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Institute of Computer Science and Engineering
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ABSTRACT

For outdoor localization; GPS already provides a satisfactory solution.
For indoor localization, however, a globally “usable solution is still
missing. One promising-direction is the-pattern-matching solution that
relies on RF signals from existing network  infrastructures. One major
drawback of such systems is the signal-drifting problem, which is an
inherent physical constraint. Also, most works only consider single-floor
buildings. However, buildings normally have multiple floors (i.e., of 2.5
dimensions). This paper proposes a SEPF (sensor-enhanced particle
filter)} model for RF-based pattern-matching localization in a 2.5-D
building. IMU sensors are adopted to capture human mobility, while
particles reflect the belief on where the user is located. Our framework
addresses the following important issues. First, our 2.5-D building model
considers multiple floors connected by stairs and elevators. Second, we
show how particles should be sampled/re-sampled in a 2.5-D building to
reflect change of brief. Third, IMU sensor inputs are exploited to conquer
the signal-drifting problem and to predict user's behaviors (walking on
grounds/stairs and taking elevators). A prototype has been developed and
intensively tested to verify the model.

Keywords: IMU (inertial measurement unit), location tracking, particle
filter, pervasive computing, sensor network.
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Chapter 1

| ntroduction

Location-based services LBSave been regarded as a killer application in mo-
bile networks. A key factor to its-success is the location estimation accuracy.
For outdoor localization,-GPS already provides a satisfactory solution. For in-
door localization, however;a globally acceptable solution is still missing. Many
indoor localization technologies have been proposed, such as infrared-based [4],
ultrasonic-based [10], and RF-based systems [2]. Generally, localization mod-
els can be classified as AoA-based [8], ToA-based [1], TDoA-based [11], and
fingerprint-based [2][7][9].

In this work, we are interested in thgattern-matchingocalization method,
such as RADAR [2]. This method does not rely on calculating signal fading in
an environment. Instead, it relies ortraining phaseto collect theradio signal

strength (RSSpatterns at a set of training locations from pre-deployed beacons
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into a database (calleddio map. These beacons can be existing infrastructures,
such as IEEE 802.11 access points, GSM base stations, or a sensor network. Then,
during thepositioning phasgan object to be localized can collect its current RSS
pattern and compare it against the radio map to predict its location.

The pattern-matching solutions have three main drawbacks. First, its train-
ing process is very labor-intensive, especially in a large-scale field. Second, it
suffers from the signal-drifting problem; the radio maps measured earlier may
significantly deviate from the current ones. Third, most works are limited to 2-D
sensing fields (e.g., a single-floor building). However, buildings normally have
multiple floors. The first issue has been studied.in [13], the second in [17][16],
but the last one has beenrarely addressed.

This paper proposesSEPF (sensor-enhanced particle filtenpdel for RF-
based pattern-matching localization in'a2.5-D building. IMU sensors are adopted
to capture human mobility patterns, while particles help reflect our belief on where
the user might be located. Our framework addresses the following important is-
sues. First, our 2.5-D building model considers multiple floors connected by stairs
and elevators. Second, we show how particles should be sampled/re-sampled in
a 2.5-D building based on sensor inputs to reflect change of belief. Third, IMU
sensor inputs are exploited conquer the signal-drifting problem and to predict hu-
man’s main indoor behaviors (such as halting, walking on grounds, going up/down
stairs, and taking elevators). A prototype has been developed and intensively
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tested to verify our model.

Particle filters are sample-based implementation of Bayesian filters using a set
of samples, i.e., particles, to reflect the probability densities of our belief [6]. In
the scope of indoor localization, it estimates locations by recursively calculating
current probability distributions based on measurements of current observation.
The key components of Bayesian filter are observation, prediction, and history
models. The observations could be from sensors or mathematical models. The-
oretically, it can be applied to most positioning algorithms as long as we have
some sort of prediction on user mobility. For example, a tracking system can
exploit mobility history to conjecture user’s trajectory [3]. For pattern-matching
solutions [14], RSSI is the only observation used to represent its belief about a
dynamic system at timeas a probability distribution over the state space. The
parameters and noise components of particle filters can be estimated from training
data or tuned manually.

Hence, we propose a SEPF architecture with particle filter to obtain the ac-
tual mobility model. And then, using mobility model to predict the propagation
of particles. Traditionally, the real time mobility model can not directly get from
users, but we presently utilize the sensor to achieve it. According to our study,
the observation model also conforms to the model of the fingerprint base posi-
tioning algorithm [5]. The philosophy of particle filter conforms to the tracking
positioning algorithm by consulting history. And, the real time mobility model is

3



appropriate for adding the prediction model of it. Based on the mobility model, we
can get better in positioning, because the particles are distributed around the true
user‘s positioning location [15]. Therefore, we propose a positioning algorithm
based on patrticle filter involving changeable mobility model.

The rest of this paper is organized as follows. Chapter 2 gives some prelimi-
naries. Chapter 3 describes our SEPF architecture. Performance figures are pre-
sented in Chapter 4. Chapter 5 introduces our prototyping details and experiment

results. Finally, Chapter 6 concludes this paper.



