsung-Wei Wang
HBEHK ZXE Advisor : Wen-Chih Peng
xR @ R F
AR A2 AT R R A
FR mm, X

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

November 2009

Hsinchu, Taiwan, Republic of China

FERBEATANF+—A

FEFABA B Bt P AR B 2 B 48 1A R

L T B"EHIZ X

3R B KRG F A AR AT AR Lt

5

1% 3

AR IR P e — 18 £ B RAE o B b o IREEEIRARFS T I a4k H) S
AP RZEC A —BEEMAE AEBZENART > BRERTHE P45
é%é’] B3R ABETUEBEFNRENBATE RETHSLE fé’ﬂﬁ*—]&%
BB o —ARRW > BB R AR I REME] RS Rk BB MR -
?ﬂﬂﬁiizﬁkgié’]ﬁzi‘mﬁﬁl Zwy 1P - 4 2007 ﬁﬁﬁﬁ“ fast flux é’]#iﬂ‘f
#WIER A& Storm Worm 78 4k P2 1 — MY BREETE > BTGB AEKBEL
A HZ 0 EEEE P U b e £ 2008 #J’#}E » Conficker.C #—# &
ETHBETE ANABBEBRERNEELFRREREREBEENES - HIE
B e EAL P T LU IR 0 — AT AR ANMER R S b 3R R [P nk ey B F
WBARR T A B ik e B AR oA PAYE - ABAAR Y 0 HMMER [P
Rrhk 2 P oY B SR M RAE B B EBE R e Kt - BB AR RMAZHAE—F
DNS 224k d IP dbabehy & RER A R F - RBHRMGEBEER - 256 DNS 2
b IP R M e b B w R R Re) 5 B B F R a4 fast flux
RAMBMKEENER AR EBRZAR L > KRR T EF@ERMAA &
framework - &8 framework &4 TwW R34 BAKMBEKRAE PR L4
IR [P Ak R o B iR > B2 HAPA) A 2 Hh B AR M R BEFR 205K P B proxy Af
¥ By noise £ F =BT HAME—FSHEL [P a8 B E M > k1E
BAA RSB N E E FeyEs -

Abnormal Domain Detection by Discovering Mutual Associations from Large-Scale
Traffic Logs

student : Tsung-Wei Wang Advisors : Dr. Wen-Chih Peng

Department of Computer Science
National Chiao Tung University

ABSTRACT

Security is one of the major concerns for web services. In particular, botnet which
control a group of computers for malicious-purpose brings a lot of online threats.
Generally speaking, controlling a botnet includes two mechanisms: propagation
strategies and communication channel establishment. Classic communication channels
are established via hardcoded IP. Recently, fast-flux hosting characterized rapid
changes of IP address, is widely applied in Storm Worm Botnet. More recently,
Conficker.C f takes fast flux to the next level by using dynamically generated domain
names to find out its control servers and load instructions from them. The history of
advances of communication strategy suggests that a domain detection model which
enables to handle not only rapid changes of IP address but also that of domain names
1s desired.

In this study, we propose to highlight the utility of mutual associations to offer
anomaly domain detection. Specifically, our framework constructs a detection model
based on mutual associations among IP classes, which results in a set of profiles.
Afterwards, the predicted mutual associations are utilized to estimate the degree of
abnormality for a target domain, which set us apart from current approaches.

il

35 Eil

HRARMES SRR ®RBET > BRETRED] TH LI m > g
UXELMEEAFROBTALE CEARKEREZRMAYBEEIS > RF
AFRALE LR ERE LRMERETURMELRBITHER BREY
MRV ERZEETHS ARMFLOBREY KRR SF LERF AT
ZERET > LBERTHSLETREZR o

CERHBREAN > BAARN T FTERFSZHHBE LT > ERTUERE
LA REE Lo RAHARA B RAAES — 0 -

AR BAFRIRH young #) X IFEIEAF > £ HRR BIINE BB 09 B AR 0 R
% ey B e o RARCT A 85 B 09 FE BT

il

Contents

1 Introduction
2 Related Works

3 Preliminary

3.1 TrafficLogs e
3.2 Problem Formulation
3.3 Framework Overview

4 A Framework to Detect Abnormal Domains

4.1 Preprocessing Lo UL e e e
4.2 Proxy Filtering e e e e e
4.3 Mutual Associations Discovery . . UL L L oL oL oL
4.4 Abnormal Domain Estimationo ...

5 Experimental Results

5.1 Dataset
5.2 Quality Study
5.2.1 Accuracy of Proxy Filtering
5.2.2 Accuracy of Mutual Association Discovery
5.2.3 Accuracy of Abnormal Domain Detection
5.3 Scalability Study
5.3.1 Experimental Settings
532 Results

6 Conclusion and Future Work

N 9 N

o

11
13

16
16
17
17
19
22
23
23
23

26

List of Figures

3.1

4.1
4.2

5.1
52
5.3
54
5.5
5.6
5.7
5.8

An overview of proposed framework for abnormal domain detection. 7

An example of proxy detected by mutual associations. 10

An example of co-clusters identified by mutual associations between domain names

andIPclasses. 13
Precision of proxy filtering on NCTU dormitory dataset. 19
Precision of proxy filtering on Trend Inc. dataset. 20
Evaluation on mutual association scores (Trend). 21
Evaluation on mutual association scores (NCTU). 21
Recall-precision graph of the abnormal domain detection model for FFSN corpus. . 23
Runtime comparison for different number of machines. 24
Runtime comparison for different sizes-of trafficlogs. 25
Runtime composition analysis on 114M and 256M trafficlogs. 25

List of Tables

4.1

5.1
5.2
5.3
54

Top five IP classes adopted by "www.google.com” and "www.gmail.com”. 12
Dataset Statistics L e e 16
A list of software products collected by performing nmap scanning test. 18
Groundtruth Statistics. 20
The IP classes adopted by “runescape.com.” 22

Chapter 1

Introduction

The advance of internet technology not only improves the quality of our lives but also raises the issue
of cybercrimes. Fast-flux hosting supports a variety of cybercrime activities. One variant of fast-flux
hosting uses rapid change of IP addresses to hide their location of website where illegal activities are
performed. In particular, malicious use of fast-flux takes the form of hiding the command and control
server using compromised machines (“zombies”) that are used in DDoS, spam campaigns, phishing
attacks, malware delivery by botnet operators {1][2]. Moreover, advanced computer worm such as
Conficker is controlled by a pseudo-random domain name generator to hide the actual location of
control server [3]. Some of users fall for these attacks:by performing clicks on malicious websites,
which can lead to exposure of credentials information, downloading malware, or other undesirable
effects. As aresult, the development of effective and efficient abnormal domain detection framework
is highly desired.

