

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

網格分割轉換

Mesh Segmentation Transfer

研 究 生：楊詔安

指導教授：莊榮宏 教授

中 華 民 國 一百 年 二 月

網格分割轉換

Mesh Segmentation Transfer

研 究 生：楊詔安 Student：Jau-An Yang

指導教授：莊榮宏 Advisor：Jung-Hong Chuang

國 立 交 通 大 學
資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

February 2011

Hsinchu, Taiwan, Republic of China

中華民國一百年二月

 i

網格分割轉換

研究生 : 楊詔安 指導教授 : 莊榮宏 博士

國立交通大學

資訊學院資訊科學與工程研究所

摘 要

我們提出了一個網格分割轉換演算法，將來源網格的分割結果一致地對應到目標

網格上。首先我們提出一個新的骨架對應方法，可以同時對應來源網格和目標網

格之間的骨架節點以及連結，接著在來源網格上將每個分割邊緣線對應到所屬的

骨架連結，最後將每個分割邊緣線轉換到目標網格所對應的骨架連結上。我們的

骨架對應演算法對骨架的連接性較不敏感，而且利用了骨架連結的語義性群聚以

及空間配置的資訊。我們的分割轉換演算法致力於在目標網格上產生分割邊緣

線，使其特徵以及局部幾何細節和來源網格對應的分割邊緣線能夠一致。最後我

們在各種類型的物體上展示了多樣的分割轉換結果，並和目前最新的相關研究作

比較。

Mesh Segmentation Transfer

Student: Jau-An Yang Advisor: Dr. Jung-Hong Chuang

Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

ABSTRACT

We present a novel segmentation transfer that maps consistent segmentation of a source mesh to

a target mesh. We first propose a skeleton correspondence method to match the skeleton links

and nodes between two skeletons of the source and target meshes, then associate each segment

boundary with a skeleton link of the source mesh, and finally map each boundary to the cor-

responding skeleton link of the target mesh. Our skeleton correspondence computation is less

sensitive to the skeleton connectivity and employs the clustering of semantically similar links

and spatial information. The boundary transfer procedure aims to produce the segment bound-

aries of the target mesh whose locations and geometric properties are consistent to the ones of

source. We demonstrate the segmentation transfer results on various meshes and compare with

the state-of-the-art techniques.

ii

Acknowledgments

I would like to thank my advisors, Professor Jung-Hong Chuang and Sai-Keung Wong, for

their guidances, inspirations, and encouragements. I especially thank to my senior colleague,

Tan-Chi Ho, for generously sharing his researches works, such as PMLab and MSP skeletons,

and giving me useful advices and suggestions. I thank to all my colleagues in CGGM lab: Hong-

Xuan Ji, Tsung-Shian Huang , Cheng-Min Liu and Ta-En Chen for their helps and discuss with

me on research issues, my senior colleagues : Yueh-Tse Chen, Jyh-Shyang Chang, Ying-Tsung

Li, Hsin-Hsiao Lin and Kuang-Wei Fu for their technical supports and useful information, and

my junior colleagues: Ying-Ti Chou, Chieb Yun, Chia-Ming Liu, Yu-Chen Wu and Chien-Kai

Lo for their kind assistances and encouragements. Lastly, I would like to thank my parents for

their love, and support. Without their love, I could not pass all the frustrations and pain in my

life.

iii

Contents

1 Introduction 1

1.1 Contribution . 2

1.2 Organization of the thesis . 3

2 Related Work 4

2.1 Shape correspondence . 4

2.2 Mesh segmentation . 8

2.2.1 Traditional mesh segmentation . 9

2.2.2 Consistent mesh segmentation . 13

3 Introduction of MSP function 15

3.1 MSP function . 15

3.2 MSP gradient function . 16

3.3 MSP skeleton . 17

4 Skeleton correspondence 19

4.1 Overview . 19

4.2 Node pair correspondence . 21

4.3 Link correspondence for a node pair . 23

4.3.1 Link clustering . 23

iv

4.3.2 Link correspondence . 24

4.3.3 Next node pair searching . 28

4.4 Final correspondence result . 30

5 Segmentation Transfer 32

5.1 Overview . 32

5.2 Associating boundaries with links . 33

5.3 Volumetric analysis . 33

5.4 Cutting region construction . 37

5.5 Cylindrical parameterization . 45

5.6 Boundary refinement by snakes . 50

6 Result 57

6.1 Skeleton correspondence . 57

6.2 Segmentation transfer . 66

6.3 Timing information . 78

6.4 Discussions and limitations . 80

7 Conclusions 84

7.1 Summary . 84

7.2 Future works . 85

Bibliography 86

v

List of Figures

2.1 An example of shape correspondence [vKZHCO10]. 5

2.2 A skeleton correspondence example for two four-legged animals, which has

symmetry switching problem on the front legs and mismatches on the heads

due to the topological difference. 7

2.3 Two types of mesh segmentation [Sha08]. 9

3.1 MSP function computation. The planar slices are computed in a discrete man-

ner. Minimum slice is colored to red. 16

3.2 (a)The MSP function results, (b)The MSP gradient function results. 17

4.1 Correspondence tree. 21

4.2 The sub-skeleton of a node ni:(a)without loop, (b)with loop. 22

4.3 The results of link clustering. 24

4.4 Link correspondence at a node pair. The local orientations of links are sim-

ilar: (a)generate local vectors for each link, (b)find the transformation which

minimizes the angle difference for the all link pairs. 25

4.5 Node clustering. (ns, nt) is the current node pair and (n′s, n
′
t) colored red is the

other end nodes of a link pair. We need to perform the node clustering indicated

as the red dotted circles to address the topological difference. 29

vi

4.6 Link extension. (n′s, n
′
t) is the end nodes of a link pair, which has large cost

due to the topological difference. After the searching, (n′′s , n
′
t) is found as the

suitable matched node pair. 30

5.1 Volumetric analysis example. 35

5.2 The MSP gradient boundaries and the input source boundaries. The MSP gra-

dient boundaries are colored in red, and input source boundaries are colored in

green. 36

5.3 The position of the target boundary can be inferred from the adjacent matched

MSP gradient boundaries. 37

5.4 The process of establishing consistent local coordinate systems on the source

and target links. Where red, green, blue line represent x, y, and z axes, respectively. 39

5.5 The planar intersections of the meshes and fitting planes. The intersections and

boundaries are colored in red and green, respectively: (a-b) common position,

(c-d) junction of the two parts . 41

5.6 Intersections reduction by ray sampling: (a) boundary on the mesh, (b) sample

rays on the fitting plane, (c) a diagram showing a sample ray generates three

candidate points: Pa, Pb and Pc . 43

5.7 The original planar intersections colored in red, and the reduced planar inter-

sectyions colored in blue. 44

5.8 An example of the source and target cutting regions. 44

5.9 An example of cylindrical parameterization [WZ10]. 45

5.10 Cylindrical paramterization result. 47

5.11 Twisted and no-twisted parameterizations. With the increasing of the u coordi-

nate value, the vertices are colored from blue,green, to red. 48

5.12 Transform the boundaries to the local coordinate system. With the increasing

of the coordinate value, the boundaries are colored from blue,green, to red. . . . 49

5.13 The evolution of the target boundary from line shape to wave shape. 54

vii

5.14 The evolution of the target boundary from wave shape to line shape. 55

5.15 The evolution of the target boundary to the concave features. The color map-

ping on the model in (a)(b)(i) means the variations of the feature value. Green

color represents flat region, red and blue color represent the convex and concave

regions. 56

6.1 Skeleton correspondence results (sec. 1). 59

6.2 Skeleton correspondence results (sec. 2). 60

6.3 Skeleton correspondence results of Ant and Teddy models. 61

6.4 Skeleton correspondence results of Bird and Fish models. 61

6.5 Skeleton correspondence results of Armadillo models. 62

6.6 Skeleton correspondence results of Chair models. 62

6.7 The comparison with [ATCO+10] on Dog and Horse models. 65

6.8 The comparison with [ATCO+10] on Pig and Dragon models. 65

6.9 The comparison with [ATCO+10] on Human and Centaur models. 66

6.10 Segmentation transfer results (sec. 1). 68

6.11 Segmentation transfer results (sec. 2). 69

6.12 Segmentation transfer results (sec. 3). 70

6.13 Segmentation transfer results of Ant and Teddy models. 71

6.14 Segmentation transfer results of Bird and Fish models. 71

6.15 Segmentation transfer results results of Armadillo models. 72

6.16 Segmentation transfer results of Chair models. 72

6.17 The comparison with [GF09] on Giraffe and Horse models 73

6.18 The comparison with [KHS10] on Airplane models 74

6.19 The comparison with [KHS10] on Four-legged Animals models 75

6.20 The comparison with [KHS10] on Chair models 76

6.21 Comparison with other segmentation algorithms using four evaluation metrics. 77

viii

6.22 The models which are hard identified the front and back sides by using only

skeletons. 81

6.23 The consistent segmentation transfer results for the same model with different

resolutions. 82

6.24 A vertex is passed by multiple boundaries. 83

ix

List of Tables

6.1 The statistics of our skeleton correspondence results. 64

6.2 The statistics of the results of elector voting. 64

6.3 The computation time of the segmentation results in figure 6.10. 79

6.4 The computation time of the segmentation results in figure 6.12. 79

6.5 The computation time of the segmentation results in figure 6.13 - 6.16. 80

x

C H A P T E R 1

Introduction

Mesh segmentation aims to partition a mesh into several disjoint subpatches or parts, It is a fun-

damental problem to many graphics applications such as collision detection, parameterization,

and skeletonization.

Many segmentation methods have been proposed in the last decade and most of them aimed

at generating functional parts that meet the human perception. However, in order to obtain good

segmentation results, most of the methods still required careful adjustment of parameters for

each type of objects. According to the segmentation benchmark report of Chen et al. [CGF09],

the segmentation ground truths produced by human still outperform the results produced by

recent segmentation methods. By setting the ground truths as the source segmentation and

transferring the segmentation to other objects, the segmentations that are similar to the source

can be expected. Moreover, some applications require consistent segmentation results for a

set of similar objects, which is in practice hard to obtain even by applying same segmentation

algorithm to the objects. Due to the above observations, we propose a novel segmentation

scheme called mesh segmentation transfer. User provides a source mesh, a segmentation result

of source mesh, and a target mesh. We aim to transfer the segmentation on the source mesh to

1

1.1 Contribution 2

the target mesh such that two segmentations are consistent.

Our approach first derives the shape correspondence between source and target meshes via

skeleton matching and then maps each segment boundary on the source mesh to the target

based on the link-to-link correspondence. We employ the minimum slice perimeter(MSP) curve

skeleton proposed in [HJWC], which is a high resolution curve skeleton. Each skeleton node

possesses its corresponding surface information. We generate the skeletons of source and target

mesh respectively. Then we match these two skeletons to establish the correspondence between

the skeleton links. Our skeleton matching scheme employs the clustering of semantically similar

links and spatial information, which is less sensitive to the skeleton connectivity and more robust

than previous methods. For mapping the segment boundaries of the source to the target mesh,

we take into account not only the global locations on the parts of the source mesh, but also the

local surface feature of the segment boundaries, aiming to obtain a segmentation on the target

mesh that is as consistent as possible to the source segmentation. First, we apply the MSP

function proposed in [HJWC] to the source and target skeletons. The MSP function is a scalar

function that represents the local volume information of the object. It is help for analyzing

the global locations of the segment boundaries. We first associate the MSP variation with the

both sides of links for source and target skeletons to determine the locations of boundaries on

the target links then the points of the boundaries are mapped to the target through the local

parameterizations, and finally the boundaries on target mesh are refined by considering the

shape and local surface feature of the source segment boundaries.

1.1 Contribution

The main contributions of this work are as follows:

• The skeleton matching algorithm we propose for matching two curve skeletons has some

advantages over the previous methods, and produces better matching results.

• We propose a novel segmentation transfer algorithm aiming at producing the segmenta-

1.2 Organization of the thesis 3

tion on target mesh that is consistent to the segmentation on the source mesh, which in-

volves local volumetric analysis, boundary mapping through parameterization, and bound-

ary refinement.

1.2 Organization of the thesis

The following chapters are organized as follows. Chapter 2 reviews the previous researches

including shape correspondence and mesh segmentation, and discusses the consistent mesh

segmentation methods in section 2.2.1. Chapter 3 introduces the MSP function, MSP gradient

function and MSP skeleton which are used in our approach. Chapter 4 and 5 describe our skele-

ton correspondence and segmentation transfer algorithms. Chapter 6 shows the experimental

results, timing information, and the comparison to the Electors voting skeleton correspondence

and the segmentation benchmark. Finally, Chapter 7 gives a summary of our algorithm and

discusses the limitations and future works.

C H A P T E R 2

Related Work

We review the related work in the areas of mesh segmentation and shape correspondence.

2.1 Shape correspondence

Shape correspondence establishes a meaningful correspondence between geometric elements of

given objects. The types of elements includes meshs primitives, feature points on the surface,

skeletal features, or local parts of the shape, and the types of corresponding relations may

be one-to-one, one-to-many, or many-to-many. Figure 2.1 shows an example of one-to-one

correspondence between the surface feature points of the two objects. Since the objects may

have large difference in poses, shapes, and surface details, establishing the correspondence

based on the similarities of local geometric information is uneffective. We must need higher-

level descriptors which can describe the global structures of the objects and semantics of the

parts to handle this problem.

