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Abstract

Most modern digital systems are based on synchronous circuit design nowadays. But as
we know, with the increasing complexity of digital circuits, there are some problems such as
clock skew and power consumption.-In addition, system on chip (SoC) design is another trend
today. To integrate several intellectual property (IP) modules in a SoC design is not an easy
job. Globally asynchronous locally synchrenous (GALS) design is a promising approach to
solve these problems.

Compared with traditional four-phase handshaking, stretchable clocking based GALS
systems, we propose a two-phase handshaking interface for stretchable clocking based GALS
systems. In our design, the local synchronous modules can operate at different clock
frequencies independently and work correctly. The design is synthesized with Synopsys
Design Compiler with TSMC 0.13pum cell library.

The result shows that the new two-phase handshaking design has better latency than
four-phase handshaking counterpart. But from the viewpoint of area, the new two-phase

handshaking design is larger than four-phase handshaking counterpart.
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Chapter 1 Introduction

1.1 Motivations

Most modern digital systems are based on synchronous circuit design nowadays. As
clock frequency is getting higher and higher, more and more problems may be encountered.
For a global clocking system, it is hard to distribute clock signals that has high clock rate but
low clock skew. Another problem is power consumption. Clock distribution network takes the
largest part of power consumption in synchronous systems [1]. As clock frequency is getting
higher, the problem is getting worse. In addition, digital products focus on low power design
today. So it is important to make a compromise -between high performance and low power
design.

Another trend today is System-on-Chip (SoC) design. A SoC system may contain several
IP modules. Each IP module may have its own clock source and operates at different clock
frequencies. How to integrate these modules efficiently without data losing between multiple
clock domains is a significant issue.

Based on above-mentioned reasons, Globally Asynchronous Locally Synchronous
(GALS) design is a promising approach. As implied by the name, a GALS design means that
the local modules operate synchronously and the communication between the local modules is

asynchronous. Because of communicating via asynchronous approaches, the whole system



can be modulized more easily and consumes less power theoretically. Asynchronous circuits

will be introduced in the next section. An abstract diagram of GALS systems is shown in Fig.

1. It can be seen that each synchronous system may have its own clock source and is wrapped

by an asynchronous wrapper which will be introduced in the next chapter. The

communication between these asynchronous wrappers is asynchronous.

Asynchronous Wrapper Asynchronous Wrapper Asynchronous Wrapper
YN Y
Synchronous Synchronous Synchronous Synchronous
block block block block
Clock Clock Clock
sourcel source?2 source3
N N

Asynchronous Channel
—
C——

Fig. 1 An abstract diagram of GALS systems

1.2 Asynchronous Circuits

Synchronous circuit design is still a mainstream today and it does have many advantages
to support it such as complete deign flow and many CAD tools. But as mentioned earlier, with

the clock frequency getting higher, the more problems will be faced. So asynchronous circuit



design is getting more and more attractive.

Compared with synchronous circuits, asynchronous circuits are clockless systems.

Instead of a global clock signal, asynchronous circuits use handshake protocols between

system components to ensure correct sequencing of events. Asynchronous circuits also have

several ways to encode data. Of course, it does have its own advantages and drawbacks.

These will be introduced in the following sections.

1.2.1 Handshake Protocols

Fig. 2 is an illustration of asynchronous,systems. It can be seen that the communication

between sender and receiver are using handshake protocols i.e. Request and Acknowledge

signals. The data is sent out from sender.to receiver. There are two main handshake protocols

in asynchronous circuits [2]. One is called four-phase protocol and the other is called

two-phase protocol.

Request
Acknowledge

Sender Receiver
Data

Fig. 2 Illustration of asynchronous systems



Four-phase protocol is shown in Fig. 3. If the data of sender is ready, sender asserts a

request signal. Then receiver gets data and asserts an acknowledge signal as a response. Next,

sender deasserts its request signal. Finally, receiver deasserts its acknowledge signal. When

both signals return to logic 0, it means that handshaking is complete. So four-phase protocol is

also called return-to-zero protocol. Some texts may use the term “level signaling” instead of

four-phase protocol.

\ A N\ 1
\ / N //
Req N\—
N A
\ [ V.4 \ / \
\ Y <// \/ \

ak —— TN N

Fig. 3 Four-phase handshake protocol

Two-phase protocol is shown in Fig. 4. The difference between two-phase and
four-phase protocols is the meaning of the signal edges. In four-phase protocol, only the rising
edges can be active signals. The falling edges in four-phase protocol just mean reset. But in
two-phase protocol, the rising edges and falling edges have no difference. In other words,
both can represent active signals. Again, when the data of sender is ready, sender sets its

request signal from O to 1. Then receiver gets data and also sets its acknowledge signal from 0



to 1 as a response. The end of this action means that handshaking is complete. If subsequent

data is ready, sender will set its request signal from 1 to O to initiate a new process. Then

receiver gets data and also sets its acknowledge signal from 1 to 0 to finish this process. So

two-phase protocol is also called non-return-to-zero protocol. Some texts may use the term

“transition signaling” instead of two-phase protocol.

DATA _ X X X X X __

\ A\ 4\ 4\ y

\ I\ A\ I\ /

| II A /

R ] /
A | AN I
W= IE5H N AN A

Fig. 4 Two-phase handshake protocol

In general, the systems use two-phase protocol are more efficient and have better
performance than the four-phase counterparts. However, using two-phase protocol may lead

to more complex circuit theoretically.