Chapter 2

Preliminaries

2.1 Bayesand Particle Filters

Bayes filters probabilistically estimate a dynamic system’s state from observa-
tions that could be disturbed by noise. In pattern-matching localization, the state
could be a person’s location and the observations are RSS patterns. Bayes filters
represent the state at timdy a random variables;. It establishes a probability
distribution overz,, called beliefBel(z;). The goal is to sequentially estimate
such beliefs over the state and time spaces. Specifically, let the sequence of time-
indexed observations bg, zs, .. ., z;. Bel(z,) is defined by the posterior density

of statex; conditioned on all previous observations:

Bel(x;) = p(xi|z1, 22, ..., 2t). (2.2)



The belief answers the question: “What is the probability that the person is at loca-
tion z, if the sequence of observations:is z», ..., z;?” In general, the complexity
to computeBel(z;) grows exponentially over time. To make the computation
tractable, Bayes filters assume that the dynamic system is Markovian in that the
current state; contains all relevant information. So states befgrg provide no
additional information. In our localization example, this means that we only need
to work on the relation betweer_; andz;.

To realize different density functions of, particle filters represent beliefs by

a set of samples, qrarticles
Bel(z,) = Sf={< s w > =1, ... n}, (2.2)

where, eachrﬁn is a state anduﬁi) is its weight. Thesaut(i)s sum up to one.

Particle filters realize Bayes filters by a.sequence-of sampling, weighting, and
resampling procedures. Its kKey advantage is the capability to represent arbitrary
density functions, even in non-Gaussian, non-linear dynamic systems. It allows

us to focus on resources (particles) in state spaces with high probabilities.

2.2 |IMU Sensors

We are interested in using IMU (inertial measurement unit) sensors to capture
typical human mobility patterns inside a building. We consider four main mobility
patterns: halting, walking on grounds, going up/down stairs, and taking elevators.

6



Figure 2.1: mounting.sensor device on waist or hanging on chest.

Mobility patterns will be tracked by a triaxial accelerometer (g-sensor), which can
report 3D accelerations, and an electronic compass, which can report the angle
relative to north.

The g-sensor combines three angular rate gyros with three orthogonal DC ac-
celerometers and three orthogonal magnetometers to output its orientation in dy-
namic and static environments. The outputs of them are rate of rotation, quantity
of gravity and quantity of gauss. The size of it is 64 millimeter by 90 millimeter
and 25 millimeter. And, the gravity is 75 grams with enclosure. Based on the
official specifications, the accuracy of the orientation is about 0.5 degree for static

test conditions and 2.0 degree for dynamic test conditions.
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Figure 2.1shows two ways to mount sensors devices on a human body in our
experiment. Figure 2.2shows the outputs of a g-sensor when a person transits form
a moving state to a halting state. Figure 2.3shows the outputs of a g-sensor when a
person walks on grounds. Figure 2.4shows the outputs from an electronic compass
when a person walks in a circle of radius 2m. Figure 2.5shows the outputs of a
g-sensor when a person goes up/down stairs. Figure 2.6shows the outputs of a
g-sensor when a person goes up/down an elevator.

As can be seen, these patterns all have their special features that can be easily

recognized.

2.3 2.5-Dimensional Building M odéel

We now develop a graph-like model to represent.a 2.5-D building. The repre-
sentation facilitates us to describe.how particles flow around a building in the
yet-to-be-presented indoor localization scheme. We are given the floor plans of
a 2.5-D building. Each floor may have rooms, partitions, hallways, etc. Floor is
connected by stairs and elevators. The graph is denotéd-byV, E). A vertex

in V' could be one partition unit on a floor, a stairway, or an elevator. An edge
in £/ connects two vertices ifr by specifying the passable part between them.
Figure 2.7(a) shows a floor plan of the Engineering Building Ill at NCTU, where

our experiments are conducted.
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Figure 2.7: 2.5-D Building Model.

Given a building’s floor plan, we first deal with each floor by dividing it into
multiple partition units Each partition unit should be a convex polygon. Note
that a convex polygon has the property that the line segment connecting any two
points inside must fall inside the polygon itself; from particle filters’ prospect, this
means that it allows a particle to move in-a straight line between these two points.
Figure 2.7(b) shows an example. Between two partition units, theneamsable
andimpassablgarts. Each passable part is represented by an edgeédgether
with a descriptor to specify the line 'segment of the two corresponding polygons
constituting the passable part. From particle filters’ prospect, these passable parts
are pathways for particles to flow around. Excluding passable parts, the rests are
impassable parts, which particles are not allowed to cross over. Figure 2.8(a)
shows how we construct partition units. Note that the labels on edges are their
descriptors (for passable parts).

Each stairway is represented by one verte¥irand it has a descriptor to

11
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specify the number of stairs inside. A stairway connects two floors and we use
two edges inZ' to represent such relationships. Each edge connects the stairway
to a partition unit of a floor and it two descriptors: (i) the stair that the partition
unit is connected and (ii) the passable part in the partition unit. Figure 2.8(b)
shows how we abstract such concepts.

