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Reducing Code Size by Graph Coloring Register
Allocation and Assignment Algorithm

for Mixed-Width ISA Processors

Student: Jyh-Shian Wang Advisor : Dr. Jyh-Jiun Shann

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Reducing program size is a critical issue in many embedded systems which require more
program functionalities without increasing the memory size. One of the approaches is the
“mixed-width instruction set architecture (ISA)” which usually has an instruction set in
general formats (usually 32-bit long) as normal instruction set, and an instruction set in
shorter format (usually 16-bit long) with limited opcodes and set of registers. Traditionally, a
code segment can be encoded in only one format, no multiple formats interleaved. However,
more and more processors use instruction encoding to indicate the length of each individual
instruction, and take mixed-width ISA into instruction-level granularity. For this kind of ISAs,
the number of instructions can be encoded in shorter format is highly dependent on the
limited set of registers that can be accessed by shorter format instructions. In this paper, we
present a register allocation and assignment algorithm based on graph coloring, which uses a
heuristic model to find out which virtual variables in program should be assigned into the set
of registers accessible by shorter instructions. The simulation results show that the code size

reduction is achieved 31.90% by the proposed algorithm.



FARMA D B2 fr A2 H > b2d 237 A% AR a2 > "L p
Tl R 2 amiGE e BELE > RAE Y e 5 BT

e s R TR A BT AN A o F RF

E‘*‘é
cke
3
%
o+
w
w
ke
I
e
peics
A
¥
|
T+
o)

FreflFomp > R p 4 SR Y @A FTEALEE R S B
PHAR O PARRE LRSI N REP SR EEER O A REL R LR
B o T AR - B BRI - AR 2P B

2 ik e

=

WABE S HFE > RS 8 L 4p e JUM e Compiler 453 » # R
A Ay behE R B B F ARkt 4 o A R FAF Y Plp M
BERS LT R FHRFOEE L RHLE S S - REOFELY

R R AR P R E R E AP e

Bois o H AR A R B AN MRS g;;@ﬂi_p P EAam P A

Gt B R T -

2 &4 2009.7.26



Table of Contents

FER oot i
ADSIFACT bbbttt nae bt abe et i
B G SO TSP UR PSRRI i
TabIe OF CONLENES ....veiiee bbbttt b et n e neas 0\
LISE OF FIQUIES. ... bbbttt b et ab bttt Vi
LSE OF TADIES ..t bbbttt b e bbbt viii
Chapter 1 INErOTUCTION ....cviiiieece et 1
1.1 ReSEArCN IMOLIVALION ...vecviiieciicic st sttt esae e e e nreanees 4

1.2 RESEAICN ODJECLIVE.....cuiiiiiie ittt e te e s reenees 4

1.3 Organization OF thiS TRESIS .....eiiiiii i i e e e see e e 6
Chapter 2 BaCKQrOUNG.........oveiie ittt st sb ettt bttt et 7
2.1 Mixed-width ISA with- Mode-switch by Instruction Encoding.........ccccoevevviviveieiicncieenn, 7
2.1.1 S-FOrmat LIMItATIONS ... coueiuee ettt ettt see et e st e seeeeeeneeseeenees 7

2.1.2 Encoding Formats of S-Format INStrUCLION ............cccoovviriiiniieienceecs e 9

2.2 Graph Coloring Register AHOCALION. .......... oot 10
2.2.1 INterfernCe Graph ..o 11

2.2.2 Bottom-up Graph Coloring .......ccceiiiieii i e 11

2.2.3 Priority-based Graph ColOriNg.......ccccciveiieiiiiiiiiiii e sreenree 12

2.3 SUMMArY Of BACKGIOUNGS .......cveveiieiiiiisiiiiise e 14
Chapter 3  Design of The Register Allocation and Assignment Algorithms...................... 15
3.1 Compiler Back-end and Definitions for Mixed-width ISA..........cccccoeiieniivinic e 16

3. 1.1 INSTIUCTION TYPES ..ottt bbbttt b e 18

3.1.2 REQISIEI CIASSES ....vivieeieiieiieie ettt bbbttt 19

3.2 Design | : Based on Bottom-up Graph Coloring.........c.cccveviiiiiiiiiiieciece e 20
3.2.1 ALIOCAIION PASS......eiiiiiiiieitee ettt sttt ettt st e se e s et sne e e nae e neenees 21

A. Regs-Simplify and Reg  -Simplify Stages.........cccoviiiiiiiiicce e 21

B. SPIT STAQE .....civi ittt rn 24

3.2.2 ASSIGNMENT PASS .....cciiiiieeiic ettt te e st e s e st e ee e e e reenraenreeas 25



B0 T I [~ 1 ES7] o SRS 28
A. Different Assignment Orders in ASSIGNMENT...........ccveveiieeiie i 28
B. Assignment without Regs-SIMPLfy ..o 31
C. Extension of the Algorithm to More Hierarchy Register Sets for Different

S OIMALS ...t 32

3.3 Design Il : Based on Priority-based Graph Coloring .........c.ccccoveiiiiiiveieice e, 34
3.3. 1 SEPArae STAQGE ... eeeieeeiiee e e ectee e ee e s e e ae e e aeeeneeans 37
3.3.2 LRy Allocation and ASSIGNMENT..........oiiiireieieisiise st 37

3.3.3 LR Allocation and ASSIGNMENT ........ciiiiriirieieieisise st 38

3.3.4 LRs Allocation and ASSIGNMENT .........c.couiiiiiiiiiiieic e 39

3.3.5  DHSCUSSION ...ttt ettt r e nn e n e 39

AL AREINATIVE DESIGN ...t 40

B. Extension of the Algorithm to More Hierarchy Register Sets for Different

SeFOIMMALS ... e i 41

Chapter 4 EXPEIIMENT .....eiiiie i bttt bbbttt bbbt et e et benn e s 43
A1 ENVITONMEBNT ..ttt enes daate st fhe e e ekttt s bbb et et e e st e b e e bt b e et e st et e nn e b e eneas 43

4.2 Benchmark Evaluation RESUIS ........cccoiiiiiii i 44
4.2.1 Parameter DeterMiNAtiON ..ottt 44

4.2.2 Comparisons of Design AITErNALIVES ..o s 46

4.2.3 Code Size REAUCTION ... c.uiuiiitiitit ittt 47

4.2.4 SPII COUES....c.viiiieiecte ettt ettt e be e st e et e et e e re e 50

4.2.5 S-Format Limitations ANAIYSIS .......ccceiveiiiiiiiic e e s 51

4.3 Summary for SImulation RESUILS ..........ccoiiiiiiiiee e 53
Chapter 5  Conclusions and FUture WOrKS ...........cooeiiiiiiiinieccesee e 54
5.1 CONCIUSIONS ...ttt r et 54

5.2 FULUIE WOTKS ...ttt bbb 55
RETEIENCES ..ottt b bbbttt 57



List of Figures

Figure 1-1 — L/S-Format instructions in program code. (a) Mode-switch by mode-switch

instruction. (b) Mode-switch by instruction encoding.........c.ccoovvvieiinciciiienee 3
Figure 1-2 — Mode-switch by instruction encoding. .........cooviiereniieiiee e 3
Figure 2-1 - S-Format limitation diStribUtiONS. ... 8
Figure 2-2 - Different encoding formats of S-Format instructions. (Rd: destination register. Rs,
Rt: source destination. Imm: immediate Value)..........ccccoviriiiiniininiiee e 9
Figure 2-3 - INterference graph.........cooo oo 11
Figure 2-4 - Bottom-up graph COIOING. ......cc.ooviiiiiiiiiieeee e 12
Figure 2-5 - Priority-based graph COlOING. ........ccooiiiiiiiiiicec e 13
Figure 3-1 - Compiler back-end for mixed-width ISA..........c.cooiiiiiis 17
Figure 3-2 - Different S-Format instructions equivalent to IW. ..........c.ccooviiiiiiiiinie 17
FIgure 3-3 — REQISIEI CIASSES .......ccuiiiiiiiiiieiieie et 19
Figure 3-4 - Flowchart of the proposed algorithm based on Bottom-up graph coloring for
mixed-width ISA with mode-switch by instruction encoding.............ccoccoevrvninnne. 20
Figure 3-5—Diamond graph. ..ot 22
Figure 3-6 - The process sketch map of our proposed algorithm based on Bottom-up graph
(010] (o] 10 o O SO U TR TP UPRUTPPPRPROOR 22
Figure 3-7 - Pseudo code of alloCation PaSS. ..c..ccveveiiiiiriiiieieieie e 24
Figure 3-8 - Pseudo code Of aSSIgNMENT PASS. . ...t iveveviiiieeiereniesiesie sttt 28

Figure 3-9 - Different Assignment Order in Bottom-up Graph Coloring for Mixed-width ISA
with mode switch by instruction encoding : (a) Regs-Assignment —

Reg -Assignment  (b) Reg,-Assignment — Regs-AsSignment. ..........ccceeeeeneee. 30
Figure 3-10 - Assignment result without Regs-SImplify.........cccooiiiiiiiiice 31
Figure 3-11 - Extension of Design | for different S-Formats. ...........ccccovveiiinciiiiciciee 33

Figure 3-12 - Flowchart of the register allocation and assignment algorithm based on
Priority-based graph coloring for mixed-width ISA with mode-switch by

