
國 立 交 通 大 學 
 

資訊科學與工程研究所 

 

碩 士 論 文 

 

 

多輸入多輸出鎖相迴路軟體化之研究 

The Study of MIMO Software-defined Phase-locked Loop 

 

研 究 生：黃則斌 

指導教授：許騰尹 教授 

 

 

 

中 華 民 國 九 十 八 年 六 月 

 



多 輸 入 多 輸 出 鎖 相 迴 路 軟 體 化 之 研 究 

The Study of MIMO Software-defined Phase-locked Loop 
 

研 究 生：黃則斌          Student：Ze-Bin Huang 

指導教授：許騰尹          Advisor：Terng-Yin Hsu 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

 
A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Computer Science 

 
June 2009 

 
Hsinchu, Taiwan, Republic of China 

 
 

中華民國九十八年六月 



 i

摘要 
 本篇論文提出了可軟體控制及開發的多輸入多輸出軟體鎖相迴路平台

(MIMO-SDPLL)。此平台並結合了數個矽智財包括 CPU 及鎖相迴路的相關模組。CPU 的引

進，為平台提供有彈性的軟體控制及運算。在輸出規格需要大幅更動時，以變更軟體的

方式即能符合所需要的規格。本論文所提出的軟體鎖定演算法能達到高解析度鎖定的狀

態並且以軟體的方式進行開發。多重時脈輸入能用軟體排程的方式進行處理。硬體方

面，以 2對 2的架構進行作。所有的矽智財實作於 UMC 90nm 的製程上。 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ii

Abstract 
A software controllable and programmable MIMO software-defined phase-locked loop 

(MIMO-SDPLL) platform is presented in this paper. This platform combine several silicon 

IPs including CPU and PLL modules. CPU is introduced to provide flexible software 

controllability and computing power. When the specification needs substantially modify, 

replace the software at platform can fit the new specification. The proposed software tracking 

algorithm can reach high-resolution phase-locked and development by software. Multi-clock 

can be handled with software scheduling. In hardware, 2x2 MIMO-SDPLL architecture is 

implemented in this work. All IP cores implement at UMC 90nm process. 

 
 
 
 
 
 
 
 
 
 

 
 
 



 iii

誌謝 
能完成這篇論文，首先要感謝我的指導教授許騰尹老師。老師有耐心的導引我論文

的研究方向，並適時的讓我獨立思考，培養解決問題的能力。在實驗室的資源提供上也

相當充足，老師會盡力爭取實驗室所需的工具。亦特別感謝 ISIP Lab 的成員及 PLL 

group。大家地無私互相分享知識及經驗才能順利完成這篇論文。最後感謝交通大學提

供相當良好的研究環境及家人的支持與鼓勵，讓我的碩士學業能順利的完成。 

                      

                                                            黃則斌 謹誌 

          民國九十八年八月十七日 

 

 
 
 
 
 
 
 
 
 
 
 



 iv

Table of Contents 
摘要 .............................................................................................................................................i 
Abstract .....................................................................................................................................ii 
誌謝 ...........................................................................................................................................iii 
Table of Contents .....................................................................................................................iv 
List of Figures ..........................................................................................................................vi 
List of Tables ...........................................................................................................................vii 
Chapter 1 Introduction ............................................................................................................1 

1.1. Thesis Motivation ........................................................................................................1 
1.2. Thesis Contribution .....................................................................................................1 
1.3. Thesis Organization .....................................................................................................2 

Chapter 2 Overview of MIMO-SDPLL ..................................................................................3 
2.1. Base Concept ...............................................................................................................3 
2.2. Silicon IP Selection......................................................................................................4 

2.2.1. CPU ..................................................................................................................4 
2.2.2. BUS ..................................................................................................................5 
2.2.3. PLL ...................................................................................................................5 

2.3. Software.......................................................................................................................6 
2.4. MIMO-SDPLL ............................................................................................................6 
2.5. Architecture Simulator and IP Model ..........................................................................8 

2.5.1. Architecture simulator ......................................................................................8 
2.5.2. PLL IP Model ...................................................................................................8 

Chapter 3 Tracking Algorithm ..............................................................................................10 
3.1. Basic Concept of Frequency Search..........................................................................10 
3.2. Basic Concept of Phase Tracking ..............................................................................12 
3.3. The Challenge of Tracking Algorithm.......................................................................13 
3.4. The Proposed Tracking Algorithm ............................................................................16 

3.4.1. TDC and DCO relation mapping....................................................................17 
3.4.2. Frequency search algorithm ...........................................................................18 
3.4.3. Coarse tracking algorithm ..............................................................................19 
3.4.4. Fine tracking algorithm ..................................................................................20 

3.5. Scheduling of MIMO-SDPLL...................................................................................24 
Chapter 4 Implementation and Simulation Result..............................................................26 

4.1. Hardware ...................................................................................................................26 
4.1.1. Memory Map ..................................................................................................28 
4.1.2. CPU ................................................................................................................29 
4.1.3. WISHOBONE Bus Protocol ..........................................................................29 
4.1.4. IP Cores Interconnection ................................................................................31 



 v

4.1.5. Semi-asynchronous clock access (SACA) module ........................................33 
4.2. Software.....................................................................................................................34 

4.2.1. Software programming...................................................................................34 
4.2.2. Memory map I/O control................................................................................35 

4.3. Simulation Result ......................................................................................................35 
Chapter 5 Conclusion and Future Work ..............................................................................38 
Reference .................................................................................................................................39 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 vi

