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摘  要 

    本論文提出一個區塊式深度值測試方法來有效的減少在細線化之前的資料

量。在繪圖管線中，不管是否存在其他深度值測試方法，區塊式深度值測試都可

以和既有的繪圖管線完美的結合，而且區塊式深度值測試的效果比起以物件為單

位的深度值測試好許多。在本論文中，會在細線化前將物件切分成許多適當大小

的區塊且透過區塊式深度值的測試來過濾掉大部分被擋住的區塊，以此來減少繪

圖管線後續的工作量和儲存空間。有主要兩個優點:一來是可以透過單次的深度

值測試過濾掉許多網格(一個區塊內的所有網格);二來是可以減少細線化不必要

的運算量。而為了實現本論文，需要額外的一塊區塊深度值儲存器和切分區塊及

區塊深度測試的電路。 

    雖然本論文會加深整個繪圖管線的深度，但不會影響整體繪圖管線的總處理

量，甚至可能提高。其原因是對網格作運算是整體繪圖管線的瓶頸處，而本論文

可以有效得減輕這些瓶頸處。 
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Abstract 

We propose a blocked-Z test to effectively eliminate unnecessary data traffic 

between triangle setup and rasterization. This method works seamlessly with the 

existing rendering pipeline, with or without those existing fragment-based hierarchical 

Z/early Z/Z tests. And it performs much better than primitive-based Z test, in terms of 

data structuring and coverage. In this method, primitives are blocked into proper sizes 

and blocked-Z tested to filter out the most of hidden blocks, easing the storage and 

workloads of subsequent rendering tasks.  Advantage of this method comes from 

two features: the blocked test, in which only one test may be sufficient to filter out a 

group (of the block size) of fragments; and the place of the test saving even 

unnecessary rasterization. Block sizes are determined statically without hardware nor 

runtime overhead, and an additional blocked-Z buffer, of the size of [Z buffer/(# 

fragments in block)], plus blocking and Z-test circuitry, are required. This design 

lengthens the rendering pipeline, but will not affect the throughput; in fact, it may 

even increase throughput, since a common wisdom is that the fragment-based pipeline 

stages are graphics rendering bottlenecks, and our proposal effectively relieves these 

bottlenecks. Experimental results using Doom3 and Quake4 with various screen sizes 

show that the rasterization and Z test workloads can be saved by 70%. 
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Chapter 1 Introduction 

Nowadays, 3-D scenes have greatly number of objects and high depth 

complexity due to emphasizing more and more visual realism. When 

three-dimensional (3-D) computer graphics process such these scenes, the workloads 

of each unit are extremely high, especially the pixel shader. It is because the pixel 

shader needs to process texture mapping, shadow, or some complex computation to 

get final color for every fragment. For example, the complex scenes may have several 

hundred thousand objects in one frame and may generate several hundred million 

fragments to be processed in pixel shader.  

In order to reduce the workload of pixel shader, 3-D computer graphics do the 

per-fragment early-Z test before pixel shader to filter out some invisible fragments. It 

can alleviate the workload of pixel shader significantly. However, the per-fragment 

early-Z test has large workload since it has to test the Z value for every fragment. So 

there is another approach, generally called primitive-level early-Z test, to reduce the 

workload of per-fragment early-Z test. Primitive-level early-Z test processes the Z test 

based on primitive before rasterization, opposed to the fragment, it can filter out many 

invisible fragments which compose of primitive in one time. It even can reduce the 

workload of rasterization. But the effect of primitive-level early-Z test cannot 

guarantee since the primitive can be filter out when the primitive is totally occluded 

by another primitives. 

In this thesis, we are going to design a low computation early-Z test before 

rasterization to reduce the workloads of per-fragment early-Z test and rasterization. 

And it can perform better than primitive-level early-Z test, in terms of data structuring 

and coverage. 
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1.1 Motivation 

As we can know, the per-fragment early-Z test has the highest filtering ratio. It 

can filter out the most occluded fragments than other coarse early-Z test since 

fragment is the smallest granularity in rendering pipeline. However, per-fragment 

early-Z test has serious workloads. It needs to perform the depth test for all fragments 

in one frame, and the fragment count in one frame is very high.  

Primitive-level early-Z test can alleviate the workload of per-fragment early-Z 

test since it would filter out some totally occluded primitives before rasterization. 

However, primitive-level early-Z test only can filter out totally occluded primitives. 

The partial occluded primitives would still perform the subsequent rendering stage. It 

may cause some redundant operation. 

1.2 Objective 

We are going to propose a low computation early-Z test before rasterization for 

achieving the high filtering ratio as possible. It can filter out the partial occluded 

primitives before rasterization. Hence, the proposed method can reduce more 

workloads of rasterization and per-fragment early-Z test. 

1.3 Organization about this thesis 

The origination of follow sections in this thesis is: Chapter 2 introduces 

background of programmable GPU pipeline, two well-known early-Z test approaches 

and related works. Chapter 3 introduces our proposed method, blocked-Z test. We will 

introduce how to generate blocks, how to perform depth test based on block, and how 

to perform rasterization for blocks. Experiment results are shown in chapter 4. 

Conclusion is made in chapter 5. 
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Chapter 2 Background and related 

works 

     In section 2.1, we will give a brief concept of programmable rendering pipeline 

in Graphic Processing Unit (GPU). In section 2.2, we will introduce the per-fragment 

early-Z test briefly. In section 2.3, we will introduce the Hierarchical Z test which is 

one of well-known primitive-level early-Z test. Finally, some related works will be 

study. 

2.1 Programmable GPU pipeline 

 Graphic processing unit (GPU) is a kind of application specific processor. It 

targets on graphics rendering, which display the two-dimensional image (2D) of 

three-dimensional (3D) space. The modern GPU become more and more complex due 

to the demand for 3D scene visual realism are increasing.  

 Nowadays, programmable GPU pipeline is the popular solution for the 

requirement of performance and flexibility in computer graphics. Different from the 

fixed function GPU pipeline, programmable GPU pipeline has two new units: vertex 

shader and pixel shader. These two new units can provide the flexibility to deal with 

any kind of operation requirement, like the 3D games, virtual realities …etc.  

