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Implementation of a GPU Based Main Memory Database

Student: Jyu-Jie Hsu Advisor: Shyan-Ming Yuan

Department of Computer Science and Engineering

National Chiao Tung University

Abstract

Because the development of computer network brings rapidly data exchanging between
computers, data base is playing the quite important role. In the last years, NVIDIA has
worked on the development of GPGPU, and a platform of parallel computing, CUDA, was
provided. Users can design their. own application.using the familiar program language, C.
Additionally, the growth of memory makes the feasibility of main memory data base, and so
we implemented an experimental memory data base on GPU memory for observing how the
computation power of GPU can improve common operations of data base.

According to the features of GPU hardware, we stored all records of data base in the
memory of graphic card. The control flows handled by host CPU and the computations of
each function handled by GPU. Finally, we compare the performance of our data base with
SQLite memory data base. The experiment result shows that there is a turning point denotes a
number of records in query result (records queried). The performance of our data base is
better than SQLite memory data base while the number of records queried exceeds the
number denoted by turning point. Finally, we figured out a ratio of data queried to total
number of data according to the observation of the turning points in different functions. Our
experimental DB has better performance than SQLite as long as the ratio exceeds

0.161%~2.161%.
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Chapter 1 Introduction

1.1 Preface

In the last years, data exchanging of applications is getting more necessary, particularly
due to the proliferation of web data in various formats and the emergence of e-business
applications that need to communicate data yet remain autonomous [14] . Responding to this
demand, many data base management system have been built. Data base management system
collects information and provides functions for easily querying, updating, and deleting data.
There are many applications from a handhold device (ex: cell phone or PDA) to a server

computer of webs have used data base to manage their information for requirements.

1.2 Motivation

The performance of data base management system is important for many applications
such as a middle size web site_ normally has thousands of members, and the responding time
of querying the data base must be small for the requirement of clients. Besides, the tool Kits
development of general purpose GPU" (GPGPU) is getting more convenient to use.
Developers have designed many algorithms and application on GPU for better performance.

A data table is a collection of records, and these records are compared one by one on
query operation. Even though many non-candidate data are filtered by one comparison
operation when an index structure is adopted, for example a b-tree, the complexity for each
operation is still O (log n). GPU is a multi-core processor of SIMD architecture. Hundreds of
threads can be issued while the GPU is running. For example a 9800 GT has 16MP and 8
streaming processor in each MP can issue 128 threads simultaneously. Implementation of data
base on GPU may bring some degree of parallel computing for functions including data query,
data sorting, and aggregated functions on each data groups. It is interesting how much

performance of data base that GPU can improve.
1



1.3 Problem Description

We choose the CUDA tool kit as our programming platform. Using CUDA to
developing applications has to face several constrains of GPU hardware limitation as
followings:

(1) The limitation of registers and shared memory: the number of registers and shared
memory in one multi-processor (MP) of GPU is finite. One MP is a unit of
dispatching one block consists of several threads. The number of registers and shared
memory used by threads dominate how many threads can be issued in one block.

(2) Divergent Branch: The branching within the same block could be expensive, if
threads take different execution path, they must be serialized by the thread scheduler
on GPU.

(3) The overhead of uploading data- from CPU ito GPU is large: If each data was
uploaded to GPU when query was issued and- downloaded after computing, the
improvement of performance will be reduced.

(4) Non-Coalesced global memory..access:~Multiple global memory access is grouped
into once memory access if the access pattern of half warp is sequential. It is called
coalesced memory access. If the access pattern is not sequential, than multiple
memory access are issued without grouping.

For (1), each thread use registers and shared memory as less as possible, and threads are
issued as the same number of all records in a data table to exploit the computational power of
GPU. The host CPU performs the partial flow control of our data base management system
for the reason of (2). The entire data of our data base is stored in GPU memory for (3), which
can avoid the overhead of uploading and downloading large amount of data for each query.
Finally, our data are stored in data table in column major for coalesced memory access,

because threads usually read/write the same column of records. When the address of the same



column of records is sequential in memory space, coalesced memory access will easily

occurs.

1.4 Research Objective

For the reason we mentioned above, we implemented several common functions of our
data base on the GPU. We evaluated the execution time of our experimental data base and
compared it with SQLite memory data base in order to observe the differences of behaviors

and performance.

1.5 Research Contribution

According to the result of our experiment, there is one turning point between data base
and SQLite memory database. We generalize each turning point for each function with
different total number of records: The trends of each turning point changing are approximate
linear variation. The turning points denote a ratio of number of data queried to total number of
records in data table. The performance of our data base is-always better then SQLite memory

data base while the ratio is greater than the turning point.



Chapter 2 Background and Related Work

2.1 Graphic Processor Unit (GPU)

A graphics processing unit (GPU) is a processor that offloads 3D graphics rendering
from the microprocessor. The primary reason that GPUs deliver such high performance is that
the GPU is a highly parallel machine. GPUs keep these processors busy by juggling
thousands of parallel computational threads. In theory, GPUs are capable of performing any
computation that can be mapped to the stream computing model. This model has been
exploited for ray-tracing [15], global illumination [16], matrix multiplies [17] , geometric
computations [18] and the other applications ([25][26][27][28][29][30]).

