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全域非同步區域同步系統之兩階段握手協

定介面 
 

研究生：陳俊瑋           指導教授：陳昌居 

 

國立交通大學資訊工程學系碩士班 

 

摘要 

 

 現今大部分的數位系統還是以同步電路的方式來設計。但如同我們所知，隨著電路

複雜度的增加，產生的問題也愈來愈多，如時脈時滯和功率消耗的問題。此外，SoC(系

統單晶片)是現今的另一種設計趨勢，要將一個 SoC 設計中的多個 IP(知識產權)模組做

整合並不是那麼的容易。所以，為了要解決上述問題，GALS(全域非同步區域同步)是一

個可以被期待的設計方式。 

 相較於傳統四階段握手協定、可延展時脈的 GALS 系統而言，我們提出了適用於可

延展時脈 GALS 系統的兩階段握手協定介面。在我們的設計中，區域的同步模組可以有

各自不同的時脈，並且可以正確的運算。並將這個新設計用 Synopsys Design Compiler

來做合成，使用的是 TSMC 0.13 微米的元件資料庫。 

 最後得到的結果顯示，我們提出的兩階段握手協定的新設計比起四階段握手協定的

設計來說，有比較短的延遲時間；但如果就面積的觀點來看，兩階段握手協定的新設計

所佔的面積要比四階段握手協定的設計來得大。 
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Two-Phase Handshaking Interface for 
Globally Asynchronous Locally 

Synchronous Systems 
 

Student: Chun-Wei Chen         Advisor: Dr. Chang-Jiu Chen 
 

Abstract 

 

 Most modern digital systems are based on synchronous circuit design nowadays. But as 

we know, with the increasing complexity of digital circuits, there are some problems such as 

clock skew and power consumption. In addition, system on chip (SoC) design is another trend 

today. To integrate several intellectual property (IP) modules in a SoC design is not an easy 

job. Globally asynchronous locally synchronous (GALS) design is a promising approach to 

solve these problems. 

 Compared with traditional four-phase handshaking, stretchable clocking based GALS 

systems, we propose a two-phase handshaking interface for stretchable clocking based GALS 

systems. In our design, the local synchronous modules can operate at different clock 

frequencies independently and work correctly. The design is synthesized with Synopsys 

Design Compiler with TSMC 0.13μm cell library. 

 The result shows that the new two-phase handshaking design has better latency than 

four-phase handshaking counterpart. But from the viewpoint of area, the new two-phase 

handshaking design is larger than four-phase handshaking counterpart. 
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Chapter 1 Introduction 
 

1.1 Motivations 

Most modern digital systems are based on synchronous circuit design nowadays. As 

clock frequency is getting higher and higher, more and more problems may be encountered. 

For a global clocking system, it is hard to distribute clock signals that has high clock rate but 

low clock skew. Another problem is power consumption. Clock distribution network takes the 

largest part of power consumption in synchronous systems [1]. As clock frequency is getting 

higher, the problem is getting worse. In addition, digital products focus on low power design 

today. So it is important to make a compromise between high performance and low power 

design. 

 Another trend today is System-on-Chip (SoC) design. A SoC system may contain several 

IP modules. Each IP module may have its own clock source and operates at different clock 

frequencies. How to integrate these modules efficiently without data losing between multiple 

clock domains is a significant issue. 

 Based on above-mentioned reasons, Globally Asynchronous Locally Synchronous 

(GALS) design is a promising approach. As implied by the name, a GALS design means that 

the local modules operate synchronously and the communication between the local modules is 

asynchronous. Because of communicating via asynchronous approaches, the whole system 
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can be modulized more easily and consumes less power theoretically. Asynchronous circuits 

will be introduced in the next section. An abstract diagram of GALS systems is shown in Fig. 

1. It can be seen that each synchronous system may have its own clock source and is wrapped 

by an asynchronous wrapper which will be introduced in the next chapter. The 

communication between these asynchronous wrappers is asynchronous. 

 

 

Fig. 1 An abstract diagram of GALS systems 

 

1.2 Asynchronous Circuits 

Synchronous circuit design is still a mainstream today and it does have many advantages 

to support it such as complete deign flow and many CAD tools. But as mentioned earlier, with 

the clock frequency getting higher, the more problems will be faced. So asynchronous circuit 
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design is getting more and more attractive. 

Compared with synchronous circuits, asynchronous circuits are clockless systems. 

Instead of a global clock signal, asynchronous circuits use handshake protocols between 

system components to ensure correct sequencing of events. Asynchronous circuits also have 

several ways to encode data. Of course, it does have its own advantages and drawbacks. 

These will be introduced in the following sections. 

 

1.2.1 Handshake Protocols 

Fig. 2 is an illustration of asynchronous systems. It can be seen that the communication 

between sender and receiver are using handshake protocols i.e. Request and Acknowledge 

signals. The data is sent out from sender to receiver. There are two main handshake protocols 

in asynchronous circuits [2]. One is called four-phase protocol and the other is called 

two-phase protocol.  

 

 

Fig. 2 Illustration of asynchronous systems 
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Four-phase protocol is shown in Fig. 3. If the data of sender is ready, sender asserts a 

request signal. Then receiver gets data and asserts an acknowledge signal as a response. Next, 

sender deasserts its request signal. Finally, receiver deasserts its acknowledge signal. When 

both signals return to logic 0, it means that handshaking is complete. So four-phase protocol is 

also called return-to-zero protocol. Some texts may use the term “level signaling” instead of 

four-phase protocol. 

