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Abstract

To improve the performance.of processors, a customized accelerator, reconfigurable
custom functional unit (RCFU), may be appended to a very long instruction word (VLIW)
processor architecture. The technique is to generate RCFU by those frequent operation
segments and collapse operation segments-which could be executed on the RCFU as
customized instructions. Then, instruction scheduling is done to elaborate instruction-level
parallelism for performance improvement at compile time. In this research, we propose not
only a tightly-coupled RCFU design on the VLIW processor, but also an algorithm is also
proposed to exploit the processor augmented with RCFU. We assume that FUs in the
processor pipeline and RCFU could execute simultaneously, and independent operation
mapping and instruction scheduling algorithms are integrated into a single phase to get more
performance gains and higher hardware usability. We had comparisons between the
processors with RCFU and without RCFU. Overall, our proposed RCFU design while using
our proposed exploitation algorithm still achieves giant speedup on average over previous
generating algorithms. Furthermore, the algorithm for exploiting RCFU also achieves

obviously speedup on average over previous methods, separating algorithms.
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Chapter 1 Introduction

The researchers have aspired to design high-performance but low-cost computing systems.
Application specific integrated circuits (ASICs), fully customized designs, are one of the
techniques often used to realize the demands. ASICs provide an effective way to improve
performance and decrease energy consumption. Nevertheless, ASICs are not flexible for
different applications, indicating that only a few applications could get benefits from the
hardwares. In contrast with ASIC, General purpose processor (GPP) is applicable for various
applications, but it could not satisfy performance request of the applications with specific
requirements.

Application specific processor. (ASP) i1s-a good trade-off between ASIC and GPP for
complex computational applications.-ASPs are not as efficient as ASICs, but they provide
more flexibility. Moreover, ASPs behave better than GPPs at performance. Figure 1-1 shows
the relationships among ASIC,.GPP and ASP.

Application Specific
Integrated Circuit

48
~ Application Specific
Processor

performance
]
\

General Purpose
Processor

— flexibility

Figure 1-1: The relationships among ASIC, GPP and ASP.

An ASP contains a base processor which is augmented with accelerators. The
implementation of accelerators and base processor can be loosely-coupled or tightly-coupled

[1]. A loosely-coupled accelerator accelerating basic blocks or functions of applications



appears as a coprocessor which helps balancing the loading between base processor and itself,
as shown in Figure 1-2(a). The accelerator communicates with base processor by system
buses, hence it has a giant overhead while transferring data. In contrast with loosely-coupled
system, tightly-coupled accelerators getting register file directly accelerate extended
instructions extracted from applications, as shown in Figure 1-2(b). ASPs utilize the
tightly-coupled accelerators integrated into a base processor pipeline. The base processor is
augmented with a set of extended instructions to exploit the accelerators. Tightly-coupled
accelerators offer several advantages, including decreased execution latency for operations,
increased execution bandwidth and reduced accessing register file for temporal data. There is

no overhead while transferring data. In this research, we focus on tightly-coupled accelerators.

CPU
CPU o HW accelerator—>
accelerator —h =
T % 3. g =
< > O c FU — o
v v = ®
main /O FU >
memory
(a) (b)

Figure 1-2: (a) Loosely-coupled and (b) tightly coupled accelerator.

For an ASP with tightly coupled accelerator, frequently executed operation segments of
applications have been extracted as extended instructions, as shown in Figure 1-3(a) and (b).
Extended instructions will be executed on the tightly-coupled accelerators, called custom
functional units (CFUs), as shown in Figure 1-3(c). Researchers found that CFUs cause heavy
area cost [2]. Obviously, partial functionalities of CFUs are overlapping. Consequently, a
reconfigurable accelerator, reconfigurable custom functional unit (RCFU), has replaced CFUs,

as shown in Figure 1-4 [3]. Various tightly-coupled RCFU architecture comprise a matrix of



processing elements (PEs), which are capable of executing several data-independent or
data-dependent operations. Many researchers have proposed these architectures for specific
applications. REMARC [4], MorphoSys [5] and ADRES [6] are some of the architectures

proposed by academic researches.
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Figure 1-3: (a) Operation segments are extracted from an application. (b) Operation segments

are encoded as extended instruetions. (c) Extended instructions are executed on the CFUSs.
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Figure 1-4: Use an RCFU to replace CFUs.

When RCFU exists in the processor, operation segments to be executed on RCFU would
be discovered from applications. In current researches, RCFU and FUs of base processor do
not run simultaneously [7]. One of the reasons is that single issue architecture is considered in
these researches. The other reason is that, in these designs, there is no need to increase

read/write ports. In our experiments, when VLIW architecture is considered, and the number



of read/ write ports are not increased, there is 43% of performance improvement on average
while RCFU and FUs are running simultaneously. Accordingly, if they are both active, the
processor augmented with RCFU would get more performance improvement and higher
hardware usability.

In order to increase the speedup of applications, we intend to generate a customized
RCFU for computation intensive applications, as shown in Figure 1-4. We concentrate on
VLIW architecture that RCFU and FUs could execute simultaneously. To work out the
effectiveness of these hardware units, we propose an algorithm to exploit the framework after
generating RCFU at compilation time.

The remaining chapters of this thesis are organized as follows: In Chapter 2, we would
provide background knowledge and related work about generating and exploiting RCFU. The
related works would be introduced.and a brief comparison would be made indicating the
opportunity we find worth tryingfor. Our design algorithms of RCFU generation and RCFU
exploitation are proposed in Chapter 3, and experimental environment and simulation results
are demonstrated in Chapter 4. And-finally, Chapter 5, a summary would be made and some

future work would be proposed.



Chapter 2 Background and Related Works

In the first part of this chapter, we explain the necessary background including
conventional RCFU structure, and design issues of RCFU generation and exploitation. In the
second part, a brief introduction of generating and exploiting RCFU would be made. Two

previous works would be presented and evaluated in more detail.

2.1 Backgrounds - RCFU

Three aspects of background knowledge are introduced in this section. The first part is
RCFU structure. The last two parts present the knowledge about generation and exploitation

of RCFU.

2.1.1 Structure of RCFU

Extracting operation segments ‘of applications and then executing their corresponding
data flow graph (DFG) on the RCFU could get giant speedup. A DFG is a graph which
represents data dependencies between operations. A node represents an operation and an edge
demonstrates the dependence between two operations.

