
ii 
 

 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 
 
 

探討模擬駕駛平台上事件相關之腦波動態變化 

 

Event-Related Brain Dynamics  

During Simulated Driving on a Motion Platform 
 

研 究 生：李昂穎 

指導教授：林進燈  教授 

          范倫達  教授 

 

中 華 民 國  九 十 八 年 九 月 



iii 
 

探 討 模 擬 駕 駛 平 台 上 事 件 相 關 之 腦 波 動 態 變 化 

Event-Related Brain Dynamics During  
Simulated Driving on a Motion Platform 

 

研 究 生：李昂穎          Student：Yang-Yin Lee 

指導教授：林進燈          Advisor：Chin-Teng Lin 

          范倫達                   Lan-Da Van 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

 
A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

Computer Science 

September 2009 

Hsinchu, Taiwan, Republic of China 

 

中華民國九十八年九月 



iv 
 

探討模擬駕駛平台上事件相關之腦波動態變化 

 
 

學生：李昂穎    指導教授：林進燈 博士 

      范倫達 博士 

 

國立交通大學資訊科學與工程研究所 

 

中文摘要 

 許多駕駛人曾表示在長時間、單調的駕駛環境下有打瞌睡的情況，開車打瞌睡更在

每年都造成車禍及傷亡。駕駛者如果不對於路上的突發狀況做出反應的話，交通事故的

發生往往在幾秒鐘，甚至不到一秒內發生。本論文的目的在研究駕駛員從清醒至打瞌

睡，對於發生車輛偏移事件之前、中及後的腦波動態變化過程，以及動態刺激對於駕駛

者的腦波的影響。實驗上以虛擬實境的方式模擬夜間高速公路且單調之駕駛環境，受測

者須將車輛維持在指定車道中，並在車輛發生隨機向左或向右偏移時轉動方向盤將車輛

拉回指定車道。實驗分成兩部份，第一部分在靜態的模擬平台下實驗(平台不動)，第二

部分延續第一部分的設定，但使用動態平台，車輛會隨著方向盤的轉動及偏移做出對應

的翻轉或傾斜，以提供駕駛者適當的動態刺激。在腦波訊號處理上使用獨立成分分析

(independent component analysis)及時頻分析(time-frequency analysis)。實驗結果可

觀察到駕駛者的腦波從清醒至打瞌睡在偏移事件發生前在頂葉及枕葉的 alpha波有強直

(tonic)方向的明顯變化；在平台動與不動的實驗上，轉動方向盤開始之前到結束之後在

頂葉、枕葉及體感覺運動區(somatomotor)的 alpha 及 beta 波上皆有發現到能量的抑制

(suppression)，或者稱事件相關非同步(event-related desynchronization)；在停止轉動

方向盤後，在頂葉、枕葉及體感覺運動區的 alpha 及 beta 波上出現明顯能量的回彈
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(rebound)，或者稱事件相關同步(event-related synchronization)；而在平台動的情況

下，事件相關非同步及事件相關同步的能量變化都比平台不動還要大。我們希望經由本

論文對於開車之事件相關腦波動態變化上的基礎研究，來提供發展安全駕駛偵測系統上

必要且足夠的資訊。 

 

關鍵詞：開車打瞌睡、動態刺激、腦電波、獨立成份分析、事件相關頻譜擾動、事件相

關能量、alpha 律動、beta 律動、theta 律動
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Abstract 
 

 Many drivers have reported that they became drowsy after long hours of driving 

in a monotonous environment. Driving while drowsy has resulted in crashes and 

injuries every year. Accidents could occur in a matter of seconds or less if the driver 

does not promptly respond to sudden events on the road. The first aim of this thesis is 

to investigate the electroencephalogram (EEG) activities before, during and after lane 

departure events from alertness to drowsiness during continuous driving. The second 

aim of this thesis is to study the influence of kinesthetic stimuli on EEG patterns. The 

event-related lane departure paradigm was implemented in a virtual reality based 

driving simulator on a motion platform. Subjects were required to compensate for the 

randomly generated lane departures in order to maintain the vehicle in the cruising 

lane. Each subject participated in two experimental conditions. In the motionless 

condition, the motion platform was inactive. In the motion condition, the motion 

platform simulated kinesthetic stimuli during the lane departure event. EEG data were 

analyzed with independent component analysis (ICA) and time-frequency analysis. 
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The results show tonic increase in alpha-band power in occipital and parietal clusters 

before deviation onset as reaction time increased. Between response onset and offset, 

suppression or event-related desynchronization (ERD) in alpha and beta band power 

occurred in the somatomotor, parietal, and occipital regions in both motion and 

motionless conditions. Following the response offset, significant rebound or 

event-related synchronization (ERS) in alpha and beta band occurred in the parietal, 

occipital, and somatomotor clusters. The strength of ERD and ERS was stronger in 

the motion condition than that in the motionless condition. These results may provide 

necessary foundations for the development of a driving assistance system in the real 

world. 

 

Keywords: drowsy driving, kinesthetic stimuli, electroencephalogram (EEG), 

independent component analysis (ICA), event-related spectral perturbation (ERSP), 

event-related power, alpha rhythm, beta rhythm, delta rhythm 

  

 



viii 
 

誌  謝 

對於這份論文的完成，首先我要感謝我的父母，沒有他們生我養育我的話，我不會

有這個機會來完成這份論文，並且也對於他們在我研究所期間所提供的資源讓我能夠不

去煩擾生活上的瑣事再次的表達由衷的感謝。 

然後我要感謝我的指導老師林進燈教授和范倫達教授，在研究上提供了豐富的研究

資源和實驗環境，並指導著我的研究。在這裡也要特別感謝美國加州大學聖地牙哥分校

的黃瑞松博士，黃博士在我的研究中提供了許多重要且寶貴的意見，並且細心的從旁協

助指導著我，仔細檢查著每一個分析步驟，對於我論文的完成有莫大的幫助。也感謝實

驗室的柯立偉博士、曲在雯教授及美國加州大學聖地牙哥分校的鍾子平老師、段正仁老

師，除了給予我研究上許多實用的建言外，在研究結果的詮釋上也提出不少建議，並指

出我的錯誤。也特別感謝實驗室的陳青甫學長，除了對於我在實驗上的許多幫助外，在

資料分析上更是提供了許多重要的指導。對於實驗室的騰毅學長、仲良學長、明達學長

和 Frank 所給予在進入這個領域上的幫助也由衷的感謝。 

另外也很感謝實驗室其他全體成員:世安、尚文、德正以及君玲等學長姐；也感謝

俞凱、華山、建安、馥戍、睿昕、書彥等同學在我碩班兩年間無論是學業上、研究上、

或是生活上，都提供我很多的幫助，大家同甘共苦，相互扶持與鼓勵；我也要感謝敬婷、

謹譽、人慈、佳琳等學弟妹在過去這一年中的相伴，以及感謝實驗室助理 Jessica 與 Nao

在許多事務上的幫忙以及陪伴。最後特別感謝政大的林怡芬小姐，分擔了我許多研究上

的苦難與挫折，並陪伴我度過了許多的低潮。 

謹以本文獻給我親愛的家人與親友們，以及關心我的師長，願你們共享這份榮耀與

喜悅。



ix 
 

Contents 

 