 

 

Fig. 3 Four-phase handshake protocol 

 

Two-phase protocol is shown in Fig. 4. The difference between two-phase and 

four-phase protocols is the meaning of the signal edges. In four-phase protocol, only the rising 

edges can be active signals. The falling edges in four-phase protocol just mean reset. But in 

two-phase protocol, the rising edges and falling edges have no difference. In other words, 

both can represent active signals. Again, when the data of sender is ready, sender sets its 

request signal from 0 to 1. Then receiver gets data and also sets its acknowledge signal from 0 
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to 1 as a response. The end of this action means that handshaking is complete. If subsequent 

data is ready, sender will set its request signal from 1 to 0 to initiate a new process. Then 

receiver gets data and also sets its acknowledge signal from 1 to 0 to finish this process. So 

two-phase protocol is also called non-return-to-zero protocol. Some texts may use the term 

“transition signaling” instead of two-phase protocol. 

 

 

Fig. 4 Two-phase handshake protocol 

 

In general, the systems use two-phase protocol are more efficient and have better 

performance than the four-phase counterparts. However, using two-phase protocol may lead 

to more complex circuit theoretically. 

 

1.2.2 Data Encoding Methods 

There are several ways to encode data [2]. One is called “bundled-data” as known as 
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“single-rail” encoding. This method is as same as the data in normal synchronous systems. 

Every wire represents a bit of data. Another one is called “dual-rail” encoding. Dual-rail 

means that each data bit is encoded into two wires which called “d.t” and “d.f”. The encoding 

method is shown in Table 1. The pattern of {d.t, d.f} represents as following: {1, 0} means a 

valid data “1”; {0, 1} means a valid data “0”; {0, 0} means an empty token; {1, 1} is not 

used.  

Table 1 Dual-rail data encoding 

 d.t d.f 

Empty (“E”) 0 0 

Valid “0” 0 1 

Valid “1” 1 0 

Not used 1 1 

 

Fig.5 is a diagram of dual-rail data encoding systems. As Fig. 5 shown, the request signal 

of sender is encoded into one of two wires. So the communication based on dual-rail data 

encoding is delay-insensitive i.e. it works correctly regardless of the delays in gates and wires. 
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Fig. 5 Dual-rail data encoding systems 

 

The using of handshake protocol and data encoding method depends on your design 

requirements. It can be any combinations of handshake protocols and data encoding methods 

such as four-phase dual-rail protocol or two-phase bundled-data protocol. Fig. 6 is an example 

of four-phase dual-rail protocol. 

 

 

Fig. 6 Four-phase dual-rail protocol 

 

1.2.3 Muller C-Element 
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Muller C-element is a fundamental component in asynchronous circuits. It is a 

state-holding element just like an asynchronous set-reset latch. The function of Muller 

C-element is shown in Table 2. When the inputs are logic 1, the output is logic 1. When the 

inputs are logic 0, the output is logic 0. Otherwise, the output does not change. Fig. 7 shows 

the symbol of Muller C-element and the gate level implementation. Fig.8 shows the gate level 

implementation of Muller C-element with reset. 

 

Table 2 Function of Muller C-element 

Input 1 Input 2 Output 

0 0 0 

0 1 No change 

1 0 No change 

1 1 1 

 

 

Fig. 7 Muller C-element and its gate level implementation 
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Fig. 8 Gate level implementation of Muller C-element with reset 

 

1.2.4 Advantages and Drawbacks  

Because of the inherent differences from synchronous circuits, asynchronous circuits 

have many advantages over synchronous counterparts [2]. The advantages are listed below: 

(1) Low power consumption: because of no clock signals, asynchronous circuits 

eliminate the largest part of power consumption in the whole system – clock 

distribution networks [1]. Also, because the modules in asynchronous systems are 

active only when needed, they do not consume any standby power. 

(2) Average-case performance: in synchronous circuits, the maximum speed which the 

system can achieve depends on the slowest component. It is worst-case performance. 

Compared with synchronous counterparts, asynchronous circuits have an 

average-case performance. Without a global clock signal, every component can 

operate at its own speed. As long as a component finishes its computation, the data 
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can be send out immediately. 

(3) No clock skew problems: again, because of no clock signal, asynchronous circuits do 

not need to consider clock skew problem as synchronous counterparts will face. With 

the clock frequency getting higher, it is even harder to handle. GALS systems can 

reduce clock skew problems. 

(4) Better modularity: As different modules operate at different clock frequencies, to 

integrate these modules into a system is not an easy job. Asynchronous circuits use 

handshake protocols to communicate between modules, so it is much easier to deal 

with modularity problems. This is another reason that why we use GALS design 

approach. 

(5) Less electro-magnetic noises: because of no clock distribution networks, 

asynchronous circuits have less electro-magnetic noises. 

Of course, asynchronous circuits do have its own drawbacks. One is few CAD tools to 

support so that asynchronous circuits are hard to design and are not as popular as synchronous 

circuits nowadays. Handshake protocols also increase design overheads such as area cost 

because of additional control signals. In addition, there is no hazard can be tolerated in 

asynchronous systems, or the whole system will malfunction. 

 

1.3 Organization of The Thesis 
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This thesis proposes a two-phase handshaking, stretchable clocking based interface for 

GALS systems. Chapter 2 introduces some related works about GALS systems including 

some researches done in recent years, an asynchronous wrapper, pausible-clock generators, 

and commonly used four-phase handshaking, stretchable clocking based GALS systems. 

