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一個以繪圖處理圖為基礎之記憶體資料庫實作 

 

研究生：徐竣傑         指導教授：袁賢銘 

 

國立交通大學資訊科學與工程研究所碩士班 

 

摘要 

電腦網路的發達帶來了電腦之間資料的快速交換，資料庫扮演著相當重要的角

色。近年來，NVIDIA 致力於 GPGPU 的發展，一個高度平行化的發展平台 CUDA

就此產生。使用者利用熟悉的 C 語言就可以在上面開發自己的應用程式。加上記憶

體空間的快速成長，已經足夠一個資料庫的使用。因此，我們在 GPU 的記憶體上

面實作了一個實驗性的資料庫，並觀察 GPU 的計算能力，如何改善一般資料庫的

操作效能。 

根據圖像處理單元(GPU)的特性，我們將資料庫中所有的資料儲存在繪圖卡上

的記憶體中。主機上的 CPU 處理一些流程的控制，而各個功能的計算則交給 GPU

來處理。最後，我們與著名的資料庫 SQLite 記憶體資料庫做效能上的比較。根據

我們的實驗結果，在總資料數固定下，當查詢結果數超過一定的程度時，我們的資

料庫會有相對較佳的效能，我們稱之為轉折點。最後，我們觀察在不同資料總數下

的 轉 折 點 ， 歸 納 出 在 不 同 的 功 能 下 ， 查 詢 結 果 中 資 料 數 佔 總 資 料 數 為

0.161%~2.161%時，我們所實作的資料庫效能上會超過 SQLite。 
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Abstract 

 Because the development of computer network brings rapidly data exchanging between 

computers, data base is playing the quite important role. In the last years, NVIDIA has 

worked on the development of GPGPU, and a platform of parallel computing, CUDA, was 

provided. Users can design their own application using the familiar program language, C. 

Additionally, the growth of memory makes the feasibility of main memory data base, and so 

we implemented an experimental memory data base on GPU memory for observing how the 

computation power of GPU can improve common operations of data base.  

 According to the features of GPU hardware, we stored all records of data base in the 

memory of graphic card. The control flows handled by host CPU and the computations of 

each function handled by GPU. Finally, we compare the performance of our data base with 

SQLite memory data base. The experiment result shows that there is a turning point denotes a 

number of records in query result (records queried). The performance of our data base is 

better than SQLite memory data base while the number of records queried exceeds the 

number denoted by turning point. Finally, we figured out a ratio of data queried to total 

number of data according to the observation of the turning points in different functions. Our 

experimental DB has better performance than SQLite as long as the ratio exceeds 

0.161%~2.161%. 
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Chapter 1 Introduction 

1.1 Preface 
In the last years, data exchanging of applications is getting more necessary, particularly 

due to the proliferation of web data in various formats and the emergence of e-business 

applications that need to communicate data yet remain autonomous [14] . Responding to this 

demand, many data base management system have been built. Data base management system 

collects information and provides functions for easily querying, updating, and deleting data. 

There are many applications from a handhold device (ex: cell phone or PDA) to a server 

computer of webs have used data base to manage their information for requirements.  

1.2 Motivation 
The performance of data base management system is important for many applications 

such as a middle size web site normally has thousands of members, and the responding time 

of querying the data base must be small for the requirement of clients. Besides, the tool kits 

development of general purpose GPU (GPGPU) is getting more convenient to use. 

Developers have designed many algorithms and application on GPU for better performance.  

A data table is a collection of records, and these records are compared one by one on 

query operation. Even though many non-candidate data are filtered by one comparison 

operation when an index structure is adopted, for example a b-tree, the complexity for each 

operation is still O (log n). GPU is a multi-core processor of SIMD architecture. Hundreds of 

threads can be issued while the GPU is running. For example a 9800 GT has 16MP and 8 

streaming processor in each MP can issue 128 threads simultaneously. Implementation of data 

base on GPU may bring some degree of parallel computing for functions including data query, 

data sorting, and aggregated functions on each data groups. It is interesting how much 

performance of data base that GPU can improve.  
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1.3 Problem Description 
We choose the CUDA tool kit as our programming platform. Using CUDA to 

developing applications has to face several constrains of GPU hardware limitation as 

followings: 

(1) The limitation of registers and shared memory: the number of registers and shared 

memory in one multi-processor (MP) of GPU is finite. One MP is a unit of 

dispatching one block consists of several threads. The number of registers and shared 

memory used by threads dominate how many threads can be issued in one block.  

(2) Divergent Branch: The branching within the same block could be expensive, if 

threads take different execution path, they must be serialized by the thread scheduler 

on GPU.  

(3) The overhead of uploading data from CPU to GPU is large: If each data was 

uploaded to GPU when query was issued and downloaded after computing, the 

improvement of performance will be reduced. 

(4) Non-Coalesced global memory access: Multiple global memory access is grouped 

into once memory access if the access pattern of half warp is sequential. It is called 

coalesced memory access. If the access pattern is not sequential, than multiple 

memory access are issued without grouping. 

For (1), each thread use registers and shared memory as less as possible, and threads are 

issued as the same number of all records in a data table to exploit the computational power of 

GPU. The host CPU performs the partial flow control of our data base management system 

for the reason of (2). The entire data of our data base is stored in GPU memory for (3), which 

can avoid the overhead of uploading and downloading large amount of data for each query. 

Finally, our data are stored in data table in column major for coalesced memory access, 

because threads usually read/write the same column of records. When the address of the same 
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column of records is sequential in memory space, coalesced memory access will easily 

occurs.  

1.4 Research Objective 
For the reason we mentioned above, we implemented several common functions of our 

data base on the GPU. We evaluated the execution time of our experimental data base and 

compared it with SQLite memory data base in order to observe the differences of behaviors 

and performance. 

