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用於區塊繪圖之階層式儲存方式設計 
學生：蕭之傑         指導教授：鍾崇斌 教授 

 
國立交通大學資訊科學與工程研究所 碩士班 

 

摘要 

在現今嵌入式系統中（如：手機、個人導航裝置等）往往資源相當受

限。而具備分區塊式繪圖 (tile-based rendering)特性的繪圖處理器，在

此類應用中相當常見，其一次只處理畫面上的一個區塊，而非整個畫

面，故其處理一個區塊所需的區塊深度緩衝器(Tile Z-buffer)及區塊畫

面緩衝器(Tile frame buffer)只需與區塊大小相同即可，而非整個畫

面。故傳統繪圖處理器中時常被重覆存取之深度緩衝器及畫面緩衝

器，即可很容易的被整合至晶片中來有效降低對外部記憶體之存取。

然而傳統的非階層式三角形名單之分區塊式繪圖處理器設計中，會在

場景複雜度增高時，增大對儲存三角形列表之記憶體空間需求。在本

論文中，將修改分區塊式繪圖處理器中記錄區塊中所屬三角形的動作

(tile binning)，使其能依據三角形不同邊界方框之大小、形狀及位置

決定存放在何種階層的三角形列表中，能使用較少之三角形名單來記

錄。並提出一個整合式的判斷方法，同時可以整合多種不同階層，且

不論畫面中有何種三角形之邊界方框，都能以固定的判斷次數來選定

三角形該被放在哪一個階層中。而此判斷方法也能很輕易以簡單的硬
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體來實現，進而減少其判斷所需的時間。透過這些修改，讓此種繪圖

處理器能在畫面複雜度不斷增高時，也能針對不同具有不同大小、形

狀及位置的三角形之邊界方框做最有效的判斷，進而減少整體儲存三

角形名單所需之空間。 
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A Hierarchical Primitive List for Tile-based Rendering 
 

Student：Chih-Chieh Hsiao         Advisor：Chung-Ping Chung 
 

Institute of Computer Science and Engineering  
National Chiao-Tung University 

 

Abstract 
Tile-based rendering has been widely used in resource-limited graphic processing 

environments, e.g., for hand-held devices. Since large primitives may cover a 

significant number of tiles, they need to be recorded in the primitive lists of all related 

tiles. We propose a hierarchical primitive lists structure, which also copes with 

misaligned and non-square primitive problems, to minimize the primitive recording.  

Intended advantages include: reduced storage pressure, list building time, primitive 

retrieval counts for subsequent rendering, and primitive data accesses from external 

memory during rendering, and possibly enhanced data locality/resource utilization if 

layer-based rendering is exploited. Based on this structure, we propose a 

primitive-hierarchy fitting (hardware) algorithm which, for a given primitive of any 

size and shape, determines a best way of storing it in the structure. Experimental 

results on Doom3 and Quake4 show a 73% storage reduction using only square 

hierarchies or 78% with our full capability, compared with flat tile-based lists. 
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Chapter 1 Introduction 

3D graphic applications in embedded systems become more and more popular, 

such as 3D games, personal navigation devices, and graphical user interface. As we 

knew the embedded systems are designed for some specific applications. Accordingly, 

the system designers usually want to reduce the costs by limiting system resources. 

However, the 3D graphic applications in embedded systems become more complex 

than before. The trade off between performance, power, and storage of 3D graphic 

processing in such systems becomes an important issue. 

There’s a promising technique called tile-based rendering [1] has been widely 

use in those resource-limited graphic processing environments like ARM Mali [2], 

PowerVR SGX [3], and ATi Imageon 2380 [4]. Instead of rendering a full frame in 

one pass, this technique divides screen into many small blocks called tiles and 

rendering tile by tile. Typically, tile size is 32x32 pixels, such that we can use less 

than 10KBytes for tiled frame buffer and tiled Z-buffer to store runtime information to 

render a tile. Due to this low runtime storage requirement, we can employ a small 

on-chip memory to render a scene instead of a large off-chip frame buffer and 

Z-buffer. Localize runtime storage can greatly reduces the external memory traffic 

and possibly improve performance in GPU. However, this technique requires extra 

buffers called scene buffer to store all primitives’ data and each tile has a 

corresponding primitive list to record which primitives should be rendered in this tile. 

Then the primitives will be sent to tile renderer in per tile basis when rendering in 

progress. 

According to our observation, there’s about 20% of primitives covered exactly 



 

 2

one tile, the other 80% of primitives covered more than one tile and will be recorded 

many times in different primitive lists. Although, it is necessary to record all these 

information, it is inefficient to record data in such method especially when 3D scenes 

get more complex. ARM has proposed a hierarchical primitive-listing [5] mechanism 

to record these large primitives which covered multiple tiles. Although this technique 

can reduce 73% of primitive storage compare to typical flat primitive listing, there 

still have some non-square and misaligned bounding boxes that ARM’s patent would 

need more primitive lists to record. Also, the algorithm to choose appropriate layer to 

store the primitives needs to take multiple steps to finish in most of cases. In this 

paper, we propose two different hierarchies and a fast primitive-hierarchy fitting 

algorithm. The results show that we can reduce primitive storage about 10% ~ 33% 

compare to use ARM’s square hierarchies only. In addition, the proposed 

primitive-hierarchy fitting algorithm can be implemented in a simple circuit to 

provide fast layer selection. 

The main chapters of this thesis are organized as follows: In chapter 2, we would 

provide background knowledge for tile-based rendering, and related works would be 

introduced. In chapter 3, we would present proposed design. Chapter 4 would 

demonstrate the simulation technique and results of this work; some environment 

assumptions would also be listed in this chapter. And finally, Chapter 5, a summary 

would be made and some future work would be proposed. 
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Chapter 2 Background and Related work 

In this chapter, we will give an overview of typical graphics pipeline. Then, we 

will introduce the tile-based rendering; explain the differences between these two 

different GPU implementations. Also, the inefficiency of memory usage in tile-based 

rendering will be discussed. At the end of this chapter, we will present the details of a 

previous work related to this problem. 