The most related work about abnormal domain detection is fast-flux service network (FFSN)
detection. Previous approaches for FFSN detection focus on modeling the characteristic of rapid IP
changing as a feature to distinguish fast-flux domains from benign domains. The authors in [4] train
a classifier according to designed features such as number of unique A records returned in all DNS
lookups to decide whether a given domain is FFSN or not. While they provide a formal detection
model for FFSN detection, it requires to monitor traffic logs for a period of time to obtain such
feature values. In order to detect FFSN as early as possible from daily large-scale traffic logs, it is
necessary to establish a reliable framework from different perspective.

Internet service providers (ISP) that offer their customers access to the internet will log cus-
tomers’ connection events over time. Traffic stream provides valuable information. An effective
data mining mechanism to summarize useful information from raw traffic stream is hence an im-
portant issue. For example, a useful information for entities (e.g., website) which includes website

chains can assist security expert to track malicious hosts or identify victims effectively. Similarly, a

profile of trustworthiness record of a website can serve as a reference for filtering websites of low-
quality. A profile of static traffic statistics such as number of visited websites over time can assist
security expert to notice abnormal behaviors. There is no guarantee that which feature leads to the
best detection results. As a result, an entity profile including multiple types of features can pro-
vide a more comprehensive summary and is expected to be more effective during abnormal domain
detection.

An automatic abnormal domain detection mechanism is also desired to block suspicious web-
sites as early as possible. As reported from [2], fast flux hosting supports a variety of cybercrime
activities such as fraud, identity theft, online scams and is considered one of the most serious threats
today. Adversaries usually host or distribute malicious content via FFSN to better operate huge
amount of zombie hosts to postpone being blocked by ISP or antivirus companies. Newly invented
computer worm such as Conficker goes to another level by performing a pseudo random domain
name generator to last the communication channel between control node and zombies [5]. There-
fore, designing an automatic and efficient domain detection framework is necessary to reduce the
cybercrime activities.

In this study, we develop a profile-based framework for detecting abnormal domains, which
scales to large traffic logs and enables for handle noise in traffic logs. The framework consists of four
components: 1) preprocessing, 2) proxy filtering, 3) mutual association discovery, and 4) abnormal
domain estimation. Specifically, we first transform raw traffic logs into an adjacent matrix. Then,
based on our observation on proxy servers, we design a metric to estimate proxy scores for an IP
class. Third, to exploiting the relations between domains and IP classes, we design an algorithm to
measure the mutual association between a pair of IP classes. Finally, regarding a DNS record, we
investigate the connectivity of the domain and estimate its anomaly score based on computed mutual
associations.

Instead of detecting abnormal domains by tracking and modeling rapid IP changing behavior
over time as [4], we propose to detect abnormal domain by discovering mutual associations between
website and IP addresses in a single time slot. In essence, the task of performing repeated DNS
lookups for a period of time to derive the number of unique A records for FFSN detection is time-
consuming. In contrast, discovering mutual associations from website and IP address is expected to
be practical. Consequently, we focus on designing an automatic framework for abnormal domain
detection by mutual association discovery. The discovered mutual associations can be utilized for
anomaly score computation. In addition, to find accurate mutual associations, it is required to elim-
inate noises (e.g., proxy) from raw traffic logs, which lead us to achieve another contribution of this

study.

In summary, the main contribution of our study is as follows:
e The development of approach for discovering mutual associations.

e The design of parameter free framework for abnormal domain detection by exploiting mutual

associations.

e The development of approach for proxy detection algorithm by exploiting co-occurrences

among domains

The remainder of this paper is organized as follows. In Section 2, we briefly introduce related
work about fast-flux service network detection. In Section 3, we present notations, data represen-
tation and then give formal problem definitions. In Section 4, we describe the proposed framework
for abnormal domain detection framework in detail. In Section 5, we conduct several experiments,
report quality studies and demonstrate the scalability of our framework. Finally, we offer our con-

cluding remarks in Section 6.

Chapter 2

Related Works

In this section, we review the related work about fast-flux service network. Botnet (a.k.a. Zombie
Network) is a serious issue in the field of network security. Many research work has been proposed
to discuss and solve this problem[6][7]. Botnet can be caused by variant propagation strategies
[8][9]. In addition to propagation strategies, there must be communication channels between the
botnet owner and zombies. At early stage, botmaster uses a single rendezvous point to communicate
with its zombies. However, the communication channel can be easily blocked by IP blacklist. As a
result, fast flux technique was developed to foil IP blacklisting due to its rapid changes of IP address
mapping to a domain name.

Fast flux is one of the issue caused by botnet.-Adversaries usually host or distribute malicious
content via botnet. Delivery malicious content by a single zombie host can be easily stopped by ISP
or antivirus companies. As a result, a mechanism FFSN to better operate huge amount of zombie
hosts is developed to postpone the time of being blocked by ISP or antivirus companies. Fast flux
service network uses rapid and repeated changes to host and/or name server resource records, which
result in two characteristics: 1) IP address diversity: IP address to which the domain name of
an Internet host or name server resolves changes rapidly and 2) No physical agent control: the
flux-agent that scammer can rely on has no guaranteed uptime [4][2][1].

