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Abstract

Many drivers have reported that they became drowsy after long hours of driving
in a monotonous environment. Driving while drowsy has resulted in crashes and
injuries every year. Accidents could occur-in.a matter of seconds or less if the driver
does not promptly respond to sudden events on the road. The first aim of this thesis is
to investigate the electroencephalogram (EEG) activities before, during and after lane
departure events from alertness to drowsiness during continuous driving. The second
aim of this thesis is to study the influence of kinesthetic stimuli on EEG patterns. The
event-related lane departure paradigm was implemented in a virtual reality based
driving simulator on a motion platform. Subjects were required to compensate for the
randomly generated lane departures in order to maintain the vehicle in the cruising
lane. Each subject participated in two experimental conditions. In the motionless
condition, the motion platform was inactive. In the motion condition, the motion
platform simulated kinesthetic stimuli during the lane departure event. EEG data were

analyzed with independent component analysis (ICA) and time-frequency analysis.
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The results show tonic increase in alpha-band power in occipital and parietal clusters
before deviation onset as reaction time increased. Between response onset and offset,
suppression or event-related desynchronization (ERD) in alpha and beta band power
occurred in the somatomotor, parietal, and occipital regions in both motion and
motionless conditions. Following the response offset, significant rebound or
event-related synchronization (ERS) in alpha and beta band occurred in the parietal,
occipital, and somatomotor clusters. The strength of ERD and ERS was stronger in
the motion condition than that in the motionless condition. These results may provide
necessary foundations for the development of a driving assistance system in the real

world.

Keywords: drowsy driving, kinesthetic.. stimuli, electroencephalogram (EEG),

independent component analysis (ICA), event-related spectral perturbation (ERSP),

event-related power, alpha rhythm, beta rhythm, delta rhythm
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Chapter1 Introduction

1.1. Drowsy Driving

Driving is a daily activity for most people in the modern society. Driving while
drowsy is dangerous and often leads to accidents [1][2][3]. The National Highway
Traffic Safety Administration (NHTSA) estimates that 100,000 police-reported crashes
are caused by drowsy drivers each year, resulting in an estimated 1,500 deaths,
71,000 injuries and $12.5 billion in financial losses in the United States. Two of the
potential causes of drowsiness-related crashes include: (1) inattention to deviation of
the vehicle due to slippery road surface or slight change in steering wheel angle, and
(2) not maintaining appropriate distance from other vehicles on the road. In addition,
many studies have showed that drowsiness-related crashes often took place during
night-time [4], monotonous driving environment [5], or after long hours of driving [6].
Therefore, developing drowsiness detection systems is essential for driving safety.

Several image-based methods have been proposed to monitor the status of the
driver or the vehicle. For example, visual cues including eyelid movement, face
orientation, and gaze movement (pupil movement) were used to monitor the driver’s
vigilance levels [7]. Lane departure warning system (LDWS) or driver assistance
system detect lane marking (boundaries) from the video and provide auditory
feedback when the vehicle is about to drift off the lane [8][9]. However, monitoring the
driver’s status from the video may be affected by changes in ambient illumination and
head/body positions or movements. Furthermore, the effectiveness of LDWS is
greatly reduced during poor weather conditions or due to unclear lane marking.
Physiological based detection methods, such as electrooculogram (EOG), may be
used to detect the driver’s vigilance levels [10]. However, EOG is an indirect

measurement of vigilance level and the correlation between EOG and drowsiness is



low. Some studies used electromyogram (EMG) to detect the driver's hand

movements [11]. However, EMG is seldom used to detect drowsiness.

1.2. EEG Studies on Drowsiness and Driving

Electroencephalogram (EEG) is one of the most direct and effective physiological
measures of arousal states. Changes in EEG power spectra could be used as an
indicator for alertness levels. An early EEG study showed increased occipital theta
(4-7 Hz) activities as the task performance degraded [12]. Several recent studies have
demonstrated the relation between EEG characteristics (e.g., power spectra) and
driving performance. Lal and Craig reported an increase in slow wave (theta and delta
[0-4 HZz]) activities during fatigue in simulated driving [13]. Schier showed increases in
alpha (8-12 Hz) activities during the later laps and replay of simulated driving
experiments using the ‘Need For Speed’ PC-game [14]. Campagne et al. showed
significant power increases in alpha and theta bands that were highly correlated with
the number of running-off-the-road incidents and increase in speed variations [15].
Horne and Baulk showed a correlation between EEG activities in alpha and theta
bands and the number of incidents (defined as a car wheel crossing the lateral lane
marking) [16]. Lin et al. showed the driving error was positively correlated with EEG
log power spectra in the sub-band (< 20 Hz) range [17]. These studies provided the
fundamental link between EEG power spectral activities and drowsiness during
simulated driving. However, most studies compared the overall EEG power with the
mean driving performance in a time window of 30 seconds or longer. In the real life,
traffic accidents could occur in a matter of seconds or less if the driver does not
promptly respond to sudden events on the road. Therefore, it is essential to
investigate the EEG activities before, during and after an event during continuous

driving. Huang et al. have demonstrated event-related brain dynamics during
2



continuous performance tasks in a static laboratory setting [18][19][20][21][22].
Decreases or increases in alpha band power occurred following critical events during
continuous tracking or driving. However, it is not known whether these event-related
dynamic patterns remain the same on a dynamic driving simulator or in real-life

driving.

1.3. The Kinesthetic Perception on a Dynamic Driving Simulator
Driving is a complex everyday task that involves predominantly visual information
processing. Drivers need to be aware of expected or unexpected critical events (such
as deviation of the vehicle) that appear in their useful visual field. In real-life driving,
drivers also receive vestibular and proprioceptive inputs, such as vibrations and
centrifugal force, in addition to visual.inputs. The vestibular apparatus in the inner ear
includes the utricle, saccule and three semicircular canals, which provide sensation of
balance and head acceleration. Patients with vestibular disorientation syndrome could
be a concern for driving safety [23]. Proprioceptor, located in the stretch receptors in
the muscles, tendons, and joints, is a sensory receptor that provides information about
body position (sense the relative position) and movement of neighboring body parts.
Most studies on driving and drowsiness did not consider the influence of kinesthetic
stimuli on EEG patterns. In this study, a driving simulator on a six degree-of-freedom
motion platform was used to investigate EEG activities from alertness to drowsiness
with or without the influence of kinesthetic stimuli when the subjects participated in an

event-related lane departure driving task [22].