List of Figures 
Fig.1. Basic block diagram of ADPLL...................................................................................4 
Fig.2. OpenRISC OR1200 overview......................................................................................5 
Fig.3. Software flow of MIMO-SDPLL.................................................................................6 
Fig.4. MIMO-SDPLL architecture .........................................................................................7 
Fig.3.1. Binary search concept ............................................................................................. 11 
Fig.3.2 The structure of time-to-digital converter (TDC) ....................................................12 
Fig.3.3 The simple phase tracking algorithm .......................................................................12 
Fig.3.4. TDC-based phase tracking algorithm......................................................................13 
Fig.3.5. Define of waveform expression. .............................................................................14 
Fig.3.6. Setting new DCO control word...............................................................................15 
Fig.3.7. The close loop of tracking problem.........................................................................16 
Fig.3.8 The algorithm flow...................................................................................................17 
Fig.3.9. TDC value and control word mapping....................................................................18 
Fig.3.10 The estimation of reference clock ..........................................................................19 
Fig.3.11. Waveform of coarse tracking algorithm ................................................................20 
Fig.3.12. Different start position of coarse tracking algorithm ............................................20 
Fig.3.13 The problem of fine tracking..................................................................................21 
Fig.3.15. The example of fine tracking algorithm................................................................23 
Fig.3.16. The working flow of fine tracking algorithm........................................................24 
Fig.3.16. The scheduling of 2×2 MIMO-SDPLL.................................................................25 
Fig.4.1. 2×2 MIMO-SDPLL architecture.............................................................................27 
Fig.4.2 Memory map of 2×2 MIMO-SDPLL.......................................................................29 
Fig.4.3 WISHBONE read / write timing graph ....................................................................31 
Fig.4.5. An example of SACA..............................................................................................33 
Fig 4.6. The modified SACA block diagram........................................................................34 
Fig.4.7. The waveforms of simulation result........................................................................37 
Fig.4.8. 2×2 MIMO-SDPLL simulation result of phase error variation ..............................37 

 

 

 

 

 

 

 



 vii

List of Tables 
Table 1 Hardware specification ............................................................................................28 
Table 2 Software environment..............................................................................................35 
Table 3 Simulation setting ....................................................................................................36 

 



 1

 

Chapter 1   
Introduction 

 
 

1.1. Thesis Motivation 

 There are some types of PLLs, such as analog PLL, digital PLL (DPLL), and all-digital 

PLL (ADPLL) [1] [2]. All-digital approach brings portability and short design cycle in PLL 

design. However, designer often need redesign complexity circuit when algorithm or control 

strategy changed. With standard IC process, redesign also needs some time to run simulation, 

synthesis, layout and verification. It’s still longer than software development. So a new type 

of PLL with flexibility of reprogramming and reusability of silicon IPs called 

software-defined phase-locked loop (SDPLL) [3] is proposed.  

The proposed SDPLL use a CPU to link all IPs via shared bus architecture. These IPs 

include those IPs modular from PLL and the other IPs are memory, flash and I/O device. With 

the flexibility of CPU, designer can implement tracking algorithm or controlling strategy in 

high level language like C language. Moreover, the calculation power of CPU let SDPLL can 

integrate more PLL IPs. Multiple clock output makes more possible combination of 

application. Here, this architecture with multi-input and multi-output is called MIMO 

software-defined phase-locked loop (MIMO-SDPLL). How to integrate these IPs into 

MIMO-SDPLL become a challenge. 
 

1.2. Thesis Contribution 

The proposed MIMO-SDPLL achieve high-resolution phase-locked with software 

control. Multi-clock can be handled by CPU with scheduling. When the specification needs 

substantially modify, replace the software at platform can fit the new specification. 
 



 2

1.3. Thesis Organization 

Section 2 shows the overview of MIMO-SDPLL from hardware and software. Section 3 

illustrates the proposed tracking algorithm. Section 4 is the implementation architecture 

includes software and hardware. Section 5 presents the simulation result of 2×2 

MIMO-SDPLL and future work. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 3

 
Chapter 2   
Overview of MIMO-SDPLL 

 

 

In this work, the proposed MIMO-SDPLL has feature of software controllability and 

programmability which integrates CPU with silicon IPs. These silicon IPs include PLL IPs. 

Here MIMO-SDPLL is discussed from some parts. 

 

2.1.  Base Concept 

In section 1, there are three type of PLL. For SoC implement issue, all-digital approach 

is suitable and easier. So ADPLL is chosen as basic PLL IPs. 

Fig.1 shows conventional ADPLL block diagram. Include phase frequency detector 

(PFD), time to digital converter (TDC), digital control oscillator (DCO) and frequency divider 

(Divider N). ADPLL can generate frequency-locked and phase-locked clock output when 

input reference clock. After power on, PFD detect frequency or phase error between reference 

clock and divided-by-N clock. TDC converter error pulse received from PFD into digital data. 

If TDC output and DCO control tuning word (CTW) is equal then digital date sends to DCO 

directly. But in practical, digital data output from TDC often need digital processing to 

calculate CTW. The digital processing block is in Fig. 1. This block also process tracking 

algorithm or controlling strategy. DCO generate corresponding DCO clock with calculated 

CTW. In equation (1) shows this relation. 

f ( )=DCOf CTW                          (1) 

Notice that function f usually not linear. Divider N divide DCO clock by N and output 

divided clock send back to PFD, equation (2) show this relation.  



 4

− − = DCO
divided by N

ff
N

                       (2) 

ADPLL repeat the above actions until frequency-locked and phase-locked. 

 

However, digital processing is hardware implement. This is not flexible for change 

transformation of CTW, tracking algorithm or controlling strategy. Designer can only change 

some function by reserved input wires. For example, if users need change control strategy for 

different application, they can only depend on original hardware function to generate input 

data bit-by-bit manually. This is time-consuming and hard work. Thus use CPU to replace 

digital processing is proposed. CPU is more flexible and powerful than original digital 

processing.  

 

 

Fig.1. Basic block diagram of ADPLL 

 

2.2. Silicon IP Selection 

2.2.1. CPU 

In section 2.1 digital processing is replaced with CPU. The selection of CPU is free, 

open sourced OpenRISC OR1200 CPU released by OpenCores [4] [5]. OpenRISC project is 

to create a free, open source computing platform available under the GNU (L) GPL license. 