The ICANN Security and Stability Advisory Committee (SSAC) recently release a report [2].
This Advisory describes the technical aspects of fast flux hosting and fast flux service networks. It
explains how the DNS is exploited to encourage malicious activities that employ fast flux hosting,
identifying the impacts of fast flux hosting, and calling particular attention to the way such attacks
extend the malicious or profitable lifetime of the illegal activities conducted using these fast flux
techniques. It describes current and possible methods of mitigating fast flux hosting at various
points in the Internet. SSAC considers that with appropriate use of mitigation methods would make

the practical mitigation methods universally available to registrants, ISPs, registrars and registries

(where applicable for each).

According to [4], fast flux hosting can be classified into three categories:

e Basic fast flux hosting where IP addresses of malicious web sites are fluxed

e Name Server (NS) fluxing where IP addresses of DNS name servers are fluxed
e Double flux, where IP addresses of web sites and name servers are fluxed.

The authors in [4] present the first empirical study of fast-flux service network(F' F'SNs). They
cast FFSNs detection as a classification problem which distinguishes FFSNs and other legitimate
domains (e.g., Content Distribution Networks). Based on two characteristics of FFSNs mentioned
previously, they train a classifier according to three designed features including 1) number of unique
A records returned in all DNS lookups , 2) number of nameserver records in a single lookup, and
3) number of unique ASNs for all A records to decide whether a given domain is FFSN or not.
The authors demonstrate the effectiveness of proposed features via a long-term monitoring (i.e.,
periodically performing DNS lookups to track measurements). Moreover, the authors provides three
strategies to mitigate the threat posed by FESNs by automatically collecting detected domains in
a domain blacklist. In particular, the blacklist can be used 1) by an ISP to protect its clients from
requests for fast-flux domains, 2) by an domain name register to shot down domains blacklist, and
3) by email servers to filter spam. While the authors developed effective empirical metrics for
detecting new fast-flux domains automatically, we look forward to detect new fast-flux domains in
an automatic and efficient way for large-scale traffic logs which set us apart from previous work.

Although fast-flux technique increases the difficulty to block the communication channel, new
approach is proposed to against existing security solutions. Specifically, a computer worm, Con-
ficker [3], discovered in early November 2008 further improves the way to control the botnet. So
far, five variants of the Conficker worm are known. Recent estimates of the number of infected com-
puters have been more notably difficult because of changes in the propagation and update strategy
of recent variants of the worm [10]. In particular, Conficker takes ’fast-flux’ to the next level by
using dynamically generated domain names to find out its control servers and load instructions from
them [5]. Current methods for Conficker detection use software technique to analyze the binary
code of Conficker. Then, security experts can find out the full list of domains names generated by
the pseudo-random generator inside Conficker[11]. However, to automatically deal with large scale
traffic logs and to detect abnormal domains as early as possible is still a necessary and challenging

task.

Chapter 3

Preliminary

In this section, we first introduce the data set and our data representation. Then, we give the formal

problem definition.

3.1 Traffic Logs

The traffic log contains a set of events. Each-event consists of a set of entities. In particular, we
extract source IPs, destination domain names, hosted IPs, and timestamps. In our setting, we refer
to a domain as an “domain” object, and refer to the IP class of a hosted IP as an "IP class” object
respectively. We denote the set of domain object-as H'; we denote the set of IP class object as C'.
Each instance of two object types is refer to h and c respectively.

In this paper, we represent the collection of domain and IP classes as a bipartite graph. In
particular, we consider each instance for each type of object as a node in the graph. The bipartite
graph G is consisted by two set of vertices, V' and V¢, and a set of hosting relations £(#:¢), VH
corresponds to domain nodes; yre corresponds to IP class nodes. Furthermore, if a domain A hosts
on an IP class ¢, then the hosting information is represented as e(u,v) where u corresponds the
domain node h and v refers to the IP class c. We use an adjacency matrix, A,,x,, to model the
relationship between the “domain” object and "IP class” object. Particularly, the subscripts m and n
denotes the sizes of domain objects and IP class objects. Also, we represent the elements in a matrix
at the i*" row and ;%" column of the matrix a as A(i, j). Each element A(3, j) is determined by how

many times a domain h; hosted on IP class c;.

3.2 Problem Formulation

Given a domain and its adopted IP classes in DNS record, how can we estimate the degree of
abnormality for the domain and find the similarity for all its adopted IP classes? For example, if
a domain adopts a combination of IP classes among which any pair of IP classes is seldom co-
occurred, the domain could be a suspect domain, which are randomly generated for hiding their
location on the internet.

To detect such domains, the following issues should be addressed. First, the detection framework
should be scalable to large-scale traffic logs (daily traffic logs contain more than 200M records).
Second, the detection framework should be able to handle noise data. Third, the detection framework
should be automatic. To brief, the proposed solution for detecting abnormal domains should be

scalable, noise insensitive, and parameter free.

3.3 Framework Overview

Our goal is to detect abnormal domains automatically as early as possible. Figure 3.1 illustrates
the overview of our framework. Following describes formal statements for each component in our

framework.

DNS

Anomaly ' Records

Prediction

_ Proxy Mutual
| froxy -
Preprocessing Filtering Associations

Cloud Computing Environment ‘hadmﬂp

Figure 3.1: An overview of proposed framework for abnormal domain detection.

According to collected traffic logs, we learn that proxy servers cause major noise connections
which will consequently mislead the following procedure for mutual association discovery. Hence,
the first problem to abnormal domain detection is noise filtering which can be formally defined as

follows:

e Problem 1: Noise Filtering

Given a set of collected domains, H, and a set of collected IP, (', find a filtering function g for IP
classes in order to remove proxy servers from H.
Secondly, once we remove proxy-related connection records from collected traffic logs, we start

to construct co-clustering information for each domain which can be formally defined as follows:
e Problem 2: Mutual Associations Discovery

Given a bipartite graph G,,,«,,, find a function [to quantify mutual associations between any pair of
IP class such that they shares similar adjacent domains.

