
 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 
 
 
 
 
 

應用於 2.5D 環境以粒子過濾演算法與感測

元 件 輔 助 的 無 線 定 位 系 統 

 
Wireless Location Tracking by a Sensor-Enhanced 

Particle Filter in 2.5D Buildings 
 
 
 
 
 

研 究 生：朱瑞浩 

指導教授：曾煜棋  教授、易志偉 教授 

 

 
 

中 華 民 國  九 十 八 年 六 月 



應用於 2.5D 環境以粒子過濾演算法與感測元件輔助的無線定位系統 

Wireless Location Tracking by a Sensor-Enhanced Particle Filter in 2.5D Buildings 
 
 
 
 

研 究 生：朱瑞浩          Student：Jui-Hao Chu 

指導教授：曾煜棋、易志偉  Advisor：Yu-Chee Tseng、 

                                   Chih-Wei Yi 

 
 

國 立 交 通 大 學 
資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 
 
 

A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 
Computer Science 

 
June 2009 

 
Hsinchu, Taiwan, Republic of China 

 
中華民國九十八年六月 



 

 

應用於 2.5D 環境以粒子過濾演算法與感測元件

輔助的無線定位系統 

學生：朱瑞浩 

 

指導教授：曾煜棋 教授 

易志偉 教授 

 

國立交通大學資訊科學與工程學系研究所 

摘 要       

在室外空曠環境，GPS 具有不錯的定位結果，目前，如何得到使

用者在室內環境的位置，受到廣泛的討論和研究，其中尤其以基於無

線電訊號強度的樣本比對演算法具有最好的定位結果，但是其最大的

缺點在於，無線電訊號先天上容易受到環境影響，導致訊號強度飄移

的問題，造成定位結果產生誤差，同時，過去的研究，鮮少討論多層

樓等室內立體定位環境 (2.5D 環境)，因此，在此篇，我們為無線電

訊號強度樣本比對演算法提出了應用於 2.5D 定位環境的 SEPF 
(sensor-enhanced particle filter) 模型，透過慣性感測元件  (IMU 
sensors) 感測使用者的移動軌跡，藉以調整粒子 (particles) 的位置分

佈和權重值 (weight)。在此篇中，我們會介紹如何建構室內定位環境

的 2.5D 模型，並且在此模型中，粒子的實際取樣 (sampling) 與重新

取樣 (re-sampling) 的實作方式，以及藉由分析慣性感測元件的感測

值來估測使用者目前的移動行為，例如行走於路面上或樓梯、搭乘電

梯等，透過慣性感測元件來克服無線電訊號強度飄移的問題。最後利

用我們開發的定位系統雛形，驗證我們的系統效能。 

關鍵字: 慣性感測元件，定位系統，粒子演算法，遍佈計算，感測

網路。 
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 ABSTRACT  

For outdoor localization, GPS already provides a satisfactory solution. 
For indoor localization, however, a globally usable solution is still 
missing. One promising direction is the pattern-matching solution that 
relies on RF signals from existing network infrastructures. One major 
drawback of such systems is the signal-drifting problem, which is an 
inherent physical constraint. Also, most works only consider single-floor 
buildings. However, buildings normally have multiple floors (i.e., of 2.5 
dimensions). This paper proposes a SEPF (sensor-enhanced particle 
filter)} model for RF-based pattern-matching localization in a 2.5-D 
building. IMU sensors are adopted to capture human mobility, while 
particles reflect the belief on where the user is located. Our framework 
addresses the following important issues. First, our 2.5-D building model 
considers multiple floors connected by stairs and elevators. Second, we 
show how particles should be sampled/re-sampled in a 2.5-D building to 
reflect change of brief. Third, IMU sensor inputs are exploited to conquer 
the signal-drifting problem and to predict user's behaviors (walking on 
grounds/stairs and taking elevators). A prototype has been developed and 
intensively tested to verify the model. 

 
Keywords: IMU (inertial measurement unit), location tracking, particle 
filter, pervasive computing, sensor network.
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Chapter 1

Introduction

Location-based services LBSshave been regarded as a killer application in mo-

bile networks. A key factor to its success is the location estimation accuracy.

For outdoor localization, GPS already provides a satisfactory solution. For in-

door localization, however, a globally acceptable solution is still missing. Many

indoor localization technologies have been proposed, such as infrared-based [4],

ultrasonic-based [10], and RF-based systems [2]. Generally, localization mod-

els can be classified as AoA-based [8], ToA-based [1], TDoA-based [11], and

fingerprint-based [2][7][9].

In this work, we are interested in thepattern-matchinglocalization method,

such as RADAR [2]. This method does not rely on calculating signal fading in

an environment. Instead, it relies on atraining phaseto collect theradio signal

strength (RSS)patterns at a set of training locations from pre-deployed beacons
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into a database (calledradio map). These beacons can be existing infrastructures,

such as IEEE 802.11 access points, GSM base stations, or a sensor network. Then,

during thepositioning phase, an object to be localized can collect its current RSS

pattern and compare it against the radio map to predict its location.

The pattern-matching solutions have three main drawbacks. First, its train-

ing process is very labor-intensive, especially in a large-scale field. Second, it

suffers from the signal-drifting problem; the radio maps measured earlier may

significantly deviate from the current ones. Third, most works are limited to 2-D

sensing fields (e.g., a single-floor building). However, buildings normally have

multiple floors. The first issue has been studied in [13], the second in [17][16],

but the last one has been rarely addressed.