4

2.1 Shape correspondence 5

Figure 2.1: An example of shape correspondence [vKZHCO10].

According to the survey presented by Kaick et al. [vKZHCO10], there are several different

categories for shape correspondence problems, for example, similarity-based correspondence,

rigid alignment, non-rigid alignment, and time-varying registration. The skeleton matching

problem is a part of the similarity-based correspondence. In this section we review the previous

work on similarity-based correspondence.

Graph matching approaches Graphs can high-levelly describe the global structure of the

objects. Graph nodes represent the specific parts of the objects and graph edges represent the

connective relations between the parts. The graph matching methods used to establish the corre-

spondence of the objects are intuitive and effective. Our skeleton matching method also adopts

this strategy. In the following we briefly introduce graph matching problem.

Given two graphs G1 = (N1, E1) and G2 = (N2, E2), where N1, N2 denote the graph nodes

and E1, E2 denote the graph edges. The exact graph matching of the G1 and G2 is to find a

isomorphism f : N1 → N2, such that (a, b) ∈ E1 iff (f(a), f(b)) ∈ E2, where a, b ∈ N1 and

f(a), f(b) ∈ N2. This problem has a solution (f exists) only when the two graphs have the

same number of nodes and edges, which is almost impossible in practice due to the different

number of parts between the objects or the different setting of graph extraction scheme. So the

2.1 Shape correspondence 6

inexact graph matching is introduced aiming to find the best node correspondence to the nodes

between two graphs. A node of one graph may map to a node, a null node (which represents it

has no correspondence), or a group of nodes of another graph. Some feature information can

be associated with nodes and edges to form attributed graphs. And the best correspondence

means that it optimizes a specific objective function that estimates the similarity between the

two attributed graphs.

In recent years there are some shape correspondence methods using inexact attributed graph

matching techniques. The common graphs used for representing the objects are usually ob-

tained by the skeleton extraction [SSGD03, XWLB09, ATCO+10] or Reeb graph construction

[HSKK01, TS04, BMSF06, TVD09].

Hilaga et al. [HSKK01] constructed the multi-resolution Reeb graph and attached AGD

value and local region area to each graph node. Shape correspondence is obtained by maxi-

mizing geometric similarities between two graphs. Teng et al. [TS04] extended the framework

of [HSKK01] by joining more geometric attributes and using spatial configuration constructed

by principal component analysis (PCA). It is not robust since the local coordinate established

by PCA are often not consistent. Sundar et al. [SSGD03] performed greedy and depth-first

search scheme to find bipartite graph between the two acyclic skeletons which has maximum

cardinality, minimum weight. Biasotti et al. [BMSF06] constructed the partial correspondence

by finding the maximum common sub-graph between the two Reeb graphs.

The above methods suffer from some common problems: (1) Sensitiveness of the topo-

logical difference. That is, the matching performance strongly depends locally on the graph

connectivity, and can easily produce incorrect match in the presence of noise and the topolog-

ical difference at junction nodes. (2) Symmetry switching problem [ZSCO+08]. Some nodes

which represent the same semantic parts have similar geometric information, such as left/right

hands in a human model. These parts are often symmetric. Lacking spatial information easily

cause reverse correspondences. Figure 2.2 shows an example of incorrect matching due to the

above two problem.

2.1 Shape correspondence 7

Figure 2.2: A skeleton correspondence example for two four-legged animals, which has sym-

metry switching problem on the front legs and mismatches on the heads due to the topological

difference.

Some methods have been proposed to solve these issues. Xu et al. [XWLB09] observed

that the junction nodes often have topological difference (see figure ??) and applied the merging

scheme to each individual skeletons before the matching process. However, it is still not robust

since the merging scheme does not take into account the information of the other skeletons.

Tierny et al. [TVD09] presented the idea of Reeb patterns and designed a structural signature to

describe the terminal and junction nodes without considering the sequence of bifurcations. This

can reduce the topological difference problem near the extreme parts of the objects. Au et al.

[ATCO+10] proposed a skeleton matching method which handles both topological difference

and symmetry switching problems. Instead of traversing the graph along the connectivity, they

employed the combinatorial search and local topology consistency test to filter out poor cor-

respondences which have large topological difference. For symmetry switching problem, they

transformed the skeletons into pose-normalized space using multidimensional scaling [EK03],

and then checked whether the correspondence occurs global flipping in the spatial configura-

tions.

2.2 Mesh segmentation 8

Deformation-driven approaches Zhang et al. [ZSCO+08] proposed a deformation-driven

combinatorial search algorithm for a correspondence between shape extremities. For each pos-

sible correspondence, one model is deformed so as to align the corresponding feature pairs and

the deformation distortion is measured. This method is robust and it can deal with symmetry

switching problem. However, it is time consuming due to the costly deformation computation.

Voting approaches Recently, voting schemes have been developed to establish shape corre-

spondence [ATCO+10, LF09]. In the voting scheme of Au et al. [ATCO+10], electors are found

by a combinatorial search equipped with a cascade of pruning tests to filter out different types of

bad correspondence, and then vote on individual feature-to-feature matching to establish the fi-

nal correspondence. Lipman and Funkhouse [LF09] proposed a Mobius voting correspondence

algorithm for nearly-isometric shapes. The algorithm supports shapes with different poses and

with large variation, but suffers from the high cost of computation.

The motivation for using the voting scheme is that it is hardly to design an objective function

which ensures the best correspondence can be found. So the combinatorial search and pruning

test are performed to list several possible correspondences. Since the best matching pairs must

appear many times among the most of the possible correspondences, selecting the pairs with

high occurrences to synthesize the final correspondence result is reasonable and effective.

2.2 Mesh segmentation

Mesh segmentation algorithms can be classified as two types: surface-type and part-type, as

show in Figure 2.3. Surface-type algorithms aim to segment a given mesh into several patches

that satisfy properties, such as planarity and disc-like. Part-type algorithms, on the other hand,

segment the mesh into meaningful or semantic components. This is similar to what human

perception tends to do. See [AKM+06, APP+07, Sha08, CGF09] for comprehensive surveys

and comparisons.

2.2 Mesh segmentation 9

(a) Part-type segmentation. (b) Surface-type segmentation.

Figure 2.3: Two types of mesh segmentation [Sha08].

Since our mesh segmentation transfer mainly considers part-type segmentation, we focus

on this type of segmentation. These algorithms can be classified into: (1) Region growing ap-

proaches, (2) Hierarchical clustering approaches, (3) Iterative clustering approaches, (4) Spec-

tral analysis approaches, (5) Skeleton-based approaches, (6) Boundary extraction approaches,

(7) Critical points approaches. Some algorithms which are hardly to be classified to above cat-

egories will be introduced in other approaches section. After that, we discuss the algorithms

which can produce consistent mesh segmentation in section 2.2.2.

2.2.1 Traditional mesh segmentation

Region growing approaches Region growing scheme is a greedy algorithm maintained by a

priority queue. It starts from a source face, calculates the costs for merging the adjacent faces,

and inserts them into priority queue. For each step the region grows increasingly by adding

face which has the lowest cost, until priority queue is empty or specified stop conditions are

met. A common variation of this scheme is multiple source region growing which uses multiple

2.2 Mesh segmentation 10

source faces and grows multiple regions simultaneously. Page et al. [PKA03] proposed a

segmentation algorithm based on multiple source region growing and minima-rule [HR84]. It

formed boundaries at the locations with low curvatures. This method is sensitive to surface

noise and often produces jagged boundaries.

Hierarchical clustering approaches Hierarchical clustering scheme first regards each face of

the mesh as an individual cluster. For each iteration it selects the adjacent cluster pair that has

lowest merged cost to merge until a specified number of clusters or stop conditions are reached.

The overall process can be described as a binary tree constructed in the bottom up scheme.

Attene et al. [AFS06] applied hierarchical clustering algorithm to a polygon mesh in order

to dividing it into a set of clusters that are fitted with some specify primitives including planes,

spheres and cylinders. Gelfand et al. [GG04] proposed a novel method to segment object

into slippable components which are rotationally and translationally symmetrical. The above

two methods are especially suitable for handling CAD industrial models. On the contrary they

produce poor results for complex, general computer graphics models.

Iterative clustering approaches Iterative clustering schemes iteratively search the best rep-

resentative points of clusters to find the optimal clustering set which minimize the specified

distance metric. The basic of the approach is the K-means algorithm [Llo82] in which user

must specify the number of clusters.

Shlafman et al. [STK02] used K-means algorithm to produce mesh segmentation. The

distance of two arbitrary polygons was defined as the shortest path distance computed by sum-

ming up the geodesic and angular distance in the dual graph. Katz et al. [KT03] extended the

framework of [STK02] and developed a hierarchical segmentation scheme. They introduced the

concept of probability to construct the fuzzy regions between parts, and used graph cut [BK04]

to extract boundaries following the surface concave features.

Spectral analysis approaches Spectral analysis approaches use graphical concepts to de-

scribe to connections between the elements of an object (vertices or faces) and record them in

2.2 Mesh segmentation 11

a Laplacian matrix. The object is embedded into the space Rk using first k eigenvectors. Ac-

cording to Polarization theory [BH03], in this embedding space points with high affinities will

be grouped closer. On the other hand, they will be repulsed further if they have low affinities.

Liu et al. [LZ04] constructed the affinity matrix according to the distance metric defined by

[KT03]. They achieved segmentation by employing K-means algorithm to cluster faces which

have closing coordinates in the embedding space. Zhang et al. [ZL05] improved this method

and developed a mesh segmentation algorithm via recursive bisection. A novel sample mecha-

nism and Nystroms method [FBCM04] helped to largely reduce the time and space complexity

needed for constructing the affinity matrix. Recently, Liu et al. [LZ07] extended above meth-

ods and proposed a segmentation algorithm by analyzing the outer contours of the object. Two

different operators, called structural and geometrical operator, were used for spectral projec-

tion. Comparing to [ZL05], this method was much easier to select two faces which belong to

different parts.

Skeleton-based approaches Skeletons are 1-D structures that can describe the global shape

and topological structure of the objects. We can employ skeletons to develop effective mesh

segmentation algorithms.

Li et al. [LWTH01] proposed a skeleton-based segmentation method based on volume vari-

ation analysis. For each end of the skeleton link, they defined a sweeping plane vertical to local

link direction and move it along the link. The cutting section formed by plane can be regarded

as local volume information of objects. They generated boundaries at the locations which has

significant volume change. Reniers and Telea [RT07, RT08] observed that skeletons have junc-

tion nodes at the locations of the intersection between parts and presented a method to separate

these parts using geodesic contours.

The qualities of this type of segmentations are mainly determined by their skeletons. The

inappropriate skeletons which have small noise links or inaccurate link directions usually influ-

ence the segmentation results dramatically.

2.2 Mesh segmentation 12

Boundary extraction approaches Lee et al. [LLS+04, LLS+05] proposed a method to iden-

tify candidate boundaries of the objects, and segmentation results were deduced from these

boundaries. According to the minima-rule [HR84], they first collected regions whose curva-

tures are under a given threshold. After shrinking, branches deletion and extrapolation they

obtained several candidate segment boundaries. Then the part salience criteria [HS97] was

used to exclude boundaries which produce insignificant object parts.

Critical points approaches This type of approach analyzes geometry and shape of the object,

places critical points on each prominent location of the object, and processes segmentation such

that each prominent part contains only one critical point.

Katz et al. [KLT05] proposed a hierarchical segmentation algorithm based on core extrac-

tion, which can produce pose and proportion invariant segmentation. The critical points which

correspond to the prominent parts were selected by using multi-dimensional scaling (MDS)

[EK03] transformation. Lin et al. [LLL07] proposed another approach that locates critical

points which have local maximum average geodesic distance (AGD) values. The main problem

of these methods is that they can only be applied to objects that has significant core portion.

Hence its not suitable for objects with overall convex shape, such as human head or CAD mod-

els.

Other approaches Some other approaches that are hardly classified into the above categories

are also important, thus we describe them briefly.

Mortara et al. [MPS+04] proposed a special segmentation algorithm which can detect the

tubular components of the object. By identifying all these characteristics the core parts of the

object are revealed.

Lai et al. [LHMR08] proposed a segmentation method based on random walk algorithm

which computes the probabilities of one face reaching to each start faces by solving a linear

system. The segmentation was obtained by assigning the label with highest probability to each

face. Similar to iterative clustering, the qualities of the segmentation results are easily influ-

2.2 Mesh segmentation 13

enced by the start faces.

Golovinskiy et al. [GF08] proposed a new surface function called partition function which

describes the probabilities of one edge lied on the segment boundaries. The partition func-

tion was computed by accumulating multiple randomized segmentation results. The method is

robust to different poses, small surface noises, and tessellations.