RCFU is implemented as a reconfigurable hardware which is usually a grid-like of coarse
grain processing elements (PEs), as shown in Figure 2-1. RCFU allows parallel execution of
operations and sequential propagation of data between PEs. There are connections between
the different levels of PEs, and data are passed down by the wires.

Each PE may execute an instruction level operation. PE consists of simple computation

operations (e.g., adder, subtraction, shift or logic operations) for short execution latencies and



slight area costs. In other words, multiply/divide operations are not allowed in PEs because of

latency considerations. Load/store operations are also rejected because of cache effects.
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Figure 2-1: A base processor augmented with a RCFU.

2.1.2 Generation oft RCFU

Figure 2-2 shows the conventional-flow chart of generating RCFU. First, the applications
are translated from high level languages (e.g. C/C++) into intermediate representations
represented by DFG forms (Step 1). Afterward DFGs are analyzed to decide the shape of
RCFU which is characterized by the_depth and® width. Functionalities of PEs are also
pondered at this stage (Step 2). Depth is the maximum length of dependency operations that
the RCFU can support. Width is the maximum number of operations which can be executed
in parallel. In Step 3, the structure of RCFU is determined by the results of Step 2, according
to the hardware constraints, such as the number of read/write port constraints, delay or area

cost.
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v

(1) |Generate Data Flow Graph (DFG)
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v
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Hardware
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RCFU structure

Figure 2-2: A conventional flow chart of RCFU generation.

2.1.3 Exploitation of RCFU

The exploitation of the augmented RCFU consists of two steps in backend of compiler:
operation mapping and instruction scheduling, as shown in Figure 2-3. In operation
mapping stage, all of the operation segments that may be executed on the RCFU are
discovered and implemented as customized instructions (Cls). Therefore, there are base
instructions and customized instructions after-operation mapping. Instruction scheduling is a
compilation optimization used to elaborate instruction-level parallelism for performance
improvements. Traditionally, operation mapping and instruction scheduling are separated
steps. Compilers need to discover Cls to be executed on the RCFU first and then schedule the
instructions to optimize the execution.

We are presently considering RCFU and FUs executing simultaneously in multiple issue
architecture. Not only have we considered which operation segments can be executed on the

RCFU, but we have also deliberated scheduling issue of instructions while doing operation

mapping.
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Figure 2-3: A conventional flow chart of RCFU exploitation.

2.2 Related Works

Critical computation operation segments can be accelerated by collapsing them into
customized instructions to be executed on RCFU augmented to the baseline processor. The
main objective of RCFU is to-execute varied customized- instructions as quickly as possible.
Many researches for generating specific tightly-coupled accelerators have been proposed [8 -
13]. Each of these techniques_ employs formulations or heuristics methods to identify
operation segments of an application in static'time. We have a detailed introduction for one of
the algorithm [13] which implements the most common operation segments while keeping
cost, delay and area overhead to a minimum.

Discovering optimal set of customized instruction to be executed on the existed
accelerator to improve the performance of applications has received a lot of attentions
recently [13 - 16]. Clark et al. explore possibly operation segments by starting with small
operation segments and expanding them under constraints [13]. Atasu et al. search a full
binary tree to decide an operation whether or not to be included in an operation segment [14].
Arnold et al. iteratively detects 2-operator operation segments and replace their appearance in

the DFG [15]. Mehdipour et al. adopt temporal partition for the operation segments which



could not be execution on the RCFU [16], and we have a detailed introduction for this
research.
In this section, we present two related works for designing RCFU and operation
mapping algorithm for exploiting RCFU. The two related works are listed as follows:
1. Application-Specific Processing on a General-Purpose Core via Transparent
Instruction Set Customization, MICRO, 2004 [13].
2. Custom instruction generation using temporal partitioning techniques for a
reconfigurable functional unit, EUC, 2006 [16].
The first related work concentrates on analyzing operation segments of applications to
determine the shape and functionalities of PEs in RCFU. The second related work proposes
operation segments mapping approach which :aims to increase the number customized

instructions being executed on RCFU.

2.2.1 Related Work 1: RCFU Generation

As mentioned in section 2.1, RCFU is usually a grid-like group of PEs. The output of PEs
in upper levels may communicate with PEs in adjacent lower ones or deliver to the register
file. This RCFU generation algorithm proposed by Clark et al. analyzes DFGs of basic blocks
from applications to decide the shape, including depth, width, and functionalities of PEs [13].
Its flow chart is clarified in Figure 2-4.

In step 1, operations which are not supported by RCFU, such as load/store,
multiply/divide and branch, take a basic block of an application apart. In other words, a basic
block is partitioned by unsupported operations into several operation segments. In step 2, in
order to generate RCFU with higher usability, a utilization matrix is used to record the shape
of each operation segments. A utilization matrix can be seen as a two-dimensional PE array,

each entry of the matrix is corresponding to a PE. The parallelism of an operation segment is



analogous to the number of columns of the matrix, and the number of operations located on
the critical path is analogous to the number of rows. After completing the statistic, the number
of operations in each entry of the matrix is divided by the number of total operations to
represent the percentage of operations in that PE. Moreover, the percentages of various
operations which are presented in these operation segments are also calculated.

In step 3, the depth and width of RCFU are decided by the user-defined coverage rate
and the result of utilization matrix. The coverage rate is defined to represent the upper bound
of the proportion of the total operations in all the generated operation segments may affect the
shape of RCFU. An entry with highest utilization rate is iteratively selected while the sum of
selected utilization rate is smaller than coverage rate. The selected entries are implementable
by the RCFU. To balance the execution'latency and ease the mapping of operations on RCFU,

PEs in each level of RCFU is assumed to have identical functionalities in this related work.

DFG of basic blocks
from applications

v

1) Operation segment
generation

v

9 Operation segment shape &
©) operation type statistic
* coverage rate

(3) | RCFU structure determination 4—‘

RCFU structure

Figure 2-4: Flow chart of RCFU generation in related work 1

This RCFU generation algorithm is illustrated through an example, as shown in Figure
2-5. In this example, assume that there are two types of functionalities supported by RCFU,
including arithmetic (e.g., addition and subtraction) and logical (e.g., NOT, AND, OR and

XOR) operations. Operations involving more expensive circuits, such as multiplication and

10



division, or having undetermined latencies, such as load/store operations, are excluded.
Finally, the value of user-defined coverage rate is assumed to be equal to 95%.

