

 國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

細線化前之區塊深度值測試與其對系統設計之

影響

Pre-rasterization blocked-Z test and its impact on

system design

研 究 生：陳 浤 偉

指導教授：鍾 崇 斌 博士

中 華 民 國 九 十 八 年 九 月

細線化前之區塊深度值測試與其對系統設計之

影響

Pre-rasterization blocked-Z test and how it impacts

system design

研 究 生：陳 浤 偉 Student： Hong-Wei Chen

指導教授：鍾 崇 斌 博士 Advisor：Dr. Chung-Ping Chung

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

In

Computer Science

Sep. 2009

Hsinchu, Taiwan, Republic of China

中華民國 九十八 年 九 月

細線化前之區塊深度值測試與其對系統設計之

影響
學生：陳浤偉 指導教授：鍾崇斌 博士

國立交通大學資訊科學與工程研究所 碩士班

摘 要

 本論文提出一個區塊式深度值測試方法來有效的減少在細線化之前的資料

量。在繪圖管線中，不管是否存在其他深度值測試方法，區塊式深度值測試都可

以和既有的繪圖管線完美的結合，而且區塊式深度值測試的效果比起以物件為單

位的深度值測試好許多。在本論文中，會在細線化前將物件切分成許多適當大小

的區塊且透過區塊式深度值的測試來過濾掉大部分被擋住的區塊，以此來減少繪

圖管線後續的工作量和儲存空間。有主要兩個優點:一來是可以透過單次的深度

值測試過濾掉許多網格(一個區塊內的所有網格);二來是可以減少細線化不必要

的運算量。而為了實現本論文，需要額外的一塊區塊深度值儲存器和切分區塊及

區塊深度測試的電路。

 雖然本論文會加深整個繪圖管線的深度，但不會影響整體繪圖管線的總處理

量，甚至可能提高。其原因是對網格作運算是整體繪圖管線的瓶頸處，而本論文

可以有效得減輕這些瓶頸處。

ii

Pre-rasterization blocked-Z test and how it impacts

system design

Student：Hong-Wei Chen Advisor：Dr, Chung-Ping Chung

Institute of Computer Science and Engineering

National Chiao-Tung University

Abstract

We propose a blocked-Z test to effectively eliminate unnecessary data traffic

between triangle setup and rasterization. This method works seamlessly with the

existing rendering pipeline, with or without those existing fragment-based hierarchical

Z/early Z/Z tests. And it performs much better than primitive-based Z test, in terms of

data structuring and coverage. In this method, primitives are blocked into proper sizes

and blocked-Z tested to filter out the most of hidden blocks, easing the storage and

workloads of subsequent rendering tasks. Advantage of this method comes from

two features: the blocked test, in which only one test may be sufficient to filter out a

group (of the block size) of fragments; and the place of the test saving even

unnecessary rasterization. Block sizes are determined statically without hardware nor

runtime overhead, and an additional blocked-Z buffer, of the size of [Z buffer/(#

fragments in block)], plus blocking and Z-test circuitry, are required. This design

lengthens the rendering pipeline, but will not affect the throughput; in fact, it may

even increase throughput, since a common wisdom is that the fragment-based pipeline

stages are graphics rendering bottlenecks, and our proposal effectively relieves these

bottlenecks. Experimental results using Doom3 and Quake4 with various screen sizes

show that the rasterization and Z test workloads can be saved by 70%.

iii

誌謝

這兩年來的碩士研究生涯中，首先，我要感謝我的指導教授 鍾崇斌老師。

感謝他嚴謹與耐心的指導，使我在我的碩士研究中，獲得許多寶貴的建議與方

向，並且學習到如何以不同的角度去看待研究事物，並對各種可能性加以討論並

提出質疑，而得以完成此碩士論文及順利通過畢業口試。此外，感謝我的畢業口

試委員 單智君教授、謝萬雲教授、謝錫堃教授，由於他們的建議，使得此論文

研究更加完整。

同時，我也要感謝實驗室的學長姐、同學及學弟們在各方面，給我很大的幫

助。特別感謝惠親學姐辛苦地帶領與指導、喬偉豪學長及翁綜禧學長的建議與幫

忙，以及;感謝同樣在GPU計劃中的秀青、東霖及之傑彼此的討論、相互打氣與支

持。沒有你們的幫助，我也無法如此順利地完成此碩士論文。還有實驗室的學弟

CPR跟阿Sa，如果實驗室少了你們，我們每天的歡笑也會少了很多。

此外，感謝我的家人在背後默默的支持我，即使你們對於研究上沒辦法給予

我太多意見，但有你們在一旁關心我，也讓我能更堅定與堅毅地繼續我的研究之

路。最後，女友妤珍在背後的支持更是我前進的動力，沒有妤珍的體諒、包容，

相信這兩年的生活將是很不一樣的光景。

 陳浤偉 2009.9

iv

Contents

摘 要.. i

Abstract ..ii

誌謝 .. iii

List of Figures ... vi

List of Tables .. vii

Chapter 1 Introduction ... - 1 -

1.1 Motivation ... - 2 -

1.2 Objective ... - 2 -

1.3 Organization about this thesis .. - 2 -

Chapter 2 Background and related works ... - 3 -

2.1 Programmable GPU pipeline .. - 3 -

2.2 Per-fragment early-Z test ... - 6 -

2.3 Hierarchical Z test .. - 7 -

2.4 Related works .. - 9 -

2.4.1 Tile-based early-Z test ... - 9 -

2.4.2 Coarse Z filtering .. - 10 -

Chapter 3 Design ... - 14 -

3.1 Design overview .. - 14 -

3.2 Primitive blocking ... - 15 -

3.2.1 Block-based edge walk .. - 18 -

3.2.1.1 Intersection generator .. - 18 -

3.2.1.2 Edge-block generator.. - 20 -

3.2.1.3 Z strides and full cover bound blocks - 21 -

3.2.2 Blocked row-span iterator.. - 22 -

3.3 Blocked-Z test ... - 23 -

3.4 Block-based rasterization ... - 25 -

3.5 Data flow of our proposed method ... - 28 -

3.6 The rendering pipeline with blocked-Z test .. - 28 -

Chapter 4 Experiment and results .. - 30 -

4.1 Experiment goal and environment .. - 30 -

4.2 Experiment results ... - 31 -

4.2.1 Filtering ratio of blocked-Z test ... - 31 -

4.2.2 Extra overhead of blocked-Z test ... - 33 -

4.2.2.1 Extra workload of blocked-Z test - 33 -

4.2.2.2 Extra storage requirement and hardware - 34 -

4.2.3 Total workload reduction with blocked-Z test - 36 -

v

4.3 Performance compare with tile-based early-Z test [6] - 39 -

Chapter 5 Conclusion .. - 41 -

References ... - 42 -

vi

List of Figures

Figure 2-1-1 Programmable GPU pipeline .. - 4 -

Figure 2-1-2 Horizontal scan line on the primitive .. - 5 -

Figure 2-3-1 The rendering pipeline with Hierarchical Z test - 7 -

Figure 2-3-2 2x2 Hierarchical Z buffer Concept .. - 8 -

Figure 2-4-1-1 The flow chart of tile-based early-Z test .. - 10 -

Figure 2-4-2-1 The rendering pipeline with coarse Z filtering - 11 -

Figure 2-4-2-2 Two different method of scan conversion - 12 -

Figure 2-4-2-3 The example of tile mask. ... - 12 -

Figure 2-4-2-4 The pseudo code of coarse Z filtering ... - 13 -

Figure 3-1-1 The rendering pipeline with proposed method - 14 -

Figure 3-2-1 A sketch of primitive blocking. ... - 16 -

Figure 3-2-2 Flowchart of primitive blocking hardware .. - 17 -

Figure3-2-1-1-1 Example of primitive blocking... - 18 -

Figure 3-2-1-1-2 Generation of Y value representing a given blocked-row - 20 -

Figure 3-2-1-2-1 The example of edge-block generator .. - 21 -

Figure 3-2-1-3-1The sketch of calculating Z strides and full cover bound blocks ... - 22 -