The hardware evolutions of .GPUfrom-fix function unit to programmable pipeline
consist of multiple SIMT processor satisfied not only graphic processing but also general
purpose demands. In a programmable pipeline model, there are many extensions of OpenGL
added by OpenGL ARB for user programming purpose. Developers treat a compute-intensive
problem as multiple pieces, and compute data as pixel-rendering process to solve the whole
problem [7][12]. The comparison of computation power between CPU and GPU was depicted
as Figure 2 - 1.

b GT200

HVIDIA GPU

—#—Intel CPU G0 Go2
780 Ultra
g G80
o
[=]
& 500
(G}
= G71
o
a
GT0
260 3.2GH=
NV3s  NV40 3.0 GHz Harpertown
NV30 Core2 Duo
- H_‘___'__'———.—/d.
Jan Jun Apr Jun Mar Nov May Jun
2003 2004 2005 2006 2007 2008
GT200 = GeForce GTX 280 G71 = GeForce 7900 GTX MV35 = GeForce FX 5950 Ultra
G92 = GeForce 9800 GTX G70 = GeForce 7800 GTX MNV30 = GeForce FX 5800
G80 = GeForce 8800 GTX MNV40 = GeForce 6800 Ultra

Figure 2 - 1 The comparison of computation power between CPU and GPU.[11]
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The primary difference between CPU and GPU is that the GPU is specialized for
rendering graphics, highly parallel computations. As illustrated by Figure 2 - 2 GPU devotes
more transistors to data processing rather than data caching and flow control. GPU executes
efficiently as a problem can be expressed as parallel-data computation. Unfortunately,
mapping our algorithms or problems to OpenGL as pixel-rendering processing is not
straightforward. Now, there are two biggest GPU manufacturers, NVIDIA and AMD/ATI,
working on providing program interfaces, CUDA and CTM, to make user develop their own

program easier. We will introduce them later.

Figure 2 -2 Layout of CPU and GPU[11]

Host CPU

System Memory

Host interface

Rendering Compute work
distribution distribution

T

Interconnection network

ROP L2 ROP L2 ROP L2 ROP L2

memory memory memory memory

Figure 2 - 3 Architecture of Telsa GPUI[8]
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As showed in Figure 2 - 3, a multi-processor (MP) has 8 streaming process which can
perform one single precise floating point computation [9]. There 16 MPs in 9800GT and can

perform 128 single precise floating point computations simultaneously [5].

2.2 Compute Unified Device Architecture by NVIDIA

CUDA is a general purpose parallel computing architecture including a new parallel
programming model and an instruction set architecture. The CUDA programming model
allows developers to exploit that parallelism by writing natural, straightforward C code that
will then run in thousands or millions of parallel invocations, or threads[6] [8]. Source files
include a mix of host code (i.e. code that executed on the host) and device code (i.e. code that
executed on the device). When running:a CUDA program, developers simply run the program
on the host CPU. The CUDA driver automatically loads.and executes the device programs on
the GPU [11]

In the CUDA programming model; the GPU is treated as a co-processor onto which an
application running on a CPU can launch a massively-parallel compute kernel. This is called
massively threaded architecture [2]. The kernel is comprised of a grid of scalar threads. Each
thread is given a unique identifier (thread ID) which can be used to help divide up work
among the threads. Within a grid, threads are grouped into blocks, which are also referred to
as cooperative thread arrays (CTAs). Within a single CTA threads have access to a common

fast memory called the shared memory and can, if desired, perform barrier synchronizations

Elf



Device

Multiprocessor N

Multiprocessor 2

Multiprocessor 1

Figure 2 - 4 A set of SIMT multiprocessors with on-chip shared memory [10]

Threads running on the GPW inthe CUDA programming model have access to several
memory regions including on chip memory, registers, shared memory, constant cache, texture
cache, and off chip memory, global memory constant memory and texture memory [12].

As illustrated by Figure 2 = 4 each multi-processor can access on/off chip memory of the

several types as following:

Table 2 - 1 Classification of GPU Memory

Name Accessibility Scope Speed Cache factor
Registers read/write per-thread | immediate (on chip) X --

Local Memory read/write per-thread 400~600 clock N Compiler Auto
Shared Memory read/write per-block 4 clock (on chip) N Memory conflict
Global Memory read/write per grid 400~600 clock N Non-coalescing

Constant Memory read only per-grid 4 or 400~600 Y Cache miss
Texture Memory read only per-grid 4 or 400~600 Y Cache miss

Device memory consists of constant memory, texture memory, global memory, and local
memory. Constant memory and texture memory are read-only regions of device memory and
can be allocated before calling kernel functions. The on chip caches, constant cache and

texture cache (read only), have brought significant performance increasing of both memories.
7



Threads can read/write the global memory directly, but there is no cache supported for global
memory. Finally, automatic variables that are likely to be placed in local memory are large
structures or arrays that would consume too much register space, and arrays for which the
compiler cannot determine that they are indexed with constant quantities.[11] Because the
local memory space is not cached, the usage of local memory should be avoided. The
overhead of accessing local memory is large

To improve memory system efficiency, it thus makes sense to group accesses from
multiple, concurrently issued, scalar threads into a single access to a small, contiguous
memory region. The CUDA programming guide indicates that parallel memory accesses from
every half-warp of 16. That is called memory coalescing. Coalescing is achieved for the
pattern of sequence addresses requested by the half-warp. In GeForce 9800 GT (G92), if a
half-warp addresses words in 16 different segments, 16.memory transactions are issued (one
for each segment). One coalesced memory access results.in a single memory transaction not

16 memory transactions. Example of coalesced memory access patterns is depicted as Figure

2-5.
Thread 0 Address 128 Thread 0 Address 128
Thread 1 Address 132 Thread 1 Address 132
Thread 2 Address 136 Thread 2 Address 136
Thread 3 Address 140 Thread 3 Address 140
Thread 4 Address 144 Thread 4 Address 144
Thread 5 Address 148 Thread 5 Address 148

Figure 2 - 5 Patterns of coalesced memory access (left or right)[11]

2.2.1 Parallel Prefix Sum and Sorting Algorithm

CUDPP is the CUDA Data Parallel Primitives Library. CUDPP is a library of
8



data-parallel algorithm primitives such as parallel prefix-sum (scan) [4] , parallel sort [13] and
parallel reduction. Because the original sorting algorithm didn’t support key-value pair sorting,
we have to modify the sorting algorithm for key-value pair sorting.

The prefix sum (also known as the scan) is an operation on lists in which each element
in the result list is obtained from the sum of the elements in the operand list up to its index [3].
There are two kinds of prefix sum, exclusive prefix sum and inclusive prefix sum. In
exclusive prefix sum, the first element in the result array is identity (O for following operation)
and the last element of the operand array is not used; whereas inclusive prefix sum, all
elements in operand array are used.

