S G DGR B A 2 Y
The Study of MIMO Software-defined Phase-locked Loop

(SR A R R

A A

PoE A R4 s E R

SRy o~ g g A B oBW o2 g

The Study of MIMO Software-defined Phase-locked Loop

o4 R Student : Ze-Bin Huang

iR R Advisor : Terng-Yin Hsu

R

U ol S = R S A S S

RN

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

n
Computer Science

June 2009

Hsinchu, Taiwan, Republic of China

PERRA L NERT

i &

Ahwm RN T EHEH RO IEr T g TR T o
(MIMO-SDPLL) ° ¢+ & 5 % % & 7 #icB# 474 & 35 CPU 2 4 4p % B2 codp B fi0 % o CPU eh3 |
0 5 SR LR 2 L RRIARRTEAFLER LR WD
BT B AT R R e A TR D B R 2 TR R R A ek

fo 2 v geARen SN F R o F LR A ot Ae e P RIE o H S

B 12 2 IR (T IF o 1 R PR (520 UNC 90nm sl A b o

Abstract

A software controllable and programmable MIMO software-defined phase-locked loop
(MIMO-SDPLL) platform is presented in this paper. This platform combine several silicon
IPs including CPU and PLL modules. CPU is introduced to provide flexible software
controllability and computing power. When the specification needs substantially modity,
replace the software at platform can fit the new specification. The proposed software tracking
algorithm can reach high-resolution phase-locked and development by software. Multi-clock
can be handled with software scheduling. In hardware, 2x2 MIMO-SDPLL architecture is

implemented in this work. All IP cores implement at UMC 90nm process.

il

YRGS

=+ 2
1Y
BRI TR 0 p R R R N il R E KT o X
FETE e TREFATRA D LT o R RRFAFEDNA o ARHRF AT REEL 4
2ALBF KNG 1 E o 4R A ISIP Lab s B 2 PLL

g e R R
groupe * FHF EF I AL F BRI L% BRI ETEHT c BRI AR
AR g VARG IRBE R A R RN L F F ORI & o

* Rl Rk

B\]:EJ,L.L,_&,\E.L;B

il

Table of Contents

72 OO i
ADSTIACT ..ottt ettt et ettt et eae i
. OO OO SO PP U SR PRORP PR il
Table 0f COMEENLSccc.ooiiiiiiii ettt sttt v
LSt OF FHGUI'ESooiiniiiiiee e ettt e et e et e e st e e s e e saseeeenseeennseeennne vi
LiSt 0f TADIESooiiiiii ettt ettt vii
Chapter 1 INtroductioncoooiiiiiiiiiiiee e et e e aee e saeeeennee s 1
1.1, ThesiS MOtIVALIONeeiuiiiiieeiiieiieeie ettt ettt e e e bt esaaeesbeessbeenseeenseenseesnseenseas 1

1.2. Thesis CONIIDULION ...ecuvieiieeiiieiieeieeiie et esite ettt et e ete bt eseaeebeessbeeseesnbeenseeenseeenas 1

1.3. Thesis OTZaniZatiOnccceeeuieruieeiienieeteesteeteesateeteesteeseessaeenseesssesseessseesseesssessens 2
Chapter 2 Overview of MIMO-SDPLL...........cccooiiiiiiie e 3
2.1, BASE COMNCEPL ..eeieitiiiiiieeiiie ettt ettt e e e e e st e e st e e sab e et e e sabeesasaeesnsaeesabeeesabeeennnes 3

2.2, STHCON TP SCLECLION.cutiiiiieiiieieeeiee ettt ettt ettt ee et e s e e s e snaeenbeesnseeneeas 4
22,10 CPU ettt sttt bttt ettt ettt b et 4
2.2.2.BUS ottt ettt st ts 5
223.PLL........ 00 .. Eol Lo A AW e 5

2.3, SOTEWATE ...ttt ettt e sb et st b ettt h ettt a e bt et eh et et ehe e b eanes 6

2.4, MIMO-SDPLL ..ottt ettt ettt sttt sb et st eanes 6

2.5. Architecture Simulator and IP Model.............cccieiiiieiiiiiiiieececeeee e, 8
2.5.1. Architecture STMULALOTccviiiiiiiiiiiiie ettt et ens 8

2.5.2. PLLIP MOAEL ..cuiiiiiieieeieeeee ettt st 8

Chapter 3 Tracking AIorithmooiiiiiiiii e 10
3.1. Basic Concept of Frequency Search...........ccccoevieviiniieiieniiiiecieeeeceee e 10

3.2. Basic Concept of Phase Tracking...........cccoecveviiiiiieniieiierie e 12

3.3. The Challenge of Tracking Algorithm...........cccceoviiiiiiiiiiiiiiiee e 13

3.4. The Proposed Tracking AlGOrithimcccoeviiiiiiiiiiiniieeie e 16
3.4.1. TDC and DCO relation Mapping.........ccceeeveerreerveeneenieeerieenreesieesreesseesneeneas 17

3.4.2. Frequency search algorithmccoooieviiiiiiiniiiicceeeee e 18

3.4.3. Coarse tracking algorithimccccueeiiiiiiiiiiiiiie e 19

3.4.4. Fine tracking algorithimcccoouiiiiiiiiiiie e 20

3.5. Scheduling of MIMO-SDPLLcccooiiiiiiiiieiteeeee et 24
Chapter 4 Implementation and Simulation Result.......................cccooiiiiiiiiniii 26
A1 HATAWATE ...ttt ettt et e st e e teesateesbeessaeeaseesabeenseassseenseennneans 26
411 MEMOTY IMAP ittt et ettt et st s e 28

A.1.2. CPU ettt sttt sttt st ae et 29

4.1.3. WISHOBONE Bus Protocolccccciveiiiiiiieiieie et 29

4.1.4. TP Cores INterCONNECHIONc.veeuieeiieriieeiieceieeieeeieeieeste et e seee b e seaeeseeeeee e 31

iv

4.1.5. Semi-asynchronous clock access (SACA) modulecccoeeeveiienieiiiennnnnne 33

4.2, SOTEWATE ...ttt ettt ettt ettt sb ettt be et et nbe et eaee 34
4.2.1. Software Programmingccceeecueerueeriueereeseeerieesseesseeseeesseesseesseessessseensns 34

4.2.2. Memory map I/O CONLIOL........ccueiriiiiiiiiiieiiecie et 35

4.3, SIMulation RESULEcoocuiiiiiiiiiii et 35
Chapter 5 Conclusion and Future Workcccooooiiiiiiiiniiiieeeeeeee e 38
REFEICIICE ...ttt et ettt e s eeees 39