Chapter 3 illustrates the architecture, implementation and simulation of the new proposed 

two-phase handshaking, stretchable clocking based GALS systems. Chapter 4 shows the 

synthesis results of area and latency of two-phase and four-phase designs. It also proves that 

when adjacent asynchronous wrappers operate at different clock frequencies can work 

correctly in our new design. Finally, a conclusion and future works are discussed in chapter 5. 
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Chapter 2 Related Works 
 

2.1 Overview 

 The first GALS concept was presented by Chapiro in the 1980s [3]. In the mid-1990s, 

K.Yun and R. Donohue proposed pausible clocking scheme for heterogeneous systems [4]. 

Then J. Muttersbach et al. introduced the concept of an asynchronous wrapper in 2000 [5]. 

The asynchronous wrapper will be described in the next section. Since then, more and more 

studies were proposed. In 2002, Shengxian Zhuang et al. used standard cells and Muller 

C-elements to construct I/O ports of asynchronous wrappers [6]. Esmail Amini et al. 

introduced a clock gating technique for off-chip clock generators in 2006 [7]. In 2007, Jhao-Ji 

Ye et al. proposed a transmission method called “quasi-synchronous” for 

multiple-clock-domain IP modules [8]. Most of them are designed to improve latency and to 

reduce area. There are also some studies that make the taxonomy of GALS design styles [9], 

[10], [11]. According to [10], more and more GALS researches focus on the evaluations and 

applications of GALS systems over the years. 

 

2.2 Asynchronous Wrapper 

 As mentioned earlier in chapter 1, a GALS system means to make an integration of 

synchronous systems and asynchronous environments. But how to adapt synchronous systems 
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into asynchronous environments safely is a big challenge. If the data comes from 

asynchronous environments is too close in time to the clock edges from synchronous circuits, 

it will cause synchronization failure i.e. the circuit may enter a metastable state.  

A metastable state is a stable state which the circuit is neither at logic 1 level nor logic 0 

level. Instead, the circuit is at an uncertain level between logic 1 and logic 0. So the data may 

be interpreted as either logic 0 or logic 1 arbitrarily. This situation will cause the whole 

system malfunction. To avoid metastable problems, the data comes from asynchronous 

environments has to meet the setup time and hold time of the clock in synchronous systems.  

A viable approach is making the clock stoppable so that secures the data transfer between 

asynchronous and synchronous systems. In order to achieve such a goal, a medium for the 

two very different systems is needed. This medium is called an asynchronous wrapper [5].  

An asynchronous wrapper encapsulates synchronous modules in GALS systems and 

makes synchronous modules communicate with each other asynchronously. An asynchronous 

wrapper usually includes locally synchronous (LS) modules, a local clock generator and 

Input/Output port controllers. A local clock generator is used to generate stoppable clock for 

LS modules. I/O port controllers are responsible for producing handshaking signals and 

interfering local clock signals.  

In short, an asynchronous wrapper manages all the data transfers in and out of LS 

modules and delivers locally generated clock signals to them. The general architecture of an 
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asynchronous wrapper is shown in Fig. 9. 

 

 

Fig. 9 General architecture of an asynchronous wrapper 

 

 Here we briefly illustrate the function of each component of the asynchronous wrapper in 

Fig. 9. First, the LS module outputs data actively and accept data passively. As can be seen 

from Fig. 9, the LS module generates a DEN signal to inform I/O ports to stop the local clock 

Lclk when it is ready to accept/output the data from/to adjacent LS modules. Second, the I/O 

ports communicate with adjacent asynchronous wrappers by handshaking signals. The ways 

that I/O ports intervene the local clock generator depend on the ways how the local clock 

generator implements. Third, the local clock generator is used to generate stoppable clock 

signals for LS modules in order to avoid metastable problems mentioned earlier. The 

implementation ways of the local clock generator will be explained in the next section. 
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2.3 Pausible-Clock Generators 

 The local clock generators which generate stoppable clock are called pausible-clock 

generators. In general, pausible-clock generators can be divided into three categories: pausible 

clocking, stretchable clocking, and data-driven clocking [9], [10], [11]. All of three are based 

on ring oscillators. A ring oscillator constructs from an odd number of inverters to form clock 

signals. The Implementation of a ring oscillator is shown in Fig. 10. In order to stop the clock, 

additional control circuits are needed. The following introduces the three categories of 

pausible-clock generators. 

 

 

Fig. 10 Implementation of a ring oscillator 

 

2.3.1 Pausible Clocking 

Fig. 11 shows a pausible clocking based asynchronous wrapper. The implementation of 

pausible clocking is shown in Fig.12. In Fig. 12, it can be seen that pausible clocking includes 

a mutual exclusion (MUTEX) element, a Muller C-element, and a ring oscillator.  
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Fig. 11 The pausible clocking based asynchronous wrapper 

 

 

Fig. 12 Implementation of pausible clocking  

 

The MUTEX allows only one of two incoming requests to pass at a time [2]. If both 

requests arrive at the same time, it decides which one to pass by “tossing a coin”. The output 

of MUTEX is always mutually exclusive. The symbol and implementation of MUTEX is 
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shown in Fig. 13.  

 

 

Fig. 13 Mutual exclusion element 

 

In Fig. 12, the role of MUTEX is used to gate the clock. We can see that when the Req 

signal is asserted and the Clock is at low phase, the Clock will be stopped until the Req signal 

is deasserted. On the other hand, when the Req signal is not asserted, the Clock can operate 

normally. If both arrive simultaneously, it takes an uncertain time to decide which one to pass. 

It means that the Clock may be gated or runs as normal. 

Before illustrating the operation of pausible clocking based asynchronous wrapper in Fig. 

