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A Fast Asynchronous Square Number Generator

Student: Zhong-Xiang Lee Advisor: Prof. Chang-Jiu Chen

Department of Computer Science and Information Engineering

National Chiao Tung University

Abstract

Square number is often used in mathematical calculation and video compression. In the
past, multipliers are widely needed to generate square numbers. However, multiplier is
complex, hard to implement and slow. How to reduce overhead of generating square number
is a very important issue.

In 1998, Chin-Long Wey and Ming-Der Shieh purposed the Square generator [4]. Instead
of the multiplier, a look-up table is needed to generate the square number. This method can
accelerate operating speed to generate square numbers. In 2008, Tsai proposed the recursive
scheme to reduce the ROM size to implement the square generator [5].

On our work, we propose the “Fast Algorithm” and implemented it with asynchronous

circuits. As a result, the square generator with Fast Algorithm implemented on TSMC



0.13 umis 18.13% faster in the best case than the original design.
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Chapter 1 Introduction

Generating square number is often used in digital signal processing, mathematical
calculation and video compression. In the past, generating square number was by multiplier.
However, multiplier has some disadvantages. First, it is complex and hard to implement. Then,
speed of multiplier is slow. At last, it has very high overhead of area. How to reduce overhead
and speedup of generating square number is a very important issue.

In the recently, this topic was focused. In 1998, Chin-Long Wey and Ming-Der Shieh
purposed the Square generator [2]. Their method uses the look-up table to produce the square
number. This method can accelerate operating speed to generate square number. According to
Wey’s algorithm, it used the recursive scheme to reduce the ROM size. In 2008, Tsai’s paper
had another approach to improve square generator [3].

Asynchronous circuit design [4, 5] is a circuit design methodology. Asynchronous circuit
design and synchronous circuit design are totally different. Asynchronous circuit design uses
the handshake protocol to communicate with sub-circuits without a global clock. With the
protocol, the speed of circuit does not set the worst-case clock cycle time; on the other hand, it
can achieve average-case speed. Asynchronous circuit design has other advantages for circuit
design, such as modularity, no clock skew problems and low power consumption etc [7-9].

Our design unifies the benefits of the asynchronous circuit design and square generator.
In asynchronous circuit design, the complete detection adder which is added into square

generator performs the average-case performance. Then, the proposed Fast Algorithm
1



improves the square generator with recursive scheme. According to mathematical analysis,
Fast Algorithm can speed-up about 11% comparing to the original square generator. Finally,
the asynchronous square generator with Fast Algorithm is implemented on TSMC 0.13 um
process and the area is 175963.23 zm’. The latency of our design is 64.87ns at most.
Compare with asynchronous square generator without Fast Algorithm, the rate of improving

latency is about 18.13%.



Chapter 2 Related Works

This chapter will give introduction of asynchronous circuit design and square generator.
We show the advantages, handshaking protocols, pipeline and C-element of asynchronous
circuit design. We also give descriptions of square generator. There are two ways to
implement square generator: folding approach and recursive approach.
2.1 Asynchronous Circuit Design
Asynchronous circuit design is a circuit design methodology. Asynchronous circuit is
practically different from synchronous circuit. There are many advantages in the
asynchronous circuit design and special ways to design circuit. The following will list
advantages and handshaking protocols.
2.1.1 Advantages
Comparing with the synchronous circuit design, the asynchronous circuit
design has no global clock and use handshaking protocol between the sub-circuits to
perform synchronization and communication. The following are advantages of the
asynchronous circuit design :
2.1.1.1  Low power consumption: Asynchronous circuit do not supply extra
power to generate clock tree. The sub-circuits in a synchronous circuit are
clock-driven, whereas they are demand-driven in an asynchronous circuit.
This means that the sub-circuits in an asynchronous circuit are only active

when and where needed. That means that there is no clock tree. According
3



to [6], the power consumption of asynchronous circuit is up to 36% to

40%.

