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低延遲非同步直接記憶體存取控制器之設計 

學生：戴俊智       指導教授：陳昌居教授 

國立交通大學 

資訊科學與工程研究所 

摘要 

現在來說，嵌入式多媒體系統和數位訊號處理器是非常廣泛的被使用到，並且應用

在許多地方。並且由於現在多媒體的影像畫質越來越好，相對的，所需要的資料量也就

伴隨著越來越大。而一般來說，影像處理在一個數位訊號處理器上，常常需要非常大量

的資料量，而這龐大的資料量必須被儲存在外部的記憶體，由於數位訊號處理器的內部

快速記憶體是有限的原因。而處理器直接在外部記憶體處理資料，通常會有不好的效能

影響。所以資料必須從外部記憶體搬運到內部記憶體。因此有效率的從外部記憶體將資

料搬運到內部記憶體，就顯的相對的非常重要。 

因此我們提出一個降低直接記憶體存取控制器內的延遲時間的方法，而這個設計方

法就是讓不同通道之間的轉換時間和計算搬運位置的時間平行的同時執行，以降低浪費

的時間，讓整個直接記憶體存取控制器能夠有效率的將資料搬運資料，藉此提升直接記

憶體存取控制器的效能，當用在數位訊號處理器上時，也希望能提升處理器的效能。 
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Abstract  

Because embedded multimedia systems and digital signal processors are used popularly 

and apply many wide range. Because the quality of multimedia image becomes more and 

more higher, multimedia image carry enormous amount of data. In general, image processing 

on a digital signal processor often requires a lot of image data to be stored in external memory, 

because the size of fast internal memory is usually very limited. The efficient data transfer 

becomes very important.  

We present a method that reduced latency of direct memory access controller. The design 

is that digital signal processor processing should be overlapped with direct memory access 

controller processing. Therefore, this design reduced 90% the internal latency of direct 

memory access controller maximally and improved performance.  
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Chapter 1 Introduction 

 

In recent years, embedded multimedia system and Digital Signal Processor (DSP) 

become more and more popular. Because the quality requirement of the images become 

higher and higher, the Digital Signal Processor (DSP) needs to handle a lot of information of 

the image data. However, most image data are stored in the external memory. That’s because 

the size of fast internal memory is usually very limited. Thus, the efficiency of data transfers 

of Direct Memory Access (DMA) is becoming one of the most important part of these 

embedded multimedia systems [4]. 

Another important topic is the Direct Memory Access Controller (DMAC). The 

processor often uses Direct Memory Access Controller to transfer data and there are many 

related research about it. It is widely known that Direct Memory Access transfers has many 

advantages, such as eliminating overhead of CPU, increasing processor performance etc. So 

we use Direct Memory Access Controller to transfer data for the processor. 

It is widely known that low power and solutions are two of the most important issues for 

embedded multimedia systems. Asynchronous circuits can easily address these issues [3]. In 

order to design the deal embedded multimedia systems with asynchronous circuits, an 

asynchronous Direct Memory Access Controller (DMAC) should be designed first. It is 
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different from synchronous circuits design, asynchronous circuits design is an emerging way. 

Asynchronous circuits use handshaking protocols rather than the global clock to synchronize 

the communication. In addition, the power consumption is lower than synchronous circuits 

inherently. That’s because asynchronous circuit have almost zero power dissipation when 

there is no work to do. Furthermore, asynchronous circuits design still has other advantages 

for circuits, including no clock skew problem, low EMI, and more robustness for environment 

[1]. Thus, in our work, we implemented our DMAC with asynchronous circuits design. 

 

 2



Chapter 2 Related Works 

 

2.1 Asynchronous Circuits Design 

Asynchronous circuits design is an more emerging circuit design. There are many 

differences to traditional circuit designs and the asynchronous circuits. Asynchronous 

circuits have lots of advantages and numerous unusual circuit designs. 