1.4. Aims of this Thesis
In order to establish the fundamental factors of drowsy driving, the aims of this

study were to: (1) draw a comprehensive picture of event-related EEG dynamics (in
3



different brain regions and at different frequency bands) before, during, and after lane
departure events, (2) study the influence of kinesthetic stimuli by comparing EEG
patterns in motion (active platform) with those in motionless (inactive platform) driving
sessions, and (3) identify the brain region(s) and frequency band(s) which could

provide useful information to driving safety and drowsiness detection systems.



Chapter 2 Materials and Methods

2.1. Event-Related Lane Departure Paradigm

In this study, the event-related lane departure driving paradigm [18][22] was
implemented in a 360-degree virtual-reality (VR) based driving simulator with a motion
platform. The VR scenes simulated a vehicle cruising at a constant speed in the third
lane of a four-lane highway at night. There was no other traffic in both directions on
the highway. The subjects did not need to use the gas or brake paddles. The
computer program randomly introduced a perturbation (lane departure event) and
caused the virtual vehicle to drift to the left or right with equal probability. Subjects
were instructed to steer back to the center of the cruising lane as quickly as possible
after they detected the deviation. If the subjects fall asleep and did not respond to the
deviation, the vehicle would eventually hit the virtual curb on either side of the road.
The vehicle did not stop or crash at the curb, but continued to cruise at a constant
speed against the curb until the subjects resumed their responses. The next deviation
event occurred randomly 5 to 10 s after the moment when the vehicle was back in the
third lane. Three critical moments: deviation onset, response onset and response
offset, are defined in each lane-departure incident (Fig. 2-1). Deviation onset is the
moment when the vehicle starts to deviate. Response onset is the moment when the
subject initiates the compensatory steering. Response offset is the moment when the
vehicle returns to the center of the cruising lane and the subject ceases to rotate the

steering wheel.
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Cruising

Fig. 2-1 lllustration of the event-related lane-departure paradigm [22].

2.2. 3D Virtual Reality Based Driving Simulation Environment

A 3D virtual reality driving simulator was built to simulate real-life driving
environments because of safety concern of conducting experiments with a real car on
the road. In addition, simulated driving environment has other advantages, including
well-controlled temperature, background:illumination, and other unnecessary stimuli
or distractions. The 3D VR scenes were projected from 6 projectors in the direction of
0°, 42°, 83.596°, 180°, 277.088° and 318° which creates a 360° surrounding
environment. The dimensions of the screens were 300 x 225 (width x height) cm, 290
x 225 cm, 260 x 195 cm, 520 x 195 cm, 260 x 195 cm and 290 x 225 cm, respectively.
These large screens generate an immersive sensation and near real-life driving
environment (Fig. 2-2). In order to simulate kinesthetic sensation in the real world, a
hydraulic hexapod Stewart platform was mounted underneath a real car frame (Fig.
2-3). The six degree-of-freedom Stewart platform can simulate 3D rotations, including
pitch, roll, and yam (Fig. 2-4). The interior of the car frame remains unchanged.
Unnecessary parts, such as the engine and wheels, were removed from the car to
reduce the weight. In addition, cameras were installed at the dashboard to monitor the

subjects’ statuses.



(B)

Fig. 2-2 (A) A wide view of the 3D virtual reality surrounding driving environment

[17]. (B) A snap shot of the driving scene in the experiment.



(A) (B)
Fig. 2-3 (A) The car frame (Ford Probe) of driving simulator. (B) The Stewart

platform under the car frame.

roll
yaw

BN
\ x

pitch

Fig. 2-4 lllustration of x, y, z, pitch, roll, and yaw on a driving simulator.



2.3. Subjects

Each of six subjects participated in one motion session and one motionless
session on different days. All subjects were recruited from National Chiao Tung
University, Taiwan, and were paid to participate in the experiment. All subjects have
normal or corrected-to-normal vision, and none of them have history of psychiatric or
sleep disorders. None of the subjects were sleep deprived the night before the

experiment. Each subject signed a consent form before the experiment.

2.4. EEG Recordings and Experimental Procedures

EEG signals were recorded using Ag/AgCl electrodes embedded on a 32
Channel Quik-Cap (Neuromedical Supplies, Inc.) (Fig. 2-5). The electrodes were
arranged according to a modified -international 10/20 system. Fig. 2-6 shows an
example of electrode locations=in this study. The reference was the mean of the
signals of left and right mastoid electrodes: The skins under the reference electrodes
were abraded with Nuprep (DO Weaver and Co., USA) and disinfected with a
70-percent isopropyl alcohol swab before calibrating. The impedance of the
electrodes was calibrated under 5kQ with NaCl based conductive gel (Quik-Gel,
Neuromedical Supplies ®). The EEG signals from the electro-cap were amplified by
the Scan NuAmps Express system (Compumedics Ltd., VIC, Australia) and then
recorded at 500 Hz sampling rate.

The scene of event-related lane departure driving task was projected from six
projectors controlled by servers connected by local area network. The Stewart motion
platform was inactive during motionless sessions. During motion sessions, the motion
platform was active and simulated the kinesthetic sensation during lane departure

events.



Subjects were instructed with the details of task requirements after they were
settled in the driver’s seat. Subjects practiced the task for a few minutes before the
main experiment started. The duration of the main experiment was 1.67 + 0.10 hours
(mean % standard deviation) in motionless session, and 1.79 + 0.09 hours in motion

sessions, respectively.

Fig. 2-5 The electro-cap and the Scan NuAmps Express system.