11, there are two details should be reminded. One is that the LS module outputs data actively 

and accept data passively. The other is that the DEN signal issued by the LS module is using 

the transition signaling approach. It means that there is no difference between 0 -> 1 and 1 -> 

0 transitions 
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Here we start to illustrate the operation of pausible clocking based asynchronous wrapper 

in Fig. 11. At first, when the LS module is ready to accept data (in other words, the LS 

module has finished its operation and can actively output data to the next wrapper), it will 

make a DEN signal transition (0 -> 1 or 1 -> 0) to inform I/O ports to stop Lclk. Then from the 

viewpoint of Input Port, it will assert Ri1 and wait for Ai1 from the clock generator. If the 

clock generator responds Ai1 as logic 1, it means that Lclk has been stopped. Next, Input Port 

can start the four-phase handshaking process with the outside environment (Rp+ -> Ap+ -> 

Rp- -> Ap-). After finishing the four-phase handshaking process, Input Port deasserts Ri1 and 

the clock generator deasserts Ai1 as a response. Finally, Lclk resumes running. The Output 

Port operates in the same way. 

Therefore, in the pausible clocking based asynchronous wrapper, the I/O ports 

communicate with the clock generator by means of four-phase handshake protocol. There are 

some designs belong to pausible clocking scheme [4], [5], [12]. 

 

2.3.2 Stretchable Clocking 

Unlike pausible clocking, stretchable clocking uses simpler circuits to achieve the same 

goal. It consists of a Muller C-element, a ring oscillator, some basic gates but except a 

MUTEX. The stretchable clocking based asynchronous wrapper and the implementation of 

stretchable clocking are shown in Fig. 14 and Fig. 15, respectively.  
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Fig. 14 The stretchable clocking based asynchronous wrapper 

 

 

Fig. 15 Implementation of stretchable clocking  

 

The communication between I/O ports and the clock generator is using the stretch signals. 

If any stretch signals are asserted, the low phase of the clock will be stretched until all stretch 

signals are deasserted. Otherwise, the clock will be generated as normal. For example, in Fig. 

15, if any of Stretch1 or Stretch2 are asserted, Lclk will be stretched until both of Stretch1 and 
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Stretch2 are deasserted. It can be extended to more than two stretch signals by just OR them 

together.  

Like the pausible clocking based asynchronous wrapper, the LS module outputs data 

actively and accept data passively and the DEN signal issued by the LS module is using the 

transition signaling approach. 

Here we start to illustrate the operation of stretchable clocking based asynchronous 

wrapper in Fig. 14. At first, when the LS module is ready to accept data (in other words, the 

LS module has finished its operation and can actively output data to the next wrapper), it will 

make a DEN signal transition (0 -> 1 or 1 -> 0) to inform I/O ports to stop Lclk. Then from the 

viewpoint of Input Port, it will assert Stretch1 to the clock generator and Lclk is stopped. Next, 

Input Port can start the four-phase handshaking process with the outside environment (Ri+ -> 

Ai+ -> Ri- -> Ai-). After finishing the four-phase handshaking process, Input Port deasserts 

Stretch1. Finally, if both of Stretch1 and Stretch2 are deasserted, Lclk resumes running. The 

Output Port operates in the same way. There are some designs belong to stretchable clocking 

scheme [6], [13]. 

 

2.3.3 Data-Driven Clocking 

 The intent of data-driven clocking is much different like pausible clocking and 

stretchable clocking although its implementation is not so different compared with the other 
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two. The implementation of data-driven clocking is shown in Fig. 16. The generation of each 

clock cycle responds to a complete four-phase handshake protocol. In other words, only when 

a new Req signal requests, the Clock signal will be produced. This design can avoid 

unnecessary clock switching activities only when data is available. There are some designs 

belong to data-driven clocking scheme [14], [15]. 

 

 

Fig. 16 Implementation of data-driven clocking  

 

2.3.4 Comparisons Between Three Clock Generation Methods 

 Let’s do some comparisons between the previous three clock generation methods. There 

are some drawbacks in pausible clocking. First, the key component of pausible clocking is 

MUTEX. But MUTEX takes more area cost. Second, it may still have a metastable problem 

when the two inputs of MUTEX request at the same time before the output is decided. It 

would cause the whole system malfunction. Finally, because of using four-phase handshake 
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protocol between the I/O ports and the local clock generator, it may take much time and have 

worse performance. 

 Data-driven clocking also has its drawbacks. Each request signal produces a 

corresponding clock signal. For this reason, it may become a problem if the data needs more 

clock cycles to finish its operation. So the data-driven clocking needs additional circuits to 

generate additional clock cycles when this occurred. 

 Stretchable clocking has some advantages. First, stretchable clocking can generate 

multiple clock cycles for data operations easily. Second, instead of requiring a MUTEX to 

stop clock signals, stretchable clocking uses simpler circuits to achieve the same goal. Finally, 

there is no handshaking between the I/O ports and the local clock generator. This can reduce 

the time that spends on stopping and resuming clock signals. Thus, stretchable clocking is a 

good option to implement local clock generators. 

 

2.4 Four-Phase Handshaking, Stretchable Clocking 

Based GALS Systems 

 So far most GLAS systems are based on four-phase handshake protocol. Fig. 17 shows a 

typical architecture of four-phase handshaking, stretchable clocking based GALS systems. It 

consists of two asynchronous wrappers. Each asynchronous wrapper is surrounded by two 

latches. The latch is used as a storage element to prevent data loss. It is controlled by the 
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acknowledge signal. When the acknowledge signal is asserted, it means that the latch 

becomes transparent so that data can pass through the latch. When the acknowledge signal is 

deasserted, it means that the data is latched by the latch. This can make sure that when the 

data accept by LS modules, the local clock of LS modules is stopped. In other words, adding 

latches avoid metastable problems. 