2.1.1 Advantages 

Comparing with synchronous circuits, the asynchronous circuits do not have a 

global clock. They use handshaking to complete the communications. As a result of no 

global clock, there are lots of advantages in the asynchronous circuits: 

 No clock skew: Clock skew is the difference in arrival times of the clock signal at 

different parts of the global circuit. Since asynchronous circuits, by definition, have 

no global clock, there is no need to worry about clock skew. In contrast, the designer 

of a synchronous circuit must often slow down its operation in order to 

accommodate the skew. 

 Low power requirement: Asynchronous circuits have the potential for very low 

power consumption since each module operates only when there is data to process 
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hence saving power. These would have been consumed by modules clocked by a 

global clock in synchronous circuits while there is no data to process. This is an 

increasingly important issue for VLSI, especially since more and more systems are 

becoming portable. In fact, the clock power in a synchronous circuit consumes up to 

36% to 40% total power [5,6].For these portable systems the advantage of lower 

power consumption and simpler power distribution is self-evident: longer battery 

life. 

 Average case performance: The elasticity of the asynchronous pipeline has led to the 

result that the asynchronous pipeline can achieve its processing in the average case 

rather than the worst case performance for each stage. When an asynchronous circuit 

completes its work, it can transfer data immediately. The asynchronous circuits do 

not need to pay attention to other circuits; therefore, the asynchronous circuits do not 

need to wait the slowest circuits. On the contrary, the stages of the synchronous 

circuits should select execution the time of the critical path to be the clock cycle 

time. So the synchronous circuits are worst case performance. But the stages of the 

asynchronous circuits are independent. Each stage has its complete time and does 

not influence other stages. 

 Modularity: Different synchronous designs may have different clock requirements, 

and hence merging two components into a common system may be very difficult. 
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On the contrary, the asynchronous designs use handshaking to communicate with 

each other. The designers only need to know the inputs, outputs and the way of the 

handshaking. The asynchronous circuits can be easily applied to each kind of 

circuits, and the designers do not need to take care of the different speed between the 

circuits. The modular approach to asynchronous circuits where each modular part 

making the whole system is self-timed. 

 

2.1.2 Handshake protocols 

Handshaking in the asynchronous circuits have two common protocols: one is 

bundle data protocol (Figure 1 (a)), the other is dual-rail protocol (Figure 2 (a)). 

Four-phase bundle data has REQ and ACK signals to control all of the transfer steps 

(Figure 1 (b)). Initially, REQ and ACK are all 0. When DATA in the Sender is ready, 

REQ signal is pulled up to 1 (1), and then the Receiver captures DATA and ACK 

signal is pulled up to 1 (2). At the time the Sender receives ACK signal, the Sender 

pulls down REQ signal to 0 and stops sending DATA. Finally, the Receiver pulls 

down ACK signal to 0 and transformation is finish.  
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Figure 1 (a) Bundle data channel 

 

 
Figure 1 (b) 4-phase protocol 

 

The other way of handshaking is using dual-rail protocol. The special point of 

dual-rail is that the system does not have REQ signal, and use 2-bits to encode 1-bit 

data. The encoding method is shown in Table 1. It use 00 to show that there is no 

data (EMPTY), use 01 to encode the data of 0 (VALID) and use 10 to encode the 

data of 1 (VALID). If the system use dual-rail protocol to transfer n-bits data, there 

will have 2n-bits data lines. 
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 d.t d.f 

Empty “E” 0 0 

Valid “0” 0 1 

Valid “1” 1 0 

Not used 1 1 

Table 1 Encoding method 

 

Because of the system does not have REQ signal, the RECEIVER needs extra 

circuits to detect the arrival of the DATA signals. This special design in dual-rail 

system is called complete detection. 

