Mot 2t) AR RN i B B K

Low-Latency Design faor Asynchronous DMA Controller

IR)

PR 2SN R

(E T T A

a2 3 R B Al G B B
Low-Latency Design for Asynchronous DMA Controller

R A Al Student : Chun-Chih Tai
Rz Mk Advisor : Chang-Jiu Chen
B o2« F
EAC S - S - N A
AL oo
A Thesis

Submitted to Institute of.Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
August 2009

Hsinchu, Taiwan, Republic of China

“’%%W{J/\E/\g

B 3 AR B R
g4 pE BERE R AR

R+ &
FAFFE LT

&

T R g 35 R el B AR B 2L R Lk B0 40 g
hiF S e o XY d NG R ARk AR > fp e TR R TR B e
HEEFARRARS o - R B B B BHASLIZE L ¥ W F R <2
PR E 0 B R S DT E L AR e Rl 0 d B BLAIE B e 3R

Peid e B AR TG LR F] o A E S 4

i\4

Roe R AT

=

Bk € F A4 e

B Py ;ﬂ,w, AP IR R A BT T) IR R A o F)P ok et 3N

i\4

DK i Eae

)

S

LEAE TN IR A A Y L& -

FIob A S - B D B A B B h B S k0 A R B
HRAGRT P L B o B R L T 0k L R R
S R R R S P B AL S F RS TR AT TR B R E e

R TP B o § 7 AEREMEAIEE Y BF o 2 F AR R A o

Low-Latency Design for Asynchronous DMA

Controller

student : Chun-Chih Tai Advisors : Prof. Chang-Jiu Chen

Department of Computer Science and Information Engineering

National Chiao Tung University

Abstract

Because embedded multimedia systems and digital signal processors are used popularly
and apply many wide range. Because the-quality of multimedia image becomes more and
more higher, multimedia image carry enormous amount of data. In general, image processing
on a digital signal processor often requires a lot of image data to be stored in external memory,
because the size of fast internal memory is usually very limited. The efficient data transfer
becomes very important.

We present a method that reduced latency of direct memory access controller. The design
is that digital signal processor processing should be overlapped with direct memory access
controller processing. Therefore, this design reduced 90% the internal latency of direct

memory access controller maximally and improved performance.

Acknowledgement

F Y I AR A R RGIR E TR R A [IR IR
FIRRE RSP (S5 e e F] FIERLE RGBS MU POS AR - 5l - A,
AR » 7 & P PR OB S AR - S8 25 (B ol e e

SRE ~ B R FOE S FIIFEER o OB LR S RS TS SR
RV o BRI IRGBIES & 9T % - BERVIh = > 2 S F N T T IR

]‘Eglgl':ﬁl»;rtajf . Hz*:;;gyﬁ:gj@ﬁg#[mﬁg%i LY o

Contents

B o e I
N 0L = Tod ST RTRSPR I
ACKNOWIBAGEMENT ... ettt s b et st besne e b e e e enes ii
(010 01 (=T 01 1 OO UP PR iv
LIS OF FIQUIES. ...ttt ettt et b e bt et e s bt e be et e sreenbeeneenreas %
LISE OF TADIES ... ettt sttt b et st eetesneenbe e vii
Chapter 1 INTrOTUCTION......oviiiiiiieiti ettt sb e sre e beeneesneenne e 1
Chapter 2 Related WOTKSooiiiie ettt ne e 3
2.1 Asynchronous CirCUITS DESIGNc.eeiuieiiiiiiieie ettt 3

2. 1.1 AUVANTAGES ..ovvivieiieiteetieetie st et sttt sttt st e e s e be e be e st e sbeebeeneesbeenbeeneenreas 3

2.1.2 HANASNAKING ...t sbe e nreas 5

2. 1.3 MUIIEr C-BlIEMENT.....c.eiiieiieie e et nreas 9

2.1.4 ASynchronOus PIPEIINE ..., il o e eeeereeee e sie et enes 10

2.2 DAt TrANSTEIS.....iiuiiieieees s dire e qmmn s e s ks et ese et e be s esreebesneesbeebesneesbeeneesneenneans 12
2.3AMULET....ccoovevvveenee il o Rl 0 W v 13
2.3.1 AMULET3i DMA CONtrOller .ot i 14

2.4 Problem.......cccooevvvveeneee o0 RECETTTEEI il oot 16
P o] 101 T U oo O e PSRRI 17
CRAPLET 3 DBSIGN ..ttt ettt ettt ettt e bt et e s e st e e sbeebeesbeenbesreesbeenbeabeenbeeneenreas 20
3L DALA TIOW .. bbb nreas 20
3.2 REQISIEI FOIMALS.ouiiiiiieiieeie sttt ettt b et ne e b e sbeeneenreas 23
LB ATCIITECIUIE ...ttt bt e et be et e eneenreas 25
3.3. 1 TranSTer ENQINGo.vooiiiiiieeeee et 26

3.3.2 AAAresS INTEITACEeeiueeieeee ettt 29

G TR I Oo 1 1 (=] ST TP PP UPPRT 34
Chapter 4 SIMUIALIONooeiiieice ettt sbe e nreas 38
4.1 ATEA SIMUIALION ...ttt ettt reenbeeneenreas 38
4.2 TIMING SIMUIBLION ..ottt et b e nreas 39
Chapter 5 CONCIUSIONoiuiiiieii ettt bttt et esbeeneenreas 44
RETEIENCES ...ttt b ettt e s b e st e e bt e ne e s be e beeneesbeenbeeneenreas 45