Chapter 1  Introduction ..................................................................................................... 1 
1.1. Drowsy Driving ......................................................................................................... 1 
1.2. EEG Studies on Drowsiness and Driving ............................................................. 2 
1.3. The Kinesthetic Perception on a Dynamic Driving Simulator ........................... 3 
1.4. Aims of this Thesis ................................................................................................... 3 

Chapter 2  Materials and Methods ................................................................................. 5 
2.1. Event-Related Lane Departure Paradigm ............................................................ 5 
2.2. 3D Virtual Reality Based Driving Simulation Environment ................................ 6 
2.3. Subjects ..................................................................................................................... 9 
2.4. EEG Recordings and Experimental Procedures ................................................. 9 

Chapter 3  Data Analysis ................................................................................................ 12 
3.1. Analysis of Driving Performance ......................................................................... 13 

3.1.1. Remove Abnormal Driving Trajectory ...................................................... 13 
3.1.2. Reaction Times ........................................................................................... 14 

3.2. Data Preprocessing ............................................................................................... 15 
3.3. Independent Component Analysis (ICA) ............................................................ 15 
3.4. Event-Related Spectral Perturbations (ERSPs) ................................................ 18 
3.5. Event-Related Power Analysis ............................................................................. 21 
3.6. Component Clustering ........................................................................................... 23 

Chapter 4  Results ............................................................................................................ 25 
4.1. Behavioral Performance ....................................................................................... 25 
4.2. Independent Component (IC) Clustering and Source Localization ................ 27 

4.2.1. The Left Somatomotor Cluster .................................................................. 27 
4.2.2. The Parietal Cluster .................................................................................... 28 
4.2.3. The Occipital Midline Cluster .................................................................... 29 
4.2.4. The Bilateral Occipital Cluster .................................................................. 30 

4.3. Brain Dynamics of Four IC Clusters .................................................................... 31 
4.3.1. The Left Somatomotor Cluster .................................................................. 31 
4.3.2. The Parietal Cluster .................................................................................... 35 
4.3.3. The Occipital Midline Cluster .................................................................... 39 
4.3.4. The Bilateral Occipital Cluster .................................................................. 43 

Chapter 5  Discussions ................................................................................................... 47 
5.1. Tonic Changes in Baseline EEG Power Spectra ............................................... 47 
5.2. Event-Related Delta Power Increase .................................................................. 48 
5.3. Event-Related Desynchronization (ERD) ........................................................... 51 



x 
 

5.4. Event-Related Synchronization (ERS) ............................................................... 52 
Chapter 6  Conclusions .................................................................................................. 53 
Reference ............................................................................................................................... 55 



xi 
 

List of Figures 
Fig. 2-1  Illustration of the event-related lane-departure paradigm [22]. ....... 6 
Fig. 2-2  (A) A wide view of the 3D virtual reality surrounding driving 

environment [17]. (B) A snap shot of the driving scene in the experiment.
 7 

Fig. 2-3  (A)  The car frame (Ford Probe) of driving simulator. (B) The 
Stewart platform under the car frame. .......................................................... 8 

Fig. 2-4  Illustration of x, y, z, pitch, roll, and yaw on a driving simulator. ..... 8 
Fig. 2-5  The electro-cap and the Scan NuAmps Express system. ............. 10 
Fig. 2-6  The channel locations used in this study. ......................................... 11 
Fig. 3-1  The flowchart of data analysis procedures....................................... 12 
Fig. 3-2  Three examples of abnormal driving trajectories. ........................... 14 
Fig. 3-3  An example of the topographic maps of ICA weight matrix 

projected on the scalp. .................................................................................. 18 
Fig. 3-4  The flowchart of ERSP analysis. ........................................................ 20 
Fig. 3-5  The flowchart of ERSP analysis II. .................................................... 20 
Fig. 3-6  The procedures for analyzing event-related power in alpha band.

 22 
Fig. 3-7  The schematic diagram of component clustering. .......................... 24 
Fig. 4-2  The grand mean of the scalp maps (upper panels) and their 

equivalent dipole source locations (lower panels) of the left somatomotor 
IC clusters in motionless (left panels) and motion (right panels) 
sessions.. ........................................................................................................ 27 

Fig. 4-4  The grand mean of the scalp maps (upper panels) and their 
equivalent dipole source locations (lower panels) of the occipital midline 
IC clusters in motionless (left panels) and motion (right panels) sessions.
 29 

Fig. 4-5  The grand mean of the scalp maps (upper panels) and their 
equivalent dipole source locations (lower panels) of the bilateral occipital 
IC clusters in motionless (left panels) and motion (right panels) sessions.
 30 

Fig. 4-6  ERSP images of motionless (upper panel) and motion (lower panel) 
conditions of the left somatomotor cluster. ................................................ 31 

Fig. 4-7  The event-related alpha-band power images, time-locked to (A) 
deviation onset, (B) response onset and (C) response offset, of 
motionless (upper panels) and motion (lower panels) conditions of the 
left somatomotor cluster.. .............................................................................. 32 



xii 
 

Fig. 4-8  The event-related delta-band power image of motionless and 
motion conditions of the left somatomotor cluster .................................... 33 

Fig. 4-9  The event-related beta-band power images of motionless and 
motion conditions of the left somatomotor cluster. ................................... 34 

Fig. 4-10  ERSP images of motionless and motion conditions of the parietal 
cluster.. ............................................................................................................ 35 

Fig. 4-11  The event-related alpha-band power images of motionless and 
motion conditions of the parietal cluster ..................................................... 36 

Fig. 4-12  The event-related delta-band power images of motionless and 
motion conditions of the parietal cluster. .................................................... 37 

Fig. 4-13  The event-related beta-band power images of motionless and 
motion conditions of the parietal cluster. .................................................... 38 

Fig. 4-14  ERSP images of motionless and motion conditions of the 
occipital midline cluster. ................................................................................ 39 

Fig. 4-15  The event-related alpha-band power images of motionless and 
motion conditions of the occipital midline cluster. ..................................... 40 

Fig. 4-16  The event-related delta-band power images of motionless and 
motion conditions of the occipital midline cluster. ..................................... 41 

Fig. 4-17  The event-related beta-band power images of motionless and 
motion conditions of the occipital midline cluster ...................................... 42 

Fig. 4-18  ERSP images of motionless and motion conditions of the 
bilateral occipital cluster. ............................................................................... 43 

Fig. 4-19  The event-related alpha-band power images of motionless and 
motion conditions of the bilateral occipital cluster. ................................... 44 

Fig. 4-20  The event-related delta-band power images of motionless and 
motion conditions of the bilateral occipital cluster. ................................... 45 

Fig. 4-21  The event-related beta-band power images of motionless and 
motion conditions of the bilateral occipital cluster. ................................... 46 

Fig. 5-2  The event-related delta-band power images of motionless and 
motion conditions of the frontal cluster. ...................................................... 49 

Fig. 5-3  The event-related delta-band power images of motionless and 
motion conditions of the central cluster. ..................................................... 50 

Fig. 5-4  The event-related delta-band power images of motionless and 
motion conditions of the tangential occipital cluster. ................................ 51 

 



xiii 
 

List of Table 
Table 4-1:  List of subjects and numbers of ICs in motion and motionless 

conditions. ............................................................................................ 26 

 



1 
 

Chapter 1 Introduction 

1.1. Drowsy Driving 

 Driving is a daily activity for most people in the modern society. Driving while 

drowsy is dangerous and often leads to accidents [1][2][3]. The National Highway 

Traffic Safety Administration (NHTSA) estimates that 100,000 police-reported crashes 

are caused by drowsy drivers each year, resulting in an estimated 1,500 deaths, 

71,000 injuries and $12.5 billion in financial losses in the United States. Two of the 

potential causes of drowsiness-related crashes include: (1) inattention to deviation of 

the vehicle due to slippery road surface or slight change in steering wheel angle, and 

(2) not maintaining appropriate distance from other vehicles on the road. In addition, 

many studies have showed that drowsiness-related crashes often took place during 

night-time [4], monotonous driving environment [5], or after long hours of driving [6]. 