1.5 Research Contribution 
According to the result of our experiment, there is one turning point between data base 

and SQLite memory database. We generalize each turning point for each function with 

different total number of records. The trends of each turning point changing are approximate 

linear variation. The turning points denote a ratio of number of data queried to total number of 

records in data table. The performance of our data base is always better then SQLite memory 

data base while the ratio is greater than the turning point.   
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Chapter 2 Background and Related Work 

2.1 Graphic Processor Unit (GPU) 
A graphics processing unit (GPU) is a processor that offloads 3D graphics rendering 

from the microprocessor. The primary reason that GPUs deliver such high performance is that 

the GPU is a highly parallel machine. GPUs keep these processors busy by juggling 

thousands of parallel computational threads. In theory, GPUs are capable of performing any 

computation that can be mapped to the stream computing model. This model has been 

exploited for ray-tracing [15], global illumination [16], matrix multiplies [17] , geometric 

computations [18] and the other applications ([25][26][27][28][29][30]). 

 The hardware evolutions of GPU from fix function unit to programmable pipeline 

consist of multiple SIMT processor satisfied not only graphic processing but also general 

purpose demands.  In a programmable pipeline model, there are many extensions of OpenGL 

added by OpenGL ARB for user programming purpose. Developers treat a compute-intensive 

problem as multiple pieces, and compute data as pixel-rendering process to solve the whole 

problem [7][12]. The comparison of computation power between CPU and GPU was depicted 

as Figure 2 - 1. 

 
Figure 2 - 1 The comparison of computation power between CPU and GPU.[11] 
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The primary difference between CPU and GPU is that the GPU is specialized for 

rendering graphics, highly parallel computations. As illustrated by Figure 2 - 2 GPU devotes 

more transistors to data processing rather than data caching and flow control. GPU executes 

efficiently as a problem can be expressed as parallel-data computation. Unfortunately, 

mapping our algorithms or problems to OpenGL as pixel-rendering processing is not 

straightforward.  Now, there are two biggest GPU manufacturers, NVIDIA and AMD/ATI, 

working on providing program interfaces, CUDA and CTM, to make user develop their own 

program easier. We will introduce them later. 

 
Figure 2 - 2 Layout of CPU and GPU[11] 
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Figure 2 - 3 Architecture of Telsa GPU[8] 
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As showed in Figure 2 - 3, a multi-processor (MP) has 8 streaming process which can 

perform one single precise floating point computation [9]. There 16 MPs in 9800GT and can 

perform 128 single precise floating point computations simultaneously [5]. 

2.2 Compute Unified Device Architecture by NVIDIA 

CUDA is a general purpose parallel computing architecture including a new parallel 

programming model and an instruction set architecture. The CUDA programming model 

allows developers to exploit that parallelism by writing natural, straightforward C code that 

will then run in thousands or millions of parallel invocations, or threads[6] [8]. Source files 

include a mix of host code (i.e. code that executed on the host) and device code (i.e. code that 

executed on the device). When running a CUDA program, developers simply run the program 

on the host CPU. The CUDA driver automatically loads and executes the device programs on 

the GPU [11] 

In the CUDA programming model, the GPU is treated as a co-processor onto which an 

application running on a CPU can launch a massively parallel compute kernel. This is called 

massively threaded architecture [2]. The kernel is comprised of a grid of scalar threads. Each 

thread is given a unique identifier (thread ID) which can be used to help divide up work 

among the threads. Within a grid, threads are grouped into blocks, which are also referred to 

as cooperative thread arrays (CTAs). Within a single CTA threads have access to a common 

fast memory called the shared memory and can, if desired, perform barrier synchronizations 

[9]. 
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Figure 2 - 4 A set of SIMT multiprocessors with on-chip shared memory [10] 

Threads running on the GPU in the CUDA programming model have access to several 

memory regions including on chip memory, registers, shared memory, constant cache, texture 

cache, and off chip memory, global memory constant memory and texture memory [12]. 

As illustrated by Figure 2 - 4 each multi-processor can access on/off chip memory of the 

several types as following: 

Table 2 - 1 Classification of GPU Memory 

Name Accessibility Scope Speed Cache factor 

Registers read/write per-thread immediate (on chip) X -- 

Local Memory read/write per-thread 400~600 clock N Compiler Auto 

Shared Memory read/write per-block 4 clock (on chip) N Memory conflict

Global Memory read/write per grid 400~600 clock N Non-coalescing

Constant Memory read only per-grid 4 or 400~600 Y Cache miss 

Texture Memory read only per-grid 4 or 400~600 Y Cache miss 

Device memory consists of constant memory, texture memory, global memory, and local 

memory. Constant memory and texture memory are read-only regions of device memory and 

can be allocated before calling kernel functions. The on chip caches, constant cache and 

texture cache (read only), have brought significant performance increasing of both memories. 
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Threads can read/write the global memory directly, but there is no cache supported for global 

memory. Finally, automatic variables that are likely to be placed in local memory are large 

structures or arrays that would consume too much register space, and arrays for which the 

compiler cannot determine that they are indexed with constant quantities.[11] Because the 

local memory space is not cached, the usage of local memory should be avoided. The 

overhead of accessing local memory is large 

To improve memory system efficiency, it thus makes sense to group accesses from 

multiple, concurrently issued, scalar threads into a single access to a small, contiguous 

memory region. The CUDA programming guide indicates that parallel memory accesses from 

every half-warp of 16. That is called memory coalescing. Coalescing is achieved for the 

pattern of sequence addresses requested by the half-warp. In GeForce 9800 GT (G92), if a 

half-warp addresses words in 16 different segments, 16 memory transactions are issued (one 

for each segment). One coalesced memory access results in a single memory transaction not 

16 memory transactions. Example of coalesced memory access patterns is depicted as Figure 

2 - 5. 

 

Figure 2 - 5 Patterns of coalesced memory access (left or right)[11] 

2.2.1 Parallel Prefix Sum and Sorting Algorithm 

CUDPP is the CUDA Data Parallel Primitives Library. CUDPP is a library of 
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data-parallel algorithm primitives such as parallel prefix-sum (scan) [4] , parallel sort [13] and 

parallel reduction. Because the original sorting algorithm didn’t support key-value pair sorting, 

we have to modify the sorting algorithm for key-value pair sorting. 

 The prefix sum (also known as the scan) is an operation on lists in which each element 

in the result list is obtained from the sum of the elements in the operand list up to its index [3]. 