List of Figures

Figure 1 (a) Bundle data channel.............ccoooiiiiiii e 6
Figure 1 (b) 4-phase protoColcooeeiiiiieiie e 6
Figure 2 (2) DUAI-TaAIL.......c.ooiiieee e 8
Figure 2 (b) Dual-rail protoColcoceoiiiieiieieie e 8
Figure 3 Transfer diagram ..o e 9
Figure 4 (a) the symbol of Muller C-element and its gate level.............cccooevvenne 10
Figure 4 (b) C-element With FeSet..........coviiiiiiiiiiese s 10
Figure 5 (a) Four-phase bundle data Muller pipeling.cccooeviniiniiiiin i 12
Figure 5 (b) Four-phase bundle data Muller pipeline with matching delay. 12
Figure 6 DMA cONtroller StrUCLUIEoeviiiiiieee e s 16
Figure 7 (a) Architecture of 0ne iNterfacecccovereiieii i 17
Figure 7 (b) Architecture of two INtErfacesccccvvviieiiiin i 18
Figure 8 (a) Timeline of 0ne INEITACEccueveeriiiiiiie s 19
Figure 8 (b) Timeline of tWO INtErfaCE....cifiu i ive e 19
Figure 9 Data FlOW L...c ook i it 21
Figure 10 Data fIoW 2 5. i e e 22
Figure 11 (2) SOUCE Meg IS Ol i i it s thesseeseestestesteereeseeseeeeseeseessessessessesseeseessesees 23
Figure 11 (b) DeStinatioNTTeGISTENoitii e iie e 23
Figure 11 (C) COUNE FEQISTEN ... et 24
Figure 11 (d) CONtrol FEGISTENcveeeeiiiecieeie et 24
Figure 11 (e) Content of the control regiSterccovveiiie e 24
FIQUIE 12 ATCIITECTUIE ... e 25
Figure 13 Transfer ENQINE ..o e 27
Figure 14 COMPARE _L.....oo ittt s 28
Figure 15 The gate level of DeteCtioncccovveriiiiiiencie e 28
Figure 16 ENQING REGISLENooueiiiiiieiie e 29
Figure 17 Address INTErfaCe.........oovouiriiiieiiiie e e s 30
Figure 18 (8) DECISION........ioiiiiiieeie ettt 31
Figure 18 (b) components of DECISION..........ccccoiiiiiiiiiiiie e 31
Figure 19 SELECT _1 GENEIALONc.uiiiiiiieieeiie st 32
Figure 20 SELECT _2 GENEIALONoiiiiiieiiiie e 33
FIGUIE 21 IMUX L.ttt st nbe e nnes 34
Figure 22 (2) COUNTERoiiiiieee e s 36
Figure 22 (b) The counter of the COUNTER........cccoiiiiiiiiinieee e 36
Figure 22 (c) Complete detection of the COUNTER.........cocoiiiiiiiiiiiie e 37

\Y

Figure 23 (a) The last data of the original architecturecccccooviiiiiicicnen, 40

Figure 23 (b) The first data of the original architectureccccoevevieiiic e 40
Figure 24 (a) The last data of the improved architecturecccccooeviveiiiin e 41
Figure 24 (b) The first data of the improved architecturecccoocevveviieieeniene, 41

Vi

List of Tables

Table 1 ENcoding Methodcooiiiiiiei e e 7
Table 2 the function of Muller C-elementc.ccooviiiiiie i 9
Table 3 Comparison of data transfers.........ccccveiviiiic i 13
Table 4 The iImproved arChiteCtUIe...........coovveiieiie e s 39
Table 5 The original architeCtUre...........coovvieiii i s 39
Table 6 CompariSon Of LAtENCY.......cccveiiiiiiieieiie s 42
Table 7 Comparison of Ratio Of LAteNCY........cccooveiieiiiiieiieeseeee e 43

vii

Chapter 1 Introduction

In recent years, embedded multimedia system and Digital Signal Processor (DSP)
become more and more popular. Because the quality requirement of the images become
higher and higher, the Digital Signal Processor (DSP) needs to handle a lot of information of
the image data. However, most image data are stored in the external memory. That’s because
the size of fast internal memory is usually very limited. Thus, the efficiency of data transfers
of Direct Memory Access (DMA).«is becoming one of the most important part of these
embedded multimedia systems [4].

Another important topic is. the'“Direct Memory Access Controller (DMAC). The
processor often uses Direct Memory Access Controller to transfer data and there are many
related research about it. It is widely known that Direct Memory Access transfers has many
advantages, such as eliminating overhead of CPU, increasing processor performance etc. So
we use Direct Memory Access Controller to transfer data for the processor.

It is widely known that low power and solutions are two of the most important issues for
embedded multimedia systems. Asynchronous circuits can easily address these issues [3]. In
order to design the deal embedded multimedia systems with asynchronous circuits, an

asynchronous Direct Memory Access Controller (DMAC) should be designed first. It is

different from synchronous circuits design, asynchronous circuits design is an emerging way.
Asynchronous circuits use handshaking protocols rather than the global clock to synchronize
the communication. In addition, the power consumption is lower than synchronous circuits
inherently. That’s because asynchronous circuit have almost zero power dissipation when
there is no work to do. Furthermore, asynchronous circuits design still has other advantages
for circuits, including no clock skew problem, low EMI, and more robustness for environment

[1]. Thus, in our work, we implemented our DMAC with asynchronous circuits design.

Chapter 2 Related Works

2.1 Asynchronous Circuits Design

Asynchronous circuits design is an more emerging circuit design. There are many
differences to traditional circuit designs and the asynchronous circuits. Asynchronous

circuits have lots of advantages and numerous unusual circuit designs.

2.1.1 Advantages

Comparing with synchronous circuits, the=asynchronous circuits do not have a
global clock. They use handshaking to complete the communications. As a result of no
global clock, there are lots of advantages in the asynchronous circuits:
® No clock skew: Clock skew is the difference in arrival times of the clock signal at

different parts of the global circuit. Since asynchronous circuits, by definition, have

no global clock, there is no need to worry about clock skew. In contrast, the designer
of a synchronous circuit must often slow down its operation in order to
accommodate the skew.