After we feed mutual association information for each domain, we have to estimate the anomaly
score for candidate domains based on co-clustering information so as to efficiently detect suspicious

domains. The problem for abnormal domains detection is formally defined as follows:
e Problem 3: Abnormal Domain Detection

Given a mutual association matrix M and a anomaly threshold ¢, find an anomaly scoring function

f for measuring domains in order to detect. abnormal domains whose anomaly score is no less than

J.

Chapter 4

A Framework to Detect Abnormal Domains

In this section, we will introduce each component in detail. Our framework mainly contains four
procedures. First, the raw traffic logs are transformed into an adjacent matrix. Second, to mitigate
the effect caused by noise entries, a proxy filtering algorithm is proposed to remove proxy-relevant
entries from the adjacent matrix. After that, a mutual association algorithm is presented to build
a mutual association matrix from filtered adjacent matrix so that the occurrence of each pair of IP
classes can be modeled and quantified into profiles. Finally, the profiles are utilized to estimate

abnormal scores for each domain.

4.1 Preprocessing

Here, we describe the procedure to establish a bipartite graph for domain nodes and IP class nodes.
First, we transform each hostname into domain names. For example, the domain name of the
hostname "www.google.com.tw” is ”google.com.tw”. Similarly, the domain name of the hostname
“www.google.com” is ”google.com”. Afterwards, we compute the number of times that a domain
name h;, adopts an IP class ¢;, which corresponds to the element A(hy,c;) in k™ row and ** column

of A. Consequently, by repeating this computation, we complete the matrix A.

4.2 Proxy Filtering

Proxy servers act as an intermediary for clients who connect to proxy servers to request resources
available from different servers on the internet.

Traffic logs with proxies involved will mislead the procedure of mutual association discovery.
Hence, the removal of proxy related information is required. To achieve this, we observe the behav-

ior reflected from anomaly connections caused by proxy servers in traffic logs. Figure 4.1 shows an

example of associations between domain names and IP classes. Based on the distribution of adopted
IP classes, domain names can be divided into two clusters, domain names belonging to Google Inc.
and those belonging to Facebook Inc.. On the other hand, based on registered domain names, IP
classes can be divided into two clusters, IP classes belonging to Google Inc. and those belonging
to Facebook Inc.. In addition, we also find some IP classes (e.g., ”216.239.122” in the example),
who connect to more than one type of domain names (e.g., both Google and Facebook Inc. domain
names) which are confirmed as proxy servers. Such observation inspires us to develop our proxy

filtering algorithm as described below.

Facebook Inc. Facebook Inc.
www.facebook.com 69.63.176
. 69.63.184
wiki.developers.facebook.
com 69.63.180
www.facebook.no I 69.63.186 1
| 69.63.178
0.channel09.facebook.com ./ ,,,,,,, —
01000877938.channel28. /7 2 216239.122 Proxy

facebook.com 74.125.77

74.125.91
64.233.161
209.85.227
wwwgoogle.com
209.85.153
goggle.dk 209.85.229
74.125.87
googel.com
74.125.127
Google Inc. 209.85.227

Google Inc.

Figure 4.1: An example of proxy detected by mutual associations.

The heart of proxy filtering is to measure the total contributions contributed by each adjacent
domain name to an IP class. Algorithm 1 and 2 show the full pseudo code to parallelized measure
proxy score for each IP class.

There are two stages in Algorithm 1 and 2. Suppose we want to find the proxy score for a given
IP class, ¢;. Let A(:,c;) be the i*" column of A. In other words, A(:,¢;) is a vector with each element
Ap, , equivalent to number of adoptions between IP class ¢; and domain hy. Similarly, let A(hy,:)
be the k" row of A. Let sum(A(hy,:)) be the summation of each element in A(hy,:). First, we can

compute the contribution of an adjacent domain name hy, to an IPC ¢; as follows:

10

sum(A(hy,:))
A(hg, ¢;) + smooth x sum(A(hy,:))

where smooth is a smoothing factor which can control the rate of growth as A(hy, ¢;) decreases.

P = 4.1)

The maximum value is —-— when A(hy, ¢;) reaches zero.
smooth

Afterwards, for an IP class ¢;, the overall proxy score is estimated as:

k=|H|

P= [] P (4.2)
k=1

Basically, an IP class c¢; obtains higher proxy score if 1)an IP class node c; is adjacent to more

domain nodes, and 2) the frequency that h; adopts ¢; is lower.

Algorithm 1 ProxyFilteringMapper(k, V)
1: k = a domain name hy,

2: 'V = the k" row of A, A(hy,:)

3: for each element A(hy, ¢;) in A(hy, :) do
4. Compute the proxy score F; ;, by equation 4.1
5s: Emit (¢;, P,)

6: end for

Algorithm 2 ProxyFiltering Reducer(k, V')
1: k =anlIPclass ¢

2: Initialize P, «— 0

3: for each proxy score P, € V do
4: P, + P, x P, by equation 4.2
5: end for

. Emit (¢;, P;)

[*))

We evaluate the accuracy of our proxy filtering algorithm by performing Network Mapper (nmap)
scanning tests. Nmap is a network scanning, auditing and penetration tool. It determines which hosts
are alive on a network and what services and ports are available or open. By using nmap to scan
discovered host, we can verify whether the scanned host is a proxy or not. The detail experiments

will be reported and discussed in Section 5.

4.3 Mutual Associations Discovery

The key idea in our detection framework is to discover mutual associations based for all pairs of IP

classes. A mutual association is relied on two relations:

11

e domain names belong to an organization usually use a set of similar IP classes, and
e a set of IP classes usually used by domain names of the same organization.