10



Fig. 2-6 The channel locations used in this study.
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Fig. 3-1 shows the flowchart of data analysis procedures. EEG data and behavior
data were recorded simultaneously. Segments of abnormal driving trajectory were
rejected before analysis of RTs. For each session of each subject, data preprocessing
was applied to 30-channel raw EEG signals. Continuous EEG time series were

extracted into epochs time-locked to deviation onset events. Independent component

analysis

Time-frequency analyses, including event-related spectral perturbations (ERSPs) and

event-related power, were applied to the activation time courses of each independent

(ICA)

Chapter 3 Data Analysis

component (IC) cluster.

was applied to epoched EEG data after artifact

7

30-channel

EEG data

Preprocess

“HPF/LPF (cut-

off frequency: 0.5 to 50 Hz)

«Down-sampling to 250 Hz
*Read channel locations

Preprocessed

data

Deviation-onset

epochs

VEpoch extraction

v

Driving trajectory

trajectory

N

dica

EEG data
with ICA weights

\’Cemponentclustering

&
S

Artifact removal

Analysis of RTs

—>

Deviation-onset epochs
Response-onset epochs

Response-offset epochs

A 4

A 4

ERSP ‘s analysis

Select peak
frequency

A 4

Fig. 3-1 The flowchart of data analysis procedures.
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3.1. Analysis of Driving Performance

3.1.1. Remove Abnormal Driving Trajectory

The optimal driving trajectory of a lane departure event was shown in Fig. 2-1.
Typically, a flat segment represents stable cruising between each response offset and
the next deviation onset. Due to instability or overcompensation of the steering wheel
after the vehicle returned to the center of the third lane, some segments of driving
trajectory showed abnormal patterns, such as zigzags or slopes. These abnormal
trajectories are likely to induce additional changes in EEG power spectra, making it
difficult to interpret the results.

Fig. 3-2 showed three examples of abnormal driving trajectories (in red circles).
There are 210.50 + 122.44 abnormal trials out of 604.17 + 60.67 total trials in the
motionless sessions and 187.50 + 109:72:abnormal trials out of 655.17 + 60.92 total
trials in the motion sessions. All epochs with-abnormal trajectories were removed

before further analysis.
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Driving Trajectory

T T T T T T T

200 1

150

100

position (unit)

50 T

10s

3.145 3.15 3.155 3.16 3.165 3.17 3.175
time points x 10°

Fig. 3-2 Three examples of abnormal driving trajectories. Blue curve: driving
trajectory. Black dots: the time ‘points-of deviation onset of each event. Pink dots:
the time points of response onset of each event. Gray horizontal lines: lane
markings (boundaries) of third lane. Gray vertical lines: 1 s before deviation

onset events.

3.1.2. Reaction Times

In this study, driving performance was measured by reaction times (RTs) as
defined in the event-related lane departure paradigm [22]. The driver’s reaction times
to critical events are generally slower when they become fatigue or drowsy than when
they are alert. The reaction time in each lane-departure event (trial or epoch) was
computed from the driving trajectory. A crash event is defined as trial with RT longer

than 3 seconds.
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3.2. Data Preprocessing

Matlab package and the EEGLAB toolbox were used for offline data
preprocessing and independent component analysis (ICA) on a PC [24]. A low-pass
filter (finite impulse response (FIR) filter, cut-off frequency: 50 Hz) was applied to the
raw EEG data to remove the power line noise (60 Hz) and other high frequency noises.
A high-pass filter (FIR filter, cut-off frequency: 0.5 Hz) was used to remove baseline
drift. The filtered EEG data were then down-sampled to 250 Hz for further analysis.

For each session, three sets of epochs time-locked to different events were
extracted from continuous EEG data: (1) epochs that extend from 1 sec prior to and 7
sec following each deviation onset, (2) epochs that extend from 2 sec prior to and 4
sec following each response onset, (3) epochs that extend from 2 sec prior to and 4
sec following each response offset. Epochs that contained extreme amplitudes and
noise across all channels were rejected together with epochs that contained abnormal

trajectory in the behavioral data.

3.3. Independent Component Analysis (ICA)

In this study, we attempt to solve the identification and source localization
problem by using a generally applicable ICA. Thus, the artifacts including the
eye-movement (EOG), eye-blinking, muscle-movement (EMG), and line noises can
be successfully separated from EEG activities. The ICA is a statistical “latent

variables” model with generative form:
x(t)=As(t) (1)

Where A is a linear transform called a mixing matrix and s; are statistically

mutually independent. The ICA model describes how the observed data are

15



generated by a process of mixing the components s;. The independent components s;
(often abbreviated as ICs) is latent variables, meaning that they cannot be directly
observed. The mixing matrix A is assumed to be unknown. All we observed are the
random variables x;, and we must estimate both the mixing matrix and the IC’s s;
using the x;.

Therefore, given time series of the observed data x(t)=[x(t) x,(t) - x,@®]in
N-dimension, ICA will find a linear mapping W such that the unmixed signals u(t) are
statically independent.

u(t)=wx(t) (2)

Supposed the probability density function of the observations x can be expressed

as:
p(x)=[det(w )p(u) (3)

The learning algorithm can be derived using the maximum likelihood formulation

with the log-likelihood function derived as:
L(uW ) = log|det(w )|+ ilog p(u) (4)
Thus, an effective learning algorithm using natural gradient to maximize the
log-likelihood with respect to W gives:

AW m%WTW S BT

where the nonlinearity

ap(u) ap(uy) apuy) 1"

L B vee ___Oun 6
o(u) 5(0) o) o) (6)

And W'W rescales the gradient, simplifies the learning rule and speeds the
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convergence considerably. It is difficult to know a priori the parametric density function
p(u), which plays an essential role in the learning process. If we choose to
approximate the estimated probability density function with an Edgeworth expansion
or Gram-Charlier expansion for generalizing the learning rule to sources with either

sub- or super-Gaussian distributions, the nonlinearity ¢(u) can be derived as:

u —tanh(u): for super - gaussian sources, (7)
p(u) = , .
u +tanh(u) : for sub - gaussian sources,

Then,

B [I—tanh(u)uT —uuT]\N:super-gaussian, (8)
- [I +tanh(u)u” 7uuT]\N:sub-gaussian,

Since there is no general definition for sub- and super-Gaussian sources, we

choose  pw)-L(ver,7+ner1) and p(u)=N(0,1)sech’(u) for sub- and super-Gaussian,

respectively, where N(u,o2) is a normal distribution. The learning rules differ in the sign

before the tanh function and can be determined using a switching criterion as:

x; = lisuper-gaussian, (9)

AW o || - K tanh(u)u™ —uu" W, where
Oc[ ) ]W {Ki =-1:sub-gaussian,

Where
Kj = sign(E{sech2 (u; )}E{u,2 }— Eftanh(u;)u; }) (10)

represents the elements of N-dimensional diagonal matrix K. After ICA training,
we can obtain N ICA components u(f) decomposed from the measured N-channel
EEG data x(f). In this study, N=30, thus we obtain 30 components from 30 channel

signals.