Each elevator is also represented by a vertex and it has two descriptors: (i) the
range of floors that it moves to and (ii) the polygon of its ground part. Note that
for (i), it is not necessary for the elevator to be stop at each floor within this range.
we use the same number of edges equal to the number of floors that the elevator
stops to denote this. Each edge connects the elevator to a partition unit of a floor
and it also has a descriptor to specify the passable parts of the partition unit and

its own ground part. Figure 2.8(c) shows an example.
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Chapter 3

Sensor-Enhanced Particle Filter for

2.5D Location Tracking

We propose a SEPF model for location tracking in a 2.5D building. We assume
that the building has been deployed with some WiFi APs and a pattern-matching
localization system is available. Figure 3.1 shows our SEPF work flow. It takes
IMU sensor measurements, RSS patterns, and floor planes@baenvironment

as inputs to predict users’ locations. Each user has to carry a WiFi interface, tri-
axial accelerometer, and an electronic compass. The wireless interface can collect
the RSSIs of its surrounding wireless beacons and the IMU sensors measurements
and report to the PF to compute the user’s location. Users can only move on floor
surfaces or go up/down stairs/elevators. The 2.5D building model defined in Sec.
2.3 is used.
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Figure 3.1: The SEPF architecture.

Like typical PFs, our‘architecture also. hasrticle-sampling particle-
weighting andparticle-resamplingnodules. In addition, we add two new mod-
ules: behavior-predicting and particle-filtering modules. The behavior-predicting
module collects the IMU sensor outputs to predict the user’s current mobility pat-
tern. The prediction, together with the floor planes, helps the particle-sampling
module to propagate particles. Then those particles with low credibility will be
filtered out by the particle-filtering module according to the floor planes. Using
the RSSIs, the particle-weighting module will assign weights to particles. It also
produces the estimated location of the user. Finally, the particle-resampling mod-

ule re-generates particles for the next round.
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3.1 Behavior-Predicting Module

Based on floor plans and IMU sensor measurements, the behavior-predicting mod-
ule estimates the user’'s current motions. This improves over traditional PFs,
which usually adopt a random model in sampling particles. This module gen-
erates three outputsd (t), S(t), and E(t). H(t) = {(t;,d;),i = 1,...,00} IS

a series of horizontal motion vectors,is the timestamp and; is the displace-
ment vector on the xy-plane measured between time inté¢tyal, ¢;]. S(t) =
{(t;,s:),i = 1,...,00} is a series of stair motions, whetgis a timestamp and

s; is the estimated number of stairs that the user has taken during time interval
(ti—1,t;] (we usel to mean “no stair. motion”, and a negative/positive integer to
means how many stairs down/uphi(t) = {(ti;e:),7 = 1,...,00} is a series of
elevator motions, wherg is-a timestamp ané;.is the estimated number of floors
that the user has taken during time inter@ialy; ¢} (we use0 to mean “no ele-
vator motion”, and a negative/positive integer to mean how much floor down/up).

Below, we discuss how these series are computed in our model.

3.1.1 Horizontal Motion Detection

The horizontal motion detection module is pedometer-based. A pedestrian’s hor-
izontal motion is composed of a seriesstéppingevents. In other words, the

displacement vectat; is corresponding to a stride. The readings of the accelerom-
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eter is used to detect stepping, estimate each stride length, and also decide walking
directions by the helping of the magnetometer.

Stepping Detection: The readings of the accelerometer are decomposed into
two vertical components and a horizontal components. We observed that each step
incurs a pulse waveform in the vertical components. A pattern matching technique
is used to detect pulse for counting steps. To improve the accuracy, the amplitude
and duration of each pulse and the magnitude of horizontal components are used
to filter out false detections. In average, the pedometer has an accuracy around
96%.

Stride Length: After a stride is detected, two featurdsand X are extracted
from the pulse wherel is the sum-of the: magnitude of the left slope and right
slope andX is the norm of the first component of the discrete Fourier transform
of the pulse. We use quadratic regression to estimate the stride length. In other

words, the stride length is estimated by the following formula

aX? + XA+ cA? +dX +eA+ f. (3.1)

The constants, b, ¢, d, e, f are obtained by the least square method.

Walking Direction: The horizontal components tend to parallel with the
walking direction. Therefore, we classify horizontal components into two groups,
forward vectors and backward vectors. Forward vectors are roughly in the walking

direction and backward vectors are roughly in the opposite directly. To determine

18



the walking direction, we sum forward vectors with the inverse of backward vec-
tors. The sum vector is used to represent the walking direction. Then, to with the
readings of the magnetometer, we can know the absolute walking direction (in the
earth frame).

Figure 3.2 shows an example, where an user moves over around the indoor
environment. The user starts at first floor and moves up to 3th floor by elevator.
Then, user goes down to the first floor and returns to 3th floor by stair. In the
end, user goes back to the first floor. Our goal is to generate the oHtut
where eachi; is a displacement vector that user has moved ftomto ¢;. We
assume; is a periodic event. Betwedn ; to t;, the stride events may occyr
times, name adT-;- . We detect each-stride event by capturing the sine wave from
acceleration and estimate stride length by integrate each sine W&Vé. abhe
directiond is represented by the angle measured in counterclockwise to the North
Pole. Ifcfj andd respectively denote the stride length and direction of a step, the

displacement vector can be obtained by the formula

—_—  — —
di=dig +dig+--+dij. (3.2)

19



3.1.2 Stair Motion Detection

The stair motion detection module is also pedometer-based. In our system, the
typical value of the stair coury; is £1. S(t) = {(t;,e;)} is a discrete-time
sequence to represent whether the user has walked up/down stairs and, if so, how
many stairs the user has gone. Since the event of one step up/down a stair can
only be determined after the completion of the step, the reporting seqyétice
is alwaysposterior.