Table 4.1 illustrates an example of IP classes that two domain names adopted as well as their
adoption counts. In this case, the two hostnames “www.google.com” and “www.gmail.com” that
created by Google Inc. but with different domain names still shares high similarity in their adoption
list of IP class. Similarly, some IP classes can only used by specific organizations. Figure 4.2
demonstrates an example of domain clusters and IP class clusters. A set of domains that share
similar traits at their domain names is hardly to distinguish which belongs to Google Inc. and which
is not. However, by exploiting the associations between domains and IP classes, the set of domains
can be divided into ”Google Inc.” cluster and "Non Google Inc.” cluster based on their adoption
history on IP classes. Instead of clustering from the perspective of textual analysis, this example

illustrates the importance of mutual associations in distinguishing abnormal domains.

Table 4.1: Top five IP classes adopted by "www.google.com” and “www.gmail.com”.

Hostname 74 72 66 64 _ 209.85.165 209.85.133 209.85.137 216.239.61
www.google.com 1095 1095 1095- 1095 1094 1089 0 1083
www.gmail.com 1075 900 102 - 265 38 503 330 306

The key point is to construct a proximity matrix for IP class nodes, which in turn can be cast as
finding a proximity function to measure associations between any two IP classes.

Algorithm 3 and 4 list detained procedures to compute the proximity matrix. Overall, we adopt
the idea of mutual information for this purpose. The degree of mutually associated between two IP

class ¢; and c; with related to a domain name hy, is formalized as follows:

Mi,j,k = A(hk, Ci) X A(hk, Cj). (43)

In general, the value of M, ;1 is higher if 1) both ¢; and ¢; are adopted by 7y, and 2) the frequencies
of respective adoptions by h;, are higher. Besides, if at least one IP classes is not adopted by hy,
M; ; 1. goes zero.

Afterwards, for a pair of IP classes ¢; and c;, their mutual association score is computed by

aggregating M; ; ,, over domain space H as follows:

Mi,j - Z Mi,j,k~ (44)

hreH

12

Not Google Inc.

) / 216.65.41
" wwwgoggle.com e— 66.98.242
/ 75.126.148

www-gmail.com

/ 208.109.133
goggleearth.com -// 74.125.77
74.125.91

. Www-google.com *

Not Google Inc.

64.233.161
209.85.227
wwwgoogle.com

209.85.153
goggle.dk 209.85.229
74.125.87

googel.com
74.125.127
Google Inc. 209.85.227

Google Inc.

Figure 4.2: An example of co-clusters identified by mutual associations between domain names and

IP classes.

Mutual association ranges from O to co. Not that mutual association score is symmetric. Basically,
a pair of IP classes c; and c; has high mutual association- if they share similar adoption histories.
In other words, if they are frequently adopted by similar lists of domains, they are mutually more

associated.

4.4 Abnormal Domain Estimation

The goal of abnormal detection for a given domain name is to estimate the degree of being anomaly
with its mapping address. To achieve this, we design an anomaly function to map a given domain
name to a score by using discovered mutual associations. The basic idea of anomaly score com-
putation is to measure the diversity of mutual associations between any pair of IP classes that a
domain is adjacent to. In other words, if the set of IP classes that a domain adopted diverges from
IP classes such that each pair of which are less associated to each other, then the domain has high
possibility to be an abnormal domain. Another extreme case is when the set of IP classes that a
domain adopted converges on a set of IP classes each of which are highly associated, the domain is
considered benign.

The anomaly score computation can be cast as bridging score computation in graph mining.
Bridging score measures the degree of connectivity to other groups on a graph. Betweenness

[12][13][14] is designed to measure the degree of connectivity. However, as discussed in [15],

13

algorithms for computing betweenness require a considerable computation costs. The authors in
[16] consider the degree of connectivity of a node on a graph as a metric for evaluating anomaly
score of a node on a graph. Instead, they make use of relevance score of neighborhood of a target
node for efficient anomaly score computation. We borrow that idea for anomaly score computation
and design our anomaly score based on mutual association score discussed above as follows.

Given a collection of suspicious DNS records, let S denotes the matrix where each entry S(hy, ¢;)
indicates how many time the suspicious domain h; adopts the IP class ¢;. The parallel mutual as-
sociation score selection for each DNS records is described below and provide the pseudo code in
Algorithm 5 and Algorithm 6. Particularly, regarding a domain name Ay, let its adopted IP classes
as Np, = {ci|S(hg,c;) > 0}. Then, we select the mutual association scores between any pair of
elements M (i, j) for ¢; and ¢; in Nj,.

After that, we take the summation of all pairs of mutual association score as follows:

R(Ny,) = > My (4.5)

CisCj €Np, ,CiFC;

Finally, we obtain the bridging score by dividing one by average ﬁ(Nhk) as follows:
(|Nhk |)
bs(hp)= —=2——. (4.6)
1+ R(Ny;)

Note that the value of bridging score is between 0 and (lNgk |). A domain has high bridging score if
1) the domain adopts many IP classes (i.e., IV}, is large), and 2) summation of all pairs of mutual

association is small.

Algorithm 3 Mutual Association Mapper(k, V)
1: k¥ = a domain name hy,

2: V = the k" row of A, A(hs,:)
3: for each element A(hy,c;) in A(hy,:) do

4: for each element A(hy, ¢;) in A(hg,:) and ¢; # c; do

5: Compute the mutual association score M ;. by equation 4.3
6: Emit (¢;, (¢, M; ;1))

7: end for

8: end for

14

Algorithm 4 Mutual Association Reducer(k, V')

1

2:

3:

4.