® Low power requirement:. Asynchronous circuits have the potential for very low

power consumption since each module operates only when there is data to process

hence saving power. These would have been consumed by modules clocked by a

global clock in synchronous circuits while there is no data to process. This is an

increasingly important issue for VLSI, especially since more and more systems are

becoming portable. In fact, the clock power in a synchronous circuit consumes up to

36% to 40% total power [5,6].For these portable systems the advantage of lower

power consumption and simpler power distribution is self-evident: longer battery

life.

Average case performance: The elasticity of the asynchronous pipeline has led to the

result that the asynchronous’pipeline can achieve its processing in the average case

rather than the worst case performance for each stage. When an asynchronous circuit

completes its work, it can transfer data immediately. The asynchronous circuits do

not need to pay attention to other circuits; therefore, the asynchronous circuits do not

need to wait the slowest circuits. On the contrary, the stages of the synchronous

circuits should select execution the time of the critical path to be the clock cycle

time. So the synchronous circuits are worst case performance. But the stages of the

asynchronous circuits are independent. Each stage has its complete time and does

not influence other stages.

Modularity: Different synchronous designs may have different clock requirements,

and hence merging two components into a common system may be very difficult.

On the contrary, the asynchronous designs use handshaking to communicate with
each other. The designers only need to know the inputs, outputs and the way of the
handshaking. The asynchronous circuits can be easily applied to each kind of
circuits, and the designers do not need to take care of the different speed between the
circuits. The modular approach to asynchronous circuits where each modular part

making the whole system is self-timed.

2.1.2 Handshake protocols

Handshaking in the asynchronous. circuits have two common protocols: one is
bundle data protocol (Figure 1 (a)), the other-is dual-rail protocol (Figure 2 (a)).
Four-phase bundle data has REQ-and ACK signals to control all of the transfer steps
(Figure 1 (b)). Initially, REQ and ACK are all 0. When DATA in the Sender is ready,
REQ signal is pulled up to 1 (1), and then the Receiver captures DATA and ACK
signal is pulled up to 1 (2). At the time the Sender receives ACK signal, the Sender
pulls down REQ signal to 0 and stops sending DATA. Finally, the Receiver pulls

down ACK signal to 0 and transformation is finish.

REQ

ACK

JHANHS

JHAHIOH

DATA
)

Figure 1 (a) Bundle data channel

REQ ﬂf b /[5
ACK N \

DATA X |
PSS

Figure 1(b) 4-phase protocol

The other way of handshaking is using dual-rail protocol. The special point of

dual-rail is that the system does not have REQ signal, and use 2-bits to encode 1-bit

data. The encoding method is shown in Table 1. It use 00 to show that there is no

data (EMPTY), use 01 to encode the data of O (VALID) and use 10 to encode the

data of 1 (VALID). If the system use dual-rail protocol to transfer n-bits data, there

will have 2n-bits data lines.

d.t d.f
Empty “E” 0 0
Valid “0” 0 1
Valid “1” 1 0
Not used 1 1

Table 1 Encoding method

Because of the system does not have REQ signal, the RECEIVER needs extra

circuits to detect the arrival of the DATA signals. This special design in dual-rail

system is called complete détectian.

Figure 2 (b) shows the process of-data transfer using dual-rail protocol. Initially,

DATA is EMPTY (all 0), ‘and7ACK"signal is 0. When DATA is valid and the

RECEIVER detects that DATA is ready, the RECEIVER captures DATA and pulls

up ACK signal to 1. Then the SENDER stops sending DATA, so DATA becomes

EMPTY. Finally, the RECEIVER pulls down ACK signal to 0 and the transfer is

completed.

Data

/
/

/

n

JHANHS
N7

ACK

JHATHOH

A

Figure 2 (a) Dual-rail

DATA EMPTY > VALID /><\ EMPTY -~ VALID
[\

ACK T .

Figure 2 (b)rDual=rail protocol

Valid DATA will appears separately. Dual-rail protocol uses EMPTY to

separate each DATA. When the SENDER sends one time of DATA, the data wires

will return to EMPTY. So the sequence of DATA is EMPTY - VALID — EMPTY -

VALID (Figure 3).

~_

Figure 3 Transfer diagram

2.1.3 Muller C-element

Muller C-element is a fundamental component in asynchronous circuit design.

It is a state-holding element just like an asynchronous set-reset latch. The function

of Muller C-element is shown in Table 2. When both inputs are logic 1, the output is

logic 1. When both inputs-are logicO, the output is logic 0. Otherwise, the output

does not change. Figure.4 (a) shows the symbol of Muller C-element and its gate

level implementation. It uses three AND gates and one OR gate. The output C will

return to the input and become one of the inputs. Figure 4 (b) shows the C-element

with reset signal.

~_

Inputl | Input?2 Output
0 0 0
0 1 No change
1 0 No change
1 1 1

Table 2 the function of Muller C-element

—_— \ C
B > / >
2 -
A
— C —
<)
B —
>
—>
Figure 4 (a) the symbol of Muller C-element and its gate level
A—
o C
—>
> —>

i
y@u

reset

Figure 4 (b) C-element with reset

2.1.4 Asynchronous Pipeline

There are several asynchronous pipeline implementation styles have been

proposed. One of the most important models is the Muller pipeline, which uses the

four-phase bundled data protocol [1]. It is implemented with C-elements and
inverters. Another important model is called micropipeline which uses two-phase
bundled data protocol, introduced by Ivan Sutherland in his Turing Award Lecture
[1]. Other asynchronous pipeline implementations use different circuits design
methods to replace the C-elements and latches. Because of the model we choose, we
will introduce the Muller pipeline.