 5

The OR1200 is a 32bit scalar RISC with Harvard micro architecture, 5 stage integer pipeline, 

virtual memory support (MMU) and basic DSP capabilities. Fig 2 shows architecture of 

OR1200. At UMC 90nm process, OR1200 is about 10k ASIC gates. The reasons for choosing 

OR1200 are open source and have been implemented in various commercial ASICs and 

FPGA. 

 

 

Fig.2. OpenRISC OR1200 overview 

 

2.2.2. BUS 

In order to integrate CPU and silicon IPs, this work select OR1200 compatible 

WISHBONE [8] bus as bus architecture. WISHBONE is a specification maintain by 

OpenCores. Its purpose is to foster design reuse by alleviating system-on-a-chip integration 

problems. This is accomplished by creating a common, logical interface between IP cores. 

This improves the portability and reliability of the system, and results in faster time-to-market 

for the end user. The proposed MIMO-SDPLL platform use WISHBONE to connect all IP 

cores. 
 

2.2.3. PLL 

In order to integrate PLL with CPU and IP cores. ADPLL need be partitioned into 



 6

different IP cores. The partition step is simple; divider digital processing input part and output 

part into two IP cores. In fig.1 PFD, TDC and Divider-N generate digital data to digital 

processing; this is input part and combine to error detector IP core. And output part is DCO 

independently. Notice that new IP cores need bus interface in order to connect to WISHBONE 

bus.  

 

2.3. Software 

The proposed MIMO-SDPLL control IP cores with software. In common, software can 

be developed with almost high level languages if there are corresponding compilers. In this 

work choose C as development language because C is one of the most popular programming 

languages. It is widely used on many different software platforms, include OpenRISC. And 

OpenRISC has provided C compiler for OR1200; this is familiar and convenience for 

programmer to develop software. In fig.3 exhibit software flow of MIMO-SDPLL, it is 

common and used for a long while. 

 

Fig.3. Software flow of MIMO-SDPLL 

 

2.4. MIMO-SDPLL 

In section 2.2 introduce some major IP cores of MIMO- SDPLL. In fig.4, CPU, error 



 7

detector, DCO and other IP cores are connected by WISHBONE bus. Flash memory stores the 

program of tracking algorithm and controlling strategy. Semi asynchronous clock access 

(SACA) provide system clock of MIMO-SDPLL. It is synchronous rising edge of reference 

clock and maintains high after count the number user-defined. This can provide enough clock 

cycle for CPU computing and reach low power and low noise.  

 

 

Fig.4. MIMO-SDPLL architecture 

 

The working flow of MIMO-SDPLL: 

1. After reset, CPU executes instructions and initials all IP cores. 

2. CPU start polling error detector 1 ~ N. 

3. If one of error detectors detects error, then CPU fetch this value. 

4. CPU calculates CTW and sends to correspondence DCO. 

5. Return to step 2. 

The proposed MIMO-SDPLL can handle N number of error detectors and DCOs, the 



 8

number N decide by calculation power of CPU. Further more, all DCO clocks are 

frequency-locked and phase-locked. 

 

2.5. Architecture Simulator and IP Model 

MIMO-SDPLL use software to execute tracking algorithm and controlling strategy. In 

order to increase software development efficiency and convenience, architecture simulator 

and system model are used frequently. 

 

2.5.1. Architecture simulator 

OpenRISC project provide an architecture simulator OR1ksim. It is a generic 

architecture simulator capable of emulating OpenRISC based computer systems. Or1ksim has 

several unique features: 

 Free, open source code.  

 High level, fast, architecture simulation that allows early code analysis and system 

performance evaluation. 

 Easy addition of new peripheral models. 

Or1ksim can execute C program instruction by instruction. This is helpful for debugging. 

For MIMO-SDPLL simulation, PLL IP Models can add to Or1ksim. 

 

2.5.2. PLL IP Model 

As mentioned at section 2.2.3, there are two IP cores divide from ADPLL, error detector 

and DCO. For simulation at architecture simulator, these two IP cores are modelled. First, 

error detector has two inputs and one output. They are input reference clock and input divided 

clock with frequency reff and divf . Output is phase errorεout . In order to model clock, record 

clock frequency and phase offset is reasonable. The clock model refD can represent as 



 9

_( , ) =ref ref ref offsetD T t  

1/=ref refT f  

_ _( ) mod= +ref offset sys ref init reft t t T .             (3) 

And divD is 

_( , ) =div div div offsetD T t  

= ⋅div dcoT N T  

_ _=div offset dco offsett t .                        (4) 

T is clock period , syst is current system time, initt is initial time of rising edge and 

offsett represent offset time at syst . Phase error is phase difference detected at syst ,εout can derive 

as  

_ _ε = −out div offset ref offsett t                     (5) 

If divD phase lead refD thenεout  is positive else εout  is negative. DCO model is similar to 

error detector. Input CTW ctwd is digital data can use directly. Output DCO clock dcoD also 

record clock frequency and phase offset, dcoT define as 

= + ⋅dco intr DCO ctwT T k d                      (6) 

intrT is intrinsic period of DCO. DCOk is DCO gain defined as a frequency deviation in 

response to 1 LSB of the input ctwd . And _dco offsett become  

_ _

_ _ at 0
Δ

Δ

′= +

= =

′= −

dco offset dco offset

dco offset dco init sys

dco dco

t t t

t t t

t T T

                 (7) 

′offsett and ′dcoT is previous phase offset and clock period. _dco initt is initial phase offset of DCO. 

Ideally, when =ref divT T and 0ε =out is frequency-locked and phase-locked. 

 
 



 10

 
Chapter 3   
Tracking Algorithm 

 

 

In PLL domain, high resolution and fast-locking time are important performance factor 

of tracking algorithm. The target of tracking algorithm is frequency-locked and phase-locked. 

