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摘 要 
 
 

在本篇論文,一個含有較厚的源/汲極區和較薄的通道的新穎複晶矽薄膜電晶體被提

出而加以研究．在提出的結構中，和傳統的堆疊式薄膜電晶體比較下，我們只需較少的

４道光罩製程．提出的結構中，它有不錯的開／關電流比仍維持在良好的擺幅（約 1.51）．

在開／關電流比上，在閘極電壓為 5V 下,仍維持在 1.85x107 左右．而更進一步地看，在

閘極電壓加至 30V 時，提出的薄膜電晶體仍展現了一個較佳的飽和電流特性．同時在漏

電流方面，也比傳統的降低了 2.96 倍． 
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Abstract 
 

   In this paper, a novel structure of the polycrystalline silicon thin-film transistors 

(Poly-Si TFT’s) with a thicker source/drain and a thin channel have been developed and 

investigated. In the proposed structure, the thick source/drain and a thin active region could be 

achieved with only four mask steps, which are less than conventional stagger TFT. The 

proposed TFT has and higher Swing (~1.51). The on/off ratio is 1.85x107 for Vgs= 5 V 

Moreover, the proposed TFT exhibits excellent current saturation characteristics at high bias 

(Vgs= 30 V) and has more than 2.96 times reduction in minimum off-state current compared 

to conventional TFT’s. 

Index Terms—stagger source/drain, On/Off current ratio, poly-Si TFT. 
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Chapter 1 

Introduction 

 

1.1  Overview of Polycrystalline Silicon Thin-Film 

Transistors  Technology 

 

In 1966, the first polycrystalline silicon thin-film transistors (Poly-Si TFTs) were 

fabricated by Fa et al. [1]. Since then, many research reports have been proposed to study 

their conduction mechanisms, fabrication processes and device structure to improve the 

performance, In 1970s, the conduction mechanism and the electrical properities of 

polysilicon films, which are determined by the properities of grain-boundaries, were clarified 

[2],[3].In 1983, the first practical application of poly-Si TFT’s to liquid-crystal displays 

(LCDs) was announced for full-color pocket TVs [4], and then commericialized in 1984 as 

the world’first. To date, Poly-Si TFT’s have been expanding in applications to linear image 

sensors[5], thermal printer heads[6], liquid-crystal shutter arrays for printers[7], 

photodetector amplifier[8], high-density static random access memories (SRAMs)[9],[10], 

nonvolatile memories[11],[12], and active-matrix LCDs(AMLCDs)[13]-[16]. 

The dominant leakage current mechanism in poly-Si TFTs is the field emission via 

grain boundary traps by a high electric field near the drain [17]. Thus, reducing the electric 
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field near the drain junction is required. Today, many device structures have been proposed to 

improve poly-Si TFTs performance. For example, Offset Gated Structure（Offset TFTs）

[18]-[19] and Lightly Doped Drain Structure（LDD TFTs）[20]-[21] are two kinds of new TFT 

structures. Both of them were proposed due to suppress the off-state leakage current, but the 

on-state current is lowered at the same time. Besides, an extra mask in LDD structures and 

misalignment in Offset TFTs are two major problems. Thus, how to reduce off-state current 

without degrade ton-state current too much is a trade-off. 

 

 

1.2  Several Novel High Performance Structures for TFTs 

 

To realize large-area LCDs with peripheral circuits, it is essential to develop a 

low-temperature fabrication process for high-mobility poly-Si TFTs. Such a process would 

reduce fabrication costs by allowing use of a low-cost glass substrate [22-24]. 

Generally speaking, Poly-Si TFTs have two different structures：top-gate coplanar 

structure and bottom-gate structure. The top-gate TFTs have mainly used in AMLCD 

applications because their self-aligned source/drain regions provide low parasitic capacitances 

and is suitable for device scaling down. On the other hand, thought bottom-gate TFTs have 

better interface and higher plasma hydrogenation rate than top-gate TFTs, They have lower 
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current and need extra process steps for backside exposure. 

Kamins et al. reported CW Kr laser annealed poly-Si MOSFET with a mobility of 

320 cm2/Vs by using quartz as a substrate [25]. This poly-Si MOSFET was an initial poly-Si 

TFT using laser annealing. The fabrication process was based on that used in silicon IC 

fabrication in order to retain the transistor stability associated with the thermally grown 

silicon/silicon-dioxide interface. Figure 1-1 shows process flow of the fabrication of the 

laser-annealed poly-Si MOSFET. Troxell et al. also reported the laser-annealed poly-Si 

MOSFET with a field effect mobility of 270 cm2/Vs using thermal SiO2 by similar process 

with that of Kamins [26]. 