INSEIUCTION ENCOTING. ... ettt 35
Figure 3-13 - Pseudo code of Priority-based graph coloring for mixed-width ISA with
mode-switch by INStruCtion NCOAING ........cveviirriieierieeeeee s 36
Figure 3-14 - Flowchart of the proposed algorithm without LR, allocation and assignment
PASS OF DESIGN 11 .. 40
Figure 3-15 - Extension of Design Il for different S-FOrmats...........ccccoovvviiiiinencnciiiens 42
Figure 4-1 - The evaluation of differentovalues. ..........ccooueveiieieiiiiiiiieeeee e 45
Figure 4-2 - Benchmark evaluation results of the different assignment order in MxBuGCRA.
............................................................................................................................... 46
Figure 4-3 - Benchmark Evaluation Results of MxPrGCRA with/without LR, pass.............. 47

vi



Figure 4-4 - Benchmark evaluation results of the proposed algorithms............ccccccoevvieinennnne 49

Figure 4-5 - Spill codes of the proposed and traditional algorithms. ...........cccocevivevviieiienne 50
Figure 4-6 - S-Format limitation distributions - BUGCRA v.s. MXBUGCRA. ...........cccceeveneene 52
Figure 4-7 - S-Format limitation distributions - PrGCRA v.s. MXPrGCRA.........c.cccccvvrvenne 52

vii



List of Tables

Table 4-1 - Benchmark Evaluation Results of the Proposed Algorithms

viii



Chapter 1 Introduction

In the increasing market of embedded systems, RISC processors have been used widely.
A RISC processor usually offers higher computation power and lower hardware cost and,
meanwhile, suffers from the less code density than a CISC processor because of its
fixed-width instruction set. However, code size is one of the major issues in embedded
systems, since the larger code size may increase the memory requirement. As a result,
mixed-width RISC instruction set architectures (ISAs) have been proposed to make a good
tradeoff between performance and code density (i.e. low code size) [1]. Moreover, the traffic
of the memory data bus for fetching instructions and the I-Cache miss rate may also be

reduced.

There are several mixed-width ISAs provided commercially, for examples, ARM’s
ARM/Thumb ISA, MIPS’ MIPS/MIPS16 ISA, Andes’ AndeStar ISA, etc [2-4]. They
typically have one short width instruction format (S-Format) as a frequently used subset of the
longer width instruction format (L-Format). For example, MIPS is a 32-bit width instruction
set, and its 16-bit width subset is called MIPS16. Mixing the short width instructions into the
original program which is composed with 32-bit instructions may improve the code density.
However there are two main limitations exists due to the S-Format instructions have fewer

bits for register indexing and immediate value storing in mixed-width 1SAs.

1. Fewer bits to index registers:
One of the limitations is that the short width instructions have fewer bits to
index registers. For example, 3-bit register field in S-Format can access eight
physical registers only. If all of the operands of an instruction are assigned to the

registers that can be accessed by S-Format instructions, then this instruction is able



to be encoded as an S-Format instruction to reduce code size. Otherwise, if one of its
operands is out of the register indexing range of S-Format instructions, then this
instruction must be encoded as an L-Format instruction definitely. Accordingly, if
the compiler does not take into account these restrictions while assigning registers,
the translation rate of S-Format instructions may be quite low. Therefore, the

assignment of registers becomes very important for mixed-width ISAs.

2. Fewer bits to hold immediate values:

The other limitation is the short width instructions have fewer bits to store
immediate values. If the immediate value is oversized for an instruction’s S-Format
then the instruction can only be encoded as L-Format instruction. Although large
immediate values may impact the translation rate of S-Format instructions, it varies
on how complier manages constants. If a compiler uses a constant pool to hold these

large immediate values, the impact of immediate values can nearly be neglected.

In addition, the different mechanisms of mode switching between L-Format and
S-Format instructions make problems distinct in mixed-width ISAs. There are two types of
mechanisms for switching between L-Format and S-Format instructions [5]. Some
architectures use a mode switching instruction to change modes between code segments with
different encoding formats, for example, ARM/Thumb. It means that all instructions in the
same code segment must be encoded in the same format as shown in Figure 1-1 (a). On the
other hand, there are some architectures change modes by instruction encoding so that
L-Format and S-Format instructions may be interleaved freely in routines as shown in Figure
1-1 (b), i.e., L-Format and S-Format instructions may be mixed up at the instruction level

granularity. For example, AndeStar ISA uses a bit (usually the MSB) in instruction field to



indicate whether the instruction is L-Format or S-Format as shown in Figure 1-2. For the

former, existing compilers either rely on user guidance or perform an analysis to determine

which code segments should use S-Format [6], then a mode switch instruction will be inserted

between the code segments, and finally the compiler compiles code segments with different

instruction width by different policies. For the latter, because no mode-switch instruction is

needed, the compiler should eliminate the limitations of each individual instruction of its

S-Format as far as possible to increase the number of instructions encoded in S-Format.

However, the existing techniques for this kind of ISAs are still rudimentary.
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1.1 Research Motivation

So far we have introduced the mixed-width ISAs, which can increase code density if the
registers are used carefully especially for those with mode-switch by instruction encoding.
Also, we know that the code size problem is one of the major issues in embedded systems.
The larger code size needs the larger memory, and thus may consume more power.
Unfortunately, the enlarging program size due to the requirement of more program
functionalities in modern embedded applications is happening. For these reasons, using

mixed-width ISAs is a feasible approach for code size reduction.

In order to reduce program code size for a mixed-width ISA with mode-switch by
instruction encoding, registers should be allocated and assigned properly to eliminate each
instruction’s limitation of translation to S-Format instructions, and, as in results, the number
of instructions that can be encoded as S-Format may be increased. However, the existing
techniques of compilers for mixed-width ISA with mode-switch by instruction encoding are
rudimentary. Therefore, a proper register allocation and assignment algorithms should be

designed for this kind of ISAs.

1.2 Research Objective

In this thesis, we proposed an algorithm for mixed-width ISA with mode-switch by
instruction encoding to increase the number of instructions encoded as S-Format by allocating
and assigning registers properly. The original goal of register allocator is to allocate virtual
variables to registers or memory locations and optimize for generating fewest memory

referenced instructions (spill codes). However, for the mixed-width ISAs, it should consider



the mapping of physical registers and virtual variables, and, meanwhile, the number of spill
codes should be minimized due to the performance issue. To achieve the features mentioned,

there are two main goals to accomplish:

1. Reducing code size:

To reduce code size by mixed-width ISA with mode-switch by instruction
encoding, the usage of S-Format instructions is the key point. In other words, if we
can encode more instructions as S-Format instructions, the code size will be
reduced more. To achieve that, we propose a heuristic model in register assignment
procedure. The proposed algorithm not only allocates virtual variables to registers
or memory locations but also assigns registers by choosing virtual registers with the
highest code size benefit to assign physical registers which are accessible by

S-Format instructions.

2. Minimizing performance degradation:

Although our primary objective is to reduce code size, the number of spill codes
generated by register allocator is critical, too. More spill codes lead to more
performance degradation, and it also increases code size. To minimizing the number
of spill codes, the proposed algorithm chooses variables with the lowest memory
reference cost to spill while the required registers are more than the physical

registers available.



1.3 Organization of this Thesis

The rest of this paper is organized as follows: Section 2 discusses more details of a
typical mixed-width ISA and other related researches and algorithms; Section 3 gives the
instruction formats and register classes defined in our algorithm and the detailed description
of the proposed algorithm; Section 4 presents the experimental results and discussion follows.

Finally, Section 5 dedicates to the conclusions we draw and the future work planed.



Chapter 2 Background

In the first part of this chapter, we will analyze the distribution of S-Format limitations in
programs generated by a traditional register allocation algorithm to observe the opportunities
for research and explain more details about mixed-width ISA with mode-switch by instruction
encoding. In the second part, two traditional register allocation algorithms will be introduced.
In the last part, a brief summary about the problems that the existing algorithms suffer from in
mixed-width ISA with mode-switch by instruction encoding and the solutions we proposed

for it will be described.

2.1 Mixed-width ISA  with Mode-switch by

Instruction Encoding

In this section, the S-Format limitations will be introduced and analyzed. Then, the

different encoding format of S-Format instructions will be explained in details.

2.1.1 S-Format Limitations

Using mixed-width ISA can reduce code size significantly in intuition: if all
instructions have operational equivalent S-Format instructions and all of them can be
encoded in S-Format, then the code size may be reduced by 50%. However, as
mentioned above, there are many restrictions including register index, immediate values,

and, even that not all the instructions have corresponding S-Format instructions.

Figure 2-1 is the analysis result about the distribution of the limitations of S-Format
translation in benchmark programs compiled by using traditional graph coloring register

allocation. The top blocks, green colored, are the percentage of instructions which have



no operation equivalent S-Format instructions or the immediate value is oversized. The
middle blocks, red colored, are the percentage of instructions each of which has one or
more operation equivalent S-Format instructions but at least one of its operand registers
is out of range to index of S-Format instruction. And the bottom blocks, blue colored, are
those instructions whose register number and immediate value are in the range of

S-Format instructions.

