%@\Fﬁ.@ \'\zq EREN -

A Hierarchical Primitive List for Tile-based Rendering

#}z]%'?ﬂ% 4t %’ i“ ?Iﬁ

P X R 4 L o~ E 4

PRI R T N
A Hierarchical Primitive List for

Tile-based Rendering

g4 w2 Student : Chih-Chieh Hsiao
hERR HIR Advisor : Chung-Ping Chung
SIERERE
FoauR 8 & 1o o
P [
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
In

Computer Science
Sep. 2009

Hsinchu, Taiwan, Republic of China

\:‘%3&@]{4,_&,{49

’1}%6‘5‘,%‘@]@1]&?% -\,FEI F ‘\r}i
TR E IS R R

%
|
B
(\x,
4

Rzl ~ FFapgegey s mis

BTSN p i (det S BARSERE) AATRE £
PLom BB A B HL G B (tile-based rendering) 4 1 ek Bl AL E 0 &

BERET P ARE R L B - AR ASEE G b ih- BRA A EERE

B H - BRBATE ORBIFER ¥ BFE(Tile Z-buffer) 2 w84
o % W% (Tile frame buffer) 2 Z & R H < ok T¥ > A 2LE B F
oo M BRER R FA AR LRGP FREEEL I e B iF
BT RF AL T B P kG o IR g2 5B o
R BN £ LHE 2 S RN ERAILERT Y € &

SRAFRRHFIPF M AHR T 4L LRI R R

B R AL E Y o8B i 2 &) s iF
(tile binning) » & H it &y = £2,2 FE R 222 %] S A5k E ¥
AR G b PR Rz A A SRR 2 9 08 ke
BroXfpd - BEENDHUS Z PRV UELE BT FIFE 2
Ik SR R RS F el ERR AP R N RS S8 &

£ AT LR PR Y om gt HRTS R e b i H oA

Em RS WG =

A Hierarchical Primitive List for Tile-based Rendering

Student : Chih-Chieh Hsiao Advisor : Chung-Ping Chung

Institute of Computer Science and Engineering
National Chiao-Tung University

Abstract

Tile-based rendering has been widely used in resource-limited graphic processing
environments, e.g., for hand-held devices. Since large primitives may cover a
significant number of tiles, they need to be recorded in the primitive lists of all related
tiles. We propose a hierarchical primitive lists structure, which also copes with
misaligned and non-square primitive problems, to minimize the primitive recording.
Intended advantages include: reduced storage pressure, list building time, primitive
retrieval counts for subsequent rendering, and primitive data accesses from external
memory during rendering, and possibly enhanced data locality/resource utilization if
layer-based rendering is exploited. Based on this structure, we propose a
primitive-hierarchy fitting (hardware) algorithm which, for a given primitive of any
size and shape, determines a best way of storing it in the structure. Experimental
results on Doom3 and Quake4 show a 73% storage reduction using only square

hierarchies or 78% with our full capability, compared with flat tile-based lists.

’_'_ .2
PO ¥

B E KPR LR A A RE A Sl R HR RS
R#s padae s @ AAAORIFT Y o BEF T R

o X9 B IR LA ek B2

IR

.
o
ht!

o+

LRSS HERT A ST

MR A E RSP LR 2R R o Ee b B R E
FAR HAF R R4 P Rt B LR R R RIS
Fr{em ko

Y
=

=
=
N~
=K
5
b3
—_\

A]
Bho PR A ME R :f:'%’Aﬁ?#ﬁ%‘%"é‘%gﬁi53\.3%?4‘%,1%%&?11%;‘5’%55%{

PR, A BRI HB DT EL - BE2E P AL
o s R SRR AGPUR R 9% F - AF 2 2Rt amdm AT g B A
FoLF nipanfles s AL F4opt B A LA G B FRTE S
CPREFFPSa > 4o F 5%~ 01 fnff > APE X hfels €00 5 o

Pob s BAA R A AT BBRB G A T RPN T PR

AL FR A LA NN USRS BRON S AN (B R A T 2
o Bts A A A F AR LA B S 2 A F M e

z_# 2009.9

*

:B“?

Content

BB R [
ADSTFACT. ...ttt bbbttt b b nre s i
OSSP SPPRR iv
(O0] 01 (=] 1 | EHT TR P PO UPPOPRTPPRPPRTPRN %
TS o) T [N] =SOSR SSPRRPO Vi
LISt OF TADIES......oeiiiiiicee e viii
Chapter 1 INtrodUCHION.......ccviiiicceee e 1
Chapter 2 Background and Related WOFK...........cccccovveiiiiiiieii e 3
2.1 Typical graphics pPipeline..........ccccooveiiiiiciiccec e 3

2.2 Tile-based reNderingcccccveiiiieiicie e 4
2.2.1 Tile-based rendering pipelinec.cccceovveveiieie v 4

2.2.2 Data structures for Primitive listSc.ccoovvvvvneniieniiencen, 6

2.3 The inefficiency of memory usage in tile-based rendering................... 7

2.4 ARM’s square hierarchies..........ccccoooiviviiiiiiiiie e 8

(@ gF=T 0] (=] g T I L1~ T [o I e S S PSSPR 13
3.1 Layer deSigN OVENVIEWc...ciuieiieieeirecieseesie e ree e se e 13
3.11 Use of Rectangular layers.........cccoueevvevveieiieceec e 14

3.1.2 Use of Unaligned Grids.........ccocoviiieiiiiieiciec e 15

3.1.3 SUMIMAIY ...ttt sttt e s e e b e e snaeean 17

3.2 The Primitive-Hierarchy Fitting Algorithm..........c..ccoooiiiiiiiiiens 18

3.3 Primitive LISt deSigN........ccovciiiiiiieee et 26
Chapter4 Evaluation ReSUILSccoiiiiiiiieee e 30
4.1 Evaluation ENVIFONMENTccoiiiiiiiiceniceseeeee e 30

4.2 Number of Layers versus Screen Resolution in Square Hierarchies 31

4.3 Storage Reduction of Proposed DeSigncccccvevevievveiesiieseesie e 40

4.4 Storage Requirement of Proposed List Buffer..........cccccovevviincnnn. 43

A5 DISCUSSION....cuiiiiiiitiitisiesie sttt sttt se ettt sbesbenbesbeeneeneas 45
Chapter5 Conclusion and Future WOork............ccccccoveviiieiicve i 47
5.1 CONCIUSION Lttt sttt 47

5.2 FULUIE WOTK ..ottt 48
RETEIENCES ...ttt e 51
Appendix A. Simulation Test Frame IMagesS........cccooveveiieiveii e 52

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 2-10
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9

List of Figures

Typical 3D graphics PIPEIINEccovviieiieie e 3
Tile-based rendering PIPElNe.........c.covveiiiiie i 4
Tile DINNING PrOCESSvvevieeie e 5
Linked-list implementation of primitive list.............cccooevviieiieiicee, 6
Percentages of primitive tile-coverage diagrams.........c.ccoevveveriverieenenn. 7
Percentages of different bounding box shapes...........cccccevvevviieinennnn, 7
ARM’s square hierarchical primitive-listingcc.cccoovviviveiinivenenn 8
Flow-chart of ARM proposed layer selection algorithm 9
Use of ARM’s square hierarchi€scccocevveveiinsiv e 10
Rendering from hierarchical primitive listS.......c.c.ccoovviiviiiiiciies 11
Layer deSigN OVEIVIEWccuveieieerieeie e sieesie e sieeie e sreeeesnaesseeneens 13
Use of rectangular 1ayersc..ccoooveveeiiiieiiiec e 15
Use of unaligned gridsccocveeiiienniie e 16
Redundant access in hierarchical liStS............c..ccoovviiininiiiiicen, 17
The primitive-hierarchy fitting algorithm.............ccccccooevieiriiiinenen, 19
Tile-based Bounding BOX CONSEIUCTION.cvevvveviveieiieieeie e 19
Effects of different reference side in our algorithm..........c..ccccoeevenie 20
Building lookup table and circuit for Layer ID generation.................. 21

Circuit implementation of the primitive-hierarchy fitting algorithm...22
Circuit implementation of the primitive-hierarchy fitting algorithm...24

Comparator in integrated layer selection Circuit..........c.ccocvvvvervennenne. 24
Primitive lSt deSIgNccvevieie e 26
Primitive list management in GPUccccceviviiiieve e 27
Square Hierarchical Primitive list management in GPU 28
Ours Hierarchical Primitive list management in GPU..............c.......... 29
Simulation flow and ATTILA architeCtureccoocevevevenvniennninnns 30
Doom3 320x240 storage reduction percentages.........cccevverveeveseernens 31
Dooma3 640x480 storage reduction percentages.........ccocevvverveervereernens 32
Doom3 1280x1024 storage reduction percentages.........c.ccevververeernns 32
Doom3 1600x1200 storage reduction percentages...........cceeververeernns 33
Quake4 320x240 storage reduction percentages.........ccovvevereervereenne 33
Quake4 640x480 storage reduction percentages.........ccevvevereereesrnenne 34
Quake4 1280x1024 storage reduction percentages.........cccceevvervvereenne 34
Quake4 1600x1200 storage reduction percentages.........cccceeverveereenne 35