: k =anIP class ¢;
Initialized M; ; < 0O for all ¢; in values of V/
for each map value (c;, M, ;) € V do

M; j < M; ; + M, ;1 by equation 4.4
end for
for each IP class c; associated to ¢; do

Emit (¢;, (¢;, M, ;))

. end for

Al

gorithm 5 BridgingScoreMapper(k, V)

1:

2:

3:

10:

Let ki = a suspicious domain name /,
Let Vi = the k' row of suspicious DNS record matrix, S(hy,:)
Let ko = an IP class ¢;
Let Vi = the i*" row of mutual association matrix, M(c;,:)
for each element S(hy, ¢;) in Vi do
Emit (c;, hy))
: end for
. for each element M (c¢;, ¢;) in V- do
Emit (c;, ¢;))

end for

Al

gorithm 6 BridgingScoreReducer(k, V)

1:

2

3

4

5:

k = an IP class ¢;

. Let Vi = the set (S(.,¢;), M(c;,2))

. Let Vo = the i*" row of mutual association matrix, M (c;,:)
: for each value (hy, ¢;) € Vi do

Emit (hy, M(i, 7))

end for

15

Chapter 5

Experimental Results

In this section, we give experimental results for our abnormal domain detection framework. Our
evaluation mainly focuses on 1) the quality study and 2) the scalability study. We gives a brief
introduction of the data set. Then, we report the experimental results of proposed proxy filtering al-
gorithm, mutual association discovery and abnormal domain detection. Finally, we demonstrate the
scalability of our framework with various input size and number of computing nodes in distributed

environment.

5.1 Data set

We conduct our experiments by using network traffic logs from Trend Inc. and NCTU dormitory
respectively. Overall, there are 256M events in Trend data set in one day. NCTU dormitory traffic
logs contain 90M events are collected during Nov. 6-17, 2009. The detail statistics about the data
sets are summarized in Table 5.1

Table 5.1: Dataset Statistics

NCTU_HTTP Trend HTTP

Number of Logs 90,830,834 256,815,644
Distinct destination IP 158,432 51,6176
Distinct destination IP class 43,694 142,141
Distinct destination hostname 176,529 1,733,899
Distinct source IP 9,963 295,197
Duration 1 week (11/6 - 11/17) 1 day (5/19)

16

5.2 Quality Study

In this section, we evaluate the performance of our proxy filtering algorithm and abnormal domain

detection in terms of accuracy.

5.2.1 Accuracy of Proxy Filtering
Evaluation Metrics

To evaluate the performance of our proxy filtering algorithm, we compute a precision metric as

follows.

e Precision : Number of correctly detected IP address among all IP address returned by our

approach

In our experiment, we return a list of IP address as well as its port detected by our approach.
Then, we verify each of them by performing nmap (Network Mapper) scanning test. Namp takes
an [P address and a port to discover services, software product used to run a service, exact version
number of that product etc. on a scanned host. By manual analysis from the software product used
to run a service responded from a scanning test, we can confirm whether a scanned IP address is a
proxy server or not.

Table 5.2.1 shows an example of returned information by nmap scanning test during our exper-
iment. Some software products such as ”AkamaiGHost”, “nginx http proxy”, ”Squid webproxy”,
and ”Sandpiper Footprint http load balancer” are labeled proxy-relevant. If a target IP class is run-

ning one of the proxy-relevant software products in the list, then the IP class is confirmed as a proxy

SErver.

Results

Figure 5.1 and Figure 5.2 show the precision as function of the length (up to 100) of the returned list
for proxy filtering with and without smoothing factor included on different data sets. We set smooth
to 0.1. As precision of filtering with smoothing factor is nearly twice higher than that of filtering
without smoothing factor, we can conclude that proxy filtering with the introduce of smoothing
factor achieves more effective detection accuracy than that of non-smoothing case. This is because
by taking smoothing factor into consideration, proxy scores will not be dominated by low-frequency
adoption of IP classes.

In most cases, the precision is around 70% achieved by smoothed proxy filtering on NCTU dor-

mitory data set in Figure 5.1. During evaluation, some scanning tests are failed which might owing

17

Table 5.2: A list of software products collected by performing nmap scanning test.

Software Product Proxy Or Not
3Com switch webadmin No
AkamaiGHost Yes
AOQOLserver httpd No
Apache httpd No
Apache Tomcat/Coyote JSP engine No
Caucho Resin JSP engine No
Google httpd No
hp color LaserJet 4650 No
HP Jetdirect httpd No
HP LaserJet No
IBM HTTP Server No
Icecast http statistics plugin No
Jetty httpd No
lighttpd No
Microsoft IIS webserver No
Microsoft Windows Media Server No
Netscape Enterprise httpd No
Netscreen administrative web server No
nginx http proxy Yes
Sandpiper Footprint http load balancer Yes
Squid webproxy Yes
SunONE WebServer No
Urchin RSS aggregator No
Zeus httpd No

18

90

3 n‘on-sm‘oothir‘lg e
80 smoothing s~

Precision (%)

10 20 30 40 50 60 70 80 90 100
Top-K

Figure 5.1: Precision of proxy filtering on NCTU dormitory data set.

to the downtime of scanned host. In that case, even though an IP class behaves like a proxy server
in collected raw traffic logs, it will be considered a false alarm in our experiments. Consequently, it
causes the decrease of detection accuracy. Overall, in'the collected proxy pool, 298 (around 24.9%)

IP classes lack of software product information.

5.2.2 Accuracy of Mutual Association Discovery

To evaluate the performance of proposed mutual association discovery algorithm, we collect IP
classes for well-known corporations on the internet. Afterwards, to demonstrate the effectiveness of
mutual associations for distinguishing domains, examination of mutual associations for IP classes
within a company (e.g., Google) and between two different companies is performed. Specifically,
in the case of intra-company experiment, we collect the IP classes adopted by each company. Then,
for each pair of IP classes corresponding to a company, we compute its mutual associations. Finally,
we collect all pairs of computed mutual association scores and draw a distribution for that. In the
case of inter-company experiment, for each pair of companies, we compute mutual associations
by iteratively taking one IP class from respective set of IP classes. Finally, we collect all pairs of
computed mutual association scores and draw a distribution for that.

A public AS has a globally unique number, an ASN, associated with it. This number is used both
in the exchange of exterior routing information (between neighboring ASes) and as an identifier
of the AS itself. Following the same way, we take ASN as the groundtruth to evaluate mutual
association algorithm. Detail statistics of groundtruth for evaluation are summarized in Table 5.2.2.