This paper proposes aSEPF (sensor-enhanced particle filter)model for RF-

based pattern-matching localization in a 2.5-D building. IMU sensors are adopted

to capture human mobility patterns, while particles help reflect our belief on where

the user might be located. Our framework addresses the following important is-

sues. First, our 2.5-D building model considers multiple floors connected by stairs

and elevators. Second, we show how particles should be sampled/re-sampled in

a 2.5-D building based on sensor inputs to reflect change of belief. Third, IMU

sensor inputs are exploited conquer the signal-drifting problem and to predict hu-

man’s main indoor behaviors (such as halting, walking on grounds, going up/down

stairs, and taking elevators). A prototype has been developed and intensively

2



tested to verify our model.

Particle filters are sample-based implementation of Bayesian filters using a set

of samples, i.e., particles, to reflect the probability densities of our belief [6]. In

the scope of indoor localization, it estimates locations by recursively calculating

current probability distributions based on measurements of current observation.

The key components of Bayesian filter are observation, prediction, and history

models. The observations could be from sensors or mathematical models. The-

oretically, it can be applied to most positioning algorithms as long as we have

some sort of prediction on user mobility. For example, a tracking system can

exploit mobility history to conjecture user’s trajectory [3]. For pattern-matching

solutions [14], RSSI is the only observation used to represent its belief about a

dynamic system at timet as a probability distribution over the state space. The

parameters and noise components of particle filters can be estimated from training

data or tuned manually.

Hence, we propose a SEPF architecture with particle filter to obtain the ac-

tual mobility model. And then, using mobility model to predict the propagation

of particles. Traditionally, the real time mobility model can not directly get from

users, but we presently utilize the sensor to achieve it. According to our study,

the observation model also conforms to the model of the fingerprint base posi-

tioning algorithm [5]. The philosophy of particle filter conforms to the tracking

positioning algorithm by consulting history. And, the real time mobility model is
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appropriate for adding the prediction model of it. Based on the mobility model, we

can get better in positioning, because the particles are distributed around the true

user‘s positioning location [15]. Therefore, we propose a positioning algorithm

based on particle filter involving changeable mobility model.

The rest of this paper is organized as follows. Chapter 2 gives some prelimi-

naries. Chapter 3 describes our SEPF architecture. Performance figures are pre-

sented in Chapter 4. Chapter 5 introduces our prototyping details and experiment

results. Finally, Chapter 6 concludes this paper.
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Chapter 2

Preliminaries

2.1 Bayes and Particle Filters

Bayes filters probabilistically estimate a dynamic system’s state from observa-

tions that could be disturbed by noise. In pattern-matching localization, the state

could be a person’s location and the observations are RSS patterns. Bayes filters

represent the state at timet by a random variablesxt. It establishes a probability

distribution overxt, called beliefBel(xt). The goal is to sequentially estimate

such beliefs over the state and time spaces. Specifically, let the sequence of time-

indexed observations bez1, z2, . . ., zt. Bel(xt) is defined by the posterior density

of statext conditioned on all previous observations:

Bel(xt) = p(xt|z1, z2, ..., zt). (2.1)
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The belief answers the question: “What is the probability that the person is at loca-

tion xt if the sequence of observations isz1, z2, ...,zt?” In general, the complexity

to computeBel(xt) grows exponentially over time. To make the computation

tractable, Bayes filters assume that the dynamic system is Markovian in that the

current statext contains all relevant information. So states beforext−1 provide no

additional information. In our localization example, this means that we only need

to work on the relation betweenxt−1 andxt.

To realize different density functions ofxt, particle filters represent beliefs by

a set of samples, orparticles:

Bel(xt) = St = {< x
(i)
t , w

(i)
t > |i = 1, ..., n}, (2.2)

where, eachx(i)
t is a state andw(i)

t is its weight. Thesew(i)
t s sum up to one.

Particle filters realize Bayes filters by a sequence of sampling, weighting, and

resampling procedures. Its key advantage is the capability to represent arbitrary

density functions, even in non-Gaussian, non-linear dynamic systems. It allows

us to focus on resources (particles) in state spaces with high probabilities.

2.2 IMU Sensors

We are interested in using IMU (inertial measurement unit) sensors to capture

typical human mobility patterns inside a building. We consider four main mobility

patterns: halting, walking on grounds, going up/down stairs, and taking elevators.
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Figure 2.1: mounting sensor device on waist or hanging on chest.

Mobility patterns will be tracked by a triaxial accelerometer (g-sensor), which can

report 3D accelerations, and an electronic compass, which can report the angle

relative to north.

The g-sensor combines three angular rate gyros with three orthogonal DC ac-

celerometers and three orthogonal magnetometers to output its orientation in dy-

namic and static environments. The outputs of them are rate of rotation, quantity

of gravity and quantity of gauss. The size of it is 64 millimeter by 90 millimeter

and 25 millimeter. And, the gravity is 75 grams with enclosure. Based on the

official specifications, the accuracy of the orientation is about 0.5 degree for static

test conditions and 2.0 degree for dynamic test conditions.
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Figure 2.1shows two ways to mount sensors devices on a human body in our

experiment. Figure 2.2shows the outputs of a g-sensor when a person transits form

a moving state to a halting state. Figure 2.3shows the outputs of a g-sensor when a

person walks on grounds. Figure 2.4shows the outputs from an electronic compass

when a person walks in a circle of radius 2m. Figure 2.5shows the outputs of a

g-sensor when a person goes up/down stairs. Figure 2.6shows the outputs of a

g-sensor when a person goes up/down an elevator.