Figure 3-3-1 The configuration of block-Z buffer .. - 24 -

Figure 3-3-2 The flow chart of blocked-Z test ... - 25 -

Figure 3-4-1 The sketch of block-based rasterization .. - 26 -

Figure 3-4-2 The edge-fragment buffer for a blocked-row - 27 -

Figure 3-4-2 The flow chart of block-based rasterization - 27 -

Figure 3-5-1 the data flow of our proposed method, blocked-Z test..................... - 28 -

Figure3-6-1 The rendering pipeline with blocked-Z test - 29 -

Figure 4-2-1-1 The filtering ratio of Doom3 with various block sizes - 32 -

Figure 4-2-1-2 Filtering ratio of Qauke4 with various block sizes - 32 -

Figure 4-2-2-1-1 Extra workload of blocked-Z test with various block sizes - 34 -

Figure 4-2-2-1-2 Extra workload of blocked-Z test with various block sizes - 34 -

Figure 4-2-3-1 The total reduced workload of blocked-Z test with various screen

resolutions. (a) 320x240 pixels (b) 640x480 pixels (c) 1280x1024 pixels (d) 1600x1200

pixels ... - 38 -

Figure 4-3-1 Filtering ratio of blocked-Z test versus tile-based early-Z test for Doom3 -

39 -

Figure 4-3-2 Filtering ratio of blocked-Z test versus tile-based early-Z test for Quake4 -

39 -

Figure 4-3-3 workload reduction of blocked-Z and tile-Z test - 40 -

vii

List of Tables

Table 3-2-1-1-1 Direction table for determining edge-block - 20 -

Table 4-2-2-2-1 Extra storage requirement .. - 35 -

Table 4-2-2-2-2 Extra hardware of primitive blocking and blocked-Z test - 35 -

Table 4-2-3-1 The time complexity of four execution units - 36 -

Chapter 1 Introduction

Nowadays, 3-D scenes have greatly number of objects and high depth

complexity due to emphasizing more and more visual realism. When

three-dimensional (3-D) computer graphics process such these scenes, the workloads

of each unit are extremely high, especially the pixel shader. It is because the pixel

shader needs to process texture mapping, shadow, or some complex computation to

get final color for every fragment. For example, the complex scenes may have several

hundred thousand objects in one frame and may generate several hundred million

fragments to be processed in pixel shader.

In order to reduce the workload of pixel shader, 3-D computer graphics do the

per-fragment early-Z test before pixel shader to filter out some invisible fragments. It

can alleviate the workload of pixel shader significantly. However, the per-fragment

early-Z test has large workload since it has to test the Z value for every fragment. So

there is another approach, generally called primitive-level early-Z test, to reduce the

workload of per-fragment early-Z test. Primitive-level early-Z test processes the Z test

based on primitive before rasterization, opposed to the fragment, it can filter out many

invisible fragments which compose of primitive in one time. It even can reduce the

workload of rasterization. But the effect of primitive-level early-Z test cannot

guarantee since the primitive can be filter out when the primitive is totally occluded

by another primitives.

In this thesis, we are going to design a low computation early-Z test before

rasterization to reduce the workloads of per-fragment early-Z test and rasterization.

And it can perform better than primitive-level early-Z test, in terms of data structuring

and coverage.

- 2 -

1.1 Motivation

As we can know, the per-fragment early-Z test has the highest filtering ratio. It

can filter out the most occluded fragments than other coarse early-Z test since

fragment is the smallest granularity in rendering pipeline. However, per-fragment

early-Z test has serious workloads. It needs to perform the depth test for all fragments

in one frame, and the fragment count in one frame is very high.

Primitive-level early-Z test can alleviate the workload of per-fragment early-Z

test since it would filter out some totally occluded primitives before rasterization.

However, primitive-level early-Z test only can filter out totally occluded primitives.

The partial occluded primitives would still perform the subsequent rendering stage. It

may cause some redundant operation.

1.2 Objective

We are going to propose a low computation early-Z test before rasterization for

achieving the high filtering ratio as possible. It can filter out the partial occluded

primitives before rasterization. Hence, the proposed method can reduce more

workloads of rasterization and per-fragment early-Z test.

1.3 Organization about this thesis

The origination of follow sections in this thesis is: Chapter 2 introduces

background of programmable GPU pipeline, two well-known early-Z test approaches

and related works. Chapter 3 introduces our proposed method, blocked-Z test. We will

introduce how to generate blocks, how to perform depth test based on block, and how

to perform rasterization for blocks. Experiment results are shown in chapter 4.

Conclusion is made in chapter 5.

- 3 -

Chapter 2 Background and related

works

 In section 2.1, we will give a brief concept of programmable rendering pipeline

in Graphic Processing Unit (GPU). In section 2.2, we will introduce the per-fragment

early-Z test briefly. In section 2.3, we will introduce the Hierarchical Z test which is

one of well-known primitive-level early-Z test. Finally, some related works will be

study.

2.1 Programmable GPU pipeline

 Graphic processing unit (GPU) is a kind of application specific processor. It

targets on graphics rendering, which display the two-dimensional image (2D) of

three-dimensional (3D) space. The modern GPU become more and more complex due

to the demand for 3D scene visual realism are increasing.

 Nowadays, programmable GPU pipeline is the popular solution for the

requirement of performance and flexibility in computer graphics. Different from the

fixed function GPU pipeline, programmable GPU pipeline has two new units: vertex

shader and pixel shader. These two new units can provide the flexibility to deal with

any kind of operation requirement, like the 3D games, virtual realities …etc.

 The programmable GPU pipeline is shown in Figure 2-1-1. There are several

stages in this pipeline, which are vertex shader, triangle setup, rasterization,

early-Z/HZ test, pixel shader, and depth processing.

- 4 -

Figure 2-1-1 Programmable GPU pipeline

 The first stage, vertex shader, majorly performs vertex’s coordinate translations.

It also can perform some complex mathematics operations on the vertex data by

vertex shader program. The translations are a serial of coordinate translations from

vertex’s local coordinate to world space coordinate and finally translate to screen

coordinate. After coordinate translations, vertex shader performs the Clipping to clip

some objects which are not in the view volume.

After vertex processing, it sends the translated vertex data to triangle setup stage.