On the other hand, Seki et al. reported high performance CW Ar laser annealed 

poly-Si TFT with a high mobility of 200 cm2/Vs by using thermally grown SiO2 as a gate 

insulator [27]. Their poly-Si TFT with lightly doped drain (LDD) structure exhibited a low 

leakage current of 6 x10-13 A and a high on/off current ratio of 108. Figure 1-2 shows a cross 

sectional view of the self-aligned LDD structure poly-Si TFT. 

Itoh et al. has developed an offset structure poly-Si TFT using anodic oxidation (AO) 

of Al gate [28]. Figure 1-3 shows a fabrication flow and a cross sectional view of the offset 

poly-Si TFT. An aluminum layer of 400 nm thickness is deposited for a gate electrode by 

sputtering at room temperature. A thin aluminum oxide is formed on the surface of Al by 

AO (anodic oxidation) to prevent the hillock formation during the following steps. After 
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patterning the gate electrode, AO is performed again, at which step the offset length is 

precisely determined because of its fine controllability of the oxide thickness (Fig 1-3 a). 

Offset gate structure using AO technology was adopted to decrease both the off-state 

leakage current and photomask number, respectively. As well as the offset poly-Si TFT can 

be fabricated with only 4 photo-mask steps. 

Kohno and Sameshima et al. reported the high performance semi-staggered poly-Si 

TFT with the highest mobility of 640 cm2/Vs using remote plasma (RP) CVD SiO2. Figure 

1-4 shows a cross sectional view of semi-staggered poly-Si TFT. Recently, Okabe et al. 

reported the offset structure poly-Si TFT with a TEOS SiO2 as a gate insulator. The TEOS 

SiO2 has advantages of good step coverage and low ion damage. Therefore, the large area 

high performance poly-Si TFT-LCD using TEOS SiO2 can be available due to these merits.  

Aoyama et al. has developed the inverse staggered poly-Si TFT using n+ a-Si:H 

ohmic contact in which the active layer is poly-Si/a-Si:H stacked on gate insulator [29]. 

They proposed the simultaneous process of a-Si:H TFT in the pixel area and of poly-Si TFT 

in the driver circuits area. Figure 1-5 shows the inverse staggered poly-Si TFT using 

PECVD SiNx and n+ a-Si:H ohmic layer.Field effect mobilities of 10 and 0.5 cm2/Vs were 

obtained for the laser annealed poly-Si and a-Si:H (without laser annealing) TFTs, 

respectively. The leakage currents of the both TFTs were good comparable to those of the 

conventional a-Si:H TFT. 
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 1.3  Main Issues in LTPS TFTs 

 

Although it is useful to use the Poly-Si TFTs instead of the amorphous TFTs by high 

mobility, the Polu-Si TFTs suffer from high leakage currents in the off-state operations and 

high kink effect in on-state operations, which can be attributed to the grain boundary traps in 

the channel region. Besides, the long-term stability is also an important issue for Poly-Si TFTs. 

It has been reported that the devices’ degradation is mainly related to channel carrier density 

under the stressing and unlike the hot carrier effects in the-crystal Si devices.After the 

stressing on the Poly-Si TFTs, the devices’ parameters such as the threshold voltage, the 

sub-treshold swing, the mobility, the channel trap density, the off-state current, and on-state 

current will be degraded. Self-heating effect is also reported as another degradation 

mechanism especially occurred in the wide-channel Poly-Si TFTs.    

 

 

1.4 Motivation 

 

The high driving current as well as the mobility are the reasons to use the Poly-Si 

TFTs instead of the amorphous TFTs. However, the undesired off-state leakage current for a 

Poly-Si TFT is much higher than that of an amorphous TFT. It is well known that off-state 
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leakage current mechanism is the field emission via grain boundary traps due to high electric 

filed in the drain depletion region [30]. Thus, suppressing the off-state leakage current by 

reducing the drain electric field is required. Several methods have been proposed to achieve 

this purpose, such as offset gated structure [31], lightly doped drain structure [32] and field 

induced drain structure [33], [34]. In the lightly doped offset drain structure, the implant 

damage can cause an undesired degradation in the drain junction, especially for 

low-temperature processed poly-Si TFT’s [35]. In the field induced drain structure, an 

additional photo masking step is required and unavoidable photo masking misalignment 

error will occur [33], [34]. 