As can be seen, these patterns all have their special features that can be easily

recognized.

2.3 2.5-Dimensional Building Model

We now develop a graph-like model to represent a 2.5-D building. The repre-

sentation facilitates us to describe how particles flow around a building in the

yet-to-be-presented indoor localization scheme. We are given the floor plans of

a 2.5-D building. Each floor may have rooms, partitions, hallways, etc. Floor is

connected by stairs and elevators. The graph is denoted byG = (V, E). A vertex

in V could be one partition unit on a floor, a stairway, or an elevator. An edge

in E connects two vertices inV by specifying the passable part between them.

Figure 2.7(a) shows a floor plan of the Engineering Building III at NCTU, where

our experiments are conducted.

10



Up

Up

UpUp

(a) 3f, Engineering Building III, NCTU.

4
2
5
0
.5
7

Up

Up

Up

Up

(b) Partitioning of a floor plan.

Figure 2.7: 2.5-D Building Model.

Given a building’s floor plan, we first deal with each floor by dividing it into

multiple partition units. Each partition unit should be a convex polygon. Note

that a convex polygon has the property that the line segment connecting any two

points inside must fall inside the polygon itself; from particle filters’ prospect, this

means that it allows a particle to move in a straight line between these two points.

Figure 2.7(b) shows an example. Between two partition units, there arepassable

andimpassableparts. Each passable part is represented by an edge inE together

with a descriptor to specify the line segment of the two corresponding polygons

constituting the passable part. From particle filters’ prospect, these passable parts

are pathways for particles to flow around. Excluding passable parts, the rests are

impassable parts, which particles are not allowed to cross over. Figure 2.8(a)

shows how we construct partition units. Note that the labels on edges are their

descriptors (for passable parts).

Each stairway is represented by one vertex inV and it has a descriptor to
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specify the number of stairs inside. A stairway connects two floors and we use

two edges inE to represent such relationships. Each edge connects the stairway

to a partition unit of a floor and it two descriptors: (i) the stair that the partition

unit is connected and (ii) the passable part in the partition unit. Figure 2.8(b)

shows how we abstract such concepts.

Each elevator is also represented by a vertex and it has two descriptors: (i) the

range of floors that it moves to and (ii) the polygon of its ground part. Note that

for (i), it is not necessary for the elevator to be stop at each floor within this range.

we use the same number of edges equal to the number of floors that the elevator

stops to denote this. Each edge connects the elevator to a partition unit of a floor

and it also has a descriptor to specify the passable parts of the partition unit and

its own ground part. Figure 2.8(c) shows an example.
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Chapter 3

Sensor-Enhanced Particle Filter for

2.5D Location Tracking

We propose a SEPF model for location tracking in a 2.5D building. We assume

that the building has been deployed with some WiFi APs and a pattern-matching

localization system is available. Figure 3.1 shows our SEPF work flow. It takes

IMU sensor measurements, RSS patterns, and floor planes of a2.5D environment

as inputs to predict users’ locations. Each user has to carry a WiFi interface, tri-

axial accelerometer, and an electronic compass. The wireless interface can collect

the RSSIs of its surrounding wireless beacons and the IMU sensors measurements

and report to the PF to compute the user’s location. Users can only move on floor

surfaces or go up/down stairs/elevators. The 2.5D building model defined in Sec.

2.3 is used.
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Figure 3.1: The SEPF architecture.

Like typical PFs, our architecture also hasparticle-sampling, particle-

weighting, andparticle-resamplingmodules. In addition, we add two new mod-

ules: behavior-predicting and particle-filtering modules. The behavior-predicting

module collects the IMU sensor outputs to predict the user’s current mobility pat-

tern. The prediction, together with the floor planes, helps the particle-sampling

module to propagate particles. Then those particles with low credibility will be

filtered out by the particle-filtering module according to the floor planes. Using

the RSSIs, the particle-weighting module will assign weights to particles. It also

produces the estimated location of the user. Finally, the particle-resampling mod-

ule re-generates particles for the next round.
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3.1 Behavior-Predicting Module

Based on floor plans and IMU sensor measurements, the behavior-predicting mod-

ule estimates the user’s current motions. This improves over traditional PFs,

which usually adopt a random model in sampling particles. This module gen-

erates three outputs:H(t), S(t), andE(t). H(t) = {(ti, di), i = 1, ...,∞} is

a series of horizontal motion vectors,ti is the timestamp anddi is the displace-

ment vector on the xy-plane measured between time interval(ti−1, ti]. S(t) =

{(ti, si), i = 1, ...,∞} is a series of stair motions, whereti is a timestamp and

si is the estimated number of stairs that the user has taken during time interval

(ti−1, ti] (we use0 to mean “no stair motion”, and a negative/positive integer to

means how many stairs down/up).E(t) = {(ti, ei), i = 1, ...,∞} is a series of

elevator motions, whereti is a timestamp andei is the estimated number of floors

that the user has taken during time interval(ti−1, ti] (we use0 to mean “no ele-

vator motion”, and a negative/positive integer to mean how much floor down/up).