1.2.2 Data Encoding Methods

There are several ways to encode data [2]. One is called “bundled-data” as known as



“single-rail” encoding. This method is as same as the data in normal synchronous systems.

Every wire represents a bit of data. Another one is called “dual-rail” encoding. Dual-rail

means that each data bit is encoded into two wires which called “d.t” and “d.f”. The encoding

method is shown in Table 1. The pattern of {d.t, d.f} represents as following: {1, 0} means a

valid data “1”; {0, 1} means a valid data “0”; {0, 0} means an empty token; {1, 1} is not

used.

Table 1 Dual-rail data encoding

dt | d.f

Empty (E?).| 0 | 0

Valid “0” 0 1
Valid-<1” 1 0
Not used 1 1

Fig.5 is a diagram of dual-rail data encoding systems. As Fig. 5 shown, the request signal

of sender is encoded into one of two wires. So the communication based on dual-rail data

encoding is delay-insensitive i.e. it works correctly regardless of the delays in gates and wires.



Data, Request

2n

Sender Receiver

Acknowledge

Fig. 5 Dual-rail data encoding systems

The using of handshake protocol and data encoding method depends on your design

requirements. It can be any combinations of handshake protocols and data encoding methods

such as four-phase dual-rail protocol or twe-phase bundled-data protocol. Fig. 6 is an example

of four-phase dual-rail protocol.

Vid Vil

Deta {dt,df)  Empty -y

Ak )

Fig. 6 Four-phase dual-rail protocol

1.2.3 Muller C-Element



Muller C-element is a fundamental component in asynchronous circuits. It is a

state-holding element just like an asynchronous set-reset latch. The function of Muller

C-element is shown in Table 2. When the inputs are logic 1, the output is logic 1. When the

inputs are logic 0, the output is logic 0. Otherwise, the output does not change. Fig. 7 shows

the symbol of Muller C-element and the gate level implementation. Fig.8 shows the gate level

implementation of Muller C-element with reset.

Table 2 Function of Muller C-element

Input 1 Input 2 Output
0 0 0
0 1 No change
1 0 No change
1 1 1

e | A =071
-

Fig. 7 Muller C-element and its gate level implementation
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Fig. 8 Gate level implementation of Muller C-element with reset

1.2.4 Advantages and Drawbacks

Because of the inherent differences. from synchronous circuits, asynchronous circuits

have many advantages over synchronous counterparts [2]. The advantages are listed below:

(1) Low power consumption: ‘because -of no clock signals, asynchronous circuits
eliminate the largest part of power consumption in the whole system — clock
distribution networks [1]. Also, because the modules in asynchronous systems are
active only when needed, they do not consume any standby power.

(2) Average-case performance: in synchronous circuits, the maximum speed which the
system can achieve depends on the slowest component. It is worst-case performance.
Compared with synchronous counterparts, asynchronous circuits have an
average-case performance. Without a global clock signal, every component can

operate at its own speed. As long as a component finishes its computation, the data



can be send out immediately.

(3) No clock skew problems: again, because of no clock signal, asynchronous circuits do
not need to consider clock skew problem as synchronous counterparts will face. With
the clock frequency getting higher, it is even harder to handle. GALS systems can
reduce clock skew problems.

(4) Better modularity: As different modules operate at different clock frequencies, to
integrate these modules into a system is not an easy job. Asynchronous circuits use
handshake protocols to communicate between modules, so it is much easier to deal
with modularity problems. This is.another reason that why we use GALS design
approach.

(5) Less electro-magnetic noises:. because of no clock distribution networks,
asynchronous circuits have less electro-magnetic noises.

Of course, asynchronous circuits do have its own drawbacks. One is few CAD tools to
support so that asynchronous circuits are hard to design and are not as popular as synchronous
circuits nowadays. Handshake protocols also increase design overheads such as area cost
because of additional control signals. In addition, there is no hazard can be tolerated in

asynchronous systems, or the whole system will malfunction.

1.3 Organization of The Thesis

10



This thesis proposes a two-phase handshaking, stretchable clocking based interface for

GALS systems. Chapter 2 introduces some related works about GALS systems including

some researches done in recent years, an asynchronous wrapper, pausible-clock generators,

and commonly used four-phase handshaking, stretchable clocking based GALS systems.

Chapter 3 illustrates the architecture, implementation and simulation of the new proposed

two-phase handshaking, stretchable clocking based GALS systems. Chapter 4 shows the

synthesis results of area and latency of two-phase and four-phase designs. It also proves that

when adjacent asynchronous wrappers operate at different clock frequencies can work

correctly in our new design. Finally, a conclusion and future works are discussed in chapter 5.

11



Chapter 2 Related Works

2.1 Overview

The first GALS concept was presented by Chapiro in the 1980s [3]. In the mid-1990s,
K.Yun and R. Donohue proposed pausible clocking scheme for heterogeneous systems [4].
Then J. Muttersbach et al. introduced the concept of an asynchronous wrapper in 2000 [5].
The asynchronous wrapper will be described in the next section. Since then, more and more
studies were proposed. In 2002, Shengxian Zhuang et al. used standard cells and Muller
C-elements to construct I/O ports of asynchronous wrappers [6]. Esmail Amini et al.
introduced a clock gating technique for off-chip clock generators in 2006 [7]. In 2007, Jhao-Ji
Ye et al. proposed a transmission —method called “quasi-synchronous” for
multiple-clock-domain IP modules [8]. Most of them are designed to improve latency and to
reduce area. There are also some studies that make the taxonomy of GALS design styles [9],
[10], [11]. According to [10], more and more GALS researches focus on the evaluations and

applications of GALS systems over the years.