Chen et al. [CGF09] provided the Princeton segmentation benchmark which contains a

date set with large segmentation results generated by humans and some recent segmentation

algorithms. Four metrics were proposed to evaluate how consistent the given two segmentations

are by analyzing the properties of the boundaries and segments. They provided comprehensive

reports which judge the degree of similarities between the human ground truth and the results

of state-of-the-art methods.

Kraevoy et al. [KJS07] developed a modeling tool called Shuffler which produces a new

model by exchanging the components between the two models. They used convex decompo-

sition to divide the objects into several meaningful, interchangeable components. Shapira et

al. [SSCO08] proposed the shape diameter function (SDF) and applied it to mesh segmenta-

tion. SDF is a scalar function which describes the local volumetric thickness for each inward

normal direction of vertex. Since the SDF values are almost consistent between a set of same

objects with difference pose or same class of objects, it is much easier to achieve consistent

segmentation.

2.2.2 Consistent mesh segmentation

There are some approaches which demonstrate consistent segmentation for a set of objects.

These methods are most relative to our segmentation transfer algorithm.

Golovinskiy and Funkhouser [GF09] proposed a method which simultaneously produces

consistent segmentation results on a set of similar objects. They used the rigid alignment

[BM92] to establish the face correspondence between the set of objects, then achieved high-

quality consistent segmentations by employing a hierarchical clustering scheme that considers

2.2 Mesh segmentation 14

both the geometric features of individual objects and the similarity of clustering results between

the set of objects. The method encounters problems for objects that are largely different in shape

or poses since the rigid alignment is not able to correctly align the objects.

Kalogerakis et al. [KHS10] proposed a novel approach that simultaneously processes seg-

mentation and labeling on a set of objects. The labeling problem was stated as a Conditional

Random Field model which optimizes an objective function. The objective function consists of

unary terms and pairwise terms that measures the consistency of faces with labels. The objective

function was learned from a set of labeled training objects and then applyied to the other same

type of objects to achieve consistent segmentations. This approach employs a large number of

features commonly used for segmentation cues, so that it can handle various segmentations for

a wide range of objects. But the training process is time consuming, and it still can not well

handle the objects that have large topological difference.

C H A P T E R 3

Introduction of MSP function

Our skeletons are generated based on the MSP function. We briefly review MSP function, MSP

gradient function and MSP skeleton in this section. For more details, please refer to [HJWC].

3.1 MSP function

The MSP function is a scalar function defined on the mesh surface for measuring the local

volume information. For a surface point p, the MSP value is computed as the minimum perime-

ter of the planar slices passing through p and parallel to the normal of p. The minimum slice

perimeter can approximate the local volume at the point p. Figure 3.1 shows an example for

computing the MSP function. To trade off accuracy for speed, the planar slices are computed

in a discrete manner. We compute the MSP value for each vertex on the mesh. Figure 3.2(a)

shows the results of MSP function for some objects. With the increasing of MSP value, the

surface is colored from blue, green, to red. We observe that the parts with different volumes can

be distinguished easily according to the MSP values.

15

3.2 MSP gradient function 16

(a) (b)

Figure 3.1: MSP function computation. The planar slices are computed in a discrete manner.

Minimum slice is colored to red.

3.2 MSP gradient function

The MSP gradient function represents the change rate of the local volume(MSP) in the neigh-

boring region. For a surface point p, the MSP gradient value is computed similarly to the method

by Alliez et al. about the evaluation of curvature tensor [ACSD+03]:

∇MSP (p) =
1

|B|
||
∑
e∩B

(MSP (ei)−MSP (ej))~e||

where B is the neighboring region of p which is specified by user, e ∩ B is the part of an edge

e inside B, ei and ej are end vertices of the edge e, and ~e is a normalized vector along e. Figure

3.2(b) shows the results of MSP gradient function for some objects. We observe that the MSP

gradient values raise at the places where MSP values change largely. These places are usually

the junctions of the parts.

3.3 MSP skeleton 17

(a)

(b)

Figure 3.2: (a)The MSP function results, (b)The MSP gradient function results.

3.3 MSP skeleton

The MSP skeletons which are extracted directly from 3D models based on MSP function and

a new skeletonization framework. First, The MSP value is used to transform all the vertices

toward the interior of object in order to obtain a nearly zero-volume shrunk mesh. This shrinking

mesh preserves the same edge connectivity as the origin mesh. Then perform a greedy LOD

skeletonization framework to degenerate the topology of the shrunk mesh until the 1D curved

skeleton is formed. Instead of using the traditional edge-collapsed operator, the edge swap

operator is used for changing the edge connectivity without simplifying the geometry, with a

3.3 MSP skeleton 18

compact error metric defined to measure the deviation of the shrunk mesh vertex, a curved

skeleton can be yielded with dense nodes which corresponding to a set of shrunk vertices. In

order to obtain high-quality curved skeleton, the smoothing operation is performed to skeleton

links and then small skeleton branches due to local surface details are removed.

C H A P T E R 4

Skeleton correspondence

In this chapter, we present the skeleton correspondence algorithm for the source and target

skeletons, which establishes the relation between their skeleton nodes and skeleton links.

4.1 Overview

Our skeleton correspondence algorithm is based on graph-matching which addresses the (1)sen-

sitiveness of the topological difference and (2)symmetry switching problem mentioned in sec-

tion 2, and builds the meaningful mappings between the nodes and links of the source and

target skeletons. The mapping relation of the nodes and links may be one-to-one, one-to-many

or many-to-many. This is different from most of the previous works [HSKK01, BMSF06,

ATCO+10] which merely build the one-to-one mapping between the nodes.

The matching process of the two skeletons can be expressed as a correspondence tree, as

shown in figure 4.1. The root represents the initial state which has no matched pairs. In the

beginning, we select a junction node pair in two skeletons with minimal cost, denote it as

start node pair, and generate a tree node attached to the root of the correspondence tree to

19

4.1 Overview 20

represent this matching state. We will traverse the skeleton graphs and expand the matched

ranges from the start node pair. If there are several junction node pairs with similar low costs,

currently we are not sure which one form the best correspondence result, so the graph-matching

is processed respectively for each node pair(there are multiple tree nodes attached to the root).

The definition of the node pair cost is described in section 4.2. Later, we process the link

correspondence described in section 4.3, to match the links connecting to the start node pair.

The link clustering and spatial orientations help to avoid the symmetry switching of the link

correspondences. For each matched link pair a new matched node pair is derived for graph

traverse. Instead of directly choosing the other end nodes of the links to form the matched node

pair, we trace along both sides of links to find the best next node pair to address the problem

of local topological difference between the two skeletons. When the link correspondence is

complete, a new tree node is generated to represent the current matching state and attaches to

the previous tree node. If there are several plausible link correspondences, the correspondence

tree occurs branching. We traverse the skeletal graphs in depth-first search(DFS) manner. Each

tree node has a stack which contains the unprocessed node pairs. After the link correspondence

we obtain some new node pairs and push them into the stack. For each round we pick a tree

node whose stack is not empty, pop a node pair and recursively perform the above matching

steps. After completing the matching process(all the stacks of the leaf node are empty), each

leaf represents a candidate final correspondence result. We choose the leaf node with minimal

cost as the final correspondence result of the two skeletons. The details are presented in section

4.4.

4.2 Node pair correspondence 21

Figure 4.1: Correspondence tree.

4.2 Node pair correspondence

Consider a node pair (ns, nt), where ns and nt are one of the nodes of source and target skele-

tons, respectively. Assume ns has n connecting links and nt has m connecting links. Denote

Ls = {s1, s2, ..., sn} and Lt = {t1, t2, ..., tm} as the lists of links which connect ns and nt. We

define the Cnode which combines two different types of features to estimate the dissimilarity of

a node pairs as the following equation:

Cnode = Ccenter(ns, nt) ∗ Cstruct(Ls, Lt) (4.1)

4.2 Node pair correspondence 22

The Ccenter is defined as:

Ccenter(ns, nt) = |AGD(ns)− AGD(nt)| (4.2)

where AGD(ni) is the average geodesic distance of the ni computed by averaging the AGD

values to the corresponding vertices. The AGD values of the mesh vertices are first normalized

to [0,1]. AGD(ni) is the geometric feature and represents the centricity of a node ni.

Denote SG(Ls) = {g1, g2, ..., gn} as the size of the sub-skeleton list corresponding the Ls.

It represents the structural feature of ns. A sub-skeleton starts from a connected link of the

node and is built by traversing the skeletal graph in BFS manner. Figure 4.2(a) shows the sub-

skeletons of node ni that each sub-skeleton is drawn a different color. Each gi ∈ [0, 1] of the

SG(Ls) is the total length of the links contained in the sub-skeleton and are normalized by the

total length of all the links in the skeleton. If there are some different links which form the same

sub-skeleton, then the sub-skeleton must has loops, as shown in figure 4.2(b). In this case gi is

divided by the number the links which share this sub-skeleton.

(a) (b)

Figure 4.2: The sub-skeleton of a node ni:(a)without loop, (b)with loop.

We define SG(Lt) = {h1, h2, ..., hm} in the similar way to SG(Ls). The items of the

SG(Ls) and SG(Lt) are sorted in the decreasing order. Assume n ≥ m, then the Cstruct term

4.3 Link correspondence for a node pair 23

of the equation 4.1 is defined as the difference between SG(Ls) and SG(Lt):

Cstruct(Ls, Lt) =
m∑
i=1

(gi − hi)2 +
n∑

i=m+1

(gi)
2 + ε (4.3)

If n < m, we switch the roles of ns and nt. We add a small constant ε to avoid the zero

value(e.g., the cstruct of two terminal node is zero, it causes the cnode also be zero), ε is typically

set to 0.01.

We denote a threshold tin for choosing the start node pair. If a node pair whose Cnode is

smaller than tin, we set it as the start node pair. A small tin is sufficient for generating correct

skeleton correspondence, which is typically set from 0.02 to 0.03.

4.3 Link correspondence for a node pair

To compute the link correspondence for the links connecting to the node pair (ns, nt), we use

the information induced from the set of links at the node pair, including clusters of links, their

spatial information and relative orientation between links.

4.3.1 Link clustering

Different parts of objects may have the same semantic meanings, such as front/back legs and

pairs of ears. These parts have similar shapes and geometric features. In our method, we

rely on the volume characteristic of parts for clustering them. Later on, when the matching

is performed, using clusters of links not only improves the correspondence results but also

simplifies the process.

For each link connecting to the node ni, we first compute the longest path starting from

this link in its sub-skeleton. Then each path is divided into k pieces, where k is given by a

user. A typical value of k is from 5 to 10. For each piece the average MSP value is evaluated.

These k values are then assembled as a k-dimensional vector, namely volume descriptor of

the link. After that, the error of two links with volume descriptors, `i and `j , is computed as

4.3 Link correspondence for a node pair 24

‖`i− `j‖2 (L2-norm). We use hierarchical clustering to cluster the links connecting to the node

ni. figure 4.3 shows an example of link clustering. The links having similar volume descriptors

are clustered together and are drawn the same color.

The link clustering are processed to ns and nt of the node pair, respectively.

(a) (b) (c)

Figure 4.3: The results of link clustering.

4.3.2 Link correspondence

We observe that for two correctly matched node pair, the orientation of links at the local regions

of both node pair is similar to each other. Based on the observation, we exploit the spatial

information to design the link matching algorithm. Consider an example in figure 4.4. Now we

have a matched node pair (ns, nt) at the chests of wolf and dog. There are four links connecting

to ns and nt which belong to trunks, necks, front left legs and right legs. So there are 4! = 24

possible correspondences for these links. Our goal is to construct the vectors which best fit the

local directions of the links, and then find the best transformation to minimize the sum of the

angle difference for each corresponding link pair, as shown in figure 4.4(b).

4.3 Link correspondence for a node pair 25

(a)

(b)

Figure 4.4: Link correspondence at a node pair. The local orientations of links are similar:

(a)generate local vectors for each link, (b)find the transformation which minimizes the angle

difference for the all link pairs.

To compute the pose-insensitively link vectors, We had adopted the least square multi-

4.3 Link correspondence for a node pair 26

dimensional scaling [EK03] to perform pose-normalize for the object. It straightens the bent

links. But we find it has some drawbacks: (1) the normalized directions are mainly guided

by the beginning directions of the original skeleton links. So the noise around the start node

of the links will disturbed the normalized results, (2) the normalized links which far from the

center of the object easily form bunches. In conclusion, the original spatial orders and relative

orientations may not be retained after processing the multi-dimensional scaling.

We observe that the directions of links are not influenced much for different poses within

the local region of the node. We use the idea of inscribed ball to define the valid range of the

links. The average distance of the mesh vertices corresponding to the node is computed as

the approximate radius of inscribed ball. And the local vectors of the links are constructed by

cutting the links at the range of radius.

After constructing the local vectors of the source and target, we use the shape matching

technique [MHTG05] to find the rigid transformation which minimize the distance between the

corresponding vector pairs. We briefly describe this as follows: Denote P = {p1, p2, ..., pn} as

the link vectors of source and Q = {q1, q2, ..., qn} as the corresponding link vectors of target

which pi matches with qi, 1 ≤ i ≤ n. find the rotation matrix R which minimize:
n∑

i=1

||Rqi − pi||2

Refer from [MHTG05], first the optimal linear transformation matrix A is computed:

A = (
n∑

i=1

piq
T
i)(

n∑
i=1

qiq
T
i)−1 = ApqAqq

The second term Aqq is a symmetric matrix which represents only scaling and can be ignored.

