

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

藉由暫存器配置與指派演算法減少程式碼大小於

混合寬度指令集架構處理器

Reducing Code Size by Graph Coloring Register Allocation and

Assignment Algorithm for Mixed-Width ISA Processors

研 究 生：王志先

指導教授：單智君 博士

中 華 民 國 九 十 八 年 七 月

藉由暫存器配置與指派演算法減少程式碼大小於

混合寬度指令集架構處理器

Reducing Code Size by Graph Coloring Register Allocation and

Assignment Algorithm for Mixed-Width ISA Processors

研 究 生：王志先 Student：Jyh-Shian Wang

指導教授：單智君 Advisor：Dr. Jyh-Jiun Shann

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Engineering

July 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年七月

http://tw.dictionary.yahoo.com/search?ei=UTF-8&p=%E4%BA%8C%E6%9C%88

i

藉由暫存器配置與指派演算法減少程式碼大小

於混合寬度指令集架構處理器

學生：王志先 指導教授：單智君 博士

國立交通大學資訊科學與工程研究所碩士班

摘要

 由於現今的嵌入式系統需要越來越多的程式功能，但又不希望增加記憶體大小，因

此減少程式碼大小即成為一個關鍵性的問題。其中一種解決辦法是使用"混合寬度指令

集架構"，這類架構通常包含一個正常寬度指令集(通常是32位元)以及一個短指令集(通

常是 16位元)，且短指令集僅有部分 Opcodes以及僅能存取部分的暫存器。在以往傳統

的混合指令集架構中，一段連續程式碼僅能被編碼在相同的格式(寬度)，無法使用多種

格式穿插其中，但越來越多的混合指令集架構使用了指令編碼來告知處理器該指令的寬

度，如此便可在程式之中任意穿插長短指令，不再是一個一個分開的區塊。對於這樣的

架構，有多少指令能夠被編碼成較短的格式高度依賴於如何配置這些短指令格式能存取

到有限的暫存器。在這篇論文中，我們提出了兩個基於著色演算法的暫存器配置與分派

演算法，它們使用一個估計的方法去找出適合被指派到短指令格式能存取到之暫存器的

程式變數，而適合的變數意味著如果指派它們到這些暫存器可以有效增加可以被編碼成

短指令的指令數量。透過模擬結果顯示，使用此論文所提出的演算法可以減少大約

31.90%的程式碼大小。

ii

Reducing Code Size by Graph Coloring Register

Allocation and Assignment Algorithm

for Mixed-Width ISA Processors

Student: Jyh-Shian Wang Advisor：Dr. Jyh-Jiun Shann

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

Reducing program size is a critical issue in many embedded systems which require more

program functionalities without increasing the memory size. One of the approaches is the

“mixed-width instruction set architecture (ISA)” which usually has an instruction set in

general formats (usually 32-bit long) as normal instruction set, and an instruction set in

shorter format (usually 16-bit long) with limited opcodes and set of registers. Traditionally, a

code segment can be encoded in only one format, no multiple formats interleaved. However,

more and more processors use instruction encoding to indicate the length of each individual

instruction, and take mixed-width ISA into instruction-level granularity. For this kind of ISAs,

the number of instructions can be encoded in shorter format is highly dependent on the

limited set of registers that can be accessed by shorter format instructions. In this paper, we

present a register allocation and assignment algorithm based on graph coloring, which uses a

heuristic model to find out which virtual variables in program should be assigned into the set

of registers accessible by shorter instructions. The simulation results show that the code size

reduction is achieved 31.90% by the proposed algorithm.

iii

致謝或序言

首先感謝我的指導老師 單智君教授，在這兩年當中不論是正式報告，亦或是平日

小組討論，老師對於學生的諄諄教誨，細心指導與勉勵，使我學習到如何面對問題，以

及如何克服問題，並培養獨立研究的能力。有幸跟著老師做研究，觀察老師對於一件事

情的執著與細膩，耳濡目染，並從中學習，最後完成了研究與碩士學位。同時，也感謝

口試委員，楊武教授與雍忠教授，由於教授們的指導與建議，才使得此篇論文更加完整

與充實。另外，也謝謝實驗室的另一位老師，鍾崇斌教授，在一次次的報告之中給予學

生指導與建議。

裕生學長、奕緯學長，感謝兩位學長帶領我進入 JVM與 Compiler 領域，不僅僅只

是給予我研究上的建議與討論，同時也常是鼓勵我前進的動力，才使得我學習到相關知

識並完成此研究。同時，實驗室的學長姐、同儕以及學弟妹，在這一起渡過的時光中，

你們不僅僅是我記憶中的好夥伴，更是人生道路上的貴人們，謝謝。

最後，對於我的家人以及總是在我低潮時給予鼓勵並且陪伴著我的親友們，志先也

在此獻上最誠摯的謝意。

王志先 2009.7.26

iv

Table of Contents

摘要 ... i

Abstract .. ii

致謝或序言 ... iii

Table of Contents .. iv

List of Figures .. vi

List of Tables ... viii

Chapter 1 Introduction .. 1

1.1 Research Motivation ... 4

1.2 Research Objective .. 4

1.3 Organization of this Thesis ... 6

Chapter 2 Background ... 7

2.1 Mixed-width ISA with Mode-switch by Instruction Encoding ... 7

 2.1.1 S-Format Limitations .. 7

 2.1.2 Encoding Formats of S-Format Instruction .. 9

2.2 Graph Coloring Register Allocation...10

 2.2.1 Interference Graph ...11

 2.2.2 Bottom-up Graph Coloring ..11

 2.2.3 Priority-based Graph Coloring ...12

2.3 Summary of Backgrounds ..14

Chapter 3 Design of The Register Allocation and Assignment Algorithms 15

3.1 Compiler Back-end and Definitions for Mixed-width ISA ..16

 3.1.1 Instruction Types ...18

 3.1.2 Register Classes ...19

3.2 Design I : Based on Bottom-up Graph Coloring ..20

 3.2.1 Allocation Pass...21

 A. RegS-Simplify and RegL-Simplify Stages ...21

 B. Spill Stage ...24

 3.2.2 Assignment Pass ..25

v

 3.2.3 Discussion ..28

 A. Different Assignment Orders in Assignment ..28

 B. Assignment without RegS-Simplify ..31

 C. Extension of the Algorithm to More Hierarchy Register Sets for Different

S-Formats ..32

3.3 Design II : Based on Priority-based Graph Coloring ...34

 3.3.1 Separate Stage ..37

 3.3.2 LRU Allocation and Assignment ..37

 3.3.3 LRL Allocation and Assignment ..38

 3.3.4 LRS Allocation and Assignment ..39

 3.3.5 Discussion ..39

 A. Alternative Design ..40

 B. Extension of the Algorithm to More Hierarchy Register Sets for Different

S-Formats ..41

Chapter 4 Experiment ... 43

4.1 Environment ...43

4.2 Benchmark Evaluation Results ..44

 4.2.1 Parameter Determination ...44

 4.2.2 Comparisons of Design Alternatives ...46

 4.2.3 Code Size Reduction ..47

 4.2.4 Spill Codes ...50

 4.2.5 S-Format Limitations Analysis ..51

4.3 Summary for Simulation Results ...53

Chapter 5 Conclusions and Future Works .. 54

5.1 Conclusions ..54

5.2 Future Works ..55

References .. 57

vi

List of Figures

Figure 1-1 – L/S-Format instructions in program code. (a) Mode-switch by mode-switch

instruction. (b) Mode-switch by instruction encoding. .. 3

Figure 1-2 – Mode-switch by instruction encoding. .. 3

Figure 2-1 - S-Format limitation distributions. .. 8

Figure 2-2 - Different encoding formats of S-Format instructions. (Rd: destination register. Rs,

Rt: source destination. Imm: immediate value) ... 9

Figure 2-3 - Interference graph. .. 11

Figure 2-4 - Bottom-up graph coloring. ... 12

Figure 2-5 - Priority-based graph coloring. .. 13

Figure 3-1 - Compiler back-end for mixed-width ISA. .. 17

Figure 3-2 - Different S-Format instructions equivalent to lw. .. 17

Figure 3-3 – Register classes .. 19

Figure 3-4 - Flowchart of the proposed algorithm based on Bottom-up graph coloring for

mixed-width ISA with mode-switch by instruction encoding. 20

Figure 3-5 – Diamond graph. ... 22

Figure 3-6 - The process sketch map of our proposed algorithm based on Bottom-up graph

coloring. ... 22

Figure 3-7 - Pseudo code of allocation pass. .. 24

Figure 3-8 - Pseudo code of assignment pass. .. 28

Figure 3-9 - Different Assignment Order in Bottom-up Graph Coloring for Mixed-width ISA

with mode switch by instruction encoding : (a) RegS-Assignment →

RegL-Assignment (b) RegL-Assignment → RegS-Assignment. 30

Figure 3-10 - Assignment result without RegS-Simplify. ... 31

Figure 3-11 - Extension of Design I for different S-Formats. .. 33

Figure 3-12 - Flowchart of the register allocation and assignment algorithm based on

Priority-based graph coloring for mixed-width ISA with mode-switch by

instruction encoding... 35

Figure 3-13 - Pseudo code of Priority-based graph coloring for mixed-width ISA with

mode-switch by instruction encoding .. 36

Figure 3-14 - Flowchart of the proposed algorithm without LRL allocation and assignment

pass of Design II. ... 40

Figure 3-15 - Extension of Design II for different S-Formats. ... 42

Figure 4-1 - The evaluation of differentαvalues. .. 45

Figure 4-2 - Benchmark evaluation results of the different assignment order in MxBuGCRA.

 ... 46

Figure 4-3 - Benchmark Evaluation Results of MxPrGCRA with/without LRL pass. 47

vii

Figure 4-4 - Benchmark evaluation results of the proposed algorithms................................... 49

Figure 4-5 - Spill codes of the proposed and traditional algorithms. 50

Figure 4-6 - S-Format limitation distributions - BuGCRA v.s. MxBuGCRA. 52

Figure 4-7 - S-Format limitation distributions - PrGCRA v.s. MxPrGCRA. 52

viii

List of Tables

Table 4-1 - Benchmark Evaluation Results of the Proposed Algorithms 49

1

Chapter 1 Introduction

In the increasing market of embedded systems, RISC processors have been used widely.