 The programmable GPU pipeline is shown in Figure 2-1-1. There are several 

stages in this pipeline, which are vertex shader, triangle setup, rasterization, 

early-Z/HZ test, pixel shader, and depth processing. 
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Figure 2-1-1 Programmable GPU pipeline 

 

 The first stage, vertex shader, majorly performs vertex’s coordinate translations. 

It also can perform some complex mathematics operations on the vertex data by 

vertex shader program. The translations are a serial of coordinate translations from 

vertex’s local coordinate to world space coordinate and finally translate to screen 

coordinate. After coordinate translations, vertex shader performs the Clipping to clip 

some objects which are not in the view volume.  

After vertex processing, it sends the translated vertex data to triangle setup stage. 

Triangle setup is responsible for assembling the primitive according to their screen 

coordinate. It is finding three vertices which are belong to the same primitive and 

assemble these three vertices into primitive. Moreover, triangle setup calculates the 

edge slope and some primitive information after assembling the primitive. Based on 

the primitive information and edge slope, the later stage, rasterization, performs the 

interpolation of primitive. On the other words, rasterization interpolates each 

primitive into many fragments. The difference between fragment and pixel is that 

fragment has the depth information. When the fragments output to the frame buffer, it 

will call the pixel. The well-known approach is according to the each horizontal scan 
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line on the primitive to generate fragments, which is shown in Figure 2-1-2.  

 

Figure 2-1-2 Horizontal scan line on the primitive 

 

 After rasterization, early-Z test performs the depth test to filter out some 

invisible fragments. The brief concept and operation will be introduced in later 

section. The passing early-Z test fragments will be sent to pixel shader. The major 

work of pixel shader is coloring the fragments. It may directly perform some 

computation to get the color or perform the texture mapping to get the color. It also 

can perform some complex computation to get the special effect like multi-texturing 

by pixel shader program. After pixel shader, the fragment with final color will be sent 

to depth processing stage.  

 Since there are many fragments located on the same screen coordinate, it needs 

to perform the depth test to find out which fragments will display on the screen and 

filter out those invisible fragments. The invisible fragments mean that they are 

occluded by the smallest depth value of fragment. The main operation is that depth 

processing compares the Z value of the executing fragment with the corresponding Z 

value on the Z buffer. If Z value of the executing fragment is smaller, then write this 

fragment to the frame buffer and update the Z buffer. Otherwise, filter out this 

fragment. Finally, having the smallest Z value’s fragments will on the frame buffer for 

displaying on the screen. 
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2.2 Per-fragment early-Z test 

 In the previous section mentions, the depth processing filters out all fragments 

which are occluded by previously drawn fragments according to a comparison of their 

depth value. The depth processing is performed after pixel shader. However, the pixel 

shader usually has the most complex computation in the rendering pipeline. Executing 

one fragment in pixel shader needs to spend much time. It might be inefficient to 

perform all fragments in pixel shader since many fragments will be filtered out 

afterwards.  

 In consequence, modern GPUs will perform depth test before pixel shader. Since 

the depth test is performed before pixel shader and based on the fragment, it is called 

the per-fragment early-Z test. Instead of traditional GPUs, only the passing 

per-fragment early-Z test fragments need to perform in pixel shader. The operation of 

per-fragment early-Z test is comparing the Z value of executing fragment with the 

corresponding Z value on the Z buffer or extra early-Z buffer. The extra early-Z buffer 

needs to be updated by the Z value on Z buffer. Since the order of fragment is not 

according to the depth order, the performance of this method depends on the 

executing order of fragments. The best case is where the primitives are fully sorted 

front-to-back, it almost can filter out all invisible fragments.  

 Although per-fragment early-Z test can filter out many invisible fragments to 

alleviate the workload of pixel shader, it has two problems. One is the workload of 

per-fragment early-Z test is serious. Since the fragment count in one frame is very 

enormous. For example, the fragment counts in high resolution screen even above 

hundred millions. Per-fragment early-Z test would compare the depth value hundred 

millions times. Another one is the data consistency problem. When the fragment 

which has the newest Z value passes the depth test, this fragment has to perform the 
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pixel processing in pixel shader. After pixel processing, the newest Z value will 

update to the Z buffer. During this period, per-fragment early-Z test will not get the 

newest Z value even the fragment which has newest Z value passing the depth test. 

Therefore, it may miss some invisible fragments owing to data consistency problem.  

 

2.3 Hierarchical Z test 

 In order to quickly filter out invisible primitives, some primitive-level early-Z 

test for filter out entire or part of primitives in front of rasterization are usually 

adopted. Hierarchical Z test is one of the famous approaches. Hierarchical Z test uses 

two level depth tests before pixel shader. One of the depth tests is between 

rasterization and pixel shader, the same place with per-fragment early-Z test. Another 

one is extra added before the rasterization. Figure 2-3-1 shows the rendering pipeline 

with hierarchical Z test. It can filter out the entire primitive in one depth comparison. 

So, hierarchical Z test can improve the utilization of rasterization and per-fragment 

early-Z test. 

 

 

Figure 2-3-1 The rendering pipeline with Hierarchical Z test 
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Now we will introduce the detail operation of hierarchical Z test. Hierarchical Z 

test majorly uses the Z pyramid to perform depth test. The Z pyramid is shown as in 

Figure 2-3-2. The first level in the Z pyramid is the original Z buffer. And from first 

level Z buffer, it combines four Z values at each level into one Z value to the next 

upper level coarse Z buffer by choosing the farthest Z value. Each entry in the Z 

pyramid, except the first level Z buffer, represents the farthest Z value for a square 

area of the Z buffer. At the most upper level of the Z pyramid is a single Z value 

which is the farthest Z value in the whole frame. When every time the original Z 

buffer has the new Z value to be write in, it has to check if needing to update the 

upper level coarse Z buffer. If the Z values in the square area of original Z buffer all 

have the new Z value, it must to update the upper level coarse Z buffer.  