2.2 Asynchronous Wrapper

As mentioned earlier in chapter 1, a GALS system means to make an integration of

synchronous systems and asynchronous environments. But how to adapt synchronous systems

12



into asynchronous environments safely is a big challenge. If the data comes from

asynchronous environments is too close in time to the clock edges from synchronous circuits,

it will cause synchronization failure i.e. the circuit may enter a metastable state.

A metastable state is a stable state which the circuit is neither at logic 1 level nor logic 0

level. Instead, the circuit is at an uncertain level between logic 1 and logic 0. So the data may

be interpreted as either logic 0 or logic 1 arbitrarily. This situation will cause the whole

system malfunction. To avoid metastable problems, the data comes from asynchronous

environments has to meet the setup time and hold time of the clock in synchronous systems.

A viable approach is making the clock: stoppable so that secures the data transfer between

asynchronous and synchronous systems. In order to achieve such a goal, a medium for the

two very different systems is needed. This medium is called an asynchronous wrapper [5].

An asynchronous wrapper encapsulates synchronous modules in GALS systems and

makes synchronous modules communicate with each other asynchronously. An asynchronous

wrapper usually includes locally synchronous (LS) modules, a local clock generator and

Input/Output port controllers. A local clock generator is used to generate stoppable clock for

LS modules. I/O port controllers are responsible for producing handshaking signals and

interfering local clock signals.

In short, an asynchronous wrapper manages all the data transfers in and out of LS

modules and delivers locally generated clock signals to them. The general architecture of an

13



asynchronous wrapper is shown in Fig. 9.

Asynchronous Wrapper

Data Data
e )

)

2] Locally-Synchronous 2]
= =
5 DEN Module DEN 5
A A
oy oy
= Input Output > o
g P Lk | poy g
3 e
E (Rl Clock R2 E
as Generator s
Ail A2

\_ /

Fig. 9 General architecture of an asynchronous wrapper

Here we briefly illustrate the function of each component of the asynchronous wrapper in

Fig. 9. First, the LS module outputs data actively and accept data passively. As can be seen

from Fig. 9, the LS module generates a DEN signal to inform 1/O ports to stop the local clock

Lclk when it is ready to accept/output the data from/to adjacent LS modules. Second, the I/O

ports communicate with adjacent asynchronous wrappers by handshaking signals. The ways

that I/O ports intervene the local clock generator depend on the ways how the local clock

generator implements. Third, the local clock generator is used to generate stoppable clock

signals for LS modules in order to avoid metastable problems mentioned earlier. The

implementation ways of the local clock generator will be explained in the next section.

14



2.3 Pausible-Clock Generators

The local clock generators which generate stoppable clock are called pausible-clock
generators. In general, pausible-clock generators can be divided into three categories: pausible
clocking, stretchable clocking, and data-driven clocking [9], [10], [11]. All of three are based
on ring oscillators. A ring oscillator constructs from an odd number of inverters to form clock
signals. The Implementation of a ring oscillator is shown in Fig. 10. In order to stop the clock,
additional control circuits are needed. The following introduces the three categories of

pausible-clock generators.

» CLK

e

Odd number of inverters

Fig. 10 Implementation of a ring oscillator

2.3.1 Pausible Clocking

Fig. 11 shows a pausible clocking based asynchronous wrapper. The implementation of
pausible clocking is shown in Fig.12. In Fig. 12, it can be seen that pausible clocking includes

a mutual exclusion (MUTEX) element, a Muller C-element, and a ring oscillator.
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Fig. 11 The pausible clocking based asynchronous wrapper

Pausible Clocking

Req Grant
MU

TEX ]

Clock

Fig. 12 Implementation of pausible clocking

The MUTEX allows only one of two incoming requests to pass at a time [2]. If both

requests arrive at the same time, it decides which one to pass by “tossing a coin”. The output

of MUTEX is always mutually exclusive. The symbol and implementation of MUTEX is
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shown in Fig. 13.

XATLNIN

Rl —

A g !

Fig. 13 Mutual exclusion element

In Fig. 12, the role of MUTEX is used to gate the clock. We can see that when the Req

signal is asserted and the Clock is at low-phase, the Clock will be stopped until the Req signal

is deasserted. On the other hand, when the Req signal is not asserted, the Clock can operate

normally. If both arrive simultaneously, it takes an uncertain time to decide which one to pass.

It means that the Clock may be gated or runs as normal.

Before illustrating the operation of pausible clocking based asynchronous wrapper in Fig.

11, there are two details should be reminded. One is that the LS module outputs data actively

and accept data passively. The other is that the DEN signal issued by the LS module is using

the transition signaling approach. It means that there is no difference between 0 -> 1 and 1 >

0 transitions
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Here we start to illustrate the operation of pausible clocking based asynchronous wrapper
in Fig. 11. At first, when the LS module is ready to accept data (in other words, the LS
module has finished its operation and can actively output data to the next wrapper), it will
make a DEN signal transition (0 -> 1 or 1 -> 0) to inform I/O ports to stop Lclk. Then from the
viewpoint of Input Port, it will assert Ril and wait for Ail from the clock generator. If the
clock generator responds Ail as logic 1, it means that Lclk has been stopped. Next, Input Port
can start the four-phase handshaking process with the outside environment (Rp+ -> Ap+ ->
Rp- -> Ap-). After finishing the four-phase handshaking process, Input Port deasserts Ril and
the clock generator deasserts Ail as a response. Finally, Lclk resumes running. The Output
Port operates in the same way.