2.1 Typical graphics pipeline  

 

 

 

 

 

 

Figure 2-1 Typical 3D graphics pipeline 

 

Typical 3D graphics pipeline can be showed as Figure 2-1. Each object in a 3D 

scene may be composed of many primitives, typically triangles. And each triangle 

consists of three vertices. The graphics pipeline will perform coordinate 

transformation on each vertex from object space to 3D scene space, and finally into 

screen space by vertex shader. And then, the triangle setup will assemble vertices into 

primitives. In rasterization stage, the primitive will be rasterized into many fragments 

according to its screen coordinates. These fragments will be tested by Early-Z or 

Hierarchical-Z test to filter out invisible fragments as soon as possible to reduce the 

Vertex
Shader

Pixel
Shader

V
ertex

R
asterizato

n

T
rian

g
le S

etu
p

E
arly-Z

/H
Z
 test

V.S
prog.

P.S.
prog.

Depth 
Processing

Z-Buffer

Frame
buffer

Off-Chip Memory
On-Chip Memory



 

 4

workload in pixel shader and Z-test. These fragments that passed Early-Z or 

Hierarchical-Z test will be sent to pixel shader to perform color shading and texture 

filtering. After fragment shading process in pixel shader, the final Z-test will perform 

on each shaded fragment to see if it should be displayed on the screen or not and then 

send to frame buffer and update corresponding value in Z-buffer according to the test 

result. 

In this process, both Z-test and frame buffer are external memories which means 

that access these two buffers will cause extra latencies. As the 3D scenes become 

complex, there are more than ten times of visible fragments that need to access these 

two buffers since primitives are not process by any specific order and cause lot of 

external memory traffic. 

2.2 Tile-based rendering 

In this section, we will introduce the basis of tile-based rendering and its 

corresponding data structures. And finally discuss some observations and problems. 

2.2.1 Tile-based rendering pipeline 

 

 

 

 

 

 

Figure 2-2 Tile-based rendering pipeline 
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this technique render a small region of frame, called a tile which is typically 32x32 

pixels, one by one. According to this characteristic, the temporary storage such as the 

Z-buffer and the frame buffer can be easily built in a chip, and thus significantly 

reduce the external memory traffic. 

 

 

 

 

 

 

 

Figure 2-3 Tile binning process 

 

Figure 2-2 shows the diagram of the tile-based rendering pipeline. The process 

before triangle setup is exactly the same as that of the typical graphics pipeline. After 

triangle setup, the data of the transformed primitives will be stored in an extra storage 

called scene buffer. Also, each tile on screen has a corresponding external storage 

called primitive list which records the primitives rendered in this tile. After storing all 

primitives of a frame into the scene buffer, the tile binning process will be performed. 

As Figure 2-3 shows, the tile binning process will begin with the bounding box test 

which is formed by the primitive’s maximum X and Y and minimum X and Y values 

of its transformed vertices’ coordinates. This bounding box will be used to check 

which tiles are covered by this bounding box. If a tile is covered by the bounding box, 

then the scene buffer address of this primitive will be recorded into the primitive list 

of the tile. After all primitives in this frame are sorted into tiles, then the rendering 
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process will begin in tile base. The disadvantage of this method is that the pixel 

process must start after all primitives in current frame have been sorted into tiles. 

Fortunately, this latency may be hidden by doubling scene buffer and primitive lists to 

process multiple frames simultaneously. 

2.2.2 Data structures for Primitive lists 

 

 

 

 

 

 

 

 

Figure 2-4 Linked-list implementation of primitive list 

 

Figure 2-4 shows the implementation of primitive lists. Each tile has a 

corresponding entry in the memory region. And each entry consists of two fields, one 

for the scene buffer address of a primitive and the other for the next record address. 

This implementation can ensure that no internal fragmentation in each list, but storage 

redundancy is very serious since it records every data with a corresponding next 

address. If a NULL is found in the next address filed, for example, 0x00C1004 in 

Figure 2-4, it means that the record is the end of the current primitive list. 

Another way to implement the primitive list structure is using fixed-size storage 

in which every tile has a corresponding entry in memory with a fixed number of fields 

to record scene buffer addresses. Although this method is very efficiency in list 
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retrieving, the internal fragmentation problem is very serious in it. 

2.3 The inefficiency of memory usage in tile-based rendering 

Figure 2-5 below is the statistic information from Doom3 and Quake4. We have 

test 20 frames from 600 frames with 30 frames as interval with various screen 

resolutions. And the tile size 32x32 pixels. 

 

 

 

 

 

 

 

 

Figure 2-5 Percentages of primitive tile-coverage diagrams for various test cases 

 

 

 

 

 

 

 

Figure 2-6 Percentages of different bounding box shapes for various test cases 
 

Figure 2-5 shows the percentage of primitive tile-coverage for various test cases. 

As the resolution gets higher, the primitives’ bounding box cover more tiles which 

means we will record the same scene buffer address for multiple times. Although, it is 
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necessary to record this information in order to render the whole frame correctly, it is 

not a very efficient method to do. There’s another thing can be observed in this 

tile-coverage diagram. Some primitive covers 2, 3, 5 or 7 tiles, which means these 

bounding boxes are in rectangular shapes. Such that, the statistic of different bounding 

box shapes are shown below. 

Figure 2-6 is about what shapes of primitives’ bounding boxes are. This bar-chart 

is again the average value from 20 frames from 600 frames with 30 frames as interval 

of Doom3 and Quake4 with various screen resolutions. The shapes of primitives’ 

bounding boxes on screen are 7% to 19% in long and thin rectangle.  