Specifically, we will periodically look at the sensor measurements and attach
a report toS(t) with a period ofp. (The recommendegis around 274 seconds.)
At any pointt’ when an observation is-made; we will merge the output from our
step detector and the corresponding rake value.- The rake value can be retrieved
from the z-axis output of the g-sensor. A report(&f k) will be attached to
the sequencé&(t), wherek is.the.number of stair-up/stair-down events that are
detected during the intervel — p, ¢'] (note that should include the stair-up/stair-

down event, if any, that was not reported at tithe p).

3.1.3 Elevator Motion Detection

Depending on the measurements from the g-sensor, we need geRérate
{(t;,e;)}. E(t) is a discrete-time sequence to represent whether the user has taken

an elevator and, if so, how many floors he/she has gone up/down. Since the num-

20



ber of floors that a user has moved can only be determined after the completion
of signal changes has been observed and an elevator event normally takes 3 to
20 seconds, the reporting sequetigfg) is sometimes periodical and sometimes
aperiodical. For this reason, the report of an elevator event is alpastsrior.
Specifically, we will periodically look at the measurements of the g-sensor in
the z-axis with a period of. (The recommendeg is around 175 seconds.) Let
the output of the g-sensor at theaxis over time bey.(¢). At any pointt’ when
we make an observation, we will conduct a curve-fittingyoft) for the part right
beforet’. If no curve ing.(t) matches with any of the curves representing an
elevator event as shown in Figure 2.6, a reporttof0) will be attached to the
sequence’(t). Otherwise; if a match is found; I¢t be the time point when the
elevator event ends in the curyg(t). A report of (¢, k) will be attached to the
sequence’(t), wherek is the number of floors that the user has gone up/down (a
positive value means “up” and a negative one means “down”). Also, in the later
case, we will adjust the offset of our periodical reportg’tdi.e., the upcoming

reports will be adjusted t& + p, t” + 2p, etc.).

3.2 Particle-Sampling Module

The particle-sampling module takes three inputs: (1) the particles from the previ-

ous round, (2) the sequenc&st), S(t), and E(t), and (3) the floor plans. This

21



module will adjust the location of each of these particles.tl &te the timestamp

of the previous event that was processed aRdt,)} be the set of particles &t.

Each particleP;(t,) is associated with three descriptoB;(t,).par, P;(t,).loc,
andP;(t,).wt. The partition unit and the location in the partition uRjtt, ) is lo-

cated are written ag;(t,).par and P;(t,).loc, respectively. The weight aP;(¢,)

is written asP;(t,).wt. GivenH (t), I(t), andE(t), we retrieve those unprocessed
events one-by-one according to their timestamps. We start from the unprocessed
events with the earliest timestamp. Then we relocate eB¢h,) according to the

following rules:

e Case 1: IfP;(t,).par is a partition.unit on some floor, there are three cases.
1. Ife e H(t), lete= (&, 7). We place{ P, (t,)} at the location:
= —
Pi(tp)doc (t) = Pi(ta)loc(t)+d + R, (3.3)

where R =7 - (cos 0, sin @) is' @ 2D random vector, whereis a scalar
randomly selected from the intenal r,,,..] andd is a angle randomly
selected fromo0, 27]. Here, d represents the displacement vector that
is detected from IMU sensors. However, to accommodate the exis-
tence of noise,/?_i’> is to add some randomness to the new location of
Pi(t,). Note that if P;(¢,) remains in the same partition unit &5, ),

we let P;(t,).par = Pj(t,).par; otherwise, we letP;(t,).par be the
partition unit on the same floor that contaifi$t, ).loc. One exception,
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perhaps due to noise, is whéh¢,) falls outside the current floor. In
this case, we leP;(t,) be located at the point when it first moves out

of the boundary of the floor during the above movement.

ife € S(t), lete = (t,,s). We first check ifP;(t,).loc is nearby
any passable part of a stairway. If so, we move this particle into this
stairway. Specifically, ifs = +1 and the distance fron®;(¢,).loc

to any passable part of a stairway is within ¢s,; and the stairway
connects the current floor to a higher floor, we Rtt,).par = sw

and P;(t).loc = 1. Similarly, if. s = —1 and distance fron®;(¢,).loc

to any passable part'of a stairway is within d,,, and the stairway
connects the current floor to lower floor, we R{t,).par = sw and
Pi(ty).loc = —1+If none of those two cases sustaktit,) will remain

at the same partition.unit and location@st,, ).

.ife € E(t), lete = (ty,e). We check if P(t,).loc is nearby any
passable part of an elevator. If so, we move this particle into this
elevator. Specifically, it = “U” and the distance fron®;(t,).loc

to any passable part of an elevataeris within a threshold .., we

let P;(ty).par = ev and P;(t).loc = k*, wherek is the current floor
number and the superscript “+” means that the elevator is going up.

Similarly, if e = “D” and the distance frorR;(t,).loc to any passable
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part of an elevatorv is within a threshold .., we letP;(t;).par = ev

and P;(t,).loc = k~, wherek is the current floor number and the
superscript “-” means that the elevator is going down. If none of these
two cases sustair;;(t,) will remain at the same partition unit and

location asP;(t,).
e Case 2: IfP;(t,).par is a stairway, there are two cases.