Figure 2 (b) shows the process of data transfer using dual-rail protocol. Initially, 

DATA is EMPTY (all 0), and ACK signal is 0. When DATA is valid and the 

RECEIVER detects that DATA is ready, the RECEIVER captures DATA and pulls 

up ACK signal to 1. Then the SENDER stops sending DATA, so DATA becomes 

EMPTY. Finally, the RECEIVER pulls down ACK signal to 0 and the transfer is 

completed. 
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Figure 2 (a) Dual-rail 

 

 
Figure 2 (b) Dual-rail protocol 

 

Valid DATA will appears separately. Dual-rail protocol uses EMPTY to 

separate each DATA. When the SENDER sends one time of DATA, the data wires 

will return to EMPTY. So the sequence of DATA is EMPTY – VALID – EMPTY – 

VALID (Figure 3). 
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Figure 3 Transfer diagram 

 

2.1.3 Muller C-element 

Muller C-element is a fundamental component in asynchronous circuit design. 

It is a state-holding element just like an asynchronous set-reset latch. The function 

of Muller C-element is shown in Table 2. When both inputs are logic 1, the output is 

logic 1. When both inputs are logic 0, the output is logic 0. Otherwise, the output 

does not change. Figure 4 (a) shows the symbol of Muller C-element and its gate 

level implementation. It uses three AND gates and one OR gate. The output C will 

return to the input and become one of the inputs. Figure 4 (b) shows the C-element 

with reset signal. 

 

Input 1 Input 2 Output 

0 0 0 

0 1 No change 

1 0 No change 

1 1 1 

Table 2 the function of Muller C-element  
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Figure 4 (a) the symbol of Muller C-element and its gate level 

   

A

B

C

reset  

Figure 4 (b) C-element with reset 

 

2.1.4 Asynchronous Pipeline 

There are several asynchronous pipeline implementation styles have been 

proposed. One of the most important models is the Muller pipeline, which uses the 
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four-phase bundled data protocol [1]. It is implemented with C-elements and 

inverters. Another important model is called micropipeline which uses two-phase 

bundled data protocol, introduced by Ivan Sutherland in his Turing Award Lecture 

[1]. Other asynchronous pipeline implementations use different circuits design 

methods to replace the C-elements and latches. Because of the model we choose, we 

will introduce the Muller pipeline. 

Figure 5 (a) shows a four-phase bundled data pipeline which based on the 

Muller pipeline. A Muller pipeline is used to generate local clock pulses. The clock 

pulse generated in one stage with the pulses generated in the neighboring stages in a 

carefully controlled manner. Figure 5 (a) shows a pipeline without data processing. 

If a pipeline with data processing, the combinational circuits can be added between 

the stages. In order to maintain correct behaviors matching delays have to be 

inserted in the request signal paths. Figure 5 (b) shows a pipeline with data 

processing.  
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Figure 5 (a) Four-phase bundle data Muller pipeline. 
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Figure 5 (b) Four-phase bundle data Muller pipeline with matching delay. 

 

2.2 Data Transfers 

This section describes three ways of data transfers: program controller I/O (polling 

I/O), interrupt I/O and DMA I/O. The program controller I/O lets I/O devices 

communicate with CPU. The I/O devices only store data in registers.  
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The cycle checking of CPU gets information of data and CPU starts to service. When 

I/O devices need to transfer, the interrupt I/O uses the interrupt signal to request CPU that 

starts to transfer by its order of priority. The DMA I/O uses device controller to transfer 

directly between I/O devices and memory without CPU. Table 3 shows comparisons with 

program controller, interrupt and DMA. 

 

 CPU Time 

Polling I/O Long 

Interrupt I/O Long 

DMA I/O Short 

Table 3 Comparison of data transfers 

 

2.3 AMULET 

This section introduces a series of the AMULET processors that contain the 

AMULET1, the AMULET2e, the AMULET3i. 

 AMULET1 [7]: The AMULET1 was presented in 1994. It is a test piece 

demonstrating feasibility of a full custom asynchronous processor that is designed 

with Sutherland’s two-phase micropipelined method. AMULET1 is just a 

microprocessor core on a single die, presenting a two-phase asynchronous interface 
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between on chip and off chip. AMULET1 is the ARM6 compatible processor. 