 

 

Fig. 17 Architecture of four-phase handshaking, stretchable clocking based GALS 

systems 

 

 Before illustrating the operation of the whole system in Fig. 17, we make some statement 

in order to facilitate the illustration. The former and latter asynchronous wrappers are called 

Wra1 and Wra2, respectively. In the same way, the former and latter LS modules are called 

LS1 and LS2, respectively. 
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 To emphasize once again, the LS module outputs data actively and accept data passively 

and the DEN signal issued by the LS module is using the transition signaling approach. 

 At first, the whole system will be reset. After resetting, the output of LS1 and LS2 are 

zero (LS1out and LS2out). It means that Wra1 and Wra2 are ready to accept a new data from 

the outside environment. Then LS1 and LS2 both make their DEN signals activated.  

From the viewpoint of Wra1, after I/O ports receive a DEN signal transition, they pull up 

Stretch1 and Stretch2 to inform the clock generator. So Lclk is stretched. Then I/O Ports can 

start the four-phase handshaking process with the outside environment.  

From the viewpoint of the Input Port of Wra1, when Din is ready, it receives Ri+ from 

the outside environment. Then the Input Port responds Ai+ so that Din can pass through the 

latch and is accepted by LS1. Next, the Input Port receives Ri- and pulls down Stretch1. If 

both Stretch1 and Stretch2 in Wra1 are deasserted, Lclk resumes running. Finally, the Input 

Port responds Ai- to finish the four-phase handshaking process. 

From the viewpoint of the Output Port of Wra1, when LS1 finishes its operation, it sends 

Ro+ to the Input Port of Wra2. Then the Input Port of Wra2 responds Ao+ so that LS1out can 

pass through the latch and accept by LS2. Next, the Output Port sends Ro- and waits for the 

Input Port of Wra2 responding Ao- to finish the four-phase handshaking process. Finally, the 

Output Port pulls down Stretch2. If both Stretch1 and Stretch2 in Wra1 are deasserted, Lclk 

resumes running. 
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The operation of Wra2 is as same as Wra1 illustrating above. The latch between Wra1 

and Wra2 is used to store data from Wra1 and prevent data from flowing into Wra2 until Ao is 

asserted i.e. make sure that data accepted by Wra2 meet the setup time and hold time of Lclk 

in Wra2. 

Fig. 18 shows the timing diagram of Wra1 of four-phase handshaking, stretchable 

clocking based GALS systems. 

 

 

Fig. 18 Timing diagram of Wra1 of four-phase handshaking, stretchable clocking based 

GALS systems 

 

As mentioned earlier, the whole system in Fig. 17 will be reset first. After resetting, the 
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output of LS1 and LS2 are zero and then LS1 and LS2 both make their DEN signals activated. 

One thing should be noted is that the Output Port of Wra1 and the Input Port of Wra2 will do 

four-phase handshaking immediately after resetting. So Stretch2 in Fig. 18 can be deasserted 

as soon as possible after resetting. Therefore, the first data of Wra1 can be calculated as long 

as the four-phase handshaking of the Input Port of Wra1 has finished since Stretch2 has been 

deasserted. 

 

2.4.1 Input Port 

 Fig. 19 (a) and (b) show the block diagram of Input Port and its signal transition diagram 

(STG). The Input Port has two inputs and two outputs. Inputs are DEN and Req signals. 

Outputs are Stretch and Ack signals. DEN is using the transition signaling approach. It means 

that there is no difference between 0 -> 1 and 1 -> 0 transitions. 
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(a)                                     (b) 

Fig. 19 (a) Input Port (b) STG of Input Port 

 

According to the STG in Fig. 19 (b), when the LS module is ready to accept data, it 

makes DEN do a 0 -> 1 transition. Then Stretch is asserted. So the local clock is stretched. 

Next, Input Port waits for Req+ from the outside environment to start handshaking. Req+ 

means that the input data is valid. After receiving Req+, Input Port makes Ack+ as a response. 

It denotes that the LS module is ready to accept data. Later, if Input Port receives Req-, it 

deasserts Stretch to let the local clock start running. Finally, Input Port responses Ack- to 

finish four-phase handshaking. This is a complete data transaction of the Input Port. If there is 

another data transaction, the LS module will make DEN a 1 -> 0 transition to start it. Fig. 20 

shows the circuit implementation of Input Port. 
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Fig. 20 Circuit implementation of Input Port 

 

2.4.2 Output Port 

 Fig. 21 (a) and (b) show the block diagram of Output Port and its signal transition 

diagram (STG). The Output Port has two inputs and two outputs. Inputs are DEN and Ack 

signals. Outputs are Stretch and Req signals. DEN is also using the transition signaling 

approach. 
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(a)                                      (b) 

Fig. 21 (a) Output Port (b) STG of Output Port 

 

From the STG in Fig. 21 (b), when the LS module is ready to send out data, it makes 

DEN do a 0 -> 1 transition. Then Stretch is pulled up and the local clock is stopped. Next, 

Output Port will initiate Req+ to start handshaking with the outside environment. After 

completing four-phase handshaking (Req+ -> Ack+ -> Req- -> Ack-), Stretch is pulled down. 

This presents a complete data transaction of Output Port. If the subsequent data will be 

delivered out, it makes DEN do a 1 -> 0 transition to start a new process. Fig. 22 shows the 

circuit implementation of Output Port. 