1. If the inputis H(t) or E(t), we ignore that.

2. Ifthe inputis S(t), the particl®;(t¢).loc goes up/down by the estimated
number of stairs,;. Also, a random movement is needed to disturb the
particles. If the_-newP;(#).loc belongs to the first/last n stairs and its
trend is up/down, the particlg;(t).ob; changes to floor ané;(t).loc

goes to the boundary of the floor that connected with the stairs.
e Case 3: IfP;(t,).par is an elevator, there are two cases.

1. If the inputis H(t), S(t), or, the begin event of E(t) we ignore that.

2. If the input is the end event of E(t), the particle moves to the floor
that belong to the estimated numberspf For example, if the input
is E(t) = (t1,+3), actually we may move frorth floor to 6thfloor,
P;(t).obj will change to4th, 5th, and6th with a probability distribu-

tion then P;(t).loc goes to the boundary of the floor that connected
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with the elevator.

In the above discussion, we did not address how to assign weights to particles.
Here we assume that each particle will inherit its previous particle’s weight, i.e.,

Pi(ty). wt = Pi(t,).wt.

3.3 ParticleFiltering Module

Generally, the sampled patrticles are weighted directly in weighting module. It
only uses the pattern matching scheme to figure out the location having the highest
possibility from the particle with- maximum weight. Intuitively, the precision will

be gained if we took additional-information of user into account for decision.
Therefore, the particle filtering module utilizes the speed of user and floor plans

to filter out the sampled particles that they are incredible.

3.3.1 The Speed Filtering

The speed filtering is used to adjust the coverage of particles. It restricts the par-
ticles be spread on a radius of confident gizéhich’s center is the last estimated
result with mobility shift. The particles which are outer this range will be filtered.
The mobility shift is the displacement vectdr obtained by the IMU module, and

the confident size reflects the confidence of the shifted result. If the shifted result
is trustworthy, we can concentrate the particles on it by decreasing confident size.

25



We utilize the averaged speed of user to evaluate the confident size. It is averaged
by referring the past speeds with decreasing weight.oLdenotes the speed of
user andy; denotes the weighting factor at tinte If £ is the number of past

speeds to be summed, then

t_k —
. U X oy

—k
¢

(3.4)

. For examplek is 5 and the speeds afg5,0,3 and2 from timet to ¢t — 5 with

weights decreased liy2.

c=1[(5x1)+ (5% 0.8) + (0 x.0.6)+:(3 x 0.4) + (2x 0.2)]/3.  (3.5)

Based on the speed filtering, the drifting problems and the errors of sensor
measurement can be mitigated. When user has stopped in a while, the coverage
of particles is reduced to decrease the variance of estimated results. Contrary,
the coverage is enlarged to tolerate-the estimating error of sensors, when user is

running. The revising for these errors will consign to the weighting module.

3.3.2 ThePassing Wall Filtering

This behavior is used to filter out the particles passing the walls that the impossible
situation of user. It is judged by the trajectories of particles and floor plane maps.
Let L denotes the walls of the maps. Each walin L has two end-point;;

anduv,.. If the straight line between locatiod3 (¢t — 1) and P; (¢) of particlei is

26



pass throught;(v;;v,.) Wherel; € L, this particle will be filtered. It means that

the belief of this patrticle is incredible. The filtering process has an exceptional
case that all of the particles are determined to be incredible. Hence, we propose a
trick that it restarts the particle sampling module and increases the consiaint
random vectorR to enlarge the range of disturbance until at least one particles is

reserved.

3.4 Particle Weighting Module

This module assigns each particleit)-a weight to reflect the probability that
the user is at its location. [For eaé¢h(t) < P(t), the particle-sampling module
already define its location &3 (7).loc. We need to compute the weight(t).wt
given thatP;(t) is located at”,(t).lo¢. This includes.two steps. First, we will
estimate, form the location database, the RSSI pafigsrat locationP;(t).loc.
Second, we will compars,,; against the currently observed pattéfp, to com-
pute P;(t).wt. We use a likelihood functior(ol|l;) to estimate the weight that

the probability of receiving at!; of particlei as below.

m

Prioll;) = J]K(ss;;s5)), (3.6)
j=1
K(ss;;885) = égexp(—%). (3.7)
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The likelihood function is derived by the multiplication of kernel function to

each access point. The kernel function estimate the probability of receiving

from access pointby gaussian distribution with mean;. Thess; is the signal-
strength received form access pojnof the characteristic a. In the offline

phase, the RSSI patterns are collected at each training location. These patterns is
averaged by histogram to be the characteristic at this locationsd;tie derived

from the training locations which locate nearb¥py interpolation.