In chapter 3, we will discuss how to use prefix sum to calculate the position of selected

data and use the sorting algorithm of maodified version to sort entire data table.

2.3 Close To Metal (CTM) by AMD/ATI

Abbreviated as CTM, Close to Metal is-an ATl device that is designed to expose the
parallel array of floating-point processors found in /ATl graphics hardware. Compared to
CUDA, CTM has much lower level programming style, assembly-like, than CUDA without
the comprehensive toolkits, compiler, or high-level C language construct. CTM is controlled
with a few commands to set parameters, invalidate and flush caches, and start the processors
in the processing array. It’s not easy to mapping applications to CTM program for developers,

therefore CUDA is much popular than CTM.

2.4 Main Memory Database

A main memory database (MMDB; also In-memory database system or IMDB) is a
database management system that primarily relies on main memory for computer data storage.
Traditional databases are built to store data on disk. Disk 1/O, as a mechanical process, is

tremendously expensive in terms of performance. One approach to achieving high



performance in a database management system is to store the database in main memory rather
than on disk. One can then design new data structures aid algorithms oriented towards making
efficient use of CPU cycles and memory space rather than minimizing disk accesses and using
disk space efficiently [1]. As semiconductor memory becomes cheaper and chip densities
increase, it becomes feasible to store larger and larger databases in memory, making
MMDB?’s a reality. A computer’s main memory clearly has different properties from that of
magnetic disks as following:

1. The access time for main memory is orders of magnitude less than for disk
storage.

2. Main memory is normally volatile, while disk storage is not. However, it is
possible (at some cost) ta construct nonvolatile main memory

In addition, index structure of data table affects the performance of database operations.
The B-tree (or the B+-tree) is'the most popular index structure in current database systems. In
a tree, records are stored in locations called leaves. The starting point is called the root. The
maximum number of children per node is called the order of the tree. The maximum number
of access operations required to reach the desired leaf (data stored on the leaf) is called the
depth (level). The bigger the order, the more leaves and nodes you can put at a certain depth.
This means that there are fewer levels to traverse to get to the leaf (which contains the data
you want). There several properties of B-tree as following: The root is either a leaf or it has at
least two non-empty sub-trees and at most m non-empty sub-trees. Following we discussed
are the properties of the three main operations of B-tree search, insertion, and deletion.

1. Search: The algorithm is similar to binary search tree. Starting at the root, the
tree is traversed top to bottom, choosing the child pointer whose separation
values are on either side of the value that is being searched. Binary search is
typically (but not necessarily) used within nodes to find the separation values

and child tree of interest.
10



2. Insertion: In insertion a B-tree undergoes changes that must maintain:
I. Its height balance.

ii. Its leaves to be at the same level.

iii. Each of its nodes, except the root, to be at least half full (i.e., to
contain a minimum of [m / 2 |- 1 keys, where m is the order of the
tree).

3. Deletion: Like insertion, deletion must be on a leaf node. If the key to be
deleted is not in a leaf, swap it with either its successor or predecessor.

An important observation is that the number of preliminary operations for each of the
major functions (search, insert, delete) in B-tree can be done in time proportional to the height
of the B-tree, which is no more .than O(1+log(n+1)). Besides, the sequence access
performance of B-tree

Increased attention has been given on redesigning traditional database algorithms for
fully utilizing the available” architectural features and for exploiting parallel execution
possibilities, minimizing memory. and resource -stalls, and reducing branch miss

predictions.[19][20][21][22][23].
2.5 Related Works

2.5.1 Implementing Database Operation Using SIMD Instructions

In the 2002, the paper “Implementing Database Operation Using SIMD Instructions”
proposed and implemented several algorithms using SIMD Instructions for Data base
operations. For this particular instruction, both operands are using 128-bit register. Each
source operand contains four 32-bit single-precision floating-point values, and the destination
operand contains the results of the operation performed in parallel on the corresponding
values in each operand. The result showed that using a SIMD parallelism of four, the CPU

time for the proposed algorithms is from 10% to more than four times less than for the

11



traditional algorithms.

2.5.2 Fast Computation of Database Operations using Graphics

Processors

In the 2004, the paper “Fast Computation of Database Operations using Graphics
Processors” [31] implemented several operations of data base on NVIDIA GeForce FX 5900
without CUDA tool kits. Data was stored on the GPU as textures and used alpha, stencil and
depth test unit in pixel processing unit to perform corresponding algorithms. The result shows

the GPU implementation of operations is about 2 times faster than CPU implementation.
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Chapter 3 Building a Data Base on GPU Memory

In this chapter, we listed several functions of conventional database which are not
parallel processing on CPU, and we proposed architecture and implemented them for our data
base system. Through exploiting multi-threading of GPU, we can divide a large data set to a
small data unit executed on each GPU processing core. We implemented an experimental data
base and store entire data on GPU memory (called GPU DB). The implementation methods of

GPU DB are described in section 3.3 in detail.

3.1 Architecture of the Data Base

As Table 3 - 1 listed the common functions of Data Base that we implement on GPU.

Table 3 - 1 Implemented functions in our data base

Function Name

Selection Query

Selection Query and Sorting Data

Selection Query and Data Grouping
operations(SUM, MAX, MIN, COUNT,
AVG)

Data Insert

Data Insert According to Selection Query

Data Update

Corresponding SQL Language Example

SELECT store_name

FROM Store_Information

WHERE Sales > 1000

SELECT store_name, Sales, Date
FROM Store_Information

ORDER BY Sales

SELECT store_name, SUM(Sales)
FROM Store_Information

GROUP BY store_name

INSERT INTO Store_Information
(store_name, Sales, Date)

VALUES ('Los Angeles', 900, ‘Jan-10-1999")
INSERT INTO Store_Information
(store_name, Sales, Date)

SELECT store_name, Sales, Date
FROM Sales_Information

WHERE Year(Date) = 1998
UPDATE Store_Information

SET Sales = 500

WHERE store_name = "Los Angeles"

13



AND Date = "Jan-08-1999"

Data Delete DELETE FROM Store_Information
WHERE store_name = "Los Angeles"

The data base system consists of two different device, host computer and GPU device.
Because GPU communicates with CPU through PCI-Express bus; the cost to
download/upload data from/to GPU would be expensive. In the initial stage, all data and
tables was loaded to GPU memory via main memory of host computer and then memory
spaces were freed after loading. Our data base system keeps information and pointers of tables
on main memory for data base manipulation. The entire architecture was depicted in Figure 3
- 1. Because primary functions are executed on GPU, overhead of communication between

GPU and CPU is avoided.