Below, we discuss how these series are computed in our model.

3.1.1 Horizontal Motion Detection

The horizontal motion detection module is pedometer-based. A pedestrian’s hor-

izontal motion is composed of a series ofsteppingevents. In other words, the

displacement vectordi is corresponding to a stride. The readings of the accelerom-

16



Figure 3.2: An illustration of the horizontal and vertical motion prediction.
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eter is used to detect stepping, estimate each stride length, and also decide walking

directions by the helping of the magnetometer.

Stepping Detection: The readings of the accelerometer are decomposed into

two vertical components and a horizontal components. We observed that each step

incurs a pulse waveform in the vertical components. A pattern matching technique

is used to detect pulse for counting steps. To improve the accuracy, the amplitude

and duration of each pulse and the magnitude of horizontal components are used

to filter out false detections. In average, the pedometer has an accuracy around

96%.

Stride Length: After a stride is detected, two featuresA andX are extracted

from the pulse whereA is the sum of the magnitude of the left slope and right

slope andX is the norm of the first component of the discrete Fourier transform

of the pulse. We use quadratic regression to estimate the stride length. In other

words, the stride length is estimated by the following formula

aX2 + bXA + cA2 + dX + eA + f. (3.1)

The constantsa, b, c, d, e, f are obtained by the least square method.

Walking Direction: The horizontal components tend to parallel with the

walking direction. Therefore, we classify horizontal components into two groups,

forward vectors and backward vectors. Forward vectors are roughly in the walking

direction and backward vectors are roughly in the opposite directly. To determine

18



the walking direction, we sum forward vectors with the inverse of backward vec-

tors. The sum vector is used to represent the walking direction. Then, to with the

readings of the magnetometer, we can know the absolute walking direction (in the

earth frame).

Figure 3.2 shows an example, where an user moves over around the indoor

environment. The user starts at first floor and moves up to 3th floor by elevator.

Then, user goes down to the first floor and returns to 3th floor by stair. In the

end, user goes back to the first floor. Our goal is to generate the outputH(t),

where eachdi is a displacement vector that user has moved fromti−1 to ti. We

assumeti is a periodic event. Betweenti−1 to ti, the stride events may occurj

times, name as
−→
di,j. We detect each stride event by capturing the sine wave from

acceleration and estimate stride length by integrate each sine wave as
−→
di,j. The

directionθ is represented by the angle measured in counterclockwise to the North

Pole. If
−→
di,j andθ respectively denote the stride length and direction of a step, the

displacement vector can be obtained by the formula

di =
−→
di,1 +

−→
di,2 + · · ·+ −→

di,j. (3.2)
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3.1.2 Stair Motion Detection

The stair motion detection module is also pedometer-based. In our system, the

typical value of the stair countsi is ±1. S(t) = {(ti, ei)} is a discrete-time

sequence to represent whether the user has walked up/down stairs and, if so, how

many stairs the user has gone. Since the event of one step up/down a stair can

only be determined after the completion of the step, the reporting sequenceS(t)

is alwaysposterior.

Specifically, we will periodically look at the sensor measurements and attach

a report toS(t) with a period ofp. (The recommendedp is around 2˜4 seconds.)

At any pointt′ when an observation is made, we will merge the output from our

step detector and the corresponding rake value. The rake value can be retrieved

from the z-axis output of the g-sensor. A report of(t′, k) will be attached to

the sequenceS(t), wherek is the number of stair-up/stair-down events that are

detected during the interval(t′−p, t′] (note thatk should include the stair-up/stair-

down event, if any, that was not reported at timet′ − p).

3.1.3 Elevator Motion Detection

Depending on the measurements from the g-sensor, we need generateE(t) =

{(ti, ei)}. E(t) is a discrete-time sequence to represent whether the user has taken

an elevator and, if so, how many floors he/she has gone up/down. Since the num-
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ber of floors that a user has moved can only be determined after the completion

of signal changes has been observed and an elevator event normally takes 3 to

20 seconds, the reporting sequenceE(t) is sometimes periodical and sometimes

aperiodical. For this reason, the report of an elevator event is alwaysposterior.

Specifically, we will periodically look at the measurements of the g-sensor in

thez-axis with a period ofp. (The recommendedp is around 1˜5 seconds.) Let

the output of the g-sensor at thez-axis over time begz(t). At any pointt′ when

we make an observation, we will conduct a curve-fitting ongz(t) for the part right

beforet′. If no curve ingz(t) matches with any of the curves representing an

elevator event as shown in Figure 2.6, a report of(t′, 0) will be attached to the

sequenceE(t). Otherwise, if a match is found, lett′′ be the time point when the

elevator event ends in the curvegz(t). A report of(t′′, k) will be attached to the

sequenceE(t), wherek is the number of floors that the user has gone up/down (a

positive value means “up” and a negative one means “down”). Also, in the later

case, we will adjust the offset of our periodical reports tot′′ (i.e., the upcoming

reports will be adjusted tot′′ + p, t′′ + 2p, etc.).