Therefore, in the pausible clocking based asynchronous wrapper, the [/O ports
communicate with the clock generator by means of four-phase handshake protocol. There are

some designs belong to pausible clocking scheme [4], [5], [12].

2.3.2 Stretchable Clocking

Unlike pausible clocking, stretchable clocking uses simpler circuits to achieve the same
goal. It consists of a Muller C-element, a ring oscillator, some basic gates but except a
MUTEX. The stretchable clocking based asynchronous wrapper and the implementation of

stretchable clocking are shown in Fig. 14 and Fig. 15, respectively.
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Fig. 14 The stretchable clocking based asynchronous wrapper
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Fig. 15 Implementation of stretchable clocking

The communication between I/O ports and the clock generator is using the stretch signals.
If any stretch signals are asserted, the low phase of the clock will be stretched until all stretch
signals are deasserted. Otherwise, the clock will be generated as normal. For example, in Fig.

15, if any of Stretchl or Stretch2 are asserted, Lclk will be stretched until both of Stretchl and
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Stretch2 are deasserted. It can be extended to more than two stretch signals by just OR them
together.

Like the pausible clocking based asynchronous wrapper, the LS module outputs data
actively and accept data passively and the DEN signal issued by the LS module is using the
transition signaling approach.

Here we start to illustrate the operation of stretchable clocking based asynchronous
wrapper in Fig. 14. At first, when the LS module is ready to accept data (in other words, the
LS module has finished its operation and can actively output data to the next wrapper), it will
make a DEN signal transition (0 -> 1 or 1 -> 0) to inform I/O ports to stop Lclk. Then from the
viewpoint of Input Port, it will assert Stretchl to the clock generator and Lclk is stopped. Next,
Input Port can start the four-phase handshaking process with the outside environment (Ri+ ->
Ai+ > Ri- -> Ai-). After finishing the four-phase handshaking process, Input Port deasserts
Stretchl. Finally, if both of Stretchl and Stretch2 are deasserted, Lclk resumes running. The
Output Port operates in the same way. There are some designs belong to stretchable clocking

scheme [6], [13].

2.3.3 Data-Driven Clocking

The intent of data-driven clocking is much different like pausible clocking and

stretchable clocking although its implementation is not so different compared with the other
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two. The implementation of data-driven clocking is shown in Fig. 16. The generation of each

clock cycle responds to a complete four-phase handshake protocol. In other words, only when

a new Req signal requests, the Clock signal will be produced. This design can avoid

unnecessary clock switching activities only when data is available. There are some designs

belong to data-driven clocking scheme [14], [15].

Data-Driven Clocking

Req

Ack
Clock

Fig. 16 Implementation of data-driven clocking

2.3.4 Comparisons Between Three Clock Generation Methods

Let’s do some comparisons between the previous three clock generation methods. There
are some drawbacks in pausible clocking. First, the key component of pausible clocking is
MUTEX. But MUTEX takes more area cost. Second, it may still have a metastable problem
when the two inputs of MUTEX request at the same time before the output is decided. It

would cause the whole system malfunction. Finally, because of using four-phase handshake

21



protocol between the 1/O ports and the local clock generator, it may take much time and have
worse performance.

Data-driven clocking also has its drawbacks. Each request signal produces a
corresponding clock signal. For this reason, it may become a problem if the data needs more
clock cycles to finish its operation. So the data-driven clocking needs additional circuits to
generate additional clock cycles when this occurred.

Stretchable clocking has some advantages. First, stretchable clocking can generate
multiple clock cycles for data operations easily. Second, instead of requiring a MUTEX to
stop clock signals, stretchable clocking uses simpler circuits to achieve the same goal. Finally,
there is no handshaking between the I/O ports and the local clock generator. This can reduce
the time that spends on stopping and resuming clock signals. Thus, stretchable clocking is a

good option to implement local clock generators.

2.4 Four-Phase Handshaking, Stretchable Clocking
Based GALS Systems

So far most GLAS systems are based on four-phase handshake protocol. Fig. 17 shows a
typical architecture of four-phase handshaking, stretchable clocking based GALS systems. It
consists of two asynchronous wrappers. Each asynchronous wrapper is surrounded by two

latches. The latch is used as a storage element to prevent data loss. It is controlled by the
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acknowledge signal. When the acknowledge signal is asserted, it means that the latch

becomes transparent so that data can pass through the latch. When the acknowledge signal is

deasserted, it means that the data is latched by the latch. This can make sure that when the

data accept by LS modules, the local clock of LS modules is stopped. In other words, adding

latches avoid metastable problems.

Asynchronous Wrapper Asynchronous Wrapper
' LSl '

Din | ( il | LSlout\ | ( LShn | LSZout\ | DoutA
) Latch V L S  Latch y LS | Latch J
L] DEN DEN ] DEN DEN ]
il D~ - LN

Tnput Output Tnput Output »
. Put e " Pt G b

) St ) S

Sl | Clockng g Sl | ORI | g

Fig. 17 Architecture of four-phase handshaking, stretchable clocking based GALS

systems

Before illustrating the operation of the whole system in Fig. 17, we make some statement

in order to facilitate the illustration. The former and latter asynchronous wrappers are called

Wral and Wra2, respectively. In the same way, the former and latter LS modules are called

LS1 and LS2, respectively.
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To emphasize once again, the LS module outputs data actively and accept data passively

and the DEN signal issued by the LS module is using the transition signaling approach.