List of Figures

Fig.1. Basic block diagram of ADPLLcccooiiiiiiiiiiiiiiieieeesee s 4
Fig.2. OpenRISC ORI200 OVETVIEW ...c..ceruiiiiiiiiniieieniieniteie et sieete st sttt et sie et saee e eseeanes 5
Fig.3. Software flow of MIMO-SDPLL......cc.cccciiiiiiiiiiiiiieeteeee e 6
Fig.4. MIMO-SDPLL archit@Cturecocuerueeiuerienieiieniienieeiesitesee ettt 7
Fig.3.1. Binary SEarch CONCEPLc.eeriiiiiiiriieeiieiieeit ettt ettt et siae et eae s e saae e 11
Fig.3.2 The structure of time-to-digital converter (TDC)ccceviiiiiienieiiiieieeieeeeene 12
Fig.3.3 The simple phase tracking algorithmccccevvieriiiiniiniiniiieee e 12
Fig.3.4. TDC-based phase tracking algorithm.............cccoeeviieniiiiiiiniiiieeeeeeee e 13
Fig.3.5. Define of waveform eXpreSSion.eeeeeeriererierienieeieseesie ettt 14
Fig.3.6. Setting new DCO control WOrd.cceeieriiiiiriinieieniciieieee e 15
Fig.3.7. The close loop of tracking problem...........c.cccoceeviriiiiiiiniiniiecieeeeeereee 16
Fig.3.8 The algorithm floOW.......cccoiiiiiiiiiiiiiiie e 17
Fig.3.9. TDC value and control wWord mapping............cceecueerveeriienieenieenieenieeeieeieesveeneeens 18
Fig.3.10 The estimation of reference Clockccoovueviriiiriiiiiiiiiiiiecceeceeee 19
Fig.3.11. Waveform of coarse tracking algorithm..........c....coocueeiiiniiiiiiniiiieeeeeeee 20
Fig.3.12. Different start position of coarse tracking algorithmcccccooeviininiinnencn. 20
Fig.3.13 The problem of fine tracking............cccueviieriiiiiiieiiiniiiiieeeeee e 21
Fig.3.15. The example of fine tracking algorithm............ccoccooeeiiiiiniiiiiiieee 23
Fig.3.16. The working flow of fine tracking algorithm............cccccoceviiniiiiniiniiiiiceee 24
Fig.3.16. The scheduling of 2%2 MIMO-SDPLL........c.cccceooiiiiiiiiiieeeeeeeee e 25
Fig.4.1. 2%2 MIMO-SDPLL architeCture...........cccueiiiiiiienieieeieeieieeie e 27
Fig.4.2 Memory map of 2X2 MIMO-SDPLL........ccccooviiiiiiiieeeeeeee e 29
Fig.4.3 WISHBONE read / write timing raph..........ccccoeviieiiiiiiienieiieeeecieeee e 31
Fig.4.5. An example Of SACAcooi it 33
Fig 4.6. The modified SACA block diagram............ccoevvueriinieriiiniiniiieniesieeieeeeseeeene 34
Fig.4.7. The waveforms of simulation reSult...........ccooeeririiniiniiiinieecieeeeeeseeee 37
Fig.4.8. 2x2 MIMO-SDPLL simulation result of phase error variationc..cccceeeuenee. 37

vi

List of Tables

Table 1 Hardware SPeCifiCationccuiecuieriiiiiieiie ettt ettt ens

Table 2 Software environment

Table 3 Simulation setting

vii

Chapter 1

Introduction

1.1. Thesis Motivation

There are some types of PLLs, such as analog PLL, digital PLL (DPLL), and all-digital
PLL (ADPLL) [1] [2]. All-digital approach brings portability and short design cycle in PLL
design. However, designer often need redesign complexity circuit when algorithm or control
strategy changed. With standard IC process, redesign also needs some time to run simulation,
synthesis, layout and verification. It’s still longer than software development. So a new type
of PLL with flexibility of reprogramming and reusability of silicon IPs called
software-defined phase-locked loop (SDPLL) [3] is proposed.

The proposed SDPLL use a CPU to link all IPs via shared bus architecture. These IPs
include those IPs modular from PLL and the other IPs are memory, flash and I/O device. With
the flexibility of CPU, designer can implement tracking algorithm or controlling strategy in
high level language like C language. Moreover, the calculation power of CPU let SDPLL can
integrate more PLL IPs. Multiple clock output makes more possible combination of
application. Here, this architecture with multi-input and multi-output is called MIMO
software-defined phase-locked loop (MIMO-SDPLL). How to integrate these IPs into

MIMO-SDPLL become a challenge.

1.2. Thesis Contribution

The proposed MIMO-SDPLL achieve high-resolution phase-locked with software
control. Multi-clock can be handled by CPU with scheduling. When the specification needs

substantially modify, replace the software at platform can fit the new specification.

1.3. Thesis Organization

Section 2 shows the overview of MIMO-SDPLL from hardware and software. Section 3
illustrates the proposed tracking algorithm. Section 4 is the implementation architecture
includes software and hardware. Section 5 presents the simulation result of 2x2

MIMO-SDPLL and future work.

Chapter 2
Overview of MIMO-SDPLL

In this work, the proposed MIMO-SDPLL has feature of software controllability and
programmability which integrates CPU with silicon IPs. These silicon IPs include PLL IPs.

Here MIMO-SDPLL is discussed from some parts.

2.1. Base Concept

In section 1, there are three type of PLL. For SoC implement issue, all-digital approach
is suitable and easier. So ADPLL is chosen as basic PLL IPs.

Fig.1 shows conventional ADPLL block diagram. Include phase frequency detector
(PFD), time to digital converter (TDC), digital control oscillator (DCO) and frequency divider
(Divider N). ADPLL can generate frequency-locked and phase-locked clock output when
input reference clock. After power on, PFD detect frequency or phase error between reference
clock and divided-by-N clock. TDC converter error pulse received from PFD into digital data.
If TDC output and DCO control tuning word (CTW) is equal then digital date sends to DCO
directly. But in practical, digital data output from TDC often need digital processing to
calculate CTW. The digital processing block is in Fig. 1. This block also process tracking
algorithm or controlling strategy. DCO generate corresponding DCO clock with calculated
CTW. In equation (1) shows this relation.

Joco = E(CTW) (1)
Notice that function f usually not linear. Divider N divide DCO clock by N and output

divided clock send back to PFD, equation (2) show this relation.

— fDCO

f;iivided —by—N N

ADPLL repeat the above actions until frequency-locked and phase-locked.