Xl (t) Wl,l Wl,2 Wl,33
X, (t)

WZl W22 W233
X(t) = =wut)=| @+ @) |0 fug ). )

X33 (t) W33,l W33, 2 W33, 33
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Fig. 3-3 An example of the topographic maps of ICA weight matrix projected on the

scalp.

Fig. 3-3 showed the scalp topographies of ICA decomposition of 30-channel EEG
data into 30 independent components. Each map was generated by rendering a
column of the inverse of ICA weighting matrix onto the scalp. These maps indicate the
approximate originating source locations of independent processes. For example,
components 1 and 3 correspond to eye related activities. Components 2, 4, 5,7, 8, 9,
10, 14, 15, and 16 correspond to brain and cognitive related activities. Other

components correspond to non-brain related artifacts.

3.4. Event-Related Spectral Perturbations (ERSPs)

In this study, event-related spectral perturbations (ERSPs) [25] were used to
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study brain dynamics induced by lane departure events and subsequent motor
responses. ERSPs show whole-spectrum power changes relative to pre-event power
spectral baseline in single-channel EEG data or independent component activations.
For each IC of interest, the epochs of IC activation time courses were sorted by
trial reaction times, and divided into four groups: (1) 0 to 33.3% of trials below 3-s RT,
(2) 33.3 to 66.6 % of trials below 3-s RT, (3) 66.6 to 100% of trials below 3-s RT, (4)
other trials with RT > 3 s. This grouping method allows the comparison of ERSPs
between short and long RTs epochs. Fig. 3-4 and Fig. 3-5 show the flowcharts of
ERSP analysis. To obtain ERSPs, a time-frequency array was computed from each
epoch of IC activation by applying the Discrete Fourier Transform (DFT) (timefreq()
function of EEGLAB, winsize: 128, padratio: 2): F..(f.t), where k is the index of
epochs, c is component index, fis the frequency bin, t is the time point. The log power
of this array was computed using:
Pyc(ft)=10xlog (Fy,c(f,t)xconj(Fy o (f,1))) (1)
The ERSPs of component ¢ was obtained by averaging n power matrices of the same
group:

ERSP(c,f,t):%ZPk(c,f,t) (2)
k=1

ERSP(cft) was then normalized by subtracting the baseline power spectra, which
were the mean power spectra (a vector of length f) from 1-s window before deviation

onset (Fig. 3-5).
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3.5. Event-Related Power Analysis

One of the goals of this study was to investigate the changes of event-related
brain dynamics from alertness (short RTs) to drowsiness (long RTs) during simulated
driving. In this study, RT-sorted event-related power images were computed for delta
(3-4 Hz), alpha (8-12 Hz), and beta (18-22 Hz) bands from the matrix A .(f,t) of

single-session data.

P/;,C,ﬁ' ()= mean (Pcc(f.t)) (3)

min(f.)<f<max(f,)
where f; €{d,,p}.
The raw event-related power image of frequency band f; is the matrix from vector
Plor(t) to Prcr(t), where P (t) is the vector at the shortest RT, P,/ (t) is the

vector at the longest RT, and n is the total number of trials in the selected sessions.
The raw event-related power image of f was then normalized by subtracting the mean
baseline power of ‘alert’ period, defined as the 1-s window before deviation onset of
the first 10% of epochs below 3-s RT. In order to observe the trend of event-related
power from short to long RTs, moving average across RT-sorted epochs was applied
to the normalized event-related power image. The size of moving window is the
number of the first 10% of epochs below 3-s RT, and the advancing step is 10 epochs.
Two-sample t-test was applied to the raw event-related f; power image to detect
significant tonic or phasic changes from ‘alert’ baseline power. The contours in the
event-related power images indicate regions of statistically significant (p < 0.01)
changes. The event-related power images were also computed for epochs
time-locked to response onset and response offset. Fig. 3-6 showed the procedures
for computing event-related alpha power images of an occipital independent

component.
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Fig. 3-6 The procedures for analyzing event-related power in alpha band.
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3.6. Component Clustering

In order to characterize event-related brain dynamics of independent components
(ICs) in different brain regions across subjects, ICs were grouped into clusters
according to their topographic maps and power spectral profiles. According to
previous studies [22], ICs across all sessions were first manually grouped into ten
clusters located in the central frontal, left frontal, right frontal, central, parietal, left
somatomotor, right somatomotor, occipital midline, bilateral occipital, and tangential
occipital regions according to their topographic maps. Ten clusters were obtained for
each of motion and motionless conditions, respectively. In each IC cluster,
components that show deviant power spectral profiles and dipole locations were
identified as outliers and were removed..from the cluster. Clustered component
matrices were then normalized to 1 by their ICA weights. Some component matrices
were multiplied by -1 to correct the polarity of their scalp maps. Fig. 3-7 shows the
schematic diagram of component clustering. Epochs of all IC within the same cluster
were then grouped and sorted by RTs. To summarize the characteristics of
event-related brain dynamics across group, event-related spectral perturbations
(ERSPs) and event-related power images were computed from grouped epochs in

each IC cluster.
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Chapter4 Results

4.1. Behavioral Performance

Fig. 4-1 showed the cumulative distribution of group RTs (after artifact removal) in
motionless (blue curve) and motion (red curve) conditions, respectively. In motionless
condition, the mean of RTs below 3 s was 886.5 ms (SD = 317.2 ms). In motion
condition, the mean RTs below 3 s was 956.2 ms (SD = 204.8 ms). The first 50% of
RTs in the motion condition were shorter than those in the motionless condition. Both
the motionless and motion conditions showed a “bilinear distribution” of cumulative

RTs, i.e. the majority of RTs was below 3 s, and RTs increased abruptly above 3 s.