Triangle setup is responsible for assembling the primitive according to their screen

coordinate. It is finding three vertices which are belong to the same primitive and

assemble these three vertices into primitive. Moreover, triangle setup calculates the

edge slope and some primitive information after assembling the primitive. Based on

the primitive information and edge slope, the later stage, rasterization, performs the

interpolation of primitive. On the other words, rasterization interpolates each

primitive into many fragments. The difference between fragment and pixel is that

fragment has the depth information. When the fragments output to the frame buffer, it

will call the pixel. The well-known approach is according to the each horizontal scan

- 5 -

line on the primitive to generate fragments, which is shown in Figure 2-1-2.

Figure 2-1-2 Horizontal scan line on the primitive

 After rasterization, early-Z test performs the depth test to filter out some

invisible fragments. The brief concept and operation will be introduced in later

section. The passing early-Z test fragments will be sent to pixel shader. The major

work of pixel shader is coloring the fragments. It may directly perform some

computation to get the color or perform the texture mapping to get the color. It also

can perform some complex computation to get the special effect like multi-texturing

by pixel shader program. After pixel shader, the fragment with final color will be sent

to depth processing stage.

 Since there are many fragments located on the same screen coordinate, it needs

to perform the depth test to find out which fragments will display on the screen and

filter out those invisible fragments. The invisible fragments mean that they are

occluded by the smallest depth value of fragment. The main operation is that depth

processing compares the Z value of the executing fragment with the corresponding Z

value on the Z buffer. If Z value of the executing fragment is smaller, then write this

fragment to the frame buffer and update the Z buffer. Otherwise, filter out this

fragment. Finally, having the smallest Z value’s fragments will on the frame buffer for

displaying on the screen.

- 6 -

2.2 Per-fragment early-Z test

 In the previous section mentions, the depth processing filters out all fragments

which are occluded by previously drawn fragments according to a comparison of their

depth value. The depth processing is performed after pixel shader. However, the pixel

shader usually has the most complex computation in the rendering pipeline. Executing

one fragment in pixel shader needs to spend much time. It might be inefficient to

perform all fragments in pixel shader since many fragments will be filtered out

afterwards.

 In consequence, modern GPUs will perform depth test before pixel shader. Since

the depth test is performed before pixel shader and based on the fragment, it is called

the per-fragment early-Z test. Instead of traditional GPUs, only the passing

per-fragment early-Z test fragments need to perform in pixel shader. The operation of

per-fragment early-Z test is comparing the Z value of executing fragment with the

corresponding Z value on the Z buffer or extra early-Z buffer. The extra early-Z buffer

needs to be updated by the Z value on Z buffer. Since the order of fragment is not

according to the depth order, the performance of this method depends on the

executing order of fragments. The best case is where the primitives are fully sorted

front-to-back, it almost can filter out all invisible fragments.

 Although per-fragment early-Z test can filter out many invisible fragments to

alleviate the workload of pixel shader, it has two problems. One is the workload of

per-fragment early-Z test is serious. Since the fragment count in one frame is very

enormous. For example, the fragment counts in high resolution screen even above

hundred millions. Per-fragment early-Z test would compare the depth value hundred

millions times. Another one is the data consistency problem. When the fragment

which has the newest Z value passes the depth test, this fragment has to perform the

- 7 -

pixel processing in pixel shader. After pixel processing, the newest Z value will

update to the Z buffer. During this period, per-fragment early-Z test will not get the

newest Z value even the fragment which has newest Z value passing the depth test.

Therefore, it may miss some invisible fragments owing to data consistency problem.

2.3 Hierarchical Z test

 In order to quickly filter out invisible primitives, some primitive-level early-Z

test for filter out entire or part of primitives in front of rasterization are usually

adopted. Hierarchical Z test is one of the famous approaches. Hierarchical Z test uses

two level depth tests before pixel shader. One of the depth tests is between

rasterization and pixel shader, the same place with per-fragment early-Z test. Another

one is extra added before the rasterization. Figure 2-3-1 shows the rendering pipeline

with hierarchical Z test. It can filter out the entire primitive in one depth comparison.

So, hierarchical Z test can improve the utilization of rasterization and per-fragment

early-Z test.

Figure 2-3-1 The rendering pipeline with Hierarchical Z test

- 8 -

Now we will introduce the detail operation of hierarchical Z test. Hierarchical Z

test majorly uses the Z pyramid to perform depth test. The Z pyramid is shown as in

Figure 2-3-2. The first level in the Z pyramid is the original Z buffer. And from first

level Z buffer, it combines four Z values at each level into one Z value to the next

upper level coarse Z buffer by choosing the farthest Z value. Each entry in the Z

pyramid, except the first level Z buffer, represents the farthest Z value for a square

area of the Z buffer. At the most upper level of the Z pyramid is a single Z value

which is the farthest Z value in the whole frame. When every time the original Z

buffer has the new Z value to be write in, it has to check if needing to update the

upper level coarse Z buffer. If the Z values in the square area of original Z buffer all

have the new Z value, it must to update the upper level coarse Z buffer.

Figure 2-3-2 2x2 Hierarchical Z buffer Concept

 In order to use the Z pyramid to perform the depth test for primitives, first it will

find the most suitable level Z buffer which the corresponding area in the frame cover

the bounding box of the primitive. If the nearest Z value of primitive is farther than

choosing the most suitable level Z buffer, it represents this primitive is hidden by

other primitives and can be filtered out. And the primitive which passing this stage

depth test will perform depth test again after rasterization.

 Although hierarchical Z test can filter out entire primitive to improve the

utilization of rasterization and per-fragment early-Z test, it has two problems. The first

- 9 -

is that updating the Z pyramid needs to take lots of times. And Z pyramid also has the

data consistency problem, as same with per-fragment early-Z test. Another problem is

the efficiency of hierarchical. We can know obviously that filtering out one primitive

is harder than one fragment. If the primitive has large area in the screen, it is hard to

be totally occluded by other primitives. Or the primitives intersect each other

physically, we cannot decide which primitive can be filtered out. These two kinds of

primitives would affect the performance of hierarchical Z test.

2.4 Related works

2.4.1 Tile-based early-Z test

 Tile-based early-Z test [6] performs the early-Z test before rasterization. The

main concept of tile-based early-Z test is that the primitives are divided into many

tiles and perform the early-Z test based on the tile. Differently with hierarchical Z test,

tile-based early-Z test can filter out entire or part of primitives. The problem which

the primitives are partial covered by another primitives or intersect physically will

improve.

 Figure 2-4-1-1 shows the flow chart of tile-based early-Z test. First, the scene is

segmented into plurality of tiles for performing a rendering with respect to a primitive.

Select tile stage is finding the tiles which the primitive are covered and perform the

depth test for every tiles. The tile Z value is the nearest Z value of primitive. If the tile

Z value is larger than corresponding Z value on tile-Z buffer, this tile can be filtered

out. Otherwise, this tile needs to update the tile Z buffer and performs the rendering.

The premise of updating the tile Z buffer is the tile which is completely included in

the primitive. If the tile which is partially included in the primitive updates the tile Z

- 10 -

buffer, another primitives which is not covered by this tile may be filter out. So only

the tile which is completely included in the primitive has the authority to check if

needing to update the tile Z buffer. The rule of updating the tile Z buffer is that the

farthest tile Z value, which is represented by the farthest Z value of primitive, is

smaller than corresponding Z value on tile Z buffer. Then using farthest Z value of

primitive updates the tile Z buffer.