However, digital processing is hardware implement. This is not flexible for change
transformation of CTW, tracking algorithm or controlling strategy. Designer can only change
some function by reserved input wires. For example, if users need change control strategy for
different application, they can only depend on original hardware function to generate input
data bit-by-bit manually. This is time-consuming and hard work. Thus use CPU to replace

digital processing is proposed. CPU is more flexible and powerful than original digital

processing.

pulse

digital
data

reference
clock

divided-by-N
clock

e
DCO

control word
clock

(CTW)

Fig.1. Basic block diagram of ADPLL

2.2. Silicon IP Selection

2.2.1. CPU

In section 2.1 digital processing is replaced with CPU. The selection of CPU is free,
open sourced OpenRISC OR1200 CPU released by OpenCores [4] [5]. OpenRISC project is

to create a free, open source computing platform available under the GNU (L) GPL license.

The OR1200 is a 32bit scalar RISC with Harvard micro architecture, 5 stage integer pipeline,
virtual memory support (MMU) and basic DSP capabilities. Fig 2 shows architecture of
OR1200. At UMC 90nm process, OR1200 is about 10k ASIC gates. The reasons for choosing

OR1200 are open source and have been implemented in various commercial ASICs and

FPGA.
OpenRISC OR1200 System I/F
PM
1/F POWERM IMMU
WBI
]D/|B= DEBUG ICache
CPU/DSP
TICK TIMER DCache
WBI
INT
1/F PIC DMMU
Fig.2. OpenRISC OR1200 overview
2.2.2. BUS

In order to integrate CPU and silicon IPs, this work select OR1200 compatible
WISHBONE [8] bus as bus architecture. WISHBONE is a specification maintain by
OpenCores. Its purpose is to foster design reuse by alleviating system-on-a-chip integration
problems. This is accomplished by creating a common, logical interface between IP cores.
This improves the portability and reliability of the system, and results in faster time-to-market
for the end user. The proposed MIMO-SDPLL platform use WISHBONE to connect all IP

COres.

2.2.3. PLL

In order to integrate PLL with CPU and IP cores. ADPLL need be partitioned into

different IP cores. The partition step is simple; divider digital processing input part and output
part into two IP cores. In fig.1 PFD, TDC and Divider-N generate digital data to digital
processing; this is input part and combine to error detector IP core. And output part is DCO
independently. Notice that new IP cores need bus interface in order to connect to WISHBONE

bus.

2.3. Software

The proposed MIMO-SDPLL control IP cores with software. In common, software can
be developed with almost high level languages if there are corresponding compilers. In this
work choose C as development language because C is one of the most popular programming
languages. It is widely used on many different software platforms, include OpenRISC. And
OpenRISC has provided C compiler for OR1200; this is familiar and convenience for
programmer to develop software. In fig.3 exhibit software flow of MIMO-SDPLL, it is

common and used for a long while.

Machi >
ggdlge Compiler 4—@%

— L3> ok
MIMO- | . ELF‘LF
SDPLL | : :

Fig.3. Software flow of MIMO-SDPLL

2.4. MIMO-SDPLL

In section 2.2 introduce some major IP cores of MIMO- SDPLL. In fig.4, CPU, error

detector, DCO and other IP cores are connected by WISHBONE bus. Flash memory stores the
program of tracking algorithm and controlling strategy. Semi asynchronous clock access
(SACA) provide system clock of MIMO-SDPLL. It is synchronous rising edge of reference
clock and maintains high after count the number user-defined. This can provide enough clock

cycle for CPU computing and reach low power and low noise.

| e Error
/’ Detector
SYS CLK /] <
|] Ol T
/ @) © —
! |4 -— 4
SACA i NP
]
17 /,/
Error @ “REF CLK 1
% Detector 1 e .-~
CPU T
> »r— DCO 1 > LA pcoak 1
c
(0]
C program |, Error @ REF CLK N
0x7ff03d1 \\ Memory Detector N .
0x7632001a Flash > » DCON > .I._t’:H__\;T DCO CLK N
0x742€e001
0x7426eff1 _

Fig.4. MIMO-SDPLL architecture

The working flow of MIMO-SDPLL:
1.After reset, CPU executes instructions and initials all IP cores.
2.CPU start polling error detector 1 ~ N.
3.If one of error detectors detects error, then CPU fetch this value.
4.CPU calculates CTW and sends to correspondence DCO.
5.Return to step 2.

The proposed MIMO-SDPLL can handle N number of error detectors and DCOs, the

number N decide by calculation power of CPU. Further more, all DCO clocks are

frequency-locked and phase-locked.

2.5. Architecture Simulator and IP Model

MIMO-SDPLL use software to execute tracking algorithm and controlling strategy. In
order to increase software development efficiency and convenience, architecture simulator

and system model are used frequently.

2.5.1. Architecture simulator

OpenRISC project provide an architecture simulator ORIlksim. It is a generic
architecture simulator capable of emulating OpenRISC based computer systems. Orlksim has
several unique features:

® Free, open source code.

e High level, fast, architecture simulation that allows early code analysis and system

performance evaluation.

® FEasy addition of new peripheral models.

Orlksim can execute C program instruction by instruction. This is helpful for debugging.

For MIMO-SDPLL simulation, PLL IP Models can add to Orlksim.

2.5.2. PLL IP Model

As mentioned at section 2.2.3, there are two IP cores divide from ADPLL, error detector
and DCO. For simulation at architecture simulator, these two IP cores are modelled. First,

error detector has two inputs and one output. They are input reference clock and input divided

clock with frequency f,

., and £, . Output is phase errore¢,,, . In order to model clock, record

clock frequency and phase offset is reasonable. The clock model D, , can represent as

Dr = (]:'ef’tr€f,0ﬁe’)

ef
Trc?f' =1/ fle/

Lot offset = (tsys + tre_/;mn)m()d Tref . (3)
AndD, is

D,, = (Tdiv > tdiuﬁset)

Ty =N-Ty,

tdiv_oﬁ’set = tdco_q}fset . 4)

T is clock period , 7 is current system time, 7, is initial time of rising edge and

init

& can derive

sys > Y out

!5 YEDTESENE OffSet time at 7, . Phase error is phase difference detected atz

offset

as

gout — tdivioffset _trefiojfset (5)
If D, phase lead D, theng,, is positive else ¢,, is negative. DCO model is similar to

error detector. Input CTWd,, is digital data can use directly. Output DCO clock D, also

record clock frequency and phase offset, 7, define as

T N T;mr + kDCO ' dctw (6)

dco

T

intr

is intrinsic period of DCO. k,.,1s DCO gain defined as a frequency deviation in

response to 1 LSB of the inputd,,,. Andz,,, ., become

’
) = tdcaioffset + tA

atr, =0 (7)

tdco _offset = tdco _init sys

tA =]—:ica - T:i’co

dco _offset

t.e @nd T, is previous phase offset and clock period. ¢ is initial phase offset of DCO.

dco _init

Ideally, when7, , =T, and ¢,, =0is frequency-locked and phase-locked.

Chapter 3
Tracking Algorithm

In PLL domain, high resolution and fast-locking time are important performance factor
of tracking algorithm. The target of tracking algorithm is frequency-locked and phase-locked.
It can be separated into three parts, frequency search, phase tracking and phase maintaining.
At this section will discuss in detail from these parts.