From the distribution, we found that there are only about 11% instructions which
have no operation equivalent S-Format instructions or the immediate value is oversized
for its S-Format. However, over 50% of the left 89% instructions are restricted by their
register number for translating to S-Format instructions. If the register allocation uses
registers that can be accessed by S-Format instructions carefully in a heuristic way, it is

possible to make more instructions be encoded into S-Format.
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Figure 2-1 - S-Format limitation distributions.



2.1.2 Encoding Formats of S-Format Instruction

Comparing with L-Format instructions, S-Format instructions have fewer bits to

index registers, and thus, the encoding formats of S-Format instructions have to be

designed carefully in mixed-width ISAs. Typically, there are four S-Format encoding

forms in mixed-width ISAs in present as in Figure 2-2:

3R3

2R3

1R3

1R4

16-bit

g

TEEOP Bd3 ps3 B3
16-bit

g

1 OP | rd3| rs3 |imm
16-bit

g |

1 OP |rd3 imm
16-bit

1 OP rd4 imm

add $rd3, $rs3, $rt3

addi $rd3, $rs3, imm

addi $rd3, $rd3, imm
lwsp $rd3, $sp(imm)

addi $rd4, $rd4, imm

Figure 2-2 - Different encoding formats of S-Format instructions. (Rd: destination

register. Rs, Rt: source destination. Imm: immediate value)

1. 3R3 Form

There are three registers as its operands, and three bits for each register

indexing in 3R3 form.

2. 2R3 Form

There are two registers and one immediate value as its operands, and three

bits for each register indexing in 2R3 form.

3. 1IR3 Form

There are one register and one immediate value as its operands, and three bits

for register indexing in 1R3 form. The register, rd3, in this form is used as the



source register and the destination register (eg. addi in Figure 2-2) or destination

register when there is an implied register (eg. lwsp in Figure 2-2).

4. 1R4 Form
In a few mixed-width ISAs, some S-Format instructions may use four bits for
register indexing. And the register, rd4, in this form is used as the source

register and the destination register (eg. addi in Figure 2-2).

So far we have introduced four forms of instruction formats for S-Format
instructions in mixed-width ISA with mode-switch by instruction encoding. From the
analysis result shown above, the effect of reducing code size by using mixed-width ISAs
is highly depend on the number of bits used to index registers. And thus, we concentrate
on the number of bits used to index registers, meanwhile, the accessible registers of 3R3,
2R3, and 1R3 forms are limited in the same region. We have surveyed most of the
mixed-width ISAs in present, and almost all of them consist of the 3R3, 2R3 and 1R3
forms only. Therefore, in this thesis, our target is the mixed-width ISAs with
mode-switch by instruction encoding which comprise 3R3, 2R3, and 1R3 forms.
Moreover, we will bring a briefly discussion about how to extend our algorithm to meet

the requirement of 1R4 form.

2.2 Graph Coloring Register Allocation

The graph coloring algorithm is the most popular Register Allocator (RA) in general
compiler for generating fewest load/store instructions, usually called “spill code”. Graph

coloring for register allocation has many different versions [7]. The most well-know one is the

10



Bottom-up Graph Coloring proposed by Gregory J. Chaitin [8][9]. In addition, another
frequently used version is the Priority-based Graph Coloring proposed by Fred C. Chow [10].

We will introduce these two algorithms in the following sections.

2.2.1 Interference Graph

Both of these two graph coloring algorithms have to construct the same interference
graph for coloring. The interference graph is constructed from a program function as in
Figure 2-3. Nodes in an interference graph represent virtual variables (called variables
for short) in program function, and the edges connected between nodes is the overlaps
between their live ranges, i.e. they are alive in the same time. (Coloring a node in graph

IS meant giving a register to a variable)

Function) I[ 1

Visualize I I

Figure 2-3 - Interference graph.

2.2.2 Bottom-up Graph Coloring

The flowchart of the bottom-up graph coloring algorithm is shown in Figure 2-4.
First, it constructs an interference graph in the Build stage. If the graph can be colored
with R colors then the variables can be stored in R registers [11]. This algorithm removes
a node i with degree (the number of connected edges of a node) less than R, and put i
into a stack, iteratively. This stage is called Simplify. Once all nodes are removed from

the graph, i.e., the graph is an R-colorable graph, then pops all nodes from the stack and

11



assigns a color to each of them. Otherwise, the graph is not R-colorable, and thus,
chooses one from the remaining nodes and split it into several nodes with shorter live
time. This stage is called Spill. Notice that once a variable is spilled, new variables will

be produced, and the algorithm must be rewound back to rebuild the interference graph.

C Start )

v

Build |

Simplify

C End )

Figure 2-4 - Bottom-up graph coloring.

2.2.3 Priority-based Graph Coloring

The flowchart of priority-based graph coloring algorithm is shown in Figure 2-5, it
also constructs an interference graph in the Build stage firstly. Then the algorithm
separates nodes into two categories: UCLR (Unconstrained Live Range) and CLR
(Constrained Live Range). The UCLR contains the nodes with degree less than the
available number of physical registers R, and the CLR contains the others. Because the
variables in UCLR have degrees (simultaneously living variables) less than the number
of available physical registers, all of these variables are guaranteed to have registers.

Therefore, the priority-based graph coloring makes effort on the variables in CLR only.

12



It assumes that all variables in CLR are initially stored in memory, and it uses a
priority function to give each variable in CLR a priority. Then pick the highest priority
one to assign physical register. The priority function is composed of the cost of memory
load and memory store saved if the variable was assigned to a register. In other words,
the priority of a variable is similar to the access counts for the variable. After assigning
one variable, the algorithm will check each neighbor of the variable to see whether it
needs to be spilled. If yes, then spill it. Until all variables in CLR have been assigned
registers, priority-based graph coloring then handles the UCLR. As mentioned above all

variables in UCLR can be easily assigned registers.

C Start )
v
| Build [
v
| Separate \
v
— Prioritize }

| Pick & Assign (CLR) [«

AJMAN
pIing

=0
| Assign UCLR |«

M
=
=
o

|

Figure 2-5 - Priority-based graph coloring.
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2.3 Summary of Backgrounds

For mixed-width ISA with mode-switch by instruction encoding, we have indicated that
the most limitation of translation to S-Format instructions is the using of the accessible
registers in the register file in Section 2.1. Therefore, it is critical that which virtual registers
should be assigned to which physical register in such architectures. However, both of the two
traditional graph coloring register allocation algorithms consider the number of spill code
only, and they do not take the mapping of virtual variables and physical registers into account.

Therefore, they may result in less translation rate of S-Format instructions in generated code.

Obviously the traditional graph coloring register allocations do not suit for reducing code
size in mixed-width ISA with mode-switch by instruction encoding. In this thesis, our goal is
to design a register allocation-and assignment algorithm to reduce code-size for mixed-width

ISA with mode-switch by instruction encoding while minimizing performance degradation.
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Chapter 3 Design of The Register

Allocation and Assignment Algorithms

In this thesis, we propose a register allocation and assignment algorithm to determine
which of the virtual registers (variables) should be in which physical register or memory at
each execution point. Here, register allocation decides which variables should be kept in the
physical registers, and register assignment chooses physical registers for those variables
which are not spilled into memory. In order to minimize the code size, the goal of the
proposed algorithms is to assign as many variables which have more benefit to reduce code
size (called $Varcs for short) as possible into the S-Format accessible registers. Therefore,
more instructions can be translated to S-Format instructions. Since it is difficult to assign all
$Varcss within an application to the S-Format accessible registers, the way to determine
which $Varcs should be assigned to these registers is crucial. The basic idea of the proposed
algorithms is to let the frequently accessed and lower degree $Varcss have higher opportunity
to be assigned to the S-Format accessible registers. In other words, the assignment order of
$Varcs is arranged from the most to the least frequently accessed and from lower to higher

degree.

The graph coloring algorithm is the most commonly used register allocation algorithm in
compilers so that we use graph coloring algorithm as the base for our algorithms. In the
following sections, the compiler backend and definitions used in this thesis are presented first,
and then two algorithms which are modified from bottom-up and priority-based graph
coloring algorithms for mixed-width ISA with mode-switch by instruction encoding will be

explained in detail.
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3.1 Compiler Back-end and Definitions for
Mixed-width ISA

Typical compiler back-ends consist of instruction selection, instruction scheduling, and
register allocation. First, instruction selection maps low-level intermediate representation (IR)
to actual machine instructions (called instruction for short). This is usually done by pattern
matching. And then, instruction scheduling schedules instruction for hiding some pipeline
stall and/or increasing instruction-level parallelism. Finally, the register allocator will allocate

virtual registers to physical registers.

However, in a mixed-width ISA, an instruction may be represented in multiple formats
(e.g., L-Format and S-Format in this thesis) that are mainly different in their encoding length
and the access range of register file. Therefore, instruction selection in a mixed-width ISA not
only maps an operation of low-level IR (called operation for short) to instruction(s) but also
chooses a proper format for each instruction. To achieve this, instruction selection is separated

into two passes in this thesis as shown in Figure 3-1.

In instruction selection pass, an operation is mapped to temporary instruction(s), called
as INS. Note that each INS may have multiple instruction formats which are only different in
their encoding length rather than functionality. The instruction formatting pass is performed
after register allocation and assignment pass. In this pass, each INS is translated to a proper
instruction format according to the result of register allocation and assignment. For example,
if a memory load INS Iw has two equivalent S-Format instructions as shown in Figure 3-2.
The instruction formatting pass will check whether its base register is $sp. If yes, and the
offset is not oversize for S-Format to encode, and, thus, instruction formatting translates Iw

into lwsp; if not, the operation will be leaved unchanged. Because the assembly name of
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S-Format instruction lw is the same as that of the L-Format one, the assembler will check the

operands of the instruction to encode it in a proper format.