Therefore, developing drowsiness detection systems is essential for driving safety.  

Several image-based methods have been proposed to monitor the status of the 

driver or the vehicle. For example, visual cues including eyelid movement, face 

orientation, and gaze movement (pupil movement) were used to monitor the driver’s 

vigilance levels [7]. Lane departure warning system (LDWS) or driver assistance 

system detect lane marking (boundaries) from the video and provide auditory 

feedback when the vehicle is about to drift off the lane [8][9]. However, monitoring the 

driver’s status from the video may be affected by changes in ambient illumination and 

head/body positions or movements. Furthermore, the effectiveness of LDWS is 

greatly reduced during poor weather conditions or due to unclear lane marking. 

Physiological based detection methods, such as electrooculogram (EOG), may be 

used to detect the driver’s vigilance levels [10]. However, EOG is an indirect 

measurement of vigilance level and the correlation between EOG and drowsiness is 
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low. Some studies used electromyogram (EMG) to detect the driver’s hand 

movements [11]. However, EMG is seldom used to detect drowsiness. 

 

1.2. EEG Studies on Drowsiness and Driving 

 Electroencephalogram (EEG) is one of the most direct and effective physiological 

measures of arousal states. Changes in EEG power spectra could be used as an 

indicator for alertness levels. An early EEG study showed increased occipital theta 

(4-7 Hz) activities as the task performance degraded [12]. Several recent studies have 

demonstrated the relation between EEG characteristics (e.g., power spectra) and 

driving performance. Lal and Craig reported an increase in slow wave (theta and delta 

[0-4 Hz]) activities during fatigue in simulated driving [13]. Schier showed increases in 

alpha (8-12 Hz) activities during the later laps and replay of simulated driving 

experiments using the ‘Need For Speed’ PC-game [14]. Campagne et al. showed 

significant power increases in alpha and theta bands that were highly correlated with 

the number of running-off-the-road incidents and increase in speed variations [15]. 

Horne and Baulk showed a correlation between EEG activities in alpha and theta 

bands and the number of incidents (defined as a car wheel crossing the lateral lane 

marking) [16]. Lin et al. showed the driving error was positively correlated with EEG 

log power spectra in the sub-band (< 20 Hz) range [17]. These studies provided the 

fundamental link between EEG power spectral activities and drowsiness during 

simulated driving. However, most studies compared the overall EEG power with the 

mean driving performance in a time window of 30 seconds or longer. In the real life, 

traffic accidents could occur in a matter of seconds or less if the driver does not 

promptly respond to sudden events on the road. Therefore, it is essential to 

investigate the EEG activities before, during and after an event during continuous 

driving. Huang et al. have demonstrated event-related brain dynamics during 
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continuous performance tasks in a static laboratory setting [18][19][20][21][22]. 

Decreases or increases in alpha band power occurred following critical events during 

continuous tracking or driving. However, it is not known whether these event-related 

dynamic patterns remain the same on a dynamic driving simulator or in real-life 

driving. 

 

1.3. The Kinesthetic Perception on a Dynamic Driving Simulator 

Driving is a complex everyday task that involves predominantly visual information 

processing. Drivers need to be aware of expected or unexpected critical events (such 

as deviation of the vehicle) that appear in their useful visual field. In real-life driving, 

drivers also receive vestibular and proprioceptive inputs, such as vibrations and 

centrifugal force, in addition to visual inputs. The vestibular apparatus in the inner ear 

includes the utricle, saccule and three semicircular canals, which provide sensation of 

balance and head acceleration. Patients with vestibular disorientation syndrome could 

be a concern for driving safety [23]. Proprioceptor, located in the stretch receptors in 

the muscles, tendons, and joints, is a sensory receptor that provides information about 

body position (sense the relative position) and movement of neighboring body parts. 

Most studies on driving and drowsiness did not consider the influence of kinesthetic 

stimuli on EEG patterns. In this study, a driving simulator on a six degree-of-freedom 

motion platform was used to investigate EEG activities from alertness to drowsiness 

with or without the influence of kinesthetic stimuli when the subjects participated in an 

event-related lane departure driving task [22]. 

 

1.4. Aims of this Thesis 

 In order to establish the fundamental factors of drowsy driving, the aims of this 

study were to: (1) draw a comprehensive picture of event-related EEG dynamics (in 
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different brain regions and at different frequency bands) before, during, and after lane 

departure events, (2) study the influence of kinesthetic stimuli by comparing EEG 

patterns in motion (active platform) with those in motionless (inactive platform) driving 

sessions, and (3) identify the brain region(s) and frequency band(s) which could 

provide useful information to driving safety and drowsiness detection systems. 
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Chapter 2 Materials and Methods 

 

2.1. Event-Related Lane Departure Paradigm 

 In this study, the event-related lane departure driving paradigm [18][22] was 

implemented in a 360-degree virtual-reality (VR) based driving simulator with a motion 

platform. The VR scenes simulated a vehicle cruising at a constant speed in the third 

lane of a four-lane highway at night. There was no other traffic in both directions on 

the highway. The subjects did not need to use the gas or brake paddles. The 

computer program randomly introduced a perturbation (lane departure event) and 

caused the virtual vehicle to drift to the left or right with equal probability. Subjects 

were instructed to steer back to the center of the cruising lane as quickly as possible 

after they detected the deviation. If the subjects fall asleep and did not respond to the 

deviation, the vehicle would eventually hit the virtual curb on either side of the road. 

The vehicle did not stop or crash at the curb, but continued to cruise at a constant 

speed against the curb until the subjects resumed their responses. The next deviation 

event occurred randomly 5 to 10 s after the moment when the vehicle was back in the 

third lane. Three critical moments: deviation onset, response onset and response 

offset, are defined in each lane-departure incident (Fig. 2-1). Deviation onset is the 

moment when the vehicle starts to deviate. Response onset is the moment when the 

subject initiates the compensatory steering. Response offset is the moment when the 

vehicle returns to the center of the cruising lane and the subject ceases to rotate the 

steering wheel. 
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2.2. 3D Virtual Reality Based Driving Simulation Environment 

 A 3D virtual reality driving simulator was built to simulate real-life driving 

environments because of safety concern of conducting experiments with a real car on 

the road. In addition, simulated driving environment has other advantages, including 

well-controlled temperature, background illumination, and other unnecessary stimuli 

or distractions. The 3D VR scenes were projected from 6 projectors in the direction of 

0°, 42°, 83.596°, 180°, 277.088° and 318°, which creates a 360° surrounding 

environment. The dimensions of the screens were 300 × 225 (width × height) cm, 290 

× 225 cm, 260 × 195 cm, 520 × 195 cm, 260 × 195 cm and 290 × 225 cm, respectively. 

These large screens generate an immersive sensation and near real-life driving 

environment (Fig. 2-2). In order to simulate kinesthetic sensation in the real world, a 

hydraulic hexapod Stewart platform was mounted underneath a real car frame (Fig. 