2.4 ARM’s square hierarchies 

 

 

 

 

 

 

 

Figure 2-7 ARM’s square hierarchical primitive-listing 

 

ARM has proposed a hierarchical listing mechanism [5] to store primitive lists in 

tile-based rendering. As Figure 2-7, the left one is called bottom layer which is the 

same as typical flat tiling mechanism, each entry represents a screen tile. The other 

two layers are called grouped layers; each entry is grouping by multiple screen tiles to 

form an NxN layered-tile. For example, a 2x2 layered-tile consists of 4 tiles in bottom 
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layer, 2 tiles in height and 2 tiles in width. A 4x4 layered-tile consists of 16 tiles in 

bottom layer, 4 tiles in height and 4 tiles in width and so on. These extra layered-tiles 

have their own primitive lists to store primitive address in scene buffer. And every 

layered-tile in upper layer can be use to represent the tiles it represents in bottom layer, 

which means we can use less primitive list storage if we can store primitives in these 

layers. For instance, if a primitive’s bounding box covers tile 1, 2, 5 and 6. We can 

record this primitive with only one record in primitive list of layered-tile 1 in 2x2 

layer instead of 4 records in tile 1, 2, 5, and 6’s primitive lists. Although this 

mechanism can reduce lot of list storage size, it requires to going through all layers to 

get all corresponding primitive information in rendering a screen tile instead of typical 

flat primitive list which traverses its own primitive list only. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-8 Flow-chart of ARM proposed layer selection algorithm 

 

As Figure 2-8 shows, this patent proposed an algorithm that test primitives layer 

Step down 
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by layer, to choose which layer in hierarchy should be used to store this primitive 

during tile binning process. This algorithm starts with one layer below top (the highest) 

layer, if number of (layered-)tiles covered by input primitive’s bounding box is below 

a threshold (e.g., 4) then step down one layer, repeat this process until number of 

(layered-)tiles covered by bounding box which no longer below a threshold or it 

reaches a bottom layer. Furthermore, if it is below the threshold then we store in one 

layer above current layer or if it is in the bottom layer then we store this primitive 

immediately. Finally it checks if this primitive is a misalignment one or not.  If it’s, 

step down one layer and store primitive into current layer; if it’s not, store to current 

layer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-9 Use of ARM’s square hierarchies 
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As Figure 2-9 shows, the testing procedure for triangle No.1 will start from layer 

1 which is one layer below top layer. Triangle No.1 covers 4 layered-tiles in layer 1 

which excess threshold then we step up one layer to layer 2 and check it is special 

case or not. Triangle No.1 will be identified as normal case and then store in layer 2. 

The triangle No.2 will be tested from layer 1, too. And found that it is below threshold 

which needs to step down one layer to layer 0. Triangle No.2 covers 6 tiles in layer 0 

which excess threshold and will be step up one layer and so on. Triangle No.3 is used 

to demonstrate special case which called misalignment. Triangle No.3 covers 4 

layered-tiles in layer 1 and will be step up one layer to layer 2. Then this triangle will 

be identified as special case because this triangle is lying on the boundary of multiple 

tiles across different layers which need to step down one layer and store in layer 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-10 Rendering from hierarchical primitive lists 
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After tile binning process, all primitives in current frame are binned into 

different layers of square hierarchical primitive lists according to the size and position 

of primitives’ bounding boxes. Rendering a tile from such hierarchical primitive list, it 

needs to traverse all layers to find out which layered-tile covers current rendering tile 

and then fetch corresponding primitive list to render. As Figure 2-10 shows, if we 

need to render tile No.1 of screen, we need the primitive lists of tile No.1 in layer 0, 

layered-tile No.1 in layer 1 and layered-tile No.1 in layer 2 in order to draw the 

correct results. 

In the patent, it uses only square fashion like 2x2, 4x4, and NxN layered-tile to 

illustrate their hierarchies. Although this patent claims we can group tiles in any 

fashion, it doesn’t provide any examples and corresponding layer selection algorithm. 

This paper will implement the hierarchical list ideas and use different grouping rules 

to see the effects for the storage size. Also, a new layer selection algorithm which can 

be easily implemented by hardware will be proposed. 
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Chapter 3 Design 

In this chapter, we will introduce ours layer design according to our observation 

and a simple algorithm to classify primitives into different layers will proposed. 

Finally, a layer-based rendering will be introduced which can further reduce external 

memory traffic in rendering progress. 

3.1 Layer design overview 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Layer design overview 

 
(a) Hierarchical primitive list structure showing all possible hierarchies and shapes 

 

(b) Memory organization for the hierarchical primitive list structure in (a) 
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Figure 3-1 shows the overview of our new design layers, the left most part is as 

same as ARM’s demonstration in their patent. Layer 0 represents the bottom layer 

which every entry is as same as screen tile, layer 1 represents 2x2 layer, layer 2 

represents 4x4 layer and so on. Based on the mechanism proposed by ARM, we 

introduce unaligned grids to store misalignment primitives and rectangular layers to 

store primitive of non-square shapes in the middle and the right most of the figure. 

Details will be discussed in section 3.2 and 3.3. Figure 3-1(b) is the organization of 

primitive lists in memory. The Prim list presents square hierarchy method’s primitive 

lists. The UG List represents unaligned grids’ lists. And the HRect (Horizontal 

Rectangle) List and VRect (Vertical Rectangle) List represent the primitive lists of 

rectangular layer in high or wide shape. And the X, Y, Z, W indicates the largest 

layered-tile IDs in upper layers. 

3.1.1 Use of Rectangular layers 

Since high and wide rectangle shapes of primitives are common, we introduce a 

new layer called rectangular layer to store these kinds of primitives. Except the layer 

that includes all tiles in screen in single layered-tile, every layer has a corresponding 

rectangular layer including the bottom layer. As Figure 6(b)(c) show, there are two 

types of this rectangular layer. First is in high rectangle shape and second in wide 

rectangle shape. The rules to form these layers are; divide the screen into half based 

on how many tiles in vertical and horizontal directions of screen to align bottom 

layer’s tile. The width of high rectangle shape is exactly the same with the 

corresponding layer’s group width. The height of the wide one is also the same with 

corresponding layer’s group height. 
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Figure 3-2 Use of rectangular layers. Figure shows all possible results of 
primitive-hierarchy fitting and final selections 

 

The rule to classify the primitives into this layer is depending on the difference 

between tile-based bounding box’s width and height. If the difference between height 

and width of bounding box reach a threshold (e.g., 2, 4 tiles), then this primitive will 

be recognized as in rectangular layer. In the Figure 6(c)(c), the primitive C and D will 

be recognized as in high and wide shape, such that C and D can be stored in 

rectangular layer with less primitive lists. In this type of layer, we will encounter the 

misalignment problem. For example, primitive E in Figure 6(b) is a misalignment one. 