2.1.1.2  Average-case speed: The elasticity of the asynchronous pipeline has

led to the outcome that an asynchronous pipeline can perform ‘average’

processing rather than worst case time for each of synchronous pipeline

stages. When asynchronous pipeline has been completed to receive the data,

receiver could send acknowledge signal to sender. Sender can do next job

early.

However, the pipeline of synchronous circuits choose the longest time

of pipeline stage to be clock cycle time. Comparing with asynchronous

pipeline, asynchronous pipeline has individual time of stage. It is

independent on each asynchronous stage. For this reason, the asynchronous

circuit can accomplish average-case performance.

2.1.1.3  Modularity: Because of the simple handshake interfaces and local

timing, the asynchronous circuit is easy to be divided into different

modules. Designers only need to take care of synchronization between

different modules. The speed of a module does not influence other

modules.

2.1.1.4 No clock distribution and clock skew problems: Clock plays an

important role on communication. But there is a serious problem about
4



clock skew. System becomes larger and larger, so it is more and more
difficult to transmit clock signals. However, the asynchronous circuit has
no clock distribution. It uses the handshaking protocol to avoid clock skew
problem.

2.1.2 Handshaking Protocol

Handshaking protocol is a way to communicate in the asynchronous circuit
design. In general, there are two parts in the circuit design. One is data path, and the
other is control path. In the Handshaking protocol, it defines these parts below:

® Data path: bundled-data, dual-rail, 1-of-n encoding etc.

® Control path: 4-phase, 2-phase etc.

The bundled-data and dual-rail data are two common ways to transfer data
between sender and receiver. First, the bundled-data channel (Figure 1 (a)) which
data signals use normal Boolean levels to encode information and separates request
and acknowledge wires are bundled with the data signals (Figure 1(b)).

Four-phase bundled-data uses REQ and ACK signals as the synchronization
signals between the sender and receiver. Four-phase protocol is known as the
return-to-zero handshake protocol. Initially, REQ and ACK signals are all 0. After
DATA is valid in the SENDER, REQ signal is asserted to 1 by the SENDER (1). If
the RECEIVER has accepted the DATA from the SENDER, the RECEIVER would

have asserted ACK signal to 1(2). After the SENDER receives the ACK signal from
5



the RECEIVER, the SENDER will dessert the REQ signal to 0(3) and then stop

transfer DATA. Finallyy, RECEIVER will reset the ACK signal to 0 after

RECEIVER receives REQ = 0(4). When SENDER and RECIEVER finish these

four operations, it completes a handshaking. At this point, the SENDER can do next

communication cycle can the started (5).

REQ
"l =
% ACK e
Z, < —
- [T
o <
=J

Figure 1(a) Bundled-data channel

T2

REQ —— i
i

ACK - \

DATA XX/

).
O O

Figure 1(b) Four-phase bundled-data protocol

The other way of handshaking is dual-rail (Figure 2(a)). In stead of “bundled-data”
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with the REQ and ACK signals, the dual-rail encoding encodes each 1-bit data with 2

bits. The encoding method shows in Table 1. It uses 00 to show that there is no data, 01

to encode the data of 0 and 10 to encode the data of 1. If the system uses dual-rail

protocol to transfer n-bits data, there will have 2*n data lines.

d.t d.f
Empty “E” 0 0
Valid “0” 0 1
Valid “1” 1 0
Not used 1 1

Table 1 Encoding method

Because the dual-rail circuit does not have REQ signal, the RECEIVER needs extra

circuits to detect DATA signals are arrival. This is called completion detection.

Figure 2(b) shows the process of data transfer using dual-rail protocol. Initially,

DATA is EMPTY, and ACK is 0. When DATA is Valid and RECEIVER detects that

DATA is ready, RECEIVER captures DATA and pulls up ACK. Then SENDER stops

sending DATA and DATA changes to EMPTY. Finally RECEIVER pulls down ACK and

the transfer is finish.