It can be separated into three parts, frequency search, phase tracking and phase maintaining. 

At this section will discuss in detail from these parts.  

As motioned at section 2, the proposed MIMO-SDPLL uses software to design tracking 

algorithm. The performance gap between software and hardware is a big design challenge. 

And the control strategy is complex when many IP cores active at the same time. These issues 

also will be discussed at this section and a tracking algorithm for MIMO-SDPLL will be 

proposed. 

The organization of this section is as follow. Section 3.1 introduce common concept of 

frequency search. Section 3.2 shows the concepts of phase tracking. Section 3.3 analyses the 

tracking problem and introduces a new expression of waveform. Section 3.4 proposes a 

tracking algorithm can reach frequency-locked, phase-locked and phase maintained. 

 

3.1. Basic Concept of Frequency Search 

In tracking algorithm, accurate frequency is essential for phase tracking. If frequency 

error between reference clock and divided clock is big, then phase error will change at every 

clock cycle. This let phase acquisition more complex. There are two common frequency 

search algorithms have been used. One is binary search based and another is TDC-based.  

The basic concept of binary search based algorithm is “Prune-and-Search”. DCO search 

target frequency and divide half of search range at each step. After the search range reduces to 



 11

one, the frequency search is done. Then algorithm enters phase tracking and phase 

maintaining state.  Fig.3.1 shows the concept.  

 

 

Fig.3.1. Binary search concept 

 

However, for fast-locking application, lock-in time is critical design issue. Thus 

TDC-based algorithm is proposed. It needs TDC converts timing information into digital data. 

This is helpful for quickly calculation of the nearest CTW for DCO. With this idea, reference 

clock period information can be measured by TDC. And DCO quickly jump to the desired 

frequency as same as reference clock.  Obviously, the lock-in time can be reduced. Fig.3.2 is 

basic structure of TDC. The internal delay chain measure input signal. And counter add one 

when input signal traverse the delay chain. TDC-based approach is chosen at this work.   

 



 12

  

Fig.3.2 The structure of time-to-digital converter (TDC) 

3.2. Basic Concept of Phase Tracking 

The basic concept of phase tracking algorithm is to minimize the phase error provided by 

phase detector. The simplest way is add constat control word after frequency search. Assume 

divider clock frequency is close enough to reference clock after frequency search. DCO 

control word will add (subtract) constant if phase is lag (lead). In fig.3.3 shows this process. 

Initial phase error is Δ1, and phase detector report divided clock’s phase is lag. Because phase 

error Δ1 is unknown, control word subtracts a constant ε to reduce phase error. The Δ2, Δ3 and 

Δ4 are in similar process.   Δ4 adds ε because phase is changed from lag to lead. Obviously, 

this method is slow and passive. 

 

1

2 1

3 2

4 3

initial error 
-
-

is constant 

ε
ε
ε

ε

Δ
Δ = Δ
Δ = Δ

Δ = Δ +

 

Fig.3.3 The simple phase tracking algorithm 

 

In section 3.1, the TDC-based frequency search algorithm use TDC to speed up 



 13

frequency search. As the same idea, phase error can be measured by TDC. With this 

information, the control word can be calculated accurate. In fig.3.4, assume the same 

condition of fig.3.3. The divided clock period is as same as reference clock period, denoted as 

T. Because of frequency is locked, Δ2 equal to Δ1. So T′ can be inserted to fix phase error Δ1. 

From the derivation of these conditions, phase error becomes zero at Δ3. 

1initial error Δ

2 1

1

3 1

T T
( T T ) - 2T
2T - 2T
0

Δ = Δ
′ = − Δ

′Δ = Δ + +
=
=

 

Fig.3.4. TDC-based phase tracking algorithm 

 

However, the two algorithms above, assuming perfect frequency locked which 

mentioned at section 3.1. In practical, frequency can’t lock perfectly because of the PFD’s 

dead zone, TDC’s resolution and DCO’s non-linear. To conquer these restrictions, a new 

tracking algorithm is proposed. 

 

3.3. The Challenge of Tracking Algorithm 

The algorithm of frequency search and phase tracking are discussed at section 3.1 and 

3.2. However, phase tracking algorithm is affected by frequency search result considerably. 

The information of frequency and phase need consider together. So the tracking problem 

requires be rechecked at this section.   

Before describing the challenge of tracking algorithm, a more powerful expression of 

waveform is introduced. This expression is proposed at [6]. Fig.3.5 illustrates the new 

definition of phase tracking & frequency search problem. The horizontal line means the cycle 



 14

time of divided output clock or reference clock which is according to the scale of TDC. 

TDCmin is TDC minium detectable range. The vertical line represents the phase relation 

between divided output clock and reference clock. The magnitude is according to the value of 

TDC, too.  
 

  

Fig.3.5. Define of waveform expression.  

The upper is original waveform and the bottom is anther expression. 

 

For example of fig.3.5, the divided clock is lag Δ1 to reference clock at t0 initially. And 

divided clock period is longer than reference clock with valueε. So this relationship can be 

represented as (Tref +ε, -Δ1). The t0 point is located at the quadrant of longer cycle and lag 

phase. As the same process, t1 and t2 can be marked. And t1 and t2 shift down frequency error ε 



 15

at each cycle. In another case, if the divided clock is shorter than reference clock, the location 

of new points will be symmetric at Tref. But the direction is opposite to original. Summary, the 

right-hand side of Tref always shift down and left-hand side shift up. From this new definition, 

the tracking problem can be explained without drawing complex waveform which is hard to 

be understood. 

In the example of fig.3.5, the DCO control word has not changed. Fig.3.6 shows the 

situation when setting new DCO control word. 

 

 

Fig.3.6. Setting new DCO control word. 