 AMULET2e [8]: The AMULET2e was presented in 1996. It is an embedded 

microprocessor with memory, cache, peripherals and AMULET2 core. AMULET2e 

is designed with four-phase protocol. AMULET2e is the ARM7 compatible 

processor. 

 AMULET3i [9]: The AMULET3i was presented in 2000. It contains AMULE3 core 

and other asynchronous marcocell. The AMULET3i marcocell consists of a number 

of components and connected together by a marcocell bus called MARBLE BUS. 

These components contain RAM, DMA controller and etc. AMULET3i is the ARM9 

compatible processor. 

2.3.1 AMULET3i DMA controller 

The AMULET3i DMA controller is used primarily to transfer data between on chip 

and off chip [2]. The DMA controller (Figure 6) contains: Register bank control, 

ARBITER, Synchronous Peripheral Interface (SPI), Transfer Engine and Initiator 

Interface. The Register bank control is used to perform the operations of the register bank 

block. The ARBITER is used to decide the data that comes from the transfer engine or the 

MARBLE bus. The data should be stored into the register bank block. The Synchronous 

Peripheral Interface (SPI) is used to control the mapping of these incoming synchronous 

peripheral requests onto DMA controller channels and filter out of requests for disabled 
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channels. The SPI contains not only the channel mapping hardware but also request state 

machines for each channel. The Transfer Engine is used to receive requests that come 

from the SPI and the channel register values and sent them to the Initiator Interface. The 

Transfer Engine has a main companion process: the Initiator Interface. The Initiator 

Interface is used to actually perform the DMA transfer operation and also signals 

end-of-transfer to register bank for finishing updating register bank registers. A DMA 

transfer begins with DMA request arriving on SPI. The operations of a transfer should be 

performed as follows. First, the SPI receives DMA request and maps it onto DMA 

controller channel. Then, the Transfer Engine receives channel request and requests a 

copy of the register contents for requesting channel from register bank control. After that 

the initiator interface receives the channel register values from the transfer engine and 

sends the source address and destination address to the initiator I/F for finishing transfers. 

When the transfer would actually have been completed, the end-of-transfer signal to 

register bank control and the channel register values of the register bank control should 

be updated. 
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Figure 6 DMA controller structure 

2.4 Problem 

The AMULET3i DMA controller allows only a certain number of transfers that 

should be performed for each DMA transfer. Due to the image processing of today’s 

Digital Signal Processor often requires a lot of image data and the size of fast on chip 

memory is very limited, a lot of image data are stored in external memory. As frequency 

and processing of DSP are increasing, the data rate fully utilize the available processing 

bandwidth. In terms of results of experiment [10], the same data is transferred. The small 

data size transfer can have perfect contrast efficiency with the general (large) data size 

transfer. Due to all of the above, the AMULET3i DMA controller could produce longer 

latency between the transfer engine and the initiator interface. 
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2.5 Comparison 

Figure 7 (a) shows the channel register data is sent to the initiator interface from the 

transfer engine. When the next channel register data will be sent to the initiator interface, 

the current channel register data is completed in the initiator interface. So, the each 

latency is produced between old channel register data and new channel register data from 

the transfer engine to the initiator interface. In the general size data situation, the each 

latency is ignored due to a transfer costs amount of time. But in the small size data 

situation, the each latency is attended due to a transfer costs a little of time [11].  

Figure 7 (b) is presented here to reduce each latency between old channel register data 

and new channel register data. 