Figure 2-5(a) demonstrates the generated four operation segments (1, 2, 3 and 4)
extracted from the basic blocks of applications. Each operation segment is recorded into the
utilization matrix, as shown in Figure 2-5(b)-(e). Recall that for the proposed RCFU structure,
the result of a PE could only be send to the adjacent lower PEs. When a PE receives data
which are not generated from the adjacent upper level of PEs, an adjacent upper PE should be
used to pass the information by “move” operations. Figure 2-5(f) shows the result of the
normalized utilization matrix.

An entry with maximum value is iteratively chosen to be realized while the sum of
chosen entries is no more than the user defined coverage rate. When there exist entries with
identical values, the entry on the upper-level or left column has higher priority to be chosen.
In Figure 2-5(g), the entries with gray color are chosen to be realized.

According to the coverage rate, the shape of RCFU whose depth is equal to 2 is
determined. Figure 2-5(h) shows the shape and functionalities of PEs. Because arithmetic
operations occupy the largest portion of the operation segments, the arithmetic units would be
the main categories of PEs considered for the design of RCFU. To ease the mapping of
operations onto RCFU, each level is composed of either arithmetic operation type or logic

operation type.

11



utilization matrix

xor | mov 1 1
s;b 1
u
(b)
@ and | mov 2 2
\ 2 3 VT
add 2
ciclie 0
cC
(su) (29 Ear) :
A ¥
@ Xxor | mov 3 1
4 - (d)
@ nel 1
(@) sub | add | mov 4 4 1
ar?d gr T
(e)
1

normalized utilization matrix

25% | 25% |625% | O 25% | 25% |625% | O ...

25% | 12.5% 0 0 25% | 12.5% 0 0
4
6.25% 0 0 0 6.25% 0 0 0 D : Adder/Subtraction/Move
0 0 0 0 0 0 0 0 | I : Logic/Move
() (9) (h)

Figure 2-5: Example of RCFU generation from related work 1: (a) a basic block from an
application, (b)-(e) the utilization matrix is used the record the shape of operation segments, (f)
the utilization matrix with normalization form, (g) entries with gray color will be

implemented as PEs,(h) the generated RCFU
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2.2.2 Related Work 2: RCFU Exploitation

After generating RCFU, a processor is augmented with the generated RCFU which has
constraints, including the number of read/write ports and PEs. Identifying optimal set of
customized instructions to improve the computational efficiency of applications is the most
important issue in exploitation of RCFU. The goal of the RCFU exploitation algorithm
proposed by Mehdipour et al. is to maximize the number of operations to be executed on
RCFU while FUs of base processor and RCFU do not run simultaneously [16].

Figure 2-6 represents the flow chart of the exploitation methodology for a generated
RCFU proposed by this related work. The inputs are basic blocks from an application in data
flow graphs (DFGs) representation and a existed RCFU structure, including the number of
inputs, outputs and PEs. In the first step, the DFGs are separated by the operations which are
not supported by the RCFU /into several “subgraphs, by the similar method mentioned in
operation segment generation of related work 1. If a 'subgraph could be successfully mapped
onto the RCFU, the subgraph’is .encoded as-a customized instruction, as shown in step 4.
Otherwise, the subgraph is split into partial-subgraphs to be successfully mapped onto the
RCFU.

Two algorithms were developed for subgraph partitioning. The first one is Horizontal
Traversing Temporal Partitioning (HTTP). This algorithm traverses DFG nodes horizontally
according to the ASAP (As Soon As Possible) level of the nodes and adds them to the current
partition. This algorithm usually brings about more parallelism for instruction execution that
may result in increasing required intermediate data size. Assume that Figure 2-7(a) is the
RCFU generation. The operation segment, as shown in Figure 2-7 (b) could not be mapped
onto it. The dotted circle with demonstrates the result for HTTP algorithm. Another partition
algorithm, Vertical Traversing Temporal Partitioning (VTTP), vertically traverse the DFG

node. VTTP creates partitions with longer critical paths, and thus may reduce the intermediate
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data size. Using each of these algorithms, all subgraphs were mapped successfully onto
RCFU. Figure 2-7(c) shows the subgraph with dotted circle which could be mapped onto the
RCFU. However, HTTP may result in better performance improvement, since it benefits from

parallelism more in the instruction execution.

DFGs of basic
blocks from an
application ~RCFU structure

v

1 Subgraph generation

Map each subgraph on
RCFU

Y

Is mapping Y
successful ?

No

Subgraph partition and
mapping

w

A
Instruction encoding |«

~

Customized instruction

Figure 2-6: Design flows of customized instruction generation for RCFU exploitation

(] :Addisub/Move
(@) (b) (c)

Figure 2-7: (a) the generated RCFU; (b) and (c) are the examples of HTTP and VTTP
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2.3 Opportunity and Evaluation

In the related work 1, the number of read/write ports provided by a base processor
augmented with RCFU is fixed. Nevertheless, read/write ports constraints are not considered
while generating RCFU. It means that some operation segments which violate read/write port
constraint will not be able to be executed on the RCFU generation. Figure 2-8 shows one of
the operation segments and the generated RCFU from related work 1. This operation segment
requiring 5 read and 2 write ports could be mapped successfully onto the RCFU, but it could
not be executed on the RCFU because of the read/write port constraint of 4 read and 2 write
ports.

To balance the execution latency and ease the mapping of operations onto RCFU,
functionalities of PEs are identical in each level inrelated work 1. However, operation types
are usually normally distributed in—an operation. segment according to our experiment.
Therefore, restricting identical PEs in each level would cause that customized instructions

may contain less operations being accelerated on the RCFU.

C] : Add/Sub/Move

I::l |:| : Logic/Move
A 4

(b)

Figure 2-8: Example of related work 1 which did not consider read/write port constraint

To evaluate a suitable RCFU for applications to get higher performance improvement, we
will propose an algorithm of RCFU generation. Table 2-1 gives a preview of our design
compared to related work 1.

Table 2-1: Proposed design vs. existing method of RCFU generation.

Related work 1 Proposed
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Operation segments conformed # | \q Yes
of read/write ports constraints

Complexity of generating initial
operation segments

Low High

Functionalities of PEs in a level Identical Varied

Related work 2 introduced the method of customized instruction generation for RCFU
exploitation. It proposed two algorithms for subgrpah partitioning. Traditionally, the previous
research of RCFU exploitation, including related work, identified operations being executed
on the RCFU into a customized instruction. After generating all of the customized instructions,
instruction scheduling was performed later.