In this paper, we purposed a new fabrication process of the low-temperature Poly-Si 

(LTPS) TFT with a thick source/drain region and a thin channel which has lower minimum 

off-state current and higher on/off current ratio than those of a conventional structure. The 

process also does not require any additional mask step.  

 

1.5 Thesis Organization 

 

In chapter 1, a brief overview of LTPS TFT technology and related applications 

were introduced. 

In chapter 2, the fabrication process flow of  the new TFT device, experimental 
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recipes, and device parameter extraction methods will be described. 

In chapter 3, we will show the electrical property of the novel TFT device, includes 

transfer characterization, output characterization. 

Finally, conclusions and future work as well as suggestion for futher research and 

given in chapter 5.  
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Chapter 2    

Experimental of the Novel Structure of LTPS 

TFTs 

 

2.1 The Fabrication Process flow of the Novel Low-temperature 

Poly-Si TFTs 

 

The poly-Si TFTs were fabricated on 4-inch-diameter p-type silicon wafer. Fig.2-1 shows 

the process flow of the proposed poly-Si TFTs. The device has a thick source/drain region 

(300 nm) and a thin channel region (50nm). The thick source/drain region could be used to 

obtain good source/drain contact and reduced series resistance. And the thin cannel region 

could be used to obtain high on-state current and low off-state current [1].    

The 300nm undoped amorphous silicon (a-Si) films were initially deposited on 500nm 

thermally oxidized silicon (100) wafers by low-pressure chemical vapor deposition (LPCVD) 

system with silane (SiH4) gas at 550°C. The deposition pressure was 100 mtorr and the silane 

flow rate was 40 sccm. After the active region was patterned using reactive ion etching (RIE), 

thin channel (50 nm) region was formed at this mask step. Then the deposited a-Si film was 

annealed in nitrogen ambient at 600°C for 24 h to become the Poly-Si film as shown 

Fig.2-1(c) .A 50 nm-thick TEOS oxide film was deposited at 350°C to serve as the gate 

dielectric by PECVD. Then, a 300 nm thick Poly-Si was deposited by LPCVD at 600°C with 
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SiH4 for the gate electrode.  

After patterned the gate region as, the remnant 50-nm oxide film and 50-nm poly-Si film 

were also removed using the RIE system. In this step, the isolation region, the thick undoped 

source/drain region (300 nm) and gate overlap region were formed. After the photoresist was 

removed, Gate, Source and Drain regions were formed by ion implantation of Phosphorous 

(Dose=5 x 1015 cm-2 at 60 keV). The dopant were activated at 600°C in N2 ambient for 24 hr. 

Next, a 500 nm TEOS oxide was deposited by PECVD at 350°C as a passivation layer, and 

contact lithography was carried out. After opening contact holes, a 600 nm Al was deposited 

by evaporation and the metal layer was patterned. Finally, the samples were sintered at 400°C 

for 30min in N2 gas ambient. No hydrogenation step was performed on these devices. 

The total masks of our fabrication process are four masks, which are less than those of 

conventional process in staggered Poly-Si TFTs. For comparison, the conventional Poly-Si 

TFT’s with 50-nm channel thickness were also fabricated at the same time. 

 

 

The detailed fabrication process flow is listed as follows. 

1.  (100) orientation Si wafer 

2.  Initial cleaning 

3.  Thermal wet oxidation at 1050°C to grow 5000Å thermal SiO2 in furnace 
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4.  3000 Å a-Si was deposited by LPCVD at 550。C in SiH4 gas 

5..  Mask#1 : define active regions 

(a-Si dry etch by Poly-RIE system) 

6.  RCA cleaning 

7.  500 Å a-Si deposition by LPVCD at 550°C in SiH4 gas 

8.  RCA cleaning 

9..  500 Å gate dielectric deposition by PECVD at 350°C 

10.  The deposited a-Si film was annealed in nitrogen ambient 600°C for 24h  

11.  RCA cleaning 

12.  3000 Å poly-Si was deposited by LPCVD at 620°C in SiH4 gas 

13.  Mask#2: Define gate regions 

(Poly-Si dry etch by Poly-RIE system) 

14.  Ion implantation: P31 , 60KeV, 5x1015 ions/cm2 

15.  Dopant activation in N2 ambient at 600°C for 24h in furnace 

16.  5000 Å TEOS oxide was deposited by PECVD as passivation layer 

17.  Mask#3: Open contact holes 

     (wet etch by B.O.E) 

18..  5000 Å Al thermal evaporation 

19.  Mask#4: Al pattern defined 
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20.  Etching Al and removing photoresist 

21.  Al sintering at 400°C in N2 ambient for 30 min 

 

2.2  The Cross-Section of Novel Structures 

     

In Fig. 2-2(a), we could see clearly the top-view of the proposed structures.  