Figure 5 (a) shows a four-phase bundled data pipeline which based on the
Muller pipeline. A Muller pipeline is used to generate local clock pulses. The clock
pulse generated in one stage with the pulses generated in the neighboring stages in a
carefully controlled manner. Figure.-5 (a)-shows a pipeline without data processing.
If a pipeline with data processing, the combinational circuits can be added between
the stages. In order to maintain correct behaviors matching delays have to be
inserted in the request signal paths. Figure 5 (b) shows a pipeline with data

processing.

11

r—-- -~ | -7~ | -7~ |

| . . |

| I I |

| lack! lack! |
ACK | 4. ACK ACK)] ACK

'\l‘ | ! |

| I I |1 |
< A A | <l|: A A |

| I |t I |t |

| I |1 I |1 |

Lo -] o—Hid
REQ | IREQ! IREQ! IREQ

| I Il |

| I I |

| I I |

| I I |

b —_——_—— J4 b —_——_—— J b —_——_—— J

Figure 5 (b) Four-phase bundle data Muller pipeline with matching delay.

2.2 Data Transfers

This section describes three ways of data transfers: program controller 1/0 (polling

1/0), interrupt 1/O and DMA 1/O. The program controller 1/O lets 1/O devices

communicate with CPU. The 1/O devices only store data in registers.

12

The cycle checking of CPU gets information of data and CPU starts to service. When

1/0 devices need to transfer, the interrupt 1/O uses the interrupt signal to request CPU that

starts to transfer by its order of priority. The DMA 1/O uses device controller to transfer

directly between 1/0 devices and memory without CPU. Table 3 shows comparisons with

program controller, interrupt and DMA.

CPU Time
Polling 1/0 Long
Interrupt 1/Q Long
DMA IO Short

Table 3 Comparison of data transfers

2.3 AMULET

This section introduces a series of the AMULET processors that contain the

AMULET1, the AMULET?2e, the AMULETS3I.

® AMULETL [7]: The AMULET1 was presented in 1994. It is a test piece

demonstrating feasibility of a full custom asynchronous processor that is designed

with Sutherland’s two-phase micropipelined method. AMULET1 is just a

microprocessor core on a single die, presenting a two-phase asynchronous interface

13

between on chip and off chip. AMULETL is the ARM6 compatible processor.

® AMULET2e [8]: The AMULET2e was presented in 1996. It is an embedded

microprocessor with memory, cache, peripherals and AMULET2 core. AMULET?2e

is designed with four-phase protocol. AMULET?2e is the ARMY7 compatible

processor.

® AMULETSI [9]: The AMULETS3i was presented in 2000. It contains AMULE3 core

and other asynchronous marcocell. The AMULET3i marcocell consists of a number

of components and connected together by a marcocell bus called MARBLE BUS.

These components contain RAM, DMA controller and etc. AMULETS3i is the ARM9

compatible processor.

2.3.1 AMULETS3i DMA controller

The AMULET3i DMA controller is used primarily to transfer data between on chip

and off chip [2]. The DMA controller (Figure 6) contains: Register bank control,

ARBITER, Synchronous Peripheral Interface (SPI), Transfer Engine and Initiator

Interface. The Register bank control is used to perform the operations of the register bank

block. The ARBITER is used to decide the data that comes from the transfer engine or the

MARBLE bus. The data should be stored into the register bank block. The Synchronous

Peripheral Interface (SPI) is used to control the mapping of these incoming synchronous

peripheral requests onto DMA controller channels and filter out of requests for disabled

14

channels. The SPI contains not only the channel mapping hardware but also request state

machines for each channel. The Transfer Engine is used to receive requests that come

from the SPI and the channel register values and sent them to the Initiator Interface. The

Transfer Engine has a main companion process: the Initiator Interface. The Initiator

Interface is used to actually perform the DMA transfer operation and also signals

end-of-transfer to register bank for finishing updating register bank registers. A DMA

transfer begins with DMA request arriving on SPI. The operations of a transfer should be

performed as follows. First, the SPI receives DMA request and maps it onto DMA

controller channel. Then, the Transfer Engine receives channel request and requests a

copy of the register contents-forrequesting channel from register bank control. After that

the initiator interface receives the -channel register values from the transfer engine and

sends the source address and destination address to the initiator I/F for finishing transfers.

When the transfer would actually have been completed, the end-of-transfer signal to

register bank control and the channel register values of the register bank control should

be updated.

15

A

L

Target 4 MARBLE A Initiat'or

I/F 2 L 2 I/F
D A A D
A End of run indication A
A 4 A 4 \ 4
ARBITE
A
R < Transfer Initiator
D Engine SrcA Interf
» DstA nterface
Request Reset 4+
_q—¢ channel Request
A
Register bank D >
control — > Synchronous
- Peripheral
Interface
Register bank T
block DMA Request

Figure 6 DMA controller structure

2.4 Problem

The AMULET3i DMA controller-allows only a certain number of transfers that

should be performed for each DMA transfer. Due to the image processing of today’s

Digital Signal Processor often requires a lot of image data and the size of fast on chip

memory is very limited, a lot of image data are stored in external memory. As frequency

and processing of DSP are increasing, the data rate fully utilize the available processing

bandwidth. In terms of results of experiment [10], the same data is transferred. The small

data size transfer can have perfect contrast efficiency with the general (large) data size

transfer. Due to all of the above, the AMULET3i DMA controller could produce longer

latency between the transfer engine and the initiator interface.

16

2.5 Comparison

Figure 7 (a) shows the channel register data is sent to the initiator interface from the
transfer engine. When the next channel register data will be sent to the initiator interface,
the current channel register data is completed in the initiator interface. So, the each
latency is produced between old channel register data and new channel register data from
the transfer engine to the initiator interface. In the general size data situation, the each

latency is ignored due to a transfer costs amount of time. But in the small size data

situation, the each latency is attended due to a transfer costs a little of time [11].