 

 

Figure 2-3-2 2x2 Hierarchical Z buffer Concept  

 

 In order to use the Z pyramid to perform the depth test for primitives, first it will 

find the most suitable level Z buffer which the corresponding area in the frame cover 

the bounding box of the primitive. If the nearest Z value of primitive is farther than 

choosing the most suitable level Z buffer, it represents this primitive is hidden by 

other primitives and can be filtered out. And the primitive which passing this stage 

depth test will perform depth test again after rasterization.  

 Although hierarchical Z test can filter out entire primitive to improve the 

utilization of rasterization and per-fragment early-Z test, it has two problems. The first 
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is that updating the Z pyramid needs to take lots of times. And Z pyramid also has the 

data consistency problem, as same with per-fragment early-Z test. Another problem is 

the efficiency of hierarchical. We can know obviously that filtering out one primitive 

is harder than one fragment. If the primitive has large area in the screen, it is hard to 

be totally occluded by other primitives. Or the primitives intersect each other 

physically, we cannot decide which primitive can be filtered out. These two kinds of 

primitives would affect the performance of hierarchical Z test.  

 

2.4 Related works 

2.4.1 Tile-based early-Z test 

 Tile-based early-Z test [6] performs the early-Z test before rasterization. The 

main concept of tile-based early-Z test is that the primitives are divided into many 

tiles and perform the early-Z test based on the tile. Differently with hierarchical Z test, 

tile-based early-Z test can filter out entire or part of primitives. The problem which 

the primitives are partial covered by another primitives or intersect physically will 

improve.  

 Figure 2-4-1-1 shows the flow chart of tile-based early-Z test. First, the scene is 

segmented into plurality of tiles for performing a rendering with respect to a primitive. 

Select tile stage is finding the tiles which the primitive are covered and perform the 

depth test for every tiles. The tile Z value is the nearest Z value of primitive. If the tile 

Z value is larger than corresponding Z value on tile-Z buffer, this tile can be filtered 

out. Otherwise, this tile needs to update the tile Z buffer and performs the rendering. 

The premise of updating the tile Z buffer is the tile which is completely included in 

the primitive. If the tile which is partially included in the primitive updates the tile Z 
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buffer, another primitives which is not covered by this tile may be filter out. So only 

the tile which is completely included in the primitive has the authority to check if 

needing to update the tile Z buffer. The rule of updating the tile Z buffer is that the 

farthest tile Z value, which is represented by the farthest Z value of primitive, is 

smaller than corresponding Z value on tile Z buffer. Then using farthest Z value of 

primitive updates the tile Z buffer. 

 

 

Figure 2-4-1-1 The flow chart of tile-based early-Z test 

 

 Since the tile-based early-Z test can filter out entire or part of invisible primitives 

before rasterization, the workload reduction of rasterization and per-fragment early-Z 

test will higher than hierarchical Z test. However, the tile Z value is representing the 

nearest Z value of primitive. It’s not a precise Z value for tiles. If we can calculate the 

more precise tile Z value, the performance will improve more.  

 

2.4.2 Coarse Z filtering 

 Coarse Z filtering (CZF) [5] is a tile-level early-Z test between rasterization and 
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per-fragment early-Z test. Figure 2-4-2-1 shows the rendering pipeline with coarse Z 

filtering. As we can see, coarse Z filtering performs the tile-level early-Z test prior to 

per-fragment early-Z test. It can reduce the workload of per-fragment early-Z test and 

reduce the memory bandwidth of Z buffer.  

 

 

Figure 2-4-2-1 The rendering pipeline with coarse Z filtering 

 

 Coarse Z filtering segments the screen into tiles, and records each tile’s data (tile 

mask and Z values) for tile-level depth test when performing the rasterization. In 

order to record each tile’s data, the method of scan conversion in rasterization will 

follow the tile-based conversion, not scan line anymore. Figure 2-4-2-2(b) shows the 

tile-based scan conversion. The tile mask records which position in the tile having the 

fragment data. Figure 2-4-2-3 shows the example of the tile mask. And extra filtering 

buffer are needed to record the Z values in the tile.  

 After generating one tile data, coarse Z filtering performs the tile-level depth test. 

If the minimum Z value in the tile is larger than corresponding Z value in filtering 

buffer, this tile is occluded by another primitives and can filter out this tile. If the tile 

passes the coarse Z filtering, this tile has to check if needing to update the filtering 

buffer. The method of updating the filtering buffer is the similar with tile-based 
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early-Z test [6]. Here will not introduce the method again. Figure 2-4-2-4 shows the 

pseudo code of coarse Z filtering. 

 

(a)scan line conversion

(b)Tile-based scan conversion
 

Figure 2-4-2-2 Two different method of scan conversion 
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（a）TileMask=0xFFFF （b）TileMask=0x8DEE 

Figure 2-4-2-3 The example of tile mask. (a) represents the tile which is totally 

included in primitive (b) represents the tile which is partially included in primitive 
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Figure 2-4-2-4 The pseudo code of coarse Z filtering 

 

 The coarse Z filtering has the more precise tile Z value than tile-based early-Z 

test [6], so it can filter out more invisible tiles. However, coarse Z filtering cannot 

reduce the workload of rasterization since coarse Z filtering perform depth test after 

the rasterization.  

 

 

 

 

 

 

 

 

 

 

if (TileZmin >= FBZ) 

{ 

Filter out the tile; 

return; 

} 

if (TileMask == 0xffff) 
&&(TileZmax < FBZ)) 

{ 

FBZ = TileZmax; 

} 

Do per-fragment early-Z test; 

return; 

 

*FBZ: Z value on filtering buffer 
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Chapter 3 Design 

3.1 Design overview 

 

Figure 3-1-1 The rendering pipeline with proposed method, blocked-Z test, included. 

Note that rasterization is now replaced by block-based rasterization 

 

Figure3-1-1 shows the rendering pipeline with the proposed method, blocked-Z 

test. The indicated range is the extra components that our method added. The original 

rasterization is now replaced by block-based rasterization. The main concept is 

processing early-Z test by using block, which has its own depth value, to be a test unit 

before rasterization. Blocked-Z test can filter entire or part of primitives. It can reduce 

the workloads of rasterization and per-fragment early-Z test since fragments within a 

block can be filtered in one operation. The data consistency problem can be solved by 

using extra blocked-Z buffer to record the newest depth value in time.  