When considering a multiple issue architecture, FUs of the base processor and the RCFU
could be executed simultaneously. Aspiring for.combining more operations into customized
instructions is not absolutely getting higher performance improvement. Since FUs and RCFU
could be executed simultaneously, operations which could not be mapped on RCFU can be
executed on FUs. Table 2-2 gives a preview of our design compared to the related work 2.

Table 2-2: Proposed design vs. existing methods of RCFU exploitation.

Related work 2 Proposed

Occasion for executing

Un-simultaneous simultaneous
FUs and RCFU

Operation mapping and
instruction  scheduling | Two individual phases Single integrated phase
algorithm
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Chapter 3 Generation and Exploitation of
Reconfigurable Custom Functional Unit (RCFU)

Design for VLIW Processors

In this chapter, there are two subsections, including generation and exploitation, for
designing RCFU. First, we present an approach, an improvement from related work 1, of
generating RCFU. The main goal aims at creating a more suitable RCFU structure for
computation intensive applications. Afterward, a VLIW architecture is augmented with the
generated RCFU and we suggest that FUs of the base processor and the tightly-coupled
RCFU could be executed simultaneously. An algorithm that integrates operation mapping and
instruction scheduling algorithms.into an integrated phase, rather than in two separated phases

in the previous researches and-related work-2 presented.

3.1 Generation of RCFU

The RCFU generation process aims at creating an RCFU structure which has more

operations to be executed on it under read/ write port constraint.

3.1.1 ldea of Our Design

As mentioned previously, an RCFU is usually implemented as a grid-like structure of PEs.
Analyzing operation segments generated from Data Flow Graph (DFG) of basic blocks from
applications is a commonly used technique to settle the shape and functionalities of RCFU. In
the related work 1, each operation segment is record to determine the depth and width of the

RCFU shape, and the ratio of operation types are calculated to decide the functionalities of
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PEs. To balance the execution latency and ease the mapping of operations on RCFU,
functionalities of PEs are identical in each level in related work 1.

In our proposed design, each operation segment has to conform the read/write port
constraints initially. Then each operation segment is record to settle the depth and width of
RCFU. Finally, we determine the shape of RCFU by the recording results and user-defined
coverage rate. In order to achieve the goal of yielding more operations to be executed on
RCFU, the functionalities of PEs are hybrid in each level rather than identical in each level as

related work 1 was.

3.1.2 Algorithm Design

Figure 3-1 represents the flow chart of our-proposed algorithm for generating RCFU. In
Step 1, operation segments are generated. First; Step.1(a), operation segments are extracted
from basic blocks of applications according to the algorithm presented in [17]. All of the
operation segments are generated.to satisfy the.read/write port constraints of the base
processor. However, there may exist less ‘number of operations in an operation segment.
Therefore, in Step 1(b), data-independent operation segments with less number of read/write
ports are combined to maximize the number of operations in an operation segment to be
executed on the RCFU for making good use of resources. When there exist several
data-independent operation segments, which ones would be combined are determined by their
priorities. An operation segment which has more operations located on the critical path or
contains less number of read/write ports has higher priority. In the combination phase,
data-independent operation segments are sorted by their priorities, and an operation segment
with the highest priority is iteratively chosen for combination to form a new operation
segment under read/write port constraint. In Step 2, a utilization matrix is used to record the

depth and width of operation segments, the same as that mentioned in related work 1. Besides
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the utilization matrix, we use operation matrices to record the positions of specific operation
types in an operation segment. In Step 3, the shape of the RCFU is decided by the utilization
matrix and user-defined coverage rate. Moreover, the functionalities of PEs in a row are
decided by the ratio in the corresponding row of operation matrices. Figure 3-2 is the pseudo
code used to determine the functionalities of PEs. In this algorithm, we assume that
addition/subtraction and logic operations are supported by RCFU. The functionalities of PEs
in a level would be determined in each loop. The ratio of different operation types is
calculated in line 2 to line 9. The PEs are setting functionalities in line 10 to line 19. When
there are still existed PEs which are not assigned functionalities, their functionalities are
determined in line 20 to line 25.

DEG of basic blocks
from applications

v

Operation segment generation

a Initial generation
1
b Final combination
2 Operation segment shape &

operation type statistic

v

3 Shape of RCFU and
’—> functionalities of PEs

determination
Coverage rate *

RCFU structure

Figure 3-1: Flow chart of proposed RCFU generation.
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1 for i = 1 to (# of levels of RCFU) do

2 PE — the # of PEs of RCFU in rowi;

3 for j= 1 to PE do

4 Sum_ADDSUB ~ ADDSUB matrix (i, j);

5 Sum_LOGIC ~ LOGIC matrix (i, j);

6 end

7 Sum_total — Sum_ADDSUB + Sum_LOGIC;

8 Sum_ADDSUB — (Sum_ADDSUB / Sum_total) * PE;

9 Sum_ADDSUB ~ (Sum_LOGIC / Sum_total) * PE;

10 while Sum_ADDSUB >= 1 do

11 A PE is assigned an ADD/SUB operation;

12 Sum_ADDSUB--;

13 PE--;

14 end

15 while Sum_LOGIC >= 1 do

16 A PE is assigned an LOGIC operation;

17 Sum_LOGIC--;

18 PE--;

19 end

20 while PE > 0 do

21 operation-type ~ maximum between Sum_ADDSUB and Sum_LOGIC;
22 A PE is assigned the operation-type operation;
23 The Sum value corresponding chosen operation is set to O;
24 PE--;

25 end

26 end

Figure 3-2: Determination of functionalities of PEs

3.1.3 Example

Take a base processor containing 4 read/ 2 write ports and a tightly-coupled RCFU
supporting add/sub and logic operations for example. Figure 3-3 demonstrates an example for
operation segment generation phase. Figure 3-3(a) shows the initially extracted operation
segments (1, 2, 3, 4 and 5) conforming the read/write port constraint. The operation segment
with highest priority, operation segment 1, is selected, and then the next operation segment,
operation segment 2, is chosen. If they are combined, they will still obey the read/write
constraints. Figure 3-3(b) represents that operation segment 1 and 2 are combined into a new
operation segment 1’ . Operation segment 3 would not be combined with operation segment
1" because of constraint, and the like are considered in each data-independent operation
segments.

Figure 3-4 represents the detailed procedures for iteratively recording operation segments.

Each operation segment is recorded in the utilization matrix, as shown in Figure 3-4(a), and
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the operation types of operations in an operation segment are recorded accumulatively in the
corresponding operation matrices, as shown in Figure 3-4(b) and (c).