Figure 7 (b) is presented here to reduce each latency between old channel register data

and new channel register data.

SrcA
DstA

Initiator
Interface

Channel register data Transfer
— > Engine >
Tchannel Request

Figure 7 (a) Architecture of one interface

17

SrcA
DstA

Initiator Interface
Address
] Interfacel
Channel register data Transfer
» Engine <
Address
Interface2
Tchannel Request

Figure 7 (b) Architecture of two interfaces

Figure 8 (a) show the original DMA controller that the transfer engine requests three

times copies of the register contents-and sends to the initiator interface. Every different

data has a setup time of the data of-the initiator-interface. Figure 8 (b) shows our new

DMA controller that contains twaorinitiator interfaces. The first data has a setup time of

the data of the initiator interface. The setup time of the other data are overlapped. The

setup Time and DMA transfer time are overlapped. Therefore the latency between the

transfer engine and the initiator interface can be decreased.

18

$etu Setu $etu
imd DMA tfme DMA tfme DMA
Transfer Transfer Transfer
Time
Figure 8 (a) Timeline of one interface
Setup DMA DMA DMA
fimg Transfer Transfer Transfer

tim

Setuf

Jetu

fimg

Time
Figure 8 (b) Timeline of two interface

19

Chapter 3 Design

In previous chapter, we have compared advantages and disadvantages of asynchronous
circuits. In addition, we also describe ways of data transfer between external memory and
internal memory. We have described benefits of data transfer using AMULETS3i Direct
Memory Access Controller for the processor in previous section. But there are still some
points that can be improved in lots of small size data and transfers in many times condition.
This chapter will describe with the‘architecture first, and it then talks about the overall
operation. Depending on the proposed architecture; the data transfer flow and data formats to
meet the requirements will be discussed. Finally, we will describe the design architecture in

detailed.

3.1 Data flow

The data flow have two parts: one is used in the overall design and the other is
used in Address_Interface of the design. The first part is shown in Figure 9. This flow
shows how to transfer the data in the overall design. The design receives the value of
channels from register bank block as input and decides the Counter that whether

computes address to output.

20

AAddress ——
Inmnmterrface

Y es

Fimniaish
tramavsfTfer

Figure 9:Data flow 1

First, the request signal is sent to the DMA controller. If the request is arrival, the

Transfer Engine receives the data of channels. The Address_Interface receives the data from

the Transfer Engine. The Counter receives the data from the Address_Interface and computes

addresses. When the Count state of the Counter is “Yes” which indicates data transfer of the

channel should be finished. Otherwise, the Count state of the Counter is “No” which indicates

data transfer of the channel should continue transferring.

The other data flow shows how the data can be stored in the Address_Interface from the

Transfer Engine to the Address_Interface (Figure 10).

21

Data
arrive

Interface
Interface2

Store data in Store data in
Interface2 Interfacel

Figure-10-Data flow 2

The data is sent by the Transfer Engine. First, The Address_Interface checks the Interface
is Empty or not. If the Interface is full with 1 symbol, the data cannot be stored into the
Interface. Otherwise, the data can be stored into the Interface. According to the state of the
Interface, the data is stored into one of two Interfaces. The 00 and 10 symbols indicate that the
data is stored into the Interfacel and the 01 symbol indicates that the data is stored into the

Interface2.

22

3.2 Register Formats

This paragraph describes that how we design register formats within a channel.
These register formats are transmitted from the register bank block. These register
formats how to be designed in the overall design.

The value of each channel contains four registers: SOURCE Address register,
DESTINATION Address register, COUNT register and CONTROL register. The
SOURCE register stores 32-bit source addresses for transfers, and the DESTINATION
register stores 32-bit destination addresses for transfers. The COUNT register stores
32-bit count of remaining transfers-to perform. The transfer will be terminated when the
COUNT register is decremented to zero. The CONTROL register specifies the updates to

be performed on the other three registerssand which this channel is connected.

31 0

SOURCE Address Register

Figure 11 (a) Source register

31 0

DESTINATION Address Register

Figure 11 (b) Destination register

23

31 0

COUNT Register

Figure 11 (c) Count register

CONTROL Register

Figure 11 (d) Control register

3:2 1 0

Channel_No DRQ Enable

Figure 11(e) Content of the control register

The CONTROL register has 3 fields: Channel_No, DRQ and Enable. If the Enable
bit is set, this channel should be considered for transfers when a new DMA request
arrives. When transfers of channel finish, the Enable bit should be reset to indicate that
this channel can receive a new DMA request. The DRQ bit indicate the initial state for the
request. If the DRQ bit is set, it means that the data have arrived really. Resetting the
DRQ bit specifies that request from corresponding channel data should trigger a transfer.
The Channel_No bits indicates which channel numbers receive the source and destination

DMA requests.

24

3.3 Architecture

The architecture consists of three major constructions: Transfer Engine,

Address_Interface, Counter (Figure 12).

Initiator Interface

Address
Interface 1

Transfer
Engine Counter

Address
Interface 2

Figure 12 Architecture

The three parts have different functions: Transfer Engine is used to receiving the
values of channels, Address_Interface is used for sending the value of channels out and
Counter computes the value from Address_Interface. This architecture has two ports
which can receive the value of channels from register bank block, and it has one port to
send source address and destination address out to the bus. In general, the input speed is
faster than the output speed; Counter can compute next address and sent next address out
if current address transfer finishes. In addition, Counter can compute next address and

stop sending next address out if current address transfer does not finish.

25

Initially, the design needs to confirm if the request signal arrives or not. If the
request signal is arrival, it will start to receive the values of channels. This work is done
in Transfer Engine.