The following section will introduce the function of every extra added 

component. Primitive blocking stage calculates all the blocks which are covered by 
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the primitive and calculates the nearest and farthest Z values of each block. The 

primitive buffer needs to store the current processing primitives for generating 

fragments in block-based rasterization. Blocked-Z test compares the nearest Z value 

of blocks with corresponding Z value in blocked-Z buffer to decide whether the 

blocks can be filtered or not. The blocked-Z buffer always has the newest depth value, 

not wait updating from Z buffer. Block-based rasterization interpolates fragments for 

blocks which pass the blocked-Z test, and then passes fragments to per-fragment 

early-Z test. The edge-fragment buffer stores the edge-fragments data in every 

block-row. It can reduce the redundant computation in block-based rasterization. 

 

3.2 Primitive blocking 

First of all, the screen will be blocked, like the Figure 3-2-1. Every grid is one 

block, and every block has its own block coordinate. The origin of the coordinates is 

the left-bottom block. For example, the top vertex of primitive locates on the (4,7) 

block coordinate. Since every block on the screen is a two-dimensional block, which 

we note this kind of block as block
2
. Then primitive blocking calculates all blocks 

which are covered by the primitive. The blocks which generate from primitive 

blocking have Z values. They are three-dimensional blocks, which we note this kind 

of blocks as block
3
. The shaded blocks in figure 3-2-1 all are block

3
s. 

The attributes of one block
3 
are the following: 

1. Block
3
 coordinate: (X, Y, Znearest, Zfarthest) 

The (X,Y) is the location of block coordinate on the screen. Znearest is the nearest 

Z value in this block
3
. It can decide whether this block

3
 is completely occluded 

by other block
3
 or not. Zfarthest is the farthest Z value in this block

3
. It can decide 

whether this block
3 
completely occludes other block

3
 or not. 
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2. Full or partial cover block
3
 

The full cover block
3
 means that all fragments in this block

3
 have primitive data. 

On the other word, full cover block
3 

is the block which is totally in the primitive. 

Otherwise, this block
3
 is partial cover block

3
. In figure 3-2-1, the block A is a full 

cover block
3 
and block B is a partial cover block

3
.The purpose of discriminating 

full or partial cover block
3 

is for updating the blocked-Z buffer. The operation of 

updating block-Z buffer will perform in later stage, blocked-Z test. Only the full 

cover block
3
 have authority to check if needing to update the block-Z buffer. It is 

because only full cover block
3
 can guarantee to completely occlude other block

3
.    

3. Primitive ID 

When we perform the rasterization, it needs the primitive information to 

interpolate fragments. However, the block
3
 don’t have any primitive information, 

it cannot perform the block-based rasterization to interpolate fragments. So it 

needs to record the primitive ID which the block
3
 originally belong to. When this 

block
3
 has to perform block-based rasterization, it can get the primitive 

information to generate all fragments in this block
3
.  

 

 

Figure 3-2-1 A sketch of primitive blocking. The yellow blocks are the blocks which 

are generated from one primitive by primitive blocking 
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Figure 3-2-2 Flowchart of primitive blocking hardware 

 

The primitive blocking contains two stages, block-based edge walk and blocked 

row-span iterator, as shown in Figure3-2-2. The block-based edge walk calculates two 

edge-blocks, Z strides, and full cover bound blocks for every blocked-row. 

Edge-block is the block
3
 on the primitive edge. Full cover bound blocks can indicate 

which blocks in one blocked-row are full cover block
3
. The block row-span iterator 

generates all blocks between two edge-blocks in the same blocked-row. Since these 

two stages have different execution latency, we need to add an edge-block buffer to 

store edge-blocks, Z strides, and full cover bound blocks. Then, the two stages can 

parallel execute. If without the edge-block buffer, block-based edge walk may be 

stalled to wait blocked row-span iterator. 
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3.2.1 Block-based edge walk 

 In this section, we will introduce how to calculate the edge-blocks, Z strides, and 

full cover bound blocks.  

3.2.1.1 Intersection generator 

 The purpose of the first stage of block-based edge walk, intersection generator, is 

to find the two edge-blocks for every blocked-row. Since the edge-block in one 

primitive edge may not be only one, we have to find the most outside edge-block in 

blocked-row. In figure 3-2-1-1-1, edge-block A and edge-block B both are edge-block. 

In this case, we must choose the edge-block A since that cannot miss some blocks to 

rendering.  

 In order to find the most outside edge-block, we will find the correct 

intersections to indicate which edge-block is the most outside edge-block. There are 

two kind of intersections, ceiling or floor intersection. The intersection means the 

intersection of primitive and ceiling or floor scan-line of one blocked-row. In figure 

3-2-1-1-1, the four points on primitive edge are ceiling or floor intersections.  

 

 

Figure3-2-1-1-1 Example of primitive blocking 
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      For finding the correct ceiling or floor intersection, first we use table lookup 

to decide the direction of Y coordinate of intersection. The direction table is shown in 

Table 3-2-1-1-1. In the beginning, we have to know the primitive is major left or 

major right primitive. Major edge is the edge which has maximum y value vertex and 

minimum y value vertex, like the edge ac  in Figure3-2-1-1-1. We can see edge ac  

is on the left of this primitive, so this primitive is a major left primitive. And the 

information of major edge can be known in triangle setup stage, so we don’t have to 

spend extra computation to get this information. When deciding what kind of 

primitive, we use the slopes of major and minor edge to look up table to get the 

direction of Y coordinate of intersection in blocked-row. The direction of Y coordinate 

may be floor or ceiling in blocked-row. After looking up table, we can know the Y 

coordinate value of intersection. Then using edge function and Y coordinate value of 

intersection can get the X coordinate value of intersection. After these steps, we can 

know the correct intersection is ceiling intersection or floor intersection.  

 For example, we know the slope of edge ac  is positive in figure 3-2-1-1-1. 

After looking up table, the Y coordinate of representative point has take the floor 

direction of blocked-row. And using Y coordinate vale and edge function can get the 

red point in block A. This red point is the representative point of block A. If we take 

ceiling minus direction on major edge in indicated block-scan line, it would find the 

green point in block B. It will miss block A.  