A RISC processor usually offers higher computation power and lower hardware cost and,

meanwhile, suffers from the less code density than a CISC processor because of its

fixed-width instruction set. However, code size is one of the major issues in embedded

systems, since the larger code size may increase the memory requirement. As a result,

mixed-width RISC instruction set architectures (ISAs) have been proposed to make a good

tradeoff between performance and code density (i.e. low code size) [1]. Moreover, the traffic

of the memory data bus for fetching instructions and the I-Cache miss rate may also be

reduced.

There are several mixed-width ISAs provided commercially, for examples, ARM’s

ARM/Thumb ISA, MIPS’ MIPS/MIPS16 ISA, Andes’ AndeStar ISA, etc [2-4]. They

typically have one short width instruction format (S-Format) as a frequently used subset of the

longer width instruction format (L-Format). For example, MIPS is a 32-bit width instruction

set, and its 16-bit width subset is called MIPS16. Mixing the short width instructions into the

original program which is composed with 32-bit instructions may improve the code density.

However there are two main limitations exists due to the S-Format instructions have fewer

bits for register indexing and immediate value storing in mixed-width ISAs.

1. Fewer bits to index registers:

 One of the limitations is that the short width instructions have fewer bits to

index registers. For example, 3-bit register field in S-Format can access eight

physical registers only. If all of the operands of an instruction are assigned to the

registers that can be accessed by S-Format instructions, then this instruction is able

2

to be encoded as an S-Format instruction to reduce code size. Otherwise, if one of its

operands is out of the register indexing range of S-Format instructions, then this

instruction must be encoded as an L-Format instruction definitely. Accordingly, if

the compiler does not take into account these restrictions while assigning registers,

the translation rate of S-Format instructions may be quite low. Therefore, the

assignment of registers becomes very important for mixed-width ISAs.

2. Fewer bits to hold immediate values:

 The other limitation is the short width instructions have fewer bits to store

immediate values. If the immediate value is oversized for an instruction’s S-Format

then the instruction can only be encoded as L-Format instruction. Although large

immediate values may impact the translation rate of S-Format instructions, it varies

on how complier manages constants. If a compiler uses a constant pool to hold these

large immediate values, the impact of immediate values can nearly be neglected.

In addition, the different mechanisms of mode switching between L-Format and

S-Format instructions make problems distinct in mixed-width ISAs. There are two types of

mechanisms for switching between L-Format and S-Format instructions [5]. Some

architectures use a mode switching instruction to change modes between code segments with

different encoding formats, for example, ARM/Thumb. It means that all instructions in the

same code segment must be encoded in the same format as shown in Figure 1-1 (a). On the

other hand, there are some architectures change modes by instruction encoding so that

L-Format and S-Format instructions may be interleaved freely in routines as shown in Figure

1-1 (b), i.e., L-Format and S-Format instructions may be mixed up at the instruction level

granularity. For example, AndeStar ISA uses a bit (usually the MSB) in instruction field to

3

indicate whether the instruction is L-Format or S-Format as shown in Figure 1-2. For the

former, existing compilers either rely on user guidance or perform an analysis to determine

which code segments should use S-Format [6], then a mode switch instruction will be inserted

between the code segments, and finally the compiler compiles code segments with different

instruction width by different policies. For the latter, because no mode-switch instruction is

needed, the compiler should eliminate the limitations of each individual instruction of its

S-Format as far as possible to increase the number of instructions encoded in S-Format.

However, the existing techniques for this kind of ISAs are still rudimentary.

Figure 1-1 – L/S-Format instructions in program code. (a) Mode-switch by mode-switch

instruction. (b) Mode-switch by instruction encoding.

Figure 1-2 – Mode-switch by instruction encoding.

BB1:

BB2:

ModeX func16

BB1:

ModeX funcB
main:

func16

1
6

 B
it

 I
n

s
ts

.
3

2
 B

it
 I
n

s
ts

.

BB1:

BB2:

j func16

BB1:

j funcB
main:

func16

M
ix

 3
2

-1
6

 B
it

 I
n

s
ts

.

…
…
…
…

…
…
…

…
…
…
…

…
…
…

…
…
…
…

…
…
…

* ModeX: mode exchange instruction

(a) (b)

4

1.1 Research Motivation

So far we have introduced the mixed-width ISAs, which can increase code density if the

registers are used carefully especially for those with mode-switch by instruction encoding.

Also, we know that the code size problem is one of the major issues in embedded systems.

The larger code size needs the larger memory, and thus may consume more power.

Unfortunately, the enlarging program size due to the requirement of more program

functionalities in modern embedded applications is happening. For these reasons, using

mixed-width ISAs is a feasible approach for code size reduction.

In order to reduce program code size for a mixed-width ISA with mode-switch by

instruction encoding, registers should be allocated and assigned properly to eliminate each

instruction’s limitation of translation to S-Format instructions, and, as in results, the number

of instructions that can be encoded as S-Format may be increased. However, the existing

techniques of compilers for mixed-width ISA with mode-switch by instruction encoding are

rudimentary. Therefore, a proper register allocation and assignment algorithms should be

designed for this kind of ISAs.

1.2 Research Objective

In this thesis, we proposed an algorithm for mixed-width ISA with mode-switch by

instruction encoding to increase the number of instructions encoded as S-Format by allocating

and assigning registers properly. The original goal of register allocator is to allocate virtual

variables to registers or memory locations and optimize for generating fewest memory

referenced instructions (spill codes). However, for the mixed-width ISAs, it should consider

5

the mapping of physical registers and virtual variables, and, meanwhile, the number of spill

codes should be minimized due to the performance issue. To achieve the features mentioned,

there are two main goals to accomplish:

1. Reducing code size:

 To reduce code size by mixed-width ISA with mode-switch by instruction

encoding, the usage of S-Format instructions is the key point. In other words, if we

can encode more instructions as S-Format instructions, the code size will be

reduced more. To achieve that, we propose a heuristic model in register assignment

procedure. The proposed algorithm not only allocates virtual variables to registers

or memory locations but also assigns registers by choosing virtual registers with the

highest code size benefit to assign physical registers which are accessible by

S-Format instructions.

2. Minimizing performance degradation:

 Although our primary objective is to reduce code size, the number of spill codes

generated by register allocator is critical, too. More spill codes lead to more

performance degradation, and it also increases code size. To minimizing the number

of spill codes, the proposed algorithm chooses variables with the lowest memory

reference cost to spill while the required registers are more than the physical

registers available.

6

1.3 Organization of this Thesis

The rest of this paper is organized as follows: Section 2 discusses more details of a

typical mixed-width ISA and other related researches and algorithms; Section 3 gives the

instruction formats and register classes defined in our algorithm and the detailed description

of the proposed algorithm; Section 4 presents the experimental results and discussion follows.

Finally, Section 5 dedicates to the conclusions we draw and the future work planed.

7

Chapter 2 Background

In the first part of this chapter, we will analyze the distribution of S-Format limitations in

programs generated by a traditional register allocation algorithm to observe the opportunities

for research and explain more details about mixed-width ISA with mode-switch by instruction

encoding. In the second part, two traditional register allocation algorithms will be introduced.

In the last part, a brief summary about the problems that the existing algorithms suffer from in

mixed-width ISA with mode-switch by instruction encoding and the solutions we proposed

for it will be described.

2.1 Mixed-width ISA with Mode-switch by

Instruction Encoding

In this section, the S-Format limitations will be introduced and analyzed. Then, the

different encoding format of S-Format instructions will be explained in details.

2.1.1 S-Format Limitations

Using mixed-width ISA can reduce code size significantly in intuition: if all

instructions have operational equivalent S-Format instructions and all of them can be

encoded in S-Format, then the code size may be reduced by 50%. However, as

mentioned above, there are many restrictions including register index, immediate values,

and, even that not all the instructions have corresponding S-Format instructions.

Figure 2-1 is the analysis result about the distribution of the limitations of S-Format

translation in benchmark programs compiled by using traditional graph coloring register

allocation. The top blocks, green colored, are the percentage of instructions which have

8

no operation equivalent S-Format instructions or the immediate value is oversized. The

middle blocks, red colored, are the percentage of instructions each of which has one or

more operation equivalent S-Format instructions but at least one of its operand registers

is out of range to index of S-Format instruction. And the bottom blocks, blue colored, are

those instructions whose register number and immediate value are in the range of

S-Format instructions.

From the distribution, we found that there are only about 11% instructions which

have no operation equivalent S-Format instructions or the immediate value is oversized

for its S-Format. However, over 50% of the left 89% instructions are restricted by their

register number for translating to S-Format instructions. If the register allocation uses

registers that can be accessed by S-Format instructions carefully in a heuristic way, it is

possible to make more instructions be encoded into S-Format.

Figure 2-1 - S-Format limitation distributions.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

All in Range Register # Out of Range Imm Out of Range/OP not match

9

2.1.2 Encoding Formats of S-Format Instruction

Comparing with L-Format instructions, S-Format instructions have fewer bits to

index registers, and thus, the encoding formats of S-Format instructions have to be

designed carefully in mixed-width ISAs. Typically, there are four S-Format encoding

forms in mixed-width ISAs in present as in Figure 2-2:

Figure 2-2 - Different encoding formats of S-Format instructions. (Rd: destination

register. Rs, Rt: source destination. Imm: immediate value)

1. 3R3 Form

There are three registers as its operands, and three bits for each register

indexing in 3R3 form.

2. 2R3 Form

There are two registers and one immediate value as its operands, and three

bits for each register indexing in 2R3 form.

3. 1R3 Form

There are one register and one immediate value as its operands, and three bits

for register indexing in 1R3 form. The register, rd3, in this form is used as the

10

source register and the destination register (eg. addi in Figure 2-2) or destination

register when there is an implied register (eg. lwsp in Figure 2-2).