Data

/
/

/

2n
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JHATHOHY

JHANAS

ACK

A

Figure 2(a) Dual-rail

DATA EMPTY )X VALID /»><\ EMPTY -+ > VALID
[ \

ACK 5 W

Figure 2(b) Dual-rail protocol

Valid DATA will be separated. Dual-rail protocol uses EMPTY to separate each DATA

(Figure 3).

~_ 7 ~ 7

Figure 3 Transfer diagram
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2.1.3 C-element

The C-element plays an important role on asynchronous circuit design. It

usually deals with REQ signal and ACK signal. Table 2 shows behaviors of the

C-Element. When both inputs are 0, the output Z is set to 0. And when both inputs

are 1, the output Z is set to 1. When the inputs are different, the output Z is equal to

‘No Change’ (i.e. keeping previous output). Because C-element is state-holding gate,

the output is only changed by the different inputs. Figure 4(a) shows the symbol and

gate-level design of C-element.

A B z
0 0 0
0 1
No Change
1 0
1 1 1

Table 2 Truth table of C-element

C-element is usually used on circuit of complete detector. This circuit often

appears on the asynchronous circuit. Because we use the RTL design method,

Figure 4(b) shows that two inputs C-element with reset scheme.



Figure 4(a) C-element

—A
Reset

N

o] D j;}

|
B

Figure 4(b) C-element with Reset
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2.1.4  Pipeline

A four-phase bundled-data pipeline is particularly simple and similar to

synchronous pipeline with local clock. Figure 5(a) shows a FIFO which is without

data processing and Figure 5(b) shows how to add combinational logic into

four-phase bundled-data pipeline. This pipeline has several characteristics which are

listed below:

1). Itissimple and easy to implement.

2). If the right stage do not receive the acknowledge signal, this pipeline will fill

and stall.

3). To maintain correct behavior, the matching delay should be inserted in the

request signal paths.

4).  When pipeline is full, only half the latches store data.

5). Itis similar to a master-slave flip-flop.

Ack

Ack

Ack

.
<

y

Req—»—

Latch

Req

)

Req

Ack

Req

En

Latch

Latch

Figure 5(a) Four-phase bundled-data pipeline
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Ack

<

Ack

e | (o)

Function ——
Block ——

Req

L—

Req

Ack

Req

D;

Latch

Function
Block

En

Latch

Function
Block

Latch

Figure 5(b) Four-phase bundled-data pipeline with combinational logic

2.2 Square Generator

High-speed generating square numbers are often required for digital signal

processing, video compression processing, and many other mathematical calculations. In

order to generate square number, the multiplier should be used. But multiplier has high

area cost and is complex. However, square number is often needed on many domains. In

the recent years, the square generator is developed by different ways [1-4]. Next two

sections will introduce the square generator. First, generator is implemented by folding

approach. Second, it use recursive scheme to implement.

22.1

Square Generator with Folding Approach

In 1998, Chin-Long Wey and Ming-Der Shieh proposed “Design of a

High-Speed Square Generator” [2] in the IEEE Transactions on Computers. The

simplest way for calculating square number used the look-up table in the ROM.

This section describes development of square generator with huge loop-up
12



ROM table. The following are property of square generator. Let A = (a,-18n-2...2180)
be an n-bit binary number and |A| can express as :
n-1 .
A=>a2 ...........()
i=0
Property 1. A = (ap-18n-2...8180), B = (bn-1bn-2...b1bo) : n-bit binary number, where

b =1-4a, 0<i<n-1.Thedifference formula can be expressed as

ID|=|AP - [B[* = b, ,2"(2" ~1) +|(a, , ... 8,8,0b, ,...bBDD)| ... D)

Proof : The difference value |D|

of-(Z47) (0] {F w2 w2

o]