First, the Transfer Engine receives the value of channels and sends the value of a
channel out to Address_Interface. The Address_Interface contains Interface 1 and
Interface_2, and the value are stored in empty the Interface. The Address_Interface sends
the value out to Counter, and the Transfer Engine send the value out to the
Address_Interface simultaneously. When the current channel finishes, the
Address_Interface sends the nextvalue of the channel out to Counter immediately. These

will operate in our DMA contraller design-according to the above method.

3.3.1 Transfer Engine

Transfer Engine (Figure 13) has one input ports: Channel_Data_in and one output
port: Engine_Data_out. The Channel_Data_in is stored in the data of channels from
register bank block in AMULET3i DMA Controller architecture. First, Transfer Engine
receives the value of channels and stores it in the Engine Register. These should be
controlled by the control signal of the COMPARE_1. When the data of the Engine

Register sends out, the Engine Register resets the data of the Engine Register in itself.

26

ACK
COMPARE_1 [e——

b

_Channel Data in> Engine "Engine Data out >
Register

Figure 13 Transfer Engine

The COMPARE_1 (Figure 14):1s used.to receive count that should be stored in the
Engine Register and ACK signal.. Thee COMPARE_1 also decides the Channel_Data to
be stored into the Engine Registers-or to reset the data of the Engine Register by the
control signal of the COMPARE_1. First, the Engine Register_count and ACK signal are
operated by the COMPARE_1 and produce COMPARE_1 control signal. When symbol
of COMPARE_1 is 0, the Channel_Data can be stored into the Engine Register. When
symbol of COMPARE_1 is 1, the Channel _Data cannot be stored into the Engine
Register and reset the data of the Engine Register. Figure 15 shows the gate-level

implementation of the Detection of the COMPARE_1.

27

Engine Register_count[31:0] .
—>{ Detection —

COMPARE 1

ACK —

Figure 14 COMPARE_1

Count|0]
Count|1]

Count|2] * e
Count|3]

DETECTION

— >

Count|[30
Count|[31

Figure 15 The gate level of Detection

The Engine Register (Figure 16) receives the Channel Data_in and COMPARE_1

control signal. When the control signal is O controlled by COMPARE_1 signal, four

MUX select the source_address, destination_address, count, and Ctrl separately and store

these data into four registers. On the other hand, and the signal is 1 controlled by

COMPARE_1 signal, four MUX select 0 and store these data into four registers.

28

Compare 1

Source _address
M . Source_out
0 U HM—> register —>»
— X
Y
Destination_address
M) Destination_out
0 U » register —>
— X
Y
Count
M . Count_out
0 U M—> register —>»
— X
Y
Ctrl
M Ctrl_out
0 U p—>» register —>»
— X

Figure 16 Engine-Register

3.3.2 Address Interface

Address Interface (Figure 17) has two input ports: Counter_Data and Engine_Data and

one output port: Interface_Data. The Counter_Data comes from the COUNTER after

Interface_Data is computed every time. The Engine_Data from Transfer Engine are stored in

registers. The Interface_Data is sent out to the COUNTER and the COUNTER computes

source address, destination address and count. The SELECT_1 and SELECT_2 signal are

used to control DECISION. The DECISION decides which one of the two Interfaces can be

29

used to store the data. The SELECT _2 signals that is used to control MUX. The MUX is used

to decide which one of data of two Interfaces can be sent out.

SELECT_1

SELECT_2

\ 4

A A

Counter_Data > Interface—l —;)

DECISION

Engine_Data ::) Interface_2 :>

Figure 17-Address Interface

Interface_Data)

H a2

g

By method of judgment of SELECTL-and SELECT_2. The DECISION (Figure 18 (a))

is used to decide the Counter_Data that should be stored into which one of two Interfaces. It is

also used to decide Engine_Data that should be stored into which one of two Interfaces.The

Counter_Data and Engine_Data cannot be stored the same interface simultaneously. Figure 18

(b) shows components of the DECISION that contains two DEMUX and two MUX. The

DEMUX 1 decides Counter_Data that should be sent to the MUX 1 or the MUX 2. The

DEMUX 2 decides Engine_Data that should be sent to the MUX 1 or the MUX 2. The

MUX 1 decides the one of two data that should be sent to the Interface_1. The MUX 2

decides which one of the two data that should be sent to the Interface 2.

30

SELECT 1

Counter_Data
—_—

Engine Data
—_—

DECISION

SELECT 2

Interface 1

—

Interface 2

—

Figure 18 (a) DECISION

SELECT 2 SELECT 1
D >
Counter_ Data o U Interface 1
— —
U X
X 1
1 >
D
Engine_Data v B U Interface 2
» U X > B
X 2
A >
SELECT 1 SELECT 1

Figure 18 (b) components of DECISION

31

The SELECT _1 Generator (Figure 19) is used to receive count that should be stored in
two Interfaces. It also decides the Engine_Data that should be stored into which one of two
Interfaces or can not store into the Interfaces by SELECT 1[1:0] signal. First,
Interfacel count and Interface2_count are operated by the Detection and produce SELECT _1
[1:0] signal. If the SELECT 1 [1:0] signal is 00 or 10, the Engine_Data should be stored into
the Interface_1. When the SELECT _1 [1:0] signal is 01, the Engine_Data can be stored into
the Interface_2. But the SELECT 1 [1:0] signal is 11, the Engine_Data can not be stored into

both of the Interface 1 and the Interface 2.