Vi

Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 4-14
Figure 4-15
Figure 4-16
Figure 4-17
Figure 4-18
Figure 4-19
Figure 4-20
Figure 4-21
Figure 4-22
Figure 4-23
Figure 5-1
Figure 5-2
Figure A-1
Figure A-2
Figure A-3
Figure A-4
Figure A-5
Figure A-6
Figure A-7
Figure A-8
Figure A-9
Figure A-10
Figure A-11
Figure A-12

Doom3 320x240 redundant reads...........cceevvereeriesieeseeriesieseesie e 36
Doom3 640x480 redundant reads...........cceevuereerveiieenieeresieseesie e 36
Doom3 1280x1024 redundant reads...........cceeververieereeresieeseesesennenns 37
Doom3 1600x1200 redundant reads...........cceeververieereereesieeseerieseesenns 37
Quaked 320x240 redundant reads...........cccevveevreeiieeiireesee e 38
Quake4 640x480 redundant reads............cccvvevvveeiieiireeiee e 38
Quaked 1280x1024 redundant reads..........coevveeveeiieeieeiie e 39
Quake4 1600x1200 redundant reads..........ccevvveeveeireeieeiie e 39
Dooma3 storage reductions by proposed designcccccvveververieseennns 40
Quake4 storage reductions by proposed design..........ccccceevviveivenenne. 41
Dooma3 redundant reads by proposed design.........ccccceeeviveveeiieiiennnns 42
Quake4 redundant reads by proposed design..........cccccveverieeieerieseene 43
Dooma3 List buffer size reqUIremMents..........cccccvevvevieenieeieseeseeieseeniens 44
Quake4 List buffer size reqUIreMENESccevvereeieveene e 44
Parallel Tile Renderer ArchiteCture..........ccccooevvevvviesieese e 48
Rendering sequence for Parallel Tile Renderers...........cccooevviieivennnns 49
DOOM3 FraME 30 ..cvviiieiieie e nre s 52
D00M3 Frame 60cccveiiiieeirieieeiie e s e e nnes 52
Do0M3 frame 90cciveiieieiie it 53
DoomM3 frame 120ccooveiee e 53
Doom3 frame 150cciiiimiiriiiiiaie e 54
DoomM3 frame 180ccuveiiiieiiee e 54
QUAKEZ Frame 30.....uviieieecieeiie e s rre e sre e srre e e e re e 55
QUAKEZ Frame B0.......cccueeirieiieccree et 55
QuUAKEZ Frame 90.......coieiiieiie e e 56
QuaKes Frame 120......cc.eoiieiie e 56
QuaKed Frame 150......cc.eiiieiiiiiec et e 57
Quaked frame 180.......c.ecveeiiieiee e 57

vii

List of Tables

Table 3-1 Table for Layer Type Select...........ccccovervrennnne.

Table 5-1 Dooma3, rendering with recursive-Z sequence

viii

Chapter 1 Introduction

3D graphic applications in embedded systems become more and more popular,
such as 3D games, personal navigation devices, and graphical user interface. As we
knew the embedded systems are designed for some specific applications. Accordingly,
the system designers usually want to reduce the costs by limiting system resources.
However, the 3D graphic applications in embedded systems become more complex
than before. The trade off between performance, power, and storage of 3D graphic

processing in such systems becomes an important issue.

There’s a promising technique called tile-based rendering [1] has been widely
use in those resource-limited graphic processing environments like ARM Mali [2],
PowerVR SGX [3], and ATi Imageon 2380 [4]. Instead of rendering a full frame in
one pass, this technique divides screen into many small blocks called tiles and
rendering tile by tile. Typically, tile size is 32x32 pixels, such that we can use less
than 10KBytes for tiled frame buffer and tiled Z-buffer to store runtime information to
render a tile. Due to this low runtime storage requirement, we can employ a small
on-chip memory to render a scene instead of a large off-chip frame buffer and
Z-buffer. Localize runtime storage can greatly reduces the external memory traffic
and possibly improve performance in GPU. However, this technique requires extra
buffers called scene buffer to store all primitives’ data and each tile has a
corresponding primitive list to record which primitives should be rendered in this tile.
Then the primitives will be sent to tile renderer in per tile basis when rendering in

progress.

According to our observation, there’s about 20% of primitives covered exactly

one tile, the other 80% of primitives covered more than one tile and will be recorded
many times in different primitive lists. Although, it is necessary to record all these
information, it is inefficient to record data in such method especially when 3D scenes
get more complex. ARM has proposed a hierarchical primitive-listing [5] mechanism
to record these large primitives which covered multiple tiles. Although this technique
can reduce 73% of primitive storage compare to typical flat primitive listing, there
still have some non-square and misaligned bounding boxes that ARM’s patent would
need more primitive lists to record. Also, the algorithm to choose appropriate layer to
store the primitives needs to take multiple steps to finish in most of cases. In this
paper, we propose two different hierarchies and a fast primitive-hierarchy fitting
algorithm. The results show that we can reduce primitive storage about 10% ~ 33%
compare to use ARM’s square hierarchies only. In addition, the proposed
primitive-hierarchy fitting algorithm can be implemented in a simple circuit to

provide fast layer selection.

The main chapters of this thesis are organized as follows: In chapter 2, we would
provide background knowledge for tile-based rendering, and related works would be
introduced. In chapter 3, we would present proposed design. Chapter 4 would
demonstrate the simulation technique and results of this work; some environment
assumptions would also be listed in this chapter. And finally, Chapter 5, a summary

would be made and some future work would be proposed.

Chapter 2 Background and Related work

In this chapter, we will give an overview of typical graphics pipeline. Then, we
will introduce the tile-based rendering; explain the differences between these two
different GPU implementations. Also, the inefficiency of memory usage in tile-based
rendering will be discussed. At the end of this chapter, we will present the details of a

previous work related to this problem.

2.1 Typical graphics pipeline
V.S P.S. On-Chip Memory

prog. prog. Off-Chip Memory.

Vertex

Pixel > Depth Frame
Shader

Shaderp/ |Processing buffer

s

NEIBETN
¥
N
9
¥
uojleziialsey
‘
>1s91 ZH/Z-Albe3
4

v

Z-Buffer

b

.
'N

N

L -

Figure 2-1 Typical 3D graphics pipeline

Typical 3D graphics pipeline can be showed as Figure 2-1. Each object in a 3D
scene may be composed of many primitives, typically triangles. And each triangle
consists of three wvertices. The graphics pipeline will perform coordinate
transformation on each vertex from object space to 3D scene space, and finally into
screen space by vertex shader. And then, the triangle setup will assemble vertices into
primitives. In rasterization stage, the primitive will be rasterized into many fragments
according to its screen coordinates. These fragments will be tested by Early-Z or

Hierarchical-Z test to filter out invisible fragments as soon as possible to reduce the

workload in pixel shader and Z-test. These fragments that passed Early-Z or
Hierarchical-Z test will be sent to pixel shader to perform color shading and texture
filtering. After fragment shading process in pixel shader, the final Z-test will perform
on each shaded fragment to see if it should be displayed on the screen or not and then
send to frame buffer and update corresponding value in Z-buffer according to the test
result.

In this process, both Z-test and frame buffer are external memories which means
that access these two buffers will cause extra latencies. As the 3D scenes become
complex, there are more than ten times of visible fragments that need to access these
two buffers since primitives are not process by any specific order and cause lot of

external memory traffic.

2.2 Tile-based rendering

In this section, we will introduce the basis of tile-based rendering and its

corresponding data structures. And finally discuss some observations and problems.

2.2.1 Tile-based rendering pipeline

Scene buffer On-Chip.

V.S P.S.
prog. prog.

=N Tile binning K o iame Buffer
= =
< 9 Prim list 00 & < t
A
5, a & o8P
) Vertex=\'S Prim |st 01 = S Pixel Depth |
& | Shaderp/ | ¢ . N N |Shader/|Processing
o : g =
- - 3 m
E Prim list 30 9}
-7 Tile Z-Buffer |
7

~

N — - Scene buf addr Scene buf addr

Figure 2-2 Tile-based rendering pipeline

As for the tile-based rendering GPU, instead of rendering a full frame at a time,

this technique render a small region of frame, called a tile which is typically 32x32
pixels, one by one. According to this characteristic, the temporary storage such as the
Z-buffer and the frame buffer can be easily built in a chip, and thus significantly

reduce the external memory traffic.

. Scene buffer
Bounding Box

| |
} 1 1 Entry Number
| / i | 00000000 Triangle Data No.1
I I
,,,,,, ; - 0000000L,, _Triangle Data No.2
\ P
/

00004999 | Triangle Data No.5000

11

, Primitive Lists ,
| |

Primitive List 11: .../01/...
Primitive List 12: .../01/...
v

'
Primitive List 55: .../01/...
Primitive List 56: .../01/...

Figure 2-3 Tile binning process

Figure 2-2 shows the diagram of the tile-based rendering pipeline. The process
before triangle setup is exactly the same as that of the typical graphics pipeline. After
triangle setup, the data of the transformed primitives will be stored in an extra storage
called scene buffer. Also, each tile on screen has a corresponding external storage
called primitive list which records the primitives rendered in this tile. After storing all
primitives of a frame into the scene buffer, the tile binning process will be performed.
As Figure 2-3 shows, the tile binning process will begin with the bounding box test
which is formed by the primitive’s maximum X and Y and minimum X and Y values
of its transformed vertices’ coordinates. This bounding box will be used to check
which tiles are covered by this bounding box. If a tile is covered by the bounding box,
then the scene buffer address of this primitive will be recorded into the primitive list

of the tile. After all primitives in this frame are sorted into tiles, then the rendering

process will begin in tile base. The disadvantage of this method is that the pixel
process must start after all primitives in current frame have been sorted into tiles.