At first, the whole system will be reset. After resetting, the output of LS1 and LS2 are

zero (LS1lout and LS2out). It means that Wral and Wra2 are ready to accept a new data from

the outside environment. Then LS1 and LS2 both make their DEN signals activated.

From the viewpoint of Wral, after I/O ports receive a DEN signal transition, they pull up

Stretchl and Stretch2 to inform the clock generator. So Lclk is stretched. Then I/O Ports can

start the four-phase handshaking process with the outside environment.

From the viewpoint of the Input Port.of Wral, when Din is ready, it receives Ri+ from

the outside environment. Then the Input Port responds Ai+ so that Din can pass through the

latch and is accepted by LS1. Next, the Input-Port receives Ri- and pulls down Stretchl. If

both Stretchl and Stretch2 in Wral are deasserted, Lclk resumes running. Finally, the Input

Port responds Ai- to finish the four-phase handshaking process.

From the viewpoint of the Output Port of Wral, when LS1 finishes its operation, it sends

Ro+ to the Input Port of Wra2. Then the Input Port of Wra2 responds Ao+ so that LS1out can

pass through the latch and accept by LS2. Next, the Output Port sends Ro- and waits for the

Input Port of Wra2 responding Ao- to finish the four-phase handshaking process. Finally, the

Output Port pulls down Stretch2. If both Stretchl and Stretch2 in Wral are deasserted, Lclk

resumes running.
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The operation of Wra2 is as same as Wral illustrating above. The latch between Wral

and Wra2 is used to store data from Wral and prevent data from flowing into Wra2 until Ao is

asserted i.e. make sure that data accepted by Wra2 meet the setup time and hold time of Lclk

in Wra2.

Fig. 18 shows the timing diagram of Wral of four-phase handshaking, stretchable

clocking based GALS systems.

Din data

DEN -~

Ri

Ai

Stretchl A}

[
Stretch2 ‘} "|—

Ro

Ao

Fig. 18 Timing diagram of Wral of four-phase handshaking, stretchable clocking based

GALS systems

As mentioned earlier, the whole system in Fig. 17 will be reset first. After resetting, the
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output of LS1 and LS2 are zero and then LS1 and LS2 both make their DEN signals activated.
One thing should be noted is that the Output Port of Wral and the Input Port of Wra2 will do
four-phase handshaking immediately after resetting. So Stretch2 in Fig. 18 can be deasserted
as soon as possible after resetting. Therefore, the first data of Wral can be calculated as long
as the four-phase handshaking of the Input Port of Wral has finished since Stretch2 has been

deasserted.

2.4.1 Input Port

Fig. 19 (a) and (b) show the block diagram of Input Port and its signal transition diagram
(STG). The Input Port has two inputs and two-outputs. Inputs are DEN and Req signals.
Outputs are Stretch and Ack signals. DEN is using the transition signaling approach. It means

that there is no difference between 0 -> 1 and 1 -> 0 transitions.
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Fig. 19 (a) Input Port (b) STG of Input Port

According to the STG in Fig. 19 (b), when the LS module is ready to accept data, it
makes DEN do a 0 -> 1 transition. Then Stretch is asserted. So the local clock is stretched.
Next, Input Port waits for Req+ from the outside environment to start handshaking. Req+
means that the input data is valid. After receiving Req+, Input Port makes Ack+ as a response.
It denotes that the LS module is ready to accept data. Later, if Input Port receives Reg-, it
deasserts Stretch to let the local clock start running. Finally, Input Port responses Ack- to
finish four-phase handshaking. This is a complete data transaction of the Input Port. If there is
another data transaction, the LS module will make DEN a 1 -> 0 transition to start it. Fig. 20

shows the circuit implementation of Input Port.
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Fig. 20 Circuit implementation of Input Port

2.4.2 Qutput Port

Fig. 21 (a) and (b) show the block diagram of Output Port and its signal transition
diagram (STG). The Output Port has two inputs and two outputs. Inputs are DEN and Ack
signals. Outputs are Stretch and Req signals. DEN is also using the transition signaling

approach.
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Fig. 21 (a) Output Port (b) STG of Output Port

From the STG in Fig. 21 (b), when the LS module is ready to send out data, it makes

DEN do a 0 -> 1 transition. Then Stretch is pulled up and the local clock is stopped. Next,

Output Port will initiate Req+ to start handshaking with the outside environment. After

completing four-phase handshaking (Req+ -> Ack+ -> Req- -> Ack-), Stretch is pulled down.