3.2 Particle-Sampling Module

The particle-sampling module takes three inputs: (1) the particles from the previ-

ous round, (2) the sequencesH(t), S(t), andE(t), and (3) the floor plans. This
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module will adjust the location of each of these particles. Letta be the timestamp

of the previous event that was processed and{Pi(ta)} be the set of particles atta.

Each particlePi(ta) is associated with three descriptors:Pi(ta).par, Pi(ta).loc,

andPi(ta).wt. The partition unit and the location in the partition unitPi(ta) is lo-

cated are written asPi(ta).par andPi(ta).loc, respectively. The weight ofPi(ta)

is written asPi(ta).wt. GivenH(t), I(t), andE(t), we retrieve those unprocessed

events one-by-one according to their timestamps. We start from the unprocessed

eventε with the earliest timestamp. Then we relocate eachPi(ta) according to the

following rules:

• Case 1: IfPi(ta).par is a partition unit on some floor, there are three cases.

1. If e ∈ H(t), let ε = (tb,
−→
d ). We place{Pi(ta)} at the location:

Pi(tb).loc (t) = Pi(ta).loc (t) +
−→
d +

−→
R, (3.3)

where
−→
R = r · (cos θ, sin θ) is a 2D random vector, wherer is a scalar

randomly selected from the interval[0, rmax] andθ is a angle randomly

selected from[0, 2π]. Here,
−→
d represents the displacement vector that

is detected from IMU sensors. However, to accommodate the exis-

tence of noise,
−→
R is to add some randomness to the new location of

Pi(tb). Note that ifPi(tb) remains in the same partition unit asPi(ta),

we let Pi(tb).par = Pi(ta).par; otherwise, we letPi(tb).par be the

partition unit on the same floor that containsPi(tb).loc. One exception,
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perhaps due to noise, is whenPi(tb) falls outside the current floor. In

this case, we letPi(tb) be located at the point when it first moves out

of the boundary of the floor during the above movement.

2. if ε ∈ S(t), let e = (tb, s). We first check ifPi(ta).loc is nearby

any passable part of a stairway. If so, we move this particle into this

stairway. Specifically, ifs = +1 and the distance fromPi(ta).loc

to any passable part of a stairwaysw is within δf2s and the stairway

connects the current floor to a higher floor, we letPi(tb).par = sw

andPi(tb).loc = 1. Similarly, if s = −1 and distance fromPi(ta).loc

to any passable part of a stairwaysw is within δf2s and the stairway

connects the current floor to lower floor, we letPi(tb).par = sw and

Pi(tb).loc = −1. If none of those two cases sustain,Pi(tb) will remain

at the same partition unit and location asPi(ta).

3. if ε ∈ E(t), let e = (tb, e). We check ifPi(ta).loc is nearby any

passable part of an elevator. If so, we move this particle into this

elevator. Specifically, ife = “U ′′ and the distance fromPi(ta).loc

to any passable part of an elevatorev is within a thresholdδf2e, we

let Pi(tb).par = ev andPi(tb).loc = k+, wherek is the current floor

number and the superscript “+” means that the elevator is going up.

Similarly, if e = “D′′ and the distance fromPi(ta).loc to any passable
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part of an elevatorev is within a thresholdδf2e, we letPi(tb).par = ev

and Pi(tb).loc = k−, wherek is the current floor number and the

superscript “-” means that the elevator is going down. If none of these

two cases sustain,Pi(tb) will remain at the same partition unit and

location asPi(ta).

• Case 2: IfPi(ta).par is a stairway, there are two cases.

1. If the input is H(t) or E(t), we ignore that.

2. If the input is S(t), the particlePi(t).loc goes up/down by the estimated

number of stairssi. Also, a random movement is needed to disturb the

particles. If the newPi(t).loc belongs to the first/last n stairs and its

trend is up/down, the particlePi(t).obj changes to floor andPi(t).loc

goes to the boundary of the floor that connected with the stairs.

• Case 3: IfPi(ta).par is an elevator, there are two cases.

1. If the input is H(t), S(t), or , the begin event of E(t) we ignore that.

2. If the input is the end event of E(t), the particle moves to the floor

that belong to the estimated number ofsi. For example, if the input

is E(t) = (t1, +3), actually we may move from3th floor to 6th floor,

Pi(t).obj will change to4th, 5th, and6th with a probability distribu-

tion thenPi(t).loc goes to the boundary of the floor that connected
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with the elevator.

In the above discussion, we did not address how to assign weights to particles.

Here we assume that each particle will inherit its previous particle’s weight, i.e.,

Pi(tb).wt = Pi(ta).wt.

3.3 Particle Filtering Module

Generally, the sampled particles are weighted directly in weighting module. It

only uses the pattern matching scheme to figure out the location having the highest

possibility from the particle with maximum weight. Intuitively, the precision will

be gained if we took additional information of user into account for decision.

Therefore, the particle filtering module utilizes the speed of user and floor plans

to filter out the sampled particles that they are incredible.

3.3.1 The Speed Filtering

The speed filtering is used to adjust the coverage of particles. It restricts the par-

ticles be spread on a radius of confident sizec which‘s center is the last estimated

result with mobility shift. The particles which are outer this range will be filtered.