Figure 3-5(a) shows the utilization matrix results from the depth and width of operation
segment statistics, and its normalized form in which each entry was divided by the total sum
of the entries is represent in Figure 3-5(b). An entry of normalized form represents the
percentage of operations to be mapped on that PE. If user-defined coverage rate is equal to
95%, then corresponding PEs of the entries with gray color will be implemented. Figure 3-5(c)
and (d) are the results of operation matrices for add/sub and logic operations, respectively.
Functionalities of PEs in each level are decided by the ratio of the sum of elements in the
same level of operation matrices. When a PE has set some kind of functionality, the ratio will
be updated at the same time, shown as:in line 10 to.line 19 in Figure 3-2. If there are PEs with
no functionalities exist and the ratio among the operation matrices is identical, a PE will be set
as the frequently operation. Figure 3-5(e) demonstrates. the generated RCFU with hybrid

operation types in each level.

Figure 3-3: Example of proposed RCFU generation for operation segment

generation.
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operation matrix operation matrix

utilization matrix (add/sub) (logic)
xor | and | mov 1 1 1 1 1
Iteration O
operation sub | add 1 1 1 1
[segment 1]
add | mov 2 2 1 1 1 1
Iteration 1
operation | XOr | mov 2 “ 1 1 1
[segmentS] sub 1 1
sub | mov 3 3 1 2 1 1
Iteration 2
[operatior] and 3 2 1 1 2
segment 4 1 1
add | mov 4 4 1 3 1 1
Iteration 3
[operatior] or 4 2 1 1 3
segment 5 1 1
(a) (b) (c)

Figure 3-4: operation segments are recorded in(a) utilization matrix (b) operation matrix for

add/sub operations (c¢)-operation matrix for logic operation

22



normalized utilization matrix

utilization matrix

4 4 1 235% | 235% | 5.9%
4 2 235% | 11.8%
2 11.8%
(a) (b)
operation matrix operation matrix
(add/sub) (logic) Do og
3 0 1 1 Level 0 ([ ]: Addisubmove
Level 1
1 1 3 0 eve I:I : Logic/Move
Level 2 I
1 0 oo
() (d) (e)

Figure 3-5: In this example, there are (a) utilization matrix, (b) normalized

utilization matrix, (c)(d) operation matrices and (e) the structure of RCFU

3.2 Exploitation of RCFU

The RCFU exploitation process-here could be viewed as a course of mapping and

scheduling operations with minimum execution cycles.

3.2.1 Idea of Our Design

Operation mapping phase aims at discovering operation segments that could be executed
on RCFU, and collapse these operation segments into customized instructions. Instruction
scheduling phase is responsible to decide whether instructions, including base and customized
instructions, to be executed on base processor or on RCFU. We focus on the environment that
FUs of base processor and RCFU could be executed simultaneously. In order to make good

use of the augmented RCFU and reduce the complexity of operation mapping algorithm, we
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take operation mapping and instruction scheduling into an integrated phase. Mapping
maximum number of operations onto the RCFU is not essential necessary in our algorithm,
because that some operations which are not chosen to be executed onto the RCFU may be run
on the FUs of the base processor simultaneously. In other words, we take the advantage of
VLIW architecture that FUs and RCFU could execute simultaneously to improve the

execution speedup of applications.

3.2.2 Algorithm Design

Our framework combines the mapping and scheduling phases in a single loop as Figure
3-6 illustrated. DFGs of basic blocks from ‘ansapplication and the generated RCFU structure
are the inputs. RCFU has some architectural constraints including the number of inputs,
outputs and PEs. The initialization step initializes the variable and data structures, including
scheduling_cycle for indicating the current cycle, Unscheduled_List[ ] for storing the
unscheduled operations and Ready List[ ] for storing the ready operations. And then
operations are mapped and scheduled ‘on"RCFU or FUs until all operations are scheduled.
Finally, operations executed on RCFU in the same cycle are encoded into customized
instructions.

We will discuss the details of the proposed algorithm in the following paragraphs. First,
operations are mapped and scheduled onto RCFU, which provides a list scheduling algorithm
to address operations on specific PEs. Second, operations which could not be executed on the

RCFU in current cycle are try to be scheduled onto one of the FUSs.
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DFG (G) of an application RCFU structure

v

1 Initialization

RCFU
2| mapping and scheduling

3 FUs
mapping and scheduling

Update current_cycle

v

Unscheduled_List = {}

Yes.

No.

(4]

Instruction encoding

End

Figure 3-6: Flow chart of proposed'RCFU exploitation.

RCFU Mapping and Scheduling

The RCFU mapping and scheduling process here could be viewed as a course of
searching for maximum operations to be executed on the RCFU and FUs of the base
processor through Ready_List[ ], which consists of ready operations, as shown in Figure 3-7.
We identify ready operations to be mapped onto RCFU on a level-by-level basis. A row of
RCFU is defined as a level, and the value of current_level indicates the current level of RCFU,
as shown in Step 1.

The algorithm is derived from list scheduling algorithm [18]. The basic idea of list
scheduling is to make an ordered list of operations by assigning them priorities, and then
repeatedly execute the following two steps until a valid schedule is obtained: (1) Select the
operation with the highest priority from the list for scheduling; (2) Select a PE to

accommodate this operation. The priorities are determined statically before mapping a level of
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RCFU, as shown in Step 2. An operation with predecessors being assigned onto RCFU
currently has higher priority. When there are operations with the same number of
predecessors being assigned, a more critical operation will get higher priority. We calculate
the slacks of operations to determine their priority [19]. Slack of each operation represents its
criticality. For example, slack equal to 0 means that it is on the critical path. Then an
operation with highest priority will be deleted from Ready List and mapped onto RCFU, as
shown in Step 3. RCFU constraints, including the number of inputs, outputs and PEs with
specific functionalities, are considered. Detailed speaking, an operation could not violate the
constraints and a free PE which could support the operation must exist for successful mapping.
If the operation is successfully mapped onto RCFU, the operation will be erased from
Unscheduled_Lis, as shown in Step.4 ‘and Step 5. Ready operation with highest priority is
iteratively deleted from Ready .List and-mapped onto. RCFU until the PEs in current level are
all occupied or Ready_List is empty, as shown in Step 6. Then next level of RCFU is
considered until the value of current_level is larger than the number of rows of RCFU, as

shown in Step 9.
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11 Setting current_level =0

Update mapping and
» scheduling priorities of |
operations in Ready_List

Delete operation with
highest priority onto
current_level level of RCFU

\

4 :
Is successful mapping?
No

Yes

Delete operation i from
Unscheduled_List

w

e PEs in current_level leve
Ill or Ready_List empty?