Fortunately, this latency may be hidden by doubling scene buffer and primitive lists to

process multiple frames simultaneously.

2.2.2 Data structures for Primitive lists

Primitive List in Memory

Address Scene buffer addr. Next addr.
0x00C0000 05000003 < 0x00C1000 > Next Available Address
0x00C0002 0x000004 77 0x00C1002” > 0x00C2020
0x00C0004 oxo00010 7 7 0x00C 1004
: s
7/ /
Ve /"
7/ /
7/ /
7 /
4 7/
. 7 /
R S
7 0x00C1000,»" 0x000006 7 0v00C1200 >
7 0x00C1002D oxo0o0i2 -~ [ox00C2000
0x00C1004 | _axa00020 < NULL >
e
Figure 2-4 Linked-list implementation of primitive list

Figure 2-4 shows the implementation of primitive lists. Each tile has a
corresponding entry in the memory region. And each entry consists of two fields, one
for the scene buffer address of a primitive and the other for the next record address.
This implementation can ensure that no internal fragmentation in each list, but storage
redundancy is very serious since it records every data with a corresponding next
address. If a NULL is found in the next address filed, for example, 0x00C1004 in
Figure 2-4, it means that the record is the end of the current primitive list.

Another way to implement the primitive list structure is using fixed-size storage
in which every tile has a corresponding entry in memory with a fixed number of fields

to record scene buffer addresses. Although this method is very efficiency in list

retrieving, the internal fragmentation problem is very serious in it.

2.3 The inefficiency of memory usage in tile-based rendering

Figure 2-5 below is the statistic information from Doom3 and Quake4. We have

test 20 frames from 600 frames with 30 frames as interval with various screen

resolutions. And the tile size 32x32 pixels.

100%

Doom3, Percentage of Primitive Tile-Coverage

Percentage
a
3
=

0%

90%

80% [

:

100%

Quake4, Percen

age of Primitive Tile-Coverage

80% J [—
60%

aO>10
m10
mo
as
|7
=}
|5

il

04
a3
|2

a1

0%
Resolutions

Resolutions 320x240 640x480 1280x1024 1600x1200 320x240 640x480 1280x1024 1600x1200
(a) (b)
Figure 2-5 Percentages of primitive tile-coverage diagrams for various test cases
Doom3, Percentage of Different Bounding Box shapes Quake4, Percentage of Different Bounding Box shapes
=" m =" § g
R Rectangle [| e B Rectangle ||
10% —— OSquare H O Square
0% ‘J 0%
Resolutions 320240 640x480 1280x1024 1600x1200 Resolutions 320x240 640x480 1280x1024 1600x1200
Figure 2-6 Percentages of different bounding box shapes for various test cases

Figure 2-5 shows the percentage of primitive tile-coverage for various test cases.

As the resolution gets higher, the primitives’ bounding box cover more tiles which

means we will record the same scene buffer address for multiple times. Although, it is

necessary to record this information in order to render the whole frame correctly, it is
not a very efficient method to do. There’s another thing can be observed in this
tile-coverage diagram. Some primitive covers 2, 3, 5 or 7 tiles, which means these
bounding boxes are in rectangular shapes. Such that, the statistic of different bounding
box shapes are shown below.

Figure 2-6 is about what shapes of primitives’ bounding boxes are. This bar-chart
is again the average value from 20 frames from 600 frames with 30 frames as interval
of Doom3 and Quake4 with various screen resolutions. The shapes of primitives’

bounding boxes on screen are 7% to 19% in long and thin rectangle.

24 ARM’s square hierarchies

4x4
layered
-tile

tile

2x2
layered
-tile

Figure 2-7 ARM’s square hierarchical primitive-listing

ARM has proposed a hierarchical listing mechanism [5] to store primitive lists in
tile-based rendering. As Figure 2-7, the left one is called bottom layer which is the
same as typical flat tiling mechanism, each entry represents a screen tile. The other
two layers are called grouped layers; each entry is grouping by multiple screen tiles to

form an NxN layered-tile. For example, a 2x2 layered-tile consists of 4 tiles in bottom

layer, 2 tiles in height and 2 tiles in width. A 4x4 layered-tile consists of 16 tiles in
bottom layer, 4 tiles in height and 4 tiles in width and so on. These extra layered-tiles
have their own primitive lists to store primitive address in scene buffer. And every
layered-tile in upper layer can be use to represent the tiles it represents in bottom layer,
which means we can use less primitive list storage if we can store primitives in these
layers. For instance, if a primitive’s bounding box covers tile 1, 2, 5 and 6. We can
record this primitive with only one record in primitive list of layered-tile 1 in 2x2
layer instead of 4 records in tile 1, 2, 5, and 6’s primitive lists. Although this
mechanism can reduce lot of list storage size, it requires to going through all layers to
get all corresponding primitive information in rendering a screen tile instead of typical

flat primitive list which traverses its own primitive list only.

Primitive position data

Start at one level
below top level

I Test current level HSlep down one Ievgl

Yes Bottom

level?

Yes

Set up one level

Special
case?

Step down

Insert primitive into
R 4
list of current level

Figure 2-8 Flow-chart of ARM proposed layer selection algorithm

As Figure 2-8 shows, this patent proposed an algorithm that test primitives layer

by layer, to choose which layer in hierarchy should be used to store this primitive
during tile binning process. This algorithm starts with one layer below top (the highest)
layer, if number of (layered-)tiles covered by input primitive’s bounding box is below
a threshold (e.g., 4) then step down one layer, repeat this process until number of
(layered-)tiles covered by bounding box which no longer below a threshold or it
reaches a bottom layer. Furthermore, if it is below the threshold then we store in one
layer above current layer or if it is in the bottom layer then we store this primitive
immediately. Finally it checks if this primitive is a misalignment one or not. If it’s,

step down one layer and store primitive into current layer; if it’s not, store to current

layer.
Layer
ID
4x4 (
layered
-tile
2
2x2 /
layered
“tile 1
2
4 0
tile

Figure 2-9 Use of ARM’s square hierarchies

10

As Figure 2-9 shows, the testing procedure for triangle No.1 will start from layer
1 which is one layer below top layer. Triangle No.1 covers 4 layered-tiles in layer 1
which excess threshold then we step up one layer to layer 2 and check it is special
case or not. Triangle No.1 will be identified as normal case and then store in layer 2.
The triangle No.2 will be tested from layer 1, too. And found that it is below threshold
which needs to step down one layer to layer 0. Triangle No.2 covers 6 tiles in layer 0
which excess threshold and will be step up one layer and so on. Triangle No.3 is used
to demonstrate special case which called misalignment. Triangle No.3 covers 4
layered-tiles in layer 1 and will be step up one layer to layer 2. Then this triangle will
be identified as special case because this triangle is lying on the boundary of multiple

tiles across different layers which need to step down one layer and store in layer 1.

Layer
ID
4x4 (
layered
-tile
2
2x2 (""" 2
layered
“tile 1
/3\ 0

tile

Figure 2-10 Rendering from hierarchical primitive lists

11

After tile binning process, all primitives in current frame are binned into
different layers of square hierarchical primitive lists according to the size and position
of primitives’ bounding boxes. Rendering a tile from such hierarchical primitive list, it
needs to traverse all layers to find out which layered-tile covers current rendering tile
and then fetch corresponding primitive list to render. As Figure 2-10 shows, if we
need to render tile No.1 of screen, we need the primitive lists of tile No.1 in layer O,
layered-tile No.1 in layer 1 and layered-tile No.1 in layer 2 in order to draw the
correct results.

In the patent, it uses only square fashion like 2x2, 4x4, and NxN layered-tile to
illustrate their hierarchies. Although this patent claims we can group tiles in any
fashion, it doesn’t provide any examples and corresponding layer selection algorithm.
This paper will implement the hierarchical list ideas and use different grouping rules
to see the effects for the storage size. Also, a new layer selection algorithm which can

be easily implemented by hardware will be proposed.

12

Chapter 3 Design

In this chapter, we will introduce ours layer design according to our observation
and a simple algorithm to classify primitives into different layers will proposed.
Finally, a layer-based rendering will be introduced which can further reduce external

memory traffic in rendering progress.