The mobility shift is the displacement vector
−→
d obtained by the IMU module, and

the confident size reflects the confidence of the shifted result. If the shifted result

is trustworthy, we can concentrate the particles on it by decreasing confident size.
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We utilize the averaged speed of user to evaluate the confident size. It is averaged

by referring the past speeds with decreasing weight. Let~vt denotes the speed of

user andαt denotes the weighting factor at timet. If k is the number of past

speeds to be summed, then

c =

∑t−k

t ~vt × αt
∑t−k

t αt

. (3.4)

. For example,k is 5 and the speeds are5,5,0,3 and2 from time t to t − 5 with

weights decreased by0.2.

c = [(5 × 1) + (5 × 0.8) + (0 × 0.6) + (3 × 0.4) + (2 × 0.2)]/3. (3.5)

Based on the speed filtering, the drifting problems and the errors of sensor

measurement can be mitigated. When user has stopped in a while, the coverage

of particles is reduced to decrease the variance of estimated results. Contrary,

the coverage is enlarged to tolerate the estimating error of sensors, when user is

running. The revising for these errors will consign to the weighting module.

3.3.2 The Passing Wall Filtering

This behavior is used to filter out the particles passing the walls that the impossible

situation of user. It is judged by the trajectories of particles and floor plane maps.

Let L denotes the walls of the maps. Each wallli in L has two end-pointvis

andvie. If the straight line between locationsPi (t − 1) andPi (t) of particlei is
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pass throughli(
−−−→visvie) whereli ∈ L, this particle will be filtered. It means that

the belief of this particle is incredible. The filtering process has an exceptional

case that all of the particles are determined to be incredible. Hence, we propose a

trick that it restarts the particle sampling module and increases the constantr of

random vector
−→
R to enlarge the range of disturbance until at least one particles is

reserved.

3.4 Particle Weighting Module

This module assigns each particle inP (t) a weight to reflect the probability that

the user is at its location. For eachPi(t) ∈ P (t), the particle-sampling module

already define its location asPi(t).loc. We need to compute the weightPi(t).wt

given thatPi(t) is located atPi(t).loc. This includes two steps. First, we will

estimate, form the location database, the RSSI patternSest at locationPi(t).loc.

Second, we will compareSest against the currently observed patternSobs to com-

putePi(t).wt. We use a likelihood functionPr(o|li) to estimate the weight that

the probability of receivingo at li of particlei as below.

Pr(o|li) =

m
∏

j=1

K(ssj; ¯ssj), (3.6)

K(ssi; ssj) =
1√
2πσ

exp(−(ssi − ssj)
2

2σ2
). (3.7)
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The likelihood function is derived by the multiplication ofm kernel function to

each access point. The kernel function estimate the probability of receivingssi

from access pointi by gaussian distribution with meanssj. The ¯ssj is the signal-

strength received form access pointj of the characteristic atli. In the offline

phase, the RSSI patterns are collected at each training location. These patterns is

averaged by histogram to be the characteristic at this location. Thes̄sj is derived

from the training locations which locate nearbyli by interpolation.

After all the particles are estimated, the weights of them will be normalize as

below.

wt
i =

wt
i

∑n

i=1 wt
i

. (3.8)

Finally, the localization result at timet is obtained by

E(t) = arg maxPr(o|li). (3.9)

3.5 Particle ReSampling Module

This module will take the current set of particlesP (t) as input and generate a

new set of particles calledP (t + 1) for the next round. Note thatP (t + 1) may

be a multiset. LetW be the summation
∑

Pi(t)∈P (t)

Pi(t).wt. Let n be the expected

number of particles in the beginning of each round. Then for eachPi(t) ∈ P (t),

we will generatenPi(t).wt

W
copies of the same particlePi(t) in P (t+1). For each of

such newPi(t+1), we letPi(t+1).obj = Pi(t).obj andPi(t+1).loc = Pi(t).loc.
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However,Pi(t + 1).wt will be decided in the next round. The result is a new

multisetP (t + 1) will n elements.
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Chapter 4

Simulation Environment and

Results

In this chapter, the accuracy of our algorithmPFMM that integrates mobility mod-

els into particle filters will be evaluated and compared withNNSS(the nearest

neighbor in signal space) [2] andPF MCL (Monte Carlo Particle Filters) [12] in

simulation. ThePF MCL is the particle filter approach without any information

of user mobility. We examine the impacts of various parameters, including the

number of access points, the number of training locations, noise deviation, degree

of irregularity, wall attenuation factor, and the accuracy of theIMU module.

In the simulation, we consider a100 × 100 square meters sensing field. See

Figure Figure 4.1.

The access points are placed at(5, 5), (40, 5), (60, 5), (95, 5), (95, 40),
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Figure 4.1: An illustration of the simulation environment.

(95, 60), (95, 95), (60, 95), (40, 95), (5, 95), (5, 60) and(5, 40). The solid lines in-

dicate walls. The walls will not only affect the path loss of radio frequency signals

but also limit the mobility of users. Particles will be filter out if their trajectories

cross the walls.