 



 

 30

 

Fig. 22 Circuit implementation of Output Port 

 

2.4.3 Gate-Level Simulation 

 To compare with the new design proposed in this thesis, we implement a four-phase 

handshaking, stretchable clocking based GALS system like Fig. 17 as the object of 

comparison. Two 10-bit accumulators are used as the LS modules in the simulation. The 

implementation is synthesized with Synopsys Design Compiler with TSMC 0.13μm cell 

library. The gate-level simulation is simulated by ModelSim6.0 and the function is proven 

correctly. Fig. 23 shows the gate-level simulation. 
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Fig. 23 Gate-level simulation  

 

 

 

 
 
 
 
 
 
 



 

 32

Chapter 3 A New Design - Two-Phase 
Handshaking Interface for Stretchable 

Clocking Based GALS Systems 
 

 As mentioned earlier in Chapter 1, handshake protocols of asynchronous circuits can be 

divided into two categories – four-phase and two-phase handshaking. It is believed that 

two-phase handshake protocol has better performance than four-phase counterpart because of 

the property of non-return-to-zero [2]. But it will lead to a more complex implementation. 

That’s why it is hard to find a GALS system that bases on two-phase handshake protocol. In 

this thesis, a two-phase handshaking interface for stretchable clocking based GALS systems is 

proposed. The implementations of Input and Output Ports are also delivered. The gate-level 

simulation is presented, too. The details will be described in the following sections. Fig. 24 

shows an intuitive architecture of two-phase handshaking, stretchable clocking based GALS 

systems. But it has a problem that may cause the whole system malfunction. The problem and 

solution will be introduced later.  
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Fig. 24 Architecture of two-phase handshaking, stretchable clocking based GALS 

systems (wrong) 

 

Because the new design adopts two-phase handshake protocol, the storage element 

between asynchronous wrappers is quite different from the four-phase counterpart. The 

storage element is called capture-pass event controlled latch, C-P latch for short. Fig. 25 

shows its block diagram and Table 3 presents its function. The C-P latch has two control 

signals – C and P. When both signals are same, C-P latch is transparent i.e. data can pass 

through it. On the other hand, when both signals are different, data will be captured. Normally, 

the signal changing flow of the pattern {C, P} is {0, 0} -> {1, 0} -> {1, 1} -> {0, 1}. It means 

that the behaviors of pass and capture are interleaved. 
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Fig. 25 Capture-pass event controlled latch 

 

Table 3 Function of capture-pass event controlled latch 

C P Behavior 

0 0 Pass 

1 0 Capture 

1 1 Pass 

0 1 Capture 

 

 The initial state of C-P latch is {0, 0}. The role of C-P latch is as same as the latch in Fig. 

17 i.e. they store data and prevent data from flowing into the next wrapper before the local 

clock of the next wrapper has been stopped. In Fig. 17, the latch is controlled by Ao. Before 

Ao is asserted, the data from Wra1 is latched in the latch. However, in Fig. 24, the data from 

Wra1 (LS1out) will pass through C-P latch before Ao is asserted. This is because when Wra1 

finishes its operation and before Ro is asserted, C-P latch is at pass state (because {C, P} is at 

{0, 0} state). When the Output Port of Wra1 asserts Ro to try to capture LS1out, LS1out has 
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flowed into Wra2. This may cause the whole system malfunction. 

 To solve the problem mentioned above, a double edge triggered flip-flop (DET-FF) is 

needed. Because the statement “always @(posedge clk or negedge clk)” in Verilog is not 

synthesizable, we use an alternative implementation to construct double edge triggered 

flip-flops. 

 Fig. 26 (a) and (b) shows the block diagram of double edge triggered flip-flop and its 

circuit implementation. The DET-FF is triggered by both the rising and falling edges of clock 

signals. In our implementation, we use two D flip-flops and three XOR gates to construct it. 

The implementation is synthesizable by Synopsys Design Compiler with TSMC 0.13μm cell 

library. 

 

  

(a) 
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(b) 

Fig. 26 (a) Double edge triggered flip-flop (DET-FF) (b) Implementation of DET-FF 

 

 So the correct architecture of two-phase handshaking, stretchable clocking based GALS 

systems is shown in Fig. 27. 

 

Fig. 27 Architecture of two-phase handshaking, stretchable clocking based GALS 

systems (correct) 
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Here we start to illustrate the operation of two-phase handshaking, stretchable clocking 

based GALS systems in Fig. 27. Once again, the LS module outputs data actively and accept 

data passively and the DEN signal issued by the LS module is using the transition signaling 

approach.  

 At first, the whole system will be reset. After resetting, the pattern {C, P} of C-P latches 

is {0, 0} and the output of LS1 and LS2 are zero (LS1out and LS2out). It means that Wra1 and 

Wra2 are ready to accept a new data from the outside environment. Then LS1 and LS2 both 

make their DEN signals activated.  

From the viewpoint of Wra1, after I/O ports receive a DEN signal transition, they pull up 

Stretch1 and Stretch2 to inform the clock generator. So Lclk is stretched. Then I/O Ports can 

start the two-phase handshaking process with the outside environment.  

From the viewpoint of the Input Port of Wra1, when Din is ready, Din is blocked by the 

DET-FF. Later, the outside environment makes Ri+ so that Din can pass through the DET-FF. 

But Din is still blocked by the C-P latch until the Input Port makes Ai+ so that Din can pass 

through the C-P latch and is accepted by LS1. After responding Ai+, the two-phase 

handshaking process is finished. Finally, the Input Port pulls down Stretch1. If both Stretch1 

and Stretch2 in Wra1 are deasserted, Lclk resumes running. 