There are two kinds of prefix sum, exclusive prefix sum and inclusive prefix sum. In 

exclusive prefix sum, the first element in the result array is identity (0 for following operation) 

and the last element of the operand array is not used; whereas inclusive prefix sum, all 

elements in operand array are used. 

In chapter 3, we will discuss how to use prefix sum to calculate the position of selected 

data and use the sorting algorithm of modified version to sort entire data table. 

2.3 Close To Metal (CTM) by AMD/ATI 
 Abbreviated as CTM, Close to Metal is an ATI device that is designed to expose the 

parallel array of floating-point processors found in ATI graphics hardware. Compared to 

CUDA, CTM has much lower level programming style, assembly-like, than CUDA without 

the comprehensive toolkits, compiler, or high-level C language construct. CTM is controlled 

with a few commands to set parameters, invalidate and flush caches, and start the processors 

in the processing array. It’s not easy to mapping applications to CTM program for developers, 

therefore CUDA is much popular than CTM. 

2.4 Main Memory Database 

A main memory database (MMDB; also In-memory database system or IMDB) is a 

database management system that primarily relies on main memory for computer data storage. 

Traditional databases are built to store data on disk. Disk I/O, as a mechanical process, is 

tremendously expensive in terms of performance. One approach to achieving high 
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performance in a database management system is to store the database in main memory rather 

than on disk. One can then design new data structures aid algorithms oriented towards making 

efficient use of CPU cycles and memory space rather than minimizing disk accesses and using 

disk space efficiently [1]. As semiconductor memory becomes cheaper and chip densities 

increase, it becomes feasible to store larger and larger databases in memory, making 

MMDB’s a reality. A computer’s main memory clearly has different properties from that of 

magnetic disks as following: 

1. The access time for main memory is orders of magnitude less than for disk 

storage. 

2. Main memory is normally volatile, while disk storage is not. However, it is 

possible (at some cost) to construct nonvolatile main memory 

In addition, index structure of data table affects the performance of database operations. 

The B-tree (or the B+-tree) is the most popular index structure in current database systems. In 

a tree, records are stored in locations called leaves. The starting point is called the root. The 

maximum number of children per node is called the order of the tree. The maximum number 

of access operations required to reach the desired leaf (data stored on the leaf) is called the 

depth (level). The bigger the order, the more leaves and nodes you can put at a certain depth. 

This means that there are fewer levels to traverse to get to the leaf (which contains the data 

you want). There several properties of B-tree as following: The root is either a leaf or it has at 

least two non-empty sub-trees and at most m non-empty sub-trees. Following we discussed 

are the properties of the three main operations of B-tree search, insertion, and deletion.  

1. Search: The algorithm is similar to binary search tree. Starting at the root, the 

tree is traversed top to bottom, choosing the child pointer whose separation 

values are on either side of the value that is being searched. Binary search is 

typically (but not necessarily) used within nodes to find the separation values 

and child tree of interest. 
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2. Insertion: In insertion a B-tree undergoes changes that must maintain: 

i. Its height balance. 

ii. Its leaves to be at the same level. 

iii. Each of its nodes, except the root, to be at least half full (i.e., to 

contain a minimum of ⎡m / 2 ⎤ - 1 keys, where m is the order of the 

tree). 

3. Deletion: Like insertion, deletion must be on a leaf node.  If the key to be 

deleted is not in a leaf, swap it with either its successor or predecessor. 

An important observation is that the number of preliminary operations for each of the 

major functions (search, insert, delete) in B-tree can be done in time proportional to the height 

of the B-tree, which is no more than O(1+log(n+1)). Besides, the sequence access 

performance of B-tree  

Increased attention has been given on redesigning traditional database algorithms for 

fully utilizing the available architectural features and for exploiting parallel execution 

possibilities, minimizing memory and resource stalls, and reducing branch miss 

predictions.[19][20][21][22][23]. 

2.5  Related Works 

2.5.1 Implementing Database Operation Using SIMD Instructions 

In the 2002, the paper “Implementing Database Operation Using SIMD Instructions” 

proposed and implemented several algorithms using SIMD Instructions for Data base 

operations. For this particular instruction, both operands are using 128-bit register. Each 

source operand contains four 32-bit single-precision floating-point values, and the destination 

operand contains the results of the operation performed in parallel on the corresponding 

values in each operand. The result showed that using a SIMD parallelism of four, the CPU 

time for the proposed algorithms is from 10% to more than four times less than for the 



 

12 
 

traditional algorithms. 

2.5.2 Fast Computation of Database Operations using Graphics 

Processors 

In the 2004, the paper “Fast Computation of Database Operations using Graphics 

Processors” [31] implemented several operations of data base on NVIDIA GeForce FX 5900 

without CUDA tool kits. Data was stored on the GPU as textures and used alpha, stencil and 

depth test unit in pixel processing unit to perform corresponding algorithms. The result shows 

the GPU implementation of operations is about 2 times faster than CPU implementation. 
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Chapter 3 Building a Data Base on GPU Memory 

In this chapter, we listed several functions of conventional database which are not 

parallel processing on CPU, and we proposed architecture and implemented them for our data 

base system. Through exploiting multi-threading of GPU, we can divide a large data set to a 

small data unit executed on each GPU processing core. We implemented an experimental data 

base and store entire data on GPU memory (called GPU DB). The implementation methods of 

GPU DB are described in section 3.3 in detail. 

3.1 Architecture of the Data Base 
As Table 3 - 1 listed the common functions of Data Base that we implement on GPU. 

Table 3 - 1 Implemented functions in our data base 
Function Name Corresponding SQL Language Example 

Selection Query SELECT store_name 
FROM Store_Information 
WHERE Sales > 1000 

Selection Query and Sorting Data SELECT store_name, Sales, Date 
FROM Store_Information 
ORDER BY Sales 

Selection Query and Data Grouping 
operations(SUM, MAX, MIN, COUNT,  
AVG) 

SELECT store_name, SUM(Sales) 
FROM Store_Information 
GROUP BY store_name 

Data Insert INSERT INTO Store_Information 
(store_name, Sales, Date) 
VALUES ('Los Angeles', 900, 'Jan-10-1999')

Data Insert According to Selection Query INSERT INTO Store_Information 
(store_name, Sales, Date) 
SELECT store_name, Sales, Date 
FROM Sales_Information 
WHERE Year(Date) = 1998 

Data Update UPDATE Store_Information 
SET Sales = 500 
WHERE store_name = "Los Angeles" 
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AND Date = "Jan-08-1999" 
Data Delete DELETE FROM Store_Information 

WHERE store_name = "Los Angeles" 

 The data base system consists of two different device, host computer and GPU device. 