Intermediate Representation (IR
of a functio

po=

~

Instruction Selection

Mapping IR to Instruction (INS)

Instruction Scheduling

Schedule for optimization

I

Register Allocation and Assignment
Algorithm

v

Instruction Formatting

Determine INS to L or S-Format Instruction

(uanapon) pua-yoeg JajiIdwon

Assembly File |

:with 16-bit instruction interleaved

Figure 3-1 - Compiler back-end for mixed-width ISA.

B 32-bit -
- -
A: O w [ rd5 [ rs5 | imm | A:1w $rd, $SpGimm)
’ 16-bit -
B: 1 lwsp m3 imm B: lwsp $rd3, $sp(imm)
16-bit
C: 1 Iw [rd3|rs3 imm C: 1w $rd3, $rs3(imm)

Figure 3-2 - Different S-Format instructions equivalent to lw.
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3.1.1 Instruction Types

In mixed-width ISA, most INSs have multiple formats that are mainly different in

their encoding length. In order to indicate whether an INS has multiple encoding formats

or not, in this paper, INSs are classified into three categories as follows:

1)

(@)

(3)

L-INS (L-Format INS): L-INS is an INS which has no equivalent S-Format
instruction or has larger (oversized) immediate value such that it cannot be encoded
in S-Format.

S-INS (S-Format INS): S-INS is an INS which can be encoded in S-Format
definitely. For examples, JR and NOP. JR has only one operand and can access
anyone of the physical registers. NOP does not index any registers and, thus, can be
encoded in S-Format obviously.

U-INS (Uncertain-Format INS): U-INS is an INS which has one or more
equivalent S-Format instructions, and can be encoded as an S-Format instruction if
its physical registers may be limited in a small range. For specification, the virtual
variables defined and/or used by a U-INS are marked as $Vary. And the $Vary is
exactly that variable with benefit to reduce code size as we mentioned $Varcs. Note
that U-INS is exactly what we can make efforts to increase the translation rate of

S-Format instructions.
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3.1.2 Register Classes

In this thesis, the physical registers of a mixed-width ISA are divided into two
classes. Registers that can be accessed by S-Format instructions of U-INSs are denoted
as RegisterSets, and another case is RegisterSeta, which represents all accessible physical
registers for L-Format instructions, except some special register such as stack pointer
(SP), global pointer (GP), etc. The number of registers of RegisterSets and RegisterSeta
are denoted as RSNs and RSN,, respectively. Noticeably, RegisterSets is a subset of
RegisterSeta rather than independent of each other. Now we take MIPS/MIP16
mixed-width architecture as an example. The register r0 is reserved for zero in MIPS,
and MIPS16 uses three bits to index registers. Therefore, RegisterSets contains r1~r7,

and another class, RegisterSeta, contains r1~r27 as shown in Figure 3-3.

RegisterSets

~ — RegisterSet,

Figure 3-3 — Register classes

Note that we do not handle the special registers, because special registers are
usually used in a specific way, e.g., stack pointer ($sp) in add or Iw for stack operation.
Moreover, special registers usually have corresponding special S-Format instructions for
them as implied operands. For example, add (SP-relative) and Iw (SP-relative)

instructions imply SP register as their operand as shown in Figure 3-2.
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3.2 Design | : Based on Bottom-up Graph Coloring

In this section, the first design, register allocation and assignment algorithm based on
Bottom-up graph coloring for mixed-width ISA with mode-switch by instruction encoding,
will be described in detail.

As depicted in Figure 3-4, the proposed algorithm consists of two main passes, namely
Allocation, and Assignment. Firstly, the Build stage parses all necessary information, such as
live rages, instruction types, etc., and constructs the interference graph, called graph for short.
Note that the graph does not contain the variables which must be allocated in special registers
and calling convention registers. Based on the interference graph, Allocation pass determines
which variable should be allocated in the physical register or be spilled into memory. Finally,
Assignment pass selects a physical register and assigns it to a non-spilled variable. The input
and output of the proposed algorithms are INSs with virtual registers and assembly code,

respectively.
Start

b 4
1. Build |

h 4

] 2. Regs-Simplify |
v

] 3. Reg, -Simplify |
) 4

>0

uoyvIoJ|y

<Zf§?;;)h gz\éf:r:»
-
[ Pick <

No ($var,
Free register?

Yes
[ Assign & Remove |

locatedSet, Siz 2
v =0
—» 5.Regs-Assignment

juawubissy-169y

JUMUSISS

__AliocatedStacks
>0 —Size —
v=0
] End 7
Figure 3-4 - Flowchart of the proposed algorithm based on Bottom-up graph coloring for

mixed-width ISA with mode-switch by instruction encoding.
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3.2.1 Allocation Pass

The main purpose of Allocation pass is to determine which of the variables should
be in register or in memory at each execution point. As shown in Figure 3-4, allocation
pass consists of three main stages, namely Regs-Simplify, Reg, -Simplify, and Spill.
Firstly, Regs-Simplify and Reg,-Simplify stages remove some variables from the graph
and place them into the corresponding stacks. If there are any remaining variables after
these two stages, then the degrees of these variables will be all larger than RSN4, and the
algorithm will enter spill stage. Spill stage shrinks the degrees of variables by removing
some variables with less effect on the execution performance from the graph. In this
stage, a variable removed from the graph is the one that must be spilled into memory.
Since spilling a variable will generate several new variables, the algorithm must return to
the Build stage and rebuild the graph, and then the allocation pass will be repeated again.
When all variables are removed from the graph, it will enter the assignment pass to

assign physical registers to variables.

A. Regs-Simplify and Reg, -Simplify Stages

Regs-Simplify and Reg.-Simplify stages are designed to remove variables from
the graph. The Regs-Simplify stage is performed before the Reg,-Simplify stage to
find out variables which can guaranteed be assigned in RegisterSets. It will remove
$Varys with degree less than RSN, i.e., these variables can be assigned in RegisterSets
definitely. However, in Reg,-Simplify stage, the removed target becomes the variables
with degree less than or equal to RSNa. This is because of the special case called
“diamond” graph as shown in Figure 3-5. For example, if the target processor has two
physical registers, r0 and rl, and the simplify stage removes only variables with

degree less than two. Then the simplify stage removes no variables, and one of the
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four variables, A, B, C, and D, will be chosen to spill. However, it is obvious that this
diamond graph can be colored by two colors as shown in Figure 3-5. To tackle this
problem, the proposed algorithm removes variables with degree less than or equal to

RSNa to make sure the remaining variables are those “must” be spilled.

Figure 3-5 — Diamond graph.

For both Regs-Simplify and Reg.-Simplify stages, the removing order is
arranged from lower to higher degree; and after removing a variable from the graph,
the degree of all remaining variables will be updated. The variables removed from
Regs-Simplify are pushed into AllocatedStacks, and from Reg,-Simplify stages are
stored into AllocatedSet,. Since the degrees of the variables removed in Regs-Simplify
stage are smaller than RSN, all variables in AllocatedStacks are able to be assigned in
RegisterSets. As for variables in AllocatedSet,, they may be assigned either in
RegisterSets or RegisterSeta. Therefore, the way to assign proper variables to

RegisterSets is the key issue in our design as the red arrow as shown in Figure 3-6.

N RegisterSetg

Regs-Simplify

®-o II[
T\®
| o

Reg,-Simplify L N~

S5orIgPa}RI0| Y

>

r/_\
Cr
Tespaleoo| |y

RegisterSet,

Figure 3-6 - The process sketch map of our proposed algorithm based on Bottom-up
graph coloring.
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Regs-Simplify and Reg -Simplify stages are performed until (1) none of the
remaining variables in the graph can be removed; or (2) only variables with degrees
equal to or larger than RSNs in Regs-Simplify stage or larger than RSN in

Reg.-Simplify stage are left.

Note that all variables removed in Reg.-Simplify stage are stored into
AllocatedSet,, even if their degrees are smaller than RSNs. Since the degrees of
variables may decrease over time, the variables removed later will have smaller
degrees. After removing a certain number of variables, the degrees of some remaining
variables in the graph will be less than RSNs. Now these are two alternatives for
choice: (1) let the algorithm go back to Regs-Simplify stage to remove these variables
and put them into AllocatedStacks; or (2) stay in Reg.-Simplify. If the algorithm can
return to Regs-Simplify stage while in Reg,-Simplify when there are variables with
degrees less than RSN, then all of these variables will be pushed into AllocatedStacks
(i.e., be assigned in RegisterSets). However, these $Varys may be not the proper
variables to be assigned to RegisterSets to increase the number of S-Format
instructions than the other variables in AllocatedSet,, and they may occupy registers
from their neighbors which are more proper than these variables. Therefore, in order to
avoid assigning improper variables in RegisterSets, all variables removed in
Reg.-Simplify stage are only stored into AllocatedSet, and let the assignment pass to
discover which variables in AllocatedSet, should be assigned to RegisterSets. The

pseudo code of allocation pass is shown in Figure 3-7.
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Procedure Allocation
/Il Graph = {Variable;} is the set of nodes
Il Degree; is the Interference_Number of variable;
While Graph # ¢ do
Regs-Simplify:
forall variable; € Graph do
if Degree; < RSNs then
Remove variable; from Graph;
Put variable; into AllocatedStacks;
endif
endfor
if Graph = ¢ then
break;
Reg, -Simplify:
forall variable; € Graph do
if Degree; <= RSNj then
Remove variable; from Graph;
Put variable; into AllocatedSet, ;
endif
endfor
if Graph # ¢ then
goto Spill;
endwhile
endprocedure

Figure 3-7 - Pseudo code of allocation pass.