And the optimal rotation matrix R is the rotational part of the Apq which can be computed

by polar decomposition Apq = RS, where S =
√
AT

pqApq. Therefore the optimal rotation is

R = ApqS
−1.

We compute the rotation matrix R for each possible link correspondences (for the example

of wolf and dog in figure 4.4. There are 24 possible link correspondences and rotation matrixes).

Due to the spatial orientations of both sides are similar, correct link correspondence must has a

4.3 Link correspondence for a node pair 27

small angle differences between each link pair. Recall P = {p1, p2, ..., pn} as the link vectors

of source and Q = {q1, q2, ..., qn} as the corresponding link vectors of target which pi matches

with qi, 1 ≤ i ≤ n. Then the angle difference between a link pair (pi, qi) is defined as:

ang(pi, qi) = acos(dot(pi, Rqi))/π (4.4)

where dot(p, q) is the dot product of the vectors p and q. The spatial cost of this link correspon-

dence is defined as the sum of the angle difference for each link pair:

Cspatial(P,Q) =
n∑

i=1

(ang(pi, qi))
2 (4.5)

The bad link correspondences cause large spatial difference since it is hard to well fit all of the

link pairs using only a rotational transformation.

Now we formally define the link corresponding cost. Assume that ns, nt have n, m con-

necting links and n ≤ m. Denote Ls = {s1, s2, ..., sn} as the connecting links of the ns

and Lt = {t1, t2, ..., tn} as the connecting links of nt such that si maps to ti, 1 ≤ i ≤ n.

P = {p1, p2, ..., pn} ,Q = {q1, q2, ..., qn} are the corresponding local vectors of Ls and Lt. The

cost for this link correspondence is defined as:

Clink = Cstruct(Ls, Lt) ∗ Cspatial(P,Q) (4.6)

The cost of the link correspondence considers not only the local spatial configurations of the

links, but also the more global information of skeletal structures. Note that here the sub-skeleton

of Ls and Lt do not need to be sorted. It is different to the cost computing for node pair

mentioned in section 4.2.

Then we describe how to use the link clustering information described in section 4.3.1 to

filter out most of the bad link correspondences. Consider the case in figure 4.4, the wolf has a

cluster of links to its front left and right legs, since they are semantic pairs which have similar

volumetric distributions along the links. And the dog also has a cluster of links to its front legs.

So we can first match the links contained in the two clusters, and then match the links belonging

to necks and trucks. According to this way, the possible number of link correspondences is

4.3 Link correspondence for a node pair 28

reduced from 4!=24 to 2!2! = 4. In practice, it may contain different number of clusters on the

ns and nt. Due to lack of the knowledge about the parts of the objects, currently we cannot

guarantee the match of the link clusters will be correct. We argue that for the same category of

models, they should have the parts with same semantic meaning on the correctly matched node

pair. So this strategy works well for most of our test results in practice.

Besides the link clustering information, the rotation matrix R computed in the above step

also help to filter out the bad link correspondences. That is, the correspondence with symmetry

switching problem. If the determinant of the R is negative(-1), it represents that the rotation

matrix involves a reflection, which form a global flipping correspondence.

4.3.3 Next node pair searching

For each link pair, a new node pair is derived for graph traverse. A simple way is to choose

the other end nodes of the links. But it is not robust since the local topological difference

may occurr. We denote the other end nodes of the link pair as (n′s, n
′
t) and use equation 4.1 to

compute its node pair cost. And a threshold tn is set by the user. If the cost is larger than tn,

(n′s, n
′
t) will be considered to have significant error, which is not suitable to form the matched

node pair. Therefore we adopt the following strategies to address this issue:

Node clustering Due to MSP skeleton has high resolution, some close junction nodes con-

nected with short links that indicate slight difference in topology. If we take the more global

view on the whole skeleton, these close nodes represent the same part of the object and can be

clustered as a virtual single node. We define a distance threshold td as the 5% of the diagonal

of the bounding box to the mesh. A junction node which can be clustered to n′s or n′t if the

distance to n′s or n′t is less than td.

Our original approach processed node clustering to (n′s, n
′
t) only when its cost is less than

tn, but we found out that it could not correctly handle some cases such as in figure 4.5. Although

(n′s, n
′
t) has low cost (both of them have similar AGD and sub-skeleton sizes), but one connects

the left limb and the other connects the right limb. If we directly set them as matched node

4.3 Link correspondence for a node pair 29

pair, they will cause wrong link correspondence. To address this situation, no matter what the

original cost of the (n′s, n
′
t) is, we cluster all the junction nodes to n′s or n′t if the distances are

less than td, regard them as a single node pair and compute the node pair cost. If the cost is less

than tn, we set them as matched cluster pair. The correspondence relations of the internal nodes

in the clusters are many-to-many, and the internal links are set to unmatched since we imagine

these links have been collapsed. In the following matching processes the cluster pair is regarded

as a single node pair. The local vector construction (section 4.3.2) uses the average position of

the internal nodes as the origin.

On the other hand, If both the costs of the original (n′s, n
′
t) and the cluster pair are larger

than tn, we will discard the clusters and process the link extension.

Figure 4.5: Node clustering. (ns, nt) is the current node pair and (n′s, n
′
t) colored red is the

other end nodes of a link pair. We need to perform the node clustering indicated as the red

dotted circles to address the topological difference.

Link extension If the costs of the (n′s, n
′
t) and its cluster are large than tn, we search the both

sides of the sub-skeletons to find the next node pair. For the current node pair (ns, nt) and link

pair, we define the distance of a node pair in their sub-skeletons as the sum of length of the

geodesic paths to the (ns, nt), the path length is normalized by the total length of the links of

4.4 Final correspondence result 30

the skeleton. According to the distance in ascending order, we perform the node clustering for

each node pair of the sub-skeletons in sequence until encounter a node pair or a cluster pair with

cost less than tn. We denote it as (ns0, nt0). Figure 4.6 shows an example. After the process,

the link paths from (ns, nt) to the (ns0, nt0) are correspondence to each other. The nodes among

the link paths (e.g., ns in figure 4.6) and their branches are set to be unmatched.

Figure 4.6: Link extension. (n′s, n
′
t) is the end nodes of a link pair, which has large cost due to

the topological difference. After the searching, (n′′s , n
′
t) is found as the suitable matched node

pair.

4.4 Final correspondence result

After completing the correspondence tree searching, each leaf node represents a candidate cor-

respondence of the two skeletons. We choose the best one among them as the final correspon-

dence. Due to the multiple start node pairs, there may have some redundant leaf nodes which

represent the same correspondence. We remove these redundancies to make each leaf node

represent a unique correspondence.

We select the final correspondence result by using the node pair costs Cnode and link costs

4.4 Final correspondence result 31

Clink. During the correspondence tree searching, these costs are computed and recorded on the

tree nodes. Each leaf node contains a complete list of Cnode and Clink for its correspondence

results. Since the lower costs represent the better local correspondences. An intuitive method

is to accumulate all these costs and select the leaf node with minimum. But this method fails

when a bad correspondence which only has few matched node and link pairs. Although each

cost is large, the sum of these costs is still smaller than the good correspondence which has

more matched pairs. To avoid this problem, we keep track the maximum Cnode and Clink during

the correspondence processes, denote them as Cmaxnode and Cmaxlink, and normalize each cost

to [0,1] by dividing Cmaxnode or Cmaxlink. We denote the lists of Cnode and Clink of a leaf node

as {cn1, cn2, ..., cnn} and {cl1, cl2, ..., clm}, then we define the cost of a leaf node as the product

of these cost:

Cleaf = Πn
i=1cni ∗ Πm

i=1cli (4.7)

The leaf node has small Cleaf if its cost is small, or it has more matched pairs. We set the

one with minimum cost as the final correspondence result of skeletons.

C H A P T E R 5

Segmentation Transfer

In this section, we propose the segmentation transfer algorithm which maps the boundaries on

the source mesh to the target mesh, to form the consistent segmentations.

5.1 Overview

After skeleton correspondence is established, we have fully correspondences of links between

source and target skeletons. Since each link represents a specific part of the mesh, associating

each boundary of source mesh with a link is an easy task. For each iteration we focus on one of

the source link. If at least one boundary associated with this link, we transfer these boundaries

to the part of target mesh which belongs to the corresponding target link. Once all the links

have been processed, the segmentation transfer between source and target meshes is complete.

We first associate each boundary with the link. Then for each link to be processed, our

segmentation transfer algorithm can be divided into four steps. First, in step one we utilize the

MSP gradient to analyze the volume varying distributions along the source and target links, in

order to locate the approximate positions of boundaries on the target mesh. In step two, we

32

5.2 Associating boundaries with links 33

build cutting regions on the source and target meshes which the boundaries are expected belong

within. In step three, we apply the cylindrical parameterization to these cutting regions, and

map source boundaries to the target cutting regions in the parameterization domains. Finally, in

step four we use the active contour models(snakes) to evolve the target boundaries locally, so

that the geometric features of the source and target boundaries can be as similar as possible.

5.2 Associating boundaries with links

We use the method proposed in [AFS06] which is based on Principal Component Analysis to

construct the fitting plane of each boundary. Then compute the intersection between the links

and the plane. There would be one link intersecting with the plane. If there are more than one

link intersecting with the plane, we select the link with the minimum distance to the centroid of

the boundary. Therefore, each boundary would be associated with one link. On the other hand,

a link would be associated with zero, one or more boundaries.

5.3 Volumetric analysis

After the link-boundary crossing test described in section 5.2, for each boundary an intersection

point p is obtained on the link. We denote a normalized link ratio value which describe the

position of p relative to the whole link as : LR(p) = len(ps, p)/len(ps, pt) ∈ [0, 1], where ps

and pt are start and end point of the link, and len(s, t) is the geodesic distance between s and

t along the link. An intuitive idea is to use LR(p) to produce boundary at the corresponding

position of the target link. But it is not an effective way since the source and target meshes

may have large differences. So we need some additional geometric properties which help to

characterize the source boundaries.

For the common geometric properties used in mesh segmentation methods, global proper-

ties such as average geodesic distance(AGD) are suitable for analyzing the whole meshes, and

local properties such as curvature, dihedral angle are suitable for analyzing the local surface de-

5.3 Volumetric analysis 34

tails. Skeleton links usually represent the object parts, so an intermediate level property which

different to above is needed to analyze them. Volume information meets our requirements since

it is insensitive to pose. And based on the observation of part-type segmentation, the boundaries

are often located on junctions of two parts which has large volumetric variation.

In this step, our goal is to find the positions (LR value) for producing boundaries on the

target link. Our strategy is to first generate part-type boundaries based on volume analysis, set

them as reference boundaries and compute the differences to the input source boundaries, and

finally infer the most suitable positions on the target link.

We use MSP gradient function to describe the volumetric variation of the object parts. Due

to each skeleton node associates with some mesh vertices, we can easily construct the distribu-

tion of MSP gradient along the source links. The MSP gradient along a link is smoothen by

using Gaussian smoothing technique so as to eliminate redundant details and noise. Figure 5.1

shows an example of deer’s neck. Figure 5.1(b) are the MSP gradient distributions before and

after the Gaussian smoothing. Each local maximum value represents the maximum change of

volume locally at the particular position on the link. We adopt the similar strategy to Katz’s

method [KT03]. For each local maximum a corresponding fuzzy region is constructed and a

boundary is extracted from it. We collect the one-ring faces of all such vertices for the local

maximum node to form the fuzzy region. If it does not form a ring, we gradually pick the nodes

which are adjacent to the local maximum, and add the corresponding faces to the fuzzy region.

This is repeated until the fuzzy region form a ring. After that, the dual graph of the fuzzy region

is constructed and then graph cut [BK04] is applied for extracting the boundary, as shown in

figure 5.1(c-d). Let ai be a arc in the dual graph, ei be the common edge of the two dual faces

connected by ai. The capacity of the arc ai is defined as follows:

Cap(ai) = (
1.0

∇MSP (ei) + ε
) ∗ Len(ei) (5.1)

where ∇MSP (ei) is the MSP gradient function of the edge ei (the average of the two end

vertices), Len(ei) is the length of ei, ε is a small constant which prevent division by zero and

is usually set to 0.001. Based on the capacity, the boundary will pass through the short edges

5.3 Volumetric analysis 35

which have large MSP gradient function. We denote this type of boundary as MSP gradient

boundary. Figure 5.2 shows the MSP gradient boundaries on some objects, as well as the input

source boundaries provided by user.

(a) Deer’s neck. (b) MSP gradient distribution.

(c) Fuzzy regions. (d) Boundaries extracted by graph cut.

Figure 5.1: Volumetric analysis example.

5.3 Volumetric analysis 36

(a) (b)

Figure 5.2: The MSP gradient boundaries and the input source boundaries. The MSP gradient

boundaries are colored in red, and input source boundaries are colored in green.