Because GPU communicates with CPU through PCI-Express bus; the cost to 

download/upload data from/to GPU would be expensive. In the initial stage, all data and 

tables was loaded to GPU memory via main memory of host computer and then memory 

spaces were freed after loading. Our data base system keeps information and pointers of tables 

on main memory for data base manipulation. The entire architecture was depicted in Figure 3 

- 1. Because primary functions are executed on GPU, overhead of communication between 

GPU and CPU is avoided. 

 
Figure 3 - 1 Architecture of entire system 

We also implemented table management functions, Create Table and Drop Table. 

Because table management functions are not impotent to our research, and the methods are 

trivial, we will not describe them in this paper. 



 

15 
 

 

3.2 Modify the CUDPP Library 
CUDPP offers a serial efficient library to developers. Several important algorithms are 

implemented in these libraries, for instance parallel prefix sum algorithm and parallel sorting 

algorithm. Unfortunately, the sorting algorithm is not available for sorting entire table 

according to the value of one of the columns  

Sorting algorithm of CUDPP can sort a 1-D array as input, and output a 1-D array as a 

result. We modified the sorting algorithm such that outputs are two 1-D arrays, one of them is 

sorted data, and the other is a index array denotes original position of data after sorting. Thus, 

we can move the data of the other columns according to the index after executing sorting 

process to sort entire table.  

 The modified sorting function has a 1-D array as an additional parameter. Before calling 

sorting function, the additional 1-D array is initiated as sequential increasing numbers. 

Assuming there are N elements data should be sorted, then the additional 1-D array will be set 

numbers {0…N-1} as the initial index of data. 

 During the modified function sorts the N elements data, it moves both data and the index 

value of the additional array to their corresponding position. After sorting process, the index 

array point to original position of each data. Thus all records in data table can be sorted 

according to this index array. 

3.3 Functions of Data Base on GPU 
 In this section, we will focus on how the functions listed in section 3.1 be implemented 

in detail. 

3.3.1 Data Structure 

At first, conventional data base uses tree structure to manage data or indices. Obviously, 

B-tree searching algorithm is not appropriate in parallel computing architecture. Unparallel 
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computing in each core can’t bring the potential computing capability of GPU into full play. 

 The access to device memory usually takes up to 200~300 clocks, which is relatively 

slow to on-chip memory. Searching in B-tree will bring too many access times to device 

memory that attacks the performance of GPU. Normally, tree data structure is constructed by 

link list nodes. Link list nodes are connected by pointers, so achieving continuous memory 

access is not easy. Non-continuous memory access reduces the opportunity of coalesced 

memory access. 

 In order to solve problems we mentioned before, array is used as a data structure in GPU 

memory which stores tables and temporal data during computation. Searching in array can be 

easier than tree structure. An array supports random access. Data can be compared in parallel 

according to thread ID.  

 

Figure 3 - 2 Data structure of data table. 

 Second, to reduce the complexity of design, a column is usually a unit of parallel 

computation in data base. Because the address of GPU memory is in row-major order, storing 

our tables in row major order will increase the opportunity of non-coalesced memory access. 

To avoid this problem, tables are stored in column major in GPU memory.  

Figure 3 - 2 Data structure of data table. shows the relationship between records and memory 
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address. The data of entire column can be easily compared with conditions by storing data 

table in column major. Threads performs the same operation in each data and sequentially 

access memory that increases the opportunity of coalesced memory access. 

3.3.2 Selection Query 

At first, let’s consider how Selection Query works in basis. After condition parameters 

are set, the process compares each column of every record. Assume all columns of one record 

meet all condition parameters; the record is selected and then set “1” to the corresponding 

position of flag array. Finally, we check the flag array of table, then copy these records 

marked and to another table as a result. To parallelize Selection Query process, one thread is 

assigned to one record. Each thread compares all columns of their assigned record iteratively, 

but all threads compare each record in parallel. 

 Acutely, there are two perplexities we have to consider before starting the 

implementation work: 

1. In logical operation, the priority of “AND” and “OR” are different. The different 

priorities determine which operator supposed to be executed fist. In common 

case, the priority of “AND” is higher than “OR”, so “AND” operator supposed 

to be executed first.  

2. The branching within the same block could be expensive as they are executed 

on a SIMD processor, where only one instruction can be performed (with 

multiple different data source). So if threads take different execution path, they 

must be serialized by the thread scheduler on GPU (divergence branch). 

To solve these perplexities, the ordinary prefix notation has to be transformed into 

postfix notation before starting process. Each record needs one stack used by threads during 

the postfix notation is processed. In Figure 3 - 3, threads compared each record with condition 

parameters set by user and manipulate stacks to calculate which record is selected.  
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Figure 3 - 3 Process of Selection Query 

Because the branching within the same block could be expensive, host computer should 

be responsible for the partial flow control to avoid divergence branch.  

As entire thread finished, the value in the bottom of each stack denote which record was 

selected. Then, we plan to copy this selected records and move to another 2-D array as a final 

result and transmit it to host. Now we are focus on what the position of these selected records 

in the 2-D Array is correct.  

 This problem is easy to solve by using the function provided by CUDPP, cudppScan. The 

cudppScan performs a prefix sum operation on the flag array in GPU memory and outputs the 

array of corresponding position. Beside, the number of total selected records is the last value 

of the output which determines the size of result table. The concept of Selection Query we 

implemented is described as Figure 3 - 4, Figure 3 - 5, Figure 3 - 6.  