3.1 Layer design overview

Layer N
(Top Layer)

2Vx2V
group

Layer 2

4x4
grouj

Square Hierarchies Unaligned Grids Rectangular Layers

(a) Hierarchical primitive list structure showing all possible hierarchies and shapes

Layer N | Prim List 1
Layer N-1‘ Prim List | ‘ ‘ Prim //i.u.\" ‘ UG List 1 ‘ ~~~~~~~ ‘ UG List V‘ ‘ HRect List 1 ‘ ‘ HRec'lLisIZ‘ ‘ VRect List 1 ‘ ‘ I/RsclListW‘
Layér2 Prim List I ‘ ‘ Prim l.m_?‘ ‘I’/‘/‘m I.fxu‘ ‘ UG List 1 ‘ ‘ HRect List 1 ‘ ‘ HRect List 4 ‘ ‘ VRect List 1 ‘ ‘ VReci List 4 ‘
Layer 1 ‘ Prim List 1 ‘ ‘ Prim List 2 ‘ ~~~~~~~ ‘ Prim H.\l?‘ ‘ UG List 1 ‘ ~~~~~~~ ‘ UG List4 ‘ ‘ HRect List 1 ‘ ~~~~~~~ ‘ HRect List 6 ‘ ‘ VRect List 1 ‘ ‘ VRect List 6 ‘
Layer 0 ‘ Prim List 1 ‘ ‘ Prim List 2 ‘ ‘f‘r'im List 30‘ ‘ HRect List 1 ‘ ‘ HdeLisle‘ ‘ VRect List 1 ‘ ‘ VRect List w‘
X = /Screen width/group width | * [Screen height/group height | Z = [Screen width/group width | * 2
Y= (/Screen width/group width] =1)% (Screen height/group height /-1) Y =/Screen height/group height J%2

(b) Memory organization for the hierarchical primitive list structure in (a)

Figure 3-1 Layer design overview

13

Figure 3-1 shows the overview of our new design layers, the left most part is as
same as ARM’s demonstration in their patent. Layer O represents the bottom layer
which every entry is as same as screen tile, layer 1 represents 2x2 layer, layer 2
represents 4x4 layer and so on. Based on the mechanism proposed by ARM, we
introduce unaligned grids to store misalignment primitives and rectangular layers to
store primitive of non-square shapes in the middle and the right most of the figure.
Details will be discussed in section 3.2 and 3.3. Figure 3-1(b) is the organization of
primitive lists in memory. The Prim list presents square hierarchy method’s primitive
lists. The UG List represents unaligned grids’ lists. And the HRect (Horizontal
Rectangle) List and VRect (Vertical Rectangle) List represent the primitive lists of
rectangular layer in high or wide shape. And the X, Y, Z, W indicates the largest

layered-tile IDs in upper layers.

3.1.1 Use of Rectangular layers

Since high and wide rectangle shapes of primitives are common, we introduce a
new layer called rectangular layer to store these kinds of primitives. Except the layer
that includes all tiles in screen in single layered-tile, every layer has a corresponding
rectangular layer including the bottom layer. As Figure 6(b)(c) show, there are two
types of this rectangular layer. First is in high rectangle shape and second in wide
rectangle shape. The rules to form these layers are; divide the screen into half based
on how many tiles in vertical and horizontal directions of screen to align bottom
layer’s tile. The width of high rectangle shape is exactly the same with the
corresponding layer’s group width. The height of the wide one is also the same with

corresponding layer’s group height.

14

C E C 18
X 4x4 D \/
D group
\ \\‘ — ']] [
Square 4x4 layer Higher Vertical Higher Horizontal
Rectangle Layer Rectangle Layer
E)
2x2
group
Square 2x2 layer Lower Vertical Lower Horizontal
Rectangle Layer Rectangle Layer
(a) (b) (c)

Figure 3-2 Use of rectangular layers. Figure shows all possible results of
primitive-hierarchy fitting and final selections

The rule to classify the primitives into this layer is depending on the difference
between tile-based bounding box’s width and height. If the difference between height
and width of bounding box reach a threshold (e.g., 2, 4 tiles), then this primitive will
be recognized as in rectangular layer. In the Figure 6(c)(c), the primitive C and D will
be recognized as in high and wide shape, such that C and D can be stored in
rectangular layer with less primitive lists. In this type of layer, we will encounter the
misalignment problem. For example, primitive E in Figure 6(b) is a misalignment one.
Either 2x2 or 4x4 grouped layers’ rectangular layer, primitive E covers two groups. In
this case, we still store primitive E in rectangular layer but step down one layer from

where it originally chose as long as it is not the bottom layer.

3.1.2 Use of Unaligned Grids

In this section, we will introduce a grouping method to store misalignment

15

primitives. In this layer, each grouped layers have a corresponding unaligned grid
except the layer that includes all tiles in screen in single layered-tile and bottom layer.
As Figure 3-3(b) shows, this grid starts from (0 + group-width/2, 0 + group-height/2)
with same group size to its corresponding grouped layers. For instance, the
misalignment primitive A in Figure 3-3(a), both 2x2 grouped and bottom layers for
this primitive requires 4 layered-tiles are recorded. If this unaligned grid is applied,

this primitive A can be recorded in this unaligned grid with only one primitive list in

X >)

B B
A 1 A
Square 2x2 layer Unaligned Grids

%J

Figure 3-3(b).

Do

A

Bottom Layer (tile)
(a) (b)
Figure 3-3 Use of unaligned grids. Figure shows all possible results of
primitive-hierarchy fitting and final selections

In Figure 3-3(a), there’s another example primitive B. This primitive is also a
misalignment one, but it can not be fit in 2x2 grouped layer’s unaligned grid, because
these grids are begin from (0 + group-width/2, 0 + group-height/2) which means there
have some tiles this grid cannot be covered. In this case, the primitive B will be stored
in square hierarchy and step down one layer as ARM’s patent did. There are two main

rules to decide a primitive can be put in this grid or not. First, this primitive must be

16

misalignment. Second, the primitive’s bounding box need to pass the boundary check

which tests this primitive whether it can be covered in this layer or not.

3.1.3 Summary

In this section, we will show the extra overheads in such design. In a hierarchical
layer design can reduce storage size requirements, but every primitive in any
layered-tile of upper layer will be processed by the tiles it represents. However, some
of primitive in the upper layer may cover only half of the area in layered-tile. This

would cause extra traffic to fetch these primitives.

2X2 K

(™ layered
. -tile
tile

Figure 3-4 Redundant access in hierarchical lists
As Figure 3-4, the triangle above will be store in 2x2 layer and the bounding box
test result shows this triangle covers two layered-tiles in 2x2 layer, which means tiles
1, 2,5, 6,9, 10, 13 and 14 would need to access this triangle when rendering in
progress. If we do use typical rendering hardware and policy, we would generate
some redundant access in runtime.
To add these extra layers, we will need extra primitive lists to record scene buffer

addresses of primitives for these layers. Total number of original primitive list is,

[ScreenWidth /TileWidth |x| ScreenHeight / TileHeight |

17

To add ARM’s square hierarchies, we would need extra lists below. Assume we

have layers from 0 to N,

N
> ([screenwidth/ LayeredTileWidth |x[ScreenHeight / LayeredTileHeight |)
1

To add our rectangular layer, we would need extra lists below. Assume we have
layers from 0 to N, and layered-tile in layer N can use only one list to includes the

whole screen,

b=

1
>"(2x[screenHeight / LayeredTileHeight | +[ScreenWidth/ LayeredTileWidth |x 2)

0

To add our unaligned grids, we would need extra lists below. Assume we have
layers from 0 to N, and layered-tile in layer N can use only one list to includes the

whole screen,

=z

1
> [('screenwidth/ LayeredTileWidth |~1)x (| ScreenHeight / LayeredTileHeight |- 1)]

1

3.2 The Primitive-Hierarchy Fitting Algorithm

To selection of a suitable layer for primitives much faster, we will improve the
algorithm proposed by ARM. The primitive-hierarchy fitting algorithm we proposed

to select appropriate layer in square hierarchy is in Figure 3-5.

18

Step 1. Represent primitive with tile-based bounding box

Step 2.(a) Select the shorter side of the bounding box as reference side
(b) Perform ceil(log; length-of(Ref-Side)) to get layer ID

Step 3. Check the input primitive on selected layer is misalignment or not
Yes) Step down one layer and store this primitive
No) Store this primitive into selected layer

Figure 3-5 The primitive-hierarchy fitting algorithm for square and aligned

(32,128) (96,128)
®

Tile-based P

Bounding ~| —_——|— -
Box

Typical

Bounding
Box \&'

4
(32,32) (96,/32)

32x32 pixels
(0,0)

Figure 3-6 Tile-based Bounding Box construction. Inner one is the typical
bounding box, and outer one is the tile-based bounding box. The
width of tile-based bounding box is 2 and height is 3.

To understand this algorithm, we need to define layer ID first. The bottom layer
is layer 0, 2x2 grouped layer is layer 1, 4x4 grouped layer is layer 2 and so on (as
Figure 3-1(a) shows). The boundaries of these layered-tiles are power of 2 and groups
together to form upper layers’ layered-tiles. Assume we are using 32x32 pixels as our
tile size. When the primitive comes, we first construct its tile-based bounding box as
in Figure 3-6. The reason to construct such tile-based bounding box is reducing the
complexity of computation circuit. The advantage of such bounding box is that it can
easily find out the tile-based length of this bounding box and figure out misalignment

or not by searching low-order bits of its coordinate directly. To build such bounding

19

box we will round down minimum X and Y value to nearest multiple of 32, if it is on
the boundary then leave it on that boundary. And round up the maximum X and Y
value to nearest multiple of 32, if it is on the boundary then shift it to next multiple of
32 in order to detect the correct tile-based length of bounding box. Also, the
coordinates of tile-based bounding box are all multiple of 32 which can reduce
computation complexity of hardware.

After building up the tile-based bounding box, we will select an appropriate layer
to store input primitive in square hierarchies. Since all length and positions of tiles
and layered-tiles are power of 2. The relationships between layered-tiles in different
layers are power of 2, too. To determine which layer should use to store current
primitive we might have multiple choices like shorter side, longer side or average
length of tile-based bounding box. Because of the power of 2 characteristic of
layered-tile’s length in each side, we can use this side’s tile-based length to perform
log, operation to figure out which layer in hierarchy should we put the primitive in. If
the length of the side is not multiple of two, the result of log, operation will contain
both integer and non-zero numbers after decimal place. In order to find fittest
layered-tile, we will perform a ceiling operation after log,, such that we can round up
to nearest layer which can use exactly one layered-tile to cover this bounding box’s

width or height.