B. Spill Stage

In Regs-Simplify and Reg, -Simplify stages, we remove variables from the graph.
If there are remaining variables in the graph and cannot be removed anymore, the
algorithm will enter the spill stage. Then spill stage must choose one of the remaining
variables to spill, i.e. insert spill codes for this variable. An ideal variable for spilling

is the one that requires less number of dynamic loads and stores (less number of
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accesses) and can reduce the number of future potential spill variables (higher degree).

Accordingly, the spill cost of variable;, SpillCost;, is defined as follows:

Access;
H
egree,

SpillCost; =

where Access; is the number of defines and uses of variable;, and Degree; is the
number of edges in the interference graph connected to variable;. After choosing
variable;, spill stage will insert corresponding load/store instructions for it, and then
return to the Build stage. Since inserting a spill code will result in new temporary
variables, it is necessary to rebuild the interference graph. In other words, the entire

algorithm will be repeated again if a new actual spill is generated.

3.2.2 Assignment Pass

Assignment pass assigns a physical register to each variable in AllocatedStacks and
AllocatedSet,. This pass is divided into two stages, namely Reg,-Assignment and
Regs-Assignment. The Reg,-Assignment stage is performed before the Regs-Assignment
stage because that variables in AllocatedStacks can be guaranteed they have registers in

RegisterSets to use. As for more details, we will discuss in Section 3.2.3.

For the variables in AllocatedSet,, they may be assigned in RegisterSet, or in
RegisterSets. That is, Reg_-Assignment stage must determine the assignment target,
RegisterSets or RegisterSeta, for the variables rather than just assigns all of them into
RegisterSeta. The assignment target determination can be viewed as the problem of
deciding which variables in AllocatedSet, should be assigned in RegisterSets. The code
size reduction is proportional to the number of U-INSs being translated to S-Format

instructions, and the translation ratio is dominated by the number of $Varys being
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assigned in RegisterSets. Due to the size limitation of RegisterSets, not all $Varys can be
assigned into RegisterSets. To determine which $Vary should be assigned into
RegisterSets, we define a profit function in this paper. The profit function considers two

features of $Vary, namely utilization and degree.

The utilization of $Vary is the number of times that $Vary is being accessed by
S-Format instructions in a whole function. Obviously, a frequently accessed $Vary
should have higher priority to be assigned to RegisterSets. However, it is impossible to
calculate the actual number of accesses by S-Format instructions of a $Vary before the
instruction formatting pass in which the final instruction format has been decided for
INSs, and, as mentioned above, the instruction formatting pass can only be performed
after register allocation and assignment. To overcome this problem, we propose an
approach to evaluate the approximate number of accesses of a $Vary. The approach
consists of two parts, namely static and adaptive estimations. The static estimation
calculates the initial number of times that a $Vary is being accessed by U-INSs. Note
that this value is a constant for each $Vary. As for the adaptive estimation, it computes
the current number of times that a $Vary is being accessed by U-INSs which have at
least one operand being assigned into RegisterSets. The adaptive estimation of all $Varys

must be updated whenever a $Vary is assigned to RegisterSets.

The degree of $Vary represents the number of neighboring variables of $Vary in the
graph. In order to make more $Vary be assigned in RegisterSets, a $Vary with less
degree should have higher opportunity to be assigned into RegisterSets. Note that less
degree also implies shorter live range. Based on these two features, the profit value for

$Vary;, denoted as Sel_profit;, is defined as follows:

Sel _ profit _axInit_est; +(1-a)x Adp _est;
- i Degree, +1 ’
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where Init_est; and Adp_est; represent the initial and adaptive estimation results for
$Varyi, respectively; Degree; is the degree of $Vary;. Because of the continuous
changing of Adp_est;, Sel_profit; also has to be updated after a $Vary is assigned to
RegisterSets. Note that alpha value, a , in Sel_profit; is the weight parameter between
Init_est; and Adp_est;, and we will experiment this algorithm with different alpha values

in Chapter 4.

Moreover, during Reg.-Assignment stage it is possible to encounter a variable
which cannot be assigned into any physical registers, i.e., all available physical registers
are occupied by its neighbors. Then the algorithm will enter the spill stage and insert
spill codes for this variable directly, and the entire algorithm will be repeated again.
Remind that, in this algorithm, variables which definitely cannot be assigned to any
register have been discovered at allocation pass. For those variables which may not

possibly be assigned to registers, they will be discovered in Reg, -Assignment stage.

As mentioned above, the variables allocated into AllocatedStacks are guaranteed to
be assigned in RegisterSets, since their degrees are smaller than RSNs. Accordingly,
Regs-Assignment stage may adopt the traditional assignment approach by following the

stack pop order to choose the physical registers for the variables in AllocatedStacks.

The pseudo code of assignment pass is shown in Figure 3-8.
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Procedure Assignment
While AllocatedSet, # ¢ do
Forall variable; € AllocatedSet, do
Calculate Sel_Profit;;
endfor
pick one variable; with highest Sel_Profit; as variable*;
if variable* can be assigned into RegisterSets then
Assign a register different from its neighbors to variable* in RegisterSets;
Remove variable* from AllocatedSet, ;
else if variable* can be assigned into RegisterSeta then
Assign a register different from its neighbors to variable* in RegisterSet;
Remove variable*from AllocatedSet; ;
else
/* it has no register to assign, pass it to spill */
goto Spill(variable*);
endif
endwhile
Forall variable; € AllocatedStacks do
Assign a register different from its neighbors to variable; by stack pop order;
endfor
endprocedure

Figure 3-8 - Pseudo code of assignment pass.

3.2.3 Discussion

In this subsection, three issues will be discussed: (1) the effect of different
assignment orders, (2) assignment without Regs-Simplify, and (3) extension of the

algorithm to more hierarchy register sets for different S-Formats.

A. Different Assignment Orders in Assignment

In the proposed algorithm based on bottom-up graph coloring, the
Reg -Assignment stage is processed before the Regs-Assignment stage. The main

reason is that variables in AllocatedStacks are guaranteed that they have registers in
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RegisterSets to use. In other words, no matter how the Reg,-Assignment assigns the
variables in AllocatedSet, , the Regs-Assignment can assign registers in RegisterSets to
variables in AllocatedStacks. Since only variables with degree less than RSNs are
pushed into AllocatedStacks during Regs-Simplify. For example, there is an
interference graph as shown in Figure 3-9. Assume that the architecture has three
registers, $r0, $rl, and $r2. RegisterSets contains $r0 and $r1 (RSNs = 2), and
RegisterSeta contains all of the three registers (RSN = 3). Variables D and E in Figure
3-9 are simplified by Regs-Simplify and moved to AllocatedStacks since their degrees
are less than two. The others variables A, B, and C are simplified by Reg,-Simplify
and moved to AllocatedSet,. The sel profit; for variable A, B, and C in
Reg -Assignment is A > B > C. As the result is in Figure 3-9 (a), if we assign
AllocatedSet, first, variable A can be assigned to $r0 because that there are no
registers have been occupied, then variable B is assigned in $rl, and the last register
$r2 is assigned to variable C. After performing Reg, -Assignment, Regs-Assignment is
invoked to handle AllocatedStacks. Since variables in AllocatedStacks are guaranteed
to have registers in RegisterSets to use, we just assign registers which are not occupied
by their neighbors in RegisterSets. For the result shown in Figure 3-9 (a), all variables
in AllocatedStacks are assigned to RegisterSets, and it is what we expect that variable
A and B should have higher opportunity to be assigned to RegisterSets than variable C

does.

However, if we change the assignment order and let Regs-Assignment be
performed before the Reg, -Assignment, it may result in that some of the variables in
AllocatedSet, with higher priority which may be assigned to RegisterSets in the
previous order cannot be assigned to RegisterSets now. For example, if the assignment

order is Regs-Assignment — Reg.-Assignment as shown in Figure 3-9 (b), Variables

29



D and E in AllocatedStacks will be assigned to $r0 directly first. Then, variables A, B,
and C in AllocatedSet, will be picked up by the sel_profit; value in descendant. First,
variable A is picked up and assigned to $rl ($r0 is occupied by its neighbor), then
variable B is assigned to $r2, and the last variable C is assigned to $r0. Because the
sel_profitg > sel_profitc, we desire that chance of variable B in RegisterSets is higher
than variable C. However, variable B is not assigned to RegisterSets, but the variable

C does.