(a,—b =1-2b,a +b, =1)

n-1
- (2“ ~1-23h 2')(2" ~1)
i=0
= (— b, 2"+ nz_% a2 jZ"” + 2[bn_12“ + fbi ZiJ +1
i=0 i=0

=|D|=-b,,2"(2"-1) +|(a,_, ... aa,0b, ,...bby1)

For example, there are two five-bit binary numbers A = (ajazaza;ap) = (10101),
B = (bsbsb,bibg) = (01010), whereb =1—a,. Their square number is |A]? = 441 and
IBI> = 100. The difference value is |D| = 341= (01010 10101) = (asaza:ac0
bsbyb1bol).

There are two conditions that A and B are unsigned number and b; is one’s
complement of a;. If ap.; = 1, the by, = 0. By difference formula, the difference

value is:

13



According to property 1, the following property concludes.
Property 2 Two-Folding Approach: Given an n-bit binary number N =

(an-18n2...2180). Dependent on Property 1, we obtain |N|2:‘N*2+|D|

(Two-folding approach), where N* and D are defined as:

an.1 N D
0 (@, ,-aa) (000---0 000------ 0)
1 (8, ., a8, (@, 23,0 a, ,.23,0)

Table 3 Square Generator with Two-Folding Approach

In the folding approach, square generator uses the look-up table simplifies the
process as a simple addition or subtraction and table look-up. For instance, N is
six-bit binary number. If N = (011 011) = 27(i.e. a, = 0), the N = (11 011) and D =
(000000 000000). It represents reducing MSB to loop-up table and then generates
IN"” to be equal to N>.Another condition is a, = 1. If N = (110 010) = 50, the N =
(01 101) and D = (100100 011011). Then square generator looks up the |[N* from
the ROM. Finally, [N|> + |D| is the square result of input data. If input data is n-bit
binary number, the ROM size will be 2"*x2(n—1) bits. However, the two-folding

approach has huge overhead on the ROM size.
14



Figure 6 shows the architecture of square generator which consists of three

major parts:

(1). aone’s complementer(OC)

(2). a ROM(store the look-up table)

(3). a D-value generator (DG)

One’ s ROM
T 20320 oo lementer n-1 2"2x2(n-2)

1

IN'?

Ap-1

A\ 4

»——DValue —»|

DVG

— —ay — — P>

INP——»

Figure 6 Architecture of Square Generator with Two Folding Approach

The above approach can reduce more than half size of look-up ROM table.

Nevertheless, the look-up ROM is still very huge and square generator needs 2*(n-1)

bits adder. Next Property will introduce the four-folding approach which is better

than the two-folding approach in the ROM size.

15



Property 3 Four-Folding Approach: There is a n-bit binary number N =
(an-18n-2...2130). Based on the Property 2 gets |N|2 :‘N*‘Z +|D| equation, where N*

and D are defined as:

an-1 an-2 N D

0 0 (a, ;---a,a)) (000---0 000------ 0)

1 0 (a, ;- -aa,) (Ola, ,....aa, 00 ... 0)
0 1 CHREETN (002, ;.33 08, ;..3a,1)
1 1 (a,_.---aa,) (1a, ,.a,a,0 Oa, ,..3,a,l)

Table 4 Square Generator with Four-Folding Approach

This approach extends the two-folding approach. It depends on the most
significant two bits to generate N”and difference value. Table 4 describes how to
use the four-folding approach. The following is an example to show the four-folding
approach. Figure 7 illustrates the architecture of four-folding approach. There are a
few differences between the two approaches. One’s complementer decreases 1 bit. A
2"?x2(n—2) ROM is used in the square generator. Four folding approach divides
difference value generator into DValue_High and DValue_Low two part which can

depend on their characteristics to design.