As illustrated in Table 5.2.2, only a few IP classes under a company appear in our dataset. Hence,

19

90

n‘on-sm‘oothir‘lg ——
80 & smoothing &

Precision (%)

Top-K
Figure 5.2: Precision of proxy filtering on Trend Inc. data set.

a group of IP classes under an ASN may not share similar characteristics. For example, some serve
as PC, others may serve as web servers. Although the associations between IP classes and company

can be aware via ASN, we still cannot learn that which pair of IP classes are mutually associated

and which pairs are not.

Table 5.3: Groundtruth Statistics.

Company #AS #Prefix #IP Class #IP Class Appeared in our Dataset

Google 5 27 875 127
Facebook 1 4 40 10
Yahoo 34 177 5874 406

Evaluation Metrics

We examine the differences of mutual association scores by illustrating distributions of mutual as-

sociations for IP classes inter(intra) company and inter(intra) ASNs.
e IntraComp : Distribution of mutual association scores for IP classes from the same company
e InterComp : Distribution of mutual association scores for IP classes from different companies
e IntraASN : Distribution of mutual association scores for IP classes from the same ASN

o InterASN : Distribution of mutual association scores for IP classes from different ASNs

20

Results

Figure 5.3 and Figure 5.4 illustrate comparison for mutual associations for IP classes and ASNs
respectively. As we expected, the mutual associations among a group of IP classes under an ASN
are higher than that under a company. The results prove the effectiveness of proposed mutual asso-

ciations.

Percentage

i
IntraComp ——
InterComp
INtraAS e
INtErAS
0.6 : : s , .
0 200 400 600 800 1000

Mutual Association Score(K)

Figure 5.3: Evaluation on mutual association scores (Trend).

1t
() ~...
(=] &
< §
= i
(O]
o
P o8t |
IntraComp ——
InterComp
INtraAS e
INtErAS
0.6 .) . |
0 200 400 600 800 1000

Mutual Association Score(K)

Figure 5.4: Evaluation on mutual association scores (NCTU).

21

5.2.3 Accuracy of Abnormal Domain Detection

To evaluate the performance of proposed framework for abnormal domain detection, we conducted
experiments for FFSN detection. We use the domain corpus from the website [17]. We use both
benign and suspected domains. Overall, ”lookups-benign” corpus contains 34,647 benign domains;
’lookups-ndss-ff”” corpus contains 94 suspected fast-flux domains detected by [4]. ”lookups-ndss-
ff”’ corpus serves as a groudtruth for evaluating the performance of proposed model. Specifically, we
compute bridging scores for all unique domains in collected corpus based on constructed profiles,
which results in a list of domains ranked by bridging scores. By computing precision and recall for

different length of returned domains, we complete the performance evaluation on FFSN detection.

Evaluation Metrics

We compute the following metric to evaluate the effectiveness of FESN detection.

e Domain-Precision : Number of correctly detected domains among all domains detected by

our approach.

e Domain-Recall : Number of correctly detected domains among all domains in lookups-ndss-

ff”’ corpus.

Results

Figure 5.5 shows the quality of ranking using the recall-precision graph for FFSN detection. We
construct two set of profiles based on Trend Inc. and NCTU dormitory data set respectively. In top
89 domains returned by our model, all returned domains are confirmed as FFSN domains as [4] did.
The top 95 returned domains contain one benign domain (bs(’runescape.com”)=66 at 90¢"). Table
5.4 shows the detail information of runescape.com”. The reason why “runescape.com” is regarded
as a suspect is because the mutual association for each pair of its IP classes learnt from the similarity
of their neighboring domains in both data set is zero, which results in a large bridging score. Note
that zero mutual association indicates the adjacent domains of two IP classes are disjoint, which

means the two IP classes never co-occur in any traffic log.

Table 5.4: The IP classes adopted by “runescape.com.”

64.37.71 64.90.181 65.39.250 66.151.43 69.22.158 69.31.109
80.64.4 82.133.85 85.133.44 168.75.179 209.249.24 216.180.254

22

100 e
90 .
g
s 80 f .
K=)
0
o
T 70 .
60 8
Trend Inc. —*—
50 ‘ ‘ ‘ ‘ NQTU dqrmitory """ o

10 20 30 40 50 60 70 80 90 100
Recall (%)

Figure 5.5: Recall-precision graph of the abnormal domain detection model for FFSN corpus.

5.3 Scalability Study

5.3.1 Experimental Settings

For the computational cost, we report the wall-clock time. The experiments ran on five machines
with each 2.66GHz dual-core CPUs and 4GB memory, running Debian Linux. Particularly, we
measure the running time for abnormal domain detection with 1) different size of computing nodes,
and 2) different amount of traffic logs.

In analyzing runtime speedup for parallel profile construction, we learn a abnormal domain
detector on two machine to six machines. We use the runtime of one machine as the baseline and

assume that six machine can achieve six time speedup.

5.3.2 Results

Figure 5.6 reports the runtime speedup of using up to six machines. It takes less time to build model
with more computing nodes. The main reason why more computing nodes ensure more efficiency
is because the architecture of our distributed file system. We use six machines to construct both
hadoop distributed file system and map/reduce paradigm. Therefore, when there is more computing
nodes available, more I/O operation can be performed locally instead of remotely.

Figure 5.7 reports the runtime comparison for different amount of input size. When the data size
increases, the runtime growth linearly. On the other hand, when the number of computing nodes
increases, the runtime required decreases linearly. As a result, our approach can be applied to larger

dataset if we can construct an environment with more computing nodes.

23

10000

'256M traffic Ibgs ——

9000 f
8000 |
7000 r
6000 r
5000 r

Runtime(Sec.)

4000 r
3000 r
2000 f

1000 ‘ : ‘
2 3 4 5 6

Number of machines

Figure 5.6: Runtime comparison for different number of machines.