 

 
Figure 7 (a) Architecture of one interface 
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Figure 7 (b) Architecture of two interfaces 

 

Figure 8 (a) show the original DMA controller that the transfer engine requests three 

times copies of the register contents and sends to the initiator interface. Every different 

data has a setup time of the data of the initiator interface. Figure 8 (b) shows our new 

DMA controller that contains two initiator interfaces. The first data has a setup time of 

the data of the initiator interface. The setup time of the other data are overlapped. The 

setup Time and DMA transfer time are overlapped. Therefore the latency between the 

transfer engine and the initiator interface can be decreased. 
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Figure 8 (a) Timeline of one interface 

 

  
Figure 8 (b) Timeline of two interface 
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Chapter 3 Design 

 

In previous chapter, we have compared advantages and disadvantages of asynchronous 

circuits. In addition, we also describe ways of data transfer between external memory and 

internal memory. We have described benefits of data transfer using AMULET3i Direct 

Memory Access Controller for the processor in previous section. But there are still some 

points that can be improved in lots of small size data and transfers in many times condition. 

This chapter will describe with the architecture first, and it then talks about the overall 

operation. Depending on the proposed architecture, the data transfer flow and data formats to 

meet the requirements will be discussed. Finally, we will describe the design architecture in 

detailed. 

 

3.1 Data flow 

The data flow have two parts: one is used in the overall design and the other is 

used in Address_Interface of the design. The first part is shown in Figure 9. This flow 

shows how to transfer the data in the overall design. The design receives the value of 

channels from register bank block as input and decides the Counter that whether 

computes address to output. 
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Figure 9 Data flow 1 
 

First, the request signal is sent to the DMA controller. If the request is arrival, the 

Transfer Engine receives the data of channels. The Address_Interface receives the data from 

the Transfer Engine. The Counter receives the data from the Address_Interface and computes 

addresses. When the Count state of the Counter is “Yes” which indicates data transfer of the 

channel should be finished. Otherwise, the Count state of the Counter is “No” which indicates 

data transfer of the channel should continue transferring. 

The other data flow shows how the data can be stored in the Address_Interface from the 

Transfer Engine to the Address_Interface (Figure 10). 
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Figure 10 Data flow 2 

 

The data is sent by the Transfer Engine. First, The Address_Interface checks the Interface 

is Empty or not. If the Interface is full with 1 symbol, the data cannot be stored into the 

Interface. Otherwise, the data can be stored into the Interface. According to the state of the 

Interface, the data is stored into one of two Interfaces. The 00 and 10 symbols indicate that the 

data is stored into the Interface1 and the 01 symbol indicates that the data is stored into the 

Interface2. 
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3.2 Register Formats 

This paragraph describes that how we design register formats within a channel. 

These register formats are transmitted from the register bank block. These register 

formats how to be designed in the overall design.  

The value of each channel contains four registers: SOURCE Address register, 

DESTINATION Address register, COUNT register and CONTROL register. The 

SOURCE register stores 32-bit source addresses for transfers, and the DESTINATION 

register stores 32-bit destination addresses for transfers. The COUNT register stores 

32-bit count of remaining transfers to perform. The transfer will be terminated when the 

COUNT register is decremented to zero. The CONTROL register specifies the updates to 

be performed on the other three registers and which this channel is connected. 

 

 
Figure 11 (a) Source register 

 
Figure 11 (b) Destination register 
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Figure 11 (c) Count register 

 
Figure 11 (d) Control register 

 
Figure 11 (e) Content of the control register 

 

The CONTROL register has 3 fields: Channel_No, DRQ and Enable. If the Enable 

bit is set, this channel should be considered for transfers when a new DMA request 

arrives. When transfers of channel finish, the Enable bit should be reset to indicate that 

this channel can receive a new DMA request. The DRQ bit indicate the initial state for the 

request. If the DRQ bit is set, it means that the data have arrived really. Resetting the 

DRQ bit specifies that request from corresponding channel data should trigger a transfer. 

The Channel_No bits indicates which channel numbers receive the source and destination 

DMA requests. 
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3.3 Architecture 

The architecture consists of three major constructions: Transfer Engine, 

Address_Interface, Counter (Figure 12). 