 

Algorithm SelectionQuery_SetSelectFlag(QueryTable, QueryData, selected_flag ) 

Input: QueryData (denotes what data supposed to be selected) 

Output: selected_flag (an array of flags denotes which record is selected) 
Begin 
 declare stack_d[][]; 
 declare top_d[]; 
 declare integer cnt; 
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Algorithm SelectGreater_kernelProgram (dataTable, stack, top, selected_flag, 
column) 
Input: dataTable (the address of data table in the GPU memory) 
   column(index of column) 
Output: selected_flag (an array of flags denotes which record is selected)  
begin 

for idx = 1 to (the size of data table) do in parallel 
  top[idx]++; 
  if (dataTable[column] [idx] > value) then 
   stack[index][top[idx]] =1; 
  else 
   stack[index][top[idx]] =0; 
end 

cudaMemoryAlloc2DArray(stack_d, stack_size); 

cudaMmeoryAlloc(top_d, topPointer_size); 

 

for i=1 to 2*numberOfOperand-1 do 

 switch(token of postfix) { 

  case operand:  

     switch(operator) { 

      case “>”: call selectGreater_kernelProgram 

      case “<”: call selectSmaller_kernelProgram 

      case “=”: call selectEqual_kernelProgram 

         : 

         : 

     } 

  case LogicOperator_AND: 

      call selectAND_kernelProgram 

case LogicOperator_OR: 

      call selectOR_kernelProgram  

 } 

Figure 3 - 4 Algorithm of Selection Query 

Figure 3 - 5 Algorithm of Greater Process in Selection Query 
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Figure 3 - 7 Process of moving data queried to the result table. 

 The Figure 3 - 7 shows the algorithm of moving records to result table. Assume we have 

an 10 records table, so we assign 10 threads to each record. In Figure 3 - 7, t0~t9 means 

threads with tread ID [0] ~ thread ID [9]. Each thread of thread ID [i] checks two values, one 

is in the flags of selected records and the other one is in the result array of pre-fix sum 

function. If the value in the flag array of selected records is “1” which means the value of 

corresponding address in the result array of pre-fix sum function is the new position of 

selected record in result table. Finally, duplicate selected records and move to the result table. 

Algorithm selectAND_kernelProgram (dataTable, stack, top, selected_flag) 
Input: dataTable (the address of data table in the GPU memory) 
Output: selected_flag (an array of flags denotes which record is selected)  
begin 

for index = 1 to (the size of data table) do in parallel    
stack[index][ top[index]-1] = stack[index][ top[index]-1] & 

stack[index][ top[index]]; 
  top[index]- -;  
end 

Figure 3 - 6 Algorithm of AND Process in Selection Query 
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3.3.3 Sorting Data 

After selection query, the entire result table can be sorted according to a key column 

identified by user. This entire process is commonly called sorting key-value pairs.  

The index of data to denote original position is necessary for sorting key-value pairs. As 

we mentioned in section 3.2, we modified the cudppSort, a function provide by CUDPP 

library. The cudppSort of modified version takes two 1-D array as inputs. The outputs of 

modified cudppSort include one sorted array and index array of original data array. The 

example of index array is showed as Figure 3 - 8. The algorithm of Data Sorting we 

implemented is described as Figure 3 - 9, and Figure 3 - 10. 

 

Figure 3 - 8 Modified algorithm of parallel sorting  

 

 

Algorithm DataSorting (dataTable, sortedTable, selected_flag, key) 
Input: dataTable (the result Table of Selection Query) 
   key(a column number for sorting key-value pairs) 
Output: sortedTable   
begin 
  cudaMmeoryAlloc (sortdata_input, number of records queried); 
  cudaMmeoryAlloc (sortdata_output, number of records queried); 
  cudaMmeoryAlloc (sortdata_index, number of records queried); 
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As showed in Figure 3 - 8, values of address [i] in index means which data in original 

array was moved to address [i] after sorting. For parallelism, threads are assigned to each 

column of records and move them in parallel according to index array.  

3.3.4 Data Grouping 

The Data Grouping is used in conjunction with the aggregate functions to group the 

result-set by one or more columns. For example, the left of Table 3 - 2 is our data table, and 

Algorithm mvSort_kernelProgram (sortedTable, dataTable, number of elements, 
sortdata_index ) 
Input: dataTable (the starting address of data table in the GPU memory) 
   sortdata_index (an array of index denote the original address of records.) 
Output:  sortedTable (a table with sorted data according to the sortdata_index) 
Begin 
 for columnIdx = 0 to (the number of columns) do 

for index = 1 to (the number of records queried) do in parallel 
sortedTable[columnIdx][ index] = 

sortedTable[columnIdx][ sortdata_index[index]] 
stack[index][ top[index]-1] = stack[index][ top[index]-1] & 

stack[index][ top[index]]; 
end 

copy the data of key column from dataTable to sortdata_input[] 
  
 for index=1 to number of records queried do in parallel 
  sortdata_index[index]=index; 
 
 cudppSortModfied (sortdata_output, sortdata_index, sortdata_input, number of 
elements); 
 

mvSort_kernelProgram (sortedTable, dataTable, number of elements, 
sortdata_index );   //copy data from dataTable according to sortdata_index 

 

Figure 3 - 9 Algorithm of Data Sorting 

Figure 3 - 10 Algorithm of moving data after sorting 
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the right table is our result table after Data Grouping. 

  
Table 3 - 2 Data Table (left) and Result Table (right) 

 

 

 

 

 

 At beginning, data scattered irregularly over the data table. In order to divide data into 

several groups, the entire table has to be sorted according to the column “group”. After sorting, 

the data with the same group is put together in the table. Then, we can move on next step, 

calculate the aggregate functions to group. 

There is a function provided by CUDPP Library, cudppSegmentationScan, can help us to 

calculate the aggregate functions to group. Flags will be set to dedicate the start address of 

every group according to sorted column of group such as Figure 3 - 11. 