4. 1R4 Form

In a few mixed-width ISAs, some S-Format instructions may use four bits for

register indexing. And the register, rd4, in this form is used as the source

register and the destination register (eg. addi in Figure 2-2).

So far we have introduced four forms of instruction formats for S-Format

instructions in mixed-width ISA with mode-switch by instruction encoding. From the

analysis result shown above, the effect of reducing code size by using mixed-width ISAs

is highly depend on the number of bits used to index registers. And thus, we concentrate

on the number of bits used to index registers, meanwhile, the accessible registers of 3R3,

2R3, and 1R3 forms are limited in the same region. We have surveyed most of the

mixed-width ISAs in present, and almost all of them consist of the 3R3, 2R3 and 1R3

forms only. Therefore, in this thesis, our target is the mixed-width ISAs with

mode-switch by instruction encoding which comprise 3R3, 2R3, and 1R3 forms.

Moreover, we will bring a briefly discussion about how to extend our algorithm to meet

the requirement of 1R4 form.

2.2 Graph Coloring Register Allocation

The graph coloring algorithm is the most popular Register Allocator (RA) in general

compiler for generating fewest load/store instructions, usually called “spill code”. Graph

coloring for register allocation has many different versions [7]. The most well-know one is the

11

Bottom-up Graph Coloring proposed by Gregory J. Chaitin [8][9]. In addition, another

frequently used version is the Priority-based Graph Coloring proposed by Fred C. Chow [10].

We will introduce these two algorithms in the following sections.

2.2.1 Interference Graph

Both of these two graph coloring algorithms have to construct the same interference

graph for coloring. The interference graph is constructed from a program function as in

Figure 2-3. Nodes in an interference graph represent virtual variables (called variables

for short) in program function, and the edges connected between nodes is the overlaps

between their live ranges, i.e. they are alive in the same time. (Coloring a node in graph

is meant giving a register to a variable)

Figure 2-3 - Interference graph.

2.2.2 Bottom-up Graph Coloring

The flowchart of the bottom-up graph coloring algorithm is shown in Figure 2-4.

First, it constructs an interference graph in the Build stage. If the graph can be colored

with R colors then the variables can be stored in R registers [11]. This algorithm removes

a node i with degree (the number of connected edges of a node) less than R, and put i

into a stack, iteratively. This stage is called Simplify. Once all nodes are removed from

the graph, i.e., the graph is an R-colorable graph, then pops all nodes from the stack and

12

assigns a color to each of them. Otherwise, the graph is not R-colorable, and thus,

chooses one from the remaining nodes and split it into several nodes with shorter live

time. This stage is called Spill. Notice that once a variable is spilled, new variables will

be produced, and the algorithm must be rewound back to rebuild the interference graph.

Figure 2-4 - Bottom-up graph coloring.

2.2.3 Priority-based Graph Coloring

The flowchart of priority-based graph coloring algorithm is shown in Figure 2-5, it

also constructs an interference graph in the Build stage firstly. Then the algorithm

separates nodes into two categories: UCLR (Unconstrained Live Range) and CLR

(Constrained Live Range). The UCLR contains the nodes with degree less than the

available number of physical registers R, and the CLR contains the others. Because the

variables in UCLR have degrees (simultaneously living variables) less than the number

of available physical registers, all of these variables are guaranteed to have registers.

Therefore, the priority-based graph coloring makes effort on the variables in CLR only.

Build

Simplify

Graph Size

Assignment
S

p
ill

Start

End

= 0

> 0

Stack Size

= 0

> 0

13

It assumes that all variables in CLR are initially stored in memory, and it uses a

priority function to give each variable in CLR a priority. Then pick the highest priority

one to assign physical register. The priority function is composed of the cost of memory

load and memory store saved if the variable was assigned to a register. In other words,

the priority of a variable is similar to the access counts for the variable. After assigning

one variable, the algorithm will check each neighbor of the variable to see whether it

needs to be spilled. If yes, then spill it. Until all variables in CLR have been assigned

registers, priority-based graph coloring then handles the UCLR. As mentioned above all

variables in UCLR can be easily assigned registers.

Figure 2-5 - Priority-based graph coloring.

14

2.3 Summary of Backgrounds

For mixed-width ISA with mode-switch by instruction encoding, we have indicated that

the most limitation of translation to S-Format instructions is the using of the accessible

registers in the register file in Section 2.1. Therefore, it is critical that which virtual registers

should be assigned to which physical register in such architectures. However, both of the two

traditional graph coloring register allocation algorithms consider the number of spill code

only, and they do not take the mapping of virtual variables and physical registers into account.

Therefore, they may result in less translation rate of S-Format instructions in generated code.

Obviously the traditional graph coloring register allocations do not suit for reducing code

size in mixed-width ISA with mode-switch by instruction encoding. In this thesis, our goal is

to design a register allocation and assignment algorithm to reduce code-size for mixed-width

ISA with mode-switch by instruction encoding while minimizing performance degradation.

15

Chapter 3 Design of The Register

Allocation and Assignment Algorithms

In this thesis, we propose a register allocation and assignment algorithm to determine

which of the virtual registers (variables) should be in which physical register or memory at

each execution point. Here, register allocation decides which variables should be kept in the

physical registers, and register assignment chooses physical registers for those variables

which are not spilled into memory. In order to minimize the code size, the goal of the

proposed algorithms is to assign as many variables which have more benefit to reduce code

size (called $VarCS for short) as possible into the S-Format accessible registers. Therefore,

more instructions can be translated to S-Format instructions. Since it is difficult to assign all

$VarCSs within an application to the S-Format accessible registers, the way to determine

which $VarCS should be assigned to these registers is crucial. The basic idea of the proposed

algorithms is to let the frequently accessed and lower degree $VarCSs have higher opportunity

to be assigned to the S-Format accessible registers. In other words, the assignment order of

$VarCS is arranged from the most to the least frequently accessed and from lower to higher

degree.

The graph coloring algorithm is the most commonly used register allocation algorithm in

compilers so that we use graph coloring algorithm as the base for our algorithms. In the

following sections, the compiler backend and definitions used in this thesis are presented first,

and then two algorithms which are modified from bottom-up and priority-based graph

coloring algorithms for mixed-width ISA with mode-switch by instruction encoding will be

explained in detail.

16

3.1 Compiler Back-end and Definitions for

Mixed-width ISA

Typical compiler back-ends consist of instruction selection, instruction scheduling, and

register allocation. First, instruction selection maps low-level intermediate representation (IR)

to actual machine instructions (called instruction for short). This is usually done by pattern

matching. And then, instruction scheduling schedules instruction for hiding some pipeline

stall and/or increasing instruction-level parallelism. Finally, the register allocator will allocate

virtual registers to physical registers.

However, in a mixed-width ISA, an instruction may be represented in multiple formats

(e.g., L-Format and S-Format in this thesis) that are mainly different in their encoding length

and the access range of register file. Therefore, instruction selection in a mixed-width ISA not

only maps an operation of low-level IR (called operation for short) to instruction(s) but also

chooses a proper format for each instruction. To achieve this, instruction selection is separated

into two passes in this thesis as shown in Figure 3-1.

In instruction selection pass, an operation is mapped to temporary instruction(s), called

as INS. Note that each INS may have multiple instruction formats which are only different in

their encoding length rather than functionality. The instruction formatting pass is performed

after register allocation and assignment pass. In this pass, each INS is translated to a proper

instruction format according to the result of register allocation and assignment. For example,

if a memory load INS lw has two equivalent S-Format instructions as shown in Figure 3-2.

The instruction formatting pass will check whether its base register is $sp. If yes, and the

offset is not oversize for S-Format to encode, and, thus, instruction formatting translates lw

into lwsp; if not, the operation will be leaved unchanged. Because the assembly name of

17

S-Format instruction lw is the same as that of the L-Format one, the assembler will check the

operands of the instruction to encode it in a proper format.

Figure 3-1 - Compiler back-end for mixed-width ISA.

Figure 3-2 - Different S-Format instructions equivalent to lw.

18

3.1.1 Instruction Types

In mixed-width ISA, most INSs have multiple formats that are mainly different in

their encoding length. In order to indicate whether an INS has multiple encoding formats

or not, in this paper, INSs are classified into three categories as follows:

(1) L-INS (L-Format INS): L-INS is an INS which has no equivalent S-Format

instruction or has larger (oversized) immediate value such that it cannot be encoded

in S-Format.

(2) S-INS (S-Format INS): S-INS is an INS which can be encoded in S-Format

definitely. For examples, JR and NOP. JR has only one operand and can access

anyone of the physical registers. NOP does not index any registers and, thus, can be

encoded in S-Format obviously.

(3) U-INS (Uncertain-Format INS): U-INS is an INS which has one or more

equivalent S-Format instructions, and can be encoded as an S-Format instruction if

its physical registers may be limited in a small range. For specification, the virtual

variables defined and/or used by a U-INS are marked as $VarU. And the $VarU is

exactly that variable with benefit to reduce code size as we mentioned $VarCS. Note

that U-INS is exactly what we can make efforts to increase the translation rate of

S-Format instructions.

19

3.1.2 Register Classes

In this thesis, the physical registers of a mixed-width ISA are divided into two

classes. Registers that can be accessed by S-Format instructions of U-INSs are denoted

as RegisterSetS, and another case is RegisterSetA, which represents all accessible physical

registers for L-Format instructions, except some special register such as stack pointer

(SP), global pointer (GP), etc. The number of registers of RegisterSetS and RegisterSetA

are denoted as RSNS and RSNA, respectively. Noticeably, RegisterSetS is a subset of

RegisterSetA rather than independent of each other. Now we take MIPS/MIP16

mixed-width architecture as an example. The register r0 is reserved for zero in MIPS,

and MIPS16 uses three bits to index registers. Therefore, RegisterSetS contains r1~r7,

and another class, RegisterSetA, contains r1~r27 as shown in Figure 3-3.