2-3). The six degree-of-freedom Stewart platform can simulate 3D rotations, including 

pitch, roll, and yam (Fig. 2-4). The interior of the car frame remains unchanged. 

Unnecessary parts, such as the engine and wheels, were removed from the car to 

reduce the weight. In addition, cameras were installed at the dashboard to monitor the 

subjects’ statuses. 

Fig. 2-1 Illustration of the event-related lane-departure paradigm [22]. 
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(A) 

(B) 

Fig. 2-2 (A) A wide view of the 3D virtual reality surrounding driving environment 

[17]. (B) A snap shot of the driving scene in the experiment. 
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(A) (B) 

Fig. 2-3 (A)  The car frame (Ford Probe) of driving simulator. (B) The Stewart 

platform under the car frame. 

 

Fig. 2-4 Illustration of x, y, z, pitch, roll, and yaw on a driving simulator. 
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2.3. Subjects 

 Each of six subjects participated in one motion session and one motionless 

session on different days. All subjects were recruited from National Chiao Tung 

University, Taiwan, and were paid to participate in the experiment. All subjects have 

normal or corrected-to-normal vision, and none of them have history of psychiatric or 

sleep disorders. None of the subjects were sleep deprived the night before the 

experiment. Each subject signed a consent form before the experiment. 

 

2.4. EEG Recordings and Experimental Procedures 

 EEG signals were recorded using Ag/AgCl electrodes embedded on a 32 

Channel Quik-Cap (Neuromedical Supplies, Inc.) (Fig. 2-5). The electrodes were 

arranged according to a modified international 10/20 system. Fig. 2-6 shows an 

example of electrode locations in this study. The reference was the mean of the 

signals of left and right mastoid electrodes. The skins under the reference electrodes 

were abraded with Nuprep (DO Weaver and Co., USA) and disinfected with a 

70-percent isopropyl alcohol swab before calibrating. The impedance of the 

electrodes was calibrated under 5kΩ with NaCl based conductive gel (Quik-Gel, 

Neuromedical Supplies ®). The EEG signals from the electro-cap were amplified by 

the Scan NuAmps Express system (Compumedics Ltd., VIC, Australia) and then 

recorded at 500 Hz sampling rate. 

The scene of event-related lane departure driving task was projected from six 

projectors controlled by servers connected by local area network. The Stewart motion 

platform was inactive during motionless sessions. During motion sessions, the motion 

platform was active and simulated the kinesthetic sensation during lane departure 

events. 
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Subjects were instructed with the details of task requirements after they were 

settled in the driver’s seat. Subjects practiced the task for a few minutes before the 

main experiment started. The duration of the main experiment was 1.67 ± 0.10 hours 

(mean ± standard deviation) in motionless session, and 1.79 ± 0.09 hours in motion 

sessions, respectively.  

  

Fig. 2-5 The electro-cap and the Scan NuAmps Express system. 
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Fig. 2-6 The channel locations used in this study. 
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Chapter 3 Data Analysis 

Fig. 3-1 shows the flowchart of data analysis procedures. EEG data and behavior 

data were recorded simultaneously. Segments of abnormal driving trajectory were 

rejected before analysis of RTs. For each session of each subject, data preprocessing 

was applied to 30-channel raw EEG signals. Continuous EEG time series were 

extracted into epochs time-locked to deviation onset events. Independent component 

analysis (ICA) was applied to epoched EEG data after artifact removal. 

Time-frequency analyses, including event-related spectral perturbations (ERSPs) and 

event-related power, were applied to the activation time courses of each independent 

component (IC) cluster. 

 

 

Fig. 3-1 The flowchart of data analysis procedures. 
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3.1. Analysis of Driving Performance 

3.1.1. Remove Abnormal Driving Trajectory 

The optimal driving trajectory of a lane departure event was shown in Fig. 2-1. 

Typically, a flat segment represents stable cruising between each response offset and 

the next deviation onset. Due to instability or overcompensation of the steering wheel 

after the vehicle returned to the center of the third lane, some segments of driving 

trajectory showed abnormal patterns, such as zigzags or slopes. These abnormal 

trajectories are likely to induce additional changes in EEG power spectra, making it 

difficult to interpret the results. 

Fig. 3-2 showed three examples of abnormal driving trajectories (in red circles). 

There are 210.50 ± 122.44 abnormal trials out of 604.17 ± 60.67 total trials in the 

motionless sessions and 187.50 ± 109.72 abnormal trials out of 655.17 ± 60.92 total 

trials in the motion sessions. All epochs with abnormal trajectories were removed 

before further analysis. 
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3.1.2. Reaction Times 

 In this study, driving performance was measured by reaction times (RTs) as 

defined in the event-related lane departure paradigm [22]. The driver’s reaction times 

to critical events are generally slower when they become fatigue or drowsy than when 

they are alert. The reaction time in each lane-departure event (trial or epoch) was 

computed from the driving trajectory. A crash event is defined as trial with RT longer 

than 3 seconds. 

Fig. 3-2 Three examples of abnormal driving trajectories. Blue curve: driving 

trajectory. Black dots: the time points of deviation onset of each event. Pink dots: 

the time points of response onset of each event. Gray horizontal lines: lane 

markings (boundaries) of third lane. Gray vertical lines: 1 s before deviation 

onset events. 
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3.2. Data Preprocessing 

Matlab package and the EEGLAB toolbox were used for offline data 

preprocessing and independent component analysis (ICA) on a PC [24]. A low-pass 

filter (finite impulse response (FIR) filter, cut-off frequency: 50 Hz) was applied to the 

raw EEG data to remove the power line noise (60 Hz) and other high frequency noises. 

A high-pass filter (FIR filter, cut-off frequency: 0.5 Hz) was used to remove baseline 

drift. The filtered EEG data were then down-sampled to 250 Hz for further analysis. 

For each session, three sets of epochs time-locked to different events were 

extracted from continuous EEG data: (1) epochs that extend from 1 sec prior to and 7 

sec following each deviation onset, (2) epochs that extend from 2 sec prior to and 4 

sec following each response onset, (3) epochs that extend from 2 sec prior to and 4 

sec following each response offset. Epochs that contained extreme amplitudes and 

noise across all channels were rejected together with epochs that contained abnormal 

trajectory in the behavioral data. 

 

3.3. Independent Component Analysis (ICA) 

In this study, we attempt to solve the identification and source localization 

problem by using a generally applicable ICA. Thus, the artifacts including the 

eye-movement (EOG), eye-blinking, muscle-movement (EMG), and line noises can 

be successfully separated from EEG activities. The ICA is a statistical “latent 

variables” model with generative form: 

)t()t( sAx =  (1) 

Where A is a linear transform called a mixing matrix and si are statistically 

mutually independent. The ICA model describes how the observed data are 
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generated by a process of mixing the components si. The independent components si 

(often abbreviated as ICs) is latent variables, meaning that they cannot be directly 

observed. The mixing matrix A is assumed to be unknown. All we observed are the 

random variables xi, and we must estimate both the mixing matrix and the IC’s si 

using the xi. 

Therefore, given time series of the observed data [ ]TN txtxtxt )()()()(x L21= in 

N-dimension, ICA will find a linear mapping W such that the unmixed signals u(t) are 

statically independent. 