Cumulative Distribution of Motionless and Motion RTs
(motionless: 2362 trials, motion: 2806 trials)

100 =

90 /—

80r

701

50

40

30

Percentage of RT-sorted trials

T

20

——motionless RTs
——motion RTs
——RT=3s

0 |
0.1 1 10 100
Reaction time (s)

T

10

Fig. 4-1 The cumulative distributions of RTs in motion and motionless sessions. The

vertical black line indicates 3-s RT.
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Motionless

Motion

C

11

11

4/6

11

5/6

Component number;
subject date duration (hr) F LF RF
s05 2006/11/1 1.8053 7
s31 2006/11/3 1.7017 5 17
s35 2007/3/22 1.5293 6 17
s36 2006/12/21 1.7562 8 14 9
s43 2007/2/8 1.5857
s44 2007/3/25 1.6525 9

mean 1.6718 + 0.1039

total components/total sessions 3/6 3/6 3/6
s05 2006/10/19 1.7228 5 10 16
s31 2006/10/20 1.9408 3 13
s35 2007/1/15 1.7264 14 8
s36 2006/11/22 1.8308 10 14
s43 2007/2/2 1.7864
s44 2007/1/26 1.7049

mean 1.7853 + 0.0895

total components/total sessions 3/6 3/6 3/6
ALL 1.7286 £0.1098 6/12 6/12 6/12

912

P LMu
6,13 10
10 9

9 16
4,16

10 14
7/6 4/6
12 9

7 10
5

9;20

5

6/6 2/6
13/12 6/12

RMu

7;12

10

3/6

8,17

18;22

14

6/6

912

oM

14

13

13

5/6

11

10

5/6

10112 10112

15

5/6

4,18

5/6

TO

13

21

15

3/6

20

15

10

10

19

5/6

8/12

F: frontal; LF: left frontal; RF: right frontal; C: central; P: parietal; LMu: left somatomotor; RMu: right somatomotor; OM:

occipital midline; BLO: bilateral occipital; TO: tangential occipital

Table 4-1: List of subjects and numbers of ICs in motion and motionless conditions.
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4.2. Independent Component (IC) Clustering and Source

Localization

Table 4-1 summarizes the datasets (N=6) and IC clusters in this study. The
results of left somatomotor, parietal, occipital midline, and bilateral occipital IC clusters
are shown in the following sections.

4.2.1. The Left Somatomotor Cluster

Motionless Motion
Avg. Scalp Map of Left  Cluster . Avg. Scalp Map of Left ; Cluster
(MOTIONLESS, 4 Components) $05_061101-10 {MOTION, 2 Components) s05_061018-09
Paired Corr. Coef.: 0.94.£ 0,08 " Paired Corr. Coef.: 0.91£ 0,15

s35_070G22-16 sdd_0T0325-14

« 835 _070322-16

Fig. 4-2 The grand mean of the scalp maps (upper panels) and their equivalent
dipole source locations (lower panels) of the left somatomotor IC clusters in
motionless (left panels) and motion (right panels) sessions. The left
somatomotor components were identified in four motionless sessions (four

subjects) and in two motion sessions (two subjects), respectively.
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4.2.2. The Parietal Cluster

Motionless Motion
Avg. Scalp Map of Parietal Cluster " 2 Avg. Scalp Map of Parietal Cluster " g
(MOTIONLESS, 7 Componants) 505_061101-06 505_061101-13 TMOTION, 5 Compansnts) 505_061019-12 531_061020-07

Paired Corr. Coel.: 0.88+ 0.10 Paired Corr. Coef.: 0.85+ 0.15

536_061221-04 536_061221-16 536_061122-20 543_070202-05

Dipaole of Dipaole of
Pasiolal Pariotal
Chustor Clustor
(MOTIONLESS, (MOTIO
7 Componants) £}
« 805_D61101-06 * 805_061018-12
s05_DE1101-13 531_DG1020-07
« 531_D81103-10 * 835_07011505
&35_070%22-09 « 836_061122-09
B36_DE1221-04 836_DE1122-20
#36_D61221-16 *843_07020205
s44_070326-10

Fig. 4-3 The grand mean of the scalp maps (upper panels) and their equivalent
dipole source locations (lower panels) of the parietal IC clusters in motionless
(left panels) and motion (right panels) sessions. Seven parietal components
were identified from five motionless sessions (five subjects), and six were

identified from five motion sessions (five subjects), respectively.
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4.2.3. The Occipital Midline Cluster

Motionless Motion

Avg. Scalp Map of Occipital Midline Cluster s05_061019-07
{MOTION, 5 Components) 3
Paired Corr. Coef.: 084+ 0,05

Avg. Scalp Map of Occipital Midline Cluster
(MOTIONLESS, 5 Components)
Paired Corr. Coef.: 0.95£ 0,05

s43_070202-07

536_061221-07 s43_070208-13

Dipolo of
Occipital Mafine
Chigtar
(MOTION,
5 Componants)
* 805_061018-07

(MOTIONLESS,
5 Componants)

« 531_DA1103-06
3507032214 53507011509
836_061221-07 * 836 061122-11
43_070208-13 « 843_070202-07
B4 _OTOARE-13 s44_OT0126-10

Fig. 4-4 The grand mean of the scalp maps (upper panels) and their equivalent
dipole source locations (lower panels) of the occipital midline IC clusters in
motionless (left panels) and motion (right panels) sessions. Five occipital midline
components were identified from five motionless sessions (five subjects), and

five were identified from five motion sessions (five subjects), respectively.
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4.2.4. The Bilateral Occipital Cluster