Hard Disk

Back up Data

Main Memory

Application Data Base
API

GPU memory

Resident Data

Figure 3 - 1 Architecture of entire system

We also implemented table management functions, Create Table and Drop Table.
Because table management functions are not impotent to our research, and the methods are
trivial, we will not describe them in this paper.

14



3.2 Modify the CUDPP Library

CUDPP offers a serial efficient library to developers. Several important algorithms are
implemented in these libraries, for instance parallel prefix sum algorithm and parallel sorting
algorithm. Unfortunately, the sorting algorithm is not available for sorting entire table
according to the value of one of the columns

Sorting algorithm of CUDPP can sort a 1-D array as input, and output a 1-D array as a
result. We modified the sorting algorithm such that outputs are two 1-D arrays, one of them is
sorted data, and the other is a index array denotes original position of data after sorting. Thus,
we can move the data of the other columns according to the index after executing sorting
process to sort entire table.

The modified sorting function has-a 1-D array.as an additional parameter. Before calling
sorting function, the additional 1-D array is initiated -as sequential increasing numbers.
Assuming there are N elements data should be sorted, then the additional 1-D array will be set
numbers {0...N-1} as the initial index of data.

During the modified function sorts the N elements data, it moves both data and the index
value of the additional array to their corresponding position. After sorting process, the index
array point to original position of each data. Thus all records in data table can be sorted

according to this index array.

3.3 Functions of Data Base on GPU

In this section, we will focus on how the functions listed in section 3.1 be implemented

in detail.

3.3.1 Data Structure

At first, conventional data base uses tree structure to manage data or indices. Obviously,

B-tree searching algorithm is not appropriate in parallel computing architecture. Unparallel
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computing in each core can’t bring the potential computing capability of GPU into full play.

The access to device memory usually takes up to 200~300 clocks, which is relatively
slow to on-chip memory. Searching in B-tree will bring too many access times to device
memory that attacks the performance of GPU. Normally, tree data structure is constructed by
link list nodes. Link list nodes are connected by pointers, so achieving continuous memory
access is not easy. Non-continuous memory access reduces the opportunity of coalesced
memory access.

In order to solve problems we mentioned before, array is used as a data structure in GPU
memory which stores tables and temporal data during computation. Searching in array can be
easier than tree structure. An array supports random access. Data can be compared in parallel

according to thread ID.

Column0O Column1 Column?2

0 1 2
s 0 1 2 3
Column
= s
3 Column
__ I
- g Col;mn
o 9
T 11 1
Col -major Dat
Row-major Data Table oumrfr:;)?ior -

Figure 3 - 2 Data structure of data table.

Second, to reduce the complexity of design, a column is usually a unit of parallel
computation in data base. Because the address of GPU memory is in row-major order, storing
our tables in row major order will increase the opportunity of non-coalesced memory access.
To avoid this problem, tables are stored in column major in GPU memory.

Figure 3 - 2 Data structure of data table. shows the relationship between records and memory
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address. The data of entire column can be easily compared with conditions by storing data
table in column major. Threads performs the same operation in each data and sequentially

access memory that increases the opportunity of coalesced memory access.

3.3.2 Selection Query

At first, let’s consider how Selection Query works in basis. After condition parameters
are set, the process compares each column of every record. Assume all columns of one record
meet all condition parameters; the record is selected and then set “1” to the corresponding
position of flag array. Finally, we check the flag array of table, then copy these records
marked and to another table as a result. To parallelize Selection Query process, one thread is
assigned to one record. Each thread compares all columns of their assigned record iteratively,
but all threads compare each record.in-parallel

Acutely, there are two. perplexities -we have- to consider before starting the
implementation work:

1. Inlogical operation, the priority of “AND™.and “OR” are different. The different
priorities determine ‘which.operator supposed to be executed fist. In common
case, the priority of “AND” is higher than “OR”, so “AND” operator supposed
to be executed first.

2. The branching within the same block could be expensive as they are executed
on a SIMD processor, where only one instruction can be performed (with
multiple different data source). So if threads take different execution path, they
must be serialized by the thread scheduler on GPU (divergence branch).

To solve these perplexities, the ordinary prefix notation has to be transformed into
postfix notation before starting process. Each record needs one stack used by threads during
the postfix notation is processed. In Figure 3 - 3, threads compared each record with condition

parameters set by user and manipulate stacks to calculate which record is selected.
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Figure 3 - 3 Process of Selection Query

Because the branching within the same block could be expensive, host computer should
be responsible for the partial flow controlto avoid-divergence branch.

As entire thread finished,the value in the bottom of each stack denote which record was
selected. Then, we plan to copy this selected records and move to another 2-D array as a final
result and transmit it to host. Now we are focus-on what the position of these selected records
in the 2-D Array is correct.

This problem is easy to solve by using the function provided by CUDPP, cudppScan. The
cudppScan performs a prefix sum operation on the flag array in GPU memory and outputs the
array of corresponding position. Beside, the number of total selected records is the last value
of the output which determines the size of result table. The concept of Selection Query we

implemented is described as Figure 3 - 4, Figure 3 - 5, Figure 3 - 6.