After all the particles are estimated, the weights of them will be normalize as

below.
L
w;
=1l Y0

Finally, the localization result at timeis obtained by

E(t) = argmax.Pr(o|ly). (3.9)

3.5 Particle ReSampling M odule

This module will take the current set of particléXt) as input and generate a
new set of particles calle®(¢ + 1) for the next round. Note tha®(t + 1) may

be a multiset. LetV be the summation >~  P;(t).wt. Letn be the expected
Pi(t)eP(t)

number of particles in the beginning of each round. Then for dagh € P(t),

P; (t) Wt

we will generate,——=

copies of the same particle(t) in P(t+1). For each of
such newP;(t+1), we letP;(t+1).0bj = P;(t).obj andP;(t+1).loc = P;(t).loc.
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However, P;(t + 1).wt will be decided in the next round. The result is a new

multisetP(¢t + 1) will n elements.
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Chapter 4

Simulation Environment and

Results

In this chapter, the accuracy of our algoritRRMM thatintegrates mobility mod-
els into particle filters will be evaluated and compared vNtRSS(the nearest
neighbor in signal space) [2] alRF:MCL (Monte Carlo Particle Filters) [12] in
simulation. ThePF_MCL is the particle filter approach without any information
of user mobility. We examine the impacts of various parameters, including the
number of access points, the number of training locations, noise deviation, degree
of irregularity, wall attenuation factor, and the accuracy ofliel module.

In the simulation, we consider®0 x 100 square meters sensing field. See
Figure Figure 4.1.

The access points are placed (&t5), (40,5), (60,5), (95,5), (95,40),
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Figure 4.1: An illustration of the simulation environment.

(95,60), (95,95), (60, 95), (40,95), (5,95),(5,60)and(5,40). The solid lines in-
dicate walls. The walls willnot.enly affect the path loss of radio frequency signals
but also limit the mobility ‘of users. Particles will be filter out if their trajectories

cross the walls.

4.1 Singal Path Loss Models

The signal path loss model we apply here is a variation of RIM [18]./t)et” (b;)

denote the transmission power of transmitieand P, (¢, b;) be the reception
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signal strength at locatian Then,

P.(£,b;) = PY5" (b;) — PLPO'(0,b;) — PLYP5(¢,1;)

+ N(0,0¢), (4.1)

where PLPO1(7,b;) is the path loss caused by obstadid,“Z%(¢, b;) is the path
loss caused by the obstacles in the environment,aftdo ;) representing back-
ground noises is a zero-mean normal distribution random variable with a standard
deviationo ;. Details are given below.

PYST is hardware-dependent and also affected by the remaining battery level

that is modeled by gariance of sending powe¥gP), e.g.,
PYSE & P (1.4 N(0,J/S P)Y, (4.2)

whereP, denotes the initial transmit power ang 0, V/.SP) is a zero-mean normal
distribution random variable with.a standard deviatiofiP. Each AP randomly
initials its P as the simulation starts.

In real-world environments, the irregularity of signal fading is a common phe-
nomenon. However, most path loss models do not take this non-isotropic property
into consideration. In our simulation, tliegree of irregularity DA ) is applied

to control the amount of path loss in different directions, e.g.,
PLPO(0,b;) = PL(||¢,b;]]) x K, (4.3)

where PL(]|¢, b;]|) is the optimal obstacle-free path loss formulation and the co-
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efficient K; is to reflect the level of irregularity at degreée= 0, --- , 359 such
that
1 ifi=20
K;= (4.4)
K, £W(0,04,7) x DOI if i =1..359

where| Ky — K3s9| < DOI andW (0, 04, 7) is a zero-mean Weibull random vari-
able. The parametdpO1 controls the allowable difference of two consecutive
degreel Specifically, a largefK; — 1| means that the amount of path loss has
greater deviation from the optimal path loss formulation at:ttie degree. The
iterative definition ofK; lets the variation of irregularity be continuous.

In an indoor environment, complicate partition is one of the major factors
which influence the performance of positioning algorithms. When signals pene-
trate through obstacles, such as walls, dramatic signal attenuation is companioned.
The path loss> LO9P5 (¢, b;) stands for the amount of signal strengths absorbed by
obstacles between the transmitterand the receiver at \We adopt the concept

of wall attenuation factor\(AF) proposed in [2]:
PLOB5(4,b;) = min(Ns, mazW) x WAF, (4.5)

where N, is the number of obstacles which exist in the middle of the line-of-
sight path of signal transmission frobn to ¢, mazW is the maximum number

of obstacles that can influené¢&.©25(¢, b;), andW AF is a parameter which de-

1The irregularity of those non-integer degrees can be inferred by interpolating the values of

two adjacent coefficient&; and K; 1 with integer degrees.
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notes the amount of signal attenuation caused by one obstacle. Note that different
materials may have differemt’ AF" values.

The default parameters of the simulation is as below. The path lose reference
power is37.3, path lose exponent &3 and path lose noise deviatio = 3. The
number of access poinPs = 8. The training grain sizerain_size = 1. 100
training samples will be collected at each training location. The mobility speed is
1 (m/s) and positioning period i$ second.P; = 15 for all APs,V.SP = 0.02,

DOI = 0.004, maxW = 4 andW AF = 3. Finally, the number of particles of
particle filter is500. In the simulation, we only adjust the corresponding parame-

ters and the rest parameters.are set to default value.

4.2 Thelmpactsof System Parameters

The number of APs, denoted as”s;.somehow means the dimensions of signal
patterns and affects the accuracy of pattern-matching localization. However, it
also reflects deployment cost and training effort. Refer to Figure 4.2. We can
see the errors decrease obviously/4Rs increases. The accuracy ofNSS
decreases dramatically A Ps became fewer. However, based on the mobility
model, P F M M alleviates this problem and outperforms others.