Figure 3-3 – Register classes

Note that we do not handle the special registers, because special registers are

usually used in a specific way, e.g., stack pointer ($sp) in add or lw for stack operation.

Moreover, special registers usually have corresponding special S-Format instructions for

them as implied operands. For example, add (SP-relative) and lw (SP-relative)

instructions imply SP register as their operand as shown in Figure 3-2.

20

3.2 Design I : Based on Bottom-up Graph Coloring

In this section, the first design, register allocation and assignment algorithm based on

Bottom-up graph coloring for mixed-width ISA with mode-switch by instruction encoding,

will be described in detail.

As depicted in Figure 3-4, the proposed algorithm consists of two main passes, namely

Allocation, and Assignment. Firstly, the Build stage parses all necessary information, such as

live rages, instruction types, etc., and constructs the interference graph, called graph for short.

Note that the graph does not contain the variables which must be allocated in special registers

and calling convention registers. Based on the interference graph, Allocation pass determines

which variable should be allocated in the physical register or be spilled into memory. Finally,

Assignment pass selects a physical register and assigns it to a non-spilled variable. The input

and output of the proposed algorithms are INSs with virtual registers and assembly code,

respectively.

Figure 3-4 - Flowchart of the proposed algorithm based on Bottom-up graph coloring for

mixed-width ISA with mode-switch by instruction encoding.

21

3.2.1 Allocation Pass

The main purpose of Allocation pass is to determine which of the variables should

be in register or in memory at each execution point. As shown in Figure 3-4, allocation

pass consists of three main stages, namely RegS-Simplify, RegL-Simplify, and Spill.

Firstly, RegS-Simplify and RegL-Simplify stages remove some variables from the graph

and place them into the corresponding stacks. If there are any remaining variables after

these two stages, then the degrees of these variables will be all larger than RSNA, and the

algorithm will enter spill stage. Spill stage shrinks the degrees of variables by removing

some variables with less effect on the execution performance from the graph. In this

stage, a variable removed from the graph is the one that must be spilled into memory.

Since spilling a variable will generate several new variables, the algorithm must return to

the Build stage and rebuild the graph, and then the allocation pass will be repeated again.

When all variables are removed from the graph, it will enter the assignment pass to

assign physical registers to variables.

A. RegS-Simplify and RegL-Simplify Stages

RegS-Simplify and RegL-Simplify stages are designed to remove variables from

the graph. The RegS-Simplify stage is performed before the RegL-Simplify stage to

find out variables which can guaranteed be assigned in RegisterSetS. It will remove

$VarUs with degree less than RSNS, i.e., these variables can be assigned in RegisterSetS

definitely. However, in RegL-Simplify stage, the removed target becomes the variables

with degree less than or equal to RSNA. This is because of the special case called

“diamond” graph as shown in Figure 3-5. For example, if the target processor has two

physical registers, r0 and r1, and the simplify stage removes only variables with

degree less than two. Then the simplify stage removes no variables, and one of the

22

four variables, A, B, C, and D, will be chosen to spill. However, it is obvious that this

diamond graph can be colored by two colors as shown in Figure 3-5. To tackle this

problem, the proposed algorithm removes variables with degree less than or equal to

RSNA to make sure the remaining variables are those “must” be spilled.

Figure 3-5 – Diamond graph.

For both RegS-Simplify and RegL-Simplify stages, the removing order is

arranged from lower to higher degree; and after removing a variable from the graph,

the degree of all remaining variables will be updated. The variables removed from

RegS-Simplify are pushed into AllocatedStackS, and from RegL-Simplify stages are

stored into AllocatedSetL. Since the degrees of the variables removed in RegS-Simplify

stage are smaller than RSNS, all variables in AllocatedStackS are able to be assigned in

RegisterSetS. As for variables in AllocatedSetL, they may be assigned either in

RegisterSetS or RegisterSetA. Therefore, the way to assign proper variables to

RegisterSetS is the key issue in our design as the red arrow as shown in Figure 3-6.

Figure 3-6 - The process sketch map of our proposed algorithm based on Bottom-up

graph coloring.

C

DB

A r0

r0

r1 r1

23

RegS-Simplify and RegL-Simplify stages are performed until (1) none of the

remaining variables in the graph can be removed; or (2) only variables with degrees

equal to or larger than RSNS in RegS-Simplify stage or larger than RSNA in

RegL-Simplify stage are left.

Note that all variables removed in RegL-Simplify stage are stored into

AllocatedSetL, even if their degrees are smaller than RSNS. Since the degrees of

variables may decrease over time, the variables removed later will have smaller

degrees. After removing a certain number of variables, the degrees of some remaining

variables in the graph will be less than RSNS. Now these are two alternatives for

choice: (1) let the algorithm go back to RegS-Simplify stage to remove these variables

and put them into AllocatedStackS; or (2) stay in RegL-Simplify. If the algorithm can

return to RegS-Simplify stage while in RegL-Simplify when there are variables with

degrees less than RSNS, then all of these variables will be pushed into AllocatedStackS

(i.e., be assigned in RegisterSetS). However, these $VarUs may be not the proper

variables to be assigned to RegisterSetS to increase the number of S-Format

instructions than the other variables in AllocatedSetL, and they may occupy registers

from their neighbors which are more proper than these variables. Therefore, in order to

avoid assigning improper variables in RegisterSetS, all variables removed in

RegL-Simplify stage are only stored into AllocatedSetL and let the assignment pass to

discover which variables in AllocatedSetL should be assigned to RegisterSetS. The

pseudo code of allocation pass is shown in Figure 3-7.

24

Procedure Allocation

// Graph = {Variablei} is the set of nodes

// Degreei is the Interference_Number of variablei

While Graph ≠ 𝜙 do

RegS-Simplify:

forall variablei Graph do

if Degreei < RSNS then

Remove variablei from Graph;

Put variablei into AllocatedStackS;

endif

endfor

if Graph = 𝜙 then

break;

RegL-Simplify:

forall variablei Graph do

if Degreei <= RSNA then

Remove variablei from Graph;

Put variablei into AllocatedSetL;

endif

endfor

if Graph ≠ 𝜙 then

goto Spill;

endwhile

endprocedure

Figure 3-7 - Pseudo code of allocation pass.

B. Spill Stage

In RegS-Simplify and RegL-Simplify stages, we remove variables from the graph.

If there are remaining variables in the graph and cannot be removed anymore, the

algorithm will enter the spill stage. Then spill stage must choose one of the remaining

variables to spill, i.e. insert spill codes for this variable. An ideal variable for spilling

is the one that requires less number of dynamic loads and stores (less number of

25

accesses) and can reduce the number of future potential spill variables (higher degree).

Accordingly, the spill cost of variablei, SpillCosti, is defined as follows:

i

i

i
Degree

Access
SpillCost ,

where Accessi is the number of defines and uses of variablei, and Degreei is the

number of edges in the interference graph connected to variablei. After choosing

variablei, spill stage will insert corresponding load/store instructions for it, and then

return to the Build stage. Since inserting a spill code will result in new temporary

variables, it is necessary to rebuild the interference graph. In other words, the entire

algorithm will be repeated again if a new actual spill is generated.

3.2.2 Assignment Pass

Assignment pass assigns a physical register to each variable in AllocatedStackS and

AllocatedSetL. This pass is divided into two stages, namely RegL-Assignment and

RegS-Assignment. The RegL-Assignment stage is performed before the RegS-Assignment

stage because that variables in AllocatedStackS can be guaranteed they have registers in

RegisterSetS to use. As for more details, we will discuss in Section 3.2.3.

For the variables in AllocatedSetL, they may be assigned in RegisterSetA or in

RegisterSetS. That is, RegL-Assignment stage must determine the assignment target,

RegisterSetS or RegisterSetA, for the variables rather than just assigns all of them into

RegisterSetA. The assignment target determination can be viewed as the problem of

deciding which variables in AllocatedSetL should be assigned in RegisterSetS. The code

size reduction is proportional to the number of U-INSs being translated to S-Format

instructions, and the translation ratio is dominated by the number of $VarUs being

26

assigned in RegisterSetS. Due to the size limitation of RegisterSetS, not all $VarUs can be

assigned into RegisterSetS. To determine which $VarU should be assigned into

RegisterSetS, we define a profit function in this paper. The profit function considers two

features of $VarU, namely utilization and degree.

The utilization of $VarU is the number of times that $VarU is being accessed by

S-Format instructions in a whole function. Obviously, a frequently accessed $VarU

should have higher priority to be assigned to RegisterSetS. However, it is impossible to

calculate the actual number of accesses by S-Format instructions of a $VarU before the

instruction formatting pass in which the final instruction format has been decided for

INSs, and, as mentioned above, the instruction formatting pass can only be performed

after register allocation and assignment. To overcome this problem, we propose an

approach to evaluate the approximate number of accesses of a $VarU. The approach

consists of two parts, namely static and adaptive estimations. The static estimation

calculates the initial number of times that a $VarU is being accessed by U-INSs. Note

that this value is a constant for each $VarU. As for the adaptive estimation, it computes

the current number of times that a $VarU is being accessed by U-INSs which have at

least one operand being assigned into RegisterSetS. The adaptive estimation of all $VarUs

must be updated whenever a $VarU is assigned to RegisterSetS.

The degree of $VarU represents the number of neighboring variables of $VarU in the

graph. In order to make more $VarU be assigned in RegisterSetS, a $VarU with less

degree should have higher opportunity to be assigned into RegisterSetS. Note that less

degree also implies shorter live range. Based on these two features, the profit value for

$VarUi, denoted as Sel_profiti, is defined as follows:

Degree

estAdpestInit
profitSel

i

ii
i

1

)1(
_

,

27

where Init_esti and Adp_esti represent the initial and adaptive estimation results for

$VarUi, respectively; Degreei is the degree of $VarUi. Because of the continuous

changing of Adp_esti, Sel_profiti also has to be updated after a $VarU is assigned to

RegisterSetS. Note that alpha value, α , in Sel_profiti is the weight parameter between

Init_esti and Adp_esti, and we will experiment this algorithm with different alpha values

in Chapter 4.