This presents a complete data transaction of Output Port. If the subsequent data will be

delivered out, it makes DEN do a 1 -> 0 transition to start a new process. Fig. 22 shows the

circuit implementation of Output Port.
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Fig. 22 Circuit implementation of Output Port

2.4.3 Gate-Level Simulation

To compare with the new design:proposed in this thesis, we implement a four-phase

handshaking, stretchable clocking based GALS system like Fig. 17 as the object of

comparison. Two 10-bit accumulators are used as the LS modules in the simulation. The

implementation is synthesized with Synopsys Design Compiler with TSMC 0.13um cell

library. The gate-level simulation is simulated by ModelSim6.0 and the function is proven

correctly. Fig. 23 shows the gate-level simulation.
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Fig. 23 Gate-level simulation
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Chapter 3 A New Design - Two-Phase
Handshaking Interface for Stretchable
Clocking Based GALS Systems

As mentioned earlier in Chapter 1, handshake protocols of asynchronous circuits can be
divided into two categories — four-phase and two-phase handshaking. It is believed that
two-phase handshake protocol has better performance than four-phase counterpart because of
the property of non-return-to-zero [2]. But it will lead to a more complex implementation.
That’s why it is hard to find a GALS system.that bases on two-phase handshake protocol. In
this thesis, a two-phase handshaking interface for stretchable clocking based GALS systems is
proposed. The implementations of Input.and Output Ports are also delivered. The gate-level
simulation is presented, too. The details will be described in the following sections. Fig. 24
shows an intuitive architecture of two-phase handshaking, stretchable clocking based GALS
systems. But it has a problem that may cause the whole system malfunction. The problem and

solution will be introduced later.
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Fig. 24 Architecture of two-phase handshaking, stretchable clocking based GALS

systems (wrong)

Because the new design adopts two-phase handshake protocol, the storage element

between asynchronous wrappers is quite different from the four-phase counterpart. The

storage element is called capture-pass event controlled latch, C-P latch for short. Fig. 25

shows its block diagram and Table 3 presents its function. The C-P latch has two control

signals — C and P. When both signals are same, C-P latch is transparent i.e. data can pass

through it. On the other hand, when both signals are different, data will be captured. Normally,

the signal changing flow of the pattern {C, P} is {0, 0} -> {1, 0} -> {1, 1} -> {0, 1}. It means

that the behaviors of pass and capture are interleaved.
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Fig. 25 Capture-pass event controlled latch

Table 3 Function of capture-pass event controlled latch

C P Behavior
0 0 Pass

1 0 Capture
1 1 Pass

0 1 Capture

The initial state of C-P latch is {0, 0}. The role of C-P latch is as same as the latch in Fig.

17 i.e. they store data and prevent data from flowing into the next wrapper before the local

clock of the next wrapper has been stopped. In Fig. 17, the latch is controlled by Ao. Before

Ao is asserted, the data from Wral is latched in the latch. However, in Fig. 24, the data from

Wral (LS1lout) will pass through C-P latch before Ao is asserted. This is because when Wral

finishes its operation and before Ro is asserted, C-P latch is at pass state (because {C, P} is at

{0, 0} state). When the Output Port of Wral asserts RO to try to capture LSlout, LS1out has
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flowed into Wra2. This may cause the whole system malfunction.

To solve the problem mentioned above, a double edge triggered flip-flop (DET-FF) is

needed. Because the statement “always @(posedge clk or negedge clk)” in Verilog is not

synthesizable, we use an alternative implementation to construct double edge triggered

flip-flops.

Fig. 26 (a) and (b) shows the block diagram of double edge triggered flip-flop and its

circuit implementation. The DET-FF is triggered by both the rising and falling edges of clock

signals. In our implementation, we use two D flip-flops and three XOR gates to construct it.

The implementation is synthesizable by Synopsys Design Compiler with TSMC 0.13um cell

library.
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Fig. 26 (a) Double edge triggered flip-flop (DET-FF) (b) Implementation of DET-FF

So the correct architecture of two-phase handshaking, stretchable clocking based GALS

systems is shown in Fig. 27.
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Fig. 27 Architecture of two-phase handshaking, stretchable clocking based GALS

systems (correct)
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Here we start to illustrate the operation of two-phase handshaking, stretchable clocking

based GALS systems in Fig. 27. Once again, the LS module outputs data actively and accept

data passively and the DEN signal issued by the LS module is using the transition signaling

approach.

At first, the whole system will be reset. After resetting, the pattern {C, P} of C-P latches

is {0, 0} and the output of LS1 and LS2 are zero (LS1lout and LS20ut). It means that Wral and

Wra2 are ready to accept a new data from the outside environment. Then LS1 and LS2 both

make their DEN signals activated.

From the viewpoint of Wral, after /O ports receive a DEN signal transition, they pull up

Stretchl and Stretch2 to inform the clock generator. So Lclk is stretched. Then I/O Ports can

start the two-phase handshaking process with the outside environment.

From the viewpoint of the Input Port of Wral, when Din is ready, Din is blocked by the

DET-FF. Later, the outside environment makes Ri+ so that Din can pass through the DET-FF.

But Din is still blocked by the C-P latch until the Input Port makes Ai+ so that Din can pass

through the C-P latch and is accepted by LS1. After responding Ai+, the two-phase

handshaking process is finished. Finally, the Input Port pulls down Stretchl. If both Stretchl

and Stretch2 in Wral are deasserted, Lclk resumes running.

From the viewpoint of the Output Port of Wral, when LS1 finishes its operation and

before sending Ro+, LS1out is blocked by the DET-FF. Later, it makes Ro+ to the Input Port
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of Wra2 so that LS1out can pass through the DET-FF. But LS1out is still blocked by the C-P

latch until the Input Port of Wra2 sends Ao+ so that LS1out can pass through the C-P latch

and is accepted by LS2. After the Input Port of Wra2 responds Ao+, the two-phase

handshaking process is finished. Finally, the Output Port of Wral pulls down Stretch2. If both

Stretchl and Stretch2 in Wral are deasserted, Lclk resumes running.

The operation of Wra2 is as same as Wral illustrating above. Using DET-FF and C-P

latch as storage elements in the new design makes sure that data accepted by the wrapper

meet the setup time and hold time of Lclk in that wrapper.