From the viewpoint of the Output Port of Wra1, when LS1 finishes its operation and 

before sending Ro+, LS1out is blocked by the DET-FF. Later, it makes Ro+ to the Input Port 
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of Wra2 so that LS1out can pass through the DET-FF. But LS1out is still blocked by the C-P 

latch until the Input Port of Wra2 sends Ao+ so that LS1out can pass through the C-P latch 

and is accepted by LS2. After the Input Port of Wra2 responds Ao+, the two-phase 

handshaking process is finished. Finally, the Output Port of Wra1 pulls down Stretch2. If both 

Stretch1 and Stretch2 in Wra1 are deasserted, Lclk resumes running. 

The operation of Wra2 is as same as Wra1 illustrating above. Using DET-FF and C-P 

latch as storage elements in the new design makes sure that data accepted by the wrapper 

meet the setup time and hold time of Lclk in that wrapper. 

 Another point needed to pay attention is that the transitions of DEN are activated at the 

falling edges of clock pulses in our design. It is used to make sure that the whole system can 

work correctly. If DEN is activated at the rising edges of clock pulses, some errors may 

happen like that Stretch signals are asserted but the local clock does not stop immediately. 

This may lead to a system malfunction. The timing diagram of Wra1 of two-phase 

handshaking, stretchable clocking based GALS systems is shown in Fig.28. 
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data

 

Fig. 28 Timing diagram of Wra1 of two-phase handshaking, stretchable clocking based 

GALS systems 

 

As mentioned earlier, the whole system in Fig. 27 will reset first. After resetting, the 

output of LS1 and LS2 are zero and then LS1 and LS2 both make their DEN signals activated. 

It should be noted that the Output Port of Wra1 and the Input Port of Wra2 in Fig. 27 will do 

two-phase handshaking immediately after resetting. So Stretch2 in Fig. 28 can be deasserted 

as soon as possible. Therefore, the first data of Wra1 can be calculated as long as the 

two-phase handshaking of the Input Port of Wra1 has finished since Stretch2 has been 

deasserted. 
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3.1 Input Port 

 The block diagram of Input Port and its signal transition diagram (STG) are shown in Fig. 

29 (a) and (b). The Input Port has two inputs and two outputs. Inputs are DEN and Req signals. 

Outputs are Stretch and Ack signals. DEN is using the transition signaling approach as the 

same as four-phase counterpart.  

  

          

(a)                                    (b) 

Fig. 29 (a) Input Port (b) STG of Input Port 

 

From the STG in Fig. 29 (b), when the LS module is ready to receive data, it makes DEN 

do a 0 -> 1 transition. Then Stretch is asserted. So the local clock is stretched. Next, Input Port 

waits for Req+ from the outside environment to start handshaking. Req+ denotes that the 

input data is valid. After receiving Req+, Input Port makes Ack+ as a response. So far, 
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two-phase handshaking is complete. After completing handshaking, Stretch signal is 

deasserted to let the local clock start running. Then the LS module starts its computation. This 

is a complete data transaction of the Input Port that adopts two-phase protocol. If there is 

another data transaction, the LS module will make DEN a 1 -> 0 transition to start it. The 

signal changing flow is similar to previous cycle except Req+ and Ack+ are substituted by 

Req- and Ack-. 

The implementation of Input Port can be converted from the STG in Fig. 29(b) by [2], 

[16]. Fig. 30 is the circuit implementation of Input Port. 

 

 

Fig. 30 Circuit implementation of Input Port 

 

3.2 Output Port 
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Fig. 31 (a) and (b) show the block diagram of Output Port and its signal transition 

diagram (STG). The Output Port has two inputs and two outputs. Inputs are DEN and Ack 

signals. Outputs are Stretch and Req signals. DEN is also using the transition signaling 

approach. 

 

           

(a)                                 (b) 

 Fig. 31 (a) The Output Port (b) The STG of Output Port 

 

According to the STG in Fig. 31 (b), when the LS module is ready to deliver out data, it 

makes DEN do a 0 -> 1 transition. Then Stretch is pulled up and the local clock is stretched. 

Next, Output Port will initiate Req+ to start handshaking with the outside environment to 

denote that the data is valid to output. After receiving Ack+ from the outside environment, 

Stretch is pulled down. Then the two-phase handshaking process is finished i.e. the data 
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transaction of Output Port is complete. If the subsequent data is ready to be send out, it makes 

DEN do a 1 -> 0 transition to start a new process and starts handshaking by initiating Req- 

then so on. 

The implementation of Output Port also can be converted from the STG in Fig. 31(b) by 

[2], [16]. Fig. 32 is the circuit implementation of Output Port. 

 

 

Fig. 32 Circuit implementation of Output Port 

 

3.3 Gate-Level Simulation 

 A two-phase handshaking, stretchable clocking based GALS system like Fig. 27 is 

implemented. Like the four-phase counterpart mentioned in the section 2.4.3, two 10-bit 

accumulators are used as the LS modules in the simulation. The implementation is also 

synthesized with Synopsys Design Compiler with TSMC 0.13μm cell library. The gate-level 
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simulation is simulated by ModelSim6.0 and the function is proven correct. Fig. 33 shows the 

gate-level simulation. 

 

 

Fig. 33 Gate-level simulation 

 

Because the system adopts the two-phase protocol, it can be expected that the latency 

and the time to finish handshaking between adjacent wrappers can be improved. The synthesis 

results and analysis are discussed in the next chapter. 
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Chapter 4 Results and Analysis 

 

The implementations are synthesized with Synopsys Design Compiler with TSMC 

0.13μm cell library. 

 

4.1 Synthesis Result - Area 

 Table 4 shows the area of each block in a wrapper of four-phase and two-phase 

stretchable clocking designs. 