Motionless Motion
Avg. Scalp Map of Bilateral Occipital Cluster 05 061101-04 Avg. Scalp Map of Bilateral Occipital Cluster 05 061019-04
(MOTIONLESS, 5 Components) 3 {MOTION, 5 Components) -
Paired Corr. Coef.: 0.91£ 0,13 a Paired Corr. Coef.: 088+ 0,12 P
s05_061101-11 s05_061019-18

s36_061221-05 543_0T0208-15 s31_061020-06

Dipale of
Bilatoral Occipital
Chustor

(MOTIONLESS:
5 Compornunts) <)
« 805_061101-04 « 5D5_061018-04
05_DG1101-11 505 DGE1015-18
+ 835 07032207 * 531 _D61020-06
* 836_061221-05 « 835_070115-00
543_0T0208-15 536 _061122-08

Fig. 4-5 The grand mean of the scalp maps (upper panels) and their equivalent
dipole source locations (lower panels) of the bilateral occipital IC clusters in
motionless (left panels) and motion (right panels) sessions. Five bilateral
occipital components were identified from four motionless sessions (four
subjects), and five were identified from four motion sessions (four subjects),

respectively.
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4.3. Brain Dynamics of Four IC Clusters

The section shows the results of four IC clusters, including ERSP images of alert
epochs (the first 1/3 epochs below 3-s RT) time-locked to deviation onset, and
event-related power images of three sets of epochs time-locked to deviation onset,

response onset, and response offset, respectively.

4.3.1. The Left Somatomotor Cluster

_ (alert) ERSP
Te
2 30 | e
5 20 -
— 10
@
N 4
L 40 8
c O 30 o
) - 0 wn
8 8 20 = o
s o - " L
e 10 _4
L
0 1000 2000 3000 4000 5000 6000 @

Time (ms)
Fig. 4-6 ERSP images of motionless (upper panel) and motion (lower panel) conditions
of the left somatomotor cluster. Black solid vertical lines: deviation onset. Purple

dashed vertical lines: response onset. Red solid vertical lines: response offset.

Fig. 4-6 shows the ERSP images of motionless (upper panel) and motion (lower
panel) conditions of the left somatomotor cluster. Both images show increase in delta

band power between deviation onset and response onset, suppression in alpha and
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beta band power during response, and beta rebound after response offset.

Fig. 4-7 shows event-related alpha-band power images of motionless (upper
panels) and motion (lower panels) conditions. Strong suppression in alpha band
power occurred from a few hundred milliseconds before response onset to a few
hundred milliseconds after response offset in both motion and motionless conditions.
The suppression is stronger in the motion condition than that in the motionless
condition. Rebound in alpha band power occurred following response offset in both

conditions in long RT epochs.

(A) Deviation Onset (B) Response Onset (C)Response Offset

(smoothed) Event-Related o Power
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Fig. 4-7 The event-related alpha-band power images, time-locked to (A) deviation
onset, (B) response onset and (C) response offset, of motionless (upper panels) and
motion (lower panels) conditions of the left somatomotor cluster. The black dashed
horizontal lines are the trial of RT = 3 s. Blue solid curves: the mean of power of trials
that RT < 3 s. Black solid lines/curves: deviation onset. Purple dashed lines/curves:

response onset. Red solid lines/curves: response offset.
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Motionless

Motion

Fig. 4-8 shows event-related delta-band power images of motionless (upper
panels) and motion (lower panels) conditions. Delta power increased between
deviation onset and response onset, and the increase was significant in the

motionless condition (Fig. 4-8 AB).
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Fig. 4-8 The event-related delta-band power image of motionless and motion conditions

of the left somatomotor cluster. Other conventions as in Fig. 4-7.

Fig. 4-9 shows event-related beta-band power images of motionless (upper
panels) and motion (lower panels) conditions. Suppression in beta band power
occurred from a few hundred milliseconds before response onset to a few hundred
milliseconds after response offset in both motion and motionless conditions. The beta
suppression of the voluntary movement (steering) was consistent with previous

studies [26]. In motion condition, a slight beta rebound can be observed between
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response onset and response offset. Both conditions show significant post-movement

beta rebound after response offset.

(A) Deviation Onset (B) Response Onset (C)Response Offset
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Fig. 4-9 The event-related beta-b ower images of motionless and motion

conditions of the left somatomotor cluster. Other conventions as in Fig. 4-7.
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4.3.2. The Parietal Cluster
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Fig. 4-10ERSP images of motionless and motion conditions of the parietal cluster. All

conventions as in Fig. 4-6.

Fig. 4-10 shows the ERSP images of motionless (upper panel) and motion (lower
panel) conditions of the parietal cluster. Both images show increases in delta band
power between deviation onset and response onset, suppression in alpha and beta
band power during response, and rebound after response offset.

Fig. 4-11 shows event-related alpha-band power images of motionless (upper
panels) and motion (lower panels) conditions. The baseline alpha power before
deviation onset increases significantly when the index is above ~66% of RT < 3 s in
motion condition (Fig. 4-11 A, lower panel). However, the increase in baseline power

in the motionless condition does not reach the same significance level. Both
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conditions show suppression in alpha band power from a few hundred milliseconds
before response onset to a few hundred milliseconds after response offset. Rebound
in alpha band power occurs after response offset in both conditions, and the strength

of the rebound is stronger in long RT epochs.
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Fig. 4-11The event-related alpha-band power images of motionless and motion

conditions of the parietal cluster. Other conventions as in Fig. 4-7.

Fig. 4-12 shows event-related delta-band power images of motionless (upper
panels) and motion (lower panels) conditions. Significant delta-band power increases
occurred between deviation onset and response onset in both conditions (Fig. 4-12 A).
In the motion condition, the increase in delta-band power seemed to be time-locked to

deviation onset instead of response onset.
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Fig. 4-12The event-related delta-band power images of motionless and motion

conditions of the parietal cluster; Other conventions as in Fig. 4-7.