LMC, Lo,d and Lo,s  represent the length of main channel , gate-overlap in the drain and 

gate-overlap in the source, respectively. We suggest that the current transmission mechanism 

might have another path of current transmission compared with conventional sample. Because 

it’s width would be increased by staggered source/drain regions (W’>W), the novel TFTs 

appear to be promoted more effectively on-state current. 

    In Fig. 2-2(c), we see that the B-B’ cross section of the novel structures compared to the 

conventional would increase additional poly channel.    

  

 2.3  Methods of Device Parameter Extraction 

  

Many methods have been proposed to extract the characteristic parameter of 

Poly-Si TFT. In this section, the methods of parameter extraction used in this research are 

described. 

 



 17

2.3.1 Determination of Threshold Voltage (Vth) 

 The threshold voltage Vth is an important MOSFET parameter required for the channel 

length-width and series resistance measurement. However, Vth is a voltage that is not uniquely 

defined.Various definition exist and the reason for this can be found in the ID-VGS curves. One 

of the most common threshold voltage measurement technique is the linear extrapolation 

method with the drain current measured as a function of gate voltage at a low drain voltage of 

typically 50-100 mV to ensure operation in the linear MOSFET region [2]. But the drain 

current is not zero below threshold and approaches zero only asymptotically. Hence the ID 

verus VGS curve is extrapolated to ID=0, and the threshold voltage is determined from the 

extrapolated or intercept gate voltage VGSi by 

                     thV  = GSiV
2
DSV

−                            (Eq. 2.1) 

 Equation (2.1) is strictly only valid for negligible series resistance. Fortunately series 

resistance is usually negligible at the low drain currents where threshold voltage measurement 

are made. The ID-VGS curve deviate from a straight line at gate voltage below Vth due to 

subthreshold currents and above Vth due to series resistance and mobility degradation effects. 

It is common practice to find the point of maximum slope on the ID-VGS curve by maximum 

in the transconductace fit a straight line to the ID-VGS curve at that point and extrapolate to 

ID=0. 

 

2.3.2 Determination of Subthreshold Swing 
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 Subthreshold swing S.S (V/dec) is a typical parameter to describe the control ability of 

gate toward channel. That is the turn on/off speed of a device. It is defined as the amount of 

gate voltage requires to increase/decrease drain current by one order of magnitude. 

The subthreshold swing should be independent of drain voltage and gate voltage. 

However, in reality, the subthreshold swing might increase with drain voltage due to short 

channel effect such as charge sharing, avalanche multiplication, and punchthrough effect. The 

subthreshold swing is also related to gate voltage due to undesirable and inevitable factors 

such as serial resistance and interface state. 

In my thesis, the subthreshold swing is defined as one-third of the gate voltage required 

to decrease the threshold current by three orders of magnitude. The threshold current is 

specified to be the drain current when the gate voltage is equal to threshold voltage. 

 

2.3.3 Determination of Field Effect Mobility ( FEµ ) 

 Usually, FEµ  is extracted from the maximum value of transconductance (gm) at low 

drain bias (VDS=1V). The drain current in linear region (VDS<VGS-Vth) can be approximated 

as the following equation: 

          

         ]
2
1))[(( 2

DSDSthGSoxFEDS VVVV
L

WCI −−= µ                    (Eq. 2.2) 

 
where W and L are width and length, respectively. oxC  is the gate oxide capacitance.  

Thus, gm is given by 
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Therefore, 
 

                  0(max) →=
DSVm

DSox
FE g

WVC
Lµ                      (Eq. 2.4) 

2.3.4 Determination of On/Off Current Ratio 

 On/Off current ratio is one of the most important parameters of poly-Si TFTs Since a 

good performance means not only large On current but also small Off (leakage) current. The 

leakage current mechanism in poly-Si TFTs is not like it in MOSFET. In MOSFET, the 

channel is composed of single crystalline and the leakage current is due to the tunneling of 

minority carrier from drain region to accumulation layer located in channel layer region. 