As motioned at section 2, the proposed MIMO-SDPLL uses software to design tracking
algorithm. The performance gap between software and hardware is a big design challenge.
And the control strategy is complex when many IP cores active at the same time. These issues
also will be discussed at this section and a tracking algorithm for MIMO-SDPLL will be
proposed.

The organization of this section is as follow. Section 3.1 introduce common concept of
frequency search. Section 3.2 shows the concepts of phase tracking. Section 3.3 analyses the
tracking problem and introduces a new expression of waveform. Section 3.4 proposes a

tracking algorithm can reach frequency-locked, phase-locked and phase maintained.

3.1. Basic Concept of Frequency Search

In tracking algorithm, accurate frequency is essential for phase tracking. If frequency
error between reference clock and divided clock is big, then phase error will change at every
clock cycle. This let phase acquisition more complex. There are two common frequency
search algorithms have been used. One is binary search based and another is TDC-based.

The basic concept of binary search based algorithm is “Prune-and-Search”. DCO search

target frequency and divide half of search range at each step. After the search range reduces to

10

one, the frequency search is done. Then algorithm enters phase tracking and phase

maintaining state. Fig.3.1 shows the concept.

Min. DCO frequency range Max.

i«——Search range —»!

start '\

Time
4

v Target frequency I

Fig.3.1. Binary search concept

However, for fast-locking application, lock-in time is critical design issue. Thus
TDC-based algorithm is proposed. It needs TDC converts timing information into digital data.
This is helpful for quickly calculation of the nearest CTW for DCO. With this idea, reference
clock period information can be measured by TDC. And DCO quickly jump to the desired
frequency as same as reference clock. Obviously, the lock-in time can be reduced. Fig.3.2 is
basic structure of TDC. The internal delay chain measure input signal. And counter add one

when input signal traverse the delay chain. TDC-based approach is chosen at this work.

11

Input SignaQ_D_DTDTl}W_D¢ » Counter

Latch & Decoder

Y

Register

Digital output

v

Fig.3.2 The structure of time-to-digital converter (TDC)

3.2. Basic Concept of Phase Tracking

The basic concept of phase tracking algorithm is to minimize the phase error provided by
phase detector. The simplest way is add constat control word after frequency search. Assume
divider clock frequency is close enough to reference clock after frequency search. DCO
control word will add (subtract) constant if phase is lag (lead). In fig.3.3 shows this process.
Initial phase error is A, and phase detector report divided clock’s phase is lag. Because phase

error A; is unknown, control word subtracts a constant € to reduce phase error. The A,, A; and

A4 are in similar process.

A4 adds € because phase is changed from lag to lead. Obviously,

this method is slow and passive.

Reference______

clock

Divided ___}_|

clock

In section 3.1, the TDC-based frequency search algorithm use TDC to speed up

Time

\J

initial error A,

A, =A-¢
A=A, -¢
A=A +¢

& 1s constant

Fig.3.3 The simple phase tracking algorithm

12

frequency search. As the same idea, phase error can be measured by TDC. With this
information, the control word can be calculated accurate. In fig.3.4, assume the same
condition of fig.3.3. The divided clock period is as same as reference clock period, denoted as
T. Because of frequency is locked, A, equal to A;. So T’ can be inserted to fix phase error A;.

From the derivation of these conditions, phase error becomes zero at As;.

Time -
T T T
Reference [| | i N initial error A,
clock [A, = A,
T T T T'=T-A,
pivided ___{ || _L _____ L A=@TeT)-2T

clock =2T-2T

3 =0

A A As

Fig.3.4. TDC-based phase tracking algorithm

However, the two algorithms above, assuming perfect frequency locked which
mentioned at section 3.1. In practical, frequency can’t lock perfectly because of the PFD’s
dead zone, TDC’s resolution and DCO’s non-linear. To conquer these restrictions, a new

tracking algorithm is proposed.

3.3. The Challenge of Tracking Algorithm

The algorithm of frequency search and phase tracking are discussed at section 3.1 and
3.2. However, phase tracking algorithm is affected by frequency search result considerably.
The information of frequency and phase need consider together. So the tracking problem
requires be rechecked at this section.

Before describing the challenge of tracking algorithm, a more powerful expression of
waveform is introduced. This expression is proposed at [6]. Fig.3.5 illustrates the new

definition of phase tracking & frequency search problem. The horizontal line means the cycle

13

time of divided output clock or reference clock which is according to the scale of TDC.
TDCpin 1s TDC minium detectable range. The vertical line represents the phase relation
between divided output clock and reference clock. The magnitude is according to the value of

TDC, too.

—
E
@

Reference ; ;
clock o '
Tref E E] E ' |
Divided : :
clock ; ; ;
T It =T +£ :—I : [] : []
div ref E E Tdivi E E E
to t: t,
A NA+e€ Ni+2¢€
short Cycle time long
- >
A
Symmetric at T
lead \ (Trer, 0)
Phase z
o DCri
error i f ¥ TDCor
N N G to : (Trer +€,-A1)
lag t1 1 (Tt +€, -(A1+€))
ty 1 (Teer +€, -(A1+2€))
\j Target
frequency Tief =%

Fig.3.5. Define of waveform expression.

The upper is original waveform and the bottom is anther expression.

For example of fig.3.5, the divided clock is lag A; to reference clock at ty initially. And

divided clock period is longer than reference clock with value ¢ . So this relationship can be
represented as (Tr+€, -A;). The ty point is located at the quadrant of longer cycle and lag

phase. As the same process, t; and t, can be marked. And t; and t, shift down frequency error €

14

at each cycle. In another case, if the divided clock is shorter than reference clock, the location
of new points will be symmetric at Trer. But the direction is opposite to original. Summary, the
right-hand side of T always shift down and left-hand side shift up. From this new definition,
the tracking problem can be explained without drawing complex waveform which is hard to
be understood.

In the example of fig.3.5, the DCO control word has not changed. Fig.3.6 shows the

situation when setting new DCO control word.

Cycle time
short long
-¢ >
A New phase error and
9 clock cycle
lead /
|
Phase
error AR 7 TDCre
Setting
lag control word (Trer, 0)
\J
Tref

Fig.3.6. Setting new DCO control word.

The tracking problem now can be transferred into another question. How to reach (Ti.s, 0)
at any point of fig.3.6 is new target of algorithm. The straight way is setting new control word
to DCO if there is phase error. But the frequency error between divided clock and reference
clock let this manner become non-convergence. In fig.3.7, the path of algorithm will be a
close loop, and the magnitude of phase error and frequency error will be cyclic. The proposed

algorithm will resolve this problem and reach frequency-lock and phase-lock.