Moreover, during RegL-Assignment stage it is possible to encounter a variable

which cannot be assigned into any physical registers, i.e., all available physical registers

are occupied by its neighbors. Then the algorithm will enter the spill stage and insert

spill codes for this variable directly, and the entire algorithm will be repeated again.

Remind that, in this algorithm, variables which definitely cannot be assigned to any

register have been discovered at allocation pass. For those variables which may not

possibly be assigned to registers, they will be discovered in RegL-Assignment stage.

As mentioned above, the variables allocated into AllocatedStackS are guaranteed to

be assigned in RegisterSetS, since their degrees are smaller than RSNS. Accordingly,

RegS-Assignment stage may adopt the traditional assignment approach by following the

stack pop order to choose the physical registers for the variables in AllocatedStackS.

The pseudo code of assignment pass is shown in Figure 3-8.

28

Procedure Assignment

While AllocatedSetL ≠ 𝜙 do

Forall variablei AllocatedSetL do

Calculate Sel_Profiti;

endfor

pick one variablei with highest Sel_Profiti as variable*;

if variable* can be assigned into RegisterSetS then

Assign a register different from its neighbors to variable* in RegisterSetS;

Remove variable* from AllocatedSetL;

else if variable* can be assigned into RegisterSetA then

Assign a register different from its neighbors to variable* in RegisterSetA;

Remove variable*from AllocatedSetL;

else

/* it has no register to assign, pass it to spill */

goto Spill(variable*);

endif

endwhile

Forall variablei AllocatedStackS do

Assign a register different from its neighbors to variablei by stack pop order;

endfor

endprocedure

Figure 3-8 - Pseudo code of assignment pass.

3.2.3 Discussion

In this subsection, three issues will be discussed: (1) the effect of different

assignment orders, (2) assignment without RegS-Simplify, and (3) extension of the

algorithm to more hierarchy register sets for different S-Formats.

A. Different Assignment Orders in Assignment

In the proposed algorithm based on bottom-up graph coloring, the

RegL-Assignment stage is processed before the RegS-Assignment stage. The main

reason is that variables in AllocatedStackS are guaranteed that they have registers in

29

RegisterSetS to use. In other words, no matter how the RegL-Assignment assigns the

variables in AllocatedSetL, the RegS-Assignment can assign registers in RegisterSetS to

variables in AllocatedStackS. Since only variables with degree less than RSNS are

pushed into AllocatedStackS during RegS-Simplify. For example, there is an

interference graph as shown in Figure 3-9. Assume that the architecture has three

registers, $r0, $r1, and $r2. RegisterSetS contains $r0 and $r1 (RSNS = 2), and

RegisterSetA contains all of the three registers (RSNA = 3). Variables D and E in Figure

3-9 are simplified by RegS-Simplify and moved to AllocatedStackS since their degrees

are less than two. The others variables A, B, and C are simplified by RegL-Simplify

and moved to AllocatedSetL. The sel_profiti for variable A, B, and C in

RegL-Assignment is A > B > C. As the result is in Figure 3-9 (a), if we assign

AllocatedSetL first, variable A can be assigned to $r0 because that there are no

registers have been occupied, then variable B is assigned in $r1, and the last register

$r2 is assigned to variable C. After performing RegL-Assignment, RegS-Assignment is

invoked to handle AllocatedStackS. Since variables in AllocatedStackS are guaranteed

to have registers in RegisterSetS to use, we just assign registers which are not occupied

by their neighbors in RegisterSetS. For the result shown in Figure 3-9 (a), all variables

in AllocatedStackS are assigned to RegisterSetS, and it is what we expect that variable

A and B should have higher opportunity to be assigned to RegisterSetS than variable C

does.

However, if we change the assignment order and let RegS-Assignment be

performed before the RegL-Assignment, it may result in that some of the variables in

AllocatedSetL with higher priority which may be assigned to RegisterSetS in the

previous order cannot be assigned to RegisterSetS now. For example, if the assignment

order is RegS-Assignment → RegL-Assignment as shown in Figure 3-9 (b), Variables

30

D and E in AllocatedStackS will be assigned to $r0 directly first. Then, variables A, B,

and C in AllocatedSetL will be picked up by the sel_profiti value in descendant. First,

variable A is picked up and assigned to $r1 ($r0 is occupied by its neighbor), then

variable B is assigned to $r2, and the last variable C is assigned to $r0. Because the

sel_profitB > sel_profitC, we desire that chance of variable B in RegisterSetS is higher

than variable C. However, variable B is not assigned to RegisterSetS, but the variable

C does.

Figure 3-9 - Different Assignment Order in Bottom-up Graph Coloring for Mixed-width

ISA with mode switch by instruction encoding : (a) RegL-Assignment → RegS-Assignment

(b) RegS-Assignment → RegL-Assignment.

31

B. Assignment without RegS-Simplify

The second discussion issue is how about if we do not isolate variables with

degree less than RSNS in RegS-Simplify of allocation pass, i.e., let all variables be

simplified to AllocatedSetL in Allocation pass, and then assign those variables in

descending order of sel_profit values in Assignment pass. This method seems

instinctive. However, if we do not isolate variables in RegS-Simplify, the sel_profit of

some variables which are simplified to AllocatedStackS originally may be higher than

those which are simplified to AllocatedSetL originally. Therefore, it will cause the

problem similar to that of the assignment order “RegS-Assignment →

RegL-Assignment” mentioned above.

For the same example given above, Figure 3-10 is the result of register

assignment if RegS-Simplify stage is canceled in the allocation pass. Because all

non-spilled variables are in AllocatedSetL and all of them are given a sel_profit as their

priority, in this example, the priority is D > A > E > B > C. According to this

assignment order, the results in that variable B cannot be assigned in RegisterSetS

since variable E have higher priority than variable B.

Figure 3-10 - Assignment result without RegS-Simplify.

32

C. Extension of the Algorithm to More

Hierarchy Register Sets for Different

S-Formats

For extending algorithm to handle the 1R4 form, we can modify the algorithm as

shown in Figure 3-11. Here we have a new register class named RegisterSetM, and it

contains registers (eg. $r1 ~ $r15) can be accessed by those instructions in 1R4 form,

i.e. the RSNM is 15. Moreover, the RegM-Simplify and RegM-Assignment stages are

added in the extended algorithm, and the U-INS may contain 1R4, 3R3, 2R3, and 1R3

forms. For $VarUs in U-INS, a $VarU which is defined or used only by 1R4 form

instructions is denoted as $VarU4, and the others are denoted as $VarU3.

At the RegM-Simplify, the algorithm removes $VarU4s which are with degree less

than RSNM to AllocatedStackM. In other words, if a variable is defined/used only by

1R4 instructions and the variable can be assigned to RegisterSetM definitely, and we

directly push it into AllocatedStackM and assign it to RegisterSetM at RegM-Assignment

stage. As for those $VarU4s with the degrees are larger than or equal to RSNM, they

may be removed at the RegL-Simplify stage and stored into AllocatedSetL. Therefore,

the modification of the sel_profit function is needed. The modified sel_profit function

should take those $VarU4s into account. For each $VarU4, it increases the Init_est and

Adp_est in sel_profit, but the weight should be lower than $VarU3. Since $VarU3s have

higher register pressure than $VarU4s, they are intended to be assigned to RegisterSetS.

By adopting these modifications, the $VarU3s will still have the highest priority to use

RegisterSetS, then the second priority is the RegisterSetM for $VarU4s, and the last is

those variables that are not defined or used by U-INS.

33

Figure 3-11 - Extension of Design I for different S-Formats.

34

3.3 Design II : Based on Priority-based Graph Coloring

The second design in this thesis is based on priority-based graph coloring. The mainly

difference from the previous design is that this algorithm makes efforts on selecting variables

to increase the number of S-Format instructions first, and then considers the number of spill

codes. In opposite, the previous design discussed in Section 3.2 makes efforts on minimizing

spill codes in allocation pass first, and then considers to increase the number of S-Format

instructions in assignment pass.

For the proposed algorithm based on Priority-based graph coloring for mixed-width ISA

with mode-switch by instruction encoding, its flowchart is shown in Figure 3-12. There are

three sets of live range (live range is the same with variable) need to be allocated and assigned

are defined as follows:

1. LRS: LRS (Live Ranges in RegisterSetS) contains variables with interference number

less than RSNS. For those variables in LRS, they are guaranteed to be allocated and

assigned to RegisterSetS.

2. LRU: LRU (Live Ranges in Uncertain RegisterSet) contains variables with

interference number larger than or equal to RSNS. For those variables in LRU, they

may be allocated and assigned to RegisterSetS, RegisterSetA, or Memory (Spilled).

The way to determine which variables in LRU should be assigned to RegisterSetS is

critical to this algorithm.

3. LRL: LRL (Live Ranges in RegisterSetA) contains variables which cannot be assigned

a register in RegisterSetS during the LRU Allocation and Assignment pass. They will

be allocated and assigned to RegisterSetA or Memory (Spilled) during the LRL

Allocation and Assignment pass.

35

First, Build stage parses all necessary information (such as live rages, instruction types)

and constructs the interference graph the same way as that described in the previous design.

Then the Separate pass separates variables in the graph into LRU and LRS. After Separate

stage, the algorithm uses a priority function which is designed to make more instructions to be

encoded as S-Format instructions to choose variables from LRU to allocate and assign

registers in the Prioritize stage. During this pass, some variables in LRU may be transferred to

LRL. For minimizing the generated spill codes, the algorithm uses the other priority function

which is designed for minimizing the spill codes to allocate and assign registers for variables

in LRL. And finally, the variables in LRS are handled. The input and output of the proposed

algorithm are INSs with virtual registers and assembly code, respectively.

Figure 3-12 - Flowchart of the register allocation and assignment algorithm

based on Priority-based graph coloring for mixed-width ISA with

mode-switch by instruction encoding.

36

The pseudo code of Priority-based graph coloring for mixed-width ISA with

mode-switch by instruction encoding is shown in Figure 3-13.