However, in poly-Si TFTs, the channel is composed of poly crystalline. A large amount of trap 

densities in grain structure attribute a lot of defect state in energy band gap to enhance the 

tunneling effect. Therefore, the leakage current due to the tunneling effect is much larger in 

poly-Si TFTs than in single crystalline devices. When the voltage drops between gate voltage 

and drain voltage increase, the band gap width decrease and the tunneling effect becomes 

much more severe. Normally we can find this effect in typical poly-Si TFT ID-VG 

characteristics where the magnitude of leakage current will reach a minimum and then 

increase as the gate voltage decrease/increase for n/p-channel TFTs. 

 There are a lot of ways to specify the On and Off current. In my thesis, take n-channel 

poly-Si TFTs for examples, the On current and Off current is defined as the drain current 

when gate voltage equal to 15V and drain voltage is 1 V(linear operation mode). The Off 
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current is specified as the minimum leakage current in linear operation mode for usual cases. 
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Chapter 3 

The Characteristics of Novel Gate-Overlapped 

Low-Temperature Poly-Si TFTs with Stagger 

Source/Drain Regions 

 

In this paper, we will discuss the device performances of Poly-Si TFTs with different 

structures including traditional TFTs as shown Fig 3.1 and Novel TFTs we proposed. In 

addition, we make three different ranges in overlapped gap about novel TFTs we proposed. In 

later sections, Long (OL) and small (OS) size gate overlap length have been compared. We 

define gate-overlapped length Lo. N&k analyzer, and the I-V characteristics of Poly-Si TFTs 

by HP4156 semiconductor parameter analyzer measured the thicknesses of the films. 

 

3.1 The Electrical Properties of Novel TFTs and Conventional 

TFTs 

 

Conventional Poly-Si TFTs suffer from an anomalous off-state leakage current which 

increases with drain voltage and voltage [1]. This undesirable off-state leakage current less 

than 1 pA per pixel is needed for a gray-scale active matrix LCD [2]. In order to lower the 

leakage current in Poly-Si TFTs that occurs by field emission via grain boundary traps due to 
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the high electrical field near the drain junction [3]. Many efferots have been introduced to 

improve drain electrical field [4]-[5]. Because of gate-overlapp and thick S/D regions [6]-[7], 

We believe it will lower effectively drain electrical field. 

Fig. 3.2(a), Fig. 3.2(b) and Fig. 3-3(c) show the gate transfer characteristics of the novel 

TFTs compared to the conventional TFTs. Obviously, the novel TFTs exhibit the best off-state 

leakage compared to the conventional devices. It is well known that thicker drain would result 

in the lower maximum lateral electrical field. The well-known El-Mansy/Ko model [4] and [5] 

describes the maximum channel field for bulk MOSFET’s as  

Emax = (Vds-Vd,sat)/l ,   where the characteristic length l is given as  

l=[(εSi/εox)*toxxj]1/2 

and εSi and εox are the permittivities for Si and SiO2, respectively; tox is the gate oxide 

thickness, and xj is the drain junction depth. Hence , it can be concluded that for a given 

oxideness, the Emax can be reduced by increasing the junction depth. 

In order to explain the different phenomenon of the leakage current when the gate bias is 

very low(Vg=0~ -10 V) and very high (Vg <-10V), we would study these results using the 

model for the leakage current mechanisms. Chul Ha Kim and Ki-Soo Sohm proposed the 

model in 1997[8]. The three kinds of leakage current for a Poly-Si TFT for the model can be 

considered .First , when the drain voltage is very slow (Vd < 5V), the leakage current is 

governed by thermally generated carriers via trap states, which is denoted by G in Fig.3-3. 
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The leakage is current therefore is dependent on the drain voltage. While the gate bias is high 

enough (Vg <-10V), the leakage current is generated by the field tunneling which is denoted 

by T2 and T1 in Fig. 3-3. So, the leakage current is dependent on the lateral electric field and 

the grain-boundary traps. Obviously, the lower drain electric field decreases the leakage 

current which is governed by G mechanisms in Fig. 3-3. We suggest that leakage current of 

the novel TFTs are lower compared to the conventional. when the drain bias is low (Vd=5 V) 

because of the lower drain electric field by thicker drain junction. In the condition of Vg < 

-10V, the leakage current of the novel TFT are higher because of more traps generated from 

overlapped regions. These traps would increase the leakage current paths governed by T1 and 

T2 Fig. 3-3.              