15

Cycle time

short long
A 2!
.
/e T+ P,
lead Do ; ¢ A\Q’\
Ph alk® e28
\ \
ase - ATDCy
error . A
€-A € \;
%AA > D3
< /
lag 12 S A
\\\‘/
e-A N
\J
Tref

A :initial phase error ¢ : frequency error
Py :(T;ef —&,+A) Ps :(Tref +&,-A)

p (T, —(e-A),+e) p,: (Tref +(e—A4),—¢)
Py (Tref +A,+(e—4)) ps: (Tref —A,—(e-A))

Fig.3.7. The close loop of tracking problem

3.4. The Proposed Tracking Algorithm

In this section, a new tracking algorithm is proposed. The basic idea comes from [2], and
does some modification for MIMO-SDPLL. The algorithm flow is in fig.3.8. It is separated
into three main part, frequency search, coarse tracking and fine tracking. Initially, algorithm
start at frequency search state to get reference clock period. Second, if watch dog not bark
then algorithm enters phase tracking state. The phase tracking has two parts, one is coarse and
another is fine. This is decided by the resolution of PFD, TDC and DCO. Because DCO have
extra control bit when TDC reach minimum detectable range TDCy,in. More accurate tracking
can do by these control bit and PFD signal. Phase tracking algorithm does coarse tracking
continually, if phase error is bigger than TDC,in. Else algorithm will enter fine tracking state.
Notably, all states of proposed algorithm need tuning frequency and phase, this will explain

later.

16

Initial ceee> YES

_____ 4 — NO

Fine
Tracking

Frequency
Search

Phase error
>TDCmin

Coarse
Tracking

rPrcccccccccccccacnqg

Fig.3.8 The algorithm flow

3.4.1. TDC and DCO relation mapping

Usually, TDC and DCO relation is known after IP selection. However, this relation will
have some variation with PVT issue. Thus the training of this relation is required. Before start
tracking algorithm, DCO clock connect to the input of TDC and software set different known
control word to DCO. After DCO clock changed, TDC can output digital data of this clock
period. The digital data map to the corresponding control word can find out the relation. In
fig.3.9 shows this method. However, this method assumes DCO is linear. In practically, DCO
has multiple control stages with different resolution. And each stage is close to linear. Thus do
this method one time for different stage is suitable. The control bit m is the bit number
between two control words ¢; and c;. And ¢l choose minimum control word and c¢2 choose
maximum control word at each stage. Note that the difference between two control words

can’t be too small or the factor K will be imprecise.

17

TDC(c,)

/‘ TDC(c,)-TDC(c,)
Kl = m

-t == _i_K_ 2" -1

TDC(cy) = Z; v ¢, : control word 1
/ ¢, : control word 2

m : control bit between

1
r e

Fig.3.9. TDC value and control word mapping

¢, and c,

C1 2

With the relation factor K between TDC and DCO, phase error can transfer into DCO
control word. The equation (7) shows the relation. Phase errory;; is initial error value sent

from TDC. CPU will do this transformation.

DCO,, =) " (Err/K;)2"

v & phase error,,;,,i =0
" | Er_modK, ,,i>0 ()

n : number of relation fator

d': bit offset of i

3.4.2. Frequency search algorithm

The frequency search algorithm is simple and as mentioned at section 3.1. The reference
clock period can be estimated by TDC. For precise value, the half clock pulse is extended to
full pulse with a register in fig.3.10. This can avoid unbalanced duty cycle of reference clock.
The period value Dy can transfer into control word and set to DCO. In this step, coarse
frequency search is finished if watch dog not bark. Watch dog will bark when phase error

value between reference clock and divided clock is bigger than clock period twice.

18

Reference |]
clock

Extended
period | ——

TDC o
output @_

Fig.3.10 The estimation of reference clock

3.4.3. Coarse tracking algorithm

The basic idea of coarse tracking is fixing frequency error and phase error at this step.
However, DCO control word can’t change after phase error value is estimated at rising edge.
Double the error value, and set new control word maintain half period can solve this problem.
The steps of coarse tracking algorithm are shows in fig.3.11.

Initially, reference clock period is 2T+, and divided clock is 2T"y,. The relation of these
two clock is 2T',=2Tw,+e. Four steps of coarse tracking algorithm:

® Step 1: PFD detect phase error A.

® Step 2: PFD detect phase error A+e. CPU find frequency error € and calculate T',+2e+A,
2Ty, te.

® Step 3: DCO set T',+2e+A in half period to fix phase error. At the end of clock period,
phase is locked.

® Step 4: DCO set 2T'y,+¢ as new clock period and frequency is locked.

19

1 2 3 4

| [
| T‘/z | T1/2 |
| |
Reference I | |
| |
clock Tyl | I | [
|| [| I
I 1Ty, [T|1/2+A+28| Ty, Vo€
Divided ! |
| |
clock | | |
Q TI‘/z I I TI‘/z :T'1/2+1/28 :
A A+€ Phase frequency
locked locked

Fig.3.11. Waveform of coarse tracking algorithm

At this method, phase-locked state can represented as that phase error is small than
TDCin. If the frequency and phase is locked after four algorithm steps, algorithm enters fine
tracking state. Else it does coarse tracking algorithm again. Fig.3.12 illustrates other situation

by the proposed algorithm. Clearly, the proposed algorithm is reliable at different quadrant.

Fig.3.12. Different start position of coarse tracking algorithm

3.4.4. Fine tracking algorithm

20

After coarse tracking, phase error is smaller than TDC,,. For the reason of
high-resolution and DCO has some extra control bit, fine tracking is essential. At this situation,
PFD’s lead/lag signal and DCO fine tuning stage are useful information. The idea of fine
tracking is binary search based. DCO increase clock period when divided clock is lead. Else
decrease clock period when divided clock is lag. Each step decreases half of the search range.
Initial search range is TDCy,n. There are four quadrants shows in fig.3.13. I and II are in
phase-lead area. III and IV are in phase-lag area. In the idea case, the tracking point stays at II
and IV and more and more closer to reference clock at binary search method. Point t;, t;, and

t; meet this case.

Cycle time
short long
- -
II I ! I
A | |
. ™ /A — CIC 1 o« WA\ Y [P —
= Mislead area
|
lead : "c‘.\ |
Correct area . |
: IR ™ ;
Phase | \Qy—r |
error | x g !
i A t l
: | |
lag Mislead area Corredt area TDCorin
_________ fj— = - F ===
[|
\j ! : v
1 [Tres |

Fig.3.13 The problem of fine tracking

However, it is possible enters I and IV within the tracking process. Because the distance
between current point and reference clock is unknown. If current point enters I and I1I, DCO
will increase period in phase-lead state and decrease in phase-lag state. This misleads let
frequency error become bigger than before. To solve this problem, the fine tracking algorithm
need modified.