Algorithm SelectionQuery_SetSelectFlag(QueryTable, QueryData, selected flag)
Input: QueryData (denotes what data supposed to be selected)
Output: selected flag (an array of flags denotes which record is selected)
Begin
declare stack_d[][];

declare top_d[];
declare integer cnt;
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cudaMemoryAlloc2DArray(stack_d, stack_size);

cudaMmeoryAlloc(top_d, topPointer_size);

for i=1 to 2*numberOfOperand-1 do
switch(token of postfix) {
case operand:
switch(operator) {
case “>": call selectGreater_kernelProgram
case “<”: call selectSmaller_kernelProgram

7.

case “=": call selectEqual_kernelProgram

}
case LogicOperator AND:

call selectAND_kernelProgram
case LogicOperator_OR:

call selectOR_kernelProgram

Figure 3 - 4 Algorithm of Selection Query

Algorithm SelectGreater _kernelProgram (dataTable, stack, top, selected flag,
column)
Input: dataTable (the address of data table in the GPU memory)
column(index of column)
Output: selected_flag (an array of flags denotes which record is selected)
begin
for idx = 1 to (the size of data table) do in parallel
top[idx]++;
if (dataTable[column] [idx] > value) then
stack[index][top[idx]] =1;
else
stack[index][top[idx]] =0;
end

Figure 3 - 5 Algorithm of Greater Process in Selection Query
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Algorithm selectAND_kernelProgram (dataTable, stack, top, selected_flag)
Input: dataTable (the address of data table in the GPU memory)
Output: selected_flag (an array of flags denotes which record is selected)
begin
for index = 1 to (the size of data table) do in parallel
stack[index][ top[index]-1] = stack[index][ top[index]-1] &
stack[index][ top[index]];
top[index]- -;
end

Figure 3 - 6 Algorithm of AND Process in Selection Query

0 1 2 3 4 5 6 7 8 9
lol1]lo]lofl1]ol1]o0]l0]o0]

Flags of selected

records
Pre-fix sum loflof[1]l1]l1]2]2]3]3]3]
t0 t1 t2 t3 t4 t5 tj::: t7 t8 t9
Data table
o 1 2 3 4 5 66 7 8 9
e !
Result table

o 1 2

Figure 3 - 7 Process of moving data queried to the result table.

The Figure 3 - 7 shows the algorithm of moving records to result table. Assume we have
an 10 records table, so we assign 10 threads to each record. In Figure 3 - 7, t0~t9 means
threads with tread ID [0] ~ thread ID [9]. Each thread of thread ID [i] checks two values, one
is in the flags of selected records and the other one is in the result array of pre-fix sum
function. If the value in the flag array of selected records is “1” which means the value of
corresponding address in the result array of pre-fix sum function is the new position of

selected record in result table. Finally, duplicate selected records and move to the result table.

20



3.3.3 Sorting Data

After selection query, the entire result table can be sorted according to a key column
identified by user. This entire process is commonly called sorting key-value pairs.

The index of data to denote original position is necessary for sorting key-value pairs. As
we mentioned in section 3.2, we modified the cudppSort, a function provide by CUDPP
library. The cudppSort of modified version takes two 1-D array as inputs. The outputs of
modified cudppSort include one sorted array and index array of original data array. The
example of index array is showed as Figure 3 - 8. The algorithm of Data Sorting we
implemented is described as Figure 3 - 9, and Figure 3 - 10.

0 1 2 3 4 5 & 7 B 9

Unsorted data 9|1 8|1 7]6]|]5]1413]12]1]1]0

[+ 1 2 3 4 5 [ 7 g8 9

Index hefore sorting gl 1] 2] 3

sorted data 61 1|1 2] 3|4 5[6] 7] 8] 69

Index after sorting 9| 8|7|6|5|4a|3|2]1]o0

Figure 3 - 8 Modified algorithm of parallel sorting

Algorithm DataSorting (dataTable, sortedTable, selected_flag, key)
Input: dataTable (the result Table of Selection Query)
key(a column number for sorting key-value pairs)
Output: sortedTable
begin
cudaMmeoryAlloc (sortdata_input, number of records queried);
cudaMmeoryAlloc (sortdata_output, number of records queried);
cudaMmeoryAlloc (sortdata_index, number of records queried);
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copy the data of key column from dataTable to sortdata_input[]

for index=1 to number of records queried do in parallel
sortdata_index[index]=index;

cudppSortModfied (sortdata_output, sortdata_index, sortdata_input, number of
elements);

mvSort_kernelProgram (sortedTable, dataTable, number of elements,
sortdata_index );  //copy data from dataTable according to sortdata_index

Figure 3 - 9 Algorithm of Data Sorting

Algorithm mvSort_kernelProgram (sortedTable, dataTable, number of elements,
sortdata_index )
Input: dataTable (the starting address of data table in the GPU memory)
sortdata_index (an array of index denote the original address of records.)
Output: sortedTable (a table with sorted data according to the sortdata_index)
Begin
for columnldx = 0 to (the number of columns) do
for index = 1 to (the number of records queried) do in parallel
sortedTable[columnldx][ index] =
sortedTable[columnldx][ sortdata_index[index]]
stack[index][ top[index]-1] = stack[index][ top[index]-1] &
stack[index][ top[index]];

end

Figure 3 - 10 Algorithm of moving data after sorting

As showed in Figure 3 - 8, values of address [i] in index means which data in original
array was moved to address [i] after sorting. For parallelism, threads are assigned to each

column of records and move them in parallel according to index array.

3.3.4 Data Grouping

The Data Grouping is used in conjunction with the aggregate functions to group the

result-set by one or more columns. For example, the left of Table 3 - 2 is our data table, and
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the right table is our result table after Data Grouping.

Table 3 - 2 Data Table (left) and Result Table (right)

group  value group value
1 145 1 399
1 254 2 645
2 645

At beginning, data scattered irregularly over the data table. In order to divide data into
several groups, the entire table has to be sorted according to the column *“group”. After sorting,
the data with the same group is put together in the table. Then, we can move on next step,
calculate the aggregate functions to-group.

There is a function provided by CUDPP Library, cudppSegmentationScan, can help us to
calculate the aggregate functions to group. Flags will be-set to dedicate the start address of

every group according to sorted column of group such as-Figure 3 - 11.