Procedure MxPrGCRA

Build interference graph ifGraph;

Separate LRU and LRS;

While LRU ≠ 𝜙 do

Forall variablei LRU do

Calculate Sel_Profiti;

endfor

pick one variablei with highest Sel_Profiti;

if variablei can be assigned into RegisterSetS then

Assign a register different from its neighbors to variablei in RegisterSetS;

Remove variablei from LRU;

else

Move variablei to LRL;

endif

endwhile

While LRL ≠ 𝜙 do

pick one variablei with highest SpillCosti;

Assign a register different from its neighbors to variablei in RegisterSetA;

Remove variablei from LRL;

Forall variablei* neighbors of variablei do

if variablei* has to be spilled then

goto Spill(variable*);

update ifGraph with new variables produced by spilling;

endif

endfor

endwhile

While LRS ≠ 𝜙 do

Forall variablei LRS do

Assign a register in RegisterSetS different from its neighbors to variablei

endfor

endwhile

Figure 3-13 - Pseudo code of Priority-based graph coloring for mixed-width ISA with

mode-switch by instruction encoding

37

3.3.1 Separate Stage

After the interference graph has been built by Build stage, Separate stage separates

variables in the graph into LRU and LRS by their interference number. Note that the

variables in LRL are not discovered in Separate stage because that variables in LRU may

be allocated into RegisterSetS, RegisterSetA, or Memory (Spilled), and thus, variables in

LRL are included in LRU currently.

3.3.2 LRU Allocation and Assignment

During the LRU Allocation and Assignment pass, the algorithm needs to find out

which variables in LRU should be allocated and assigned to RegsiterSetS. Because that

the variables in LRU are those variables with interference number larger than or equal to

RSNS, it means that only a part of them can be assigned to RegsiterSetS and the others

will be assigned to either RegisterSetA or Memory. Therefore, the way to determine

which variables in LRU should be assigned to RegisterSetS is critical as mentioned above.

To achieve this, a priority function for prioritize stage is used. The Prioritize stage

calculates priority for each variable in LRU to make a proper order to assign registers,

and the higher priority (profit) variable has higher chance to get a register in RegisterSetS.

The priority (profit) value for $VarUi (denoted as Sel_profiti) is the same as that defined

in the previous design and listed as follows:

1

)1(
_

n

nn
n

Degree

estAdpestInit
profitSel

When all variables in LRU have been given a priority, Pick&Assign(S) stage picks

the highest priority variable variablei, and try to assign a register in RegisterSetS to it. If

there is a free register in RegisterSetS which is not occupied by the neighbors of variablei,

38

then variablei will be assigned this register and removed from LRU. Otherwise, variablei

will be moved to LRL.

After assigning a variable into RegisterSetS, this pass will check the LRU. If it is

empty, then the algorithm will go to the next pass - "LRL Allocation and Assignment".

Otherwise, it will repeat the Prioritize stage to update the Adp_est for the remaining

variables in LRU and the Pick&Assign(S) stage to tackle the remaining variables in LRU

until LRU is empty.

3.3.3 LRL Allocation and Assignment

In the previous pass, variables in LRU those cannot be directly assigned to

RegisterSetS have been found and moved to LRL. The goal of this pass is to determine

which variables in LRL should be assigned to RegisterSetA and the others should be

spilled to memory. Apparently, the allocation and assignment for LRL is critical to

reduce the number of generated spill codes.

To minimizing the generated spill codes, a priority function for evaluating the spill

cost of a variable is evolved. First, the algorithm assumes that all variables in LRL are

initially stored in memory, and uses the priority function to estimate how many processor

cycles can be saved if variablei in LRL is assigned a physical register. For those variables

which can save more cycles, they should have higher priority to get registers than others.

This priority function is similar to the traditional priority-based graph coloring for

register allocation and listed as follows:

n

n
n

Degree

SaveCycle
SpillCost ,

where SaveCyclei represents the number of processor cycles saved if variablei is

assigned a physical register rather than stored in memory, and SaveCyclei is usually

39

proportional to the access counts of variablei; and Degreei is the number of edges

connected to variablei in the interference graph. This priority function makes the variable

with higher SaveCyclei and lower Degreei have higher priority to get a physical register

in RegisterSetA. Pick&Assign(L) stage picks the highest priority (SpillCost) variablei and

assigns a register in RegisterSetA to it. Then the algorithm goes through each neighbor of

variablei to check whether it needs to be spilled or not. If there is a variable spilled, the

corresponding load/store instructions for spilled variable will be inserted. Then Build

Newly stage will build new variables and move them into LRL for the new temporary

variables produced during spilling. Otherwise, the algorithm will go back to

Pick&Assign(L) stage when LRL is not empty or go to the next pass – “LRS Allocation

and Assignment” when LRL is empty.

3.3.4 LRS Allocation and Assignment

Since all variables in LRS have degree less than RSNS, i.e., the simultaneously alive

variables with each variable in LRS of a function are no more than RSNS, all of them can

be assigned to RegisterSetS without any constrains. Therefore, the LRS Allocation and

Assignment pass just picks up a variable in LRS and assigns a register in RegisterSetS to

it until LRS is empty.

3.3.5 Discussion

In this subsection, an alternative design without the "LRU allocation and assignment

pass" and the extension of the algorithm to more hierarchy register sets for different

S-Formats will be discussed.

40

A. Alternative Design

The traditional priority-based graph coloring uses only one priority function to

pick up variables to assign. In order to increase the number of instructions encoded as

S-Format instruction, we can directly use Sel_profit function to instead the traditional

priority function as shown in Figure 3-14. Consequently, the Pick&Assign stage will

pick the variable with highest Sel_profit up and assign a register to the variable, and

thus, increasing the number of S-Format instructions. However, the algorithm is not

good enough because the influence of spill codes is not taken into account. Therefore,

we should allocate and assign registers hierarchically while using two priority

functions to increase the S-Format translation rate and decrease the number of spill

codes, respectively.

Figure 3-14 - Flowchart of the proposed algorithm without LRL allocation and

assignment pass of Design II.

This is why we move a variable which cannot be assigned in RegisterSetS to LRL

in "LRU allocation and assignment pass" (as shown in Figure 3-12). Because this

41

variable cannot use registers in RegisterSetS, it only can either be allocated in

RegisterSetA or be spilled. Therefore, this variable should not use the Sel_profit

priority function to determine its priority because the Sel_profit priority function is not

designed for minimizing the number of spill codes. Hence, the priority function which

is designed to determine the priority to use RegisterSetA or to be spilled should be

adapted instead here. So we move these variables from LRU to LRL, and they will be

handled in “LRL allocation and assignment pass” pass. The evaluating of the proposed

algorithm with and without “LRL allocation and assignment pass” will be shown in

Chapter 4.

B. Extension of the Algorithm to More

Hierarchy Register Sets for Different

S-Formats

Similar with Section 3.2.3, the proposed algorithm based on priority-based graph

coloring can be extended to adopt different S-Formats. To achieve this, we use

hierarchical allocation and assignment. First we find out which variables should be in

RegisterSetS, and then we find out which variables should be in RegisterSetM, the last,

considering the spill codes for the variables allocated in RegsiterSetA.

The modified algorithm based on priority-based graph coloring is shown in

Figure 3-15. It is obviously that the "LRM Allocation and Assignment pass" is added.

During "LRU Allocation and Assignment pass", variables those cannot be assigned in

RegisterSetS will be moved to LRM rather than LRL. Then, a new priority function,

Priority_Mi, is evolved for each variablei in Prioritize(M) stage of "LRM Allocation

42

and Assignment pass". This priority function makes $VarU4s have higher priority.

Therefore, the Pick&Assign(M) stage picks variables with higher Priority_M up and

try to assign a register in RegisterSetM to this variable. If there is no free registers in

RegisterSetM, and then the algorithm moves this variable into LRL.

Figure 3-15 - Extension of Design II for different S-Formats.

43

Chapter 4 Experiment

In this chapter, the experiment environment and the simulation result are described. First

the experimentation environment is introduced. The next, we will determine the parameter,

α value. And finally, benchmark evaluation results for two algorithms proposed and design

alternatives discussed in Section 3.2.3 and 3.3.5 will be shown out also. All of these

evaluation results contain the code size reduction rate and the spill code percentage.

4.1 Environment

The Low-Level Virtual Machine (LLVM) is used as our compiler infrastructure [12][13].

It provides back-ends for lots of popular architectures, for examples, ARM, MIPS, x86,

PowerPC, etc. LLVM back-end has many useful passes such as coalescing, instruction

selection, mid-level optimizers, etc. To generate INSs with virtual registers, we modified the

LLVM compiler back-end to produce the INSs with virtual registers as input files of our

algorithm. The modified LLVM back-end will ignore the physical registers described in target

machine description file (.td) and treat the number of available physical registers as infinite.

In addition, LLVM back-end uses a constant pool to hold large constants, and thus, the

limitation by the fewer bits to hold immediate values can be neglected.

In our simulation, the target ISA is MIPS/MIPS16 with assumption that instruction mode

(S-Formant or L-Format) is changed by a specified instruction bit rather than the mode

switching instruction. According to the register file of MIPS, $r0 is used as zero, $r26 and

$r27 are reserved by kernel usage, and $GP, $SP, $FP, and $RA as special registers, so they

cannot be used in other way. Therefore, the parameters of registers are assumed as following:

RegisterSetS = $r1 ~ $r7, RSNS = 7, RegisterSetA = $r1 ~ $r25, , and RSNA = 25. In addition,

44

benchmarks used in this experiment were selected from SPECINT2000, Mibench, and

Mediabench.

4.2 Benchmark Evaluation Results

In this section, α value in the sel_profit function is determined and our simulation

results including code size reduction, spill codes, and the S-Format limitations analysis of the

generated codes are presented. The simulation result of the benchmark programs for our

proposed algorithms are denoted as the MxBuGCRA (named by Bottom-up Graph Coloring

Register Allocation for Mixed-width ISA) and MxPrGCRA (named by Priority-based Graph

Coloring Register Allocation for Mixed-width ISA). For comparison, the simulation results of

the traditional bottom-up graph color register allocation (BuGCRA) and priority-based graph

coloring register allocation (PrGCRA) are also depicted.