First, the observation in fig.3.14 shows that there is 50% probability change misleading

21

area to correcting area in one step. According to this characteristic, the algorithm adds a wait
slot when phase not change first time. And do binary search again at next step. Repeat these
two steps until phase change. Second, decrease half of search range only at phase changed.
Because phase change means reference clock is located in search range. Finally, if the search
range reduce to DCO control word minimal value then algorithm enter frequency maintain

state.

Cycle time
short long
II I
4 |
——— . T ______ _
lead | phase change \
in one step
Phase |
error £
Iag l TDCmin
_________ I_ p_ A
\J 111 ' | v
|

Fig.3.14. The observation of mislead area

In fig.3.15 demonstrate the example of fine tracking algorithm. First, initial tracking point is
located at II. In order to become closer to reference clock, DCO increase clock period with
gain. The value of gain depends on TDC minimal detectable range. The range between dotted
line and reference clock is the TDC minimal detectable range in the figure.3.15. The search

range record the sum of gain value until phase change.

22

Cycle time

short long
>

11 | ! I

A | |
——— . Fo—— _gainy _— _ -
: ' | ". wait
lead wait “"_ ‘/ B
one time
s gain

(N . |
Phase LN , |
error | “ \‘ !
gainx'2 r- \
-
— Y2 search phase TDCmin
range change

lag Gainx s

Fig.3.15. The example of fine tracking algorithm

Second, after increase of DCO period, the phase not changed and the tracking point
enters mislead area. As mentioned above, the wait slot is inserted. This wait slot lets DCO
period unchanged. And the tracking point shift down because of longer clock period. Third,
DCO increase clock period again. Fourth, the phase is changed. This means that the tracking
point is in IV, correct area. And the search range is twice of gain. The new tracking point is in
half of search range and gain is divided by two because of binary search method. Repeat the
above action, tracking point will more and more closer to reference clock.

Fig.3.16 shows the complete working flow of fine tracking algorithm. Period represent
divided clock period. Range is search range and wait fin will be one when tracking point

finish wait one time.

23

Start fine

tracking
Initial at IT , IV Return to
coarse tracking
y no
Maintain? Y= - yes Lock?
no
Y A
period =period % gain .
range = range + gain Frequency maintain
wait_fin = 1
. o period =period + gain
period —'perlod + 1{2 range range = range + gain
gain = Y2xgain wait fin = 0
B <

Fig.3.16. The working flow of fine tracking algorithm

3.5. Scheduling of MIMO-SDPLL

In MIMO-SDPLL, the number of error detector and DCO can more than one. Because
OpenRISC is a single core CPU, it needs handle IP cores switched. It repeats pooling error
detector’s error flag. If error flag is high, then CPU do correspondence action. At this work,
the proposed MIMO-SDPLL is 2-by-2. Because CPU’s computing power is a restriction. Thus
the simplest scheduling is used. The B set of error detector and DCO start tracking algorithm

after A set reach frequency maintain state. Fig.3.16. shows this simple scheduling.

24

CPU time

IP core A

IP core B

O oo o gnde-:

tracking

waiting

maintain

OO0 b fgee.-

tracking maintain

Fig.3.16. The scheduling of 2x2 MIMO-SDPLL

However, it is notable that one stage execution time of tracking algorithm need small

than the reference clock period of each combination of error detector and DCO. This can

promise the correctness of tracking algorithm.

25

Chapter 4

Implementation and Simulation Result

In this section, the implementation of 2x2 MIMO-SDPLL is discussed at two parts,
hardware and software. In hardware section, the implementation details of MIMO-SDPLL
architecture are presented. In software section, the method of hardware control via software
and software programming are presented. The hardware and software co-simulation result is

showed at the end of this section.

4.1. Hardware

The overview of hardware architecture shows in fig.4.1. There are several IP cores
include CPU, bus, error detector [3], DCO [7], SACA, memory and flash. The entire IP cores
connect to the bus. Only CPU can send transaction request actively at this architecture. The
DCO is high-resolution and wide frequency range proposed at [7]. The specification of IP
cores list in table 1. The detail of IP cores is mentioned at following sub-section.

After reset signal is asserted, the CPU OpenRISC or1200 start fetching instructions from
flash and execution them. These instructions are compiled form C source code. The entire
tracking algorithm programmed in C source code. After hardware initial, CPU starts polling
error detectors alternative. When reference clock and divided clock have phase error, the error
detector will raise error flag signal. CPU then does one tracking algorithm stage for the

correspond device.

26

l ‘e Yo Jal

B Y0 00d

l ‘q Mo Jal

q MI°P 00da

err_valid
m >
3
91 err_value
- VN ‘wb_stb
% 29
Q ‘err_set wb we
o -« -
- mode =
> I
2 O | wb_adr
5| 32
T
— wb_dat
ctw — -
-t 32
28 >
mode wb_ack
g i
@) latch_sig wb dat
> | 3 = »
ready
[72]
<
(72}
v o
~
err_valid
m >
3
2] err_value wb_stb
o > -
% 29
err_set
% -— ‘wb_we
= mode -
W - =
2 0 | wb_adr
5| 32
T
- wb_dat
ctw — -
-t 32
2§ w
mode wb_ack
O < o
(@) .
(@) latch_sig wb dat
w | > =
ready

SN ANOGHSIM

)]
<
(7]
Q
\ =~
sel
wb_stb >
: 2
<
% é cyclti C:Q
@) =50 (@)
wb_dat > T >
> mods
32 5
¢ L
<
(7]
f o
=
iwb_stb
5 e
iwb_dat | 55 @
iwb_ a= 5 o
32 Ry
(0)]
@)
dwb_stb o
4 W) -
= 8
w S
dwb dat | <
> T
32
)]
<
w
o
-~
wb_stb A
- 20 =
D » D
wb_we 32 3
- we | O
<L
wb_adr S < Q
T 3g @ | 32
wb dat| T | A__
- = 22
32 (@)
D > T
wb_ack 32 8
> we)|
wb_dat - Q
- 32

32

Fig.4.1. 2x2 MIMO-SDPLL architecture

27

e WO JoI

Table 1 Hardware specification

Item Description
Process UMC 90nm SP_RVT Process
OpenRISC or1200
CPU Maximum clock frequency: 250MHz
Gate count: 10k
WISHBONE bus
Bus Architecture: shared bus

Maximum clock frequency: 250MHz

Minimum error pulse: 200ps
PFD | Minimum detectable clock difference: 45ps
Gate count: 107
Error Resolution: 15ps
detector TDC Gate count: 6k
Divider
Range: 1~1023
N
DCO Frequency range: 660KHz~460MHz

Resolution: 10fs
Reference clock Frequency range: 660k/N~460M/N Hz
103~1231MHz of 64 stage

SACA
Each stage: 140ps
On FPGA board memory
Memory
Address space: 8MB
On FPGA board flash
Flash

Address space: SMB

4.1.1. Memory Map
There are several I/0 devices in MIMO-SDPLL. CPU needs access these devices from

bus. The common method is that all I/O devices include memory are treated as a whole
memory. Thus software can communication with specific hardware depends on this memory

map. Fig.4.2 is the memory map at this work.