After constructing the MSP gradient boundaries on the parts of source and target links, we

establish the correspondence between these source and target boundaries. First, the LR value of

each boundary is computed by using the fitting plane method (section 5.2). Then the boundary

list is sorted according the LR value. Denote si is the i-th source boundary and tj is the j-th

target boundary. The boundary pair cost is defined as follows:

Cboundary(si, tj) = α ∗ (LR(si)− LR(tj))
2 + β ∗ (∇MSP (si)−∇MSP (tj))

2 (5.2)

where ∇MSP (b) is the MSP gradient function of the boundary b (the average of the boundary

vertices). The mapping relations of the boundaries are one-to-one. And the order of the matched

boundary pairs on both sides of the links must be consistent. We find the best correspondence

by minimizing the sum of the boundary pair cost.

Now we are going to infer the boundary position on the target link. For each source bound-

5.4 Cutting region construction 37

ary, we trace along the link to find the first matched MSP gradient boundaries in up and down

direction. If no matched MSP gradient boundary is found, we use LR value of the start or

end points (0.0 or 1.0) of the link. Then use the mapping relation to find the corresponding

MSP gradient boundaries on the target link. As shown in figure 5.3, we compute the distance

(LR value difference) between these boundaries. Then the LR value on the target link can be

computed according to the same proportional relation.

Figure 5.3: The position of the target boundary can be inferred from the adjacent matched MSP

gradient boundaries.

After the above process, for each source boundary we obtain the LR value on the target link.

It represents its approximate location on the target mesh.

5.4 Cutting region construction

We have obtained the LR values which can infer the located points on the target link. However,

it is not sufficient since the source boundary have some additional characteristics needed to be

5.4 Cutting region construction 38

considered. We observe that the cross orientation of the boundary’s fitting plane (section 5.2)

and link is an important feature to globally describe the shape of the boundary. For example,

some boundaries may cross the link vertically and form the short, straight shapes. And other

boundaries may cross the link with non-vertical angles and produce more tilted, longer shapes.

Another important feature is the surface extent covered by boundary. Some boundaries have

small extents which mean the points of the boundaries are quite close to their fitting planes.

And some boundaries may cover relatively wide extents so that they have large deviations to

the fitting planes.

We take into account these two features to develop our algorithm which establishes the

boundary’s extent on the target mesh surface. We denote it as the cutting region of the boundary.

The cutting region can be established in three steps. In step one we compute the normal of the

source fitting plane then transfer it to the target link for building the corresponding target fitting

plane. In step two the planar slice of the mesh and fitting plane is constructed and become the

initial location of the cutting region. Finally in step three we consider the extent covered by

source boundary, and expand the target cutting region to make it have similar extent as source.

The normal of the source fitting plane can be computed easily. But they can not be directly

copied to the target space since the source and target meshes may have different orientations

in the original 3D space. We solve the issue by establishing the consistent local coordinate

systems on both sides of the source and target links, then transferring plane normals through the

coordinate systems. The consistent coordinate system can be established in five steps as shown

in figure 5.4.

5.4 Cutting region construction 39

(a) (b)

(c) (d)

(e)

Figure 5.4: The process of establishing consistent local coordinate systems on the source and

target links. Where red, green, blue line represent x, y, and z axes, respectively.

First, for the current source link, we get the junction skeleton node connected the link and

set it as the origin of the local coordinate system. The x axis is the local direction of the

5.4 Cutting region construction 40

current link(section 4.3.2). The y axis is the local direction of another link connected to original

junction node. Second, the z axis is the cross product of the x and y axes, and y axis is reset as

the cross product of the z and x axes to form the orthogonal coordinate system. Third, the source

coordinate system is transferred to the corresponding target node by using the shape matching

technique(section 4.3.2). Fourth, the orientation of the target coordinate system is adjusted

by aligning the x axis to the local direction of the current target link. Finally, the coordinate

systems are moved from junction nodes to the points located by LR value, the orientations are

adjusted according the local directions of the links.

We denote Ns as the normal of the source fitting plane, Ms and Mt as the transformation

matrixes from original 3D space to the source and target local coordinate system, respectively.

The normal of the target fitting plane Nt can be computed by using a linear transformation:

Nt = M−1
t ∗MS ∗Ns.

We define a planar intersection as the slice caused by the fitting plane and mesh. It contains

a series of line segments crossing the polygons of the mesh. For the source and target meshes,

we respectively construct the planar intersections of their fitting planes, as shown in figure

5.5. For most of the positions on the link, the generated planar intersections are close to the

boundaries and are suitable to be the initial cutting region, just like figure 5.5(a-b). Except the

junction of the two parts, some proportions of the planar intersection will belong to areas which

do not correspond to the current link. As shown in figure 5.5(c-d), the fitting planes cut the

trucks and cause the large, inappropriate planar intersections. For this case we must perform

intersection reduction, which removes the proportions of the planar intersections which belong

to other parts and reconnects the gaps. Although we know that these proportions are always

far from the current links, it is still hard to correctly process intersection reduction since using

distances to identify the removed proportions is not a robust way.

5.4 Cutting region construction 41

(a) (b)

(c) (d)

Figure 5.5: The planar intersections of the meshes and fitting planes. The intersections and

boundaries are colored in red and green, respectively: (a-b) common position, (c-d) junction of

the two parts

We thus take a different approach to deal with the intersection reduction. The distance

information of the points of source boundary to the links is utilized to construct the planar

intersections through the following processes. First, the source boundary are projected on its

fitting plane. The origin and the x, y, z axes of the local coordinate system are also projected.

5.4 Cutting region construction 42

We use the longest projected axis as the start ray and rotate it around the normal of the fitting

plane to generate several sample rays, as shown in figure 5.6(a-b). The number of the sample

rays affects the accuracy of the boundary description. But in practice we found that even a few

samples could achieve good results. The number is set to 16 in all of our experiments. Each

sample ray is performed the ray-boundary intersection in the fitting plane domain to obtain the

intersecting point Pi (note that it may be inside the mesh) and distance. And it casts a point Pa

on the mesh which represents the sample of the original planar intersection. We additionally

generate two rays which start at Pi and parallel to the normal and inward normal of the fitting

plane. They cast two points on the mesh called Pb and Pc which represent the best fitting points

by distance information of the boundary. For each sample ray a final sample point is chosen

from one of the Pa, Pb, and Pc which has minimum distance to the current link (The origin in

figure 5.6(c)). Finally the reduced planar intersection is constructed by using the geodesic paths

to connect all the adjacent sample points. The idea of this method is that, when fitting plane is

located at the junction of two parts, the mesh surfaces may be nearly parallel to the fitting plane.

So it causes the intersections(Pa) which has large distance to the link(see figure 5.5(c-d)). In

this case the points generated by distance information of the boundary (Pb or Pc) are substituted

for these proportions. Actually, in most of the case these points are very close to the fitting

plane. On the other hand, when fitting plane is located at the common positions, the normal of

the fitting plane will be more parallel to the link (see figure 5.5(a-b)), so the points Pb and Pc

will have larger distance then Pa.

5.4 Cutting region construction 43

(a) (b) (c)

Figure 5.6: Intersections reduction by ray sampling: (a) boundary on the mesh, (b) sample rays

on the fitting plane, (c) a diagram showing a sample ray generates three candidate points: Pa,

Pb and Pc

The processes of the target intersection reduction are similar to source. Except the length

of the sample rays which need to be provided from source (target mesh has no boundary). The

ratio of the local MSP values of source to target links is computed and the lengths of the source

sample rays are scaled and transferred to the target.

In fact, during the intersection reduction we do not really compute the geodesic paths. In-

stead we simply perform Dijkstra algorithm on the dual graph of the mesh to generate the face

lists between the adjacent sample points. Figure 5.7 shows an example of the original and

reduced planar intersection. We can see that both of the planar intersections are quite reduced.

5.4 Cutting region construction 44

(a) Source. (b) Target.

Figure 5.7: The original planar intersections colored in red, and the reduced planar intersec-

tyions colored in blue.

Now the reduced planar intersections are expanded to become the cutting regions of the

boundaries. For the source we set the distance of each face centroid on the planar intersections

to zero, and run Dijkstra algorithm to gradually add adjacent faces to the cutting region until

all the one-ring vertices of the source boundary are included in it. The maximum expanding

distance of source is recorded, scaled by the ratio of the longest geodesic path of source to

target meshes, and used to expand the target cutting regions. Figure 5.8 shows an example of

the source and target cutting regions.

(a) Source. (b) Target.

Figure 5.8: An example of the source and target cutting regions.

5.5 Cylindrical parameterization 45

5.5 Cylindrical parameterization

Next we parameterize the source and target cutting regions in order to constructing an intermedi-

ate domain which benefits the mapping the points of source boundary to target mesh. Since the

cutting regions have two closed boundaries and form a ring shape, the common parameteriza-

tion techniques which parameterize the meshes that have one boundary to the 2D plane domain

are not suitable for this task due to the different topological types. So we use the special type of

parameterize technique proposed by Wang and Zheng [WZ10] which parameterizes the tubular

meshes to the cylindrical domains. Figure 5.9 shows an example of cylindrical parameteriza-

tion. In figure 5.9(a) we know that the two boundaries of the tubular mesh correspond to the

upper and lower boundaries of the cylinder, and the internal surface corresponds to the lateral

side of the cylinder. Figure 5.9(b) shows the cylindrical parameterization result can be unfolded

to a 2D plane domain. The v coordinates of the upper and lower boundaries are set to 1.0 and

0.0, respectively. And the ranges of the parameterized coordinates (u, v) are [0, 1)× [0, 1].

(a) Tubular mesh corresponds to the cylinder. (b) Cylindrical parameterization domain.

Figure 5.9: An example of cylindrical parameterization [WZ10].

Good cylindrical parameterization should avoid twisting in the U direction (See figure

5.11(a) for an example). For some area the coordinates of the vertices (ui, vi) need to be ad-

justed to (vi + 1, vi) or (vi − 1, vi) to keep the continuity of the parameters. These difficulties

make it hard to construct the vertex-based equations to determine the parameterization. There-

5.5 Cylindrical parameterization 46

fore Wang and Zheng proposed an edge-based algorithm to overcome these difficulties. Each

directed edge represents the coordinate offset on the parameterized domain. By randomly se-

lecting a vertex on one of the boundary as the start vertex and set the coordinate to (0, 0), the

coordinate of all other vertices on the mesh can be inferred through propagating the parameters

which are belonged to the connecting edges. To determining the v direction, we improve the

original approach by constructing shortest path from the start vertex to another boundary in

order to obtain the more robust direction that is almost parallel to vertical axis of the tubular

mesh. Figure 5.10 shows some parameterization results. Figure 5.11 shows that we can avoid

the twisted parameterization, and produce expected results as shown in figure 5.11(b).

5.5 Cylindrical parameterization 47

(a) Cutting region on the leg. (b) Paramterization result.

(c) Cutting region on the neck. (d) Paramterization result.

Figure 5.10: Cylindrical paramterization result.

5.5 Cylindrical parameterization 48

(a) Twisted. (b) No-twisted.

(c) Twisted. (d) No-twisted.

Figure 5.11: Twisted and no-twisted parameterizations. With the increasing of the u coordinate

value, the vertices are colored from blue,green, to red.

Now we have constructed the parameterizations of the source and target cutting regions. A

straightforward way for mapping the boundary is that we first transform the points of source

boundary to the cylindrical domain, and then convert these points back to the 3D domain on

the target mesh using barycentric coordinate. The method is effective but does not consider an

important issue, is that the start vertices of the source and target parameterization are just ran-

5.5 Cylindrical parameterization 49

domly selected from the boundaries in the previous step. They may not be a good corresponding

vertex pair and cause a large bias in the U direction on the cylindrical domain. We thus perform

the parameterized orientation adjustment to address the issue.

(a) Leg. (b) Leg. (c) Z value. (d) Z value.

(e) Neck. (f) Neck. (g) Y value. (h) Y value.

Figure 5.12: Transform the boundaries to the local coordinate system. With the increasing of

the coordinate value, the boundaries are colored from blue,green, to red.

We utilize the local coordinate system built in section 5.4 to transform all the boundary’s

vertices of the source and target cutting region to the local coordinates. Since the consistency

of the coordinate systems, the both sides of boundaries have the similar distributions of the

coordinate values, as shown in figure 5.12. We compute the range of the x, y, and z coordinate

values on both sides of boundaries, choose the coordinate with largest range, and assign it to

each vertex of the boundaries. We denote it as the alignment value of the vertex. Next we choose

the boundary Bs of the source cutting region which has the start vertex, and the target boundary

5.6 Boundary refinement by snakes 50

Bt corresponding to Bs. We assume Bs has n vertices and define UBs = {u1, u2, ..., un} as the

set of parameterized u coordinate of the vertices. The orientation adjustment process aims to

find the best u-offset uo ∈ [0, 1) of the Bs and Bt by minimizing the following equation:

argmin
uo

n∑
i=1

(AV (Bs, ui)− AV (Bt, ui + uo))
2 (5.3)

where the AV (B, ui) returns the alignment value at the position whose u coordinate is ui on the

boundary B. If it is on the edge, the alignment value is computed by interpolating the values of

the two end points of the edge. The process can be treated as rotating the target boundary along

the cylindrical axis so as to align the source boundary.