Figure 2-4-1-1 The flow chart of tile-based early-Z test

 Since the tile-based early-Z test can filter out entire or part of invisible primitives

before rasterization, the workload reduction of rasterization and per-fragment early-Z

test will higher than hierarchical Z test. However, the tile Z value is representing the

nearest Z value of primitive. It’s not a precise Z value for tiles. If we can calculate the

more precise tile Z value, the performance will improve more.

2.4.2 Coarse Z filtering

 Coarse Z filtering (CZF) [5] is a tile-level early-Z test between rasterization and

- 11 -

per-fragment early-Z test. Figure 2-4-2-1 shows the rendering pipeline with coarse Z

filtering. As we can see, coarse Z filtering performs the tile-level early-Z test prior to

per-fragment early-Z test. It can reduce the workload of per-fragment early-Z test and

reduce the memory bandwidth of Z buffer.

Figure 2-4-2-1 The rendering pipeline with coarse Z filtering

 Coarse Z filtering segments the screen into tiles, and records each tile’s data (tile

mask and Z values) for tile-level depth test when performing the rasterization. In

order to record each tile’s data, the method of scan conversion in rasterization will

follow the tile-based conversion, not scan line anymore. Figure 2-4-2-2(b) shows the

tile-based scan conversion. The tile mask records which position in the tile having the

fragment data. Figure 2-4-2-3 shows the example of the tile mask. And extra filtering

buffer are needed to record the Z values in the tile.

 After generating one tile data, coarse Z filtering performs the tile-level depth test.

If the minimum Z value in the tile is larger than corresponding Z value in filtering

buffer, this tile is occluded by another primitives and can filter out this tile. If the tile

passes the coarse Z filtering, this tile has to check if needing to update the filtering

buffer. The method of updating the filtering buffer is the similar with tile-based

- 12 -

early-Z test [6]. Here will not introduce the method again. Figure 2-4-2-4 shows the

pseudo code of coarse Z filtering.

(a)scan line conversion

(b)Tile-based scan conversion

Figure 2-4-2-2 Two different method of scan conversion

1 11

111

1111

1

1 1 1 1

1

1 00

111

0011

0

1 1 1 0

0

（a）TileMask=0xFFFF （b）TileMask=0x8DEE

Figure 2-4-2-3 The example of tile mask. (a) represents the tile which is totally

included in primitive (b) represents the tile which is partially included in primitive

- 13 -

Figure 2-4-2-4 The pseudo code of coarse Z filtering

 The coarse Z filtering has the more precise tile Z value than tile-based early-Z

test [6], so it can filter out more invisible tiles. However, coarse Z filtering cannot

reduce the workload of rasterization since coarse Z filtering perform depth test after

the rasterization.

if (TileZmin >= FBZ)

{

Filter out the tile;

return;

}

if (TileMask == 0xffff)
&&(TileZmax < FBZ))

{

FBZ = TileZmax;

}

Do per-fragment early-Z test;

return;

*FBZ: Z value on filtering buffer

- 14 -

Chapter 3 Design

3.1 Design overview

Figure 3-1-1 The rendering pipeline with proposed method, blocked-Z test, included.

Note that rasterization is now replaced by block-based rasterization

Figure3-1-1 shows the rendering pipeline with the proposed method, blocked-Z

test. The indicated range is the extra components that our method added. The original

rasterization is now replaced by block-based rasterization. The main concept is

processing early-Z test by using block, which has its own depth value, to be a test unit

before rasterization. Blocked-Z test can filter entire or part of primitives. It can reduce

the workloads of rasterization and per-fragment early-Z test since fragments within a

block can be filtered in one operation. The data consistency problem can be solved by

using extra blocked-Z buffer to record the newest depth value in time.

The following section will introduce the function of every extra added

component. Primitive blocking stage calculates all the blocks which are covered by

- 15 -

the primitive and calculates the nearest and farthest Z values of each block. The

primitive buffer needs to store the current processing primitives for generating

fragments in block-based rasterization. Blocked-Z test compares the nearest Z value

of blocks with corresponding Z value in blocked-Z buffer to decide whether the

blocks can be filtered or not. The blocked-Z buffer always has the newest depth value,

not wait updating from Z buffer. Block-based rasterization interpolates fragments for

blocks which pass the blocked-Z test, and then passes fragments to per-fragment

early-Z test. The edge-fragment buffer stores the edge-fragments data in every

block-row. It can reduce the redundant computation in block-based rasterization.

3.2 Primitive blocking

First of all, the screen will be blocked, like the Figure 3-2-1. Every grid is one

block, and every block has its own block coordinate. The origin of the coordinates is

the left-bottom block. For example, the top vertex of primitive locates on the (4,7)

block coordinate. Since every block on the screen is a two-dimensional block, which

we note this kind of block as block
2
. Then primitive blocking calculates all blocks

which are covered by the primitive. The blocks which generate from primitive

blocking have Z values. They are three-dimensional blocks, which we note this kind

of blocks as block
3
. The shaded blocks in figure 3-2-1 all are block

3
s.

The attributes of one block
3
are the following:

1. Block
3
 coordinate: (X, Y, Znearest, Zfarthest)

The (X,Y) is the location of block coordinate on the screen. Znearest is the nearest

Z value in this block
3
. It can decide whether this block

3
 is completely occluded

by other block
3
 or not. Zfarthest is the farthest Z value in this block

3
. It can decide

whether this block
3
completely occludes other block

3
 or not.

- 16 -

2. Full or partial cover block
3

The full cover block
3
 means that all fragments in this block

3
 have primitive data.

On the other word, full cover block
3

is the block which is totally in the primitive.

Otherwise, this block
3
 is partial cover block

3
. In figure 3-2-1, the block A is a full

cover block
3
and block B is a partial cover block

3
.The purpose of discriminating

full or partial cover block
3

is for updating the blocked-Z buffer. The operation of

updating block-Z buffer will perform in later stage, blocked-Z test. Only the full

cover block
3
 have authority to check if needing to update the block-Z buffer. It is

because only full cover block
3
 can guarantee to completely occlude other block

3
.

3. Primitive ID

When we perform the rasterization, it needs the primitive information to

interpolate fragments. However, the block
3
 don’t have any primitive information,

it cannot perform the block-based rasterization to interpolate fragments. So it

needs to record the primitive ID which the block
3
 originally belong to. When this

block
3
 has to perform block-based rasterization, it can get the primitive

information to generate all fragments in this block
3
.

Figure 3-2-1 A sketch of primitive blocking. The yellow blocks are the blocks which

are generated from one primitive by primitive blocking

- 17 -

Figure 3-2-2 Flowchart of primitive blocking hardware

The primitive blocking contains two stages, block-based edge walk and blocked

row-span iterator, as shown in Figure3-2-2. The block-based edge walk calculates two

edge-blocks, Z strides, and full cover bound blocks for every blocked-row.