7 current_level++

v

8 Update Ready List

rent_level > the #¢
levels of RCFU?

Figure 3-7: Flow chart of RCFU mapping and scheduling

FUs Mapping and Scheduling

After completing RCFU mapping and scheduling, ready operations could be mapped and
scheduled onto FUs of the base processor under read/write port constraint, as shown in Figure
3-8. The scheduling method is also derived from list scheduling algorithm. The priority of
each operation depends on its slack value. The smaller slack value an operation owns, the
higher priority an operation has. An operation with highest priority is deleted from Ready_List

and mapped onto FU until there are no available FUs or Ready_List is empty.
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Update mapping and scheduling
priorities in Ready_List

v

Delete operation with highest
priority from Ready_List

3 -
Is successful mapping?
[0]

Yes

Delete the mapped operation
from Unscheduled_List

[

N

~

Are FUs full or
Ready_List empty?

Yes
6‘ Update Ready_List ‘

end

Figure 3-8: Flow chart of FUs:mapping and scheduling

3.2.3 Example

We will clarify the RCFU" exploitation algorithm' through the example in Figure 3-9.
Assume the base processor augmented with RCFU contains 2 FUs in the pipeline and 4 read
and 2 write ports, as shown in Figure 3-9 (b). DFGs from basic blocks of an application, as
shown in Figure 3-9 (a), is going to be mapped and scheduled on FUs or RCFU. All of the
operations in DFGs are first stored in Unscheduled List = {0, 1, 2, 3, 4, 5, 6, 7} and
Ready List = {0, 1, 4} collects ready nodes which have no predecessors or whose
predecessors are all scheduled with priority order.

First, ready operations are mapped and scheduled onto RCFU on a level-by-level basis.
We consider each ready operation with highest priority and select a PE in the current level to
accommodate it. When current_level = 0, Operation 0 is successfully mapped on PE 0 and
operation 1 is mapped on PE 1, and Unscheduled_List becomes {2, 3, 4, 5, 6, 7}. Since there

Is no PEs available in current level, next level will be considered and current_level is set to 1.

28



Now Ready List is updated, Ready List = {2, 4}. The highest priority operation, operation 2,
is successfully mapped onto a PE, PE 3, Unscheduled List = {3, 4, 5, 6, 7}. The other one,
operation 4, does not supported by RCFU, so it could be successfully mapped on one of the
PEs. Currently, Ready_List is empty, next level will be considered and current_level is set to
2 and Ready_List = {3, 4}. Operation 3 is mapped on PE 4 and PE 3 is used to transform data
generated from PE 1, Unscheduled_List = {4, 5, 6, 7}. At this time, the PE in current level is
not available, so current_level is set to 3. Mapping and Scheduling for RCFU is complete due
to the value of current_level is greater than the number of rows of RCFU.

After completing RCFU mapping, ready operations are mapped on the FUs of base
processor. Ready List = {4} and the operation 4 is mapped on one of the FUs,
Unscheduled_List = {5, 6, 7}. Presently, Ready _'List is empty and all the scheduled operations
are scheduled at the current cycle. Table 3-1 demonstrates the mapping and scheduling results
of the example for our proposed-design. In the table, “op 0(0)” indicates an operation with

index 0 is mapped on RCFU or FU with'index 0.

register file

Level 0

FUo || Fu1 D : Add/Sub/Move

Level 1
Level 2 I:I : Logic/Move

(b)
Figure 3-9: Example of exploiting RCFU, the inputs are consist of (a) DFGs of basic

blocks from an application and (b) two FUs in a base processor augmented with RCFU.
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Table 3-1: Mapping and scheduling results of the example for proposed design

mapped on FUs of the
base processor

Mapped on tightly-coupled RCFU

Cycle 0

op 4(0)

op 0(0), op 1(1), op 2(2), op 3 (4)

Cycle 1

op 5(1), op 7(3), op 6(4)
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Chapter 4 Experiment

In this chapter, experiment methods are described and general recommendations would

be suggested base on some environment assumptions and experimental results are submitting.

4.1 Experimental Setup

We implement our proposed design in a C++ environment simulator. Some benchmarks
from Mibench [20] were compiled into intermediate representation by the LLVM [21] flow.
Mibench consists of six applications including: Automotive and Industrial Control, Network,
Security, Consumer Devices, Office Automation, and Telecommunications. The detailed
description for each application is listed as follows:
® C(CRC32
The algorithm generates the cyelic.redundancy checksum polynomial of 32-bit lengths. This
is usually used to validate the integrity of data being transmitted.
® dijkstra
The Dijkstra benchmark constructs a large graph in an adjacency matrix representation and
then calculates the shortest path between every pair of nodes using repeated applications of
Dijkstra’s algorithm. Dijkstra’s algorithm is a well known solution to the shortest path
problem and completes in O(n?) time.
® Dblowfish encrypt/decrypt
Blowfish is a symmetric block cipher with a variable length key. It was developed in 1993 by
Bruce Schneider. Since its key length can range from 32 to 448 bits, it is ideal for domestic
and exportable encryption. The input data sets are a large and small ASCII text file of an

article found online.
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® rijndael encrypt/decrypt

Rijndael was selected as the National Institute of Standards and Technologies Advanced
Encryption Standard (AES). It is a block cipher with the option of 128-, 192-, and 256-bit
keys and blocks. The input data sets are the same as the ones used by blowfish.

® Stringsearch

This benchmark searches for given words in phrases using a case insensitive comparison
algorithm.

® Raw Audio coder/decoder

Raw Audio is an Internet TV & Radio station playing Brisbane music and Australian music.
Raw Audio began operations in January 2006 and is now the main place to find Brisbane
bands, and watch Brisbane gigs.

To evaluate the proposed hardware and compiler algorithms, there are two phases to be
experimented, including RCFU generation and exploitation. In RCFU generation section,
base processors with 2N read, N write ports and N 'FUs, N is equal to 2, 3 and 4, and
user-defined coverage rate is set from 10% to 100%. These parameters have strong impact on
the shape of RCFU. The number of inputs/outputs in the RCFU also has an effect on the
register file since each of the inputs/outputs must be read from or written to it. In RCFU
exploitation section, the execution cycles of generated RCFU is set from 1 to k cycles, k is
equal to the number of rows of RCFU. The effect of performance is highly dependent on the

latency of RCFU.