 We perform the same process on minor edge, then we can calculate two 

representative point of edge-block in every blocked-row. Figure 3-2-1-1-2 shows the 

configuration of how to take the Y coordinate of edge-block with floor or ceiling 

minus direction. Actully it is very simple. If the direction is floor, we use zero to 

replace last few bits. If direction is ceiling minus, we use one to replace last few bits. 

And how many bits need to be replaced, it depends on block height. 
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Table 3-2-1-1-1 Direction table for determining edge-block 

 

 

 

Figure 3-2-1-1-2 Generation of Y value representing a given blocked-row 

 

3.2.1.2 Edge-block generator 

After finding the representative points of edge-block, edge-block genereator can 

translate repredentative points of edge-block to block coordinate of edge-block by 

using equation (1). Equation (1) means that block coordinate of edge-block can 

generate by ignoring last few bits of representative point because block width and 

height are both 2 to the power of N. 

 

 

R.P. of edge-block(X,Y) block coordinate of edge-block( 








BW

X
, 









BH

Y
) -----Equation (1) 

BW: block width, BH: block height 
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 There is an example in figure 3-2-1-2-1. The red point is the representative point 

of edge-block A. It locates on screen coordinate (11,16). Since the block width and 

height both are four pixels, we can use equation (1) to get the block coordinate of 

edge-block A, (3, 4). In the hardware design, it is easy to implement. It just ignores 

the last few bits of screen coordinate of representative points. And how many last few 

bits we need to ignore, it depends on the block width and block height.  

 

 

Figure 3-2-1-2-1 The example of edge-block generator 

 

3.2.1.3 Z strides and full cover bound blocks 

 In previous section, we calculate two edge-blocks in every blocked-row for 

generating all block
3
s’ block coordinate between two edge-blocks in later stage, 

blocked row-span iterator. Moreover, we also need to calculate the nearest and 

farthest Z value of block
3
 and decide the full cover bit of block

3
. For this reason, we 

have to calculate Z strides and full cover bound blocks in every blocked-row.  

In every blocked-row, we have to calculate two Z strides. One is the Z stride of 

bottom scan-line and another one is the Z stride of top scan-line, as shown in figure 

3-2-1-3-1. First we find the edge-points (X_LT, X_RT, X_LB, and X_RB) on the top 

and bottom scan-line by using edge function and y coordinate values of top and 
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bottom scan-line. Then we calculate the Z values of these four edge-points by using 

three vertices’ Z values. Finally, using each two edge-points which are on the same 

scan-line and their Z value calculate Z strides of top and bottom scan-line. For 

example, the Z stride of top scan-line can be known by the following formula: 

Z stride of top scan-line = (Z value of X_LT – Z value of X_RT) / (X_LT – X_RT) 

 

 

Figure 3-2-1-3-1The sketch of calculating Z strides and full cover bound blocks 

 

     The full cover bound blocks can indicate which block
3
s in one blocked-row are 

full cover. How do we find the full cover bound blocks? First we need to find the 

block
2
s, which the edge-points of top and bottom scan-line in blocked-row, are 

belonged to. In figure 3-2-1-3-1, we will find the four colored blocks. Then we 

compare these blocks and find the two inside blocks. The two inside blocks are the 

full cover bound blocks. The block A and block B in figure 3-2-1-3-1 are the full 

cover bound blocks. And the blocks only between the full cover bound blocks will be 

full cover block
3
. 

 

3.2.2 Blocked row-span iterator  

 In blocked row-span iterator, it will calculate all block
3
s between two 

edge-blocks in the same blocked-row. There are three major works. First, we need to 
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find the block coordinate which the block
3
 is belonged to. Since all block

3
s are in the 

same blocked-row, the Y block coordinate of all block
3
s are the same. And since the 

block
3
s are the consecutive block

3
s, we can calculate X block coordinate by just plus 

one to X coordinate of previous block
3
. 

Second, we need to calculate nearest and farthest Z values of block
3
. Since the 

block
3
 is a 3-D plane, the nearest and farthest Z value must be on the vertices. We 

directly calculate the Z values of block’s four vertices and compare these four Z 

values to get the nearest and farthest Z values. The full and partial cover block
3
 both 

use this method to calculate nearest and farthest Z values. Although partial cover 

block
3
’s four vertices aren’t all in the primitive, we also use four vertices’ Z values to 

decide the nearest and farthest Z value. It can simplify the computation. Since the 

intersection points of primitive and block
3 

may have many different conditions, it is 

time wasting to calculate all Z values of intersection points of primitive and block
3
. 

And using four vertices’ Z values to get the nearest and farthest Z value don’t have a 

large error with the precise nearest and farthest Z values.  

 Finally, we need to decide the block
3
 is full or partial cover block

3
. Since full 

cover bound blocks already know in previous stage, we only determine the block
3
 if 

between the full cover bound blocks. If the block
3
 is between full cover bound blocks, 

this block
3
 is a full cover block

3
. Otherwise, this block

3
 is a partial cover block

3
. 

 When one block
3
 are generated, this block

3
 will be transferred to blocked-Z test 

stage for testing the Z value. It can decide this block
3 

are occluded or not. 

 

3.3 Blocked-Z test 

Blocked-Z test can filter out block
3
s which are surely occluded by other block

3
 

since the occluded block
3
 wouldn’t display on the screen. It can reduce the workloads 
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of later stages, like rasterization, per-fragment early-Z test. Because blocked-Z test is 

performed based on a block, as opposed to a fragment, it can filter out many 

fragments within a block in one compare operation. To achieve this goal, it needs to 

add a two-dimensional blocked-Z buffer to record the current nearest Z value of each 

block coordinate, as shown in figure 3-3-1. The width of block-Z buffer is that the 

width of screen coordinate divides block width. And height of block-Z buffer is that 

the height of screen coordinate divides block height. The size of each entry on 

block-Z buffer is 4 bytes, the common size of Z value. 