 

 
Figure 12 Architecture 

 

The three parts have different functions: Transfer Engine is used to receiving the 

values of channels, Address_Interface is used for sending the value of channels out and 

Counter computes the value from Address_Interface. This architecture has two ports 

which can receive the value of channels from register bank block, and it has one port to 

send source address and destination address out to the bus. In general, the input speed is 

faster than the output speed; Counter can compute next address and sent next address out 

if current address transfer finishes. In addition, Counter can compute next address and 

stop sending next address out if current address transfer does not finish. 
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Initially, the design needs to confirm if the request signal arrives or not. If the 

request signal is arrival, it will start to receive the values of channels. This work is done 

in Transfer Engine. 

First, the Transfer Engine receives the value of channels and sends the value of a 

channel out to Address_Interface. The Address_Interface contains Interface_1 and 

Interface_2, and the value are stored in empty the Interface. The Address_Interface sends 

the value out to Counter, and the Transfer Engine send the value out to the 

Address_Interface simultaneously. When the current channel finishes, the 

Address_Interface sends the next value of the channel out to Counter immediately. These 

will operate in our DMA controller design according to the above method. 

 

3.3.1 Transfer Engine 

Transfer Engine (Figure 13) has one input ports: Channel_Data_in and one output 

port: Engine_Data_out. The Channel_Data_in is stored in the data of channels from 

register bank block in AMULET3i DMA Controller architecture. First, Transfer Engine 

receives the value of channels and stores it in the Engine Register. These should be 

controlled by the control signal of the COMPARE_1. When the data of the Engine 

Register sends out, the Engine Register resets the data of the Engine Register in itself. 
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Figure 13 Transfer Engine 

 

The COMPARE_1 (Figure 14) is used to receive count that should be stored in the 

Engine Register and ACK signal. The COMPARE_1 also decides the Channel_Data to 

be stored into the Engine Registers or to reset the data of the Engine Register by the 

control signal of the COMPARE_1. First, the Engine Register_count and ACK signal are 

operated by the COMPARE_1 and produce COMPARE_1 control signal. When symbol 

of COMPARE_1 is 0, the Channel_Data can be stored into the Engine Register. When 

symbol of COMPARE_1 is 1, the Channel_Data cannot be stored into the Engine 

Register and reset the data of the Engine Register. Figure 15 shows the gate-level 

implementation of the Detection of the COMPARE_1. 

 

 27



 
Figure 14 COMPARE_1 

 

 
Figure 15 The gate level of Detection 

 

The Engine Register (Figure 16) receives the Channel Data_in and COMPARE_1 

control signal. When the control signal is 0 controlled by COMPARE_1 signal, four 

MUX select the source_address, destination_address, count, and Ctrl separately and store 

these data into four registers. On the other hand, and the signal is 1 controlled by 

COMPARE_1 signal, four MUX select 0 and store these data into four registers. 
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Figure 16 Engine Register 

 

3.3.2 Address Interface 

Address Interface (Figure 17) has two input ports: Counter_Data and Engine_Data and 

one output port: Interface_Data. The Counter_Data comes from the COUNTER after 

Interface_Data is computed every time. The Engine_Data from Transfer Engine are stored in 

registers. The Interface_Data is sent out to the COUNTER and the COUNTER computes 

source address, destination address and count. The SELECT_1 and SELECT_2 signal are 

used to control DECISION. The DECISION decides which one of the two Interfaces can be 
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used to store the data. The SELECT_2 signals that is used to control MUX. The MUX is used 

to decide which one of data of two Interfaces can be sent out. 