)t()t( xWu =  (2) 

Supposed the probability density function of the observations x can be expressed 

as: 

)(p)det()(p uWx =  (3) 

The learning algorithm can be derived using the maximum likelihood formulation 

with the log-likelihood function derived as: 

∑
=
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N

i
ii )u(plog)det(log),(

1
WWuL  (4) 

Thus, an effective learning algorithm using natural gradient to maximize the 

log-likelihood with respect to W gives: 
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And WTW rescales the gradient, simplifies the learning rule and speeds the 
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convergence considerably. It is difficult to know a priori the parametric density function 

p(u), which plays an essential role in the learning process. If we choose to 

approximate the estimated probability density function with an Edgeworth expansion 

or Gram-Charlier expansion for generalizing the learning rule to sources with either 

sub- or super-Gaussian distributions, the nonlinearity φ(u) can be derived as: 

⎩
⎨
⎧

+
−

=
sources,gaussian -subfor : )tanh(
sources,gaussian -superfor  : )tanh(

)(
uu

uu
uϕ   (7) 

Then, 

[ ]
[ ]⎩
⎨
⎧

−+
−−

=Δ
   gaussian,-sub :)tanh(

gaussian,-super : )tanh(
WuuuuI
WuuuuI

TT

TT

W   (8) 

Since there is no general definition for sub- and super-Gaussian sources, we 

choose ( )1) (-1,N1) (1,Np +=
2
1)u(  and p(u)=N(0,1)sech2(u) for sub- and super-Gaussian, 

respectively, where N(μ,σ2) is a normal distribution. The learning rules differ in the sign 

before the tanh function and can be determined using a switching criterion as: 
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Where 

{ } { } { }( )iiiii uuEuEuhEsign )tanh()(sec −= 22κ  (10) 

represents the elements of N-dimensional diagonal matrix K. After ICA training, 

we can obtain N ICA components u(t) decomposed from the measured N-channel 

EEG data x(t). In this study, N=30, thus we obtain 30 components from 30 channel 

signals. 
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Fig. 3-3 showed the scalp topographies of ICA decomposition of 30-channel EEG 

data into 30 independent components. Each map was generated by rendering a 

column of the inverse of ICA weighting matrix onto the scalp. These maps indicate the 

approximate originating source locations of independent processes. For example, 

components 1 and 3 correspond to eye related activities. Components 2, 4, 5, 7, 8, 9, 

10, 14, 15, and 16 correspond to brain and cognitive related activities. Other 

components correspond to non-brain related artifacts. 

 

3.4. Event-Related Spectral Perturbations (ERSPs) 

 In this study, event-related spectral perturbations (ERSPs) [25] were used to 

Fig. 3-3 An example of the topographic maps of ICA weight matrix projected on the 

scalp. 
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study brain dynamics induced by lane departure events and subsequent motor 

responses. ERSPs show whole-spectrum power changes relative to pre-event power 

spectral baseline in single-channel EEG data or independent component activations. 

For each IC of interest, the epochs of IC activation time courses were sorted by 

trial reaction times, and divided into four groups: (1) 0 to 33.3% of trials below 3-s RT, 

(2) 33.3 to 66.6 % of trials below 3-s RT, (3) 66.6 to 100% of trials below 3-s RT, (4) 

other trials with RT > 3 s. This grouping method allows the comparison of ERSPs 

between short and long RTs epochs. Fig. 3-4 and Fig. 3-5 show the flowcharts of 

ERSP analysis. To obtain ERSPs, a time-frequency array was computed from each 

epoch of IC activation by applying the Discrete Fourier Transform (DFT) (timefreq() 

function of EEGLAB, winsize: 128, padratio: 2): ),(, tfF ck , where k is the index of 

epochs, c is component index, f is the frequency bin, t is the time point. The log power 

of this array was computed using: 

 ))),((),(,( , tfFconjtfcFlog10  t)(f,P ckkck, ××=  (1) 

The ERSPs of component c was obtained by averaging n power matrices of the same 

group: 

 ∑
=

=
n

k
k tfcP

n
1  t)f,ERSP(c,

1

),,(  (2) 

 t)f,ERSP(c,  was then normalized by subtracting the baseline power spectra, which 

were the mean power spectra (a vector of length f) from 1-s window before deviation 

onset (Fig. 3-5). 
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Fig. 3-4 The flowchart of ERSP analysis. 

 

Fig. 3-5 The flowchart of ERSP analysis II. 
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3.5. Event-Related Power Analysis 

 One of the goals of this study was to investigate the changes of event-related 

brain dynamics from alertness (short RTs) to drowsiness (long RTs) during simulated 

driving. In this study, RT-sorted event-related power images were computed for delta 

(3-4 Hz), alpha (8-12 Hz), and beta (18-22 Hz) bands from the matrix ),(, tfP ck  of 

single-session data. 

  )),(()( ,
)max()min(

,, tfPmeantP ck
fff

'
fck

ii
i <<

=  (3) 

where },,{ βαδ∈if . 

The raw event-related power image of frequency band fi is the matrix from vector 

)('
,, tP

ifc1  to )('
,, tP

ifcn , where )('
,, tP

ifc1  is the vector at the shortest RT, )('
,, tP

ifcn  is the 

vector at the longest RT, and n is the total number of trials in the selected sessions. 

The raw event-related power image of fi was then normalized by subtracting the mean 

baseline power of ‘alert’ period, defined as the 1-s window before deviation onset of 

the first 10% of epochs below 3-s RT. In order to observe the trend of event-related 

power from short to long RTs, moving average across RT-sorted epochs was applied 

to the normalized event-related power image. The size of moving window is the 

number of the first 10% of epochs below 3-s RT, and the advancing step is 10 epochs. 

Two-sample t-test was applied to the raw event-related fi power image to detect 

significant tonic or phasic changes from ‘alert’ baseline power. The contours in the 

event-related power images indicate regions of statistically significant (p < 0.01) 

changes. The event-related power images were also computed for epochs 

time-locked to response onset and response offset. Fig. 3-6 showed the procedures 

for computing event-related alpha power images of an occipital independent 

component. 
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Fig. 3-6 The procedures for analyzing event-related power in alpha band. 
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3.6. Component Clustering 

 In order to characterize event-related brain dynamics of independent components 

(ICs) in different brain regions across subjects, ICs were grouped into clusters 

according to their topographic maps and power spectral profiles. According to 

previous studies [22], ICs across all sessions were first manually grouped into ten 

clusters located in the central frontal, left frontal, right frontal, central, parietal, left 

somatomotor, right somatomotor, occipital midline, bilateral occipital, and tangential 

occipital regions according to their topographic maps. Ten clusters were obtained for 

each of motion and motionless conditions, respectively. In each IC cluster, 

components that show deviant power spectral profiles and dipole locations were 

identified as outliers and were removed from the cluster. Clustered component 

matrices were then normalized to 1 by their ICA weights. Some component matrices 

were multiplied by -1 to correct the polarity of their scalp maps. Fig. 3-7 shows the 

schematic diagram of component clustering. Epochs of all IC within the same cluster 

were then grouped and sorted by RTs. To summarize the characteristics of 

event-related brain dynamics across group, event-related spectral perturbations 

(ERSPs) and event-related power images were computed from grouped epochs in 

each IC cluster. 
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Fig. 3-7 The schematic diagram of component clustering. 
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Chapter 4 Results 

4.1. Behavioral Performance 

 Fig. 4-1 showed the cumulative distribution of group RTs (after artifact removal) in 

motionless (blue curve) and motion (red curve) conditions, respectively. In motionless 

condition, the mean of RTs below 3 s was 886.5 ms (SD = 317.2 ms). In motion 

condition, the mean RTs below 3 s was 956.2 ms (SD = 204.8 ms). The first 50% of 

RTs in the motion condition were shorter than those in the motionless condition. Both 

the motionless and motion conditions showed a “bilinear distribution” of cumulative 

RTs, i.e. the majority of RTs was below 3 s, and RTs increased abruptly above 3 s.  