 

Figure 3 - 11 Setting flags of segmentation Scan 

Every address [i] and address [i-1] is checked by the thread with thread ID [i]. If the 

values in address [i] and address [i-1] are not equal, the flag of address [i] will be set in flag 

array. The flag array is an input of cudappSegmentationScan. There are several algorithms of 

cudppSegmentationScan can perform. We implemented SUM, COUNT, MAX, MIN and AVG 

group value 

1 145 

1 254 

2 645 

group value 

1 399 

2 645 
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which included in the most of data base. We can directly implement SUM, MAX and MIN 

using sum, min, and max algorithms provided by cudppSegmentationScan. For COUNT, we 

need another array and all values are set as ‘1’ in the array. Then, the output of 

cudppSegmentationScan with sum algorithm applied to this array will be the result of 

COUNT (Figure 3 - 12). Finally, the result of AVG can be calculated through divide SUM by 

COUNT. The basic concept of Data Grouping was listed in Figure 3 - 13, Figure 3 - 14 

 

Figure 3 - 12 Process of COUNT function 

 

Algorithm DataGroup (resultOfSelect, QueryData, number of data queried) 
Input: resultOfSelect (a data table of Selection Query result)    
Output: sortedTable   
begin 
  cudaMmeoryAlloc(sort_idata, number of data queried); 
  cudaMmeoryAlloc(sort_odata, number of data queried); 
  cudaMmeoryAlloc(sort_index, number of data queried); 
  cudaMmeoryAlloc(grp_idata, number of data queried); 
  cudaMmeoryAlloc(grp_odata, number of data queried); 
  cudaMmeoryAlloc(flag_d, number of data queried+1); 
  cudaMmeoryAlloc(grp_icnt, number of data queried); 
  cudaMmeoryAlloc(grp_ocnt, number of data queried); 
 
  for index=1 to number of records queried do in parallel 
   sort_index [index]=index; 
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copy the data of group from data Table to sort_idata; 
 cudppSortModfied(sort_odata, sort_index, sort_idata, number of elements); 
 
setGrpInput_kernelProgram(grp_idata, flag_d, sort_odata, resultOfSelect) 
  // set the flag for segmentation scan and data of the aggregate functions 
 

switch(QueryData ->funcOp){ 
      case DB_SUM: 
        segmentationScan.op = CUDPP_ADD; 
        break;       
      case DB_AVG: 
        segmentationScan.op = CUDPP_ADD; 
        break; 
      case DB_MIN: 
        segmentationScan.op = CUDPP_MIN; 
        break; 
      case DB_MAX: 
        segmentationScan.op = CUDPP_MAX; 
        break;         
      default: 
        ; 
     } 
   
  cudppSegmentedScan(grp_odata, grp_idata, flag_d, number of elements); 
   
  if (QueryData->funcOp==DB_COUNT|| QueryData->funcOp==DB_AVG){ 
   
  for index=1 to number of records queried do in parallel 
     grp_icnt [index]=1; 
 
  segmentationScan.op = CUDPP_ADD; 
  cudppSegmentedScan(grp_ocnt, grp_icnt, flag_d, number of elements); 
 
  switch(QueryData ->funcOp){ 
      case DB_COUNT: 

mvGrp_kernelProgram;  
              break;  
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Algorithm mvGrpAVG_kernelProgram (resultTable, sort_odata, grp_odata, 
grp_ocnt, flag, number of data queried) 

Input: sort_odata (group data) 
   grp_odata (result of the aggregate function, SUM) 
   grp_ocnt (number of elements in each group) 
   flag (the fist position of data in each group) 
Output: resultTable (result of Data Group)   
begin 
   
  for idx = 1 to idx=number of data queried do in parallel 
   if(flag[idx]=1){ 
    resultTable[column0][resultIndex] = sort_odata[idx-1] 

  resultTable[column1][resultIndex] = grp_odata[addr-1]/grp_ocnt[addr-1]; 
  } 
 
if (threaded=0) { 
resultTable[column0][number of data queried]=sort_odata[number of data 

queried -1]; 
resultTable[column1][number of data queried] = grp_odata[number of data 

queried -1] / grp_ocnt[number of data queried -1]; 
} 

end 

      case DB_AVG: 
mvGrpAVG_kernelProgram;  

              break; 
default: 

mvGrp_kernelProgram;  
              break; 
 
  return the result Table of DataGroup 
end 

Figure 3 - 13 Algorithm of Data Group 

Figure 3 - 14 Algorithm of AVG process in Data Group 



 

27 
 

3.3.5 Data Update  

The idea of data update is trivial. There is a flag array processed by Selection Query 

denote which record is selected. Then, update date table according to the flag array. Each 

records marked in the flag array is updated in parallel. One thread updates one record; the 

speed up advance is limited by speed of memory write. 

3.3.6 Data Delete  

2-D array is our data structure of data table. As some data are deleted, the other data in 

the table has to be moved for alignment. In opposition to array, deleting data in link list is 

easier without moving other data but modify the pointers. However, the data which are not 

deleted will be moved to a new 2-D array allocated as new data table. The pointer in host of 

original data table will be replaced by new data table, then free the space of the original table. 

Like Data Update, the flag array is used to specify which data is selected. These selected data 

should be deleted. Because the non-deleted data should be moved from original table to new 

table, the flag are reversed to denote the non-deleted data. Finally, we move the non-deleted 

data from original table to result table. Then the original table was freed and replaced by the 

result table. 

3.3.7 Data Insert and Data Insert by Selection Query 
The idea of inserting data is easy to understand. New data is transmitted to GPU memory 

and inserted to the position next the last records of data table. Unfortunately, we have to face 

the problem brought by data structure. Because data table is a 2-D array, total number of data 

which the table can accommodate is fixed. A new table should be issued when the size of data 

exceeds the size of table after inserting data. The size of new table will be twice as big as the 

old table. For example, a table with table size 1024 means it can accommodate 1024 records. 

When the 1025th record was inserted to the table, the new table with table size 2048 will be 

issued. 
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The concept of data insert by selection is similar to data insert. According to the flag 

array of selection query, insert selected data to the destination table. If the size of destination 

table is not enough for new data, a new table will be issued with twice table size, and all data 

will be moved to this new table. 
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Chapter 4 Experimental Results and Analysis 

We try to evaluate the performance of our GPU data base and compare it with naïve CPU 

approach to those functions listed in chapter 3 with variable total number of data in data table 

and number of data in result table.   