 

 
Figure 17 Address Interface 

 

By method of judgment of SELECT_1 and SELECT_2. The DECISION (Figure 18 (a)) 

is used to decide the Counter_Data that should be stored into which one of two Interfaces. It is 

also used to decide Engine_Data that should be stored into which one of two Interfaces.The 

Counter_Data and Engine_Data cannot be stored the same interface simultaneously. Figure 18 

(b) shows components of the DECISION that contains two DEMUX and two MUX. The 

DEMUX_1 decides Counter_Data that should be sent to the MUX_1 or the MUX_2. The 

DEMUX_2 decides Engine_Data that should be sent to the MUX_1 or the MUX_2. The 

MUX_1 decides the one of two data that should be sent to the Interface_1. The MUX_2 

decides which one of the two data that should be sent to the Interface_2. 
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Figure 18 (a) DECISION 

 

 
Figure 18 (b) components of DECISION 
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The SELECT_1 Generator (Figure 19) is used to receive count that should be stored in 

two Interfaces. It also decides the Engine_Data that should be stored into which one of two 

Interfaces or can not store into the Interfaces by SELECT_1[1:0] signal. First, 

Interface1_count and Interface2_count are operated by the Detection and produce SELECT_1 

[1:0] signal. If the SELECT_1 [1:0] signal is 00 or 10, the Engine_Data should be stored into 

the Interface_1. When the SELECT_1 [1:0] signal is 01, the Engine_Data can be stored into 

the Interface_2. But the SELECT_1 [1:0] signal is 11, the Engine_Data can not be stored into 

both of the Interface_1 and the Interface_2. 

 

 
Figure 19 SELECT_1 Generator 

 

The SELECT_2 Generator (Figure 20) is used to receive the SELECT_1[1:0] 

signal and Comp_Dect signal that comes from the COUNTER. The SELECT_2 signal 

decides Interface_Data that should be stored into which one of two Interfaces by 
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SELECT_2 signal. The Interface_Data is updated from the COUNTER. The 

SELECT_2 signal also decides to select which one of the data of two Interfaces that 

should be sent out. Initially, the SELECT_2 signal and Comp_Dect signal are 0. When 

the Comp_Dect signal becomes 1, the SELECT_2 signal becomes 1 from 0 and later 

the Comp_Dect signal becomes 0 from 1. When the Comp_Dect signal becomes 1 

again, the SELECT_2 signal becomes 0 from 1 and later the Comp_Dect signal 

becomes 0 from 1. So, the SELECT_2 signal changes 0  1  0  1, when the 

Comp_Dect signal becomes 1.  

 

 
Figure 20 SELECT_2 Generator 

 

 33



 

The MUX (Figure 21 MUX) is used to receive Interface1_Data and Interface2_Data. The 

MUX decides which one can be sent out to the COUNTER depending on the control signal 

SELECT_2.. 

 

M
U
X

SELECT_2

Interface1_Data

Interface2_Data

Interface_Data

 
Figure 21 MUX 

 

3.3.3 Counter 

The COUNTER (Figure 22 (a)) is used to receive Interface_Data and ACK signal. 

The COUNTER contains the counter to compute Interface_Data. The counter (Figure 22 

(b)) computes Interface_Data from Address_Interface. The Interface_Data contains 

 34



source address, destination address and count. The counter produces Counter_Data. The 

Counter_Data contains source address, destination address and count. The source address 

indicates the source of a data transfer, the destination address indicates the destination of 

a data transfer and the count indicates the number of times of data transfers. When a data 

transfer finishes and the counter accept the ACK signal is 1, the source address and the 

destination address are incremented by 4 and the count is decremented by 1. Figure 22 (c) 

shows how to produce the Comp_Dect signal by Count and Ctrl of the Interface_Data. 

The initial the Comp_Dect signal is 0. The count is equal to 0 if the transfer is finished. 

The DRQ bit is is equal to 1 if the data arrives. When the count is 0 and the DRQ bit is 1, 

the Comp_Dect signal becomes 1. If the Comp_Dect signal is 1, it indicates that current 

transfer is finished. Then, when the next Interface_Data arrives and starts the new data 

transfers, the Comp_Dect signal becomes 0. 
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Figure 22 (a) COUNTER 

 

 
Figure 22 (b) The counter of the COUNTER 
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Figure 22 (c) Complete detection of the COUNTER 

 37



Chapter 4 Simulation 

In chapter 3, we have described the proposed design of function block in detail. We use 

the Verilog HDL to build all of the components and construct the whole architecture with 

above mentioned our sub-modules described in chapter 3. 