Noise disturbsRS ST received by users. That affects the accuracy of position-

ing. We wonder if the noise problem can be mitigated by increasing the number
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Figure 4.3: An impact of'noise deviation with training grain size.

of training locations. A small training grain size is used to increase the num-
ber of training locations. Figure 4.3 illustrates the outcomes. The left figure is
with grain_size = 1 and 10201 training locations, and the right figure is with
grain_size = 5 and441 training locations. The errors increase with the noise
deviationo ;. Nevertheless, the errors 6fF M M is within three meters no mat-

ter with dense or sparse training locations. Especially, in the casg ef 3,
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PFEMM improvesN N SS up to one half and® F'_M C'L more thar25%.

The DOI is used to reflect the irregularity of radio frequency signals. The

larger DOI is used, the more irregular theSSI patterns become. We measure

the errors with variou® O setting in the environment with different noise devi-

ationo; = 0 ando; = 3. In Figure 4.4, the left figure is far; = 0 and the right

one is foro; = 3. The curves in the right figure is flatter than in the left figure.
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The impact of signal noise is superiorftO .

W AF is the wall attenuation factor representing the complexity of indoor en-
vironments. Largél AF implies that the RSS decreases dramatically when pass-
ing wall. In Figure 4.5, we can see an apparent decreasing trend &8 e
increases.

At last, we evaluate the impact of performance by varying estimating dynamic
of the sensors. In our localization‘engine, we refer to RS/ patterns and
sensor measurements for positioning. Hence, the measuring errors of sensors will
be corrected by th&S ST patterns.

Now, we increase the measuring dynamic of sensors with signal ngise §)
as Figure 4.6 to evaluate the robust/of' M M. We set the mobility speed &t
to strengthen the impact. As we can see, the system is robust. Besides, the other

analysis is that the effects of angle dynamic is much bigger than distance dynamic.
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Chapter 5

System Implementation

The system is divided into three parts to implement which are mobile user, posi-
tioning server, and localization environment. The mobile user carries an Android
smart phone, called HTC.magic and equipped with a WiFi interface, and an IMU,
called 3DM-GX1 made by MicroStrain-company. The dimension of HTC magic
is 113 mm x 55.56 mm x 13.65 mm, and its weight including battery i948 g.

The version of the android operating system is 1.5. It supports 2G (GSM), 2.5G
(GPRS), 3G (WCDMA) and WiFi 802.11 b/g networks. And, the GPS, G-sensor
and electronic compass are embedded. 3DM-GX1 is composed of one triaxial ac-
celerometer, one triaxial magnetometer, and one triaxial angular rate gyroscope.
The dimension of 3ADM-GX1 i§4 mm x 90 mm x 25 mm, and its weight i§5
grams. The IMU can provides 3D g-values in the range-6fg, 3D magnetic

field in the range oft1.2 Gauss, and the rate of rotation in the rang8@f® per
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second. The sampling rate of these reading$isHz at most. In addition, it can
provide its orientation in Euler angle (pitch, roll, yaw) but at most in the rate of
100 Hz. The 3DM-GX1 communicates with the handheld device via an RS-232
or RS-485 interface. The optional communication speed$®aze38.4 and115.2
kBaud.

The 3DM-GX1 is equipped by user with the belt as Figure 2.1. We gain the
prompt mobility and behaviors of user by it's measurements. For instance, we
adopt a proposed walking judged algorithm using accelerations to simulate a pe-
dometer. Therefore, it can determine that the user is walking or stopping, and
cumulate the strides. And, we use the yaw of euler angle directly to simulate the
electronic compass to track the orientations of user.

The g-sensor communicates with the mobile device via a UART interface or
Zigbee protocol. The mobile device has the ability to sense Wi-Fi radio signals
sent from surrounding access points. In the localization, the user are positioned
accordance with the positioning interval. We use a program to collect the Wi-
Fi radio signals and IMU sensor measurements regularly. And then, the sensor
measurements will be imported into the Behavior Predicting Module. When po-
sitioning interval expired, a positioning pattern including RSS, strides, heading,
and user’s behaviors will be packaged and send to the positioning server via the
WLAN. Secondly, once the positioning server receives a positioning pattern, the
positioning pattern will be inputted to the positioning algorithm. Upon the lo-
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calization result is estimated, it will be forwarded to the mobile user for demon-
strating. In the last part, the environment of localization is a multi-storey building
deploying WLAN infrastructure. The floor layout maps of the building are con-
structed in 2.5-dimensional (2.5D) description including hallways, rooms, walls,
stairways and elevators. In the localization, the positioning server uses it as the
positioning reference.

The performances are evaluated by the errors of localization in the building
(the4th, 5th and6th floors) of the Computer Science Department at the National
Chiao Tung University, Engineering Building Ill. The dimensions of the floors
are74.4 meters by37.2 meters. The map of the positioning area is represented in
the 2.5D format to assume that the feet of the user are constrained to lie on the
floor during the stance phase. It is consisted of the floor plane maps including
walls and rooms. And, they are connected by the stairways and elevators. In the
positioning, this map will be imported into the localization system. Theré &te
fingerprints deployed randomly on the hallways and other public areas of the map.
Each of them is trained by00 RSS patterns. The performances are contrasted
with the nearest neighbor in signal spag&\’S.S), the mobility free particle filter
(PF_MCL) and our sensor enhanced particle filte-{) M) by moving around
in the positioning area. The number of particles of these patrticle filter approaches
is 500. The user is positioned with the period per second, and the average amount
of access points which can be detected of each pattér iShe errors ar&.33,
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4.92 and3.01 meters individually. The®? FM M improvesNNSS by 59% and