4.2.1 Parameter Determination

The α value is the parameter to control the weight between Init_esti and Adp_esti

in our heuristic function, the sel_profiti, which is used in “RegL-Assignment Pass of

MxBuGCRA” and “LRU Allocation and Assignment pass of MxPrGCRA”. If α is

equal to one, it means that the sel_profiti takes only the Init_esti into account, and if α

is equal to zero, the sel_profiti takes only the Adp_esti into account, apparently.

We have evaluated α value from 0.01 to 1 for two algorithms proposed in this

thesis, MxBuGCRA and MxPrGCRA, and the result is shown in Figure 4-1. Note that

we do not let α value be equal to zero because that the Adp_esti of all variables are

zero initially, and sel_profiti for all variables will also be zero once α value is zero. It

45

results in that the first variable is selected by random, and the selected variable may have

no or little benefit to increase the number of S-Format instructions.

From the evaluation results, we observe that whenever α is approaching zero or

approaching one, the code size reduction is decreasing. It is reasonable that we should

not emphasize too much either Init_esti or Adp_esti. If the Init_esti is over emphasized,

the sel_profit function cannot increase the appropriate priority for the other variables in

U-INSs that access a variable which had been just assigned in RegisterSetS. If the

Adp_esti is over emphasized, the heuristic approach may sink in the local optimal result

easily. In addition, the changes of the percentages of spill codes seem irregular for

different α values. Therefore, for the code size reduction objective, α value may be

set to 0.4 for the proposed algorithms.

Figure 4-1 - The evaluation of differentα values.

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

30.50%

30.70%

30.90%

31.10%

31.30%

31.50%

31.70%

31.90%

32.10%

0
.0

1

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Sp
ill

 C
o

d
e

s

C
o

d
e

 S
iz

e
 R

e
d

u
ct

io
n

 (
C

SR
)

The Alpha value in:

MxBuGCRA (CSR) MxPrGCRA (CSR)
MxBuGCRA (Spill) MxPrGCRA (Spill)

1

)1(
_

n

nn
n

Degree

estAdpestInit
profitSel

46

4.2.2 Comparisons of Design Alternatives

The experiment results for the different approaches discussed in section 3.2.3 and

3.3.5 are presented as follows. Note that we have simulated different α values for each

approach, and all of the approaches have the best results when α is 0.4 as the same as

the proposed algorithms.

The first one is the different assignment order of the Assignment pass in

MxBuGCRA. As the same with the examples given in section 3.2.3, the assignment

order “RegL-Assignment → RegS-Assignment” is better than the assignment order

“RegS-Assignment → RegL-Assignment” and “without isolating AllocatedStackS”. Also,

the results of these alternatives are shown in Figure 4-2.

Figure 4-2 - Benchmark evaluation results of the different assignment order in

MxBuGCRA.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

C
o

d
e

Si
ze

 R
ed

u
ct

io
n

 (
C

SR
)

RegL-Assignment -> RegS-Assignment
RegS-Assignment -> RegL-Assignment
without isolating AllocatedStackS

47

The second experiment is the MxPrGCRA with and without “LRL Allocation and

Assignment Pass” we discussed in section 3.3.5, the result is shown in Figure 4-3. The

MxPrGCRA with “LRL Allocation and Assignment Pass” is better than without the pass

in code size reduction due to the fewer spill codes generated.

Figure 4-3 - Benchmark Evaluation Results of MxPrGCRA with/without LRL pass.

4.2.3 Code Size Reduction

In Figure 4-4, the Y-axis indicates the code size reduction percentage, and the

X-axis is the different benchmarks programs we used. The code size reduction (CSR)

percentage is calculated by the following equation:

CSR % = (1−
S_InstCNT MxBu (Pr)GCRA × 16+L_InstCNT MxBu (Pr)GCRA × 32

Instruction _Count BuGCRA × 32
) × 100% ,

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

C
o

d
e

 S
iz

e
 R

e
d

u
ct

io
n

 (
C

SR
)

With L-LR Without L-LR

48

where S_InstCNT and L_InstCNT are the S-Format instruction count and the L-Format

instruction count of the compiled program, respectively. And the base line is the program

compiled by using traditional bottom-up graph coloring register allocation algorithm

without Mixed-width ISA, i.e., with L-Format instructions only.

The proposed MxBuGCRA and MxPrGCRA algorithms achieve 31.89% and

31.90% of the code size reduction as shown in Figure 4-4 and Table 4-1. In other words,

there are more than 60% of instructions which can be encoded in S-Format instructions.

The S-Format limitation analysis will be described in Section 4.2.5. If the traditional

graph coloring algorithms are used to allocate and assign registers for Mixed-width ISA,

only 19.77% and 25.67% code size reduction may be obtained. Obviously, to reduce

code size in mixed-width ISA processors, it is necessary to use a special heuristic model

to allocate and assign registers to increase the S-Format instruction translation rate.

However, since we try to spill more variables to get more INSs encoded in S-Format

instructions, it possibly leads to more spill codes and may results in larger code size due

to the increasing spill codes. Fortunately, the increased spill codes are very small

amounts as described in Section 4.2.4.

By using our proposed algorithms, the code size reduction percentage is improved

by about 12% compared to the traditional bottom-up graph coloring register allocation

algorithm and about 7% compared to the traditional priority-based graph coloring

algorithm. The mainly reason of the improvement is that the general algorithms allocate

registers for minimizing the number of spill codes but usually assigns registers in an

arbitrary way, and on the contrary, our algorithm determines a priority order to assign

registers to get higher translation rate.

49

It is interesting that PrGCRA can get 25.67% without any consideration of

Mixed-width ISA. The reason is that the priority function of PrGCRA is designed to

make a variable with more cost of memory loads and stores saved has higher priority,

and the number of loads and stores is similar to the access count for the variable as we

mentioned in Chapter 2. Since 89% of instructions in programs are U-INS and PrGCRA

assigns registers by increasing order, the $VarUs are assigned in registers which are

accessible by S-Format instruction at very high probability.

Table 4-1 - Benchmark evaluation results of the proposed algorithms.

 Pronoun CSR (%) Spill Codes (%)

Traditional
Bottom Up GCRA BuGCRA 19.77% 2.60%

Priority Based GCRA PrGCRA 25.67% 2.65%

Proposed

Bottom Up (Mix-Width) GCRA MxBuGCRA 31.89% 2.84%

Priority Based (Mix-Width) GCRA MxPrGCRA 31.90% 2.88%

Figure 4-4 - Benchmark evaluation results of the proposed algorithms.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

C
o

d
e

 S
iz

e
 R

e
d

u
ct

io
n

 (
C

SR
)

BuGCRA PrGCRA MxBuGCRA MxPrGCRA

50

4.2.4 Spill Codes

Any changes in register allocation will result in different numbers of spill codes,

and the number of spill codes is critical to execution performance. In this section, the

number of spill codes produced by our algorithms and the traditional register allocation

algorithm are evaluated and shown in Figure 4-5. And the α value is set to 0.4 for our

algorithms. The Y-axis is the percentage of spill codes in programs which are compiled

by different register allocation algorithms. The X-axis indicates the different benchmark

programs.

The percentages of spill codes are 2.84% and 2.88% for MxBuGCRA and

MxPrGCRA in average, respectively. Comparing to the traditional algorithms, the extra

spill codes are 0.24% and 0.23% for MxBuGCRA and MxPrGCRA, respectively. These

are really very small amounts that can be ignored.

Figure 4-5 - Spill codes of the proposed and traditional algorithms.

2.60%
2.84%

2.65%
2.88%

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

14.00%

16.00%

Sp
ill

 C
o

d
e

s
(%

)

BuGCRA MxBuGCRA PrGCRA MxPrGCRA

51

4.2.5 S-Format Limitations Analysis

The distribution of instruction types of the traditional register allocations and our

proposed algorithms has been analyzed. BuGCRA v.s. MxBuGCRA is shown in Figure

4-6, and PrGCRA v.s. MxPrGCRA is shown in Figure 4-7.

The Y-axis is the percentage of instructions in both of the two figures. In these two

figures, the top blocks, green colored, are the percentage of instructions which have no

operation equivalent S-Format instructions or the immediate value is oversized. The

middle blocks, red colored, are the percentage of instructions each of which has one or

more operation equivalent S-Format instructions but at least one of its operand registers

is out of range to index of S-Format instruction. And the bottom blocks, blue colored, are

those instructions whose register number and immediate value are in the range of

S-Format instructions.

It is obvious that after our modification the blue sections are increased significantly.

As for the red section which is about 25% in average, it is impossible to eliminate all of

them because that over eight variables are alive simultaneously at many execution points

in the programs, and thus, there are too many variables to assign if using only

RegisterSetS. By the proposed heuristic method, about 63% translation rate of S-Format

instructions in entire program achieved.

52

Figure 4-6 - S-Format limitation distributions - BuGCRA v.s. MxBuGCRA.