4.1 Experimental Setup 
  We adopt CPU of 4 cores and GeForce 9800 GT for our computation platform. The 

configuration information is described as following. 

4.1.1 A Memory Data Base - SQLite 

SQLite is an embedded relational database management system contained in a C 

programming library. The word “embedded” means that SQLite engine is not a standalone 

process with which the program communicates. Instead, the SQLite library is linked in and 

thus becomes an integral part of the program. The belief that SQLite is the most widely 

deployed SQL database engine stems from its use as an embedded database. There many 

applications used SQLite as their data base including Mozilla Firefox, Mac computer, iPhones, 

and millions of websites etc. There two modes, disk mode and memory mode, SQLite can 

switch. In memory mode, SQLite exist in memory purely as a main memory data base. In this 

experiment, we compared the performance of our GPU DB with corresponding functions of 

SQLite on memory mode. 

The index structure of SQLite is B-tree. The time complexity of all operations in B-tree 

is O (log n). The execution time is sensitive to the number of records queried, because more 

data is selected after selection query means more nodes should be traversed in B-tree. 

4.1.2 Hardware Configuration 

To construct the environment for our experiment and support CUDA computing, we have 

the following hardware configuration. 
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Table 4 - 1 Hardware configuration 

CPU Intel Core 2 Quad Q6600 (2.4GHz, four core) 

Motherboard ASUS P5E-VM-DO-BP, Intel® X38 Chipset 

RAM Transcand DDR-800 2G 

GPU NVIDIA 9800 GT 512MB (GIGABYTE OEM) 

HDD WD 250G w/ 8MB buffer 

  
Since we implement our data base on GPU memory, we list the specification of the GPU 

in detail as following. 

Table 4 - 2 NVIDIA 9800GT Hardware Specification 

Core Name GeForce 9800 GT (G92) 

Number of Multi-Processor 16 

Number of Registers 8192 (per SIMD processor) 

Constant Cache 8KB (per SIMD processor) 

Texture Cache 8KB (per SIMD processor) 

Processor Clock Frequency Shader: 1.751 GHz, Core: 700 MHz 

Memory Clock Frequency 900 MHz 

Shared Memory Size 16KB (per SIMD processor) 

Device Memory Size 512MB GDDR3 

 There are 8 SP (stream processor) included in each MP (multi-processor). Each SP can 

process one single precision floating pointer calculation. Totally, the GPU in ideal situation 

can processes 8x16=128 single precision floating pointer calculations simultaneously. 
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4.1.3 Software Configuration 
Table 4 - 3 Software Configuration 

OS Open SUSE with version 11.1 (32bit version) 

GPU Driver Version 185.18.14 

CUDA Version 2.2 

GNU Compiler gcc41 

4.2 Evaluation and Analysis 
 We start from normal table size with 50,000 records. Insert 50,000 records to the data 

table and compare the insertion performance of GPU DB with SQLite memory DB. Because 

several comparison results of functions are similar, we choose results of Selection, Data 

Grouping, and Insert Data by Selection Query to represent other similar comparison results. 

Then we will discuss the relationship of GPU execution time between total number of records 

and number of records in query result. Finally, we make a figure to point out how many 

number of records in query result will be the turning point of GPU DB and SQLite memory 

DB with variable total number of records in data table. 

4.2.1 The Pattern of Test Data 

 The bench mark on SQLite web site is referred for our test data. There are tree column in 

our data table. The data in first column of each record is a unique random number between 1 

to total number of records, so we can control how many records we queried. The second 

column is the group number which divided all records to 100 groups. The last column of our 

test data is a random number from 1 to 65535. The following is an example of test data which 

is belong to group 50. 

Column 1 Column 2 Column 3 

2 50 598 
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4.2.2 Performance Evaluation of Functions 

 In section 4.2.2, we will discuss each performance comparisons of Data Insert, Data 

Grouping, and Data Insert According to Selection Query in detail. 

4.2.2.1 Insertion 
 From Figure 4 - 1, we can see the insertion function of GPU DB suffered from the 

overhead pass data from host memory to GPU memory, although the difference between 

execution times of two systems is small about from 20 ms to 120 ms. Average execution time 

increasing of GPU DB is 65.512 ms for each additional 500 records. Because, we expand 

table size 2 times for each time 2-D array is full. The expanding overhead takes another 

10.453 ms in average. 

 

Figure 4 - 1 Execution Time Comparison of Insertion 
4.2.2.2 Selection Query 
 As showed in Figure 4 - 2, GPU DB takes 2.598 ms in average to complete Selection 

Query process.The line in of GPU DB in Figure 4 - 2 is almost unchanged and unrelated to 

number of data queried. The performance of SQLite memory DB is better than our GPU DB 

before the crossing point of two lines. The number of data queried of the crossing point is 
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about 1,700 records. We also evaluate the execution time of number of records queried from 

2,500 to 10,000 records, and the execution time of GPU DB always less than SQLite along 

with the increasing number of records queried.  

 
Figure 4 - 2 Execution Time Comparison of Selection 

4.2.2.3 Data Grouping 
 In Figure 4 - 3, the execution time of GPU DB is increasing slowly caused by increase of 

number of records queried. One thing can be believed, more number of records queried, more 

records should be sorted before calculating the aggregate functions. Of course, the number of 

records queried also affects the execution time of calculation the aggregate functions. We will 

go deep into how much GPU time this process takes in the section 4.3. 

 Similar to evaluation of Selection Query, there is a crossing point of the lines of GPU DB 

and SQLite memory DB. According to evaluation of execution time from number of records 

queried 2,500 records to 10,000 records, the performance of our GPU DB will be always 

better than SQLite. 
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Figure 4 - 3 Execution Time Comparison of Data Grouping 

4.2.2.4 Data Insert According to Selection Query 

 

Figure 4 - 4 Execution Time Comparison of Data Insert According to Selection Query 
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Similar to the evaluation result of Selection Query and Data Grouping, there is also a 

crossing point of the lines of GPU DB and SQLitse memory DB, and the performance of 

GPU DB is always better than SQLite memory DB after that crossing point.  