 

Fig. 4-1 The cumulative distributions of RTs in motion and motionless sessions. The 

vertical black line indicates 3-s RT. 
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   Component number;  

 

subject date duration (hr) F LF RF C P LMu RMu OM BLO TO 

M
ot

io
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s 

s05 2006/11/1 1.8053  7  3 6;13 10   1;11  

s31 2006/11/3 1.7017  5 17 11 10 9 7;12 6  13 

s35 2007/3/22 1.5293 6  17  9 16  14 7 21 

s36 2006/12/21 1.7562 8 14 9 2 4;16  10 7 5 15 

s43 2007/2/8 1.5857        13 15  

s44 2007/3/25 1.6525 9   11 10 14  13   

 

 mean 1.6718 ± 0.1039           

 

 total components/total sessions 3/6 3/6 3/6 4/6 7/6 4/6 3/6 5/6 5/6 3/6 

M
ot
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n 

s05 2006/10/19 1.7228 5 10 16 6 12 9 8;17 7 4;18 20 

s31 2006/10/20 1.9408 3 13  11 7 10 9  6 15 

s35 2007/1/15 1.7264  14 8 7 5   9 3 10 

s36 2006/11/22 1.8308 10  14 4 9;20  18;22 11 8  

s43 2007/2/2 1.7864     5   7  10 

s44 2007/1/26 1.7049    8   14 10  19 

 

 mean 1.7853 ± 0.0895           

 

 total components/total sessions 3/6 3/6 3/6 5/6 6/6 2/6 6/6 5/6 5/6 5/6 

 

ALL  1.7286 ± 0.1098 6/12 6/12 6/12 9/12 13/12 6/12 9/12 10/12 10/12 8/12

F: frontal; LF: left frontal; RF: right frontal; C: central; P: parietal; LMu: left somatomotor; RMu: right somatomotor; OM: 

occipital midline; BLO: bilateral occipital; TO: tangential occipital 

 

Table 4-1:  List of subjects and numbers of ICs in motion and motionless conditions. 
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4.2. Independent Component (IC) Clustering and Source 

Localization 
Table 4-1 summarizes the datasets (N=6) and IC clusters in this study. The 

results of left somatomotor, parietal, occipital midline, and bilateral occipital IC clusters 
are shown in the following sections. 

 

4.2.1. The Left Somatomotor Cluster 

Motionless Motion 

Fig. 4-2 The grand mean of the scalp maps (upper panels) and their equivalent 

dipole source locations (lower panels) of the left somatomotor IC clusters in 

motionless (left panels) and motion (right panels) sessions. The left 

somatomotor components were identified in four motionless sessions (four 

subjects) and in two motion sessions (two subjects), respectively. 
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4.2.2. The Parietal Cluster 

 

Motionless Motion 

Fig. 4-3 The grand mean of the scalp maps (upper panels) and their equivalent 

dipole source locations (lower panels) of the parietal IC clusters in motionless 

(left panels) and motion (right panels) sessions. Seven parietal components 

were identified from five motionless sessions (five subjects), and six were 

identified from five motion sessions (five subjects), respectively. 
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4.2.3. The Occipital Midline Cluster 

 

Motionless Motion 

Fig. 4-4 The grand mean of the scalp maps (upper panels) and their equivalent 

dipole source locations (lower panels) of the occipital midline IC clusters in 

motionless (left panels) and motion (right panels) sessions. Five occipital midline 

components were identified from five motionless sessions (five subjects), and 

five were identified from five motion sessions (five subjects), respectively. 
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4.2.4. The Bilateral Occipital Cluster 

 

 

 

 

Motionless Motion 

Fig. 4-5 The grand mean of the scalp maps (upper panels) and their equivalent 

dipole source locations (lower panels) of the bilateral occipital IC clusters in 

motionless (left panels) and motion (right panels) sessions. Five bilateral 

occipital components were identified from four motionless sessions (four 

subjects), and five were identified from four motion sessions (four subjects), 

respectively. 
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4.3. Brain Dynamics of Four IC Clusters 

The section shows the results of four IC clusters, including ERSP images of alert 

epochs (the first 1/3 epochs below 3-s RT) time-locked to deviation onset, and 

event-related power images of three sets of epochs time-locked to deviation onset, 

response onset, and response offset, respectively. 

 

4.3.1. The Left Somatomotor Cluster  

 

 

Fig. 4-6 shows the ERSP images of motionless (upper panel) and motion (lower 

panel) conditions of the left somatomotor cluster. Both images show increase in delta 

band power between deviation onset and response onset, suppression in alpha and 
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Fig. 4-6 ERSP images of motionless (upper panel) and motion (lower panel) conditions 

of the left somatomotor cluster. Black solid vertical lines: deviation onset. Purple 

dashed vertical lines: response onset. Red solid vertical lines: response offset. 
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beta band power during response, and beta rebound after response offset. 

Fig. 4-7 shows event-related alpha-band power images of motionless (upper 

panels) and motion (lower panels) conditions. Strong suppression in alpha band 

power occurred from a few hundred milliseconds before response onset to a few 

hundred milliseconds after response offset in both motion and motionless conditions. 

The suppression is stronger in the motion condition than that in the motionless 

condition. Rebound in alpha band power occurred following response offset in both 

conditions in long RT epochs. 

 

 (A) Deviation Onset (B) Response Onset (C) Response Offset 
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Fig. 4-7 The event-related alpha-band power images, time-locked to (A) deviation 

onset, (B) response onset and (C) response offset, of motionless (upper panels) and 

motion (lower panels) conditions of the left somatomotor cluster. The black dashed 

horizontal lines are the trial of RT = 3 s. Blue solid curves: the mean of power of trials 

that RT < 3 s. Black solid lines/curves: deviation onset. Purple dashed lines/curves: 

response onset. Red solid lines/curves: response offset. 



33 
 

 

Fig. 4-8 shows event-related delta-band power images of motionless (upper 

panels) and motion (lower panels) conditions. Delta power increased between 

deviation onset and response onset, and the increase was significant in the 

motionless condition (Fig. 4-8 AB). 

 

 

Fig. 4-9 shows event-related beta-band power images of motionless (upper 

panels) and motion (lower panels) conditions. Suppression in beta band power 

occurred from a few hundred milliseconds before response onset to a few hundred 

milliseconds after response offset in both motion and motionless conditions. The beta 

suppression of the voluntary movement (steering) was consistent with previous 

studies [26]. In motion condition, a slight beta rebound can be observed between 

 (A) Deviation Onset (B) Response Onset (C) Response Offset 
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Fig. 4-8 The event-related delta-band power image of motionless and motion conditions 

of the left somatomotor cluster. Other conventions as in Fig. 4-7. 
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response onset and response offset. Both conditions show significant post-movement 

beta rebound after response offset. 