 

The tracking problem now can be transferred into another question. How to reach (Tref, 0) 

at any point of fig.3.6 is new target of algorithm. The straight way is setting new control word 

to DCO if there is phase error. But the frequency error between divided clock and reference 

clock let this manner become non-convergence. In fig.3.7, the path of algorithm will be a 

close loop, and the magnitude of phase error and frequency error will be cyclic. The proposed 

algorithm will resolve this problem and reach frequency-lock and phase-lock. 

 



 16

0

1

2

: ( , )

: ( ( ), )

: ( , ( ))

ref

ref

ref

p T

p T

p T

ε

ε ε

ε

− +Δ

− −Δ +

+ Δ + −Δ

3

4

5

: ( , )

: ( ( ), )

: ( , ( ))

ref

ref

ref

p T

p T

p T

ε

ε ε

ε

+ −Δ

+ −Δ −

−Δ − −Δ

0p

1p

2p

3p

4p

5p

:     :  initial phase error frequency errorεΔ

 

Fig.3.7. The close loop of tracking problem 

 

3.4. The Proposed Tracking Algorithm 

In this section, a new tracking algorithm is proposed. The basic idea comes from [2], and 

does some modification for MIMO-SDPLL. The algorithm flow is in fig.3.8. It is separated 

into three main part, frequency search, coarse tracking and fine tracking. Initially, algorithm 

start at frequency search state to get reference clock period. Second, if watch dog not bark 

then algorithm enters phase tracking state. The phase tracking has two parts, one is coarse and 

another is fine. This is decided by the resolution of PFD, TDC and DCO. Because DCO have 

extra control bit when TDC reach minimum detectable range TDCmin. More accurate tracking 

can do by these control bit and PFD signal. Phase tracking algorithm does coarse tracking 

continually, if phase error is bigger than TDCmin. Else algorithm will enter fine tracking state. 

Notably, all states of proposed algorithm need tuning frequency and phase, this will explain 

later.  

 



 17

 

Fig.3.8 The algorithm flow 

 

3.4.1. TDC and DCO relation mapping 

Usually, TDC and DCO relation is known after IP selection. However, this relation will 

have some variation with PVT issue. Thus the training of this relation is required. Before start 

tracking algorithm, DCO clock connect to the input of TDC and software set different known 

control word to DCO. After DCO clock changed, TDC can output digital data of this clock 

period. The digital data map to the corresponding control word can find out the relation. In 

fig.3.9 shows this method. However, this method assumes DCO is linear. In practically, DCO 

has multiple control stages with different resolution. And each stage is close to linear. Thus do 

this method one time for different stage is suitable. The control bit m is the bit number 

between two control words c1 and c2. And c1 choose minimum control word and c2 choose 

maximum control word at each stage. Note that the difference between two control words 

can’t be too small or the factor K will be imprecise.  



 18

2 1
1

1

2

1 2

( ) ( )
2 1

:   1
:   2
:   

       

m

TDC c TDC cK

c control word
c control word
m control bit between

c and c

−
=

−

TDC(c1)

TDC(c2)

K1

c1 c22m-1  

Fig.3.9. TDC value and control word mapping 

 

With the relation factor K between TDC and DCO, phase error can transfer into DCO 

control word. The equation (7) shows the relation. Phase errorinit is initial error value sent 

from TDC. CPU will do this transformation. 

 

0

1 1

( / ) 2

, 0
mod , 0

 : number of relation fator

: bit offset of 

i
n d

ctw i ii

init
i

i i

i

DCO Err K

phase error i
Err

Err K i
n

d i

=

− −

= ⋅

=⎧
= ⎨ >⎩

∑

               (8) 

 

3.4.2. Frequency search algorithm 

The frequency search algorithm is simple and as mentioned at section 3.1. The reference 

clock period can be estimated by TDC. For precise value, the half clock pulse is extended to 

full pulse with a register in fig.3.10. This can avoid unbalanced duty cycle of reference clock. 

The period value Dref can transfer into control word and set to DCO. In this step, coarse 

frequency search is finished if watch dog not bark. Watch dog will bark when phase error 

value between reference clock and divided clock is bigger than clock period twice. 



 19

 

Fig.3.10 The estimation of reference clock 

 

3.4.3. Coarse tracking algorithm 

The basic idea of coarse tracking is fixing frequency error and phase error at this step. 

However, DCO control word can’t change after phase error value is estimated at rising edge. 

Double the error value, and set new control word maintain half period can solve this problem. 

The steps of coarse tracking algorithm are shows in fig.3.11. 

Initially, reference clock period is 2T½ and divided clock is 2T'½. The relation of these 

two clock is 2T'½=2T½+ε. Four steps of coarse tracking algorithm: 

 Step 1: PFD detect phase error Δ. 

 Step 2: PFD detect phase error Δ+ε. CPU find frequency error ε and calculate T′½+2ε+Δ, 

2T′½+ε. 

 Step 3: DCO set T′½+2ε+Δ in half period to fix phase error. At the end of clock period, 

phase is locked. 

 Step 4: DCO set 2T′½+ε as new clock period and frequency is locked. 

 



 20

 

Fig.3.11. Waveform of coarse tracking algorithm 

 

At this method, phase-locked state can represented as that phase error is small than 

TDCmin. If the frequency and phase is locked after four algorithm steps, algorithm enters fine 

tracking state. Else it does coarse tracking algorithm again. Fig.3.12 illustrates other situation 

by the proposed algorithm. Clearly, the proposed algorithm is reliable at different quadrant. 
 

 

Fig.3.12. Different start position of coarse tracking algorithm 

 

3.4.4. Fine tracking algorithm 



 21

After coarse tracking, phase error is smaller than TDCmin. For the reason of 

high-resolution and DCO has some extra control bit, fine tracking is essential. At this situation, 

PFD’s lead/lag signal and DCO fine tuning stage are useful information. The idea of fine 

tracking is binary search based. DCO increase clock period when divided clock is lead. Else 

decrease clock period when divided clock is lag. Each step decreases half of the search range. 