4.1 Singal Path Loss Models

The signal path loss model we apply here is a variation of RIM [18]. LetP V SP
t (bj)

denote the transmission power of transmitterbj and Pr(ℓ, bj) be the reception
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signal strength at locationl. Then,

Pr(ℓ, bj) = P V SP
t (bj) − PLDOI(ℓ, bj) − PLOBS(ℓ, bj)

+ N(0, σf ), (4.1)

wherePLDOI(ℓ, bj) is the path loss caused by obstacle,PLOBS(ℓ, bj) is the path

loss caused by the obstacles in the environment, andN(0, σf ) representing back-

ground noises is a zero-mean normal distribution random variable with a standard

deviationσf . Details are given below.

P V SP
t is hardware-dependent and also affected by the remaining battery level

that is modeled by avariance of sending power (VSP), e.g.,

P V SP
t = Pt × (1 + N(0, V SP )) , (4.2)

wherePt denotes the initial transmit power andN(0, V SP ) is a zero-mean normal

distribution random variable with a standard deviationV SP . Each AP randomly

initials itsP V SP
t as the simulation starts.

In real-world environments, the irregularity of signal fading is a common phe-

nomenon. However, most path loss models do not take this non-isotropic property

into consideration. In our simulation, thedegree of irregularity (DOI) is applied

to control the amount of path loss in different directions, e.g.,

PLDOI(ℓ, bj) = PL(‖ℓ, bj‖) × Ki, (4.3)

wherePL(‖ℓ, bj‖) is the optimal obstacle-free path loss formulation and the co-
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efficient Ki is to reflect the level of irregularity at degreei = 0, · · · , 359 such

that

Ki =















1 if i = 0

Ki−1 ± W (0, σd, γ) × DOI if i = 1..359

(4.4)

where|K0 −K359| ≤ DOI andW (0, σd, γ) is a zero-mean Weibull random vari-

able. The parameterDOI controls the allowable difference of two consecutive

degrees1. Specifically, a larger|Ki − 1| means that the amount of path loss has

greater deviation from the optimal path loss formulation at thei-th degree. The

iterative definition ofKi lets the variation of irregularity be continuous.

In an indoor environment, complicate partition is one of the major factors

which influence the performance of positioning algorithms. When signals pene-

trate through obstacles, such as walls, dramatic signal attenuation is companioned.

The path lossPLOBS(ℓ, bj) stands for the amount of signal strengths absorbed by

obstacles between the transmitterbj and the receiver atℓ. We adopt the concept

of wall attenuation factor (WAF) proposed in [2]:

PLOBS(ℓ, bj) = min(Nobs, maxW ) × WAF, (4.5)

whereNobs is the number of obstacles which exist in the middle of the line-of-

sight path of signal transmission frombj to ℓ, maxW is the maximum number

of obstacles that can influencePLOBS(ℓ, bj), andWAF is a parameter which de-

1The irregularity of those non-integer degrees can be inferred by interpolating the values of

two adjacent coefficientsKi andKi+1 with integer degrees.
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notes the amount of signal attenuation caused by one obstacle. Note that different

materials may have differentWAF values.

The default parameters of the simulation is as below. The path lose reference

power is37.3, path lose exponent is3.3 and path lose noise deviationσf = 3. The

number of access pointsAPs = 8. The training grain sizegrain size = 1. 100

training samples will be collected at each training location. The mobility speed is

1 (m/s) and positioning period is1 second.Pt = 15 for all APs,V SP = 0.02,

DOI = 0.004, maxW = 4 andWAF = 3. Finally, the number of particles of

particle filter is500. In the simulation, we only adjust the corresponding parame-

ters and the rest parameters are set to default value.

4.2 The Impacts of System Parameters

The number of APs, denoted asAPs, somehow means the dimensions of signal

patterns and affects the accuracy of pattern-matching localization. However, it

also reflects deployment cost and training effort. Refer to Figure 4.2. We can

see the errors decrease obviously asAPs increases. The accuracy ofNNSS

decreases dramatically ifAPs became fewer. However, based on the mobility

model,PFMM alleviates this problem and outperforms others.

Noise disturbsRSSI received by users. That affects the accuracy of position-

ing. We wonder if the noise problem can be mitigated by increasing the number
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Figure 4.2: An impact of theAPs.
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Figure 4.3: An impact of noise deviation with training grain size.

of training locations. A small training grain size is used to increase the num-

ber of training locations. Figure 4.3 illustrates the outcomes. The left figure is

with grain size = 1 and10201 training locations, and the right figure is with

grain size = 5 and441 training locations. The errors increase with the noise

deviationσf . Nevertheless, the errors ofPFMM is within three meters no mat-

ter with dense or sparse training locations. Especially, in the case ofσf = 3,
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Figure 4.5: An impact ofWAF .

PFMM improvesNNSS up to one half andPF MCL more than25%.

The DOI is used to reflect the irregularity of radio frequency signals. The

largerDOI is used, the more irregular theRSSI patterns become. We measure

the errors with variousDOI setting in the environment with different noise devi-

ationσf = 0 andσf = 3. In Figure 4.4, the left figure is forσf = 0 and the right

one is forσf = 3. The curves in the right figure is flatter than in the left figure.
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Figure 4.6: An impact of estimating dynamic ofIMU Sensors.

The impact of signal noise is superior toDOI.

WAF is the wall attenuation factor representing the complexity of indoor en-

vironments. LargeWAF implies that the RSS decreases dramatically when pass-

ing wall. In Figure 4.5, we can see an apparent decreasing trend as theWAF

increases.