 

 

 (A) Deviation Onset (B) Response Onset (C) Response Offset 
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Fig. 4-9 The event-related beta-band power images of motionless and motion 

conditions of the left somatomotor cluster. Other conventions as in Fig. 4-7. 
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4.3.2. The Parietal Cluster  

 

 

Fig. 4-10 shows the ERSP images of motionless (upper panel) and motion (lower 

panel) conditions of the parietal cluster. Both images show increases in delta band 

power between deviation onset and response onset, suppression in alpha and beta 

band power during response, and rebound after response offset. 

Fig. 4-11 shows event-related alpha-band power images of motionless (upper 

panels) and motion (lower panels) conditions. The baseline alpha power before 

deviation onset increases significantly when the index is above ~66% of RT < 3 s in 

motion condition (Fig. 4-11 A, lower panel). However, the increase in baseline power 

in the motionless condition does not reach the same significance level. Both 
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Fig. 4-10 ERSP images of motionless and motion conditions of the parietal cluster. All 

conventions as in Fig. 4-6. 
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conditions show suppression in alpha band power from a few hundred milliseconds 

before response onset to a few hundred milliseconds after response offset. Rebound 

in alpha band power occurs after response offset in both conditions, and the strength 

of the rebound is stronger in long RT epochs. 

 

 

Fig. 4-12 shows event-related delta-band power images of motionless (upper 

panels) and motion (lower panels) conditions. Significant delta-band power increases 

occurred between deviation onset and response onset in both conditions (Fig. 4-12 A). 

In the motion condition, the increase in delta-band power seemed to be time-locked to 

deviation onset instead of response onset. 

 (A) Deviation Onset (B) Response Onset (C) Response Offset 
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Fig. 4-11 The event-related alpha-band power images of motionless and motion 

conditions of the parietal cluster. Other conventions as in Fig. 4-7. 
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Fig. 4-13 shows event-related beta-band power images of motionless (upper 

panels) and motion (lower panels) conditions. Beta-band power does not increase as 

RTs increased in the baseline period in both conditions. Beta suppression occurs 

between response onset and response offset in the motionless condition, but it only 

occurs near response onset in the motion condition. Beta rebound occurs after 

response offset in both conditions, and become stronger in long-RT (near or above 3 s) 

epochs. 

 

 (A) Deviation Onset (B) Response Onset (C) Response Offset 
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Fig. 4-12 The event-related delta-band power images of motionless and motion 

conditions of the parietal cluster. Other conventions as in Fig. 4-7. 
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Fig. 4-13 The event-related beta-band power images of motionless and motion 

conditions of the parietal cluster. Other conventions as in Fig. 4-7. 
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4.3.3. The Occipital Midline Cluster  

 

 

Fig. 4-14 shows the ERSP images of motionless (upper panel) and motion (lower 

panel) conditions of the occipital midline cluster. Both images show suppression in 

alpha and beta band power a few hundred milliseconds before response onset to a 

few hundred milliseconds after response offset, and rebound predominately in alpha 

band power after response offset. 

Fig. 4-15 shows event-related alpha-band power images of motionless (upper 

panels) and motion (lower panels) conditions. The baseline (tonic) alpha power 

increases significantly when the index is above 85% of RTs < 3 s in the motionless 

condition, and above 33% of RTs < 3 s in the motion condition (Fig. 4-15 A). 
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Fig. 4-14 ERSP images of motionless and motion conditions of the occipital midline 

cluster. All conventions as in Fig. 4-6. 
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Suppression of alpha-band power occurs between response onset and response 

offset, and is most significant in the alert epochs (33% of RTs < 3 s) in the motion 

condition (Fig. 4-15 AB). The suppression lasts for a few hundred milliseconds after 

response offset. Rebound in alpha band power occur a few hundred milliseconds after 

response offset, and the strength of rebound become stronger as RTs increase in both 

motion and motionless conditions (Fig. 4-15 C). In addition, in the motion condition, 

significant alpha rebound occurs faster in long-RT epochs than in the short-RT 

epochs. 

 

 

Fig. 4-16 shows event-related delta-band power images of motionless (upper 

panels) and motion (lower panels) conditions. There is little suppression in delta-band 

power between response onset and response offset during short-RT epochs in 
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Fig. 4-15 The event-related alpha-band power images of motionless and motion 

conditions of the occipital midline cluster. Other conventions as in Fig. 4-7. 



41 
 

motionless condition. Significant delta-band power increases occur between deviation 

onset and response onset during long-RT epochs in the motion condition. 

 

 

Fig. 4-17 shows event-related beta-band power images of motionless (upper 

panels) and motion (lower panels) conditions. There is little suppression in beta-band 

power between response onset and response offset in both motionless and motion 

conditions. The suppression does not occur until a few hundred milliseconds before 

response onset in long-RT epochs (Fig. 4-17 B). Rebound in beta-band power occur a 

few hundred milliseconds after response offset, and its strength increases with RTs. 
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Fig. 4-16 The event-related delta-band power images of motionless and motion 

conditions of the occipital midline cluster. Other conventions as in Fig. 4-7. 
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Fig. 4-17 The event-related beta-band power images of motionless and motion 

conditions of the occipital midline cluster. Other conventions as in Fig. 4-7. 
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4.3.4. The Bilateral Occipital Cluster  

 

 

Fig. 4-18 shows the ERSP images of motionless (upper panel) and motion (lower 

panel) conditions of the bilateral occipital cluster. Both images show suppression in 

alpha and beta band power between deviation onset and response offset. The alpha 

suppression lasted for a few hundred milliseconds after response offset. Prolonged 

power rebound occurs at high-alpha and low-beta bands after response offset. 

Fig. 4-19 shows event-related alpha-band power images of motionless (upper 

panels) and motion (lower panels) conditions of the bilateral occipital cluster. The 

baseline (tonic) alpha power increases significantly before 3-s RT and become 

non-significant again above 3-s RTs in the motion condition (Fig. 4-19 A, lower panel). 
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Fig. 4-18 ERSP images of motionless and motion conditions of the bilateral occipital 

cluster. All conventions as in Fig. 4-6. 
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This trend in alpha band power is often referred to as ‘bi-phasic’ pattern [27]. In the 

motionless condition, the baseline alpha-band power increases slightly as RTs 

increase, but does not reach significant level. In the motionless condition, strong 

suppression in alpha band power occurs from a few hundred milliseconds before 

response onset to a few hundred milliseconds after response offset (Fig. 4-19 BC, 

upper panels). In the motion condition, transient suppression in alpha band power 

occurs near response onset and response offset events (Fig. 4-19 BC, lower panels). 

There is strong rebound in alpha band power a few hundred milliseconds after 

response offset in the motion condition, and the strength of the rebound is significant 

across all RTs. However, the strength of rebound is only significant above 3-s RTs in 

the motionless condition. The overall patterns of alpha suppression and rebound 

suggest a qualitative difference between motion and motionless conditions. 
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Fig. 4-19 The event-related alpha-band power images of motionless and motion 

conditions of the bilateral occipital cluster. Other conventions as in Fig. 4-7. 
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Fig. 4-20 shows event-related delta-band power images of motionless (upper 

panels) and motion (lower panels) conditions of the bilateral occipital cluster. There is 

little to no suppression in delta-band power between response onset and response 

offset in both motionless and motion conditions. In the motion condition and during 

long-RT epochs, significant delta-band power increase between deviation onset and 

response onset, follow by suppression between response onset and offset, and 

increased again (rebound) after response offset. 