16



For example, a five-bit binary number N is equal to 10111(23). We know the
(a4, a3) = (1, 0). Then based on the Table 3, we can obtain the N" = (111), D =
(01111 00000), and N?= [N + D = (11 0001) + (01111 00000) = (10 0001 0001) =
529. The look-up table size becomes 2"?x2(n—2) bits. Thus the needed ROM
size is about 50% less than that of two-folding approach. Addition length of square
generator can reduce two bits slightly. The four-folding approach not only improves
the area cost, but also the operation speed of square generator (because of less

lengths of addition).

One’ s ROM
T 330470 0o lementer o 2"2%2(n-2)

j DVG_Low
aAp2
}ﬁ L

IN"[?

Yy v

ap2

DValue
1a,3ap4 2120011
01a,3ap 4" 28010
MUX
002,32, 4 - 2120 ¥ 01
000 --- 000>
T DVG_High

Ap1ap-2

Figure 7 Architecture of Square Generator with Four Folding Approach
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2.2.2  Square Generator with Recursive Approach

Due to overhead on the ROM size, Wei-Chang Tai in 2008 proposed a new
approach [2] whose square generator is implemented with small look-up table. Tai
was rewritten the equation by recursive scheme and four-folding approach.
Equation (2) shows the calculation of new approach. In the equation (2), under the
N and D value represents the width of values. The Table 5 shows the recursive

scheme for general case. The r number represents times of recursive.

2
|N|§n = ‘N 2(n-2) +| |2n
]2
3 (‘N 2(n—4) + |D|2(n—2)) + |D|2n ... (2)
:|D|2n +|D|2(n—2) +“'+|D|8 +|D|4

Based on four-folding approach, the ROM size is reduced by generating more
difference values. It may sacrifice the performance reduce the cost of ROM size
more than 75%. If we do recursive scheme n/2 times, square generator has no
look-up table ROM and there are n/2 difference values. It has to do addition

log,(n/2) times.

18



Qnart | Anar N Di
0 0 (A, .y 343) (000......0 000......0)
1 0 (CRPSPRIT- H- ) (Ola, ,....aa, 00 ... 0)
0 1 (@ 2" 38) (00a, 4..3.3, 08, ;.. a,])
1 1 CRMIREEY (la, 52,80 08, 4.2

Table 5 Square Generator with Recursive Approach
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Chapter 3 Designs

Due to square generator with recursive scheme, there are too many operands. If we use
synchronous circuits design, system has to set the worst-case delay to be clock cycle time, the
part of adder tree is the critical path in the square generator. For this reason, we design a new
circuit to implement square generator with recursive scheme. We use the asynchronous circuit
design which does not have a global clock to achieve the average-case performance, and use
zeroflags to reduce the additions.

In order to design the proposed method with the asynchronous circuit, the handshake
protocol selected is the four-phase bundled-data. Furthermore, an asynchronous adder with
complete detection is used to speed up the calculation. Besides, through observing the Table 4,
we develop the “Fast Algorithm” to reduce the number of bits of addition. This chapter
describes the model and the analysis of Fast Algorithm.

3.1 Fast Algorithm

According to Table 5, we observe a condition that second half part of the difference
value (DValue) is zero when (an-2r+1, an-2r) = (1, 0). If there is a 2n-bits DValue ( |DJa )
with all zero in the second half bits, and we can use Fast Algorithm to find a n-bits
non-zero DValue ( |D|, ). The new DValue ( |D|. ) is generated by combining |D|, with
|D|p. For instance, N is 12-bit binary number. After using recursive scheme, square
generator produces six difference values which are |D|24 ~ |Dl2o ~ |D|16 ~ |D]12 ~ |Dls and |Dls.

Figure 8(a) expresses this condition. It should be noted that the width should be matched.
20



+)

i.e. |D|12 can only put into |D|.4, |D|s can be put into both |D|24 and |D|so, and |D|s which

has the minimum width can be put into |D|2s ~ |D|2 and |D|16. We suppose second half of

ID|24 ~ |D|20and |D|y6 are zero and all of |D|, ~ |DJs and |D|4 are non-zero number. In the

Figure 8(a) condition, (iv) can put into (i), (v) can input to (ii), and (vi) can put into (iii).