Figure 5.8 reports runtime composition for several jobs in building detection model. The running
time consists of three man parts: 1) construction mappings from domains to IP classes, 2) construc-
tion of mutual association matrix between IP classes, and 3) proxy filtering. The major computations
in building detection model are construction mappings from domains to IP classes and proxy filter-

ing. In addition, it demonstrates the linear growth in runtime from two sizes of traffic logs.

24

1200

1000

800

600
400
200 I
L
14M 44M

114M 256M
Number of Traffic Logs

Runtime(sec)

Figure 5.7: Runtime comparison for different sizes of traffic logs.

600 : : .
550 |
500
450
400
350
300 -
250 b -
200]
150 -
100 | -
50 | -

T
=
H
S
<

Runtime(sec)

D2IPC IPCluster ProxyFilter
Jobs

Figure 5.8: Runtime composition analysis on 114M and 256M traffic logs.

25

Chapter 6

Conclusion and Future Work

Due to changes in the propagation and update strategy, abnormal domain detection by modeling
rapid IP changes is insufficient. Classical fast-flux technique is used to control a botnet and estab-
lish communication channels by changing IP addresses. However, Conficker goes to another level
by including a pseudo-random domain name generator to last the communication channel longer
between a control node and its botnet.

In this study, we propose an automatic framework for abnormal domain detection. To identify
abnormal domains generated by fast-flux technique or domain name generators, we propose to dis-
cover mutual associations between domain names andIP address. In particular, profile construction
contains two procedures to discover mutual ‘associations between domain and IP address. Firstly,
a proxy filtering algorithm is proposed to remove proxy servers from collected IP addresses. Sec-
ondly, a co-clustering algorithm is proposed to partition domain and IP class node into clusters.
Afterwards, the procedure for abnormal domain name detection which computes an anomaly score
for a given domain according to discovered co-clustering information is performed.

The main contributions of the study includes:

e The development of approach for discovering mutual associations.

e The design of parameter free framework for abnormal domain detection by exploiting mutual

associations.

e The development of approach for proxy detection algorithm by exploiting co-occurrences

among domains

This work suggests several interesting directions for future work. In addition to the problem of
predicting an anomaly score for a given domain, a prediction system for abnormal domain names

is also an useful alarm tool when the real traffic streams involved with predicted domain names

26

haven’t yet been existed. The anomaly concept we considered in this study is temporal-insensitive.
However, some abnormal domains can vary to another one once they are blocked. To trace variation
patterns of abnormal domains over time for abnormal domain prediction is an interesting direction
for future work. Besides, the approaches for proxy filtering and abnormal domain detection pro-
posed in the study show the importance of exploiting associations between IP class and domain
names. In other words, the clustering results of IP class can effect the detection of abnormal do-
mains; the clustering results of domain names can effect the detection of proxy IP class. However,
currently the associations are adopted separately. To design an iterative and interactive co-clustering
algorithm for proxy detection and abnormal domain detection simultaneously is also an interesting

and challenging direction for future work.

27

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

“Fast flux botnet data service,” http://wiki.milcordme.com/wiki/Fast_Flux_Botnet Data_
Service, 20009.

“Ssac advisory on fast flux hosting and dns,” in ICANN Security and Stability Advisory Com-
mittee (SSAC), 2008.

Wikipedia, “Conficker,” http://en.wikipedia.org/wiki/Conficker#Automated_remote_detection,
20009.

T. Holz, C. Gorecki, K. Rieck, and F. C. Freiling, “Measuring and detecting fast-flux service
networks,” in NDSS ’08: Proceedings of The 16th Network and Distributed System Security
Symposium, 2008.

J. Park, “W32.downadup.c pseudo-random domain name generation,” http://www.symantec.

com/connect/blogs/w32downadupc-pseudo-random-domain-name-generation#A258, 2009.

D. Dittrich and S. Dietrich, “Discovery techniques for p2p botnets,” in Stevens CS Technical
Report, 2008.

E. Stinson and J. C. Mitchell, “Towards systematic evaluation of the evadability of bot/botnet
detection methods,” in WOOT ’08: Proceedings of The Second Conference on USENIX Work-

shop on Offensive Technologies, 2008.

J. B. Grizzard, V. Sharma, C. Nunnery, B. B. Kang, and D. Dagon, ‘“Peer-to-peer botnets:
overview and case study,” in HotBots '07: Proceedings of the first conference on First Work-

shop on Hot Topics in Understanding Botnets. USENIX Association, 2007.

P. Barford and V. Yegneswaran, “An inside look at botnets,” Advances in Information Security,

vol. 27, pp. 171-191, 2007.

R. McMillan, “Experts bicker over conficker numbers,” http://news.techworld.com/security/

114307/experts-bicker-over-conficker-numbers/, 2009.

28

[11] A. Kriegisch, “Detecting conficker in your network,” http://www.cert.at/static/conficker/TR _
Conficker_Detection.pdf, 2009.

[12] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol. 40,

no. 1, pp. 3541, 1977.

[13] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of Mathematical Sociol-

0gy, vol. 25, pp. 163-177, 2001.

[14] T. H. Haveliwala, “Topic-sensitive pagerank,” in WWW ’02: Proceedings of the 11th interna-
tional conference on World Wide Web, 2002.

[15] K. Onuma, H. Tong, and C. Faloutsos, “Tangent: a novel, ’surprise me’, recommendation
algorithm,” in KDD ’09: Proceedings of the 15th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2009.

[16] J. Sun, H. Qu, D. Chakrabarti, and C. Faloutsos, ‘“Relevance search and anomaly detection in
bipartite graphs,” ACM SIGKDD Explorations Newsletter, vol. 7, no. 2, pp. 48-55, 2005.

[17] “Pil - fast flux,” http://pil.informatik.uni-mannheim.de/fast-flux, 2008.

29

	1_封面.pdf
	2_論文內頁.pdf
	3_中文摘要~表.pdf
	4_內文.pdf