Either 2x2 or 4x4 grouped layers’ rectangular layer, primitive E covers two groups. In 

this case, we still store primitive E in rectangular layer but step down one layer from 

where it originally chose as long as it is not the bottom layer. 

 

3.1.2 Use of Unaligned Grids 

In this section, we will introduce a grouping method to store misalignment 
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primitives. In this layer, each grouped layers have a corresponding unaligned grid 

except the layer that includes all tiles in screen in single layered-tile and bottom layer. 

As Figure 3-3(b) shows, this grid starts from (0 + group-width/2, 0 + group-height/2) 

with same group size to its corresponding grouped layers. For instance, the 

misalignment primitive A in Figure 3-3(a), both 2x2 grouped and bottom layers for 

this primitive requires 4 layered-tiles are recorded. If this unaligned grid is applied, 

this primitive A can be recorded in this unaligned grid with only one primitive list in 

Figure 3-3(b). 

 

 

 

 

 

 

 

 

 

 

Figure 3-3 Use of unaligned grids. Figure shows all possible results of 
primitive-hierarchy fitting and final selections 

 

In Figure 3-3(a), there’s another example primitive B. This primitive is also a 

misalignment one, but it can not be fit in 2x2 grouped layer’s unaligned grid, because 

these grids are begin from (0 + group-width/2, 0 + group-height/2) which means there 

have some tiles this grid cannot be covered. In this case, the primitive B will be stored 

in square hierarchy and step down one layer as ARM’s patent did. There are two main 

rules to decide a primitive can be put in this grid or not. First, this primitive must be 
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misalignment. Second, the primitive’s bounding box need to pass the boundary check 

which tests this primitive whether it can be covered in this layer or not. 

 

3.1.3 Summary 

In this section, we will show the extra overheads in such design. In a hierarchical 

layer design can reduce storage size requirements, but every primitive in any 

layered-tile of upper layer will be processed by the tiles it represents. However, some 

of primitive in the upper layer may cover only half of the area in layered-tile. This 

would cause extra traffic to fetch these primitives. 

 

 

 

 

 

 

Figure 3-4 Redundant access in hierarchical lists 

As Figure 3-4, the triangle above will be store in 2x2 layer and the bounding box 

test result shows this triangle covers two layered-tiles in 2x2 layer, which means tiles 

1, 2, 5, 6, 9, 10, 13 and 14 would need to access this triangle when rendering in 

progress. If we do use typical rendering hardware and policy, we would generate 

some redundant access in runtime.  

To add these extra layers, we will need extra primitive lists to record scene buffer 

addresses of primitives for these layers. Total number of original primitive list is, 
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To add ARM’s square hierarchies, we would need extra lists below. Assume we 

have layers from 0 to N, 

 

 

 

To add our rectangular layer, we would need extra lists below. Assume we have 

layers from 0 to N, and layered-tile in layer N can use only one list to includes the 

whole screen, 

 

 

To add our unaligned grids, we would need extra lists below. Assume we have 

layers from 0 to N, and layered-tile in layer N can use only one list to includes the 

whole screen, 

 

 

3.2 The Primitive-Hierarchy Fitting Algorithm 

To selection of a suitable layer for primitives much faster, we will improve the 

algorithm proposed by ARM. The primitive-hierarchy fitting algorithm we proposed 

to select appropriate layer in square hierarchy is in Figure 3-5. 
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Figure 3-5 The primitive-hierarchy fitting algorithm for square and aligned 

 

 

 

 

 

 

 

 

 

Figure 3-6 Tile-based Bounding Box construction. Inner one is the typical  
             bounding box, and outer one is the tile-based bounding box. The  

    width of tile-based bounding box is 2 and height is 3. 
 

To understand this algorithm, we need to define layer ID first. The bottom layer 

is layer 0, 2x2 grouped layer is layer 1, 4x4 grouped layer is layer 2 and so on (as 

Figure 3-1(a) shows). The boundaries of these layered-tiles are power of 2 and groups 

together to form upper layers’ layered-tiles. Assume we are using 32x32 pixels as our 

tile size. When the primitive comes, we first construct its tile-based bounding box as 

in Figure 3-6.  The reason to construct such tile-based bounding box is reducing the 

complexity of computation circuit. The advantage of such bounding box is that it can 

easily find out the tile-based length of this bounding box and figure out misalignment 

or not by searching low-order bits of its coordinate directly. To build such bounding 

 
 
 
 
 
 

 
 

Step 1. Represent primitive with tile-based bounding box 
Step 2.(a) Select the shorter side of the bounding box as reference side 

(b) Perform ceil( log2 length-of(Ref-Side) ) to get layer ID 
Step 3. Check the input primitive on selected layer is misalignment or not 

Yes) Step down one layer and store this primitive 
No) Store this primitive into selected layer 
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box we will round down minimum X and Y value to nearest multiple of 32, if it is on 

the boundary then leave it on that boundary. And round up the maximum X and Y 

value to nearest multiple of 32, if it is on the boundary then shift it to next multiple of 

32 in order to detect the correct tile-based length of bounding box. Also, the 

coordinates of tile-based bounding box are all multiple of 32 which can reduce 

computation complexity of hardware. 

After building up the tile-based bounding box, we will select an appropriate layer 

to store input primitive in square hierarchies. Since all length and positions of tiles 

and layered-tiles are power of 2. The relationships between layered-tiles in different 

layers are power of 2, too. To determine which layer should use to store current 

primitive we might have multiple choices like shorter side, longer side or average 

length of tile-based bounding box. Because of the power of 2 characteristic of 

layered-tile’s length in each side, we can use this side’s tile-based length to perform 

log2 operation to figure out which layer in hierarchy should we put the primitive in. If 

the length of the side is not multiple of two, the result of log2 operation will contain 

both integer and non-zero numbers after decimal place. In order to find fittest 

layered-tile, we will perform a ceiling operation after log2, such that we can round up 

to nearest layer which can use exactly one layered-tile to cover this bounding box’s 

width or height. 