Unsorted data 3|!5(3|1]2|4|5 1|52

sorted data 111122334 |5|5]|5

Flags of
segmentation ojo|l1]|o|1]|]O0|1]1]0]|0O
Scan

Figure 3 - 11 Setting flags of segmentation Scan
Every address [i] and address [i-1] is checked by the thread with thread ID [i]. If the
values in address [i] and address [i-1] are not equal, the flag of address [i] will be set in flag
array. The flag array is an input of cudappSegmentationScan. There are several algorithms of

cudppSegmentationScan can perform. We implemented SUM, COUNT, MAX, MIN and AVG
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which included in the most of data base. We can directly implement SUM, MAX and MIN
using sum, min, and max algorithms provided by cudppSegmentationScan. For COUNT, we
need another array and all values are set as ‘1’ in the array. Then, the output of
cudppSegmentationScan with sum algorithm applied to this array will be the result of
COUNT (Figure 3 - 12). Finally, the result of AVG can be calculated through divide SUM by
COUNT. The basic concept of Data Grouping was listed in Figure 3 - 13, Figure 3- 14

Flags of o 1 2 3 4 5 6 7 8 9
segmentation o|lol1]o0|1|O0|l1|1]0]0O

Scan
l

5
COUNT 11211121211 ]2]3

Figure 3 - 12 Process of COUNT function

Algorithm DataGroup (resultOfSelect, QueryData, number of data queried)

Input: resultOfSelect (a data table of Selection Query result)

Output: sortedTable

begin
cudaMmeoryAlloc(sort_idata, number of data queried);
cudaMmeoryAlloc(sort_odata, number of data queried);
cudaMmeoryAlloc(sort_index, number of data queried);
cudaMmeoryAlloc(grp_idata, number of data queried);
cudaMmeoryAlloc(grp_odata, number of data queried);
cudaMmeoryAlloc(flag_d, number of data queried+1);
cudaMmeoryAlloc(grp_icnt, number of data queried);
cudaMmeoryAlloc(grp_ocnt, number of data queried);

for index=1 to number of records queried do in parallel
sort_index [index]=index;
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copy the data of group from data Table to sort_idata;
cudppSortModfied(sort_odata, sort_index, sort_idata, number of elements);

setGrplnput_kernelProgram(grp_idata, flag_d, sort_odata, resultOfSelect)
/I set the flag for segmentation scan and data of the aggregate functions

switch(QueryData ->funcOp){

case DB_SUM:
segmentationScan.op = CUDPP_ADD;
break;

case DB_AVG:
segmentationScan.op = CUDPP_ADD;
break;

case DB_MIN:
segmentationScan.op = CUDPP_MIN;
break;

case DB_MAX:
segmentationScan.op = CUDPP_MAX;
break;

default:

cudppSegmentedScan(grp_odata, grp_idata, flag_d, number of elements);
if (QueryData->funcOp==DB_COUNT]|| QueryData->funcOp==DB_AVG){

for index=1 to number of records queried do in parallel
grp_icnt [index]=1;

segmentationScan.op = CUDPP_ADD;
cudppSegmentedScan(grp_ocnt, grp_icnt, flag_d, number of elements);

switch(QueryData ->funcOp){
case DB_COUNT:
mvGrp_kernelProgram;
break;
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case DB_AVG:
mvGrpAVG_kernelProgram;
break;

default:
mvGrp_kernelProgram;
break;

return the result Table of DataGroup
end

Figure 3 - 13 Algorithm of Data Group

Algorithm mvGrpAVG_kernelProgram (resultTable, sort_odata, grp_odata,
grp_ocnt, flag, number of data queried)
Input: sort_odata (group data)
grp_odata (result of the aggregate function, SUM)
grp_ocnt (number of elements in each group)
flag (the fist position of data in each group)
Output: resultTable (result of Data Group)
begin

for idx = 1 to idx=number of data queried do in parallel
if(flag[idx]=1){
resultTable[columnO][resultindex] = sort_odata[idx-1]
resultTable[column1][resultindex] = grp_odata[addr-1]/grp_ocnt[addr-1];
¥

if (threaded=0) {
resultTable[columnO][number of data queried]=sort_odata[number of data
queried -1];
resultTable[columnl1][number of data queried] = grp_odata[number of data
queried -1] / grp_ocnt[number of data queried -1];
¥

end

Figure 3 - 14 Algorithm of AVG process in Data Group
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3.3.5 Data Update

The idea of data update is trivial. There is a flag array processed by Selection Query
denote which record is selected. Then, update date table according to the flag array. Each
records marked in the flag array is updated in parallel. One thread updates one record; the

speed up advance is limited by speed of memory write.

3.3.6 Data Delete

2-D array is our data structure of data table. As some data are deleted, the other data in
the table has to be moved for alignment. In opposition to array, deleting data in link list is
easier without moving other data but modify the pointers. However, the data which are not
deleted will be moved to a new 2-D array allocated as new data table. The pointer in host of
original data table will be replaced by new data table; then free the space of the original table.
Like Data Update, the flag array: s used to specify which data is selected. These selected data
should be deleted. Because the non-deleted data should be moved from original table to new
table, the flag are reversed to denote the non-deleted data. Finally, we move the non-deleted
data from original table to result table. Then the original table was freed and replaced by the

result table.

3.3.7 Data Insert and Data Insert by Selection Query

The idea of inserting data is easy to understand. New data is transmitted to GPU memory
and inserted to the position next the last records of data table. Unfortunately, we have to face
the problem brought by data structure. Because data table is a 2-D array, total number of data
which the table can accommaodate is fixed. A new table should be issued when the size of data
exceeds the size of table after inserting data. The size of new table will be twice as big as the
old table. For example, a table with table size 1024 means it can accommodate 1024 records.
When the 1025™ record was inserted to the table, the new table with table size 2048 will be

issued.
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The concept of data insert by selection is similar to data insert. According to the flag
array of selection query, insert selected data to the destination table. If the size of destination
table is not enough for new data, a new table will be issued with twice table size, and all data

will be moved to this new table.
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Chapter 4 Experimental Results and Analysis

We try to evaluate the performance of our GPU data base and compare it with naive CPU
approach to those functions listed in chapter 3 with variable total number of data in data table

and number of data in result table.