Edge-block is the block
3
 on the primitive edge. Full cover bound blocks can indicate

which blocks in one blocked-row are full cover block
3
. The block row-span iterator

generates all blocks between two edge-blocks in the same blocked-row. Since these

two stages have different execution latency, we need to add an edge-block buffer to

store edge-blocks, Z strides, and full cover bound blocks. Then, the two stages can

parallel execute. If without the edge-block buffer, block-based edge walk may be

stalled to wait blocked row-span iterator.

- 18 -

3.2.1 Block-based edge walk

 In this section, we will introduce how to calculate the edge-blocks, Z strides, and

full cover bound blocks.

3.2.1.1 Intersection generator

 The purpose of the first stage of block-based edge walk, intersection generator, is

to find the two edge-blocks for every blocked-row. Since the edge-block in one

primitive edge may not be only one, we have to find the most outside edge-block in

blocked-row. In figure 3-2-1-1-1, edge-block A and edge-block B both are edge-block.

In this case, we must choose the edge-block A since that cannot miss some blocks to

rendering.

 In order to find the most outside edge-block, we will find the correct

intersections to indicate which edge-block is the most outside edge-block. There are

two kind of intersections, ceiling or floor intersection. The intersection means the

intersection of primitive and ceiling or floor scan-line of one blocked-row. In figure

3-2-1-1-1, the four points on primitive edge are ceiling or floor intersections.

Figure3-2-1-1-1 Example of primitive blocking

- 19 -

 For finding the correct ceiling or floor intersection, first we use table lookup

to decide the direction of Y coordinate of intersection. The direction table is shown in

Table 3-2-1-1-1. In the beginning, we have to know the primitive is major left or

major right primitive. Major edge is the edge which has maximum y value vertex and

minimum y value vertex, like the edge ac in Figure3-2-1-1-1. We can see edge ac

is on the left of this primitive, so this primitive is a major left primitive. And the

information of major edge can be known in triangle setup stage, so we don’t have to

spend extra computation to get this information. When deciding what kind of

primitive, we use the slopes of major and minor edge to look up table to get the

direction of Y coordinate of intersection in blocked-row. The direction of Y coordinate

may be floor or ceiling in blocked-row. After looking up table, we can know the Y

coordinate value of intersection. Then using edge function and Y coordinate value of

intersection can get the X coordinate value of intersection. After these steps, we can

know the correct intersection is ceiling intersection or floor intersection.

 For example, we know the slope of edge ac is positive in figure 3-2-1-1-1.

After looking up table, the Y coordinate of representative point has take the floor

direction of blocked-row. And using Y coordinate vale and edge function can get the

red point in block A. This red point is the representative point of block A. If we take

ceiling minus direction on major edge in indicated block-scan line, it would find the

green point in block B. It will miss block A.

 We perform the same process on minor edge, then we can calculate two

representative point of edge-block in every blocked-row. Figure 3-2-1-1-2 shows the

configuration of how to take the Y coordinate of edge-block with floor or ceiling

minus direction. Actully it is very simple. If the direction is floor, we use zero to

replace last few bits. If direction is ceiling minus, we use one to replace last few bits.

And how many bits need to be replaced, it depends on block height.

- 20 -

Table 3-2-1-1-1 Direction table for determining edge-block

Figure 3-2-1-1-2 Generation of Y value representing a given blocked-row

3.2.1.2 Edge-block generator

After finding the representative points of edge-block, edge-block genereator can

translate repredentative points of edge-block to block coordinate of edge-block by

using equation (1). Equation (1) means that block coordinate of edge-block can

generate by ignoring last few bits of representative point because block width and

height are both 2 to the power of N.

R.P. of edge-block(X,Y) block coordinate of edge-block(








BW

X
, 









BH

Y
) -----Equation (1)

BW: block width, BH: block height

- 21 -

 There is an example in figure 3-2-1-2-1. The red point is the representative point

of edge-block A. It locates on screen coordinate (11,16). Since the block width and

height both are four pixels, we can use equation (1) to get the block coordinate of

edge-block A, (3, 4). In the hardware design, it is easy to implement. It just ignores

the last few bits of screen coordinate of representative points. And how many last few

bits we need to ignore, it depends on the block width and block height.

Figure 3-2-1-2-1 The example of edge-block generator

3.2.1.3 Z strides and full cover bound blocks

 In previous section, we calculate two edge-blocks in every blocked-row for

generating all block
3
s’ block coordinate between two edge-blocks in later stage,

blocked row-span iterator. Moreover, we also need to calculate the nearest and

farthest Z value of block
3
 and decide the full cover bit of block

3
. For this reason, we

have to calculate Z strides and full cover bound blocks in every blocked-row.

In every blocked-row, we have to calculate two Z strides. One is the Z stride of

bottom scan-line and another one is the Z stride of top scan-line, as shown in figure

3-2-1-3-1. First we find the edge-points (X_LT, X_RT, X_LB, and X_RB) on the top

and bottom scan-line by using edge function and y coordinate values of top and

- 22 -

bottom scan-line. Then we calculate the Z values of these four edge-points by using

three vertices’ Z values. Finally, using each two edge-points which are on the same

scan-line and their Z value calculate Z strides of top and bottom scan-line. For

example, the Z stride of top scan-line can be known by the following formula:

Z stride of top scan-line = (Z value of X_LT – Z value of X_RT) / (X_LT – X_RT)

Figure 3-2-1-3-1The sketch of calculating Z strides and full cover bound blocks

 The full cover bound blocks can indicate which block
3
s in one blocked-row are

full cover. How do we find the full cover bound blocks? First we need to find the

block
2
s, which the edge-points of top and bottom scan-line in blocked-row, are

belonged to. In figure 3-2-1-3-1, we will find the four colored blocks. Then we

compare these blocks and find the two inside blocks. The two inside blocks are the

full cover bound blocks. The block A and block B in figure 3-2-1-3-1 are the full

cover bound blocks. And the blocks only between the full cover bound blocks will be

full cover block
3
.

3.2.2 Blocked row-span iterator

 In blocked row-span iterator, it will calculate all block
3
s between two

edge-blocks in the same blocked-row. There are three major works. First, we need to

- 23 -

find the block coordinate which the block
3
 is belonged to. Since all block

3
s are in the

same blocked-row, the Y block coordinate of all block
3
s are the same. And since the

block
3
s are the consecutive block

3
s, we can calculate X block coordinate by just plus

one to X coordinate of previous block
3
.

Second, we need to calculate nearest and farthest Z values of block
3
. Since the

block
3
 is a 3-D plane, the nearest and farthest Z value must be on the vertices. We

directly calculate the Z values of block’s four vertices and compare these four Z

values to get the nearest and farthest Z values. The full and partial cover block
3
 both

use this method to calculate nearest and farthest Z values. Although partial cover

block
3
’s four vertices aren’t all in the primitive, we also use four vertices’ Z values to

decide the nearest and farthest Z value. It can simplify the computation. Since the

intersection points of primitive and block
3

may have many different conditions, it is

time wasting to calculate all Z values of intersection points of primitive and block
3
.

And using four vertices’ Z values to get the nearest and farthest Z value don’t have a

large error with the precise nearest and farthest Z values.