- ax4
layered
screen/” | 2x2 }lt'l
. layered e
tile X
-tile

Figure 3-7 Effects of different reference side in our algorithm

20

As Figure 3-7 above, if we choose longer side of triangle No.1 as reference side
and perform log, and ceiling operations, we will get layer ID is 2 and store it with a
4x4 layered-tile. Although, we can record this primitive with only one layered-tile,
most of the screen tiles covered by this 4x4 layered-tile are not covered by this
primitive. And it generates 12 unnecessary accesses in rendering. If we choose shorter
side as our reference side, triangle No.1 will be recorded in layer 0 with 4 tiles. And
this selection would make the shape of final selection result more suitable for this
primitive and reduces unnecessary accesses in rendering. If we take another triangle,
said triangle No.2 as example. If we choose longer side, this primitive will be
recorded in layer 2 which generates 10 useless accesses in rendering. Otherwise, if we
choose shorter side as reference side, this primitive will be recorded in layer 1 with 2
layered-tiles which generates 2 useless accesses in rendering. In our algorithm, we
choose shorter side as reference side to discover a balance between useless accesses in

rendering and storage size requirements.

Length Input (DCBA) layerlD
1 0001 000
2 0010 001 Layer ID Generation:
3 0011 010 if (Input > 8,,)
4 0100 010 Lio = 100, (4,)
> o101 011 else
6 0110 011
Lioyio = A + BD + CD’

! oLl 011 Lioyi.y =A+B+CD
8 1000 011 Liogyy = 0
9 1001 100
10 1010 100

100
15 1111 100

Figure 3-8 Building lookup table and circuit for Layer ID generation

21

Although the logarithm and ceiling functions will need complex circuit and
longer cycle time to finish, our implementation will use a simple way to replace these
calculations. Typically, implementation of hierarchical primitive list will use limited
layers to ensure hardware’s simplicity. So we can build a lookup table for this
logarithm and ceiling operation, and this table can be further reduced via Karnaugh
Map. As Figure 3-8 shows, assume we have five layers in our implementation with
Layer ID 0 to 4. If length of reference side is larger than 1000, (810) in tiles, then
output the layer ID 100, (410) directly. The others we can use LSB 4-bit from length of
reference side in tiles as input to generate 3-bit layer ID. Let input bits from bit-0 to
bit-4 be A, B, C, and D. The output bit-0 can be expressed by A + BD + CD’, bit-1 A
+ B + CD and keep bit-2 always zero. Combine the rules above; we can build the
Layer Select Logic to get the Layer ID in a simple circuit.

Reference Side

Layer Select Logic 3
i
0 —————»0 !

Pos X of MinX, bit-6 ———— |

i
I
Pos X of MinX, bit-6 —) : B 3 Layer ID
Pos X of MinX, bit-7 ‘ |
I
I
I
I
I

Pos X of MinX, bit-6

Pos X of MinX, bit-7 — 3
Pos X of MinX, bit-8

Pos X of MinX, bit-6

Pos X of MinX, bit-7 —m 4
Pos X of MinX, bit-8 —»

Pos X of MinX, bit-9

Tile-based ’
Bounding ! >

Box I
Contructor !

Misalignment ?

— Primitive BBox Height
L Primitve BBox Width

T 0 — - »f0

Pos Y of MaxY, bit-6 ————»
Transformed Primitive > O o2 Ot 1

Pos Y of MaxY, bit-6 —»
Pos Y of MaxY, bit-7 —m/

Pos Y of MaxY, bit-6
Pos Y of MaxY, bit-7 —»
Pos Y of MaxY, bit-8
Pos Y of MaxY, bit-6
Pos Y of MaxY, bit-7 —»
Pos Y of MaxY, bit-8 —m
Pos Y of MaxY, bit-9

Figure 3-9 Circuit implementation of the primitive-hierarchy fitting algorithm.
Note that this circuit is a combinational logic. The algorithm steps
simply indicates flow of signals, but not states

L8]

w

S

22

To detect the misalignment, we can use an intuitive way since the length of both
sides of layered-tiles in square hierarchies are in power of 2; such that we can detect
misalignment by directly detect the low-order bits of 4 coordinates (maximum and
minimum X, Y) of tile-based bounding box. Put these rules and Layer Select Logic
together, we can form our circuit of layer fit algorithm.

Figure 3-9 shows the circuit implementation of primitive-hierarchy fitting
algorithm. The comparator takes the input primitive’s tile-based bounding box’s width
and height in number of tiles. Then output shorter side as reference side to the Layer
Select Logic. The output of Layer Select Logic will be the layer ID. And the four
multiplexors will check the maximum and minimum X, Y positions’ values to see
whether the primitive in selected layer is misalignment or not. Since typical tile size is
32x32 pixels, the coordinates including tiles and groups must be a multiple of 32. We
can determine the input primitive is misalignment or not by checking the low-order
bits of its tile-based bounding box’s coordinates. If it is a misalignment then outputs
layer ID -1 (step down one layer). If it’s not, outputs the selected layer ID from Layer
Select Logic.

As the layer design described in section 3.1, we design two new layers called
unaligned grids and rectangular layers. Both these designs have a same characteristic
with square hierarchies. For unaligned grids, the height and width of a layered-tile is
exactly the same with corresponding layered-tile in square hierarchies. For
rectangular layers, the width of vertical rectangle and the height of horizontal
rectangle are exactly the same with corresponding layered-tile in square hierarchies.
Due to this characteristic, the Layer Select Logic used in Figure 3-9 can be applied in

choose appropriate layer to store primitive in unaligned grids and rectangular layers.

23

Normal Layer ID_ |

3
—
Pos X of MinX, bit-6 —————————=| |
Referente Side Pos X of MinX, bit-6 —#» N
Pos X of MinX, bit-7 —m) -

Comparator Pos X of MinX, bit-6
Pos X of MinX, bit-7 —m-| 3
Pos X of MinX, bit-8

Pos X of MinX, bit-6

Pos X of MinX, bit-7 D 4

Pos X of MinX, bit-8 —m-)

Pos X of MinX, bit-9 Misalignment ?

. i

Boundary Layer
N 74> Layer
Check 27| Type [—Aw Y
: } ope
B - Soee |72 T

0 ————»

Which Layer
m

Pos Y of MaxY, bit-6 —————————

Pos Y of MaxY, bit-6 N
ile-based Pos Y of MaxY, bit-7 2 o)
Bounding Primitive Bounding

Box Pos Y of MaxY, bit-6 Box (in tiles)
; . Pos Y of MaxY, bit-7 —pm 3
Contructor Pos Y of MaxY, bit-8
Pos Y of MaxY, bit-6
Pos Y of MaxY, bit-7 — 4
Lo Pos Y of MaxY, bit-8 —pm
Transformed Primitive Pos Y of MaxY, bit-9

— Primitive BBox Height—
| m Primitve BBox Width —

Type of Sharp

Misalignment
2 Check 3

Figure 3-10 Circuit implementation of the primitive-hierarchy fitting algorithm,
with fittings to rectangle and unaligned grid variations included

Integrate unaligned grids and rectangular layers with this algorithm. We need to
give priorities in order to choose which type of layer is more appropriate to use. In our
implementation, the rectangular layer has highest priority and then unaligned grid in
the next place, finally square hierarchy is the lowest one. Also, we need to add an

output to indicate what type of layer to use alone with layer ID.

If Prim Bbox Width > Prim Bbox Height

= Selected Side := Prim Bbox Height
=> Side difference = Prim Bbox Width - Prim Bbox Height
= TempSharp = wide primitive (01)

Else
> Selected Side := Prim Bbox Width
=> Side difference := Prim Bbox Height - Prim Bbox Width
=» TempSharp := high primitive (10)

If Side difference > Threshold

= Type of Sharp := TempSharp (01 or 10)
Else

= Type of Sharp := NormalSharp (00)

Figure 3-11 Comparator in integrated layer selection circuit, with behavior
description only

24

Table 3-1 Table for Layer Type Select

Misalignment Type of Sharp Layer Type L\;\gzirch

No (00) Normal (000) Normal (00) 0

No (00) Wide Prim. (010) R;‘;;inz;re“(%'l) 0

No (00) High Prim. (100) Rec\t’:r:gﬁeazlo) 0

Yes (01) Normal (000) Inter-group (11) 0

Yes (01) Wide Prim. (010) R;‘t’;fg"lgt(g'l) 0

Yes (01) High Prim. (100) | . C\t’:;gfeazlo) 0

Yes, buf;it:ggn(df(%/ check Normal (000) Normal (00) 1
e Dbty e | e pm. 10) |t o
Yes, buf; it:gt;n(df(%/ check Hiqh PrirTL (100) Rec\t/:nr;ilfeazm) 0
N0 | e oty | eeemngeon |

No (00) m::;?ig :;glt(bluél) Rec\t/:nrglizale) 1
v | e o | ey |
Yes (01/10) m::;?ig :ﬂ<(bluél) Rec\t/:r:;ilfeazlo) 1

Figure 3-10 shows the implementation of the whole primitive-hierarchy fitting
algorithm. The priorities of these different types of hierarchies are encoded in the
lookup table as Table 3-1 shows. As Figure 3-11 shows, once the comparator
determines this input bounding box whether it is a high or wide rectangle, this
primitive will be stored in rectangular layer corresponding to selected layer ID. But if
misalignment is found in Misalignment Check, then it will output this information
together to Layer Type Select in order to make the correct layer decision. The
unaligned grid will be used if this bounding box is misalignment and passed the
Boundary Check. Finally, if this bounding box cannot be classified as either

rectangular or unaligned grid, then this primitive will be stored in square hierarchies.