28

0x0000_0000
Memory
0x0080_0000
Flash
0x0100_0000 2
Reserved
0x9500_0000 *
PLL A
0x9600_0000
SACA
0x9700_0000
PLL B
0x9800_0000

Fig.4.2 Memory map of 2x2 MIMO-SDPLL

4.1.2. CPU

The selection of CPU is OpenRISC or1200. Or1200 support cache, MMU and basic DSP
capabilities. For direct use and area issue, the above function doesn’t implement in this work.
By default configuration, the divided is simulation by multiplier with the help of compiler. It
needs implement because the software is compiled without standard library. At UMC90

process, or1200’s gate count is 10k and has maximum frequency up to 250MHz.

4.1.3. WISHOBONE Bus Protocol

For CPU compatibility and IP cores connection, the WISHBONE [8] bus is chosen.
WISHBONE has two type of interface: MASTER or SLAVE. MASTER can request
transaction to SLAVE. Like CPU is a MASTER. SLAVE can reply transaction request from
MASTER. All IP cores are SLAVE beside CPU in this work. Fig.4.3 shows a simple example

of its single read and single write protocol. The bus protocol works as follows:

29

Single read-

CLK I EDGE 0:

CLK_1EDGE 1:

CLK 1EDGE 2:

Single write-

CLK I EDGE 0:

CLK_1EDGE 1:

CLK 1EDGE 2:

MASTER presents a valid address on ADR_O.

MASTER presents bank select SEL_O.

MASTER negates WE_O to indicate a read cycle.

MASTER asserts STB_O to indicate the start of phase.
MASTER asserts CYC_O to indicate the start of cycle.

SLAVE decodes input, and responding SLAVE asserts ACK_I.
SLAVE presents a valid data on DAT 1.

MASTER monitors ACK I, and prepares to latch data on DAT 1.

Note: SLAVE can add any number of wait states (WSS) before asserts ACK 1.

MASTER latches data on DAT 1.
MASTER negates STB O and CYC_O to indicate the end of the cycle.

SLAVE negates ACK I in response to negated STB_O.

MASTER presents a valid address on ADR_O.

MASTER presents valid data on DAT O.

MASTER presents bank select SEL_O.

MASTER asserts WE O to indicate a read cycle.

MASTER asserts STB_O to indicate the start of phase.
MASTER asserts CYC_O to indicate the start of cycle.

SLAVE decodes input, and responding SLAVE asserts ACK_ .
SLAVE prepares to latch data on DAT_O.

MASTER monitors ACK I, and prepares to terminate the cycle.

Note: SLAVE can add any number of wait states (WSS) before asserts ACK 1.

SLAVE latches data on DAT_O.
MASTER negates STB_O and CYC_O to indicate the end of the cycle.

SLAVE negates ACK I in response to negated STB_O.

30

WSS WSS

S I

ADR_O X)X X<<_ VALID > X X< VALID XXX

DAT_I YOO, <G XXX, KKKKKK
DAT_O YOO O R VALID XXX

STB O | | i I
ACK | 1 1
cyco_—_ | L 1 L
L _) L — J
Y Y
READ WRITE

Fig.4.3 WISHBONE read / write timing graph

4.1.4. IP Cores Interconnection

In MIMO-SDPLL, the IP cores need be connected for communication. There are four
defined types of WISHBONE interconnection, point-to-point, data flow, shared bus and
crossbar switch. The shared bus and crossbar switch is useful for connecting two or more
MASTERs with SLAVEs. They are suitable interconnection at this work. And the shared bus
requires less interconnection logic and routing resources than crossbar switch. So the shared
bus system is chosen for IP cores connection.

Fig.4.4 shows the interconnection block diagram. There two MASTERs and four
SLAVEs. MASTERs include or1200’s data channel and instruction channel. SLAVEs include
PLL module A, PLL module B, storage module and SACA module. PLL module is the
combination of error detector module and DCO module. Storage module includes memory
and flash.

The bus arbiter allocates the bus access priority between MASTERs, data channel
priority is higher than instruction channel because of data dependency. The address
comparator switches the correct data flow from MASTERs to SLAVEs according to the

memory map in fig.4.2.

31

CcYcC
STB
SYSCON .
SEL{)
RST_O DAT/]
CLK_O —1 ADR(}
Slave #0 ﬁ
ADR_ DAT_
DATI ACK_
m.m_rﬂq ERR O Master #0
Address R OAT T ADRO
comparator| =) STB per yl ——DJACK DAT.O -
) cvc v ~I—gD—JERR SELO -
ADR! CLK 1 WE_O -
m—m<m * ﬂ ”Ul”w.ﬁ”_..wl___ STE_O L
ADRI DAT_ n:AH - crc.ol—
CMPO DAT_I ACK_Of
SEL_| mwxnofg)_I./
WEI Rrv.O u_u =
¥ STB_I M .
Mp1—1 m_U o RST_I M kUUJ |
CLKL . = -
Slave #2 >
ADR_| DAT_O—|
CMP2 DAT.| ACK_O—
m_rﬂ_ ERR_OF—— Master #1
WE_I RTY O — =TT DAT_I ADR_O
CMP3— \m_Hv STBLL per jhee “MT—IDHACKI DAT.O
cyc_i - =5 “I"TMI=IDHerr_I SELO
-LK L WE_O|—
”_ HRTY_I —
Slave #3 ety STBLO—
ADR_ DAT_ axd oo
DAT ACK_
SEL1 ERR_O| .
WE | - Arbiter
Jd Riv.o
|“_U STBLl per gl
cvc N
LK .1_
CLK cve r_

Fig.4.4. The interconnection block diagram of MIMO-SDPLL IP cores with shared bus
system.

32

4.1.5. Semi-asynchronous clock access (SACA) module

It is important to decide the system clock in this work. There are two choices, one is
reference clock and another is DCO clock. But reference clock is too slow and DCO clock is
not stable enough for CPU computation. For this reason, the semi-asynchronous clock access
(SACA) [3] is used.

SACA is a clock generator which synchronous to the rising edge of reference clock. And
start trigger fixed number of cycles with specific period asynchronous to reference clock. The
fixed number of cycles and clock period are defined by user. Fig.4.5 shows an example of

SACA with four cycle count.

Reference clock ’ ’
(trigger

SACAclock‘|‘|‘|‘| ‘||

-4 >
4 cycle

Fig.4.5. An example of SACA.