At last, we evaluate the impact of performance by varying estimating dynamic

of the sensors. In our localization engine, we refer to theRSSI patterns and

sensor measurements for positioning. Hence, the measuring errors of sensors will

be corrected by theRSSI patterns.

Now, we increase the measuring dynamic of sensors with signal noise (σf = 3)

as Figure 4.6 to evaluate the robust ofPFMM . We set the mobility speed at5

to strengthen the impact. As we can see, the system is robust. Besides, the other

analysis is that the effects of angle dynamic is much bigger than distance dynamic.

37



Chapter 5

System Implementation

The system is divided into three parts to implement which are mobile user, posi-

tioning server, and localization environment. The mobile user carries an Android

smart phone, called HTC magic and equipped with a WiFi interface, and an IMU,

called 3DM-GX1 made by MicroStrain company. The dimension of HTC magic

is 113 mm× 55.56 mm × 13.65 mm, and its weight including battery is118 g.

The version of the android operating system is 1.5. It supports 2G (GSM), 2.5G

(GPRS), 3G (WCDMA) and WiFi 802.11 b/g networks. And, the GPS, G-sensor

and electronic compass are embedded. 3DM-GX1 is composed of one triaxial ac-

celerometer, one triaxial magnetometer, and one triaxial angular rate gyroscope.

The dimension of 3DM-GX1 is64 mm× 90 mm× 25 mm, and its weight is75

grams. The IMU can provides 3D g-values in the range of±5 g, 3D magnetic

field in the range of±1.2 Gauss, and the rate of rotation in the range of300◦ per
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second. The sampling rate of these readings is350 Hz at most. In addition, it can

provide its orientation in Euler angle (pitch, roll, yaw) but at most in the rate of

100 Hz. The 3DM-GX1 communicates with the handheld device via an RS-232

or RS-485 interface. The optional communication speeds are19.2, 38.4 and115.2

kBaud.

The 3DM-GX1 is equipped by user with the belt as Figure 2.1. We gain the

prompt mobility and behaviors of user by it‘s measurements. For instance, we

adopt a proposed walking judged algorithm using accelerations to simulate a pe-

dometer. Therefore, it can determine that the user is walking or stopping, and

cumulate the strides. And, we use the yaw of euler angle directly to simulate the

electronic compass to track the orientations of user.

The g-sensor communicates with the mobile device via a UART interface or

Zigbee protocol. The mobile device has the ability to sense Wi-Fi radio signals

sent from surrounding access points. In the localization, the user are positioned

accordance with the positioning interval. We use a program to collect the Wi-

Fi radio signals and IMU sensor measurements regularly. And then, the sensor

measurements will be imported into the Behavior Predicting Module. When po-

sitioning interval expired, a positioning pattern including RSS, strides, heading,

and user’s behaviors will be packaged and send to the positioning server via the

WLAN. Secondly, once the positioning server receives a positioning pattern, the

positioning pattern will be inputted to the positioning algorithm. Upon the lo-
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calization result is estimated, it will be forwarded to the mobile user for demon-

strating. In the last part, the environment of localization is a multi-storey building

deploying WLAN infrastructure. The floor layout maps of the building are con-

structed in 2.5-dimensional (2.5D) description including hallways, rooms, walls,

stairways and elevators. In the localization, the positioning server uses it as the

positioning reference.

The performances are evaluated by the errors of localization in the building

(the4th, 5th and6th floors) of the Computer Science Department at the National

Chiao Tung University, Engineering Building III. The dimensions of the floors

are74.4 meters by37.2 meters. The map of the positioning area is represented in

the 2.5D format to assume that the feet of the user are constrained to lie on the

floor during the stance phase. It is consisted of the floor plane maps including

walls and rooms. And, they are connected by the stairways and elevators. In the

positioning, this map will be imported into the localization system. There are153

fingerprints deployed randomly on the hallways and other public areas of the map.

Each of them is trained by100 RSS patterns. The performances are contrasted

with the nearest neighbor in signal space (NNSS), the mobility free particle filter

(PF MCL) and our sensor enhanced particle filter (PFMM) by moving around

in the positioning area. The number of particles of these particle filter approaches

is 500. The user is positioned with the period per second, and the average amount

of access points which can be detected of each pattern is11. The errors are7.33,
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4.92 and3.01 meters individually. ThePFMM improvesNNSS by 59% and

PF MCL by 39%.
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Chapter 6

Conclusions

In this paper, we developed an application level location tracking system. We

proposed a sensor-enhanced particle filter scheme to assist the RF-based pattern

matching localization system by user‘s immediate information. The user equips

the IMU sensors (called G-Sensor) and electronic compass (called M-Sensor)with

the belt. And, the sensor measurements will be converted to a mobility model.

Based on these models, we enhanced the sampling stage of the traditional particle

filter. The particles will be propagated by horizontal displacement vector and

vertical displacement vector to close the user. And, we added a particle filtering

module between the particle sampling module and particle weighting module. The

incredible particles will be filtered out by speed filtering and passing wall filtering

with maps information. We examined the performance by errors of localization

in the simulation and experiment. According to the statistics in the simulation,
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our performances are outstanding in spite of any environment. And, our engine is

robust regardless the increasing of sensor errors. In the experiment, we improved

NNSS by 59% andPF MCL by 39%.
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