25

3.3 Primitive list design

As section 2.2.2, the typical data structure of primitive list would have serious

storage waste or internal fragmentation. In this section, we will propose a primitive

list design to reduce these problems.

Address
Accumulator
*\ .
50 List Buffer
Address Scene buffer addr.1 | Scene buffer addr.2 | Scene buffer addr.3 Scene buffer addr.N| Next addr.
0 0x000003 0x000005 0x000007 | = = = = ¢ NULL
N 0x000004 0x000005 0x000008 | = - = - - ¢ 10N
2N 0x000010 0x000011 |« « « « « ol o oo e e NULL
Figure 3-12 Primitive list design

As Figure 3-12, we combine multiple scene buffer addresses as one block with a
next address pointer in last entry of it. The block size N is power of 2 which can be 4,

8, 16 and 32 or higher. This List Buffer is initially unassigned, once a primitive list

requires a record it will check the Primitive List Index Table first.

26

Primitive List Index Table Address

Accumulator

Tile ID Entry Address Next Address Counter

50N
[1] 2N 2N + 6 6
[2] N 10N + 4 N+ 4
[3] 0 5 5
[70] 5N 5N+10 N + 10

Figure 3-13 Primitive list management in GPU

As Figure 3-13 shows, each tile has a corresponding entry in the Primitive List
Index Table which records the starting address of its primitive list in List Buffer, also
the next available address for recording scene buffer address and a Counter to record
how many primitives have been record into this primitive list. This Primitive List
Index Table is initially empty, once we require a scene buffer address to be recorded
in a specific tile’s primitive list, it will check the Entry Address of corresponding
entry in Primitive List Index Table to see it is NULL or not. If it is a NULL means
this entry is the first time to be used, then it will check List Buffer’s address
accumulator to see the address of next available block in List Buffer and then assign
this address into this Entry Address, also the address accumulator would plus N into it.
If it is not NULL, it will check if Counter field reaches multiple of N-1, if it is, it
means that this block is full, then request for a new block in List Buffer and assign
this new block’s address into current block’s Next address field. Others, simply write
the scene buffer address into the address indicate by Next Address field and update

this Next Address and Counter fields after writing the address into it.

27

Primitive List Index Table Address

Accumulator

Tile ID Entry Address Next Address Counter 50N

[1] 2N 2N + 6 6

[2] N 10N + 4 N+ 4

[3] 0 5 5 Layer Offset Table

' ' Layer ID| Offset

[0] 0
[1] 80
[2] 100
[3] ’

[70] 5N 5N+10 N + 10 .

Figure 3-14 Square Hierarchical Primitive list management in GPU

If we are using a hierarchical primitive list structure like square hierarchies, we
can simply add a Layer Offset Table to indicate base address of each layer. As Figure
3-14 shows, the Primitive List Index Table remains the same, all tiles and
layered-tiles have a corresponding entry in it but into several different segments. First
segments for bottom layer’s tiles and second segments for layer 1’s layered-tiles and
so on. Once we need to find an entry in Primitive List Index Table, it needs to add
(layered-)tile ID and base address in Layer Offset Table together and then this result

can be used to index corresponding entry in Primitive List Index Table.

28

Address
Accumulator

50N

Primitive List Index Table

Tile ID Entry Address Next Address Counter
[1] 2*N 2*N + 6 6
[2] N 10*N + 4 N+4
[3] 0 5 5
[81] NULL NULL 0
[82] NULL NULL 0
Figure 3-15

In our design, we have three different types of hierarchies. To index such
multiple hierarchies in same Primitive List Index Table, we need to modify the
structure of Layer Offset Table. As Figure 3-15 shows, the Layer Offset Table need to
be extended to two dimensional, one for layer ID and one for which type of
hierarchies. In our design, we have three different hierarchies, but the rectangular

layers have two variants so we need two entries for rectangular layers. Such that, we

Layer Offset Table

Layer Type

Layer ID Offset | Offset | Offset | Offset
[0]| o | 120 | 240 | 360
[1]| 80 | 200 | 320 | 440
(2]

(3]

100

220

340

460

Ours Hierarchical Primitive list management in GPU

will have a two dimensional Layer Offset Table with NumberOfLayers * 4 entries.

Since we have a generalize storage for records in primitive list, we only need to

add entries in Primitive List Index Table without enlarge size of List buffer.

29

Chapter 4 Evaluation Results & Discussion

In this section we will demonstrate our simulation results. We first describe our
evaluation environment and the characteristics of the input frame data (in section 4.1
and 4.2). Then, we show and analyze the simulation results of memory requirement
and memory traffic overhead in rendering of our method. Finally, the discussion will

be shown.
4.1 Evaluation Environment

Index Buffer Streamer

[vertex cache

\Vertex Request Buffer——
[
—
\J : ragment Generatd [MIZTaITIC
Tracefile 7
Primitive;: {x1,y1,z1}.{x2,y2,22},{x3,y3,23},Bbox ([Ereramica! 2 | = iHzcad] .
Primitive,: {x1,y1,z1}.{x2,y2,22}{x3,y3,23},Bbox ‘?—;—;——%' W
Zcache|| ||Z Cache|[] |
Zst ZSt
]
Tile-based Rendering ' T
Software Behavior EdalEa
Simulator
' v !

Figure 4-1 Simulation flow and ATTILA architecture

30

We choose Doom3[7] and Quake4[8] as our benchmarks with resolution
320x240, 640x480, 1280x1024 and 1600x1200, 20 frames from frame 30 to 600 with
30 frames as interval. Figure 4-1 shows the architecture of GPU simulator ATTILA[6]
and in which stage we dump the transformed primitives from. Then use this dumped
tracefile as input to our tile-based rendering software behavior simulator. Our
simulator reads these transformed vertices data from tracefile and evaluates storage
size and memory access traffic in rendering of primitive lists. The results below are
average of the five frames and tile size is 32x32 pixels. The algorithm in section 3.2 is

also applied.

42 Number of Layers versus Screen Resolution in Square

Hierarchies

First we will look at the relationships between number of layers and screen
resolutions. The first part of this section will show the storage reduction rate from
various resolutions and number of layers. And second part of this section will show

the access traffic in rendering.

50.00 Doom3 320x240, Number of Layers vs. Records Reduction

45.00
40.00
35.00
30.00
25.00 |
20.00 ¢
15.00
10.00

5.00

0.00

O Proposed Alg B ARM ‘

Storage Reduction (%)

g\a¥e™® g yaye® ey oy aye™ gy aye g aye®

Figure 4-2 Doom3 320x240 storage reduction percentages by using square and

31

aligned hierarchies versus flat list version

80.00 Doom3 640x480, Number of Layers vs. Records Reduction

O Proposed Alg B ARM

i

g\a¥e™ 4 ey aye®™ g aye® gyayel™ g aye®

70.00

60.00

50.00

40.00

30.00
20.00

Storage Reduction (%)

10.00

0.00

Figure 4-3 Doom3 640x480 storage reduction percentages by using square and
aligned hierarchies versus flat list version

Doom3 1280x1024, Number of Layers vs. Records Reduction

2 La\Je"s 3 _a\]e‘.s A \,a\]e"s 5 \,a\;e‘s 6 \,a\;e‘s 7 \,a\;e‘s

100.00
90.00
80.00
70.00
60.00
50.00
40.00 ¢
30.00 |
20.00 ¢
10.00 |
0.00

J B Proposed Al B ARM \

Storage Reduction (%)

Figure 4-4 Doom3 1280x1024 storage reduction percentages by using square and
aligned hierarchies versus flat list version

32

Doom3 1600x1200, Number of Layers vs. Records Reduction

2 La\Je"s 3 _a\]e‘.s A‘ \,a\]e"s 5 \,a\;e‘s 6 \,a\;e‘s 7 \,a\;e‘s

100.00
90.00
80.00
70.00
60.00
50.00 ¢
40.00 ¢
30.00 |
20.00 ¢
10.00 |
0.00

J B Proposed Al B ARM \

Storage Reduction (%)

Figure 4-5 Doom3 1600x1200 storage reduction percentages by using square and
aligned hierarchies versus flat list version

60.00 Quake4 320x240, Number of Layers vs. Records Reduction

O Proposed Alg B ARM

50.00

40.00
30.00 ¢
20.00 ¢
10.00
0.00

g\a¥e™ 4 ey aye®™ g aye® gyaye®™ g aye®

Storage Reduction (%)

Figure 4-6 Quake4 320x240 storage reduction percentages by using square and
aligned hierarchies versus flat list version

33

Quake4 640x480, Number of Layers vs. Records Reduction
‘ O Proposed Alg B ARM

70.00

60.00

50.00

40.00 |

30.00

20.00

10.00

0.00 ‘ ‘ ‘ ‘

g\ aye’ A A\aye™ 5\ aye™® o Laver® 1\aye®

80.00

Storage Reduction (%)