However, if the SACA clock frequency is higher than the frequency upper bond of
system, the system will failed. To prevent this condition, the modified SACA architecture is
proposed. In fig.4.6 shows the block diagram. It uses TDC, frequency divider, encoder and
semi-asynchronous clocker (SAC) to generate the nearest clock. And this output clock will
close to N % fr. N¢ is the frequency multiplication factor define by user, f.r is the reference
clock frequency. The output clock range of SACA is from 103MHz to 1231MHz into 64
stages, each stage is 140ps.

For example, if the reference clock is 30MHz and system needs 120MHz. The TDC will
convert the reference clock period into digital data and divider will divide this data by four.

Then encoder gets this divided-data and mapping it to the nearest clock of SAC. Finally, SAC

33

output the nearest clock about 30x4 = 120MHz for four cycles.
In this work, the Ny setting to more than 2048. Because the execution time of one

algorithm step needs less than one reference clock cycle.

I/ Semi-synchronous Clocker \I

| by by o by Output |

I I

I I

I I

| 0 |

\ win. :window signal win.)
\——— ———————————————————— /

ef ok T
(referenceclock e
with period 7') Clock | | | T e . Output clock
> re-gen 2*7-‘ DC > T Divider (=ref _clk * Ny)
g z+—» Encoder, » SSC
N, s N (Z=|T/4N, |)
win.T
___________ » Counter
_____________ » (M)

; R ~

I |

| Cascaded| !

: counter :

I |

| 000 |

| |

| | Encoder, |<7 |

| |

I clk: ref_clk/2 Quantization output /I

Fig 4.6. The modified SACA block diagram

4.2. Software

4.2.1. Software programming

The software programming environment lists in table 2. The working flows of software
development are common. First, use C language to develop program. Second, compile the
source code by gcc cross-compiler. Finally, gcc will generate executable binary file. This

binary file will place in flash.

34

Table 2 Software environment

Item Description

Development language | C

Cross compiler gcc 3.4.4 for OpenRISC 32 bit architecture

CentOS release 5.2

Host Kernel version: 2.6.18-92.1.17.¢el5

4.2.2. Memory map I/O control

In order to checking and setting hardware, the memory map I/O is used at this work. This
manner help software programmer simpler and easier to access hardware IP cores. The
memory map of IP cores shows in fig.4.2.

Here give an example of memory map I/O control. First, define the base address of IP
core depend on fig.4.2.

#define DEVICE _BASE _ADDR 0x95000000 (8)
Second, declare a volatile pointer and assign base address value. A volatile qualifier must be
used when reading the contents of a memory location whose value can change unknown to the

current program.

volatile unsigned long * DEVICE PTR ;

9
DEVICE PTR = (unsigned long *) DEVICE BASE ADDR ; ®)
Finally, this pointer can read or write IP cores register by software.
/'] read hardware register
data buf = *DEVICE PTR; (10)

/'] write hardware register

*DEVICE _PTR = data _buf ;

4.3. Simulation Result

This section shows the simulation result. The simulation setting lists in table 3. The
simulation waveform is presented at fig.4.7. Because the waveform is hard to observation, the

phase error information is recoded to draw a curve. This is helpful for the variation of phase

35

error. Fig.4.8 shows the result of phase error variation graph. X-axis represents number of
reference clock; this is unrelated to clock period. Y-axis represents phase error between Nth
reference clock and Nth divided clock in picoseconds. The above figures shows clock B start
tracking after clock A reaching phase maintain state. And both clock convergence at 550"
reference clock. The figure below shows the detail of 550" and 800™. The divided clock A

maintain at + 3ps and clock B at + 9ps.

Table 3 Simulation setting

Item Description
Divided clock A: 23333.333ns
Divided clock B: 25555.555ns
Divided clock A: 100

Divided clock B: 100

Divided clock A: & 3ps
Divided clock B: £ 9ps

Reference clock period

Divided N

Phase error variation

BMain Signa
ref clk a o
div_olk w
lead_w

lag w

ref «¢lk b o
div_clk_w
lead w

lag w

| i |

>

BMain Signa
ref clk a o
div_olk w
lead_w

lag w

ref «¢lk b o
div_clk_w
lead w

lag w

36

BMain Signa

_ref_clk_a_o _| |—| | I—,—l_
C div.elkw ||| [1 [[
lead w
lag_w

: ref olk_ kb o
div_olk w

lead_w
lag_w I I

4 ey 5y]

Fig.4.7. The waveforms of simulation result.

(a) The full view of waveform. (b) The zoom version of (a). Clock A do coarse tracking. (¢)

The zoom version of (c). Clock A and B enter frequency maintain stage.

<10 2x2 MIMO-SDPLL phase error variation
—Divided clock A
e s S Divided clock B/~
15
B start
/

Phase error (ps)
)

OFA
5 {
0 100 200 300 400 500 600 700 800
Nth refernece clock
2x2 MIMO-SDPLL phase error variation
10
—Divided clock A
----- Divided clock B
!
m
£
S
o
(]
[Z2]
©
e
o
-10- ':
550 600 650 700 750 800

Nth refernece clock

Fig.4.8. 2x2 MIMO-SDPLL simulation result of phase error variation

37

Chapter 5

Conclusion and Future Work

From the simulation result, the proposed 2x2 MIMO- SDPLL has high resolution under
software control. And more than one clock can be handled with scheduling. When the
specification needs substantially modify, platform can fit the new specification by replacing
the software.

In the future, the CPU scheduling can improve to multi-tasking. And the software

development can provide different software IPs for different applications.

38

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

Terng-Yin Hsu, Bai-Jue Shieh, Chen-Yi Lee” An all-digital phase-locked
loop(ADPLL)-based clock recovery circuit” Solid-State Circuits, IEEE Journal of
Volume 34, Issue 8, Aug. 1999 Page(s):1063-1073

Ching-Che Chung, Chen-Yi Lee, “An all-digital phase-locked loop for high-speed clock
generation” [EEE Journal of Solid-State Circuits, Vol38,pp.347-351, Feb.2003

Chang-Ying Chuang, Terng-Yin Hsu” The Study of Software-defined Phase-locked
loop ” Thesis CS, NCTU 2008.

“OpenRISC 1200 IP Core Specification” Rev. 0.7, Sep 6, 2001

“OpenRISC 1000 Architecture Manual “July 13, 2004

Li Jyun-Rong, Hsu Terng-Yin” The Study of All Digital Phase-Locked Loop (ADPLL)
and its Applications” Thesis CS, NCTU 2006.

Jung-Chin Lai, Terng-Yin Hsu” The study of Wideband, Cell-based Digital Controlled
Oscillator and its Implementation” Thesis CS, NCTU 2007.

“WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores”
Revision: B.3, Released: September 7, 2002

39

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