  

 

Figure 3-3-1 The configuration of block-Z buffer 

 

Figure 3-3-2 shows the flow chart of blocked-Z test. After primitive blocking 

generate block
3
s, using the nearest Z value of block

3
 compares with corresponding 

block-Z value on blocked-Z buffer. If the nearest Z value of block
3
 is larger than 

corresponding block-Z value, it can filter out this block
3
. Otherwise, this block

3
 will 

pass to the block-based rasterization. And when any block
3
 passes the blocked-Z test, 

it has to check if needing to update the block-Z buffer. When the block
3
 is full cover 

and the farthest Z value of block
3
 is smaller than corresponding block-Z value on 

block-Z buffer, it must update the corresponding block-Z value with farthest Z value 

of block
3
. Why only the full cover block

3
s have the authority to check if needing to 
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update block-Z buffer. It is because only the full cover block
3
s can guarantee to 

occlude other block
3
s when other block

3
s are behind the full cover block

3
. If updating 

the block-Z value with partial cover block
3
, another block

3
s may not be totally 

occluded by this partial cover block. It may filter out some block
3
s which should 

display on the screen. So, only full cover block has authority to check if needing to 

update block-Z value.  

 

Figure 3-3-2 The flow chart of blocked-Z test 

 

3.4 Block-based rasterization 

Block-based rasterization generates fragments to those passing blocked-Z test 

block
3
s. It can parallel processing with updating the block-Z buffer when the blocks 

pass blocked-Z test. Since the data of updating the block-Z buffer and block-based 

rasteriztion are different. To update the block-Z buffer needs the farthest Z value and 

full cover bit. And block-based rasterization needs the block coordinate of block
3
 and 

primitive ID. Therefore, it can be parallel processing without any fault.  
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The operation of block-based rasterization is similar to general rasterization. 

The only difference is block-based rasterization needs to find the block
3
 range and 

generates all fragments in the block
3
. First, it needs to calculate two edge-fragments 

on primitive’s edge in every scan-line of blocked-row. If block size is 8x8, like figure 

3-4-1, we need to calculate these sixteen edge-fragments, the red squares, on 

primitive’s edge. Then, using two edge-fragments on same scan-line calculates all 

attribute strides of every scan line, like RGBA, Z, texture coordinate. Finally, using 

attribute strides of every scan-line interpolates all fragments in block
3
 range. 

 

 

Figure 3-4-1 The sketch of block-based rasterization 

 

Here is a problem that consecutive blocked-Z tested block
3
s in same 

blocked-row like figure 3-4-1, it has to calculate the same edge-fragments on 

primitive edge and calculate the same attribute strides. So, we use an edge-fragment 

buffer to record edge-fragments which are on major edge and attribute strides in same 

blocked-row. Moreover, edge-fragment buffer must record primitive ID and row 

number to indicate which blocked-row’s edge-fragment data is now on the 

edge-fragment buffer. Figure 3-4-2 shows the configuration of edge-fragment buffer. 

When passing blocked-Z test block
3
 comes, it will check this block

3
 whether is on the 

same blocked-row with the edge-fragment data on the edge-fragment buffer. If the 

primitive ID and row number on edge-fragment buffer is identical with current block
3
, 
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then we use edge-fragment data on edge-fragment buffer to generate fragments rather 

than calculate same edge-fragments and attribute strides again. Figure 3-4-3 shows the 

flow chart of block-based rasterization. The blocked-row number of Z-tested block
3
 is 

the y coordinate value of Block
3
. The block-ranged edge walk is to calculate the 

edge-fragments and Z strides in block height. Block range generator calculate which 

range in one scan-line needs to interpolate fragments. And the fragment generator is to 

interpolate all fragments in block range by using edge-fragments an attribute strides.  

 

Figure 3-4-2 The edge-fragment buffer for a blocked-row 

 

 

Figure 3-4-2 The flow chart of block-based rasterization 
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3.5 Data flow of our proposed method 

 In this section, we will briefly introduce the data flow of our proposed method, 

blocked-Z test. Figure 3-5-1 shows the data flow of our proposed method. The 

triangle setup will assemble the vertices into primitive and also calculate the edge 

slopes of three primitive edges. Then primitive blocking will generate all block
3
 data 

and deliver block
3
 data to blocked-Z test stage. After blocked-Z test, the Znearest, 

Zfarthest, and full cover flag wouldn’t use anymore. Only the block coordinate and 

primitive ID of block
3
 will deliver to block-based rasterization. After block-based 

rasterization, it will become fragment data and deliver these fragment data to 

per-fragment early-Z test. 

 

Figure 3-5-1 the data flow of our proposed method, blocked-Z test 

 

3.6 The rendering pipeline with blocked-Z test 

In this section, we explain how the pipeline operates smoothly. When the primitive 
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deliver from triangle setup to primitive blocking, the primitive blocking divides the 

primitive into block
3
s and triangle setup can generate another primitive. The block

3
s 

will deliver to blocked-Z test unit as soon as the primitive blocking generates one 

block
3
. Primitive blocking doesn’t wait all block

3
s in one primitive be generated and 

then deliver all block
3
s to blocked-Z test unit. If do so, the blocked-Z test unit will 

often be idle by waiting the primitive blocking. In the same principle, the block-based 

rasterization can get the block
3
 data immediately when the block

3
 passes blocked-Z 

test. Since the block-based rasterization has longer processing time than blocked-Z 

test, it would always stay in busy time, wouldn’t in idle time. So, the extra added 

pipeline components of our proposed method can operate smoothly.  

Moreover, the rendering pipeline with blocked-Z test becomes deeper than general 

graphic pipeline since we add two new pipeline units, primitive blocking and 

blocked-Z test. The computation time may become longer and may not render thirty 

frames in one second. However, since it can parallel process different frames, only the 

first frame will take longer time to process. Figure 3-6-1 shows the pipeline operation 

of multiple frames. Although the pipeline stage becomes deeper, the total throughput 

can seem identical than traditional graphic pipeline, even increase throughput since 

our method can relieves some bottlenecks.  

V.S. T.S. P.B. Block-Z T. B.B. R. E.Z T. P.S

V.S. T.S. P.B. Block-Z T. B.B. R. E.Z T. P.S

V.S. T.S. P.B. Block-Z T. B.B. R. E.Z T. P.S

V.S. T.S. P.B. Block-Z T. B.B. R. E.Z T. P.S

frame N

frame N+1

frame N+2

frame N+3

V.S. : vertex shader                                  T.S. : triangle setup

P.B. : primitive blocking                           Block-Z T. : block-Z testing

B.B. R. : block-based rasterization           E.Z. T. : early-Z test

P.S. : pixel shader

...