 

Table 4 Area of each block in a wrapper of four-phase and two-phase designs 

Area (μm2) 
Block 

4-phase 2-phase 

Input Port 71.290799 49.224600 

Output Port 62.803799 67.895999 

Storage elements 258.004804 1322.274589 

Stretchable clocking 59.409000 59.409000 

One accumulator 796.080604 796.080604 

One wrapper 1653.267588 1636.293588 
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It can be seen that the area of the Input Port of two-phase design is smaller than the 

four-phase counterpart and the area of the Output Port of two-phase design is slightly larger 

than the four-phase counterpart. The area of stretchable clocking and an accumulator of both 

designs are the same. For one wrapper (not including the storage elements), the two-phase 

implementation is slightly smaller than the four-phase counterpart. The biggest difference of 

area between two designs is the storage elements. For four-phase design, the area of single 

latch is 258.004804 (μm2). For two-phase design, the area of DET-FF and C-P latch is 

1322.274589 (μm2). The area of DET-FF and C-P latch is much larger than the area of single 

latch. 

 

4.2 Synthesis Result - Latency 

Before showing the result of latency, the definition of latency should be declared. The 

latency in our design is defined by the time between data into and out of the system i.e. the 

time between Din and Dout except the time spends on calculation in Fig. 17 and Fig. 27.  

 In this comparison, the latencies of four-phase and two-phase designs are 19488.3 (ps) 

and 18054.6 (ps), respectively. Obviously, the two-phase design takes less time than the 

four-phase design. It proves that two-phase handshake protocol has better performance than 

four-phase handshake protocol indeed. When two-phase handshaking interface is applied to 

larger GALS systems, it can be expected that the more latency are saving than four-phase 
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counterparts. Table 5 shows the latencies of four-phase and two-phase deigns. 

 

Table 5 Latency of four-phase and two-phase designs 

 4-phase 2-phase 

Time (ps) 19488.3 18054.6 

 

 The maximum clock frequency in our design is 213.95 MHz. It is limited to the delays of 

NOR gate and Muller C-element in Fig. 15. 

 

4.3 Adjacent Wrappers Operate at Different Clock 

Frequencies  

 In a SoC system, each IP module may run at different clock frequencies. So in this 

section, we present that our two-phase handshaking interface for stretchable clocking based 

GALS systems can work correctly when two adjacent wrappers operate at different clock 

frequencies. 

 As mentioned in the previous chapters, the former and latter LS modules are called LS1 

and LS2, respectively. 

 Fig. 34 shows the case that LS1 is faster than LS2. We let LS1 run at 213.95 MHz and 

LS2 run at 73.55 MHz. Fig. 35 shows the case that LS1 is slower than LS2. In this case, we 
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let LS1 run at 73.55 MHz and LS2 run at 213.95 MHz. It can be seen that both case work 

correctly in our design. 

 

 

Fig. 34 LS1 runs at 213.95 MHz and LS2 runs at 73.55 MHz 

 

 

Fig. 35 LS1 runs at 73.55 MHz and LS2 runs at 213.95 MHz 
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 When LS1 is faster than LS2, we can add a FIFO between adjacent asynchronous 

wrappers to smoothen the bursty data streams. Fig. 36 shows the diagram of adjacent 

asynchronous wrappers with FIFO. 

 

 

Fig. 36 The diagram of adjacent asynchronous wrappers with FIFO 

 

In asynchronous circuits, the FIFO to be added depends on which protocols you used. 

Fig. 37 and Fig. 38 show a four-phase bundled data pipeline and a two-phase bundled data 

pipeline, respectively. Two-phase bundled data pipeline is as known as Micropipeline [17]. 

Because the handshake protocols are different, the storage elements used in the pipeline are 

also different. It can be seen that four-phase bundled data pipeline uses a normal latch and 

Micropipeline uses a capture-pass event controlled latch mentioned in chapter 3. Our new 

design is based on two-phase protocol, so Micropipeline should be used. 

 



 

 50

 

Fig. 37 Four-phase bundled data pipeline 

 

 

Fig. 38 Two-phase bundled data pipeline a.k.a. Micropipeline 
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Chapter 5 Conclusions and Future Work 
 

 In this thesis, a two-phase handshaking interface for stretchable clocking based GALS 

systems is proposed. The local synchronous modules can operate at different clock 

frequencies independently. In order to verify the feasibility, two 10-bit accumulators are 

implemented as the LS modules in our design. The synthesis and simulation is implemented 

by Synopsys Design Compiler with TSMC 0.13μm cell library and ModelSim6.0, respectively. 

The system function is proven reliably. The maximum clock rate is limited to the architecture 

of stretchable clocking.  

 Compared with four-phase handshaking counterpart, the new two-phase handshaking 

interface has better latency but larger area. The reason is that two-phase handshake protocol is 

“no-return-to-zero”. Both rising and falling edges of signals can be active edges. Because of 

using DET-FFs and C-P latches as storage elements, two-phase design has larger area than 

four-phase counterpart. 

 The proposed two-phase handshaking interface can work well when adjacent LS 

modules operate at different clock frequencies. 

 In the recent years, GALS studies about applications and evaluations are increasing. So 

applying two-phase handshaking interface for stretchable clocking based GALS systems 

proposed in this thesis to large systems can be the future work, especially suitable for 
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Network-on-Chip (NoC) systems [10]. Because the asynchronous wrapper takes small area 

cost, it just accounts for small overhead in the large systems. Another important issue that 

should be studied is the evaluation of power consumption. In principle, two-phase handshake 

protocol consumes less power than four-phase protocol because of non-return-to-zero property. 

But the increased logic complexity may consume more power than the four-phase counterpart. 

Thus, the real power consumption should be evaluated after the proposed GALS interface is 

implemented in real SoC designs. 
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