4.1 Experimental Setup

We adopt CPU of 4 cores and GeForce 9800 GT for our computation platform. The

configuration information is described as following.

4.1.1 A Memory Data Base - SQL.ite

SQLite is an embedded relational database management system contained in a C
programming library. The word “‘embedded” means that SQLite engine is not a standalone
process with which the program communicates. Instead; the SQL.ite library is linked in and
thus becomes an integral part of the program. The belief that SQLite is the most widely
deployed SQL database engine stems from its use as-an embedded database. There many
applications used SQL.ite as their data base including Mozilla Firefox, Mac computer, iPhones,
and millions of websites etc. There two modes, disk mode and memory mode, SQL.ite can
switch. In memory mode, SQL.ite exist in memory purely as a main memory data base. In this
experiment, we compared the performance of our GPU DB with corresponding functions of
SQLite on memory mode.

The index structure of SQL.ite is B-tree. The time complexity of all operations in B-tree
is O (log n). The execution time is sensitive to the number of records queried, because more

data is selected after selection query means more nodes should be traversed in B-tree.

4.1.2 Hardware Configuration

To construct the environment for our experiment and support CUDA computing, we have

the following hardware configuration.
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Table 4 - 1 Hardware configuration

CPU Intel Core 2 Quad Q6600 (2.4GHz, four core)
Motherboard ASUS P5E-VM-DO-BP, Intel® X38 Chipset
RAM Transcand DDR-800 2G

GPU NVIDIA 9800 GT 512MB (GIGABYTE OEM)
HDD WD 250G w/ 8MB buffer

Since we implement our data base on GPU memory, we list the specification of the GPU

in detail as following.

Table 4 - 2 NVIDIA 9800GT Hardware Specification

Core Name GeForce 9800 GT (G92)

Number of Multi-Processor 16

Number of Registers 8192 (per SIMD processor)
Constant Cache 8KB (per SIMD processor)

Texture Cache 8KB (per.SIMD processor)
Processor Clock Frequency Shader: 1.751 GHz, Core: 700 MHz
Memory Clock Frequency 900 MHz

Shared Memory Size 16KB (per SIMD processor)

Device Memory Size 512MB GDDR3

There are 8 SP (stream processor) included in each MP (multi-processor). Each SP can
process one single precision floating pointer calculation. Totally, the GPU in ideal situation

can processes 8x16=128 single precision floating pointer calculations simultaneously.
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4.1.3 Software Configuration

Table 4 - 3 Software Configuration

oS Open SUSE with version 11.1 (32bit version)

GPU Driver Version | 185.18.14
CUDA Version 2.2

GNU Compiler gcc4l

4.2 Evaluation and Analysis

We start from normal table size with 50,000 records. Insert 50,000 records to the data
table and compare the insertion performance of GPU DB with SQLite memory DB. Because
several comparison results of functions are similar, we choose results of Selection, Data
Grouping, and Insert Data by Selection Query to-represent other similar comparison results.
Then we will discuss the relationship-of GPU execution time between total number of records
and number of records in query result. Finally, we make a figure to point out how many
number of records in query result.will be the turning point of GPU DB and SQLite memory

DB with variable total number of records in:data table.

4.2.1 The Pattern of Test Data

The bench mark on SQL.ite web site is referred for our test data. There are tree column in
our data table. The data in first column of each record is a unique random number between 1
to total number of records, so we can control how many records we queried. The second
column is the group number which divided all records to 100 groups. The last column of our
test data is a random number from 1 to 65535. The following is an example of test data which
is belong to group 50.

Column 1 Column 2 Column 3

2 50 598
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4.2.2 Performance Evaluation of Functions

In section 4.2.2, we will discuss each performance comparisons of Data Insert, Data

Grouping, and Data Insert According to Selection Query in detail.

4.2.2.1 Insertion

From Figure 4 - 1, we can see the insertion function of GPU DB suffered from the
overhead pass data from host memory to GPU memory, although the difference between
execution times of two systems is small about from 20 ms to 120 ms. Average execution time
increasing of GPU DB is 65.512 ms for each additional 500 records. Because, we expand
table size 2 times for each time 2-D array is full. The expanding overhead takes another

10.453 ms in average.
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Figure 4 - 1 Execution Time Comparison of Insertion
4.2.2.2 Selection Query

As showed in Figure 4 - 2, GPU DB takes 2.598 ms in average to complete Selection
Query process.The line in of GPU DB in Figure 4 - 2 is almost unchanged and unrelated to
number of data queried. The performance of SQLite memory DB is better than our GPU DB

before the crossing point of two lines. The number of data queried of the crossing point is
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about 1,700 records. We also evaluate the execution time of number of records queried from
2,500 to 10,000 records, and the execution time of GPU DB always less than SQL.ite along

with the increasing number of records queried.
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Figure 4 -2 Execution Time Comparison of Selection
4.2.2.3 Data Grouping

In Figure 4 - 3, the execution‘time-of GPU.DB is increasing slowly caused by increase of
number of records queried. One thing can be believed, more number of records queried, more
records should be sorted before calculating the aggregate functions. Of course, the number of
records queried also affects the execution time of calculation the aggregate functions. We will
go deep into how much GPU time this process takes in the section 4.3.

Similar to evaluation of Selection Query, there is a crossing point of the lines of GPU DB
and SQLite memory DB. According to evaluation of execution time from number of records
queried 2,500 records to 10,000 records, the performance of our GPU DB will be always

better than SQL.ite.
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Comparison of Data Grouping
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Figure 4 - 3 Execution Time Comparison of Data Grouping

4.2.2.4 Data Insert According to Selection Query
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Figure 4 - 4 Execution Time Comparison of Data Insert According to Selection Query
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Similar to the evaluation result of Selection Query and Data Grouping, there is also a
crossing point of the lines of GPU DB and SQLitse memory DB, and the performance of
GPU DB is always better than SQLite memory DB after that crossing point.