 

 

 

 

 

Figure 3-7 Effects of different reference side in our algorithm 
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As Figure 3-7 above, if we choose longer side of triangle No.1 as reference side 

and perform log2 and ceiling operations, we will get layer ID is 2 and store it with a 

4x4 layered-tile. Although, we can record this primitive with only one layered-tile, 

most of the screen tiles covered by this 4x4 layered-tile are not covered by this 

primitive. And it generates 12 unnecessary accesses in rendering. If we choose shorter 

side as our reference side, triangle No.1 will be recorded in layer 0 with 4 tiles. And 

this selection would make the shape of final selection result more suitable for this 

primitive and reduces unnecessary accesses in rendering. If we take another triangle, 

said triangle No.2 as example. If we choose longer side, this primitive will be 

recorded in layer 2 which generates 10 useless accesses in rendering. Otherwise, if we 

choose shorter side as reference side, this primitive will be recorded in layer 1 with 2 

layered-tiles which generates 2 useless accesses in rendering. In our algorithm, we 

choose shorter side as reference side to discover a balance between useless accesses in 

rendering and storage size requirements. 

 

 

 

 

 

 

 

 

 

 

Figure 3-8 Building lookup table and circuit for Layer ID generation 
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Although the logarithm and ceiling functions will need complex circuit and 

longer cycle time to finish, our implementation will use a simple way to replace these 

calculations. Typically, implementation of hierarchical primitive list will use limited 

layers to ensure hardware’s simplicity. So we can build a lookup table for this 

logarithm and ceiling operation, and this table can be further reduced via Karnaugh 

Map. As Figure 3-8 shows, assume we have five layers in our implementation with 

Layer ID 0 to 4. If length of reference side is larger than 10002 (810) in tiles, then 

output the layer ID 1002 (410) directly. The others we can use LSB 4-bit from length of 

reference side in tiles as input to generate 3-bit layer ID. Let input bits from bit-0 to 

bit-4 be A, B, C, and D. The output bit-0 can be expressed by A + BD + CD’, bit-1 A 

+ B + CD and keep bit-2 always zero. Combine the rules above; we can build the 

Layer Select Logic to get the Layer ID in a simple circuit. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-9 Circuit implementation of the primitive-hierarchy fitting algorithm.   
          Note that this circuit is a combinational logic. The algorithm steps  

          simply indicates flow of signals, but not states 
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To detect the misalignment, we can use an intuitive way since the length of both 

sides of layered-tiles in square hierarchies are in power of 2; such that we can detect 

misalignment by directly detect the low-order bits of 4 coordinates (maximum and 

minimum X, Y) of tile-based bounding box. Put these rules and Layer Select Logic 

together, we can form our circuit of layer fit algorithm. 

Figure 3-9 shows the circuit implementation of primitive-hierarchy fitting 

algorithm. The comparator takes the input primitive’s tile-based bounding box’s width 

and height in number of tiles. Then output shorter side as reference side to the Layer 

Select Logic. The output of Layer Select Logic will be the layer ID. And the four 

multiplexors will check the maximum and minimum X, Y positions’ values to see 

whether the primitive in selected layer is misalignment or not. Since typical tile size is 

32x32 pixels, the coordinates including tiles and groups must be a multiple of 32. We 

can determine the input primitive is misalignment or not by checking the low-order 

bits of its tile-based bounding box’s coordinates. If it is a misalignment then outputs 

layer ID -1 (step down one layer). If it’s not, outputs the selected layer ID from Layer 

Select Logic. 

As the layer design described in section 3.1, we design two new layers called 

unaligned grids and rectangular layers. Both these designs have a same characteristic 

with square hierarchies. For unaligned grids, the height and width of a layered-tile is 

exactly the same with corresponding layered-tile in square hierarchies. For 

rectangular layers, the width of vertical rectangle and the height of horizontal 

rectangle are exactly the same with corresponding layered-tile in square hierarchies. 

Due to this characteristic, the Layer Select Logic used in Figure 3-9 can be applied in 

choose appropriate layer to store primitive in unaligned grids and rectangular layers. 
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Figure 3-10 Circuit implementation of the primitive-hierarchy fitting algorithm,  
         with fittings to rectangle and unaligned grid variations included 

 

 

Integrate unaligned grids and rectangular layers with this algorithm. We need to 

give priorities in order to choose which type of layer is more appropriate to use. In our 

implementation, the rectangular layer has highest priority and then unaligned grid in 

the next place, finally square hierarchy is the lowest one. Also, we need to add an 

output to indicate what type of layer to use alone with layer ID. 

 
Figure 3-11 Comparator in integrated layer selection circuit, with behavior 

description only 
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Table 3-1  Table for Layer Type Select 

Type of SharpMisalignment Layer Type

No (00)

No (00)

Yes (01)

Yes (01)

Normal (000)

Wide Prim. (010)

Normal (00)

Horizontal 
Rectangle(01)

High Prim. (100) Vertical 
Rectangle (10)No (00)

Yes (01)

Normal (000)

Wide Prim. (010)

High Prim. (100)

Inter-group (11)

Yes, but boundary check 
failed  (10)

Yes, but boundary check 
failed  (10)

Yes, but boundary check 
failed  (10)

Normal (000)

Wide Prim. (010)

High Prim. (100)

Normal (00)

Which 
Layer ID

0

0

0

0

0

0

1

0

0

Wide Prim. but 
misalignment (011)

High Prim. but 
misalignment(101)

No (00)

Yes (01/10)

Yes (01/10)

No (00)

1

1

1

1

Wide Prim. but 
misalignment (011)

High Prim. but 
misalignment(101)

Horizontal 
Rectangle(01)

Vertical 
Rectangle (10)

Horizontal 
Rectangle(01)

Horizontal 
Rectangle(01)

Horizontal 
Rectangle(01)

Vertical 
Rectangle (10)

Vertical 
Rectangle (10)

Vertical 
Rectangle (10)  

 

Figure 3-10 shows the implementation of the whole primitive-hierarchy fitting 

algorithm. The priorities of these different types of hierarchies are encoded in the 

lookup table as Table 3-1 shows. As Figure 3-11 shows, once the comparator 

determines this input bounding box whether it is a high or wide rectangle, this 

primitive will be stored in rectangular layer corresponding to selected layer ID. But if 

misalignment is found in Misalignment Check, then it will output this information 

together to Layer Type Select in order to make the correct layer decision. The 

unaligned grid will be used if this bounding box is misalignment and passed the 

Boundary Check. Finally, if this bounding box cannot be classified as either 

rectangular or unaligned grid, then this primitive will be stored in square hierarchies. 
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3.3 Primitive list design 

As section 2.2.2, the typical data structure of primitive list would have serious 

storage waste or internal fragmentation. In this section, we will propose a primitive 

list design to reduce these problems. 