Interfacel count[31:0] SELECT_1[0]
—— Detection —

Interface2 count[31:0] SELECT 1[1]
—>| Detection ——>

Figure 19 SELECT_1 Generator

The SELECT_2 Generator (Figure 20) is used to receive the SELECT_1[1:0]
signal and Comp_Dect signal that comes from the COUNTER. The SELECT _2 signal

decides Interface_Data that should be stored into which one of two Interfaces by

32

SELECT_2 signal. The Interface_Data is updated from the COUNTER. The

SELECT_2 signal also decides to select which one of the data of two Interfaces that

should be sent out. Initially, the SELECT _2 signal and Comp_Dect signal are 0. When

the Comp_Dect signal becomes 1, the SELECT _2 signal becomes 1 from 0 and later

the Comp_Dect signal becomes 0 from 1. When the Comp_Dect signal becomes 1

again, the SELECT_2 signal becomes 0 from 1 and later the Comp_Dect signal

becomes 0 from 1. So, the SELECT_2 signal changes 0 > 1 > 0 - 1, when the

Comp_Dect signal becomes 1.

N,
=D)

SELECT 2

SELECT 1{0]
Comp_Dect SELECT 2

—

SELECT 1[1]

Figure 20 SELECT_2 Generator

33

The MUX (Figure 21 MUX) is used to receive Interfacel Data and Interface2_Data. The

MUX decides which one can be sent out to the COUNTER depending on the control signal

SELECT_2..

SELECT 2
Interfacel Data
— 3 Interface Data
M —
U
Interface2_Data X
—_—

Figure 21 MUX

3.3.3 Counter

The COUNTER (Figure 22 (a)) is used to receive Interface_Data and ACK signal.

The COUNTER contains the counter to compute Interface_Data. The counter (Figure 22

(b)) computes Interface_Data from Address_Interface. The Interface_Data contains

34

source address, destination address and count. The counter produces Counter_Data. The
Counter_Data contains source address, destination address and count. The source address
indicates the source of a data transfer, the destination address indicates the destination of
a data transfer and the count indicates the number of times of data transfers. When a data
transfer finishes and the counter accept the ACK signal is 1, the source address and the
destination address are incremented by 4 and the count is decremented by 1. Figure 22 (c)
shows how to produce the Comp_Dect signal by Count and Ctrl of the Interface Data.
The initial the Comp_Dect signal is 0. The count is equal to O if the transfer is finished.
The DRQ bit is is equal to 1 if thé-data arrives. When the count is 0 and the DRQ bit is 1,
the Comp_Dect signal becomes-1. If the.Comp_Dect signal is 1, it indicates that current
transfer is finished. Then, when the next Interface_Data arrives and starts the new data

transfers, the Comp_Dect signal becomes 0.

35

Q>

CounterﬁData >

InterfaceEData> COUNTER

[N

|—Comp_Dect —)

Figure 22 (a) COUNTER

ACK
Interface Data source[31:0] Counter_Data_source[31:0]
—) —
Interface Data destination|31:0] Counter Data_destination[31:0]
- - —{ counter [— - -
Interface Data_count[31:0] N _gounter_Data_count[SI:O]

Figure 22 (b) The counter of the COUNTER

36

Interface Data_count
——| Detection

Comp Dect

Interface_Data_Ctrl[1]

Figure 22 (c) Complete detection of the COUNTER

37

Chapter 4 Simulation

In chapter 3, we have described the proposed design of function block in detail. We use
the Verilog HDL to build all of the components and construct the whole architecture with
above mentioned our sub-modules described in chapter 3.

We implemented our improved section of asynchronous DMA controller in gate-level.
The design was synthesized and simulated with the TSMC 0.13um library and the simulator is
ModelSim 6.0. The experimental group of our design is the new proposed architecture, and
the control group is the original Amulet3i DMA controller. We also compare our new DMAC

design with the original design of Amulet3i.

4.1 Area Simulation

The areas of each sub-modules are shown in Table 4. We can discover that the area of the
Address Interface is largest. This is because the Address Interface contains complicated
control signals and elements. The area of Transfer Engine is 3119.8 um?, the area of Address
Interface is 8261.2 um? and the area of Counter is 6996.7 um®. The total area is 18501.7 um?.

The area of the original architecture is shown in Table 5. The total area is 13054.7 um®.

38

Module Area(um?)
Transfer Engine 3119.8
Address Interface 8261.2
Counter 6996.7
Total 18501.7

Table 4 The improved architecture

Module Area(um?)
Transfer Engine 3119.8
Address Interface 2909.4
Counter 6908.4
Total 13054.7

Table 5 The original architecture

4.2 Timing Simulation

In this section, we have two simulation results: one is original architecture and the other
is our new architecture. The Figure 23 (a) shows the timing of the last data of the channel 1
with original architecture. Figure 23 (b) shows the timing of the first data of the channel 2
with original architecture. The Figure 24 (a) shows the timing of the last data of the channel 1
with the new architecture. Figure 24 (b) shows the timing of the first data of the channel 2
with the new architecture.

39

wave - default

File Edit View [nssrt Format Tools Window

ECEEAEE R . : R
) = . Al :

TOF.
_TL L
=4 _TOP_D 1]
[Eaong T 1 g

[

EIEI=IE
&l = [

=

4 s
Cursor 1 299998 ps

] i [] il ~ Il
[295230 s 10 30612 1o [Tiow: 400ms Delta:2

Figure 23 (a) rT’hérIast,data,of fhe original architecture

wave - default
Edit ¥iew Insert Formet Tools Window

E
|sa@E| » @ b x e
= T 0

F i EL &R 2 58

=

400 15
Cursor 1 301003 ps

I] —

L

[295220 ps 10 306132 ps | Mow: 400 ns Delta: 2

Figure 23 (b) The first data of the original architecture

40

defanlt

File Edit View Insert Format Tools Window

EEET IR YR

4

TEST_TOP_D

||

: 3 | = E 1
[448461 1e 10 457917 o [Mow: 5007 Dela 2

B
Curzor 1 450882 ps
P

Figure 24 (a) ‘_i’_he last dé{té_- q_f;the-\improved architecture

Fil. Edit ¥iew Insert Fommat Tools Window

J@DQJQGEMJ N B e T

Cursor 1 451007 ps

J <1 [IR] =
[445273 s 10456729 s [Mow: 500ns Delw 2

P

Figure 24 (b) The first data of the improved architecture

41

Table 6 shows the latency comparison of original and new architecture. The latency means the

time between last data of current channel and first data of next channel. The result represents

new latency is less than original latency that the new architecture can reduce latency between

the different channels. Table 7 shows the comparison of ratio of latency in different count

conditions. The original time represents the time of data transfer of original initiator interface.