Figure 4-7 Quake4 640x480 storage reduction percentages by using square and
aligned hierarchies versus flat list version

100,00 Quake4 1280x1024, Number of Layers vs. Records Reduction
90'00 @ Proposed Alg B ARM

80.00
70.00
60.00 F
50.00
40.00
30.00
20.00
10.00
0.00

g\ aye™ g 12¥e"® a\ayer 5\ aye’® oLaver® 11aye®

Storage Reduction (%)

Figure 4-8 Quake4 1280x1024 storage reduction percentages by using square and
aligned hierarchies versus flat list version

34

Quake4 1600x1200, Number of Layers vs. Records Reduction

100.00
| BProposed Alg B ARM

90.00

80.00
70.00

60.00
50.00

40.00

Storage Reduction (%)

30.00 |

20.00
10.00 r

0.00

g\aye™ qLa¥e® PR i 5\ 2ye™ gLayer® 11a¥e®

Figure 4-9 Quake4 1600x1200 storage reduction percentages by using square and
aligned hierarchies versus flat list version

As Figure 4-2 to 4-9 shows, the y-axis is the percentage of storage reduction
compare to typical flat tile-listing. And x-axis is different number of layers; the
different number of layer setting from 2 layers that’s typical tiling with 2x2 grouped
layer, 3 layers is typical tiling with 2x2 and 4x4 grouped layers, and so on. Different
color of bars are using square hierarchies with ARM’s algorithm or ours
primitive-hierarchy fitting algorithm. In lower resolution 320x240 in both benchmarks,
three layers is enough for these two resolutions, since both of them use more layers
which cannot gain more storage reductions. For higher resolutions, four layers would
be a good choice, since the difference of size reduction between four and five layers is
not significantly obtained. As the observation in section 2.3, there’s less primitives
that overlap on exact one tile as the screen resolution gets higher. The result in Figure
4-2 to 4-9 shows the same characteristic, as the resolution gets higher then this square

hierarchies can save more storage.

35

80000 Doom3 320x240, Number of Layers vs. Redundant Read
B Proposed Alg B ARM
70000
60000 |
50000
g
S 40000 |
[0}
14
30000
20000 F
10000
0 : : :
g\ aye™ 312¥e% ALayer® 5\ ayer® gLaver® 1\aye®
Figure 4-10 Doom3 320x240 redundant reads by using square and aligned
hierarchies
350000 Doom3 640x480, Number of Layers vs. Redundant Read
B Proposed Alg EARM
300000
250000 [
2200000
g
@ 150000
100000 |
50000
0
g\aye™ qLa¥e™® ALaYer 5\ ayer® g Layer® 11a¥e®
Figure 4-11 Doom3 640x480 redundant reads by using square and aligned

hierarchies

36

1800000 Doom3 1280x1024, Number of Layers vs. Redundant Read
B Proposed Alg EARM

1600000

1400000

1200000

€ 1000000
3

& 800000

600000

400000

200000

0

g\ aye’ 5 12¥e"® a\ayer® 52y g \Laver® 11a¥e®
Figure 4-12 Doom3 1280x1024 redundant reads by using square and aligned
hierarchies
3000000 Doom3 1600x1200, Number of Layers vs. Redundant Read
M Proposed Alg @ ARM

2500000

2000000
8

S 1500000
[0}
o

1000000

500000

0

g\aye™® 312ye™ A\aye™ 5\ aye™ g\aye™ 112y8®
Figure 4-13 Doom3 1600x1200 redundant reads by using square and aligned

hierarchies

37

Records

70000

60000

50000

40000

30000

20000

10000

Quake4 320x240, Number of Layers vs. Redundant Read

B Proposed Alg B ARM
g\ aye™ 312¥e% ALayer® 5\ ayer® gLaver® 1\aye®

Figure 4-14 Quake4 320x240 redundant reads by using square and aligned

hierarchies

300000 Quake4 640x480, Number of Layers vs. Redundant Read
B Proposed Alg @ ARM
250000
200000
i<
8 150000
(0]
[hq
100000 |
50000
0
g\ aye™ A a\aye™ 5\ aye™ o Laver® 11aye®
Figure 4-15 Quake4 640x480 redundant reads by using square and aligned

hierarchies

38

1600000 Quake4 1280x1024, Number of Layers vs. Redundant Read
B Proposed Al EARM
1400000 F
1200000 |
1000000 |
[72)
T
g 800000
(0]
04
600000
400000
200000
0
2 Layer® 3 Layer® A\2Yye™ 5 Layer 6 Laye's 1 Layer®

Figure 4-16 Quake4 1280x1024 redundant reads by using square and aligned
hierarchies

2500000

2000000

Quake4 1600x1200, Number of Layers vs. Redundant Read
1500000
1000000

B Proposed Alg @ ARM
5000007 -z ﬂ ﬂ “ “ ﬂ
0

g\ aye™ 312y A\aye™ 5\ aye™ o Laver® 1\a¥e®

Records

Figure 4-17 Quake4 1600x1200 redundant reads by using square and aligned
hierarchies

As Figure 4-10 to 4-17 shows, the y-axis is the total number of redundant records
read during rendering. And x-axis is different number of layers with different color of
bars for ours and ARM’s algorithm. From the figure above, we can see that our
method would lead to about 5% more storage usages compare to ARM’s method. The

results from Figure 4-10 to 4-17 show the advantages of our primitive-hierarchy

39

fitting algorithm. Our algorithm can choose better layer than ARM did. Such that, the
redundant reads in our design are significantly lower than ARM in any benchmarks

and resolutions.

4.3 Storage Reduction of Proposed Design

The effect of applying unaligned grids and rectangular layers will be shown in
the following. The baseline is using square hierarchies only. The number of layers will
be fixed by the results we observed above. For lower resolution 320x240, we will use
three layers in the following experiments and for the higher resolutions, we will use

four layers.

100.00 Doom3, Storage Reduction of Proposed Design

90.00 |
80.00 |
70.00

60.00

50.00 |
40.00

30.00 |

20.00

Primitive Storage Size Reduction (%)

@ ARM B Proposd Alg.
10.00 O Proposed UG O Proposed RL
B Proposed Full Capa.
0.00

Resolutions 320x240 640x480 1280x1024 1600x1200

Figure 4-18 Dooma3 storage reductions by proposed design versus square and
aligned version

40

Quake4, Storage Reduction of Proposed Design

100.00

90.00

80.00

70.00

60.00

50.00

40.00

30.00

Primitive Storage Size Reduction (%)

20.00

B ARM B Proposd Alg.
O Proposed UG O Proposed RL n
M Proposed Full Capa.

10.00

0.00
Resolutions 320x240 640x480 1280x1024 1600x1200

Figure 4-19 Quake4 storage reductions by proposed design versus square and
aligned version

Figure 4-18 and 4-19 shows the percentage of storage reduction compare to use
square hierarchies only with both ARM’s and ours algorithm, when adding grouping
methods we described it in section 3.1. The unaligned grids can reduce tile list size
about 1% to 10% since the misalignment primitive various from 2% to 20% in various
test cases with our algorithm, but still a little bit more than ARM’s algorithm with
square hierarchies only. For the rectangular layer, we set different thresholds for
different resolutions according to how many tiles need to cover the height of screen.
For instance, in 320x240 we need 8 tiles to cover the height of 240 pixels, since
rectangular layers split screen into two parts, so we require the difference of
primitive’s height and width need to be larger than 2 tiles in order to use these layers
more efficient. For the same reason, we choose 4 for 640x480, 8 for 1280x1024 and
10 for 1600x1200. Although the high and wide rectangle of primitives is about 35% in
our observation in section 3.1, the result here is a bit different. One reason is the
threshold; another reason is some of primitives are lying in the middle of the screen
and it requires two or more groups to record. Again, when applying our rectangular

layer and our algorithm, we still need a little big larger storage than ARM did.

4

When apply both unaligned grids and rectangular layers together, we can achieve
5% of storage reduction compare with our algorithm and square hierarchies only. The
storage reduced by both type of layers can not be added together directly. It caused by
the primitive-hierarchy fitting algorithm sets higher priority for rectangular layer and
part of misalignment primitive will be covered into this layer and no longer seen as a
misalignment. When apply both layers together our storage size requirement will be

more like ARM did.

Doom3, Redundant Read of Proposed Design
1400000.00
B ARM O Proposed Alg.
| | @ Proposed UG O Proposed RL
1200000.00 B Proposed Full Capa.
1000000.00
% 800000.00
Q
]
r 600000.00
400000.00
200000.00
0.00
Resolutions 320x240 640x430 1280x1024 1600x1200

Figure 4-20 Dooma3 redundant reads by proposed design

42

Quake4, Redundant Read of Proposed Design

1800000.00

B ARM O Proposed Alg.
1600000.00 — @ Proposed UG O Proposed RL
B Proposed Full Capa.

1400000.00

1200000.00
.gIOOOOO0.00 r
Q
s}
5}
14

800000.00

600000.00

400000.00 £

200000.00

0.00
Resolutions 320x240 640x480 1280x1024 1600x1200

Figure 4-21 Quake4 redundant reads by proposed design

Figure 4-20 and 4-21 above shows the redundant reads by proposed layer
designs. In both figure, we can see that when adding our layer designs together, the
redundant reads are significantly higher than ARM did. The reason for this result is
that many misalignment primitives are now can be recorded in higher layer which
would lead to more unnecessary traffics. And the rectangular layer, some of the
primitives are lying across multiple horizontal rectangle or vertical rectangle

layered-tiles. Such that, combining both leads to this result.