 

Figure3-6-1 The rendering pipeline with blocked-Z test 
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Chapter 4 Experiment and results 

4.1 Experiment goal and environment 

     We are going to know how many percentages of occluded fragments can be 

filtered out in our blocked-Z test. And we also want to know how many extra 

workloads bring with the blocked-Z test. Finally, we will consider with the reduced 

workloads and extra workloads which produce from our blocked-Z test to evaluate 

how many total workloads blocked-Z test can reduce. Moreover, we will compare our 

blocked-Z test with the tile-based early-Z test [6] which the related work mentioned.  

     We trace the Atila simulator and dump the primitive data from Atila to be the 

input data for our experiment. The Atila simulator is proposed in [7]. The simulator 

architecture is based on the design of ATI GPU’s architecture and support OpenGL 

based benchmarks, like Doom3 [8], Quake4 [9], or the 3-D based computer games. 

The primitive data which we dump from Atila simulator are the benchmarks of 

Doom3 and Quake4 with 320*240, 640*480, 1280*1024, and 1600*1200 screen 

resolutions.  

     After we have the input data, we also implement the simulator of our blocked-Z 

test method. Then we can get the filtering ratio of blocked-Z test from the simulator 

which we implement. And we also can evaluate the workload reduction by the 

information from our blocked-Z test simulator. The filtering ratio means the 

percentage of fragments can be filtered out by any kind of early-Z test. The equation 

of filtering ratio is: filtering ratio = filtered out occluded fragments / original 

fragments generated by rasterization. 
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4.2 Experiment results 

     In section 4.2.1, we will show the filtering ratio of blocked-Z test with various 

block sizes, which are 4x4, 8x8, 16x16, 32x32, and 6x64 pixels. In section 4.2.2, we 

will show the extra overhead of blocked-Z test, included extra hardware requirements 

and extra workloads. And we will evaluate the workload reduction of rasterization and 

per-fragment early-Z test with our blocked-Z test. 

   

4.2.1 Filtering ratio of blocked-Z test 

     The figure 4-2-1-1 and figure 4-2-1-2 show the filtering ratio of blocked-Z test 

with various block sizes. The filtering ratio of blocked-Z test means how many 

percentages of fragments can be filtered out in blocked-Z test. It can reflect the effect 

of blocked-Z test. The last bar chart of each set is the filtering ratio of per-fragment 

early-Z test. It can be a comparison with the blocked-Z test of various block sizes. 

Obviously, we can see that the filtering ratio is higher with the block size is smaller. 

And we can see that the filtering ratio with various block sizes in low screen 

resolution has larger variation. With the block size increase in low screen resolution, 

the filtering ratio decreases more than in high screen resolution. It is because the 

difference of block size in the low resolution has larger variation of covered range in 

the screen than in the high screen resolution. So, in the high screen resolution like 

1600*1200, the filtering ratio with various block sizes has less variation. In figure 

4-2-1-1, the average filtering ratio with various block sizes is about 80%. And In 

figure 4-2-1-2, the average filtering ratio with various block size is about 60%.  
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Figure 4-2-1-1 The filtering ratio of Doom3 with various block sizes 

 

 

Figure 4-2-1-2 Filtering ratio of Qauke4 with various block sizes 
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4.2.2 Extra overhead of blocked-Z test 

     In this section, we will show the extra overhead which produce from blocked-Z 

test. In section 4.2.2.1, we show the extra workload of blocked-Z test. The extra 

workload is reflected by the block count. In section 4.2.2.2, we show the extra storage 

requirement and hardware that blocked-Z test need to use. With different block sizes, 

the storage requirement has a large variation. 

4.2.2.1 Extra workload of blocked-Z test 

Although blocked-Z test can reduce the workloads of the rasterization and 

per-fragment early-Z test, it has the extra workloads of the primitive blocking and 

blocked-Z test. In this section, we will discuss the extra workload of primitive 

blocking and blocked-Z test with various block sizes. Figure 4-2-2-1-1 and figure 

4-2-2-1-2 shows the extra workload of primitive blocking and blocked-Z test with 

various block sizes in Doom3 and Quake4. We use the block count to evaluate the 

extra workload. The reason is primitive blocking needs to generate all blocks and 

blocked-Z test needs to perform depth test for every block. Obviously we can see, 

when the block size is smaller, the extra workload will higher. In these two figures, 

we can see that the workload will increase about three times when the block size 

grows four times. 
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Figure 4-2-2-1-1 Extra workload of blocked-Z test with various block sizes 

 

Figure 4-2-2-1-2 Extra workload of blocked-Z test with various block sizes 

 

4.2.2.2 Extra storage requirement and hardware 

In our method, we have three extra storage buffers, primitive buffer, 

edge-fragment buffer, and block-Z buffer. With the block size and screen resolution 

vary, the storage will have the different requirement. Table 4-2-2-2-1 shows the 

storage requirement in different block size and screen resolution. The major extra 

storage requirement is block-Z buffer since it needs to store all current nearest Z value 

for every block coordinate. The block-Z buffer size can calculate by (screen width * 

screen height / block size)*4 bytes. When the screen resolution is high and block size 
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is small, the block-Z buffer size may greater than 100 Kbytes. We can see that when 

block size is 4x4 and screen resolution is 1600x1200, the block-Z buffer size is even 

above 400 Kbytes. The edge-fragment buffer size depends on the block size only. It 

needs to store the edge-fragment data two times of block height. The edge-fragment 

buffer size can calculate by ( block height * 2)*20 bytes. And the primitive buffer size 

is a fixed size. It depends on how many primitives need to store in primitive buffer. In 

this table, we set the ten primitives needed to store in primitive buffer and each entry 

is 60 bytes. The maxumun of total extra storage is about 470 Kbytes. And the 

minimum of total extra storage is only aobut 2 Kbytes.  