    In Fig. 3-4(a) and Fig. 3-4(b), The Id-Vg transfer characteristics of novel and 

conventional TFTs with different widths were compared. Obviously, in Fig. 3-4(a), at 

Vgs=30V, the ratio Ion (W=50)/Ion (W=10) is about 13. But in Fig. 3-4(b), at Vgs=30V, the 

ratio Ion (W=50)/Ion (W=10) is about 6.36. The former is two times larger than the latter. So, 

we believe that our novel structure will promote effectively on-state current as width 

increasing. We also proposed a model to explain the better on-state current improvement. In 

Fig. 3-5, the current transmission mechanism for the novel TFTs had been proposed. We 

suggested that it might have another path of current transmission compared with conventional 

sample. The active region under the whole of gate region was defined using gate mask. 
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Therefore, the width of active region would be equal to that of gate region (W’). The carriers 

could be transferred in this large-width active region. So, the proposed structure exhibits a 

better on-state current improvement.  

In Fig. 3-6(a), (b), (c), (d), (e) and (f), we show the characteristics of novel TFTs with 

different gate-overlapped length. Several reports have demonstrated that an offset structure 

has been widely used to reduced the leakage current and enhance device reliability by 

suppressing the electric field near the drain junction [9],[10]. However it might degrade the 

driving capability due to the large series resistance. We proposed a novel four-mask steps 

poly-Si TFT with thick S/D and thin channel regions. The basic concept of the structure is 

that the thin channel region is used to achieve high on-state current [11], and the thick drain 

region is used to reduce the lateral electric field, thereby suppressing the kink current and 

minimizing the leakage current. In Fig. 3-6(a), obviously, both the On/Off current ratio 

(measured at maximum on-state current/minimum off-state current) and the field effect 

mobility (measured at Vds =0.1V) for Lo = 4.5 µm is slightly higher than those of Lo = 2.5 

µm. It is because that the channel thickness of the gate overlap region is thicker than that of 

the main channel region, and the thicker channel thickness could be used to obtain the lower 

on-state current and higher off-state current .Therefore, the On/Off current ratio would be 

decreased with increasing of the gate overlap length. 

We summarize the above-mentioned results in Fig. 3-7(a) and (b).  
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3.2 The Stability Study of Novel Gate-Overlapped 

Low-Temperature Poly-Si TFTs with Stagger Source/Drain 

Regions  

 

Fig. 3-8(a), Fig. 3-8(b),Fig. 3-8(c), and Fig. 3-8(d) show that in two mode measurements, 

forward and reverse, these results would examine symmetry of novel TFTs. In Fig. 3-8(b), for 

on-state current, the result of forward measurement consists with the result of reverse 

measurement. However, for off-state current, the off-state current of the reverse measurement 

is higher than the forward measurement. We suggest that it is due to misalignment in 

gate-overlapped regions. Therefore, the device has larger overlap length near the source side 

in reverse measurement. So the drain electrical field of forward measurement would be higher 

than reverse measurement. it is well known that higher lateral electric field would cause a 

higher leakage current. Previous results would cause devices serious stability. Although 

misalignment error makes stability to be worse, we could solve the problem of the gate 

overlap misalignment using more accurate and full-automatic mask aligner. In the device of 

L=10µm, it also show similar result, as shown Fig. 3-8(b) and (b) 

      Fig. 3-9(a), (b), (c) and (d) both show Ids-Vds output characteristics of novel TFTs 

and conventional TFTs. Super-thin channel polysilicon TFTs are reported to have higher 
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current drive compared to their thicker film counterparts [12].  However, they experience a 

high electric filed at the channel/drain junction region when the device is operated in the 

saturation region. The high drain electrical filed would lead to hole accumulation in the 

floating body of the device [13],[14]. The hole accumulation causes a serious kink effect [15]. 