 Finally, we need to decide the block
3
 is full or partial cover block

3
. Since full

cover bound blocks already know in previous stage, we only determine the block
3
 if

between the full cover bound blocks. If the block
3
 is between full cover bound blocks,

this block
3
 is a full cover block

3
. Otherwise, this block

3
 is a partial cover block

3
.

 When one block
3
 are generated, this block

3
 will be transferred to blocked-Z test

stage for testing the Z value. It can decide this block
3

are occluded or not.

3.3 Blocked-Z test

Blocked-Z test can filter out block
3
s which are surely occluded by other block

3

since the occluded block
3
 wouldn’t display on the screen. It can reduce the workloads

- 24 -

of later stages, like rasterization, per-fragment early-Z test. Because blocked-Z test is

performed based on a block, as opposed to a fragment, it can filter out many

fragments within a block in one compare operation. To achieve this goal, it needs to

add a two-dimensional blocked-Z buffer to record the current nearest Z value of each

block coordinate, as shown in figure 3-3-1. The width of block-Z buffer is that the

width of screen coordinate divides block width. And height of block-Z buffer is that

the height of screen coordinate divides block height. The size of each entry on

block-Z buffer is 4 bytes, the common size of Z value.

Figure 3-3-1 The configuration of block-Z buffer

Figure 3-3-2 shows the flow chart of blocked-Z test. After primitive blocking

generate block
3
s, using the nearest Z value of block

3
 compares with corresponding

block-Z value on blocked-Z buffer. If the nearest Z value of block
3
 is larger than

corresponding block-Z value, it can filter out this block
3
. Otherwise, this block

3
 will

pass to the block-based rasterization. And when any block
3
 passes the blocked-Z test,

it has to check if needing to update the block-Z buffer. When the block
3
 is full cover

and the farthest Z value of block
3
 is smaller than corresponding block-Z value on

block-Z buffer, it must update the corresponding block-Z value with farthest Z value

of block
3
. Why only the full cover block

3
s have the authority to check if needing to

- 25 -

update block-Z buffer. It is because only the full cover block
3
s can guarantee to

occlude other block
3
s when other block

3
s are behind the full cover block

3
. If updating

the block-Z value with partial cover block
3
, another block

3
s may not be totally

occluded by this partial cover block. It may filter out some block
3
s which should

display on the screen. So, only full cover block has authority to check if needing to

update block-Z value.

Figure 3-3-2 The flow chart of blocked-Z test

3.4 Block-based rasterization

Block-based rasterization generates fragments to those passing blocked-Z test

block
3
s. It can parallel processing with updating the block-Z buffer when the blocks

pass blocked-Z test. Since the data of updating the block-Z buffer and block-based

rasteriztion are different. To update the block-Z buffer needs the farthest Z value and

full cover bit. And block-based rasterization needs the block coordinate of block
3
 and

primitive ID. Therefore, it can be parallel processing without any fault.

- 26 -

The operation of block-based rasterization is similar to general rasterization.

The only difference is block-based rasterization needs to find the block
3
 range and

generates all fragments in the block
3
. First, it needs to calculate two edge-fragments

on primitive’s edge in every scan-line of blocked-row. If block size is 8x8, like figure

3-4-1, we need to calculate these sixteen edge-fragments, the red squares, on

primitive’s edge. Then, using two edge-fragments on same scan-line calculates all

attribute strides of every scan line, like RGBA, Z, texture coordinate. Finally, using

attribute strides of every scan-line interpolates all fragments in block
3
 range.

Figure 3-4-1 The sketch of block-based rasterization

Here is a problem that consecutive blocked-Z tested block
3
s in same

blocked-row like figure 3-4-1, it has to calculate the same edge-fragments on

primitive edge and calculate the same attribute strides. So, we use an edge-fragment

buffer to record edge-fragments which are on major edge and attribute strides in same

blocked-row. Moreover, edge-fragment buffer must record primitive ID and row

number to indicate which blocked-row’s edge-fragment data is now on the

edge-fragment buffer. Figure 3-4-2 shows the configuration of edge-fragment buffer.

When passing blocked-Z test block
3
 comes, it will check this block

3
 whether is on the

same blocked-row with the edge-fragment data on the edge-fragment buffer. If the

primitive ID and row number on edge-fragment buffer is identical with current block
3
,

- 27 -

then we use edge-fragment data on edge-fragment buffer to generate fragments rather

than calculate same edge-fragments and attribute strides again. Figure 3-4-3 shows the

flow chart of block-based rasterization. The blocked-row number of Z-tested block
3
 is

the y coordinate value of Block
3
. The block-ranged edge walk is to calculate the

edge-fragments and Z strides in block height. Block range generator calculate which

range in one scan-line needs to interpolate fragments. And the fragment generator is to

interpolate all fragments in block range by using edge-fragments an attribute strides.

Figure 3-4-2 The edge-fragment buffer for a blocked-row

Figure 3-4-2 The flow chart of block-based rasterization

- 28 -

3.5 Data flow of our proposed method

 In this section, we will briefly introduce the data flow of our proposed method,

blocked-Z test. Figure 3-5-1 shows the data flow of our proposed method. The

triangle setup will assemble the vertices into primitive and also calculate the edge

slopes of three primitive edges. Then primitive blocking will generate all block
3
 data

and deliver block
3
 data to blocked-Z test stage. After blocked-Z test, the Znearest,

Zfarthest, and full cover flag wouldn’t use anymore. Only the block coordinate and

primitive ID of block
3
 will deliver to block-based rasterization. After block-based

rasterization, it will become fragment data and deliver these fragment data to

per-fragment early-Z test.

Figure 3-5-1 the data flow of our proposed method, blocked-Z test

3.6 The rendering pipeline with blocked-Z test

In this section, we explain how the pipeline operates smoothly. When the primitive

- 29 -

deliver from triangle setup to primitive blocking, the primitive blocking divides the

primitive into block
3
s and triangle setup can generate another primitive. The block

3
s

will deliver to blocked-Z test unit as soon as the primitive blocking generates one

block
3
. Primitive blocking doesn’t wait all block

3
s in one primitive be generated and

then deliver all block
3
s to blocked-Z test unit. If do so, the blocked-Z test unit will

often be idle by waiting the primitive blocking. In the same principle, the block-based

rasterization can get the block
3
 data immediately when the block

3
 passes blocked-Z

test. Since the block-based rasterization has longer processing time than blocked-Z

test, it would always stay in busy time, wouldn’t in idle time. So, the extra added

pipeline components of our proposed method can operate smoothly.

Moreover, the rendering pipeline with blocked-Z test becomes deeper than general

graphic pipeline since we add two new pipeline units, primitive blocking and

blocked-Z test. The computation time may become longer and may not render thirty

frames in one second. However, since it can parallel process different frames, only the

first frame will take longer time to process. Figure 3-6-1 shows the pipeline operation

of multiple frames. Although the pipeline stage becomes deeper, the total throughput

can seem identical than traditional graphic pipeline, even increase throughput since

our method can relieves some bottlenecks.