Initial search range is TDCmin. There are four quadrants shows in fig.3.13. I and II are in 

phase-lead area. III and IV are in phase-lag area. In the idea case, the tracking point stays at II 

and IV and more and more closer to reference clock at binary search method. Point t1, t2, and 

t3 meet this case.  

 

 

Fig.3.13 The problem of fine tracking 

 

However, it is possible enters I and IV within the tracking process. Because the distance 

between current point and reference clock is unknown. If current point enters I and III, DCO 

will increase period in phase-lead state and decrease in phase-lag state. This misleads let 

frequency error become bigger than before. To solve this problem, the fine tracking algorithm 

need modified.  

First, the observation in fig.3.14 shows that there is 50% probability change misleading 



 22

area to correcting area in one step. According to this characteristic, the algorithm adds a wait 

slot when phase not change first time. And do binary search again at next step. Repeat these 

two steps until phase change. Second, decrease half of search range only at phase changed. 

Because phase change means reference clock is located in search range. Finally, if the search 

range reduce to DCO control word minimal value then algorithm enter frequency maintain 

state. 

 

Cycle time

Phase 
error

longshort

lead

lag TDCmin

 Tref

II

III

I

IV

50%

50%

phase change
in one step

45°

 

Fig.3.14. The observation of mislead area 

 

In fig.3.15 demonstrate the example of fine tracking algorithm. First, initial tracking point is 

located at II. In order to become closer to reference clock, DCO increase clock period with 

gain. The value of gain depends on TDC minimal detectable range. The range between dotted 

line and reference clock is the TDC minimal detectable range in the figure.3.15. The search 

range record the sum of gain value until phase change.  



 23

Cycle time

Phase 
error

longshort

lead

lag TDCmin

 Tref

II

III

I

IV

wait
one time

phase
change

gain

gain

gain×½

Gain×½

wait
one time

½ search 
range

 

Fig.3.15. The example of fine tracking algorithm 

 

Second, after increase of DCO period, the phase not changed and the tracking point 

enters mislead area. As mentioned above, the wait slot is inserted. This wait slot lets DCO 

period unchanged. And the tracking point shift down because of longer clock period. Third, 

DCO increase clock period again. Fourth, the phase is changed. This means that the tracking 

point is in IV, correct area. And the search range is twice of gain. The new tracking point is in 

half of search range and gain is divided by two because of binary search method. Repeat the 

above action, tracking point will more and more closer to reference clock.  

Fig.3.16 shows the complete working flow of fine tracking algorithm. Period represent 

divided clock period. Range is search range and wait_fin will be one when tracking point 

finish wait one time. 



 24

 

Fig.3.16. The working flow of fine tracking algorithm 

 

3.5. Scheduling of MIMO-SDPLL 

In MIMO-SDPLL, the number of error detector and DCO can more than one. Because 

OpenRISC is a single core CPU, it needs handle IP cores switched. It repeats pooling error 

detector’s error flag. If error flag is high, then CPU do correspondence action. At this work, 

the proposed MIMO-SDPLL is 2-by-2. Because CPU’s computing power is a restriction. Thus 

the simplest scheduling is used. The B set of error detector and DCO start tracking algorithm 

after A set reach frequency maintain state. Fig.3.16. shows this simple scheduling. 



 25

IP core A

IP core B

tracking

tracking

maintain

maintain

CPU time

waiting  

Fig.3.16. The scheduling of 2×2 MIMO-SDPLL 

 

However, it is notable that one stage execution time of tracking algorithm need small 

than the reference clock period of each combination of error detector and DCO. This can 

promise the correctness of tracking algorithm. 

   
 
 
 
 
 
 
 
 
 
 
 



 26

 
Chapter 4   
Implementation and Simulation Result  
 
 

In this section, the implementation of 2×2 MIMO-SDPLL is discussed at two parts, 

hardware and software. In hardware section, the implementation details of MIMO-SDPLL 

architecture are presented. In software section, the method of hardware control via software 

and software programming are presented. The hardware and software co-simulation result is 

showed at the end of this section. 

 

4.1. Hardware 

The overview of hardware architecture shows in fig.4.1. There are several IP cores 

include CPU, bus, error detector [3], DCO [7], SACA, memory and flash. The entire IP cores 

connect to the bus. Only CPU can send transaction request actively at this architecture. The 

DCO is high-resolution and wide frequency range proposed at [7]. The specification of IP 

cores list in table 1. The detail of IP cores is mentioned at following sub-section. 

After reset signal is asserted, the CPU OpenRISC or1200 start fetching instructions from 

flash and execution them. These instructions are compiled form C source code. The entire 

tracking algorithm programmed in C source code. After hardware initial, CPU starts polling 

error detectors alternative. When reference clock and divided clock have phase error, the error 

detector will raise error flag signal. CPU then does one tracking algorithm stage for the 

correspond device.   



 27

 

Fig.4.1. 2×2 MIMO-SDPLL architecture 

 

 
 



 28

Table 1 Hardware specification 
 

Item Description 
Process UMC 90nm SP_RVT Process 

CPU 
OpenRISC or1200  
Maximum clock frequency: 250MHz 
Gate count: 10k  

Bus 
WISHBONE bus  
Architecture: shared bus 
Maximum clock frequency: 250MHz 

PFD 
Minimum error pulse: 200ps 
Minimum detectable clock difference: 45ps 
Gate count: 107 

TDC 
Resolution: 15ps 
Gate count: 6k 

Error 
detector 

Divider
N 

Range: 1~1023 

DCO 
Frequency range: 660KHz~460MHz 
Resolution: 10fs 

Reference clock Frequency range: 660k/N~460M/N Hz 

SACA 
103~1231MHz of 64 stage 
Each stage: 140ps 

Memory 
On FPGA board memory 
Address space: 8MB 

Flash 
On FPGA board flash 
Address space: 8MB 

 

4.1.1. Memory Map 
There are several I/O devices in MIMO-SDPLL. CPU needs access these devices from 

bus. The common method is that all I/O devices include memory are treated as a whole 

memory. Thus software can communication with specific hardware depends on this memory 

map. Fig.4.2 is the memory map at this work.  