\ ro D Reg, -Assignment
(a) o

G e = ro D % °
r2
Sel PI?A >B>C

r1 D Regg-Assignment

® g

D Reg, -Assignment
( : /H — E r0
ro

r2><

Figure 3-9 - Different Assignment Order in Bottom-up Graph Coloring for Mixed-width

ISA with mode switch by instruction encoding : (a) Reg.-Assignment — Regs-Assignment

(b) Regs-Assignment — Reg, -Assignment.
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B. Assignment without Regs-Simplify

The second discussion issue is how about if we do not isolate variables with
degree less than RSNs in Regs-Simplify of allocation pass, i.e., let all variables be
simplified to AllocatedSet, in Allocation pass, and then assign those variables in
descending order of sel profit values in Assignment pass. This method seems
instinctive. However, if we do not isolate variables in Regs-Simplify, the sel_profit of
some variables which are simplified to AllocatedStacks originally may be higher than
those which are simplified to AllocatedSet, originally. Therefore, it will cause the
problem similar to that of the assignment order “Regs-Assignment —

Reg-Assignment” mentioned above.

For the same example given above, Figure 3-10 is the result of register
assignment if Regs-Simplify stage is canceled in the allocation pass. Because all
non-spilled variables are in AllocatedSet, and all of them are given a sel_profit as their
priority, in this example, the priority is D > A > E > B > C. According to this
assignment order, the results in that variable B cannot be assigned in RegisterSets

since variable E have higher priority than variable B.

r1
o D All variables in one Set

O ®]@n
r2

X

Figure 3-10 - Assignment result without Regs-Simplify.
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C. Extension of the Algorithm to More
Hierarchy Register Sets for Different

S-Formats

For extending algorithm to handle the 1R4 form, we can modify the algorithm as
shown in Figure 3-11. Here we have a new register class named RegisterSety, and it
contains registers (eg. $rl ~ $r15) can be accessed by those instructions in 1R4 form,
i.e. the RSNy is 15. Moreover, the Regw-Simplify and Regw-Assignment stages are
added in the extended algorithm, and the U-INS may contain 1R4, 3R3, 2R3, and 1R3
forms. For $Varys in U-INS, a $Vary which is defined or used only by 1R4 form

instructions is denoted as $Varys, and the others are denoted as $Varys.

At the Regm-Simplify, the algorithm removes $Varyss which are with degree less
than RSNy to AllocatedStacky. In other words, if a variable is defined/used only by
1R4 instructions and the variable can be assigned to RegisterSety definitely, and we
directly push it into AllocatedStacky and assign it to RegisterSety at Regm-Assignment
stage. As for those $Vary,s with the degrees are larger than or equal to RSNy, they
may be removed at the Reg, -Simplify stage and stored into AllocatedSet,. Therefore,
the modification of the sel_profit function is needed. The modified sel_profit function
should take those $Vary,s into account. For each $Vary,, it increases the Init_est and
Adp_est in sel_profit, but the weight should be lower than $Varys. Since $Varyss have
higher register pressure than $Varyss, they are intended to be assigned to RegisterSets.
By adopting these modifications, the $Varyss will still have the highest priority to use
RegisterSets, then the second priority is the RegisterSety for $Varyss, and the last is

those variables that are not defined or used by U-INS.
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3.3 Design Il : Based on Priority-based Graph Coloring

The second design in this thesis is based on priority-based graph coloring. The mainly
difference from the previous design is that this algorithm makes efforts on selecting variables
to increase the number of S-Format instructions first, and then considers the number of spill
codes. In opposite, the previous design discussed in Section 3.2 makes efforts on minimizing
spill codes in allocation pass first, and then considers to increase the number of S-Format

instructions in assignment pass.

For the proposed algorithm based on Priority-based graph coloring for mixed-width ISA
with mode-switch by instruction encoding, its flowchart is shown in Figure 3-12. There are
three sets of live range (live range is the same with variable) need to be allocated and assigned

are defined as follows:

1. LRs: LRs (Live Ranges in RegisterSets) contains variables with interference number
less than RSNs. For those variables in LRs, they are guaranteed to be allocated and
assigned to RegisterSets.

2. LRy: LRy (Live Ranges in Uncertain RegisterSet) contains variables with
interference number larger than or equal to RSNs. For those variables in LRy, they
may be allocated and assigned to RegisterSets, RegisterSeta, or Memory (Spilled).
The way to determine which variables in LRy should be assigned to RegisterSets is
critical to this algorithm.

3. LRL: LR_ (Live Ranges in RegisterSeta) contains variables which cannot be assigned
a register in RegisterSets during the LRy Allocation and Assignment pass. They will
be allocated and assigned to RegisterSeta or Memory (Spilled) during the LR.

Allocation and Assignment pass.
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First, Build stage parses all necessary information (such as live rages, instruction types)
and constructs the interference graph the same way as that described in the previous design.
Then the Separate pass separates variables in the graph into LRy and LRs. After Separate
stage, the algorithm uses a priority function which is designed to make more instructions to be
encoded as S-Format instructions to choose variables from LRy to allocate and assign
registers in the Prioritize stage. During this pass, some variables in LRy may be transferred to
LR.. For minimizing the generated spill codes, the algorithm uses the other priority function
which is designed for minimizing the spill codes to allocate and assign registers for variables
in LR.. And finally, the variables in LRs are handled. The input and output of the proposed
algorithm are INSs with virtual registers and assembly code, respectively.

| 1. Build |

v
| 2. Separate |

v
> 3. Prioritize |

LRy
Allocation and Assignment

> 5. Pick&Assign (L) <
v

| 6. Check & Spill \

| AimaN pling’Z |

LRy
Allocation and Assignment

8. Assign LRg
Allocation and Asszgmem

Figure 3-12 - Flowchart of the register allocation and assignment algorithm

based on Priority-based graph coloring for mixed-width ISA with

mode-switch by instruction encoding.



The pseudo code of Priority-based graph coloring for mixed-width ISA with

mode-switch by instruction encoding is shown in Figure 3-13.

Procedure MxPrGCRA
Build interference graph ifGraph;
Separate LRy and LRg;
While LRy # ¢ do
Forall variable; € LRy do
Calculate Sel_Profit;;
endfor
pick one variable; with highest Sel_Profit;;
if variable; can be assigned into RegisterSets then
Assign a register different from its neighbors to variable; in RegisterSets;
Remove variable; from LRy;
else
Move variable; to LR(;
endif
endwhile
While LR # ¢ do
pick one variable; with highest SpillCost;;
Assign a register different from its neighbors to variable; in RegisterSety;
Remove variable; from LRy ;
Forall variable;* = neighbors of variable; do
if variablej* has to be spilled then
goto Spill(variable*);
update ifGraph with new variables produced by spilling;
endif
endfor
endwhile
While LRs # ¢ do
Forall variable; € LRsdo
Assign a register in RegisterSets different from its neighbors to variable;
endfor
endwhile

Figure 3-13 - Pseudo code of Priority-based graph coloring for mixed-width ISA with

mode-switch by instruction encoding
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3.3.1 Separate Stage

After the interference graph has been built by Build stage, Separate stage separates
variables in the graph into LRy and LRs by their interference number. Note that the
variables in LR are not discovered in Separate stage because that variables in LRy may
be allocated into RegisterSets, RegisterSeta, or Memory (Spilled), and thus, variables in

LR are included in LRy currently.

3.3.2 LRy Allocation and Assignment

During the LRy Allocation and Assignment pass, the algorithm needs to find out
which variables in LRy should be allocated and assigned to RegsiterSets. Because that
the variables in LRy are those variables with interference number larger than or equal to
RSN, it means that only a part of them can be assigned to RegsiterSets and the others
will be assigned to either RegisterSeta or Memory. Therefore, the way to determine
which variables in LRy should be assigned to RegisterSets is critical as mentioned above.
To achieve this, a priority function for prioritize stage is used. The Prioritize stage
calculates priority for each variable in LRy to make a proper order to assign registers,
and the higher priority (profit) variable has higher chance to get a register in RegisterSets.
The priority (profit) value for $Vary; (denoted as Sel_profit;) is the same as that defined

in the previous design and listed as follows:

axInit_est. +(1—a)x Adp _est,
Degree, +1

Sel _ profit, =

When all variables in LRy have been given a priority, Pick&Assign(S) stage picks
the highest priority variable variable;, and try to assign a register in RegisterSetsto it. If

there is a free register in RegisterSets which is not occupied by the neighbors of variable;,
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then variable; will be assigned this register and removed from LRy. Otherwise, variable;

will be moved to LR, .

After assigning a variable into RegisterSets, this pass will check the LRy. If it is
empty, then the algorithm will go to the next pass - "LR_ Allocation and Assignment".
Otherwise, it will repeat the Prioritize stage to update the Adp_est for the remaining
variables in LRy and the Pick&Assign(S) stage to tackle the remaining variables in LRy

until LRy is empty.

3.3.3 LR, Allocation and Assignment

In the previous pass, variables in LRy those cannot be directly assigned to
RegisterSets have been found and moved to LR, . The goal of this pass is to determine
which variables in LR, should be assigned to RegisterSet, and the others should be
spilled to memory. Apparently, the allocation and assignment for LR, is critical to

reduce the number of generated spill codes.