V.S. T.S. P.B. Block-Z T. B.B. R. E.Z T. P.S

V.S. T.S. P.B. Block-Z T. B.B. R. E.Z T. P.S

V.S. T.S. P.B. Block-Z T. B.B. R. E.Z T. P.S

V.S. T.S. P.B. Block-Z T. B.B. R. E.Z T. P.S

frame N

frame N+1

frame N+2

frame N+3

V.S. : vertex shader T.S. : triangle setup

P.B. : primitive blocking Block-Z T. : block-Z testing

B.B. R. : block-based rasterization E.Z. T. : early-Z test

P.S. : pixel shader

...

Figure3-6-1 The rendering pipeline with blocked-Z test

- 30 -

Chapter 4 Experiment and results

4.1 Experiment goal and environment

 We are going to know how many percentages of occluded fragments can be

filtered out in our blocked-Z test. And we also want to know how many extra

workloads bring with the blocked-Z test. Finally, we will consider with the reduced

workloads and extra workloads which produce from our blocked-Z test to evaluate

how many total workloads blocked-Z test can reduce. Moreover, we will compare our

blocked-Z test with the tile-based early-Z test [6] which the related work mentioned.

 We trace the Atila simulator and dump the primitive data from Atila to be the

input data for our experiment. The Atila simulator is proposed in [7]. The simulator

architecture is based on the design of ATI GPU’s architecture and support OpenGL

based benchmarks, like Doom3 [8], Quake4 [9], or the 3-D based computer games.

The primitive data which we dump from Atila simulator are the benchmarks of

Doom3 and Quake4 with 320*240, 640*480, 1280*1024, and 1600*1200 screen

resolutions.

 After we have the input data, we also implement the simulator of our blocked-Z

test method. Then we can get the filtering ratio of blocked-Z test from the simulator

which we implement. And we also can evaluate the workload reduction by the

information from our blocked-Z test simulator. The filtering ratio means the

percentage of fragments can be filtered out by any kind of early-Z test. The equation

of filtering ratio is: filtering ratio = filtered out occluded fragments / original

fragments generated by rasterization.

- 31 -

4.2 Experiment results

 In section 4.2.1, we will show the filtering ratio of blocked-Z test with various

block sizes, which are 4x4, 8x8, 16x16, 32x32, and 6x64 pixels. In section 4.2.2, we

will show the extra overhead of blocked-Z test, included extra hardware requirements

and extra workloads. And we will evaluate the workload reduction of rasterization and

per-fragment early-Z test with our blocked-Z test.

4.2.1 Filtering ratio of blocked-Z test

 The figure 4-2-1-1 and figure 4-2-1-2 show the filtering ratio of blocked-Z test

with various block sizes. The filtering ratio of blocked-Z test means how many

percentages of fragments can be filtered out in blocked-Z test. It can reflect the effect

of blocked-Z test. The last bar chart of each set is the filtering ratio of per-fragment

early-Z test. It can be a comparison with the blocked-Z test of various block sizes.

Obviously, we can see that the filtering ratio is higher with the block size is smaller.

And we can see that the filtering ratio with various block sizes in low screen

resolution has larger variation. With the block size increase in low screen resolution,

the filtering ratio decreases more than in high screen resolution. It is because the

difference of block size in the low resolution has larger variation of covered range in

the screen than in the high screen resolution. So, in the high screen resolution like

1600*1200, the filtering ratio with various block sizes has less variation. In figure

4-2-1-1, the average filtering ratio with various block sizes is about 80%. And In

figure 4-2-1-2, the average filtering ratio with various block size is about 60%.

- 32 -

Figure 4-2-1-1 The filtering ratio of Doom3 with various block sizes

Figure 4-2-1-2 Filtering ratio of Qauke4 with various block sizes

- 33 -

4.2.2 Extra overhead of blocked-Z test

 In this section, we will show the extra overhead which produce from blocked-Z

test. In section 4.2.2.1, we show the extra workload of blocked-Z test. The extra

workload is reflected by the block count. In section 4.2.2.2, we show the extra storage

requirement and hardware that blocked-Z test need to use. With different block sizes,

the storage requirement has a large variation.

4.2.2.1 Extra workload of blocked-Z test

Although blocked-Z test can reduce the workloads of the rasterization and

per-fragment early-Z test, it has the extra workloads of the primitive blocking and

blocked-Z test. In this section, we will discuss the extra workload of primitive

blocking and blocked-Z test with various block sizes. Figure 4-2-2-1-1 and figure

4-2-2-1-2 shows the extra workload of primitive blocking and blocked-Z test with

various block sizes in Doom3 and Quake4. We use the block count to evaluate the

extra workload. The reason is primitive blocking needs to generate all blocks and

blocked-Z test needs to perform depth test for every block. Obviously we can see,

when the block size is smaller, the extra workload will higher. In these two figures,

we can see that the workload will increase about three times when the block size

grows four times.

- 34 -

Figure 4-2-2-1-1 Extra workload of blocked-Z test with various block sizes

Figure 4-2-2-1-2 Extra workload of blocked-Z test with various block sizes

4.2.2.2 Extra storage requirement and hardware

In our method, we have three extra storage buffers, primitive buffer,

edge-fragment buffer, and block-Z buffer. With the block size and screen resolution

vary, the storage will have the different requirement. Table 4-2-2-2-1 shows the

storage requirement in different block size and screen resolution. The major extra

storage requirement is block-Z buffer since it needs to store all current nearest Z value

for every block coordinate. The block-Z buffer size can calculate by (screen width *

screen height / block size)*4 bytes. When the screen resolution is high and block size

- 35 -

is small, the block-Z buffer size may greater than 100 Kbytes. We can see that when

block size is 4x4 and screen resolution is 1600x1200, the block-Z buffer size is even

above 400 Kbytes. The edge-fragment buffer size depends on the block size only. It

needs to store the edge-fragment data two times of block height. The edge-fragment

buffer size can calculate by (block height * 2)*20 bytes. And the primitive buffer size

is a fixed size. It depends on how many primitives need to store in primitive buffer. In

this table, we set the ten primitives needed to store in primitive buffer and each entry

is 60 bytes. The maxumun of total extra storage is about 470 Kbytes. And the

minimum of total extra storage is only aobut 2 Kbytes.

Table 4-2-2-2-1 Extra storage requirement with various block sizes and resolutions

block size: 4x4 block size: 8x8 block size: 16x16 block size: 32x32 block size: 64x64

screen resolution
320*2

40
640*4

80
1280*
1024

1600*
1200

320*2
40

640*4
80

1280*
1024

1600*
1200

320*2
40

640*4
80

1280*
1024

1600*
1200

320*2
40

640*4
80

1280*1
024

1600*
1200

320*2
40

640*4
80

1280*
1024

1600*
1200

bock-Z buffer
size(KB)

18.75 75.00 320.00468.75 4.69 18.75 80.00 117.19 1.17 4.69 20.00 29.30 0.29 1.17 5.00 7.32 0.07 0.29 1.25 1.83

Edge-fragment
buffer size(KB)

0.16 0.16 0.16 0.16 0.31 0.31 0.31 0.31 0.63 0.63 0.63 0.63 1.25 1.25 1.25 1.25 2.50 2.50 2.50 2.50

primitive buffer
size(KB)

0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

total extra buffer
size(KB)

19.51 75.76 320.76469.51 5.60 19.66 80.91 118.10 2.40 5.91 21.23 30.52 2.14 3.02 6.85 9.17 3.17 3.39 4.35 4.93

In our method, the primitive blocking and blocked-Z test unit is the extra

hardware. Table 4-2-2-2-2 shows the extra hardware of primitive blocking and

blocked-Z test unit.