Fig. 4-13 shows event-related. beta-band power images of motionless (upper
panels) and motion (lower panels) conditions. Beta-band power does not increase as
RTs increased in the baseline period in both conditions. Beta suppression occurs
between response onset and response offset in the motionless condition, but it only
occurs near response onset in the motion condition. Beta rebound occurs after

response offset in both conditions, and become stronger in long-RT (near or above 3 s)

epochs.
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Fig. 4-13The event-related beta-band power images of motionless and motion

entions as in Fig. 4-7.
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4.3.3. The Occipital Midline Cluster
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Fig. 4-14ERSP images of motionless and motion conditions of the occipital midline

cluster. All conventions as in Fig. 4-6.

Fig. 4-14 shows the ERSP images of motionless (upper panel) and motion (lower
panel) conditions of the occipital midline cluster. Both images show suppression in
alpha and beta band power a few hundred milliseconds before response onset to a
few hundred milliseconds after response offset, and rebound predominately in alpha
band power after response offset.

Fig. 4-15 shows event-related alpha-band power images of motionless (upper
panels) and motion (lower panels) conditions. The baseline (tonic) alpha power
increases significantly when the index is above 85% of RTs < 3 s in the motionless

condition, and above 33% of RTs < 3 s in the motion condition (Fig. 4-15 A).
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Suppression of alpha-band power occurs between response onset and response
offset, and is most significant in the alert epochs (33% of RTs < 3 s) in the motion
condition (Fig. 4-15 AB). The suppression lasts for a few hundred milliseconds after
response offset. Rebound in alpha band power occur a few hundred milliseconds after
response offset, and the strength of rebound become stronger as RTs increase in both
motion and motionless conditions (Fig. 4-15 C). In addition, in the motion condition,
significant alpha rebound occurs faster in long-RT epochs than in the short-RT

epochs.
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Fig. 4-15The event-related alpha-band power images of motionless and motion

conditions of the occipital midline cluster. Other conventions as in Fig. 4-7.

Fig. 4-16 shows event-related delta-band power images of motionless (upper
panels) and motion (lower panels) conditions. There is little suppression in delta-band

power between response onset and response offset during short-RT epochs in
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motionless condition. Significant delta-band power increases occur between deviation

onset and response onset during long-RT epochs in the motion condition.
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Fig. 4-16 The event-related delta-band powerimages of motionless and motion

conditions of the occipital midline cluster. Other conventions as in Fig. 4-7.

Fig. 4-17 shows event-related beta-band power images of motionless (upper
panels) and motion (lower panels) conditions. There is little suppression in beta-band
power between response onset and response offset in both motionless and motion
conditions. The suppression does not occur until a few hundred milliseconds before
response onset in long-RT epochs (Fig. 4-17 B). Rebound in beta-band power occur a

few hundred milliseconds after response offset, and its strength increases with RTs.
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Fig. 4-17The event-related beta-band power images of motionless and motion

ther conventions as in Fig. 4-7.
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4.3.4. The Bilateral Occipital Cluster
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Fig. 4-18ERSP images of motionless and motion conditions of the bilateral occipital

cluster. All conventions as in Fig. 4-6.

Fig. 4-18 shows the ERSP images of motionless (upper panel) and motion (lower
panel) conditions of the bilateral occipital cluster. Both images show suppression in
alpha and beta band power between deviation onset and response offset. The alpha
suppression lasted for a few hundred milliseconds after response offset. Prolonged
power rebound occurs at high-alpha and low-beta bands after response offset.

Fig. 4-19 shows event-related alpha-band power images of motionless (upper
panels) and motion (lower panels) conditions of the bilateral occipital cluster. The
baseline (tonic) alpha power increases significantly before 3-s RT and become

non-significant again above 3-s RTs in the motion condition (Fig. 4-19 A, lower panel).
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This trend in alpha band power is often referred to as ‘bi-phasic’ pattern [27]. In the
motionless condition, the baseline alpha-band power increases slightly as RTs
increase, but does not reach significant level. In the motionless condition, strong
suppression in alpha band power occurs from a few hundred milliseconds before
response onset to a few hundred milliseconds after response offset (Fig. 4-19 BC,
upper panels). In the motion condition, transient suppression in alpha band power
occurs near response onset and response offset events (Fig. 4-19 BC, lower panels).
There is strong rebound in alpha band power a few hundred milliseconds after
response offset in the motion condition, and the strength of the rebound is significant
across all RTs. However, the strength of rebound is only significant above 3-s RTs in
the motionless condition. The overall patterns of alpha suppression and rebound

suggest a qualitative difference between motion and motionless conditions.
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Fig. 4-19The event-related alpha-band power images of motionless and motion

conditions of the bilateral occipital cluster. Other conventions as in Fig. 4-7.
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Fig. 4-20 shows event-related delta-band power images of motionless (upper

panels) and motion (lower panels) conditions of the bilateral occipital cluster. There is

little to no suppression in delta-band power between response onset and response

offset in both motionless and motion conditions. In the motion condition and during

long-RT epochs, significant delta-band power increase between deviation onset and

response onset, follow by suppression between response onset and offset, and

increased again (rebound) after response offset.
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Fig. 4-20The event-related delta-band power images of motionless and motion

conditions of the bilateral occipital cluster. Other conventions as in Fig. 4-7.

Fig. 4-21 shows event-related beta-band power images of motionless (upper

panels) and motion (lower panels) conditions of the bilateral occipital cluster. The

overall patterns of suppression and rebound in beta-band power are similar to those in
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alpha-band power. However, the strength of suppression and rebound is weaker in

the beta-band power than that in the alpha-band power.
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Fig. 4-21The event-related beta-band power images of motionless and motion

conditions of the bilateral occipital cluster. Other conventions as in Fig. 4-7.
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Chapter 5 Discussions

Driving is a complex task that involves visual attention, spatial cognition, decision
making, and sensorimotor coordination. In order to prevent accidents, the drivers are
required to pay attention to events or situations on the road and make prompt
responses. When the drivers become fatigue or drowsy, their responses to
unanticipated events are usually slowed down. This study shows a comprehensive
picture of EEG dynamics of multiple independent brain processes while the subjects
participated in an event-related lane departure task during simulated driving on a
motion platform. The results show EEG spectral power changes before, during, and
after the lane departure event for each IC cluster, and how these activities were
affected by the increase of reaction time. The influences of kinesthetic stimuli on brain

activities were also discussed here;