To minimizing the generated spill codes, a priority function for evaluating the spill
cost of a variable is evolved. First, the algorithm assumes that all variables in LR, are
initially stored in memory, and uses the priority function to estimate how many processor
cycles can be saved if variable; in LR is assigned a physical register. For those variables
which can save more cycles, they should have higher priority to get registers than others.
This priority function is similar to the traditional priority-based graph coloring for

register allocation and listed as follows:

SaveCycle,

SpillCost , =
Degree,

where SaveCycle; represents the number of processor cycles saved if variable; is

assigned a physical register rather than stored in memory, and SaveCycle; is usually
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proportional to the access counts of variable;; and Degree; is the number of edges
connected to variable; in the interference graph. This priority function makes the variable
with higher SaveCycle; and lower Degree; have higher priority to get a physical register
in RegisterSeta. Pick&Assign(L) stage picks the highest priority (SpillCost) variable; and
assigns a register in RegisterSeta to it. Then the algorithm goes through each neighbor of
variable; to check whether it needs to be spilled or not. If there is a variable spilled, the
corresponding load/store instructions for spilled variable will be inserted. Then Build
Newly stage will build new variables and move them into LR, for the new temporary
variables produced during spilling. Otherwise, the algorithm will go back to
Pick&Assign(L) stage when LR is not empty or go to the next pass — “LRs Allocation

and Assignment” when LR is empty.

3.3.4 LRs Allocation and Assignment

Since all variables in LRs have degree less than RSN, i.e., the simultaneously alive
variables with each variable in LRs of a function are no more than RSN, all of them can
be assigned to RegisterSets without any constrains. Therefore, the LRs Allocation and
Assignment pass just picks up a variable in LRs and assigns a register in RegisterSets to

it until LRs is empty.

3.3.5 Discussion

In this subsection, an alternative design without the "LRy allocation and assignment
pass” and the extension of the algorithm to more hierarchy register sets for different

S-Formats will be discussed.
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A. Alternative Design

The traditional priority-based graph coloring uses only one priority function to
pick up variables to assign. In order to increase the number of instructions encoded as
S-Format instruction, we can directly use Sel _profit function to instead the traditional
priority function as shown in Figure 3-14. Consequently, the Pick&Assign stage will
pick the variable with highest Sel_profit up and assign a register to the variable, and
thus, increasing the number of S-Format instructions. However, the algorithm is not
good enough because the influence of spill codes is not taken into account. Therefore,
we should allocate and assign registers hierarchically while using two priority

functions to increase the S-Format translation rate and decrease the number of spill

codes, respectively.
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Figure 3-14 - Flowchart of the proposed algorithm without LR allocation and

assignment pass of Design I1.

This is why we move a variable which cannot be assigned in RegisterSets to LR,

in "LRy allocation and assignment pass™ (as shown in Figure 3-12). Because this
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variable cannot use registers in RegisterSets, it only can either be allocated in
RegisterSeta or be spilled. Therefore, this variable should not use the Sel profit
priority function to determine its priority because the Sel_profit priority function is not
designed for minimizing the number of spill codes. Hence, the priority function which
is designed to determine the priority to use RegisterSeta or to be spilled should be
adapted instead here. So we move these variables from LRy to LR, and they will be
handled in “LR_ allocation and assignment pass” pass. The evaluating of the proposed
algorithm with and without “LR_ allocation and assignment pass” will be shown in

Chapter 4.

B. Extension. of the Algorithm to More
Hierarchy Register @ Sets for Different

S-Formats

Similar with Section 3.2.3, the proposed algorithm based on priority-based graph
coloring can be extended to adopt different S-Formats. To achieve this, we use
hierarchical allocation and assignment. First we find out which variables should be in
RegisterSets, and then we find out which variables should be in RegisterSety, the last,

considering the spill codes for the variables allocated in RegsiterSeta.

The modified algorithm based on priority-based graph coloring is shown in
Figure 3-15. It is obviously that the "LRy Allocation and Assignment pass™ is added.
During "LRy Allocation and Assignment pass”, variables those cannot be assigned in
RegisterSets will be moved to LRy rather than LR.. Then, a new priority function,

Priority_M;, is evolved for each variable; in Prioritize(M) stage of "LRy Allocation
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and Assignment pass”. This priority function makes $Varyss have higher priority.
Therefore, the Pick&Assign(M) stage picks variables with higher Priority M up and
try to assign a register in RegisterSety to this variable. If there is no free registers in

RegisterSety, and then the algorithm moves this variable into LR.
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Allocation and Assignment

Figure 3-15 - Extension of Design Il for different S-Formats.
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Chapter 4 Experiment

In this chapter, the experiment environment and the simulation result are described. First
the experimentation environment is introduced. The next, we will determine the parameter,
a value. And finally, benchmark evaluation results for two algorithms proposed and design
alternatives discussed in Section 3.2.3 and 3.3.5 will be shown out also. All of these

evaluation results contain the code size reduction rate and the spill code percentage.

4.1 Environment

The Low-Level Virtual Machine (LLVM) is used as our compiler infrastructure [12][13].
It provides back-ends for lots of popular architectures, for examples, ARM, MIPS, x86,
PowerPC, etc. LLVM back-end has many useful passes such as coalescing, instruction
selection, mid-level optimizers, etc. To generate INSs with virtual registers, we modified the
LLVM compiler back-end to produce the INSs with virtual registers as input files of our
algorithm. The modified LLVM back-end will ignore the physical registers described in target
machine description file (.td) and treat the number of available physical registers as infinite.
In addition, LLVM back-end uses a constant pool to hold large constants, and thus, the
limitation by the fewer bits to hold immediate values can be neglected.

In our simulation, the target ISA is MIPS/MIPS16 with assumption that instruction mode
(S-Formant or L-Format) is changed by a specified instruction bit rather than the mode
switching instruction. According to the register file of MIPS, $r0 is used as zero, $r26 and
$r27 are reserved by kernel usage, and $GP, $SP, $FP, and $RA as special registers, so they
cannot be used in other way. Therefore, the parameters of registers are assumed as following:

RegisterSets = $r1 ~ $r7, RSNs = 7, RegisterSeta = $rl ~ $r25, , and RSN, = 25. In addition,
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benchmarks used in this experiment were selected from SPECINT2000, Mibench, and

Mediabench.

4.2 Benchmark Evaluation Results

In this section, a value in the sel profit function is determined and our simulation
results including code size reduction, spill codes, and the S-Format limitations analysis of the
generated codes are presented. The simulation result of the benchmark programs for our
proposed algorithms are denoted as the MXxBUGCRA (named by Bottom-up Graph Coloring
Register Allocation for Mixed-width ISA) and MxPrGCRA (named by Priority-based Graph
Coloring Register Allocation for Mixed-width ISA). For comparison, the simulation results of
the traditional bottom-up graph color register allocation (BUGCRA) and priority-based graph

coloring register allocation (PrGCRA) are also depicted.

4.2.1 Parameter Determination

The a value is the parameter to control the weight between Init_est; and Adp_est;
in our heuristic function, the sel_profit;, which is used in “Reg.-Assignment Pass of
MxBUGCRA” and “LRy Allocation and Assignment pass of MxPrGCRA”. If a is
equal to one, it means that the sel_profit; takes only the Init_est; into account, and if o

is equal to zero, the sel_profit; takes only the Adp_est; into account, apparently.

We have evaluated a value from 0.01 to 1 for two algorithms proposed in this

thesis, MXBUGCRA and MxPrGCRA, and the result is shown in Figure 4-1. Note that
we do not let a value be equal to zero because that the Adp_est; of all variables are

zero initially, and sel_profit; for all variables will also be zero once a value is zero. It
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results in that the first variable is selected by random, and the selected variable may have

no or little benefit to increase the number of S-Format instructions.

From the evaluation results, we observe that whenever a is approaching zero or
approaching one, the code size reduction is decreasing. It is reasonable that we should
not emphasize too much either Init_est; or Adp_est;. If the Init_est; is over emphasized,
the sel_profit function cannot increase the appropriate priority for the other variables in
U-INSs that access a variable which had been just assigned in RegisterSets. If the
Adp_est; is over emphasized, the heuristic approach may sink in the local optimal result
easily. In addition, the changes of the percentages of spill codes seem irregular for
different a values. Therefore, for the code size reduction objective, a value may be

set to 0.4 for the proposed algorithms.

axInit_est +(1—a)x Adp_est,

The Alpha value in: Sel _ profit, =

Degree, +1
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Figure 4-1 - The evaluation of differenta values.
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4.2.2 Comparisons of Design Alternatives

The experiment results for the different approaches discussed in section 3.2.3 and
3.3.5 are presented as follows. Note that we have simulated different o values for each
approach, and all of the approaches have the best results when a is 0.4 as the same as

the proposed algorithms.

The first one is the different assignment order of the Assignment pass in
MxBuUGCRA. As the same with the examples given in section 3.2.3, the assignment
order “Reg.-Assignment — Regs-Assignment” is better than the assignment order
“Regs-Assignment — Reg,-Assignment” and “without isolating AllocatedStacks”. Also,

the results of these alternatives are shown in Figure 4-2.
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Figure 4-2 - Benchmark evaluation results of the different assignment order in

MxBuUGCRA.
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The second experiment is the MxPrGCRA with and without “LR,_ Allocation and
Assignment Pass” we discussed in section 3.3.5, the result is shown in Figure 4-3. The
MxPrGCRA with “LR_ Allocation and Assignment Pass” is better than without the pass

in code size reduction due to the fewer spill codes generated.
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Figure 4-3 - Benchmark Evaluation Results of MxPrGCRA with/without LR, pass.