 



 29

 

Fig.4.2 Memory map of 2×2 MIMO-SDPLL 

 

4.1.2. CPU 

The selection of CPU is OpenRISC or1200. Or1200 support cache, MMU and basic DSP 

capabilities. For direct use and area issue, the above function doesn’t implement in this work. 

By default configuration, the divided is simulation by multiplier with the help of compiler. It 

needs implement because the software is compiled without standard library. At UMC90 

process, or1200’s gate count is 10k and has maximum frequency up to 250MHz. 
 

4.1.3. WISHOBONE Bus Protocol 

For CPU compatibility and IP cores connection, the WISHBONE [8] bus is chosen. 

WISHBONE has two type of interface: MASTER or SLAVE. MASTER can request 

transaction to SLAVE. Like CPU is a MASTER. SLAVE can reply transaction request from 

MASTER. All IP cores are SLAVE beside CPU in this work. Fig.4.3 shows a simple example 

of its single read and single write protocol. The bus protocol works as follows: 

 

 

 

 

 

 



 30

Single read- 

CLK_I EDGE 0: MASTER presents a valid address on ADR_O. 

          MASTER presents bank select SEL_O. 

    MASTER negates WE_O to indicate a read cycle. 

    MASTER asserts STB_O to indicate the start of phase. 

          MASTER asserts CYC_O to indicate the start of cycle. 

CLK_I EDGE 1: SLAVE decodes input, and responding SLAVE asserts ACK_I. 

              SLAVE presents a valid data on DAT_I. 

              MASTER monitors ACK_I, and prepares to latch data on DAT_I. 

              Note: SLAVE can add any number of wait states (WSS) before asserts ACK_I. 

CLK_I EDGE 2: MASTER latches data on DAT_I. 
MASTER negates STB_O and CYC_O to indicate the end of the cycle. 

SLAVE negates ACK_I in response to negated STB_O. 

Single write- 

CLK_I EDGE 0: MASTER presents a valid address on ADR_O. 

MASTER presents valid data on DAT_O. 

          MASTER presents bank select SEL_O. 

    MASTER asserts WE_O to indicate a read cycle. 

    MASTER asserts STB_O to indicate the start of phase. 

          MASTER asserts CYC_O to indicate the start of cycle. 

CLK_I EDGE 1: SLAVE decodes input, and responding SLAVE asserts ACK_I. 

              SLAVE prepares to latch data on DAT_O. 

              MASTER monitors ACK_I, and prepares to terminate the cycle. 

              Note: SLAVE can add any number of wait states (WSS) before asserts ACK_I. 

CLK_I EDGE 2: SLAVE latches data on DAT_O. 
MASTER negates STB_O and CYC_O to indicate the end of the cycle. 

SLAVE negates ACK_I in response to negated STB_O. 



 31

CLK_I

ADR_O

DAT_I

DAT_O

WE_O

SEL_O

STB_O

ACK_I

CYC_O

VALID

wss wss

VALID

VALID VALID

VALID

VALID

READ WRITE
 

Fig.4.3 WISHBONE read / write timing graph 

 

4.1.4. IP Cores Interconnection  

In MIMO-SDPLL, the IP cores need be connected for communication. There are four 

defined types of WISHBONE interconnection, point-to-point, data flow, shared bus and 

crossbar switch. The shared bus and crossbar switch is useful for connecting two or more 

MASTERs with SLAVEs. They are suitable interconnection at this work. And the shared bus 

requires less interconnection logic and routing resources than crossbar switch. So the shared 

bus system is chosen for IP cores connection. 

Fig.4.4 shows the interconnection block diagram. There two MASTERs and four 

SLAVEs. MASTERs include or1200’s data channel and instruction channel. SLAVEs include 

PLL module A, PLL module B, storage module and SACA module. PLL module is the 

combination of error detector module and DCO module. Storage module includes memory 

and flash.  

The bus arbiter allocates the bus access priority between MASTERs, data channel 

priority is higher than instruction channel because of data dependency. The address 

comparator switches the correct data flow from MASTERs to SLAVEs according to the 

memory map in fig.4.2. 



 32

 

Fig.4.4. The interconnection block diagram of MIMO-SDPLL IP cores with shared bus 
system. 

 
 
 
 



 33

4.1.5. Semi-asynchronous clock access (SACA) module 

It is important to decide the system clock in this work. There are two choices, one is 

reference clock and another is DCO clock. But reference clock is too slow and DCO clock is 

not stable enough for CPU computation. For this reason, the semi-asynchronous clock access 

(SACA) [3] is used.  

SACA is a clock generator which synchronous to the rising edge of reference clock. And 

start trigger fixed number of cycles with specific period asynchronous to reference clock. The 

fixed number of cycles and clock period are defined by user. Fig.4.5 shows an example of 

SACA with four cycle count. 

 

 

Fig.4.5. An example of SACA. 

 

However, if the SACA clock frequency is higher than the frequency upper bond of 

system, the system will failed. To prevent this condition, the modified SACA architecture is 

proposed. In fig.4.6 shows the block diagram. It uses TDC, frequency divider, encoder and 

semi-asynchronous clocker (SAC) to generate the nearest clock. And this output clock will 

close to Nf × fref. Nf is the frequency multiplication factor define by user, fref is the reference 

clock frequency. The output clock range of SACA is from 103MHz to 1231MHz into 64 

stages, each stage is 140ps. 

For example, if the reference clock is 30MHz and system needs 120MHz. The TDC will 

convert the reference clock period into digital data and divider will divide this data by four. 