PF_MCL by 39%.
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Chapter 6

Conclusions

In this paper, we developed an application-level location tracking system. We
proposed a sensor-enhanced particle-filter scheme-to assist the RF-based pattern
matching localization system by user‘'s immediate information. The user equips
the IMU sensors (called G-Sensor) and electronic compass (called M-Sensor)with
the belt. And, the sensor measurements will be converted to a mobility model.
Based on these models, we enhanced the sampling stage of the traditional particle
filter. The particles will be propagated by horizontal displacement vector and
vertical displacement vector to close the user. And, we added a particle filtering
module between the particle sampling module and particle weighting module. The
incredible particles will be filtered out by speed filtering and passing wall filtering
with maps information. We examined the performance by errors of localization

in the simulation and experiment. According to the statistics in the simulation,
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our performances are outstanding in spite of any environment. And, our engine is
robust regardless the increasing of sensor errors. In the experiment, we improved

NNSS by 59% and PF_MC'L by 39%.

43



Bibliography

[1] M. Addlesee, R. Curwen, S. Hodges, J. Newman, P. Steggles, A. Ward,
and A. Hopper. Implementing a Sentient Computing Syst€omputer

34(8):50-56, 2001.

[2] P. Bahl and V. N. Padmanabhan. RADAR: An In-building RF-based User
Location and Tracking System. IEEE INFOCOM, volume 2, pages 775—

784, 2000.

[3] S. Beauregard, Widyawan,and M. Klepal. Indoor pdr performance enhance-
ment using minimal map information and particle filters. Rosition, Lo-
cation and Navigation Symposium, 2008 IEEE/|(Qudges 141-147, May

2008.

[4] E. Brassart, C. Pegard, and M. Mouaddib. Localization using infrared bea-

cons.Robotica 18(2):153-161, 2000.

44



[5] B. Ferris, D. Hhnel, and D. Fox. Gaussian processes for signal strength-
based location estimation. Im Proc. of Robotics Science and Systems

2006.

[6] D. Fox, J. Hightower, L. Liao, D. Schulz, and G. Borriello. Bayesian Filter-

ing for Location EstimationlEEE Pervasive Computin@(3):24-33, 2003.

[7] S.-P. Kuo and Y.-C. Tseng. A Scrambling Method for Fingerprint Position-
ing Based on Temporal Diversity and Spatial Dependel€EE Trans. on

Knowledge and Data Engineering0(5):678-684, 2008.

[8] D. Niculescu and B. Nath. Ad Hoc Positioning System (APS) Using AOA.

In IEEE INFOCOM, volume-3;pages 1734-1743, 2003.

[9] J. J. Pan, J. T. Kwok, Q. Yang, and Y. Chen. Multidimensional Vector
Regression for Accurate and Low-Cost-Location Estimation in Pervasive
Computing.IEEE Trans. on Knowledge and Data Engineerit§(9):1181—

1193, 2006.

[10] N. B. Priyantha, A. Chakraborty, and H. Balakrishnan. The Cricket

Location-Support System. IWCM/IEEE MOBICOM, pages 32—-43, 2000.

[11] A. Savvides, C.-C. Han, and M. B. Strivastava. Dynamic Fine-Grained Lo-
calization in Ad-Hoc Networks of Sensors. ACM/IEEE MOBICOM, pages

166-179, 2001.

45



[12]

[13]

[14]

[15]

[16]

S. Thrun, D. Fox, and W. Burgard. Monte carlo localization with mixture
proposal distribution. IfProc. of the National Conference on Artificial In-

telligence 2000.

T.-C. Tsai, C.-L. Li, and T.-M. Lin. Reducing Calibration Effort for WLAN
Location and Tracking System using Segment TechniquelEEE Int’l
Conf. on Sensor Networks, Ubiquitous, and Trustworthy Computing (SUTC)

volume 2, pages 46-51, 2006.

Widyawan, M. Klepal, and S. Beauregard. A novel backtracking particle
filter for pattern matching indoor-localization. MELT '08: Proceed-
ings of the first ACM.international workshop on Mobile entity localization
and tracking in GPS-less environmentgages 79-84, New York, NY, USA,

2008. ACM.

O. Woodman and R. Harle. Pedestrian localisation for indoor environments.
In UbiComp '08: Proceedings of the 10th international conference on Ubig-

uitous computingpages 114-123, New York, NY, USA, 2008. ACM.

L.-W. Yeh, M.-S. Hsu, Y.-F. Lee, and Y.-C. Tseng. Indoor localization: Au-
tomatically constructing today’s radio map by irobot and rfids. IHEE

Sensors Conferenc2009.

46



[17] J. Yin, Q. Yang, and L. M. Ni. Learning adaptive temporal radio maps
for signal-strength-based location estimatitlfEE Transactions on Mobile

Computing 7(7):869-883, 2008.

[18] G. Zhou, T. He, S. Krishnamurthy, and J. A. Stankovic. Impact of Radio
Irregularity on Wireless Sensor Networks. ACM MobiSys pages 125—-

138. ACM Press New York, NY, USA, 2004.

47



	封面
	內頁
	vv
	thesis.pdf