After computing the best offset uo, we add uo to all the points of the source boundary and

transform them to the target mesh to form the initial target boundary.

5.6 Boundary refinement by snakes

In this section, the points of target boundary are refined locally, so that the characteristics of the

source and target boundaries can be as similar as possible. We define the characteristics of the

boundary as the following two terms:

1. Surface detail: According to the minima rule [HR84], most of the mesh segmentation

approaches use curvature, dihedral angle, and normal deviation as the local geometric

features, and guide the boundaries to close these features.

2. Shape: Most of the part-type boundaries are expected to have short and smooth shapes.

However, in some scenarios, the user may depict the boundaries to the particular patterns

such as jagged or wavy shapes.

The snakes were originally proposed by Kass et al. [KWT88] and were widely applied

in the 2D image segmentations and feature detections. Some researches extended them to 3D

5.6 Boundary refinement by snakes 51

mesh surfaces [LL02, JK04, BWK05, LMLR06].The general energy function of the snakes can

be represented as:

Esnake(s) =

∫
(Eint(s) + Eext(s))ds

where the internal energy term Eint makes the snakes shorten and smooth, and the external

energy term Eext drives the snakes toward the nearby features. The snakes evolve and converge

on the final locations by minimizing the energy Esnake.

We use snake to refine target boundary and reformulate the energy function to the equation

5.4:

Esnake(s) =

∫
(Efeature(s) + Eshape(s))ds (5.4)

where Eshape(s) and Efeature(s) are called the shape term and feature term. In the section 5.5,

we have completed the initial boundary mapping. For each point of the target boundary we can

find a corresponding point on the source boundary. The ability of the feature term is to evolve

the target boundary to increasingly close the geometric features of each pair of corresponding

points, and the shape term maintains the similar shape as source boundary during the refinement

process.

We detail our snake scheme as follows. We adopt the snake scheme proposed by Bischoff

et al. [BWK05]. The snake is composed by a sequence of discrete points called snaxels. The

snaxel is stipulated to locate on the vertices or edges of the mesh. The points of the initial target

boundary may need a local adjustment in order to satisfy this condition. In the following we

call the points on the target boundary as snaxels. When the snake is evolved, for each snaxel

several candidates are generated, and the snaxel is moved to the candidate which has smallest

snake energy in the next round. If the snaxel locates on the edge of the mesh, two candidates

are yielded on both sides of the snaxel on the same edge. If the snaxel locates on the vertex, the

candidates are generated to each one-ring edge connected to the vertex. The original location of

the snaxel is also as one of the candidates. The interval of the original snaxel and the candidate

is set according to the application. In our implementation we set it as the average length of the

5.6 Boundary refinement by snakes 52

edges of the mesh multiplied by a scalar(0.1). Our snake scheme requires the correspondence of

the points between the source and target boundary. For each iteration, before the snake evolution

we use equation 5.3 to find the corresponding point (may not on the vertex of the mesh) of the

source boundary for each snaxel of the target boundary.

For the design of the shape term, we use the offsets of the points of the boundary and its

fitting plane as the characteristics of the shape. For a straight and smooth boundary, all the

points have small offsets. And for a jagged boundary, the offsets have larger deviations. To

compute the offset, we calculate the projection of the point, measure the difference between

them, and use the plane normal to judge the sign of the offset. The offset value is normalized

by the diagonal of the bounding box of the model. We define the shape term as Eshape =

abs(offset(t)− offset(s)), where s is the corresponding point of the source boundary for the

snaxel t.

For the design of the feature term, we use the dihedral angle as the surface feature on the

mesh. First the dihedral angles are calculated on the edges of the mesh, then the feature value

is assigned to each vertex as the average dihedral angle of its one-ring edges and normalize it

to [0, 1]. Hence for each candidate snaxel of the target boundary and the corresponding point

of the source boundary, we can obtain their feature values. If the point is on the edge, the

feature value is computed by linear interpolation. Our goal is to make the feature values of

the both sides of points as close as possible. An intuitive idea is to design the feature term as

Efeature = abs(feaV al(t) − feaV al(s)), where feaV al(p) is the feature value of the point

p. However, after performing experiments, we found that it has two drawbacks. First , when

both the source and target boundary locate on the flat regions, the target boundary would be

expected not to move. But actually it still moved due to the small differences of the float-point

feature values. Second, the snaxel usually falls into the local minimum since the snake scheme

only considers a small searching range for each iteration (the candidates are close to the origin

location of the snaxel).

So we modified our strategy as follows. For each iteration before the snake movement, we

define a searching range, and an adjacent vertex list which collects the vertices whose geodesic

5.6 Boundary refinement by snakes 53

distances to the target boundary are under the searching range. The searching range should

be large enough to cover the nearby feature regions, we set it as the longest geodesic distance

on the model multiplied by a scalar(0.02). For each snaxel of the target boundary, we get the

feature value of its corresponding point of the source boundary, and search the adjacent vertex

list to find the closest vertex whose feature value is enough similar to the current snaxel (if

the difference of the feature values is smaller than a threshold, they are enough similar. The

threshold is set as 0.1). If no vertex is found, the feature energies of all the candidates are set to

the same value(1.0). Otherwise, we simply define the feature energy as : Efeature = geo(v, p),

where v is the vertex searched in the adjacent vertex list, and p is the target candidate, geo(v, p)

returns the geodesic distance between v and p. Under this design, the candidate which is close

to the searched vertex will have small energy. In order to address the small float-point difference

problem, we compute the mean(fM)and the standard deviation(fSD) of the of the feature value

of the mesh. If both the target snaxel and source point are on the flat region (the feature value

is in the range of fM ± fSD), we also set the energies of the candidates to 1.0 to disable the

function of the feature term.

We dynamically adjust the weight of the shape and feature term during the snake movement.

If both the source and target boundaries locate around the feature regions, the weight of the

feature term should be large in order to make the boundary close to the feature. Otherwise, if

both the source and target boundaries locate on the flat regions, then the weight of the shape

term should be large to control the shapes of the boundary. For each iteration, we calculate

the percentage of the case that a target snaxel successfully find a feature similar vertex in the

adjacent vertex list, set the weight of the feature term (wf) as the percentage value and set (1.0−

wf) as the weight of the shape term. The final snake energy for a target snaxel p (candidate) is

defined as:

Esnake(p) = wf ∗ Efeature(p) + (1.0− wf) ∗ Eshape(p)

Figure 5.13 and 5.14 demonstrate the function of the shape term when both source and target

boundaries are on the flat regions. And figure 5.15 shows the function of the feature term which

guides the target boundary toward the concave features as similar as the source boundary.

5.6 Boundary refinement by snakes 54

(a) Source. (b) Target(Iteration=0). (c) Iteration=5.

(d) Iteration=12. (e) Iteration=17. (f) Iteration=25.

(g) Iteration=30. (h) Iteration=37. (i) Result (Iteration=45).

Figure 5.13: The evolution of the target boundary from line shape to wave shape.

5.6 Boundary refinement by snakes 55

(a) Source. (b) Target(Iteration=0). (c) Iteration=5.

(d) Iteration=10. (e) Iteration=16. (f) Iteration=24.

(g) Iteration=30. (h) Iteration=35. (i) Result (Iteration=41).

Figure 5.14: The evolution of the target boundary from wave shape to line shape.

5.6 Boundary refinement by snakes 56

(a) Source. (b) Target(Iteration=0). (c) Iteration=6.

(d) Iteration=12. (e) Iteration=18. (f) Iteration=24.

(g) Iteration=35. (h) Iteration=42. (i) Result(Iteration=50).

Figure 5.15: The evolution of the target boundary to the concave features. The color mapping

on the model in (a)(b)(i) means the variations of the feature value. Green color represents flat

region, red and blue color represent the convex and concave regions.

C H A P T E R 6

Result

In this section, we present the results of the skeleton correspondence, segmentation transfer and

the timing information, and then discuss the limitations of our system.

6.1 Skeleton correspondence

Figure 6.1 and 6.2 show the skeleton correspondence results for a variety of models including

four-legged animals, human, and some dragons. The dog (figure 6.1(a) and figure 6.2(a)) is

set as the source model, then perform the skeleton correspondence to other target models. The

matched node pairs are drawn in the same colors, and the unmatched nodes are not drawn.

Our results show good correspondences that most of the nodes belonged to the same semantic

parts (e.g. bodies, legs, heads, and ears) are matched correctly without symmetry switching

problem. Since the links are grouped with same semantic meanings, we can avoid the wrong

correspondences for some parts of a model that do not exist in another models, such as mapping

the tail of the dog to the leg of the horse in figure 6.1(b), or mapping the ears of the dog to the jaw

of the dinosaur in figure 6.2(e). Our method can handle the models which are largely different in

57

6.1 Skeleton correspondence 58

shapes (e.g. mapping the dog to the human, the armadillo, and the dinosaur in figure 6.1(c-e)),

poses (e.g. the cat in figure 6.1(g)), the local different connectivities for the junction nodes (e.g.

the junction nodes of the goat and deer in figure in 6.1(e-f)), and even can treat the skeletons

with large topological differences caused by additional junction nodes and small branches (e.g.

the triceratops, elephant, and asian dragon in figure 6.2(f-h)). Due to the topological differences

in the skeletons, our method performs the node clustering and link extension. So there may

be one-to-many or many-to-many correspondences between nodes and links. That are different

from the previous skeleton matching algorithms [HSKK01, BMSF06, ATCO+10] which just

establish one-to-one node correspondence.

6.1 Skeleton correspondence 59

(a) Dog. (b) Horse. (c) Camel.

(d) Wolf. (e) Goat. (f) Deer.

(g) Cat. (h) Pig.

Figure 6.1: Skeleton correspondence results (sec. 1).

6.1 Skeleton correspondence 60

(a) Dog. (b) Giraffe. (c) Human.

(d) Armadillo. (e) Dinosaur. (f) Triceratops.

(g) Elephant. (h) Asian dragon.

Figure 6.2: Skeleton correspondence results (sec. 2).

6.1 Skeleton correspondence 61

We also apply our skeleton correspondence method to the various categories of models in

the Princeton Segmentation Benchmark dataset [CGF09]. The results are shown as follows.

Note that our method can also handle the skeletons with loops, such as the chairs in figure 6.6.

(a) Source. (b) Target. (c) Source. (d) Target.

Figure 6.3: Skeleton correspondence results of Ant and Teddy models.

(a) Source. (b) Target. (c) Source. (d) Target.

Figure 6.4: Skeleton correspondence results of Bird and Fish models.

6.1 Skeleton correspondence 62

(a) Source. (b) Target 1. (c) Target 2.

Figure 6.5: Skeleton correspondence results of Armadillo models.

(a) Source. (b) Target 1. (c) Target 2.

Figure 6.6: Skeleton correspondence results of Chair models.

6.1 Skeleton correspondence 63

We compare our method with the method of elector voting [ATCO+10]. Since in the paper

they demonstrate results with the skeletons proposed in [ATC+08]. For fairness of the compar-

ison, we implement the method of elector voting, and use the same MSP skeletons as the input

of our and their algorithms.

The matching processes of both our method and the elector voting can be described as the

correspondence tree. The method of elector voting uses combinatorial search to establish all

possible corresponding node pairs. Our method is based on graph traversing, which generates

much less tree nodes of the correspondence tree. The meanings of the tree node are different:

The tree node of the elector voting represents a one-to-one match of a node pair between the

source and target skeletons. And the tree node of our method represents a partial correspon-

dence between the source and target skeletons(may contains several matches of the node pairs

and link pairs). The leaf node of our method represents a complete candidate of the skeleton

correspondence. And a candidate correspondence(denote it as a elector) of the elector voting is

comprised by all the node pair correspondences along the path from a leaf node to the root.

The pruning tests of our method and elector voting are also different: The method of elector

voting use four cascading pruning tests involving geometric features(T1,T2), topology(T3), and

spatial configuration(t4) to filter out the bad node correspondences. And the pruning tests of our

approach exploit the spatial configuration to exclude the bad link correspondences. Our method

does not require the check of topology since the graph traversing method essentially maintains

the topological consistent.

After constructing the correspondence tree, their method uses voting scheme to synthesis

the final correspondence. Since we have much less leaf nodes, so a traditional approach is used

which presents an objective function in order to select the final result(equation 4.7). Currently

we are unable to prove that our approach outperforms the voting scheme(on the other hand, the

voting scheme also hard to guarantee that it is better than the traditional approach). Table 6.1

and 6.1 list the statistics of the skeleton correspondences for our method and the elector voting.

Comparing to elector voting, our method has less requirements of parameter adjustment, the

numbers of the tree node, and computation times.

6.1 Skeleton correspondence 64

Model Wolf Goat Deer Giraffe Cat Pig Human Armadillo Triceratops Asian dragon

tn 0.02 0.02 0.02 0.02 0.02 0.06 0.03 0.03 0.03 0.08

tin 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Tree node 17 18 18 14 16 11 12 13 17 18

Time(sec.) 0.35 0.30 0.24 0.32 0.23 0.38 0.23 0.25 0.21 0.44

Table 6.1: The statistics of our skeleton correspondence results.