5.1. Tonic Changes in Baseline EEG Power Spectra

As reaction time increased, the parietal (Fig. 4-11 A), occipital midline (Fig. 4-15
A), bilateral occipital (Fig. 4-2019 A) and tangential occipital (Fig. 5-1 A) clusters
showed significant increase in baseline alpha-band power predominantly in the
motion condition. However, the tonic increases in alpha band power only reached
significant level when RTs were near or above 3 s in the motionless condition. These
differences suggest that kinesthetic stimuli have major influence on the tonic EEG
patterns. Therefore, in order to develop a valid drowsiness detection system, it is
essential to conduct simulated driving on a motion platform, which provides realistic
and multisensory stimuli similar to real-life driving. The tonic increase in alpha band
power could potentially be used as an index of drowsiness level. However, it should

be noted that the bilateral occipital cluster of the motion condition showed a
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“bi-phasic” phenomenon in alpha band power [27]. The bi-phasic phenomenon was

not reported by a recent study by Huang et al. [22], where only 5% of overall RTs were
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Fig. 5-1 The event-related alpha-band -power images of motionless and motion

conditions of the left tangential occipital cluster. Other conventions as in Fig. 4-7.

5.2. Event-Related Delta Power Increase

In this study, transient (phasic) delta-band power increased a few hundred
milliseconds after deviation onset in the frontal (Fig. 5-2 AB), central (Fig. 5-3 AB),
parietal (Fig. 4-12 AB), left somatomotor (Fig. 4-8 AB) and tangential occipital (Fig. 5-4
AB) clusters. In the central (Fig. 5-3 AB), parietal (Fig. 4-12 AB), and tangential
occipital (Fig. 5-4 AB) clusters, the delta-band power increases were most prominent
and time-locked to deviation onset in the motion conditions. The transient delta-band
power increases in long-RT epochs suggested that the brains were responsive to the

kinesthetic stimuli generated by the motion platform even when the subjects were
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drowsy. Similar transient delta-band power increases before manual responses have

been reported [28].
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Fig. 5-2 The event-related delta-band power images of motionless and motion

conditions of the frontal cluster. Other conventions as in Fig. 4-7.
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Fig. 5-3 The event-related delta-band power images of motionless and motion

conditions of the central clust ventions as in Fig. 4-7.
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Fig. 5-4 The event-related delta-band power images of motionless and motion

conditions of the tangential occipital cluster. Other conventions as in Fig. 4-7.

5.3. Event-Related Desynchronization (ERD)

Previous studies have shown event-related desynchronization (ERD) in beta
band power started 2 s before the onset of voluntary movement and were more
prominent over contra-lateral sensorimotor cortex and extended bilaterally after
movement onset [29][30]. Our results showed ERD in alpha and beta band power in
the somatomotor, parietal, and occipital regions in both motion and motionless
conditions. In all four clusters reported, ERD occurred a few hundred milliseconds
before response onset and ended a few hundred milliseconds after response offset.
During drowsy periods, ERD did not occur until response onset. Therefore, the
absence of ERD right after deviation onset could serve as an index of drowsiness.

The left somatomotor cluster showed stronger ERD in alpha band power in the
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motion condition than that in the motionless condition. However, the bilateral occipital
cluster showed stronger ERD in alpha band power in the motionless condition than
that in the motion condition. Data from more subjects are required to support this
phenomenon in the future.

5.4. Event-Related Synchronization (ERS)

Significant rebound (ERS) in beta band started a few hundred milliseconds after
response offset in both motion and motionless conditions of the left somatomotor
cluster. Little to no post-movement rebound in alpha band was found over left
somatomotor cluster in short-RT epochs in both conditions (and motion condition on
right somatomotor cluster). These ERS patterns in sohrt-RT epochs were consistent
with previous results in magnetoencephalography (MEG) study [30].

In addition, ERS in alpha -band occurred a few hundred milliseconds after
response offset in the occipital -and ‘parietal clusters. The strength of ERS in alpha
band increased as RTs prolonged during-potentially drowsy periods. The presence of
ERS in multiple IC clusters after response offset could be interpreted as a state of

relaxation when the car returns to cruising mode after the lane departure event.

52



Chapter 6 Conclusions

In order to prevent accidents due to drowsy driving, event-related brain dynamics
from alertness to drowsiness were studied during simulated driving. Subjects
participated in an event-related lane departure task in a VR-based driving
environment on a motion platform. This study reveals a comprehensive picture of
tonic and phasic brain dynamics before, during, and after the lane departure event in
simulated driving experiments. Independent component analysis (ICA) was used to
decompose 30-channel EEG data into spatially independent brain processes.
Independent components with similar topographic maps, dipole source locations, and
spectral profiles were grouped into IC clusters. In the parietal and occipital clusters,
the tonic increases in alpha band power prior to deviation onset could be used as an
index for drowsiness detection system. In the motion condition, the transient delta
power increases after deviation onset in the central and parietal clusters could result
from kinesthetic stimuli generated by the motion platform. Following deviation onset
and right before response onset, several IC clusters showed event-related
desynchronization (ERD) in alpha and beta bands. ERD in the parietal and occipital
regions could be explained by visual-spatial attention to the lane departure event,
while ERD in the somatomotor regions is associated with motor responses during
compensatory steering. Therefore, the absence or delay of ERD could be used as an
index to drowsiness. In addition, the strength of ERD was stronger in the motion
condition than that in the motionless condition. After response onset, several IC
clusters showed event-related synchronization (ERS) or rebound in alpha and beta
bands. The presence of ERS in multiple IC clusters after response offset could be
interpreted as a state of relaxation of the driver after the car returns to cruising

position. To summarize, this study demonstrates a framework for analyzing
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event-related brain dynamics during simulated driving. The tonic and phasic EEG
patterns reported here could serve as foundation for studying brain dynamics of more

complicated tasks during real-life driving.
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