 

 

 

 

 

 

Figure 3-12 Primitive list design 

As Figure 3-12, we combine multiple scene buffer addresses as one block with a 

next address pointer in last entry of it. The block size N is power of 2 which can be 4, 

8, 16 and 32 or higher. This List Buffer is initially unassigned, once a primitive list 

requires a record it will check the Primitive List Index Table first. 
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Figure 3-13 Primitive list management in GPU 

As Figure 3-13 shows, each tile has a corresponding entry in the Primitive List 

Index Table which records the starting address of its primitive list in List Buffer, also 

the next available address for recording scene buffer address and a Counter to record 

how many primitives have been record into this primitive list. This Primitive List 

Index Table is initially empty, once we require a scene buffer address to be recorded 

in a specific tile’s primitive list, it will check the Entry Address of corresponding 

entry in Primitive List Index Table to see it is NULL or not. If it is a NULL means 

this entry is the first time to be used, then it will check List Buffer’s address 

accumulator to see the address of next available block in List Buffer and then assign 

this address into this Entry Address, also the address accumulator would plus N into it. 

If it is not NULL, it will check if Counter field reaches multiple of N-1, if it is, it 

means that this block is full, then request for a new block in List Buffer and assign 

this new block’s address into current block’s Next address field. Others, simply write 

the scene buffer address into the address indicate by Next Address field and update 

this Next Address and Counter fields after writing the address into it. 
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Figure 3-14 Square Hierarchical Primitive list management in GPU 

If we are using a hierarchical primitive list structure like square hierarchies, we 

can simply add a Layer Offset Table to indicate base address of each layer. As Figure 

3-14 shows, the Primitive List Index Table remains the same, all tiles and 

layered-tiles have a corresponding entry in it but into several different segments. First 

segments for bottom layer’s tiles and second segments for layer 1’s layered-tiles and 

so on. Once we need to find an entry in Primitive List Index Table, it needs to add 

(layered-)tile ID and base address in Layer Offset Table together and then this result 

can be used to index corresponding entry in Primitive List Index Table. 
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Figure 3-15 Ours Hierarchical Primitive list management in GPU 

In our design, we have three different types of hierarchies. To index such 

multiple hierarchies in same Primitive List Index Table, we need to modify the 

structure of Layer Offset Table. As Figure 3-15 shows, the Layer Offset Table need to 

be extended to two dimensional, one for layer ID and one for which type of 

hierarchies. In our design, we have three different hierarchies, but the rectangular 

layers have two variants so we need two entries for rectangular layers. Such that, we 

will have a two dimensional Layer Offset Table with NumberOfLayers * 4 entries. 

Since we have a generalize storage for records in primitive list, we only need to 

add entries in Primitive List Index Table without enlarge size of List buffer. 
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Chapter 4 Evaluation Results & Discussion 

In this section we will demonstrate our simulation results. We first describe our 

evaluation environment and the characteristics of the input frame data (in section 4.1 

and 4.2). Then, we show and analyze the simulation results of memory requirement 

and memory traffic overhead in rendering of our method. Finally, the discussion will 

be shown. 

4.1 Evaluation Environment 

Primitive1: {x1,y1,z1},{x2,y2,z2},{x3,y3,z3},Bbox
Primitive2: {x1,y1,z1},{x2,y2,z2},{x3,y3,z3},Bbox

…………………………

Tile-based Rendering
Software Behavior 

Simulator

  

Figure 4-1 Simulation flow and ATTILA architecture 
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We choose Doom3[7] and Quake4[8] as our benchmarks with resolution 

320x240, 640x480, 1280x1024 and 1600x1200, 20 frames from frame 30 to 600 with 

30 frames as interval. Figure 4-1 shows the architecture of GPU simulator ATTILA[6] 

and in which stage we dump the transformed primitives from. Then use this dumped 

tracefile as input to our tile-based rendering software behavior simulator. Our 

simulator reads these transformed vertices data from tracefile and evaluates storage 

size and memory access traffic in rendering of primitive lists. The results below are 

average of the five frames and tile size is 32x32 pixels. The algorithm in section 3.2 is 

also applied. 

4.2 Number of Layers versus Screen Resolution in Square 

Hierarchies 

First we will look at the relationships between number of layers and screen 

resolutions. The first part of this section will show the storage reduction rate from 

various resolutions and number of layers. And second part of this section will show 

the access traffic in rendering. 
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Figure 4-2 Doom3 320x240 storage reduction percentages by using square and 
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aligned hierarchies versus flat list version 

 

Doom3 640x480, Number of Layers vs. Records Reduction
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Figure 4-3 Doom3 640x480 storage reduction percentages by using square and 

aligned hierarchies versus flat list version 
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Figure 4-4 Doom3 1280x1024 storage reduction percentages by using square and 

aligned hierarchies versus flat list version 
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Doom3 1600x1200, Number of Layers vs. Records Reduction
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Figure 4-5 Doom3 1600x1200 storage reduction percentages by using square and 

aligned hierarchies versus flat list version 

 

Quake4 320x240, Number of Layers vs. Records Reduction
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Figure 4-6 Quake4 320x240 storage reduction percentages by using square and 

aligned hierarchies versus flat list version 
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Quake4 640x480, Number of Layers vs. Records Reduction
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Figure 4-7 Quake4 640x480 storage reduction percentages by using square and 

aligned hierarchies versus flat list version 

 

Quake4 1280x1024, Number of Layers vs. Records Reduction
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Figure 4-8 Quake4 1280x1024 storage reduction percentages by using square and 

aligned hierarchies versus flat list version 
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Quake4 1600x1200, Number of Layers vs. Records Reduction
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Figure 4-9 Quake4 1600x1200 storage reduction percentages by using square and 

aligned hierarchies versus flat list version 

 