Then encoder gets this divided-data and mapping it to the nearest clock of SAC. Finally, SAC 



 34

output the nearest clock about 30×4 = 120MHz for four cycles.  

In this work, the Nf setting to more than 2048. Because the execution time of one 

algorithm step needs less than one reference clock cycle. 

 

TDC
SSC

ref_clk
(reference clock 
with period T )

2*T

Output clock
(≈ ref_clk * Nf )Divider

Nf ( / 4 )fZ T N⎢ ⎥= ⎣ ⎦

Counter
( Nf )

Encoder2

win.
0

…

…

b0 b1 bk… Output

win.

Semi-synchronous Clocker

Z

Nf

T

win. :window signal

Time to Digital Converter

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Q

QSET

CLR

D

Encoder1

Cascaded 
counter

0 0 0…

…clk clk clk clk

Quantization output

clk

SET

CLR

D

L1

Clock  
re-gen.

clk: ref_clk/2

 

Fig 4.6. The modified SACA block diagram 

 

4.2. Software 

4.2.1. Software programming  
The software programming environment lists in table 2. The working flows of software 

development are common. First, use C language to develop program. Second, compile the 

source code by gcc cross-compiler. Finally, gcc will generate executable binary file. This 

binary file will place in flash. 

  

 

 



 35

Table 2 Software environment 

Item Description 

Development language C  

Cross compiler gcc 3.4.4 for OpenRISC 32 bit architecture 

Host CentOS release 5.2  
Kernel version: 2.6.18-92.1.17.el5 

 

4.2.2. Memory map I/O control 

In order to checking and setting hardware, the memory map I/O is used at this work. This 

manner help software programmer simpler and easier to access hardware IP cores. The 

memory map of IP cores shows in fig.4.2.  

Here give an example of memory map I/O control. First, define the base address of IP 

core depend on fig.4.2. 

#  _ _  0 95000000define DEVICE BASE ADDR x            (8) 

Second, declare a volatile pointer and assign base address value. A volatile qualifier must be 

used when reading the contents of a memory location whose value can change unknown to the 

current program. 

   *  _  ;
_  (   *) _ _  ;=

volatile unsigned long DEVICE PTR
DEVICE PTR unsigned long DEVICE BASE ADDR

    (9) 

Finally, this pointer can read or write IP cores register by software. 

/ /    
_   * _ ;

/ /    
* _   _  ;

=

=

read hardware register
data buf DEVICE PTR

write hardware register
DEVICE PTR data buf

                   (10) 

 

4.3. Simulation Result 

This section shows the simulation result. The simulation setting lists in table 3. The 

simulation waveform is presented at fig.4.7. Because the waveform is hard to observation, the 

phase error information is recoded to draw a curve. This is helpful for the variation of phase 



 36

error. Fig.4.8 shows the result of phase error variation graph. X-axis represents number of 

reference clock; this is unrelated to clock period. Y-axis represents phase error between Nth 

reference clock and Nth divided clock in picoseconds. The above figures shows clock B start 

tracking after clock A reaching phase maintain state. And both clock convergence at 550th 

reference clock. The figure below shows the detail of 550th and 800th. The divided clock A 

maintain at ± 3ps and clock B at ± 9ps. 

 
Table 3 Simulation setting 

Item Description 

Reference clock period 
Divided clock A: 23333.333ns 
Divided clock B: 25555.555ns 

Divided N 
Divided clock A: 100 
Divided clock B: 100 

Phase error variation 
Divided clock A: ± 3ps 
Divided clock B: ± 9ps 

 

 

(a) 

 

(b) 



 37

 
(c) 

 

Fig.4.7. The waveforms of simulation result.  

(a) The full view of waveform. (b) The zoom version of (a). Clock A do coarse tracking. (c) 
The zoom version of (c). Clock A and B enter frequency maintain stage. 

 

 

 

Fig.4.8. 2×2 MIMO-SDPLL simulation result of phase error variation  

 



 38

 

Chapter 5   
Conclusion and Future Work 
 
 

From the simulation result, the proposed 2×2 MIMO- SDPLL has high resolution under 

software control. And more than one clock can be handled with scheduling. When the 

specification needs substantially modify, platform can fit the new specification by replacing 

the software. 

In the future, the CPU scheduling can improve to multi-tasking. And the software 

development can provide different software IPs for different applications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 39

Reference 

 
 
[1] Terng-Yin Hsu, Bai-Jue Shieh, Chen-Yi Lee” An all-digital phase-locked 

loop(ADPLL)-based clock recovery circuit” Solid-State Circuits, IEEE Journal of 

Volume 34, Issue 8, Aug. 1999 Page(s):1063-1073 

 

[2] Ching-Che Chung, Chen-Yi Lee, “An all-digital phase-locked loop for high-speed clock 

generation” IEEE Journal of Solid-State Circuits, Vol38,pp.347-351, Feb.2003  

 

[3] Chang-Ying Chuang, Terng-Yin Hsu” The Study of Software-defined Phase-locked 

loop ” Thesis CS, NCTU 2008. 

 

[4] “OpenRISC 1200 IP Core Specification” Rev. 0.7, Sep 6, 2001  

 

[5] “OpenRISC 1000 Architecture Manual “July 13, 2004 

 

[6] Li Jyun-Rong, Hsu Terng-Yin” The Study of All Digital Phase-Locked Loop (ADPLL) 

and its Applications” Thesis CS, NCTU 2006. 

 

[7] Jung-Chin Lai, Terng-Yin Hsu” The study of Wideband, Cell-based Digital Controlled 

Oscillator and its Implementation” Thesis CS, NCTU 2007. 

 

[8] “WISHBONE System-on-Chip (SoC) Interconnection Architecture for Portable IP Cores” 

Revision: B.3, Released: September 7, 2002 

 

 
 
 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