Another point needed to pay attention is that the transitions of DEN are activated at the

falling edges of clock pulses in our-design. It is used to make sure that the whole system can

work correctly. If DEN is activated“at-the rising edges of clock pulses, some errors may

happen like that Stretch signals are asserted but the local clock does not stop immediately.

This may lead to a system malfunction. The timing diagram of Wral of two-phase

handshaking, stretchable clocking based GALS systems is shown in Fig.28.
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Fig. 28 Timing diagram of Wral of two-phase handshaking, stretchable clocking based

GALS systems

As mentioned earlier, the whole system in Fig. 27 will reset first. After resetting, the

output of LS1 and LS2 are zero and then LS1 and LS2 both make their DEN signals activated.

It should be noted that the Output Port of Wral and the Input Port of Wra2 in Fig. 27 will do

two-phase handshaking immediately after resetting. So Stretch2 in Fig. 28 can be deasserted

as soon as possible. Therefore, the first data of Wral can be calculated as long as the

two-phase handshaking of the Input Port of Wral has finished since Stretch2 has been

deasserted.
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3.1 Input Port

The block diagram of Input Port and its signal transition diagram (STG) are shown in Fig.
29 (a) and (b). The Input Port has two inputs and two outputs. Inputs are DEN and Req signals.
Outputs are Stretch and Ack signals. DEN is using the transition signaling approach as the

same as four-phase counterpart.

DEN+ » Stretch+
Stretch- Reg+ » Ack+
DEN ‘
Reg i Ack- Reg- Stretch-
| Ingut Stretch
‘ Port
Ack Stretch+ DEN- «
(a) (b)

Fig. 29 (a) Input Port (b) STG of Input Port

From the STG in Fig. 29 (b), when the LS module is ready to receive data, it makes DEN
do a 0 -> 1 transition. Then Stretch is asserted. So the local clock is stretched. Next, Input Port
waits for Req+ from the outside environment to start handshaking. Req+ denotes that the

input data is valid. After receiving Req+, Input Port makes Ack+ as a response. So far,
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two-phase handshaking is complete. After completing handshaking, Stretch signal is

deasserted to let the local clock start running. Then the LS module starts its computation. This

is a complete data transaction of the Input Port that adopts two-phase protocol. If there is

another data transaction, the LS module will make DEN a 1 -> 0O transition to start it. The

signal changing flow is similar to previous cycle except Req+ and Ack+ are substituted by

ReQ- and Ack-.

The implementation of Input Port can be converted from the STG in Fig. 29(b) by [2],

[16]. Fig. 30 is the circuit implementation of Input Port.
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Fig. 30 Circuit implementation of Input Port

3.2 Output Port



Fig. 31 (a) and (b) show the block diagram of Output Port and its signal transition
diagram (STG). The Output Port has two inputs and two outputs. Inputs are DEN and Ack

signals. Outputs are Stretch and Req signals. DEN is also using the transition signaling

approach.
» DEN+
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1 '
Ack- Reqg+
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l Reg- Ack+
Reg ' :
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R e ‘
0
Ack DEN-
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Fig. 31 (a) The Output Port (b) The STG of Output Port

According to the STG in Fig. 31 (b), when the LS module is ready to deliver out data, it
makes DEN do a 0 -> 1 transition. Then Stretch is pulled up and the local clock is stretched.
Next, Output Port will initiate Req+ to start handshaking with the outside environment to
denote that the data is valid to output. After receiving Ack+ from the outside environment,

Stretch is pulled down. Then the two-phase handshaking process is finished i.e. the data
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transaction of Output Port is complete. If the subsequent data is ready to be send out, it makes

DEN do a 1 -> 0 transition to start a new process and starts handshaking by initiating Req-

then so on.

The implementation of Output Port also can be converted from the STG in Fig. 31(b) by

[2], [16]. Fig. 32 is the circuit implementation of Output Port.
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Fig. 32 Circuit implementation of Output Port

3.3 Gate-Level Simulation

A two-phase handshaking, stretchable clocking based GALS system like Fig. 27 is
implemented. Like the four-phase counterpart mentioned in the section 2.4.3, two 10-bit
accumulators are used as the LS modules in the simulation. The implementation is also

synthesized with Synopsys Design Compiler with TSMC 0.13um cell library. The gate-level
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simulation is simulated by ModelSim6.0 and the function is proven correct. Fig. 33 shows the

gate-level simulation.
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Fig. 33 Gate-level simulation

Because the system adopts the two-phase protocol, it can be expected that the latency

and the time to finish handshaking between adjacent wrappers can be improved. The synthesis

results and analysis are discussed in the next chapter.
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Chapter 4 Results and Analysis

The implementations are synthesized with Synopsys Design Compiler with TSMC

0.13um cell library.

4.1 Synthesis Result - Area

Table 4 shows the area of each block in a wrapper of four-phase and two-phase

stretchable clocking designs.