As Figure 4-2 to 4-9 shows, the y-axis is the percentage of storage reduction 

compare to typical flat tile-listing. And x-axis is different number of layers; the 

different number of layer setting from 2 layers that’s typical tiling with 2x2 grouped 

layer, 3 layers is typical tiling with 2x2 and 4x4 grouped layers, and so on. Different 

color of bars are using square hierarchies with ARM’s algorithm or ours 

primitive-hierarchy fitting algorithm. In lower resolution 320x240 in both benchmarks, 

three layers is enough for these two resolutions, since both of them use more layers 

which cannot gain more storage reductions. For higher resolutions, four layers would 

be a good choice, since the difference of size reduction between four and five layers is 

not significantly obtained. As the observation in section 2.3, there’s less primitives 

that overlap on exact one tile as the screen resolution gets higher. The result in Figure 

4-2 to 4-9 shows the same characteristic, as the resolution gets higher then this square 

hierarchies can save more storage. 
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Doom3 320x240, Number of Layers vs. Redundant Read
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Figure 4-10 Doom3 320x240 redundant reads by using square and aligned 

hierarchies 

 

Doom3 640x480, Number of Layers vs. Redundant Read
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Figure 4-11 Doom3 640x480 redundant reads by using square and aligned 

hierarchies 
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Doom3 1280x1024, Number of Layers vs. Redundant Read
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Figure 4-12 Doom3 1280x1024 redundant reads by using square and aligned 

hierarchies 

 

Doom3 1600x1200, Number of Layers vs. Redundant Read
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Figure 4-13 Doom3 1600x1200 redundant reads by using square and aligned 

hierarchies 
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Quake4 320x240, Number of Layers vs. Redundant Read
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Figure 4-14 Quake4 320x240 redundant reads by using square and aligned 

hierarchies 

 

Quake4 640x480, Number of Layers vs. Redundant Read

0

50000

100000

150000

200000

250000

300000

2 Layers
3 Layers

4 Layers
5 Layers

6 Layers
7 Layers

R
ec

or
ds

Proposed Alg ARM

 
Figure 4-15 Quake4 640x480 redundant reads by using square and aligned 

hierarchies 
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Quake4 1280x1024, Number of Layers vs. Redundant Read
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Figure 4-16 Quake4 1280x1024 redundant reads by using square and aligned 

hierarchies 

 

Quake4 1600x1200, Number of Layers vs. Redundant Read
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Figure 4-17 Quake4 1600x1200 redundant reads by using square and aligned 

hierarchies 

 

As Figure 4-10 to 4-17 shows, the y-axis is the total number of redundant records 

read during rendering. And x-axis is different number of layers with different color of 

bars for ours and ARM’s algorithm. From the figure above, we can see that our 

method would lead to about 5% more storage usages compare to ARM’s method. The 

results from Figure 4-10 to 4-17 show the advantages of our primitive-hierarchy 
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fitting algorithm. Our algorithm can choose better layer than ARM did. Such that, the 

redundant reads in our design are significantly lower than ARM in any benchmarks 

and resolutions. 

 

4.3 Storage Reduction of Proposed Design 

The effect of applying unaligned grids and rectangular layers will be shown in 

the following. The baseline is using square hierarchies only. The number of layers will 

be fixed by the results we observed above. For lower resolution 320x240, we will use 

three layers in the following experiments and for the higher resolutions, we will use 

four layers. 
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Figure 4-18 Doom3 storage reductions by proposed design versus square and 

aligned version 
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Quake4, Storage Reduction of Proposed Design
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Figure 4-19 Quake4 storage reductions by proposed design versus square and 

aligned version 
 

Figure 4-18 and 4-19 shows the percentage of storage reduction compare to use 

square hierarchies only with both ARM’s and ours algorithm, when adding grouping 

methods we described it in section 3.1. The unaligned grids can reduce tile list size 

about 1% to 10% since the misalignment primitive various from 2% to 20% in various 

test cases with our algorithm, but still a little bit more than ARM’s algorithm with 

square hierarchies only. For the rectangular layer, we set different thresholds for 

different resolutions according to how many tiles need to cover the height of screen. 

For instance, in 320x240 we need 8 tiles to cover the height of 240 pixels, since 

rectangular layers split screen into two parts, so we require the difference of 

primitive’s height and width need to be larger than 2 tiles in order to use these layers 

more efficient. For the same reason, we choose 4 for 640x480, 8 for 1280x1024 and 

10 for 1600x1200. Although the high and wide rectangle of primitives is about 35% in 

our observation in section 3.1, the result here is a bit different. One reason is the 

threshold; another reason is some of primitives are lying in the middle of the screen 

and it requires two or more groups to record. Again, when applying our rectangular 

layer and our algorithm, we still need a little big larger storage than ARM did. 
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When apply both unaligned grids and rectangular layers together, we can achieve 

5% of storage reduction compare with our algorithm and square hierarchies only. The 

storage reduced by both type of layers can not be added together directly. It caused by 

the primitive-hierarchy fitting algorithm sets higher priority for rectangular layer and 

part of misalignment primitive will be covered into this layer and no longer seen as a 

misalignment. When apply both layers together our storage size requirement will be 

more like ARM did. 
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Figure 4-20 Doom3 redundant reads by proposed design 
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Quake4, Redundant Read of Proposed Design
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Figure 4-21 Quake4 redundant reads by proposed design 

 

Figure 4-20 and 4-21 above shows the redundant reads by proposed layer 

designs. In both figure, we can see that when adding our layer designs together, the 

redundant reads are significantly higher than ARM did. The reason for this result is 

that many misalignment primitives are now can be recorded in higher layer which 

would lead to more unnecessary traffics. And the rectangular layer, some of the 

primitives are lying across multiple horizontal rectangle or vertical rectangle 

layered-tiles. Such that, combining both leads to this result. 

 

4.4 Storage Requirement of Proposed List Buffer 

In this section, we will evaluate the storage size requirement between various 

size of block used in our List Buffer with square hierarchies only.  
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Figure 4-22 Doom3 List buffer size requirements 

 

Figure 4-23 Quake4 List buffer size requirements 
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As Figure 4-22 and 4-23 shows, the y-axis is the total number of records need 

by List Buffer. And the x-axis is various test cases and sizes of blocks in List Buffer. 