In Fig. 3-9(a), the kink effect don’t occur at Vgs=15V in the proposed structure; however, it 

happened at Vgs=10V, Vds=35V in the conventional structure. We could find that the 

elimination of the kink effect is obtained due to reduction in lateral at the channel/drain 

junction region of the proposed TFTs even if higher on-state current density compared to 

conventional TFTs. In Fig. 3-9(b), both the proposed and conventional TFTs have almost the 

same drain current Ids. We can find that the kink effect occurred at Vds=16V in the proposed 

structures. However, it had occurred at Vds=12V in the conventional structures. We appear to 

obtain results of suppressing the kink effect for the novel structures. We suggest the drain 

electrical field should be lowered as a result of thicker drain junction depth. By lowering drain 

electrical field, the effect of hole accumulation will be suppressed. Although we get the lower 

on-state current in Fig.3-9, it is worthy for us to get trade-off between the stability and high 

on-state current. 
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Chapter 4  Conclusions and Future Work 

 

4.1 conclusions 

In this latter, a novel n-channel gate-overlapped low-temperature Poly-Si TFT with a 

thicker source/drain region and thin channel was proposed and investigated.  The results 

shows that excellent current saturation characteristics at high bias are obtain in the proposed 

device, and exhibits kink-free I-V characteristics, low leakage current compared to 

conventional TFTs . Moreover, the total masks of our fabrication process are four masks, 

which are less than those of conventional process in staggered Poly-Si TFT. Therefore, the 

new process is simple, inexpensive, requires fewer steps than conventional methods, and 

appears to be quite promising for fabricating Poly-Si TFT’s in future high-performance 

large-area liquid crystal displays. 

 

4.2  Future  Work 

    We have proposed a gate-overlapped low-temperature Poly-Si TFTs with a thicker 

source/drain region and thin channel to improve conventional low-temperature Poly-Si TFTs 

performance. However, in order to further improve device electrical characteristics and apply 

to glass substrates, there are still some works worthy of being investigated. 

     We could adopt LDD structures to improve limited on-state current by gate-overlap and 
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we can use RTA process instead of furnace thermal annealing to further confirm optimal 

condition. Moreover, in the study topic of reliability, we could study degradation mechanism 

by analyzing the evolution of device parameters including transconductance, threshold 

voltage, and sub-threshold slope by dynamic stress and static stress.   
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Fig. 1-1. A process flow of the fabrication of Poly-Si 

MOSFET 
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Fig. 1-2. A cross sectional view of the self-aligned LDD poly-Si 

TFT 
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(a) Fabrication flow of offset (b) A cross sectional view of offset poly-Si TFT. gate 

using anodic oxidation 

Fig. 1-3. Process flow (a) and cross sectional view (b) of offset 

poly-Si TFT using anodic oxidation (AO) 
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Fig. 1-4. A cross sectional view of the semi-staggered poly-Si TFT 

with RPCVD SiO2 as a gate insulator 
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Fig. 1-5. A cross sectional view of an inverse staggered poly-Si 

TFT using PECVD SiNx and n+ a-Si:H layer 
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(h) Deposit PECVD TEOS oxide as passivation layer 
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Fig.2-1 Process flow of fabricating the Novel 

Low-temperature Poly-Si TFTs 
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Fig. 2-2(a) The Top-View of the novel structures  
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Fig. 2-2(b) The A-A’ cross section of the novel structures 
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Fig. 2-2(c) The B-B’ cross section of the novel structures  
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Table I   
 

Conventional/Novel 
TFTs 

On/off current 
ratio(Vgs=5V) 

 
Vth (V) 

 
 S (V/dec) 

 
µfe (cm/VS) 

 
Conventional 

 
7.78 x 106 

 

 
   10.4687 
 

 
1.816901 

 

 
11.91304 

  
    Novel  

 
  1.85 x107 
 

 
   11.97333 
 

 
1.516875 

 

 
10.6087 

 
 
 
 
Table I. Major electrical parameters of the conventional and novel Poly-Si 
TFTs . The On/Off current ratio is measured at Vgs= 5 V. The field-effect 
mobility (µfe) is measured in the linear region at a Vds of 0.1 V. The 
threshold voltage is defined at a normalized drain current of (100 nA) x 
(W/L) at Vgs = 5 V; W/L = 50/50 (µm/µm) 
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Table II 
 
 
Conventional/Novel 

TFTs 
On/off current 
ratio(Vgs=5V) 

 
Vth (V) 

 
 S (V/dec) 

 
µfe (cm/VS) 

 
Conventional 

 
1.67 x106 

 

 
  9.424227 
 

 
1.793857 

 

 
 9.33333 

  
    Novel  

 
  8.19x106 
 

 
  13.56097 
 

 
1.945159 

 

 
 6.89855 

 
 
 
 