4.2 Experimental Results

Tailoring RCFU design for each single application can get impressive performance
improvements. Nevertheless, there are giant design cost and long time to market. A general

RCFU for a domain or a set of applications can get not only performance improvement but a
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more time-efficient design. In our proposed architecture, the shape and functionalities of
RCFU are determined by analyzing recording matrices with different coverage rate in RCFU
generation phase. A VLIW base processor augmented with RCFU are experimented in our
simulations. We will demonstrate the details of experimental results in the following three
subsections. We presented experiment results for N = 2, 3, and 4, where N is the number of
FUs in the VLIW architecture. Moreover, the numbers of read ports and write ports of the
VLIW architecture are 2N and N, respectively.

We will demonstrate the experimental results in the following three subsections. First,
when the RCFU is generated by our proposed design, the representations of RCFU structure
and synthesis results are displayed. Second, after adding our generated RCFU, the
performance improvements for our proposed exploitation algorithm are shown. Last, we will

compare the performance of our proposed methods with that of the related works.

4.2.1 Our Generated RCFU Structures

Figure 4-1 demonstrates the structure of RCFU with N = 2 and varying coverage rate
which are automatically generated from domain specific applications, Mibench. Each of these
designs was synthesized with Synopsys design tools using a 130nm umc library. Table 4-1
presents the synthesis results for the RCFUs shown in Figure 4-1, including the number of
levels of the RCFU, the delay through the RCFU, and the area of the RCFU. The more levels
an RCFU has, the longer latency the RCFU executes. For the purpose of providing insight
into the cost of adding a RCFU to an actual base processor, note that the area of an ALU with
arithmetic and logic operation. The area cost of the RCFU is represented as the number of
area cost of ALUs. Figure 4-2 and 4-3 are another different cases, including N= 3, 4, and

Table 4-1 and 4-2 are the corresponding synthesis results.
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In the results of Figure 4-1 to 4-3, the larger coverage rate is, the more PEs a RCFU
contains. Obviously, there are longer delays and huger area costs while considering larger
coverage rate. Which RCFU structure is more suitable depends on the restraints of the base

processor.

Coverage rate = 10% Coverage rate = 20% Coverage rate = 30% Coverage rate = 40% Coverage rate = 50%

- - (A A [A][A][L]
A A
1

4

Coverage rate = 60% Coverage rate = 70% Coverage rate = 80% Coveragerate = 90% | Coverage rate = 100%

.
[AJlA]LL] (L[] L[] (L[]

Ll B S| s

A 4 A A A 4
I T I T | T

AddiSub/Move Logic/Move ShiftMove

Figure 4-1: RCFU shape with various coverage rates-under 4 read/ 2 write constraint (N

:2)

Table 4-1: Synthesis results for RCFU designs with varying user-defined coverage rate under

4 read/ 2 write constraint (N = 2)

10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100%

# of levels 1 1 2 2 2 2 3 3 3 4

Delay(ns) | 1.33 | 1.33 | 143 | 143 | 143 | 143 | 244 | 244 | 244 | 411

Area (# of
ALUs)

058 | 058 | 0.82 | 0.82 | 1.92 | 1.92 | 295 | 295 | 4.64 | 14.88
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Coverage rate = 90%

(A A (SIS

(L]
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Figure 4-2: RCFU shape with various coverage rates under 6 read/ 3 write constraint (N = 3)

Table 4-2: Synthesis results for RCFU-designs-withvarying user-defined coverage rate under

6 read/ 3 write constraint (N =3)

10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100%
# of levels 1 2 2 2 2 3 4 4 8
Delay(ns) | 1.33 | 143 | 143 | 143 | 143 | 143 | 277 | 287 | 2.87 | 10.38
Avrea (# of
ALUS) 058 | 082 | 0.82 | 1.40 | 140 | 234 | 358 | 452 | 6.18 | 25.37
S
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Figure 4-3: RCFU shape with various coverage rates under 8 read/ 4 write constraint (N = 4)

Table 4-3: Synthesis results for RCFU designs with varying user-defined coverage rate under

8 read/ 4 write constraint (N = 4)

10% | 20% | 30% | 40% | 50% . 60% | 70% | 80% | 90% | 100%
# of levels 1 2 2 2 3 3 4 4 8 8
Delay(ns) | 1.33 | 143 | 143 | 143 | 143 | 277 | 3.68 | 3.78 | 10.31 | 10.31
Avrea (# of
ALUS) 070 | 096 | 166 | 271 | 344 | 496 | 568 | 8.38 | 16.07 | 27.14
S

From the simulation results, we have found that the larger coverage rate is, the huger

area cost contains. And the more levels an RCFU has, the longer latency the RCFU executes.

According to the constraints of the base processor, a suitable RCFU structure is determined.

Take a 500MHz base processor with 6 read ports and 3 write ports for an example, the RCFU

with 60% coverage rate may be chosen as the generated RCFU.

36



4.2.2 Speedups of Our Proposed Exploitation
Algorithm

The speedups will be addressed after adding the RCFU into the base processor, as shown
in Figure 4-4, 4-5 and 4-6. They show the speedups that were achieved for execution cycles
by using a base processor augmented with a 32-bit RCFU while comparing with a base
processor without RCFU. In these graphs, the first bar indicates the speedup of the base
processor augmented with a single-cycle RCFU. The second bar and the like demonstrate the
speedup achieved by the base processor with a two-cycle RCFU and so on.

The results show that the RCFUs with higher coverage rate gain higher speedups. One
trend to note in these graphs is that a RCFU. with longer execution cycles may decrease the
performance improvement. Intuitively, operation segments with longer latencies have less
speedups. Furthermore, when the coverage rate is equal to 90% under 4 read/ 2 write situation,
and the execution latency of the generated RCFU is longer than 3 cycles, there is no benefit

while adding the accelerator.
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Figure 4-4: Speedups of RCFU design with varying user-defined coverage rate under 4

read/ 2 write constraint (N = 2)
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Figure 4-5: Speedups of RCFU design with varying user-defined coverage rate under 6 read/

3 write constraint (N = 3)
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Figure 4-6: Speedups of RCFU design with varying user-defined coverage rate under 8 read/

4 write constraint (N = 4)

By the statistics, we have found that in the N = 2 case, RCFU with longer execution
cycles may cause poor performances, e.g., RCFU with 100% coverage rate and 5 execution

cycles. To simply the problem, we take the generated RCFU with single-cycle into
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consideration. Afterwards, we have the comparisons between the processor with RCFU and
without RCFU, the performance improvement of the case with N = 2 is 35% on average. And
for N = 3, 4 cases, the performance improvement for single cycle RCFU are 36% and 47%

on average.