 

 

Fig. 4-21 shows event-related beta-band power images of motionless (upper 

panels) and motion (lower panels) conditions of the bilateral occipital cluster. The 

overall patterns of suppression and rebound in beta-band power are similar to those in 
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Fig. 4-20 The event-related delta-band power images of motionless and motion 

conditions of the bilateral occipital cluster. Other conventions as in Fig. 4-7. 
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alpha-band power. However, the strength of suppression and rebound is weaker in 

the beta-band power than that in the alpha-band power. 
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Fig. 4-21 The event-related beta-band power images of motionless and motion 

conditions of the bilateral occipital cluster. Other conventions as in Fig. 4-7. 
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Chapter 5 Discussions 

Driving is a complex task that involves visual attention, spatial cognition, decision 

making, and sensorimotor coordination. In order to prevent accidents, the drivers are 

required to pay attention to events or situations on the road and make prompt 

responses. When the drivers become fatigue or drowsy, their responses to 

unanticipated events are usually slowed down. This study shows a comprehensive 

picture of EEG dynamics of multiple independent brain processes while the subjects 

participated in an event-related lane departure task during simulated driving on a 

motion platform. The results show EEG spectral power changes before, during, and 

after the lane departure event for each IC cluster, and how these activities were 

affected by the increase of reaction time. The influences of kinesthetic stimuli on brain 

activities were also discussed here.  

 

5.1. Tonic Changes in Baseline EEG Power Spectra 

As reaction time increased, the parietal (Fig. 4-11 A), occipital midline (Fig. 4-15 

A), bilateral occipital (Fig. 4-2019 A) and tangential occipital (Fig. 5-1 A) clusters 

showed significant increase in baseline alpha-band power predominantly in the 

motion condition. However, the tonic increases in alpha band power only reached 

significant level when RTs were near or above 3 s in the motionless condition. These 

differences suggest that kinesthetic stimuli have major influence on the tonic EEG 

patterns. Therefore, in order to develop a valid drowsiness detection system, it is 

essential to conduct simulated driving on a motion platform, which provides realistic 

and multisensory stimuli similar to real-life driving. The tonic increase in alpha band 

power could potentially be used as an index of drowsiness level. However, it should 

be noted that the bilateral occipital cluster of the motion condition showed a 
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“bi-phasic” phenomenon in alpha band power [27]. The bi-phasic phenomenon was 

not reported by a recent study by Huang et al. [22], where only 5% of overall RTs were 

above 3 s. 

 

5.2. Event-Related Delta Power Increase 

In this study, transient (phasic) delta-band power increased a few hundred 

milliseconds after deviation onset in the frontal (Fig. 5-2 AB), central (Fig. 5-3 AB), 

parietal (Fig. 4-12 AB), left somatomotor (Fig. 4-8 AB) and tangential occipital (Fig. 5-4 

AB) clusters. In the central (Fig. 5-3 AB), parietal (Fig. 4-12 AB), and tangential 

occipital (Fig. 5-4 AB) clusters, the delta-band power increases were most prominent 

and time-locked to deviation onset in the motion conditions. The transient delta-band 

power increases in long-RT epochs suggested that the brains were responsive to the 

kinesthetic stimuli generated by the motion platform even when the subjects were 
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Fig. 5-1 The event-related alpha-band power images of motionless and motion 

conditions of the left tangential occipital cluster. Other conventions as in Fig. 4-7. 
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drowsy. Similar transient delta-band power increases before manual responses have 

been reported [28]. 
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Fig. 5-2 The event-related delta-band power images of motionless and motion 

conditions of the frontal cluster. Other conventions as in Fig. 4-7. 
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Fig. 5-3 The event-related delta-band power images of motionless and motion 

conditions of the central cluster. Other conventions as in Fig. 4-7. 
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5.3. Event-Related Desynchronization (ERD) 
 

Previous studies have shown event-related desynchronization (ERD) in beta 

band power started 2 s before the onset of voluntary movement and were more 

prominent over contra-lateral sensorimotor cortex and extended bilaterally after 

movement onset [29][30]. Our results showed ERD in alpha and beta band power in 

the somatomotor, parietal, and occipital regions in both motion and motionless 

conditions. In all four clusters reported, ERD occurred a few hundred milliseconds 

before response onset and ended a few hundred milliseconds after response offset. 

During drowsy periods, ERD did not occur until response onset. Therefore, the 

absence of ERD right after deviation onset could serve as an index of drowsiness. 

The left somatomotor cluster showed stronger ERD in alpha band power in the 
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Fig. 5-4 The event-related delta-band power images of motionless and motion 

conditions of the tangential occipital cluster. Other conventions as in Fig. 4-7.  
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motion condition than that in the motionless condition. However, the bilateral occipital 

cluster showed stronger ERD in alpha band power in the motionless condition than 

that in the motion condition. Data from more subjects are required to support this 

phenomenon in the future. 

 5.4. Event-Related Synchronization (ERS) 
 

Significant rebound (ERS) in beta band started a few hundred milliseconds after 

response offset in both motion and motionless conditions of the left somatomotor 

cluster. Little to no post-movement rebound in alpha band was found over left 

somatomotor cluster in short-RT epochs in both conditions (and motion condition on 

right somatomotor cluster). These ERS patterns in sohrt-RT epochs were consistent 

with previous results in magnetoencephalography (MEG) study [30]. 

In addition, ERS in alpha band occurred a few hundred milliseconds after 

response offset in the occipital and parietal clusters. The strength of ERS in alpha 

band increased as RTs prolonged during potentially drowsy periods. The presence of 

ERS in multiple IC clusters after response offset could be interpreted as a state of 

relaxation when the car returns to cruising mode after the lane departure event. 
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Chapter 6 Conclusions 

In order to prevent accidents due to drowsy driving, event-related brain dynamics 

from alertness to drowsiness were studied during simulated driving. Subjects 

participated in an event-related lane departure task in a VR-based driving 

environment on a motion platform. This study reveals a comprehensive picture of 

tonic and phasic brain dynamics before, during, and after the lane departure event in 

simulated driving experiments. Independent component analysis (ICA) was used to 

decompose 30-channel EEG data into spatially independent brain processes. 

Independent components with similar topographic maps, dipole source locations, and 

spectral profiles were grouped into IC clusters. In the parietal and occipital clusters, 

the tonic increases in alpha band power prior to deviation onset could be used as an 

index for drowsiness detection system. In the motion condition, the transient delta 

power increases after deviation onset in the central and parietal clusters could result 

from kinesthetic stimuli generated by the motion platform. Following deviation onset 

and right before response onset, several IC clusters showed event-related 

desynchronization (ERD) in alpha and beta bands. ERD in the parietal and occipital 

regions could be explained by visual-spatial attention to the lane departure event, 

while ERD in the somatomotor regions is associated with motor responses during 

compensatory steering. Therefore, the absence or delay of ERD could be used as an 

index to drowsiness. In addition, the strength of ERD was stronger in the motion 

condition than that in the motionless condition. After response onset, several IC 

clusters showed event-related synchronization (ERS) or rebound in alpha and beta 

bands. The presence of ERS in multiple IC clusters after response offset could be 

interpreted as a state of relaxation of the driver after the car returns to cruising 

position. To summarize, this study demonstrates a framework for analyzing 
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event-related brain dynamics during simulated driving. The tonic and phasic EEG 

patterns reported here could serve as foundation for studying brain dynamics of more 

complicated tasks during real-life driving. 
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