Table II. Major electrical parameters of the conventional and novel Poly-Si 
TFTs . The On/Off current ratio is measured at Vgs= 5 V. The field-effect 
mobility (µfe) is measured in the linear region at a Vds of 0.1 V. The 
threshold voltage is defined at a normalized drain current of (100 nA) x 
(W/L) at Vgs = 5 V; W/L = 50/20 
(µm/µm)
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Fig. 3-1 the structure of the conventional TFTs 
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Fig. 3-2(a) Ids-Vgs transfer characteristics of the 

conventional and the novel LTPS TFTs for Vds 
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Fig. 3-2(b) Ids-Vgs transfer characteristics of the 

         conventional and the novel LTPS TFTs for Vds= 5 V         

; W/L= 10/25 µm/µm 
 
 
 
 
 
 
 
 
 



 49

-10 0 10 20 30
1E-12

1E-11

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4 W/L=50/50 µm/µm 
Vd=5V  LO=3.4µm

 Con.
 Novel

 

 
D

ra
in

 c
ur

re
nt

,Id
s 

(A
)

Gate Voltage,Vgs (V)

 
 

Fig. 3-2(c) Ids-Vgs transfer characteristics of the 

    conventional and the novel LTPS TFTs for Vds= 5 V           

    ; W/L= 50/50 µm/µm 
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Figure. 3-3 The basic structure of an n-channel poly-Si TFT and its band 

diagram with the three kinds of leakage current mechanisms.  G: The 

generation current ,T1: the thermionic field emission current, T2: the field 

emission current, Efns : quasi-Fermi level of electron at the source, Ef p : 

quasi-Fermi level of hole, Efnd : quasi-Fermi level of electron at the drain. 
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Fig.3-4 (a) Ids-Vgs transfer characteristics of the novel 

LTPS TFTs with different width for Vds= 5V; 
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Fig.3-4 (b) Ids-Vgs transfer characteristics of the conventional 

LTPS TFTs with different width for Vds= 5V; 

W/L=50/20µm/µm, W/L=10/20 µm/ 
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Fig. 3-5 The current transmission mechanism of the novel 
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Fig.3-6 (a) Ids-Vgs transfer characteristics of the novel LTPS       
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Fig.3-6 (b) Ids-Vgs transfer characteristics of the novel 

LTPS TFTs versus overlapped length for Vds= 1 V ; W/L= 

50/50 µm/µm                                              
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Fig.3-6 (c) Ids-Vgs transfer characteristics of the novel LTPS 

TFTs versus overlapped length for Vds= 5 V ; W/L= 10/25 
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Fig.3-6 (d) Ids-Vgs transfer characteristics of the novel LTPS 

TFTs versus overlapped length for Vds= 1 V ; W/L= 10/25 

µm/µm 
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       Fig.3-6 (e) Ids-Vgs transfer characteristics of the novel 

LTPS TFTs versus overlapped length for Vds= 5 V ; W/L= 

50/25 µm/µm 
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Fig.3-6 (f) Ids-Vgs transfer characteristics of the novel LTPS 

TFTs versus overlapped length for Vds= 5 V ; W/L= 10/50 

µm/µm 
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Fig.3-7(a) The minimum off-state current versus the gate 

overlapped length for different W/L . 
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Fig.3-7(b) The On/Off current ratio versus the gate 

overlapped length for different W/L. 
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Fig. 3-8(a) The symmetry study of the novel LTPS TFTs in 

forward and reverse measurement for Vds= 5 V; W/L=  

50/20 µm/µm 
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Fig. 3-8(b) The symmetry study of the novel LTPS TFTs in 

forward and reverse measurement for Vds= 5 V ; W/L=  

50/50 µm/µm 
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Fig. 3-8(c) The symmetry study of the novel LTPS TFTs in 

forward and reverse measurement for Vds= 5 V ; W/L=  

10/50 µm/µm 
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Fig. 3-8(d) The symmetry study of the novel LTPS TFTs in 

forward and reverse measurement for Vds= 5 V ; W/L=  

10/20 µm/µm 
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Fig. 3-9(a) Ids-Vds output characteristics of the novel and 

the conventional TFTs for W/L= 50/20µm/µm 
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Fig. 3-9(b) Ids-Vds output characteristics of the novel and 

the conventional TFTs for W/L= 50/20µm/µm 
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Fig. 3-9(c)Ids-Vds output characteristics of the novel and the 

conventional TFTs for W/L= 50/50 µm/µm 
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Fig. 3-9(d) Ids-Vds output characteristics of the novel and the           

conventional TFTs for W/L= 50/50µm/µm 
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