4.2.3 Code Size Reduction

In Figure 4-4, the Y-axis indicates the code size reduction percentage, and the
X-axis is the different benchmarks programs we used. The code size reduction (CSR)

percentage is calculated by the following equation:

S_InstCNT mxBy (Pr)GCRA X16+L_InstCNT vxBu (Pr)GCRA X32

CSR(%) = (1 —

) X 100% |,

Instruction _Count gygcra %32
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where S_InstCNT and L_InstCNT are the S-Format instruction count and the L-Format
instruction count of the compiled program, respectively. And the base line is the program
compiled by using traditional bottom-up graph coloring register allocation algorithm

without Mixed-width ISA, i.e., with L-Format instructions only.

The proposed MxBuGCRA and MxPrGCRA algorithms achieve 31.89% and
31.90% of the code size reduction as shown in Figure 4-4 and Table 4-1. In other words,
there are more than 60% of instructions which can be encoded in S-Format instructions.
The S-Format limitation analysis will be described in Section 4.2.5. If the traditional
graph coloring algorithms are used to allocate and assign registers for Mixed-width ISA,
only 19.77% and 25.67% code size reduction may be obtained. Obviously, to reduce
code size in mixed-width ISA processors, it is necessary to use a special heuristic model
to allocate and assign registers to increase the S-Format instruction translation rate.
However, since we try to spill more variables to get more INSs encoded in S-Format
instructions, it possibly leads to more spill codes and may results in larger code size due
to the increasing spill codes. Fortunately, the increased spill codes are very small

amounts as described in Section 4.2.4.

By using our proposed algorithms, the code size reduction percentage is improved
by about 12% compared to the traditional bottom-up graph coloring register allocation
algorithm and about 7% compared to the traditional priority-based graph coloring
algorithm. The mainly reason of the improvement is that the general algorithms allocate
registers for minimizing the number of spill codes but usually assigns registers in an
arbitrary way, and on the contrary, our algorithm determines a priority order to assign

registers to get higher translation rate.
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It is interesting that PrGCRA can get 25.67% without any consideration of
Mixed-width ISA. The reason is that the priority function of PrGCRA is designed to
make a variable with more cost of memory loads and stores saved has higher priority,
and the number of loads and stores is similar to the access count for the variable as we
mentioned in Chapter 2. Since 89% of instructions in programs are U-INS and PrGCRA
assigns registers by increasing order, the $Varys are assigned in registers which are

accessible by S-Format instruction at very high probability.

Table 4-1 - Benchmark evaluation results of the proposed algorithms.

Pronoun CSR (%) Spill Codes (%)
Bottom Up GCRA BuGCRA 19.77% 2.60%
Traditional
Priority Based GCRA PrGCRA 25.67% 2.65%
Bottom Up (Mix-Width) GCRA MxBUGCRA 31.89% 2.84%
Proposed
Priority Based (Mix-Width) GCRA = MxPrGCRA 31.90% 2.88%
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Figure 4-4 - Benchmark evaluation results of the proposed algorithms.
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4.2.4 Spill Codes

Any changes in register allocation will result in different numbers of spill codes,
and the number of spill codes is critical to execution performance. In this section, the
number of spill codes produced by our algorithms and the traditional register allocation
algorithm are evaluated and shown in Figure 4-5. And the a value is set to 0.4 for our
algorithms. The Y-axis is the percentage of spill codes in programs which are compiled
by different register allocation algorithms. The X-axis indicates the different benchmark

programs.

The percentages of spill codes are 2.84% and 2.88% for MxBuUGCRA and
MxPrGCRA in average, respectively. Comparing to the traditional algorithms, the extra
spill codes are 0.24% and 0.23% for MxBuGCRA and MxPrGCRA, respectively. These

are really very small amounts that can be ignored.
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Figure 4-5 - Spill codes of the proposed and traditional algorithms.

50



4.2.5 S-Format Limitations Analysis

The distribution of instruction types of the traditional register allocations and our
proposed algorithms has been analyzed. BUGCRA v.s. MXBUGCRA is shown in Figure

4-6, and PrGCRA v.s. MxPrGCRA is shown in Figure 4-7.

The Y-axis is the percentage of instructions in both of the two figures. In these two
figures, the top blocks, green colored, are the percentage of instructions which have no
operation equivalent S-Format instructions or the immediate value is oversized. The
middle blocks, red colored, are the percentage of instructions each of which has one or
more operation equivalent S-Format instructions but at least one of its operand registers
is out of range to index of S-Format instruction. And the bottom blocks, blue colored, are
those instructions whose register number and immediate value are in the range of

S-Format instructions.

It is obvious that after our modification the blue sections are increased significantly.
As for the red section which is about 25% in average, it is impossible to eliminate all of
them because that over eight variables are alive simultaneously at many execution points
in the programs, and thus, there are too many variables to assign if using only
RegisterSets. By the proposed heuristic method, about 63% translation rate of S-Format

instructions in entire program achieved.
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Figure 4-6 - S-Format limitation distributions - BUGCRA v.s. MXBUGCRA.
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Figure 4-7 - S-Format limitation distributions - PrGCRA v.s. MXPrGCRA.
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4.3 Summary for Simulation Results

In this chapter, we presented experiment results for both of the proposed algorithms and
traditional algorithms. It is obvious that the approaches proposed in this thesis are easy to be
modified from the traditional algorithms and effective for reducing code size by using

Mixed-width ISA with mode-switch by instruction encoding.

By the statistics, the first design, MXBUGCRA, can reduce 31.89% and the second
design, MxPrGCRA, can reduce 31.90% of total code size in average. As for the spill codes,

the proposed algorithms with a equal to 0.4 produce spill codes in 2.84% and 2.88% in

average of these benchmark programs. In addition, we have demonstrated the different results

of code size reduction and spill codes amount in different a values. In this thesis, the a

value is set to 0.4 for code size consideration. However, if the performance requirement is the

first consideration, we can set a to 0.3 to get fewer spill codes by sacrificing a little code

size reduction.
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Chapter 5 Conclusions and Future Works

In this chapter, conclusions of this thesis are made first, and then the future works of this

thesis are proposed.

5.1 Conclusions

As the demand for the enlarging program size due to the requirement of more program
functionalities and the evolution of mixed-width ISA architectures in embedded systems, a
register allocation and assignment algorithm for mixed-width ISA will become more and
more important in the near future. In this thesis, we present two register allocation and

assignment algorithms for mixed-width ISA with mode switch by instruction encoding.

The first proposed algorithm, MxBUGCRA, is composed of two passes: the allocation
pass is to allocate registers with the consideration of minimizing spill codes, and the
assignment pass is to assign register with the consideration of increasing the translation rate of
S-Format instructions. The second proposed algorithm, MxPrGCRA, firstly picks variables up
in an order which is considered to increase the translation rate of S-Format instructions, and
then picks the remaining variables up for minimizing spill codes. Both of these two
algorithms try to make efforts on reducing code size while minimizing the number of spill

codes by using the sel_profit; function for the former and the SpillCost; function for the latter.

We have conducted experiments to verify the algorithm for a mixed-width ISA processor.
It is found that the code size reduction is achieved 31.89% and 31.90% on average for our
algorithms respectively. Meanwhile, the proposed algorithms do efforts on minimizing the
generated spill codes. From the experiments, it shows that only 0.24% and 0.23% extra spill

codes generated by MXxBUGCRA and MxPrGCRA than BUGCRA and PrGCRA, respectively.
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The last, we also showed that the different results in code size reduction and spill codes for

the proposed algorithms by setting the different a values for varies demands.

5.2 Future Works

The future works of this thesis can be put into four dimensions: reducing the runtime
I-cache miss rate, obtaining the optimal solution of code size reduction, integrating other
optimization techniques, e.g. instruction scheduling, for getting more code size reduction
using the proposed algorithms, and modifying the proposed algorithms to match the

requirements of other optimization techniques.

The first, we do not take loops into account because our objective is to reduce the
program code size rather than the dynamic trace size in this thesis. However, it is a good
option to observe while considering the reduction of the runtime I-cache miss rate for further

researches.

The second, in order to obtain the optimal solution of code size reduction for the
Mixed-width ISA with mode switch by instruction encoding, the methods which are designed
for solving NP-Complete problems are good options, e.g., the Integer Linear Programming
(ILP) and Partitioned Boolean Quadratic Problem (PBQP). Both of ILP and PBQP formulate
problems into equations and solve them to get a unique solution. But the execution time is too

slow to be adopted in practice. However, it is a good way to obtain the optimal solutions.

The third, it may have more code size reduction by integrating other optimization
techniques for the proposed algorithms. For example, use a pre-instruction scheduling to
shorten the live ranges of a program function. Therefore, it may release registers in

RegisterSets at some execution points and make more variables can be assigned in
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RegisterSets. But any changes of instruction scheduling will affect the execution performance
and register pressure. The scheduling policy should be carefully designed for these

considerations.

Finally, we may get some other benefits by doing some modifications to the proposed
algorithms. For example, the number of bits-change between instructions may affect the
power consumption of the instruction fetch unit and the memory bus. If the Regs-Assignment
stage of MxBUGCRA and the LRs Allocation and Assignment pass of MxPrGCRA assign a
variable into RegisterSeta when a variable in AllocatedStacks and LRs has no any benefits for
code size reduction (i.e. no more instructions can be encoded in S-Format instructions even

this variable is assigned in RegisterSets), it may reduce the bits-change between instructions.
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