The new time represents the time of data transfer of new initiator interface. Because the new

design circuit is more complicated than the original design circuit, the new time is much

bigger than the original time from table 7. When the count is 5, the improvement is 9%. When

the count is 10, the improvement is;4.5%. When, the count is 15, the improvement is 3%.

Therefore, the count much smaller and the improvement latency is more obvious.

Latency(ps)
Original 1026
New 104

Table 6 Comparison of Latency

42

Count=5 Count =10 Count =15
Original Time(ps) 10075 20150 30225
Original Latency(ps) 1026(10%) 1026(5%) 1026(3.3%)
New Time(ps) 10570 21140 31710
New Latency(ps) 104(1%) 104(0.5%) 104(0.33%)

Table 7 Comparisonef Ratio of Latency

43

Chapter 5 Conclusion

Because the performance of DMA data transfer is the bottleneck of the multimedia
application performance, it’s important to improve the performance of DMA controller. In this
thesis, we propose an improved DMA controller of Amulet3i ones to reduce the latency of
DMA data transfer. We use this new proposed architecture to reduce the latency between the
transfer engine and the address interface with the different channels. We use asynchronous
circuits design to solve the problem of global clock.

We propose new architecture sheuld be applied in asynchronous Digital Signal Processor.
The new latency reduced 90% than-the original latency. In chapter 4, we can find this new
architecture has perfect performance "in lots of smaller data size transfer condition. Due to
DSP processing should be overlapped with DMA processing, the new proposed architecture
and data size format use together not only have lower latency but also have better
performance. Especially, a sequence of small size data is transferred, the new improvement

can save more latency that can achieve perfect performance.

44

References

[1] Jens Spars@ and Steve Furber,“Principles of Asynchronous Circuit Design”, London, 2001

[2] Andrew Bardsley, “Implementing Balsa Handshake Circuits”, Ph.D thesis, Department of
Computer Science, The University of Manchester, 2000

[3] F. Aghdasi and A. Bhasin, “DMA controller design using self-Clocked methodology”,
IEEE AFRICON, vol. 1 and 2, pp443-450, 2004

[4] Kim D., Managuli R. and Kim Y., “Data Cache and Direct Memory Access in
Programming MediaProcessors”,«[EEE MICRQ, vol. 21, pp. 33-42, 2001

[5] R. Y. Chen, M. Vijaykrishman and M. J. frwin,**Clock Power Issues in System-on-a-Chip
Designs”, IEEE International Computer Society Workshop on VLSI, pp.48-53, 1999

[6] David Duarte, Vijaykrishman Narayanan and Mary Jane Irwin, “Impact of Technology
Scaling in the Clock System Power”, IEEE International Computer Society Annual
Symposium on VLSI, pp.59-64, 2002

[7] N.C. Paver, “The Design and Implementation of an Asynchronous Mircoprocessor”, Ph.D
thesis, Department of Computer Science, The University of Manchester, 1994

[8] S.B. Furber, P. Day, J.D. Garside, S. Temple, P. Day, J. Lin and N.C. Paver, “AMULET2e:
An Asynchronous Embedded Controller”, In the third International Symposium on

Advanced Research in Asynchronous Circuits and Systems, ASYNC97, pp.243-256, 1997

45

[9] J.D. Garside, S.B. Furber and S.H. Chung, “AMULET3 Revealed” , in the third
International Symposium on Advanced Research in Asynchronous Circuits and Systems,
ASYNC97, Department of Computer Science, pp.51-59, 1999
[10] D. Comisky, S. Agarwala and C. Fuoco, “A Scalable High-Performance DMA
Architecture for DSP Applications”, IEEE International Conference on Computer Design:
VLSI in Computers and Processors, pp.414-419 , 2000

[11] Zinner C. and Kubinger W., “ROS-DMA: A DMA Double Buffering Method for
Embedded Image Processing with Resource Optimized Slicing”, Proceedings of 12"
IEEE Real-Time and Embedded Technology:and Applications Symposium, pp.361-372,

2006

46

	gd1_6.doc
	gd1_8.doc
	論文(戴俊智)0917.doc
	低延遲非同步直接記憶體存取控制器之設計
	摘要
	 Low-Latency Design for Asynchronous DMA Controller
	Abstract
	Acknowledgement
	 Contents
	 List of Figures
	 List of Tables
	Chapter 1 Introduction
	
	 Chapter 2 Related Works
	2.1 Asynchronous Circuits Design
	2.1.1 Advantages
	2.1.2 Handshake protocols
	2.1.3 Muller C-element
	2.1.4 Asynchronous Pipeline

	2.2 Data Transfers
	2.3 AMULET
	2.3.1 AMULET3i DMA controller

	2.4 Problem
	2.5 Comparison
	 Chapter 3 Design
	3.1 Data flow
	3.2 Register Formats
	3.3 Architecture
	3.3.1 Transfer Engine
	3.3.2 Address Interface
	3.3.3 Counter

	 Chapter 4 Simulation
	4.1 Area Simulation
	4.2 Timing Simulation

	 Chapter 5 Conclusion
	 References