Model Wolf Goat Deer Giraffe Cat Pig Human Armadillo Triceratops Asian dragon

εC 0.8 0.8 0.8 0.8 1.0 1.2 1.0 1.0 1.0 0.8

εRD 1.0 1.0 1.0 1.0 1.2 2.5 1.6 1.5 10.0 0.7

Tree node 2880 2385 2937 2335 1817 8523 954 2874 3519 3495

Elector 103 633 324 279 676 196 229 372 902 1128

Time(sec.) 1.21 2.54 1.37 3.13 1.08 1.30 1.31 1.24 1.14 1.36

Table 6.2: The statistics of the results of elector voting.

In figure 6.7(a), we can see that the method of elector voting mismatches the nodes at the

head of the horse. The problem is that it applies multidimensional scaling (MDS) [EK03] to the

skeletons in order to straighten the skeleton links. However, the directions of the straightened

links are easily guided by the beginning directions of the original links. In some case the models

with difference poses will cause the directions of the links are not consistent after the MDS

process, and disturb their spatial pruning tests (T4). On the other hand, our method determines

the link directions in the local range of the original models, which is less sensitive to the poses.

Moreover, we use the volumetric characteristics which can distinguish these small links. The

ears and the jaw will be classified into difference groups. The information helps our method to

establish correct correspondence as shown in figure 6.7(b).

6.1 Skeleton correspondence 65

(a) Results of elector voting. (b) Our results.

Figure 6.7: The comparison with [ATCO+10] on Dog and Horse models.

In figure 6.8(a), the method of elector voting mismatches the ear of the pig to the upper

law of the dragon due to these nodes have similar features (e.g. centricity, path length and

radius). On the other hand, our method produces correct result as shown in figure 6.8(b). After

performing the link clustering, the two ears of the pig will form a group. And the upper and

lower laws of the dragon will be classified into difference groups. Since these groups only

have one link, we regards these links as ungrouped links and avoid mapping them to the links

which are grouped (the ears of the pig). Using the link clustering, we have more information to

establish correct correspondence.

(a) Results of elector voting. (b) Our results.

Figure 6.8: The comparison with [ATCO+10] on Pig and Dragon models.

6.2 Segmentation transfer 66

When the models have large structural differences, the mothod of elector voting may gen-

erate wrong correspondences such as in figure 6.9(a). It is a partial correspondence problem

which attempts to find the human shape from the centaur models. Compare with the figure

6.9(a), our method produces more semantically correct result as shown in figure 6.9(b).

(a) Results of elector voting. (b) Our results.

Figure 6.9: The comparison with [ATCO+10] on Human and Centaur models.

6.2 Segmentation transfer

Figure 6.10, 6.11 and 6.12 show our segmentation transfer results for a variety of models in-

cluding four-legged animals, human, and dragons. The source models in figure 6.10(a), 6.11(a)

and 6.12(a) are framed by a red box. All the target models have consistent segmentations with

source models such that the corresponding segment pairs are colored in the same colors. Figure

6.10 and 6.10 show the different types of segmentation for the four-legged animals. For the

legs of the source animal in figure 6.10(a), the boundaries cross the legs vertically and form the

short, straight shapes. In figure 6.11(b), the boundaries cross the legs in the tilted manners and

form the more longer shapes. We can see that all the target models reproduce these characteris-

tics since the fitting planes of the boundaries are transferred from the source models to the target

models (section 5.4). Especially notice the differences between the horse in figure 6.10(b) and

6.2 Segmentation transfer 67

6.11(c), the wolf in figure 6.10(c) and 6.11(d), the deer in figure 6.10(g) and 6.11(b). Once the

skeleton correspondences have been established, the segmentation transfer can be performed to

the models with large shape and geometry differences, as shown in figure 6.12. According to

the skeleton correspondences, the target model may not have some parts compared to the source

model. For example, the dragon in figure 6.12(e) does not have the ears, and the human in figure

6.12(c) does not have the tail and ears. In such case the boundaries of these parts of the source

model will not be transferred to the target model.

6.2 Segmentation transfer 68

(a) Goat. (b) Horse. (c) Wolf.

(d) Reindeer. (e) Camel. (f) Giraffe.

(g) Deer. (h) Pig.

Figure 6.10: Segmentation transfer results (sec. 1).

6.2 Segmentation transfer 69

(a) Pig. (b) Deer.

(c) Horse. (d) Wolf. (e) Goat.

Figure 6.11: Segmentation transfer results (sec. 2).

6.2 Segmentation transfer 70

(a) Dog. (b) Deer. (c) Human.

(d) Armadillo. (e) Dragon. (f) Triceratops.

(g) Elephant. (h) Asian dragon.

Figure 6.12: Segmentation transfer results (sec. 3).

6.2 Segmentation transfer 71

We also demonstrate the segmentation transfer results for the other categories of models in

the Princeton Segmentation Benchmark dataset. Note that the figure 6.16 illustrates a limitation

of our method. When the models have different topological shapes, our method may produce

inconsistent results. The seat and back of the chair in figure 6.16(c) can not be separated since

there is no boundary on some pillars.

(a) Source. (b) Target. (c) Source. (d) Target.

Figure 6.13: Segmentation transfer results of Ant and Teddy models.

(a) Source. (b) Target. (c) Source. (d) Target.

Figure 6.14: Segmentation transfer results of Bird and Fish models.

6.2 Segmentation transfer 72

(a) Source. (b) Target 1. (c) Target 2.

Figure 6.15: Segmentation transfer results results of Armadillo models.

(a) Source. (b) Target 1. (c) Target 2.

Figure 6.16: Segmentation transfer results of Chair models.

6.2 Segmentation transfer 73

We first compare our apporach with the method proposed by Golovinskiy and Funkhouser

[GF09]. Figure 6.17 shows the comparison. For the models which have large differences in

shapes or poses, the rigid alignment used in [GF09] is Insufficient to correctly build the face

correspondences between the models, and then disturbs the segmentation results. Our method

achieves better results since the skeleton matching is more robust to construct the part-based

correspondences between the models which have large differences.

(a) Results of [GF09]. (b) Our results.

Figure 6.17: The comparison with [GF09] on Giraffe and Horse models

We also compare our apporach with the method proposed Kalogerakis et al. [KHS10] which

simultaneously produces consistent segmentation and labeling on a set of models. Our method

is more capable of controlling the number and location of the boundaries since our method is

boundary based. We map the boundaries to the correspondence parts, and the segments are

deduced from them. Compare the differences to rightmost airplanes in figure 6.18 and the gi-

raffes in figure 6.19. However, for the models which have different shapes, some additional part

will have no boundary and may cause inconsistent results, as shown in figure 6.20. Besides,

our method only requires one source model, merely takes few seconds to complete segmenta-

tion transfer to a target model (see section 6.3). In contrast, [KHS10] needs multiple models

which have attached labels, and costs several hours for training. But due to the constraint of the

6.2 Segmentation transfer 74

skeleton construction, our method is suitable to produce part-type segmentation on the articu-

lated models, and is restricted on some man-mode models such as the cup, table and mech of

the Segmentation Benchmark [CGF09]. On the other hand, [KHS10] can well handle all cate-

gories of the models of the Segmentation Benchmark with any type of segmentation including

part-type and patch-type.

(a) Results of [KHS10].

(b) Our results.

Figure 6.18: The comparison with [KHS10] on Airplane models

6.2 Segmentation transfer 75

(a) Results of [KHS10].

(b) Our results.

Figure 6.19: The comparison with [KHS10] on Four-legged Animals models

6.2 Segmentation transfer 76

(a) Results of [KHS10]. (b) Our results.

Figure 6.20: The comparison with [KHS10] on Chair models

We employ the evaluation metrics proposed in [CGF09] to compare our method with other

seven recent automatic segmentation algorithms. Where cut discrepancy measures the position

deviation of the boundaries, and hamming distance, randindex, consistency error measure the

dissimilarity of the segments. We use ground truth results provided in Segmentation Bench-

mark [CGF09] as our input source segmentations and apply our method to the same category

of models. The categories of the testing models include human, ant, chair, teddy, bird, fish,

armadillo and four-legged animals. To have a fair comparison, for each automatic segmentation

algorithm we manually reserve the results which are most similar to our input source segmen-

tations (consider the number of segments and the similarity of the segmentation style), then run

the benchmark evaluation. Since our method performs the parameterization and snake refine-

ment, the boundary of our results may not lie on the edges of the original mesh. To satisfy the

input of the benchmark evaluation, we clamp each point of the boundary to the closest vertex

of the original mesh. Figure 6.21 shows the evaluation results. Our segmentation results are

closest to ground truth. It implies that if a user provides with a good segmentation reference,

our algorithm could generate higher quality results than other algorithms do.

6.2 Segmentation transfer 77

(a) Cut Discrepancy. (b) Hamming Distance.

(c) RandIndex. (d) Consistency Error.

Figure 6.21: Comparison with other segmentation algorithms using four evaluation metrics.

6.3 Timing information 78

6.3 Timing information

Table 6.3, 6.3 and 6.3 list the computation times of our segmentation transfer results presented

in figure 6.10, 6.12, 6.13 - 6.16. All the results were performed on Intel Core 2 Duo CPU

E8400 3.0GHz with 4GB memory, using a single thread implementation. The source models

are marked by a symbol (s) behind their names, and the symbol (ti) indicates that it is the i-th

target models of a specific category of models.

For the skeleton correspondence, since our method is based on graph-traversing, the search-

ing space is smaller than the previous methods which apply combinatorial search [ZSCO+08,

ATCO+10]. On average the computation times took around 0.3s. A model that has higher res-

olution will form a more detailed skeleton, which has more internal nodes on each links. So it

also leads to the increase in the computation time.

For the segmentation transfer, the computation times depend on the mesh resolutions and

the number of boundary in the source segmentation. For the sake of clarity, we list the total

computation time, the number of boundary to be transferred in the target model (which may

be different to the source model since the target model lack some parts), and the average com-

putation time which are the total time divided by the number of boundary. On average it took

around 1.5s for a model with ten thousand faces.

6.3 Timing information 79

Model Num. of Skeleton Segmentation Num. of Avg. segmentation

faces corres. time(sec.) trans. time(sec.) boundary trans. time(sec.)

Goat(s) 20868 - - 9 -

Horse 16152 0.21 1.09 8 0.14

Wolf 9420 0.22 1.25 9 0.14

Reindeer 7818 0.19 0.86 9 0.09

Camel 19510 0.27 1.29 9 0.14

Giraffe 18474 0.29 1.21 9 0.13

Deer 7402 0.21 0.87 9 0.09

Pig 26658 0.28 2.02 9 0.25

Table 6.3: The computation time of the segmentation results in figure 6.10.

Model Num. of Skeleton Segmentation Num. of Avg. boundary

faces corres. time(sec.) trans. time(sec.) boundary trans. time(sec.)

Dog(source) 18976 - - 15 -

Deer 7402 0.20 1.31 15 0.09

Human 11258 0.22 1.46 11 0.13

Armadillo 20000 0.24 2.15 15 0.14

Dragon 16000 0.19 1.51 13 0.12

Triceratops 15764 0.21 1.48 15 0.10

Elephant 30000 0.30 3.75 15 0.25

Asian dragon 28198 0.41 3.18 15 0.21

Armadillo(source) 50382 - - 17 -

Armadillo(target 1) 50212 0.51 6.21 17 0.37

Armadillo(targte 2) 49226 0.60 6.08 17 0.35

Table 6.4: The computation time of the segmentation results in figure 6.12.

6.4 Discussions and limitations 80

Model Num. of Skeleton Segmentation Num. of Avg. segmentation

faces corres. time(sec.) trans. time(sec.) boundary trans. time(sec.)

Ant(s) 13696 - - 10 -

Ant(t) 16124 0.27 1.41 10 0.14

Teddy(s) 27730 - - 7 -

Teddy(t) 25082 0.50 1.83 7 0.26

Bird(s) 15694 - - 4 -

Bird(t) 4990 0.14 0.71 4 0.18

Armadillo(s) 50382 - - 17 -

Armadillo(t1) 50212 0.51 6.21 17 0.37

Armadillo(t2) 49226 0.60 6.08 17 0.35

Chair(s) 16998 - - 8 -

Chair(t1) 17306 0.29 1.25 8 0.15

Chair(t2) 18530 0.38 1.23 8 0.15

Table 6.5: The computation time of the segmentation results in figure 6.13 - 6.16.

6.4 Discussions and limitations

For the skeleton correspondence, our link clustering process works well on grouping the pairs

of parts for the individual skeleton. However, lacking the semantic knowledge easily causes

confusions for the cases when there are multiple link clusters attached to a node pair, or the

parts that do not exist on the other models(e.g., a wolf only has ears and a cow only has horns,

then the ears will map to the horns). In addition, some objects which have flat shape around the

junction nodes(the nodes marked by blue circles in figure 6.22), which are difficulty identified

the front and back sides by using merely their skeletons and easily cause the wrong flipping

correspondences. In some special case such as the hand in figure 6.22, we can utilize the thumb

to judge the orientation of the remaining four figures, and for human we can decide the front

6.4 Discussions and limitations 81

side by performing the face detection. But it is still hard to find a general solution to solve the

problem for various types of models.