4.2.3 Performance Comparisons of Our Proposed

Design and Related Works

Figure 4-7 demonstrates the structures of RCFU generated from related work 1. A great
diversity of shapes is presented owing to the read/write port constraint that it did not consider.
Table 4-4 presents the synthesis results for-each of.the generated RCFUs of related work 1.
We could found that smaller coverage rates, €.9.,.10% ~ 50%, result in trivial RCFUs, and

larger coverage rate, e.g., 80%, makes giant RCFU.

Coverage rate = 10% Coverage rate = 20% Coverage rate = 30% Coverage rate = 40%
1
1 1 1
1]
Coverage rate = 50% Coverage rate = 60% Coverage rate = 70% Coverage rate = 80%

Add/Sub/Move Logic/Move Shift‘Move

Figure 4-7: RCFU shape with various coverage rates from related work 1
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Table 4-4: Synthesis results for RCFU designs with varying user-defined coverage rate from

related work 1

10% | 20% | 30% | 40% | 50% | 60% | 70% | 80% | 90% | 100%

# of levels 1 1 1 2 2 3 3 6 8 8

Delay(ns) | 1.33 | 1.33 | 1.33 | 143 | 143 | 244 | 244 | 489 | 6.23 6.23

Avrea (# of

ALUS) 0.70 | 0.70 | 0.70 | 096 | 0.96 | 1.64 | 234 | 9.48 | 170.99 | 196.08

Assume that the execution cycle of the generated RCFU is equal to 1 cycle. Speedup
results for different generation and exploitation algorithms are shown in Figure 4-8, 4-9 and
4-10 for N = 2, 3 and 4, respectively. For each set of different coverage rate supported, there
are three bars displayed: the first.one for our proposed-generation and exploitation algorithms,
the second one for generation-algorithm from related work 1 and our proposed exploitation
algorithm, and the last one for generation and exploitation algorithms from related works. It
provides a comparison of speedups for varying combination of algorithms.

While adopting our proposed‘exploitation algorithm, the RCFUs generated by our
proposed algorithm have higher speedups on average than related work 1. The reason is that
there are more constraints considered in our method, including the number of read and write
ports. On the other hand, while considering identical RCFUs generated form related work 1,
our proposed exploitation algorithm gets higher speedups than the exploitation algorithm
from related work 2. One of the reasons is that it first mapped all of the operations which
could be supported by RCFU onto the RCFU, then doing scheduling phase. Nevertheless, we

considered operations to be mapped on the RCFU or FUs simultaneously.
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Figure 4-8: Speedups of RCFU design with varying user-defined coverage rate for different

generation and exploitation algorithms under 4 read/ 2 write constraints (N = 2)
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Figure 4-9: Speedups of RCFU design with varying user-defined coverage rate for different

generation and exploitation algorithms under 6 read/ 3 write constraints (N = 3)
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Figure 4-10: Speedups of RCFU design with varying user-defined coverage rate for different

generation and exploitation algorithms under 8 read/ 4 write constraints (N = 4)

When we take RCFU generation from related .works 1 and RCFU exploitation from
related work 2, we have found-that the shapes of generated RCFUs have giant diversities, as
shown in Figure 4-7. And recall that, in the above simulations, we compare the performances
between the processor with RCFU and without RCFU, and the execution cycles of the RCFU
is assumed to be one cycle. And the detailed simulation results about the average performance
improvements of three cases are demonstrated in table 4-5. Case 1 takes RCFU generation
and RCFU exploitation from our proposed algorithms. Case 2 consists of RCFU generation
from related works 1 and RCFU exploitation from ours. Last, case 3 contains RCFU
generation and RCFU exploitation from related work 1 and 2. In each case, RCFUs with
different number of levels are assumed various execution cycles.

From the result of the simulations under different cases and various execution cycles, we
can discover that our proposed algorithms achieve higher performance improvements. The
principle reason is that we considered hardware constraints of base processor in RCFU
generation phase. And we deliberated operation mapping and instruction scheduling phases at

the same time.
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Table 4-5: Performance improvements while comparing the execution cycles of the base

processor with a RCFU to the base processor without a RCFU

N 2 3 4
# of cycles 1 2 3 1 2 3 1 2 3
Casel | 156% | 51% | 21% | 2.7% | 19% | 1.2% | 2.7% | 1.8% | 1.2%
Case2 | 21.9% | 8.0% | 54% | 19.4% | 15.2% | 9.7% | 21.2% | 19.3% | 14.2%
Case3 | 34.9% | 13% | 7.0% | 36.1% | 18.3% | 16.1% | 46.9% | 34.4% | 30.3%
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Chapter 5 Conclusion and Future Works

In this research, we presented a motivation for considering the environment that FUs of
base processor and added accelerator could be executed simultaneously.

A computation accelerator, RCFU, a grid-like of PEs, is added to a VLIW base processor
to implement customized instructions. It provides an effective way to improve the
performance of specific applications. We present an algorithm to generate RCFU.
Nevertheless, an integrated operation mapping and instruction scheduling algorithm is
presented to decrease the execution cycles of applications.

RCFU with various PEs in each row: has - more performance improvement, 32.3% on
average, than RCFU with identical PEs ineach row when adopting our proposed exploitation
algorithm. After generating RCFU, subgraphs from applications are identified and mapped
onto this generated RCFU. Experiments-show that our integrated algorithm performs on
average 20% better than the traditional separated algorithm.

In the previous researches, including ours, DFGs extracted from basic blocks of an
application are executed on the accelerator. Several techniques have presented in [13, 17, 22].
As mentioned previously, subgraphs are extracted from DFGs of basic blocks of an
application and a control instruction (e.g. branch, jump instruction) may cause the subgraph
generation to be stopped. Therefore, small size DFGs own to the short distance control
instructions. In fact, small subgraphs have not obvious performance improvement in
application execution. Thus, extending subgraphs to contain control instruction to be executed
on RCFU may get more speedups. This issue contains control instructions in DFGs and
presenting them as Control DFGs (CDFGs). On the other hand, the extended RCFU with

conditional execution may support more operations to be executed on RCFU at a time.
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