4.4 Storage Requirement of Proposed List Buffer

In this section, we will evaluate the storage size requirement between various

size of block used in our List Buffer with square hierarchies only.

43

M ScnBufAddr

O NextAddrPtr

1600000

1400000f

1200000

1000000

800000

600000

400000

200000

Dooma3 List buffer size requirements

Figure 4-22

M ScnBufAddr

O NextAddrPtr

1800000

1600000F

1400000

1200000

1000000

800000

600000

400000

200000

Figure 4-23 Quake4 List buffer size requirements

44

As Figure 4-22 and 4-23 shows, the y-axis is the total number of records need
by List Buffer. And the x-axis is various test cases and sizes of blocks in List Buffer.
The block sizes we choose are 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024. And both
results show that when use 8 records in a block can have a balance between List
Buffer storage requirement and access time. Which means 7 records for scene buffer

pointer and 1 for next block address for a block in List Buffer will be the best choice.

45 Discussion

The results in section 4.2 show we can reduce storage requirements by using
hierarchical primitive lists. Although misalignment primitive is not major problem in
this square hierarchy, the size reduction is still not ignorable. Especially when
resolution and number of layer get higher, there will be thousands of primitives are
misalignment. The reason we ignore these primitives that can not cover by unaligned
grids is that this kind of primitive only holds 8% in average of all misalignment
primitives, so we ignore this amount of primitives. The purpose of choosing
thresholds in rectangular layer is to use these layers efficiently. If the threshold is too
low, the primitives would easily fall into this layer and cover only a few of tiles in
rectangular layer’s group which cause extra traffics. So the trade off between traffic
and storage reduction by rectangular layer need to be considered carefully.

Although, the result of our primitive-hierarchy fitting algorithm can have
significantly less redundant traffic when using square hierarchies only, when applying
all layers design seems not. But the generalize the primitive list storage List Buffer,

we can add any different shapes of layered-tiles we want. For such hierarchical

45

primitive lists structure design, we need to trade off between storage size, data traffic
and circuit complexity when implement into hardware to get best performance and

cost ratio.

46

Chapter 5 Conclusion and Future Work

5.1 Conclusion

In this paper, we proposed two different grouping methods and a
primitive-hierarchy fitting algorithm to enhance the hierarchical mechanism. When
we use unaligned grids and rectangular layers together, it can further reduce the
primitive storage by 5% compare to use ARM’s square hierarchies only. Also, a new
primitive-hierarchy fitting algorithm is proposed which only requires simple circuit to
classify primitives into different types of layers. Considering that embedded 3D
application become popular and complex, then the corresponding hardware must be
developed. We believe tile-based rendering is a suitable technique for such devices.
Although it requires external memory to store its primitives’ information, the method

we proposed can reduce size to satisfy such devices’ environments.

47

5.2 Future Work

Scene buffer
0xCF110000 Primitive Data 1
0xCF110100 Primitive Data 2

OXCFFFFFFF Primitive Data N

Primitive Lists ¢\r _ ; Local Buffer Tile Renderer ’7
L ; Local Buffer Tile Renderer ’7
- Shared *
o : Common 1 i
-__J 8 -Tl|f“. |l pa < g‘ Local Buffer ‘ Tile Renderer ’7 ELaﬁn:
2 Z 4 Binning > 9
a g Area
83
Q .
e~ 1 :
Local Buffer ‘ Tile Renderer ’7

Figure 5-1 Parallel Tile Renderer Architecture

As Figure 5-1 shows, after tile binning process, the primitives have been
classified into hierarchical primitive lists. In pixel processing stages, assuming we
will have multiple tile renderers and each of them responsible for drawing a tile in
screen. All of these renderers will fetch required primitive lists and primitive data

from Shared Common Storage Area, it might an indexable buffer or cache.

There’s an important characteristic of hierarchical primitive lists structure. Once
a primitive is identified to store on the layered-tile of upper layer in hierarchy. This
primitive will be rendered by the tiles covered by this layered-tile. And the
hierarchical primitive lists gather these primitive with sharing properties to upper
layers. If we render primitives in upper layer first within a specific region, we can

exploit very useful data locality for these primitive data and records in primitive list.

48

4x4

2x2
Layered- La;,jlr:d_ ah
Tile

tile . ——

Figure 5-2 Rendering sequence for Parallel Tile Renderers

To render from such hierarchical primitive lists structure, we can use a special
render sequence called Recursive-Z [10] to control tile rendering sequence. As Figure
5-2 shows, the tile rendering sequence of screen will be like the alphabet ‘Z’. And
each time this recursive process traverse through 4 layered-tiles in upper and lower
layers. For example, the first four tiles to be rendered are 1, 2, 7 and 8. Then, this
process will step up a layer to Layer 1 and choose 2x2 layered-tile No. 2. And this
time, the tiles covered by 2x2 layered-tile No.2 will be rendered, that is tile 3, 4, 9 and
10. Once 2x2 layered-tiles 1, 2, 4, and 5 have been traversed. This process will step
up to Layer 2 and choose next 4x4 layered-tile to traverse. The advantage of this
process is that no matter how many tile renderers we have, this rendering sequence

can keep the primitives in upper layer can be shared by current rendering tiles.

The preliminary result, we set primitive list and primitive data with separate
caches. And cache for primitive list is 4-way set-associative and each way with
512-entry, replacement policy depends on maximum reusable times it have. For
example, a primitive in a 2x2 layered-tile have maximum reusable times for four.
Once it is referenced, then this reusable times will be decreased by 1. If there’s a
conflict in cache, it would check whether the new reusable time larger then it was. If it

is, replace it. The cache for primitive data is 2-way set-associative and each way with

49

256-entry and 2 primitives per line with same replacement policy as cache for
primitive list. We test by Doom3 with frame 30 and various resolutions; the hardware

setting is four tile renderers share caches for primitive list and primitive cache.

Table 5-1 Dooma3, rendering with recursive-Z sequence

List cache hit rate Primitive cache hit rate

Seq RZ Seq RZ

320x240 74.4% 81.4% 60.9% 64.5%

640x480 75.0% 86.4% 69.6% 73.7%

1280x1024 | 77.3% 92.7% 78.5% 80.6%

1600x1200 73.9% 81.0% 92.2% 84.3%

As the Table 5-1 shows, we can achieve better cache hit rate and reduces
memory traffics with recursive-Z in most of the cases. Once the number of records in
primitive lists become more. The cache hit rate will be down for both caches due to
cache lines for primitive list and primitive keeps replaced by incoming primitives.
Because of the renderers will not finish a primitive or primitives of a layer in same
time. The cache lines will be replaced due to number of records in primitive lists
become more. If we increase number of ways or entries for cache, we can improve
this problem but it will need larger cache and increase chip area. So we may need a
better solution for this problem which might need to control rendering speed between

rendering tiles to reduce this cache conflict problem.

50

References

[1] “PowerVR. 3D Graphical Processing (Tile Based Rendering - The Future of 3D),”
white paper, Imagination Tech. Corp., 2000.

[2] “ARM Mali 3D Graphics System Solutions,” white paper, ARM Corp., Dec. 2006.

[3] (2009) PowerVR SGX Series5XT Graphics IP Core Family, [Online]. Available:
http://www.imgtec.com/powervr/sgx_series5XT.asp

[4] “Imageon 3D 238x White Paper,” white paper, ATi Corp., 2005.

[5] E. Sorgard, B. Ljosland, J. Nystad, M. Blazevic, F. Langtind, “Method of and
apparatus for processing graphics,” U.S. Patent 2007/0146378 A1, Jun. 28, 2007.

[6] Victor Moya, Carlos Gonzalez, Jordi Roca, Agustin Fernandez and Roger Espasa.
ATTILA: A Cycle-Level Execution-Driven Simulator for Modern GPU
Architectures. IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS-2006), March 2006

[7] http://lwww.idsoftware.com/games/doom/doom3/

[8] http://mwww.quake4game.com/

[9] Alan Watt. 3D Computer Graphics. 3rd edition. Pearson Addison-Wesley

publishing. 2000
[10] Chen-Wei Chang, “The efficient texture memory system design for texture

mapping in GPU.” Master ‘s thesis, National Chiao Tung University, Hsinchu,
Taiwan, 2007

51

Appendix A. Simulation Test Frame Images

Figure A-1 Doom3 frame 30

Figure A-2 Doom3 frame 60

52

Figure A-3 Doom3 frame 90

Figure A-4 Doom3 frame 120

53

Figure A-5 Doom3 frame 150

Figure A-6 Doom3 frame 180

54

Figure A-7 Quake4 frame 30

Figure A-8 Quake4 frame 60

55

Figure A-9 Quake4 frame 90

Figure A-10 Quake4 frame 120

56

Figure A-11 Quake4 frame 150

Figure A-12 Quake4 frame 180

57

	Thesis_20090918_1
	Thesis_20090918_2
	Thesis_20090918_3
	Thesis_20090918_4
	Thesis_20090918_5
	Thesis_20090918_6
	Thesis_20090918_7