There two jumping points at the line of GPU DB is 1,100 records queried and 2,100
records queried. Because the total data size is over the table size after inserting data, the table
was expanded 2 times table size to accommodate all records.

4.2.3 Analysis of GPU Computation Time of Data Grouping

Because there are two steps included by Data Grouping process, one is Selection Query,
and the other one is Sorting Data and aggregate functions calculation, we evaluated the
computation time of kernel programs which run on GPU to observe its behavior.

At first, we evaluated the variation of GPU. execution time followed the increase of
number of records queried from 2,500 records to 1,000 records and total number of data is
100,000 records in the data table.©As we see in Figure-4 - .5, more records queried more GPU

computation time Data Grouping step takes.
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Figure 4 - 5 GPU Execution Time of Data Group

There are two jumping points at 4,500 records queried 8,500 records queried. Pre-fix
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sum algorithm and sorting algorithm implemented by CUDPP increase 2 in the power of n
threads each time while the number of threads is not enough. Because number of records
4,500 is greater than 4096, the program issued more threads but take more time. The detail
implementation of pre-fix sum and sorting algorithms will not be discussed here. Please refer

to [4] and [13].
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Figure 4 - 6 GPU Computation-Time of Selection Query

We evaluated the GPU computation time of Selection Query in Data Grouping process
separately with total number of 100K, 200K, 300K, 400K, and 500K records in data table. As
showed in Figure 4 - 6, GPU computation time of Selection Query is not sensitive to number
of records queried. According to our implemented methods, one thread is designate on one
record for execution selection query process. Because the limitation of hardware, compiler
will issue the maximum number of threads that the hardware can sustain by evaluating
registers or shared memory usage of kernel program.

When all turns of each thread are complete, the selected data will be marked in flag array.
Selection Query takes stable execution time for the same total number of records in data table
and is not related to how much number of records queried. The execution time of Selection

Query is related to total number of records in data table because more data records in table,
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more turns threads executes, and of course, it takes more time to complete the whole process.
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Figure 4 - 7 Total GPU Computation time of Data Grouping
Finally, we evaluated the total GPU time -of Data Grouping. The proportion of number of
records queried to total number of records in data table is-small, so the increase of total GPU

execution time followed increase of number of records queried is related small.

4.3 Evaluation of Turning points

We evaluated the turning points of GPU DB and SQLite memory DB. Each turning point
was the crossing point of the performance evaluation of GPU DB and SQLite memory DB.
The performance of each function of our GPU DB is always better than SQLite memory DB
since increase of number of records queried is more than the turning point has dedicated.

The height of lines in Figure 4 - 8 implicates the difference of performance between our
GPU DB and SQLite memory DB. For example, the lines of Selection and Sorting are higher
than Grouping which implicates the difference of performance between our GPU DB and

SQLite memory DB in Data Grouping is smaller than Selection Query and Sorting Data.
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Figure 4 - 8 Turning points of GPU DB and SQL.ite memory DB
From Figure 4 - 8, we figured.out Table 4 - 4 the ratios of each function which showed
when about 0.161% to 2.061%.0f number of total records is queried, the performance of our
GPU DB will be better than SQLite memory DB. The ratios listed in Table 4 - 4 the ratios of

each function are small, and we believe that it-is-easily to.be exceeded in common case.

Ratio of No. data queried
Function Name

to total No. records (%)
Selection Query 1.926%
Selection Query and Sorting Data 2 061%
Selection Query and Data Grouping 0.491%
operations
Data Insert According to Selection Query 0.784%
Data Update 0.161%
Data Delete 0.784%

Table 4 - 4 the ratios of each function
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Chapter 5 Conclusions and Future works

5.1 Conclusions

Using GPU for problems with High density computation normally brings remarkable
improving of performance. Of course, these problems should be able to be parallelized. The
advance development of GPGPU has already speeded up many applications which are used to
be computed in host CPU. In this paper, we survey the background of existing main memory
data base and CUDA programming model. We proposed an entire new architecture for
experimental data base. Major computation bound of our data base operations are data sorting,
prefix-sum process and the aggregate functions: calculation. The proportion of these
operations to memory 1/0 bound operations such as selection query is small.

The experiment result shows the operations of our GPU DB takes almost the same
execution time for the same -total- number-of ‘records. The execution time of our data
operations are not sensitive to how many number of records queried. The result of experiment
is different between our GPU DB and SQLite. After query operations, more records in the
result table more execution time SQL.ite take. Oppositely, our GPU DB is not sensitive to how
many number of records in result table but sensitive to how many number of total records in
data table. Based on this, we evaluated the turning point between our GPU DB and SQL.ite
memory DB. The change of turning points trended to linear variation and we figured out the
approximate ratio of records queried to total number of records. Finally, the ratio is small,
about 0.161% to 2.061% according to different functions, and we believe that it is easily to be

exceeded in common case.
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5.2 Future Works

Although we have seen the capability of our GPU DB, there are many issues considered

for improving our data base.

(1) Parallel string data query

Because there is no appropriate solution for parallel string data query, our GPU DB is
designed for only numeric data now. One 2-D array stores data in the same data type. String
data has to be stored as numeric type or in other 2-D array different from the numeric data
stored. Each word has its own alphabet order, so the comparison on words supposed to begin
from the prefix to suffix. To parallel. computation, the characteristic on sequence of string
seem to be undefeated. However, the string comparison is necessary to complete

implementation of data base.

(2) Join Query
An SQL join query combines fields from two tables by using value common to each. Our
GPU DB does not support the join query now. In the future, we will design a relation table to

manage the relationship between each table.

(3) Concurrency data base query

Because our GPU DB can process only one global function call at the same time, we
plan to design a scheduler. This scheduler can combines multiple requests to one GPU
function call and maintains the data consistency for concurrency data base query in a

multiuser database environment.
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