We implemented our improved section of asynchronous DMA controller in gate-level. 

The design was synthesized and simulated with the TSMC 0.13um library and the simulator is 

ModelSim 6.0. The experimental group of our design is the new proposed architecture, and 

the control group is the original Amulet3i DMA controller. We also compare our new DMAC 

design with the original design of Amulet3i. 

 

4.1 Area Simulation 

The areas of each sub-modules are shown in Table 4. We can discover that the area of the 

Address Interface is largest. This is because the Address Interface contains complicated 

control signals and elements. The area of Transfer Engine is 3119.8 um2, the area of Address 

Interface is 8261.2 um2 and the area of Counter is 6996.7 um2. The total area is 18501.7 um2. 

The area of the original architecture is shown in Table 5. The total area is 13054.7 um2. 
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Module Area(um2) 

Transfer Engine 3119.8 

Address Interface 8261.2 

Counter 6996.7 

Total 18501.7 

Table 4 The improved architecture 
 

Module Area(um2) 

Transfer Engine 3119.8 

Address Interface 2909.4 

Counter 6908.4 

Total 13054.7 

Table 5 The original architecture 
 

4.2 Timing Simulation 

In this section, we have two simulation results: one is original architecture and the other 

is our new architecture. The Figure 23 (a) shows the timing of the last data of the channel 1 

with original architecture. Figure 23 (b) shows the timing of the first data of the channel 2 

with original architecture. The Figure 24 (a) shows the timing of the last data of the channel 1 

with the new architecture. Figure 24 (b) shows the timing of the first data of the channel 2 

with the new architecture. 
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Figure 23 (a) The last data of the original architecture 

 

 
Figure 23 (b) The first data of the original architecture 
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Figure 24 (a) The last data of the improved architecture 

 

 
Figure 24 (b) The first data of the improved architecture 
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Table 6 shows the latency comparison of original and new architecture. The latency means the 

time between last data of current channel and first data of next channel. The result represents 

new latency is less than original latency that the new architecture can reduce latency between 

the different channels. Table 7 shows the comparison of ratio of latency in different count 

conditions. The original time represents the time of data transfer of original initiator interface. 

The new time represents the time of data transfer of new initiator interface. Because the new 

design circuit is more complicated than the original design circuit, the new time is much 

bigger than the original time from table 7. When the count is 5, the improvement is 9%. When 

the count is 10, the improvement is 4.5%. When the count is 15, the improvement is 3%. 

Therefore, the count much smaller and the improvement latency is more obvious. 

 

 

 Latency(ps) 

Original 1026 

New 104 

 
Table 6 Comparison of Latency 
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 Count = 5 Count = 10 Count = 15 

Original Time(ps) 10075 20150 30225 

Original Latency(ps) 1026(10%) 1026(5%) 1026(3.3%) 

New Time(ps) 10570 21140 31710 

New Latency(ps) 104(1%) 104(0.5%) 104(0.33%) 

 
Table 7 Comparison of Ratio of Latency 
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Chapter 5 Conclusion 

Because the performance of DMA data transfer is the bottleneck of the multimedia 

application performance, it’s important to improve the performance of DMA controller. In this 

thesis, we propose an improved DMA controller of Amulet3i ones to reduce the latency of 

DMA data transfer. We use this new proposed architecture to reduce the latency between the 

transfer engine and the address interface with the different channels. We use asynchronous 

circuits design to solve the problem of global clock.  

We propose new architecture should be applied in asynchronous Digital Signal Processor. 

The new latency reduced 90% than the original latency. In chapter 4, we can find this new 

architecture has perfect performance in lots of smaller data size transfer condition. Due to 

DSP processing should be overlapped with DMA processing, the new proposed architecture 

and data size format use together not only have lower latency but also have better 

performance. Especially, a sequence of small size data is transferred, the new improvement 

can save more latency that can achieve perfect performance.  
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