The block sizes we choose are 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024. And both 

results show that when use 8 records in a block can have a balance between List 

Buffer storage requirement and access time. Which means 7 records for scene buffer 

pointer and 1 for next block address for a block in List Buffer will be the best choice. 

 

4.5 Discussion 

The results in section 4.2 show we can reduce storage requirements by using 

hierarchical primitive lists. Although misalignment primitive is not major problem in 

this square hierarchy, the size reduction is still not ignorable. Especially when 

resolution and number of layer get higher, there will be thousands of primitives are 

misalignment. The reason we ignore these primitives that can not cover by unaligned 

grids is that this kind of primitive only holds 8% in average of all misalignment 

primitives, so we ignore this amount of primitives. The purpose of choosing 

thresholds in rectangular layer is to use these layers efficiently. If the threshold is too 

low, the primitives would easily fall into this layer and cover only a few of tiles in 

rectangular layer’s group which cause extra traffics. So the trade off between traffic 

and storage reduction by rectangular layer need to be considered carefully. 

Although, the result of our primitive-hierarchy fitting algorithm can have 

significantly less redundant traffic when using square hierarchies only, when applying 

all layers design seems not. But the generalize the primitive list storage List Buffer, 

we can add any different shapes of layered-tiles we want. For such hierarchical 
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primitive lists structure design, we need to trade off between storage size, data traffic 

and circuit complexity when implement into hardware to get best performance and 

cost ratio. 
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Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

In this paper, we proposed two different grouping methods and a 

primitive-hierarchy fitting algorithm to enhance the hierarchical mechanism. When 

we use unaligned grids and rectangular layers together, it can further reduce the 

primitive storage by 5% compare to use ARM’s square hierarchies only. Also, a new 

primitive-hierarchy fitting algorithm is proposed which only requires simple circuit to 

classify primitives into different types of layers. Considering that embedded 3D 

application become popular and complex, then the corresponding hardware must be 

developed. We believe tile-based rendering is a suitable technique for such devices. 

Although it requires external memory to store its primitives’ information, the method 

we proposed can reduce size to satisfy such devices’ environments. 
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5.2 Future Work 
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Figure 5-1 Parallel Tile Renderer Architecture 

As Figure 5-1 shows, after tile binning process, the primitives have been 

classified into hierarchical primitive lists. In pixel processing stages, assuming we 

will have multiple tile renderers and each of them responsible for drawing a tile in 

screen. All of these renderers will fetch required primitive lists and primitive data 

from Shared Common Storage Area, it might an indexable buffer or cache.  

There’s an important characteristic of hierarchical primitive lists structure. Once 

a primitive is identified to store on the layered-tile of upper layer in hierarchy. This 

primitive will be rendered by the tiles covered by this layered-tile. And the 

hierarchical primitive lists gather these primitive with sharing properties to upper 

layers. If we render primitives in upper layer first within a specific region, we can 

exploit very useful data locality for these primitive data and records in primitive list. 
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Figure 5-2 Rendering sequence for Parallel Tile Renderers 

To render from such hierarchical primitive lists structure, we can use a special 

render sequence called Recursive-Z [10] to control tile rendering sequence. As Figure 

5-2 shows, the tile rendering sequence of screen will be like the alphabet ‘Z’. And 

each time this recursive process traverse through 4 layered-tiles in upper and lower 

layers. For example, the first four tiles to be rendered are 1, 2, 7 and 8. Then, this 

process will step up a layer to Layer 1 and choose 2x2 layered-tile No. 2. And this 

time, the tiles covered by 2x2 layered-tile No.2 will be rendered, that is tile 3, 4, 9 and 

10. Once 2x2 layered-tiles 1, 2, 4, and 5 have been traversed. This process will step 

up to Layer 2 and choose next 4x4 layered-tile to traverse. The advantage of this 

process is that no matter how many tile renderers we have, this rendering sequence 

can keep the primitives in upper layer can be shared by current rendering tiles.  

The preliminary result, we set primitive list and primitive data with separate 

caches. And cache for primitive list is 4-way set-associative and each way with 

512-entry, replacement policy depends on maximum reusable times it have. For 

example, a primitive in a 2x2 layered-tile have maximum reusable times for four. 

Once it is referenced, then this reusable times will be decreased by 1. If there’s a 

conflict in cache, it would check whether the new reusable time larger then it was. If it 

is, replace it. The cache for primitive data is 2-way set-associative and each way with 
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256-entry and 2 primitives per line with same replacement policy as cache for 

primitive list. We test by Doom3 with frame 30 and various resolutions; the hardware 

setting is four tile renderers share caches for primitive list and primitive cache. 

Table 5-1  Doom3, rendering with recursive-Z sequence 

 

As the Table 5-1 shows, we can achieve better cache hit rate and reduces 

memory traffics with recursive-Z in most of the cases. Once the number of records in 

primitive lists become more. The cache hit rate will be down for both caches due to 

cache lines for primitive list and primitive keeps replaced by incoming primitives. 

Because of the renderers will not finish a primitive or primitives of a layer in same 

time. The cache lines will be replaced due to number of records in primitive lists 

become more. If we increase number of ways or entries for cache, we can improve 

this problem but it will need larger cache and increase chip area. So we may need a 

better solution for this problem which might need to control rendering speed between 

rendering tiles to reduce this cache conflict problem. 
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Appendix A. Simulation Test Frame Images 

 

Figure A-1 Doom3 frame 30 

 

 

Figure A-2 Doom3 frame 60 
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Figure A-3 Doom3 frame 90 

 

 

Figure A-4 Doom3 frame 120 
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Figure A-5 Doom3 frame 150 

 

 

Figure A-6 Doom3 frame 180 
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Figure A-7 Quake4 frame 30 

 

 

Figure A-8 Quake4 frame 60 
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Figure A-9 Quake4 frame 90 

 

 

Figure A-10 Quake4 frame 120 
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Figure A-11 Quake4 frame 150 

 

 

Figure A-12 Quake4 frame 180 
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