Figure 4-7 - S-Format limitation distributions - PrGCRA v.s. MxPrGCRA.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gz
ip

 (
B

u
G

C
R

A
)

gz
ip

 (
M

xB
u

G
C

R
A

)

ra
w

ca
u

d
io

 (
B

u
G

C
R

A
)

ra
w

ca
u

d
io

 (
M

xB
u

G
C

R
A

)

ra
w

d
au

d
io

 (
B

u
G

C
R

A
)

ra
w

d
au

d
io

 (
M

xB
u

G
C

R
A

)

m
cf

 (
B

u
G

C
R

A
)

m
cf

 (
M

xB
u

G
C

R
A

)

b
it

co
u

n
t

(B
u

G
C

R
A

)

b
it

co
u

n
t

(M
xB

u
G

C
R

A
)

b
lo

w
fi

sh
 (

B
u

G
C

R
A

)

b
lo

w
fi

sh
 (

M
xB

u
G

C
R

A
)

d
ij

ks
tr

a
(B

u
G

C
R

A
)

d
ij

ks
tr

a
(M

xB
u

G
C

R
A

)

ri
jn

d
ae

l (
B

u
G

C
R

A
)

ri
jn

d
ae

l (
M

xB
u

G
C

R
A

)

st
ri

n
gs

e
ar

ch
 (

B
u

G
C

R
A

)

st
ri

n
gs

e
ar

ch
 (

M
xB

u
G

C
R

A
)

C
R

C
3

2
 (

B
u

G
C

R
A

)

C
R

C
3

2
 (

M
xB

u
G

C
R

A
)

A
ve

ra
ge

 (
B

u
G

C
R

A
)

A
ve

ra
ge

 (
M

xB
u

G
C

R
A

)

All in Range Register # Out of Range Imm Out of Range/OP not match

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

gz
ip

 (
P

rG
C

R
A

)

gz
ip

 (
M

xP
rG

C
R

A
)

ra
w

ca
u

d
io

 (
P

rG
C

R
A

)

ra
w

ca
u

d
io

 (
M

xP
rG

C
R

A
)

ra
w

d
au

d
io

 (
P

rG
C

R
A

)

ra
w

d
au

d
io

 (
M

xP
rG

C
R

A
)

m
cf

 (
P

rG
C

R
A

)

m
cf

 (
M

xP
rG

C
R

A
)

b
it

co
u

n
t

(P
rG

C
R

A
)

b
it

co
u

n
t

(M
xP

rG
C

R
A

)

b
lo

w
fi

sh
 (

P
rG

C
R

A
)

b
lo

w
fi

sh
 (

M
xP

rG
C

R
A

)

d
ij

ks
tr

a
(P

rG
C

R
A

)

d
ij

ks
tr

a
(M

xP
rG

C
R

A
)

ri
jn

d
ae

l (
P

rG
C

R
A

)

ri
jn

d
ae

l (
M

xP
rG

C
R

A
)

st
ri

n
gs

e
ar

ch
 (

P
rG

C
R

A
)

st
ri

n
gs

e
ar

ch
 (

M
xP

rG
C

R
A

)

C
R

C
3

2
 (

P
rG

C
R

A
)

C
R

C
3

2
 (

M
xP

rG
C

R
A

)

A
ve

ra
ge

 (
P

rG
C

R
A

)

A
ve

ra
ge

 (
M

xP
rG

C
R

A
)

All in Range Register # Out of Range Imm Out of Range/OP not match

53

4.3 Summary for Simulation Results

In this chapter, we presented experiment results for both of the proposed algorithms and

traditional algorithms. It is obvious that the approaches proposed in this thesis are easy to be

modified from the traditional algorithms and effective for reducing code size by using

Mixed-width ISA with mode-switch by instruction encoding.

By the statistics, the first design, MxBuGCRA, can reduce 31.89% and the second

design, MxPrGCRA, can reduce 31.90% of total code size in average. As for the spill codes,

the proposed algorithms with α equal to 0.4 produce spill codes in 2.84% and 2.88% in

average of these benchmark programs. In addition, we have demonstrated the different results

of code size reduction and spill codes amount in different α values. In this thesis, the α

value is set to 0.4 for code size consideration. However, if the performance requirement is the

first consideration, we can set α to 0.3 to get fewer spill codes by sacrificing a little code

size reduction.

54

Chapter 5 Conclusions and Future Works

In this chapter, conclusions of this thesis are made first, and then the future works of this

thesis are proposed.

5.1 Conclusions

As the demand for the enlarging program size due to the requirement of more program

functionalities and the evolution of mixed-width ISA architectures in embedded systems, a

register allocation and assignment algorithm for mixed-width ISA will become more and

more important in the near future. In this thesis, we present two register allocation and

assignment algorithms for mixed-width ISA with mode switch by instruction encoding.

The first proposed algorithm, MxBuGCRA, is composed of two passes: the allocation

pass is to allocate registers with the consideration of minimizing spill codes, and the

assignment pass is to assign register with the consideration of increasing the translation rate of

S-Format instructions. The second proposed algorithm, MxPrGCRA, firstly picks variables up

in an order which is considered to increase the translation rate of S-Format instructions, and

then picks the remaining variables up for minimizing spill codes. Both of these two

algorithms try to make efforts on reducing code size while minimizing the number of spill

codes by using the sel_profiti function for the former and the SpillCosti function for the latter.

We have conducted experiments to verify the algorithm for a mixed-width ISA processor.

It is found that the code size reduction is achieved 31.89% and 31.90% on average for our

algorithms respectively. Meanwhile, the proposed algorithms do efforts on minimizing the

generated spill codes. From the experiments, it shows that only 0.24% and 0.23% extra spill

codes generated by MxBuGCRA and MxPrGCRA than BuGCRA and PrGCRA, respectively.

55

The last, we also showed that the different results in code size reduction and spill codes for

the proposed algorithms by setting the different α values for varies demands.

5.2 Future Works

The future works of this thesis can be put into four dimensions: reducing the runtime

I-cache miss rate, obtaining the optimal solution of code size reduction, integrating other

optimization techniques, e.g. instruction scheduling, for getting more code size reduction

using the proposed algorithms, and modifying the proposed algorithms to match the

requirements of other optimization techniques.

The first, we do not take loops into account because our objective is to reduce the

program code size rather than the dynamic trace size in this thesis. However, it is a good

option to observe while considering the reduction of the runtime I-cache miss rate for further

researches.

The second, in order to obtain the optimal solution of code size reduction for the

Mixed-width ISA with mode switch by instruction encoding, the methods which are designed

for solving NP-Complete problems are good options, e.g., the Integer Linear Programming

(ILP) and Partitioned Boolean Quadratic Problem (PBQP). Both of ILP and PBQP formulate

problems into equations and solve them to get a unique solution. But the execution time is too

slow to be adopted in practice. However, it is a good way to obtain the optimal solutions.

The third, it may have more code size reduction by integrating other optimization

techniques for the proposed algorithms. For example, use a pre-instruction scheduling to

shorten the live ranges of a program function. Therefore, it may release registers in

RegisterSetS at some execution points and make more variables can be assigned in

56

RegisterSetS. But any changes of instruction scheduling will affect the execution performance

and register pressure. The scheduling policy should be carefully designed for these

considerations.

Finally, we may get some other benefits by doing some modifications to the proposed

algorithms. For example, the number of bits-change between instructions may affect the

power consumption of the instruction fetch unit and the memory bus. If the RegS-Assignment

stage of MxBuGCRA and the LRS Allocation and Assignment pass of MxPrGCRA assign a

variable into RegisterSetA when a variable in AllocatedStackS and LRS has no any benefits for

code size reduction (i.e. no more instructions can be encoded in S-Format instructions even

this variable is assigned in RegisterSetS), it may reduce the bits-change between instructions.

57

References

[1] John Bunda, Don Fussell, W. C. Athas, and Roy Jenevein, “16-bit vs. 32-bit instructions

for pipelined microprocessors”, Proceedings of the 20th annual international symposium

on Computer architecture, San Diego, California, United States, May 16-19, 1993,

p.237-246.

[2] S. Furber, ARM System Architecture, Addison-Wesley. 1996. ISBN 0-201-40352-8.

[3] K. Kissel, MIPS16: High-density MIPS for the embedded market, Tech. report, Silicon

Graphics MIPS Group, 1997.

[4] Andes Technology, Andes Instruction Set Architecture Specification, 2008.

[5] Bor-Sung Liang, June-Yuh Wu, Jih-Yiing Lin, Ming-Chuan Huang, Chi-Shaw Lai,

Yun-Yin Lien. Ching-Hua Chang, Pei-Lin Tsai, and Ching-Peng Lin, “Instruction set

architecture scheme for multiple fixed-width instruction sets and conditional execution”,

International Symposium on VLSI Design, Automation and Test, Sunplus Technol. Co.,

Ltd., Hsinchu, Taiwan, 2005.

[6] Aviral Shrivastava, Partha Biswas, Ashok Halambi, Nikil Dutt, and Alex Nicolau,

“Compilation framework for code size reduction using reduced bit-width ISAs (rISAs)”,

ACM Transactions on Design Automation of Electronic Systems (TODAES), January

2006, v.11 n.1, p.123-146.

[7] T. Zeitlhofer, and B. Wess, "A comparison of graph coloring heuristics for register

allocation based on coalescing in interval graphs", Proceedings of the 2004 International

Symposium on Circuits and Systems, 4: IV-529-32 Vol. 4, May 2004

[8] G. J. Chaitin, “Register allocation and spilling via graph coloring”, Proceedings of the

ACM SIGPLAN ’82 Symposium on Compiler Construction, The Association for

Computing Machinery, Boston, Massachusetts, June 1982, pages 98–105.

[9] Andrew W. Appel, Modern Compiler Implementation in Java: Basic Techniques,

58

Cambridge University Press, 1997.

[10] Fred C. Chow and John L. Hennessy, “Register allocation by priority-based coloring”,

Proceedings of the ACM SIGPLAN ’84 Symposium on Compiler Construction, Montreal,

June 1984, pages 222–232.

[11] Jonathan S. Turner, “Almost all k-colorable graphs are easy to color”, Journal of

Algorithms, March 1988, 9(1):63–82.

[12] Chris Lattner, and Vikram Adve, “LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation”, Proceedings of the international symposium on

Code generation and optimization: feedback-directed and runtime optimization, Palo

Alto, California, March 20-24, 2004, p.75.

[13] C. Lattner et al, “The LLVM compiler infrastructure”, http://llvm.org.

[14] Preston Briggs, Keith D. Cooper, and Linda Torczon, “Improvements to graph coloring

register allocation”, ACM Transactions on Programming Languages and Systems, May

1994, 16(3):428–455.

[15] D. Koes and S. C. Goldstein, An analysis of graph coloring register allocation,

Technical Report CMU-CS-06-111, Carnegie Mellon University, March 2006.

	Thesis_9655605