 

Table 4-2-2-2-1 Extra storage requirement with various block sizes and resolutions 

block size: 4x4 block size: 8x8 block size: 16x16 block size: 32x32 block size: 64x64

screen resolution
320*2

40
640*4

80
1280*
1024

1600*
1200

320*2
40

640*4
80

1280*
1024

1600*
1200

320*2
40

640*4
80

1280*
1024

1600*
1200

320*2
40

640*4
80

1280*1
024

1600*
1200

320*2
40

640*4
80

1280*
1024

1600*
1200

bock-Z buffer 
size(KB)

18.75 75.00 320.00468.75 4.69 18.75 80.00 117.19 1.17 4.69 20.00 29.30 0.29 1.17 5.00 7.32 0.07 0.29 1.25 1.83

Edge-fragment 
buffer size(KB)

0.16 0.16 0.16 0.16 0.31 0.31 0.31 0.31 0.63 0.63 0.63 0.63 1.25 1.25 1.25 1.25 2.50 2.50 2.50 2.50

primitive buffer 
size(KB)

0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60

total extra buffer 
size(KB)

19.51 75.76 320.76469.51 5.60 19.66 80.91 118.10 2.40 5.91 21.23 30.52 2.14 3.02 6.85 9.17 3.17 3.39 4.35 4.93

      

In our method, the primitive blocking and blocked-Z test unit is the extra 

hardware. Table 4-2-2-2-2 shows the extra hardware of primitive blocking and 

blocked-Z test unit. 

 

Table 4-2-2-2-2 Extra hardware of primitive blocking and blocked-Z test 
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4.2.3 Total workload reduction with blocked-Z test 

     Although our method can reduce the workloads of rasterization and 

per-fragment early-Z test, the primitive blocking and blocked-Z test would produce 

the extra workloads. In this section, we evaluate the total workload reduction with 

considering the reduced and extra workloads.  

     The primitive blocking and rasterization are similar with their operation. 

Primitive blocking can consider a large granularity rasterization. It just spends much 

time to calculate the nearest and farthest Z value of block. And the blocked-Z test and 

per-fragment early-Z test both perform the depth test. The execution time of these two 

execution units can consider the same. Table 4-2-3-1 shows the time complexity of 

these four execution units, primitive blocking, general rasterization, blocked-Z test, 

and per-fragment early-Z test. The latency of each computation unit, like adder or 

multiplier, shows in the most left column. The cycle time of each computation unit is 

our hypothesis. And how many computation units that each execution unit is need to 

perform also show in the table. Then we can calculate each execution unit’s latency by 

computation unit’s latency multiply by the number of computation unit and it shows 

on last row in table 4-2-3-1. 

 

Table 4-2-3-1 The time complexity of four execution units 
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     When we know the latency of these execution units, we can derive the equation 

(2) from these execution units’ latency. The equation (2) can calculate the total change 

workload of our blocked-Z test method. It means that how many workload of 

rasterization and per-fragment early-Z test can be reduced.  

 

 

 

Using the equation (2), we can get the total reduced workload of blocked-Z test. 

Figure 4-2-3-1 shows the total reduced workload with various screen resolutions.  

 

 

(a)  

 

(b) 
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(c) 

 

(d) 

Figure 4-2-3-1 The total reduced workload of blocked-Z test with various screen 

resolutions. (a) 320x240 pixels (b) 640x480 pixels (c) 1280x1024 pixels (d) 

1600x1200 pixels 

 

We can see that 4x4 block size has the best performance only in 320x240 

resolution. In the higher resolutions, 8x8 block size has the best performance. 

Although 4x4 block size has the highest filtering ratio than other block sizes, it has the 

more serious extra overhead than other block sizes, especially in the high screen 

resolution. So, in high resolution, 4x4 block size cannot get the highest workload 

reduction than other block size.    
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4.3 Performance compare with tile-based early-Z test [6] 

Figure 4-3-1 and figure 4-3-2 show the filtering ratio of our proposed method 

and tile-based early-Z test [6] in Doom3 and Quake4. Each bar chart is the average 

value of filtering ratio in four screen resolution. In Doom3, our method can filter out 

more about 3% fragments averagely. It’s about one million fragments. And in Quake4, 

our method can filter out more about 13% fragments averagely. It’s about 

twenty-seven million fragments. Since Quake4 is higher complex scenes than Doom3, 

blocked-Z test has the better performance in Quake4.  

 

 

Figure 4-3-1 Filtering ratio of blocked-Z test versus tile-based early-Z test for Doom3 

 

Figure 4-3-2 Filtering ratio of blocked-Z test versus tile-based early-Z test for Quake4 
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Since blocked-Z test has more precise depth value than tile-Z test, the filtering 

ratio of blocked-Z test is obviously better than tile-Z test. However, the computation 

of blocked-Z test is more complex than tile-Z test. We have to consider the extra 

overhead into evaluation. So we compare the total reduced workload with these two 

methods to see which method can get the better performance.   

The total changed workload equation of blocked-Z test is already shown in 

section 4-2-3. The Equation (3) shows the total changed workload of tile-Z test. We 

can see that the latency of primitive tiling is shorter than primitive blocking in 

blocked-Z test method. It is because the computation of depth value in tile-Z test is 

simpler than blocked-Z test. Using equation (3), we can get the total reduced 

workload of tile-Z test. Figure 4-3-3 shows the total workload reduction of these two 

methods. Blocked-Z test averagely can reduce more about 5% total workload than 

tile-Z test. 

 

 

Figure 4-3-3 workload reduction of blocked-Z and tile-Z test 
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Chapter 5 Conclusion 

As more complex models become commonplace in today’s 3D computer 

graphics. How to reduce the unnecessary operations is the critical issue. In this paper, 

we proposed a low computational blocked-Z test to reduce workload of rasterization 

and per-fragment early-Z test. Blocked-Z test process the depth test by larger range, 

block, before rasterization and can achieve about 70% workload reduction. Moreover, 

when per-fragment early-Z test has less data to processing, it also can alleviate Z 

buffer access loading. Blocked-Z test can pay a little extra overhead to achieve a large 

amount of workload reduction. It can be a useful approach to reduce the workload in 

the 3D rendering pipeline. 
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