Table 4-2-2-2-2 Extra hardware of primitive blocking and blocked-Z test

- 36 -

4.2.3 Total workload reduction with blocked-Z test

 Although our method can reduce the workloads of rasterization and

per-fragment early-Z test, the primitive blocking and blocked-Z test would produce

the extra workloads. In this section, we evaluate the total workload reduction with

considering the reduced and extra workloads.

 The primitive blocking and rasterization are similar with their operation.

Primitive blocking can consider a large granularity rasterization. It just spends much

time to calculate the nearest and farthest Z value of block. And the blocked-Z test and

per-fragment early-Z test both perform the depth test. The execution time of these two

execution units can consider the same. Table 4-2-3-1 shows the time complexity of

these four execution units, primitive blocking, general rasterization, blocked-Z test,

and per-fragment early-Z test. The latency of each computation unit, like adder or

multiplier, shows in the most left column. The cycle time of each computation unit is

our hypothesis. And how many computation units that each execution unit is need to

perform also show in the table. Then we can calculate each execution unit’s latency by

computation unit’s latency multiply by the number of computation unit and it shows

on last row in table 4-2-3-1.

Table 4-2-3-1 The time complexity of four execution units

- 37 -

 When we know the latency of these execution units, we can derive the equation

(2) from these execution units’ latency. The equation (2) can calculate the total change

workload of our blocked-Z test method. It means that how many workload of

rasterization and per-fragment early-Z test can be reduced.

Using the equation (2), we can get the total reduced workload of blocked-Z test.

Figure 4-2-3-1 shows the total reduced workload with various screen resolutions.

(a)

(b)

- 38 -

(c)

(d)

Figure 4-2-3-1 The total reduced workload of blocked-Z test with various screen

resolutions. (a) 320x240 pixels (b) 640x480 pixels (c) 1280x1024 pixels (d)

1600x1200 pixels

We can see that 4x4 block size has the best performance only in 320x240

resolution. In the higher resolutions, 8x8 block size has the best performance.

Although 4x4 block size has the highest filtering ratio than other block sizes, it has the

more serious extra overhead than other block sizes, especially in the high screen

resolution. So, in high resolution, 4x4 block size cannot get the highest workload

reduction than other block size.

- 39 -

4.3 Performance compare with tile-based early-Z test [6]

Figure 4-3-1 and figure 4-3-2 show the filtering ratio of our proposed method

and tile-based early-Z test [6] in Doom3 and Quake4. Each bar chart is the average

value of filtering ratio in four screen resolution. In Doom3, our method can filter out

more about 3% fragments averagely. It’s about one million fragments. And in Quake4,

our method can filter out more about 13% fragments averagely. It’s about

twenty-seven million fragments. Since Quake4 is higher complex scenes than Doom3,

blocked-Z test has the better performance in Quake4.

Figure 4-3-1 Filtering ratio of blocked-Z test versus tile-based early-Z test for Doom3

Figure 4-3-2 Filtering ratio of blocked-Z test versus tile-based early-Z test for Quake4

- 40 -

Since blocked-Z test has more precise depth value than tile-Z test, the filtering

ratio of blocked-Z test is obviously better than tile-Z test. However, the computation

of blocked-Z test is more complex than tile-Z test. We have to consider the extra

overhead into evaluation. So we compare the total reduced workload with these two

methods to see which method can get the better performance.

The total changed workload equation of blocked-Z test is already shown in

section 4-2-3. The Equation (3) shows the total changed workload of tile-Z test. We

can see that the latency of primitive tiling is shorter than primitive blocking in

blocked-Z test method. It is because the computation of depth value in tile-Z test is

simpler than blocked-Z test. Using equation (3), we can get the total reduced

workload of tile-Z test. Figure 4-3-3 shows the total workload reduction of these two

methods. Blocked-Z test averagely can reduce more about 5% total workload than

tile-Z test.

Figure 4-3-3 workload reduction of blocked-Z and tile-Z test

- 41 -

Chapter 5 Conclusion

As more complex models become commonplace in today’s 3D computer

graphics. How to reduce the unnecessary operations is the critical issue. In this paper,

we proposed a low computational blocked-Z test to reduce workload of rasterization

and per-fragment early-Z test. Blocked-Z test process the depth test by larger range,

block, before rasterization and can achieve about 70% workload reduction. Moreover,

when per-fragment early-Z test has less data to processing, it also can alleviate Z

buffer access loading. Blocked-Z test can pay a little extra overhead to achieve a large

amount of workload reduction. It can be a useful approach to reduce the workload in

the 3D rendering pipeline.

- 42 -

References

[1] N. Greene, M. Kass, and G. Miller, “Hierarchical Z-Buffer visibility,” in Proc.

Of ACM SIGGRAPH 1993, 1993, PP.231 – 238.

[2] S. Morein, “ATI radeon HyperZ technology,” in Workshop on Graphics

Hardware, Hot3D Proceedings, ACM SIGGRAPH/Eurographics, Aug. 2000.

[3] T. Aila, V. Miettinen, and P. Nordlund, “Delay streams for graphics hardware,”

ACM Trans. Graphics, Vol. 22, No. 3, pp.792-800, July 2003.

[4] J.-S. Yoon, C.-H. Yu, D. Kim, and L.-S. Kim, “Triangle-Level Depth Filter

method for Bandwidth Reduction in 3D Graphics Hardware,” in Proc. IEEE

International Symposium on Circuits and Systems(ISCAS’07), May 2007, pp.

765-768.

[5] Ke Yang, Ke Gao, J. Shi, X. Jiang, and H. Xiong, “CoarseZ Buffer Bandwidth

Model in 3D Rendering Pipeline,” in Proc. IEEE International

Multi-Symposiums on Computer and Computational Sciences(IMSCC’06),

Volume 01, pp. 737-742.

[6] K.J. Min, J.M. Kim, H.S. Kim, J.W. Kim, and S.J. Min, “METHOD AND

SYSTEM FOR EARLY Z TEST IN TILE-BASED THREE-DIMENSIONAL

RENDERING,” U.S Patent 2008/0068375 A1, Mar. 20, 2008

[7] Victor Moya del Barrio, Carlos González, Jordi Roca, Agustín Fernández,

“ATTILA: a cycle-level execution-driven simulator for modern GPU

architectures”, 2006 IEEE International Symposium on Performance Analysis of

Systems and Software.

[8] Benchmark, Doom3, http://www.doom3.com/

[9] Benchmark, Quake4, http://www.quake4game.com/

[10] Víctor Moya, Carlos González, Jordi Roca, Agustín Fernández and Roger Espasa.

ATTILA: A Cycle-Level Execution-Driven Simulator for Modern GPU

Architectures. IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS-2006), March 2006

[11] Alan Watt. 3D Computer Graphics. 3rd edition. Pearson Addison-Wesley

publishing. 2000

http://www.doom3.com/