(a) (b)

Figure 6.22: The models which are hard identified the front and back sides by using only

skeletons.

For the segmentation transfer, since MSP volume information is not adequate for detecting

the surface details such as concavity or local minimum of curvature, and our methods restricts

that boundaries must cross to its corresponding links, currently we can only deal with part-type

segmentation. Besides, we ask all the boundaries of the source model form a single loop. Con-

sider the case in figure 6.24, the vertex marked by a red circle is passed by multiple boundaries.

In our current implementation, we cannot divide them into several acyclic boundaries and trans-

fer them. In addition, we also cannot deal with the boundaries which are large-scale and cross

regions belonging to multiple links. Our method rely the local directions of the links to transfer

the fitting planes of the boundaries. The approach may not produce good boundaries for the

target models which have largely differences in shapes or local skeletal noises(see the wings of

the airplanes in figure 6.18). Logically, the effect of constructing the cutting regions is affected

by the resolutions of the meshes since the Dijkstra algorithm is used to expand the regions. But

6.4 Discussions and limitations 82

we found that it works well for most of our experiments. Figure 6.23 shows an example of

the segmentation transfer results for the same model with different resolutions. Note that the

consistencies of the boundarys locations between these results.

(a) 2k (b) 4k

(c) 8k (d) 16k

Figure 6.23: The consistent segmentation transfer results for the same model with different

resolutions.

6.4 Discussions and limitations 83

Figure 6.24: A vertex is passed by multiple boundaries.

Furthermore, for some man-made models (e.g., cups, sphere ball, or engineering models)

we cannot construct the satisfactory MSP skeletons, and thus affect the processes of skeleton

correspondence and segmentation transfer.

C H A P T E R 7

Conclusions

In this section, we summarize our segmentation transfer algorithm, and propose several future

works.

7.1 Summary

We have presented a novel algorithm that maps a segmentation of the source mesh to the tar-

get mesh such that two segmentations are consistent. For the shape correspondence, we use

MSP skeleton as shape descriptor of the mesh, and propose a fast skeleton matching scheme

to constructs the correspondence of two skeletons. By employing the clustering the similar

links and spatial orientations, our scheme is more robust than previous graph-matching based

methods. For the segmentation transfer, we apply the MSP gradient analysis along the links

to determine the locations of the boundaries. Then construct the cutting regions and map the

boundaries through parameterization. Finally the boundaries are refined according to the sim-

ilarity of shape and surface feature. Our algorithm is fast and effectively produces consistent

segmentation results to a variety of objects which have similar semantic structures and different

84

7.2 Future works 85

to shape, pose, and geometric detail.

7.2 Future works

To further improve our skeleton correspondence algorithm, we could add other global proper-

ties, such as the symmetry, which help to classify the links in more high-level ways (e.g., for the

symmetry, we can classify the links into three sets: the first is located at the symmetry line, the

second is on the one side and the third is on the other side). We also need some more accurate

shape descriptors, or semantic labels to describe the components of the objects. So the links

associating with these components could be matched more meaningfully and correctly.

For the segmentation transfer, currently we can only deal with part-type segmentation, since

the skeleton correspondence can only describes the parts correspondence between the objects.

In the future we will extend our work to find the complete surface mapping of two objects by

using the vertices correspondence information of MSP skeleton. At this time boundaries will

map more easily and we can handle any kind of segmentation style.

Bibliography

[ACSD+03] P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun. Anisotropic

polygonal remeshing. ACM Transactions on Graphics, 22(3):485–493, 2003.

[AFS06] M. Attene, B. Falcidieno, and M. Spagnuolo. Hierarchical mesh segmentation

based on fitting primitives. The Visual Computer, 22(3):181–193, 2006.

[AKM+06] M. Attene, S. Katz, M. Mortara, G. Patane, M. Spagnuolo, and A. Tal. Mesh

segmentation - a comparative study. IEEE International Conference on Shape

Modeling and Applications, page 7, 2006.

[APP+07] A. Agathos, I. Pratikakis, S. Perantonis, N. Sapidis, and P. Azariadis. 3D mesh

segmentation methodologies for cad applications. Computer-Aided Design and

Applications, 4(6):827–841, 2007.

[ATC+08] O. K.-C. Au, C.-L. Tai, H.-K. Chu, D. Cohen-Or, and T.-Y. Lee. Skeleton ex-

traction by mesh contraction. ACM Transactions on Graphics, 27(3), 2008.

[ATCO+10] O. K.-C. Au, C.-L. Tai, D. Cohen-Or, Y. Zheng, and H. Fu. Electors voting for

fast automatic shape correspondence. Computer Graphics Forum, 29(2):645–

654, 2010.

[BH03] M. Brand and K. Huang. A unifying theorem for spectral embedding and clus-

tering. International Workshop On Artificial Intelligence and Statistics, 2003.

86

Bibliography 87

[BK04] Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-

flow algorithms for energy minimization in vision. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 26(9):1124–1137, 2004.

[BM92] P.J. Besl and N.D. McKay. A method for registration of 3-D shapes. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 14(2):239–256, 1992.

[BMSF06] S. Biasotti, S. Marini, M. Spagnuolo, and B. Falcidieno. Sub-part corre-

spondence by structural descriptors of 3D shapes. Computer-Aided Design,

38(9):1002–1019, 2006.

[BWK05] S. Bischoff, T. Wey, and L. Kobbelt. Snakes on triangle meshes. Bildverar-

beitung fur die Medizin, pages 208–212, 2005.

[CGF09] X. Chen, A. Golovinskiy, and T. Funkhouser. A benchmark for 3D mesh seg-

mentation. ACM Transactions on Graphics, 28(3):1–12, 2009.

[EK03] A. Elad and R. Kimmel. On bending invariant signatures for surfaces. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 25:1285–1295,

2003.

[FBCM04] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the

nystrom method. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, 26:214–225, 2004.

[GF08] A. Golovinskiy and T. Funkhouser. Randomized cuts for 3D mesh analysis.

ACM Transactions on Graphics, 27(5):145, 2008.

[GF09] A. Golovinskiy and T. Funkhouser. Consistent segmentation of 3D models.

Computers and Graphics, 33(3):262–269, 2009.

[GG04] N. Gelfand and L. J. Guibas. Shape segmentation using local slippage analysis.

Symposium on Geometry processing, pages 214–223, 2004.

Bibliography 88

[HJWC] T. C. Ho, H. X. Ji, S. K. Wong, and J. H. Chuang. Mesh skeletonization using

minimum slice perimeter function. Computer Science Technical Report CS-TR-

2010-0001.

[HR84] D. D. Hoffman and W. A. Richards. Parts of recognition. Cognition, 18:65–96,

1984.

[HS97] D. D. Hoffman and M. Singh. Salience of visual parts. Cognition, 63:29–78,

1997.

[HSKK01] M. Hilaga, Y. Shinagawa, T. Kohmura, and T. L. Kunii. Topology matching for

fully automatic similarity estimation of 3D shapes. In SIGGRAPH 2001, pages

203–212, 2001.

[JK04] M. Jung and H. Kim. Snaking across 3D meshes. In 12th Pacific Graphics,

pages 87–93, 2004.

[KHS10] E. Kalogerakis, A. Hertzmann, and K. Singh. Learning 3D mesh segmentation

and labeling. ACM Transactions on Graphics, 29(4):1–12, 2010.

[KJS07] V. Kreavoy, D. Julius, and A. Sheffer. Model composition from interchangeable

components. In 15th Pacific Graphics, pages 129–138, 2007.

[KLT05] S. Katz, G. Leifman, and A. Tal. Mesh segmentation using feature point and

core extraction. The Visual Computer, 21(8-10):649–658, 2005.

[KT03] S. Katz and A. Tal. Hierarchical mesh decomposition using fuzzy clustering and

cuts. ACM Transactions on Graphics, 22(3):954–961, 2003.

[KWT88] M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active contour models. In-

ternational Journal of Computer Vision, 1(4):321–331, 1988.

[LF09] Y. Lipman and T. Funkhouser. Möbius voting for surface correspondence. ACM

Transactions on Graphics, 28(3):1–12, 2009.

Bibliography 89

[LHMR08] Y.-K. Lai, S.-M. Hu, R. R. Martin, and P. L. Rosin. Fast mesh segmentation

using random walks. ACM symposium on Solid and Physical Modeling, pages

183–191, 2008.

[LL02] Y. Lee and S. Lee. Geometric snakes for triangular meshes. Computer Graphics

Forum, 21(3), 2002.

[LLL07] H.-Y. S. Lin, H.-Y. M. Liao, and J.-C. Lin. Visual salience-guided mesh decom-

position. IEEE Transactions on Multimedia, 9(1), 2007.

[Llo82] S. P. Lloyd. Least squares quantization in pcm. IEEE Transactions on Informa-

tion Theory, 28:129–137, 1982.

[LLS+04] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel. Intelligent mesh

scissoring using 3D snakes. In 12th Pacific Graphics, pages 279–287, 2004.

[LLS+05] Y. Lee, S. Lee, A. Shamir, D. Cohen-Or, and H.-P. Seidel. Mesh scissoring with

minima rule and part salience. Computer Aided Geometric Design, 22(5):444–

465, 2005.

[LMLR06] S. Liu, R.R. Martin, F.C. Langbein, and P.L. Rosin. Segmenting reliefs on tri-

angle meshes. ACM symposium on Solid and Physical Modeling, pages 7–16,

2006.

[LWTH01] X. Li, T. W. Woon, T. S. Tan, and Z. Huang. Decomposing polygon meshes for

interactive applications. Symposium on Interactive 3D Graphics, pages 35–42,

2001.

[LZ04] R. Liu and H. Zhang. Segmentation of 3D meshes through spectral clustering.

In 12th Pacific Graphics, pages 298–305, 2004.

[LZ07] R. Liu and H. Zhang. Mesh segmentation via spectral embedding and contour

analysis. Computer Graphics Forum, 26(3):385–394, 2007.

Bibliography 90

[MHTG05] M. Müller, B. Heidelberger, M. Teschner, and M. Gross. Meshless deforma-

tions based on shape matching. ACM Transactions on Graphics, 24(3):471–478,

2005.

[MPS+04] M. Mortara, G. Patane, M. Spagnuolo, B. Falcidieno, and J. Rossignac. Plumber:

a method for a multi-scale decomposition of 3D shapes into tubular primitives

and bodies. ACM symposium on Solid modeling and applications, pages 339–

344, 2004.

[PKA03] D. Page, A. Koschan, and M. Abidi. Perception-based 3D triangle mesh segmen-

tation using fast marching watersheds. Computer Vision and Pattern Recogni-

tion, pages 27–32, 2003.

[RT07] D. Reniers and A. Telea. Skeleton-based hierarchical shape segmentation. IEEE

International Conference on Shape Modeling and Applications, pages 179–188,

2007.

[RT08] D. Reniers and A. Telea. Patch-type segmentation of voxel shapes using simpli-

fied surface skeletons. Computer Graphics Forum, 27(7):1837–1844, 2008.

[Sha08] A. Shamir. A survey on mesh segmentation techniques. Computer Graphics

Forum, 27(6):1539–1556, 2008.

[SSCO08] L. Shapira, A. Shamir, and D. Cohen-Or. Consistent mesh partitioning and skele-

tonisation using the shape diameter function. The Visual Computer, 24(4):249–

259, 2008.

[SSGD03] H. Sundar, D. Silver, N. Gagvani, and S. Dickinson. Skeleton based shape

matching and retrieval. In Shape Modeling International, page 130, 2003.

[STK02] S. Shlafman, A. Tal, and S. Katz. Metamorphosis of polyhedral surfaces using

decomposition. Computer Graphics Forum, 21(3):219–228, 2002.

Bibliography 91

[TS04] T. Tung and F. Schmitt. Augmented reeb graphs for content-based retrieval of

3D mesh models. In Shape Modeling International, pages 157–166, 2004.

[TVD09] J. Tierny, J.-P. Vandeborre, and M. Daoudi. Partial 3D shape retrieval by reeb

pattern unfolding. Computer Graphics Forum, 28(1), March 2009.

[vKZHCO10] O. van Kaick, H. Zhang, G. Hamarneh, and D. Cohen-Or. A survey on shape

correspondence. Eurographics State-of-the-art Report, 2010.

[WZ10] Y. Wang and J. Zheng. Tubular triangular mesh parameterization and applica-

tions. Computer Animation and Virtual Worlds, 21(2):91–102, 2010.

[XWLB09] Y. Xu, B. Wang, W. Liu, and X. Bai. Skeleton graph matching based on critical

points using path similarity. In Asian Conference on Computer Vision(3), pages

456–465, 2009.

[ZL05] H. Zhang and R. Liu. Mesh segmentation via recursive and visually salient

spectral cuts. In Vision, Modeling, and Visualization, pages 429–436, 2005.

[ZSCO+08] H. Zhang, A. Sheffer, D. Cohen-Or, Q. Zhou, O. van Kaick, and A. Tagliasacchi.

Deformation-driven shape correspondence. Symposium on Geometry Process-

ing, pages 1431–1439, 2008.

	論文封面
	論文內頁
	論文中文摘要
	thesis_ja