There two jumping points at the line of GPU DB is 1,100 records queried and 2,100 

records queried. Because the total data size is over the table size after inserting data, the table 

was expanded 2 times table size to accommodate all records. 

4.2.3 Analysis of GPU Computation Time of Data Grouping 

 Because there are two steps included by Data Grouping process, one is Selection Query, 

and the other one is Sorting Data and aggregate functions calculation, we evaluated the 

computation time of kernel programs which run on GPU to observe its behavior.  

 At first, we evaluated the variation of GPU execution time followed the increase of 

number of records queried from 2,500 records to 1,000 records and total number of data is 

100,000 records in the data table. As we see in Figure 4 - 5, more records queried more GPU 

computation time Data Grouping step takes. 

 

Figure 4 - 5 GPU Execution Time of Data Group 
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sum algorithm and sorting algorithm implemented by CUDPP increase 2 in the power of n 

threads each time while the number of threads is not enough. Because number of records 

4,500 is greater than 4096, the program issued more threads but take more time. The detail 

implementation of pre-fix sum and sorting algorithms will not be discussed here. Please refer 

to [4] and [13]. 

 
Figure 4 - 6 GPU Computation Time of Selection Query 

 We evaluated the GPU computation time of Selection Query in Data Grouping process 

separately with total number of 100K, 200K, 300K, 400K, and 500K records in data table. As 

showed in Figure 4 - 6, GPU computation time of Selection Query is not sensitive to number 

of records queried. According to our implemented methods, one thread is designate on one 

record for execution selection query process. Because the limitation of hardware, compiler 

will issue the maximum number of threads that the hardware can sustain by evaluating 

registers or shared memory usage of kernel program.  

When all turns of each thread are complete, the selected data will be marked in flag array. 

Selection Query takes stable execution time for the same total number of records in data table 

and is not related to how much number of records queried. The execution time of Selection 

Query is related to total number of records in data table because more data records in table, 
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more turns threads executes, and of course, it takes more time to complete the whole process. 

 

Figure 4 - 7 Total GPU Computation time of Data Grouping 

Finally, we evaluated the total GPU time of Data Grouping. The proportion of number of 

records queried to total number of records in data table is small, so the increase of total GPU 

execution time followed increase of number of records queried is related small. 

4.3 Evaluation of Turning points 
We evaluated the turning points of GPU DB and SQLite memory DB. Each turning point 

was the crossing point of the performance evaluation of GPU DB and SQLite memory DB. 

The performance of each function of our GPU DB is always better than SQLite memory DB 

since increase of number of records queried is more than the turning point has dedicated. 

The height of lines in Figure 4 - 8 implicates the difference of performance between our 

GPU DB and SQLite memory DB. For example, the lines of Selection and Sorting are higher 

than Grouping which implicates the difference of performance between our GPU DB and 

SQLite memory DB in Data Grouping is smaller than Selection Query and Sorting Data. 
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Figure 4 - 8 Turning points of GPU DB and SQLite memory DB 

From Figure 4 - 8, we figured out Table 4 - 4 the ratios of each function which showed 

when about 0.161% to 2.061% of number of total records is queried, the performance of our 

GPU DB will be better than SQLite memory DB. The ratios listed in Table 4 - 4 the ratios of 

each function are small, and we believe that it is easily to be exceeded in common case. 

 
 

Function Name 
Ratio of No. data queried 

to total No. records (%) 

Selection Query 1.926% 

Selection Query and Sorting Data 2.061% 

Selection Query and Data Grouping 
operations 

0.491% 

Data Insert According to Selection Query 0.784% 

Data Update 0.161% 

Data Delete 0.784% 

Table 4 - 4 the ratios of each function 
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Chapter 5 Conclusions and Future works 

5.1 Conclusions 

Using GPU for problems with High density computation normally brings remarkable 

improving of performance. Of course, these problems should be able to be parallelized. The 

advance development of GPGPU has already speeded up many applications which are used to 

be computed in host CPU. In this paper, we survey the background of existing main memory 

data base and CUDA programming model. We proposed an entire new architecture for 

experimental data base. Major computation bound of our data base operations are data sorting, 

prefix-sum process and the aggregate functions calculation. The proportion of these 

operations to memory I/O bound operations such as selection query is small.  

The experiment result shows the operations of our GPU DB takes almost the same 

execution time for the same total number of records. The execution time of our data 

operations are not sensitive to how many number of records queried. The result of experiment 

is different between our GPU DB and SQLite. After query operations, more records in the 

result table more execution time SQLite take. Oppositely, our GPU DB is not sensitive to how 

many number of records in result table but sensitive to how many number of total records in 

data table. Based on this, we evaluated the turning point between our GPU DB and SQLite 

memory DB. The change of turning points trended to linear variation and we figured out the 

approximate ratio of records queried to total number of records. Finally, the ratio is small, 

about 0.161% to 2.061% according to different functions, and we believe that it is easily to be 

exceeded in common case. 
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5.2 Future Works 

     Although we have seen the capability of our GPU DB, there are many issues considered 

for improving our data base. 

 

(1) Parallel string data query 

 Because there is no appropriate solution for parallel string data query, our GPU DB is 

designed for only numeric data now. One 2-D array stores data in the same data type. String 

data has to be stored as numeric type or in other 2-D array different from the numeric data 

stored. Each word has its own alphabet order, so the comparison on words supposed to begin 

from the prefix to suffix. To parallel computation, the characteristic on sequence of string 

seem to be undefeated. However, the string comparison is necessary to complete 

implementation of data base. 

 

(2) Join Query 

 An SQL join query combines fields from two tables by using value common to each. Our 

GPU DB does not support the join query now. In the future, we will design a relation table to 

manage the relationship between each table. 

 

(3) Concurrency data base query 

 Because our GPU DB can process only one global function call at the same time, we 

plan to design a scheduler. This scheduler can combines multiple requests to one GPU 

function call and maintains the data consistency for concurrency data base query in a 

multiuser database environment. 
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