Table 4 Area of each block in a wrapper of four-phase and two-phase designs

Area (umz)
Block
4-phase 2-phase

Input Port 71.290799 49.224600

Output Port 62.803799 67.895999
Storage elements 258.004804 1322.274589

Stretchable clocking 59.409000 59.409000
One accumulator 796.080604 796.080604
One wrapper 1653.267588 1636.293588
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It can be seen that the area of the Input Port of two-phase design is smaller than the
four-phase counterpart and the area of the Output Port of two-phase design is slightly larger
than the four-phase counterpart. The area of stretchable clocking and an accumulator of both
designs are the same. For one wrapper (not including the storage elements), the two-phase
implementation is slightly smaller than the four-phase counterpart. The biggest difference of
area between two designs is the storage elements. For four-phase design, the area of single
latch is 258.004804 (um?). For two-phase design, the area of DET-FF and C-P latch is
1322.274589 (um?). The area of DET-FF and C-P latch is much larger than the area of single

latch.

4.2 Synthesis Result - 'Latency

Before showing the result of latency, the definition of latency should be declared. The
latency in our design is defined by the time between data into and out of the system i.e. the
time between Din and Dout except the time spends on calculation in Fig. 17 and Fig. 27.

In this comparison, the latencies of four-phase and two-phase designs are 19488.3 (ps)
and 18054.6 (ps), respectively. Obviously, the two-phase design takes less time than the
four-phase design. It proves that two-phase handshake protocol has better performance than
four-phase handshake protocol indeed. When two-phase handshaking interface is applied to

larger GALS systems, it can be expected that the more latency are saving than four-phase
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counterparts. Table 5 shows the latencies of four-phase and two-phase deigns.

Table S Latency of four-phase and two-phase designs

4-phase | 2-phase

Time (ps) 19488.3 18054.6

The maximum clock frequency in our design is 213.95 MHz. It is limited to the delays of

NOR gate and Muller C-element in Fig. 15.

4.3 Adjacent Wrappers Operate at Different Clock

Frequencies

In a SoC system, each IP module may run at different clock frequencies. So in this
section, we present that our two-phase handshaking interface for stretchable clocking based
GALS systems can work correctly when two adjacent wrappers operate at different clock
frequencies.

As mentioned in the previous chapters, the former and latter LS modules are called LS1
and LS2, respectively.

Fig. 34 shows the case that LS1 is faster than LS2. We let LS1 run at 213.95 MHz and

LS2 run at 73.55 MHz. Fig. 35 shows the case that LS1 is slower than LS2. In this case, we
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let LS1 run at 73.55 MHz and LS2 run at 213.95 MHz. It can be seen that both case work

correctly in our design.

(I | E [ [F[ T
i O T T :DDDEDDJEDDD:DDDH_

Fig. 35 LS1 runs at 73.55 MHz and LS2 runs at 213.95 MHz
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When LSI is faster than LS2, we can add a FIFO between adjacent asynchronous
wrappers to smoothen the bursty data streams. Fig. 36 shows the diagram of adjacent

asynchronous wrappers with FIFO.

Asynchronous Wrapper Asynchronous Wrapper

Data Data

\ \

LS DEN Reg FIF O Req DENV LS

Output Input
Lelk Port Port Lelk
Stretchable Ack Ack Stretchable
Clocking Stretch Stretch Clocking

Fig. 36 The diagram of adjacent asynchronous wrappers with FIFO

In asynchronous circuits, the FIFO to be added depends on which protocols you used.

Fig. 37 and Fig. 38 show a four-phase bundled data pipeline and a two-phase bundled data

pipeline, respectively. Two-phase bundled data pipeline is as known as Micropipeline [17].

Because the handshake protocols are different, the storage elements used in the pipeline are

also different. It can be seen that four-phase bundled data pipeline uses a normal latch and

Micropipeline uses a capture-pass event controlled latch mentioned in chapter 3. Our new

design is based on two-phase protocol, so Micropipeline should be used.
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ACK

——D

DATA = Latch  Latch ) Latch ) Latch

Fig. 37 Four-phase bundled data pipeline

ACK ) T@ « ACK
REQ u C C C R REQ
or Cp Cp Cp
DATA =) Laich | Latch | Latch | Latch

Fig. 38 Two-phase bundled data pipeline a.k.a. Micropipeline
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Chapter 5 Conclusions and Future Work

In this thesis, a two-phase handshaking interface for stretchable clocking based GALS
systems is proposed. The local synchronous modules can operate at different clock
frequencies independently. In order to verify the feasibility, two 10-bit accumulators are
implemented as the LS modules in our design. The synthesis and simulation is implemented
by Synopsys Design Compiler with TSMC 0.13um cell library and ModelSim6.0, respectively.
The system function is proven reliably. The maximum clock rate is limited to the architecture
of stretchable clocking.

Compared with four-phase handshaking counterpart, the new two-phase handshaking
interface has better latency but larger ‘area. The reason is that two-phase handshake protocol is
“no-return-to-zero”. Both rising and falling edges of signals can be active edges. Because of
using DET-FFs and C-P latches as storage elements, two-phase design has larger area than
four-phase counterpart.

The proposed two-phase handshaking interface can work well when adjacent LS
modules operate at different clock frequencies.

In the recent years, GALS studies about applications and evaluations are increasing. So
applying two-phase handshaking interface for stretchable clocking based GALS systems

proposed in this thesis to large systems can be the future work, especially suitable for
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Network-on-Chip (NoC) systems [10]. Because the asynchronous wrapper takes small area

cost, it just accounts for small overhead in the large systems. Another important issue that

should be studied is the evaluation of power consumption. In principle, two-phase handshake

protocol consumes less power than four-phase protocol because of non-return-to-zero property.

But the increased logic complexity may consume more power than the four-phase counterpart.

Thus, the real power consumption should be evaluated after the proposed GALS interface is

implemented in real SoC designs.
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