Finally, Figure 8(b) illustrates the result after finished previous operations. This approach

is called the “Fast Algorithm”.

D | = 01d 5,0l,01500,500,70,50,:0,,d,d,, [0 0000000000 0] 0
D= 0 1 d,,d,d,.d,,dydy, d,,d,40 000000000 G
Dl = 0 1d,d,, d,0,d,0{0.0.0.000.00 @
|Dl, = d,,d,,d.d,d,d.d.d,d.d,d.d, (i)
D, = | 0,0,0.0,d, 0, | “
D], = ' d,d,d.d, o

Figure 8(a) Original Addition of DValue

| Doy =01d 5,d 5001401070 ,60,5d 40505, ( |Dly, ) ®
Dy = 0 1 d,d;edysdydigdy, dyydye( |Dlg ) @
Dl = 0 1d;dy, dyd;odydy( DI, ) G
ID|, = 000000000000 v
|IDg = 00000000 ™
+) |D|, = 0000 o
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Figure 8(b) Addition of DValue with Fast Algorithm

Because previous description is hard to understand, we re-define the relationship
between the first half difference values and the second half difference values. We define a n/2
bits flag as “DValue”. DValue includes the ‘Box’ and ‘Ball’ flags which describes as Figure 9.
Box is a flag to record if all second half bits of first half DValues are zeros. If the value of
Box is 1, the second half bits of the DValue are zeros. Ball is a flag to represent if all second
half difference values are non-zero values. If the value of Ball is 1, the DValue are non-zero
values. For example, Box ={X,., ;X5 "-¥% | and Ball ={b,,, b, ,-bb}. If xi =1, it
expresses (anp+2i+1, an+2i) = (0, 1), and by = 1 when (a+1, azj) = (0, 1). We assume that the
input data is a uniform statistical distribution. The probability of x; = 1 is 0.25(i.e. (1)), which
of xi = 0 is equal to 0.75(i.e. (I1)). For the same reason, the probability of b; = 1(exist the ball)
is 0.75(i.e. (I11)). On the other hand, the b; = 0(no ball) is 0.25(i.e. (1V)). Based on the above
description of probability, next section will compile statistics about improvement rate with

Fast Algorithm.
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DValue,,, = {Box,,, | Ball,,,}

Box,,, = {Xn/4—1xn/4—2 "'Xlxo} Ba"nm = {bn/4—1bn/4—2 "'blbo}

o {Lif &/ 242i41)R(ns2e2i) = 01 b — {Lif Anjindej) * 00

I 0,if &(y/242140) 80 2021) 01 : 0,if 8 8ej) = 00
P(E)=1/4,if x, =1 oo ) P(Y)=3/4,if b;=1 -ccces (1)
P(F)=3/4,if X, =0 coeeeeees (1 P(N)=1/4,if bjzo ......... (1V)

Figure 9 Expression of DValue Flag

Figure 10 is the pseudo code of Fast Algorithm which expresses how to search
empty box and available ball. First of all, if an available ball is scanned, it will enter the
ScanBoxes function to find a suitable box. The way to find the suitable box in the

ScanBoxes is setting the bound to search. The ScanPoint variable records box point of

last searching position.
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1 NumBall = N/4; /f # of Balls

2 NumEBox = N/4; /7 # of Boxes

3 Ball [MumEBEall]: J4 Ball[i] = 1 => awvailakle, 0 => No ball
4 Box [NumBox] ; fi Box[i] = 1 =% Empty, 0 =» Full

S 8canPoint = NumBox; £/ Record box point of scanning

&

7 for 1 from NumEBall to 1 by 1-- do 4/ 8can all awvailable Ealls
G hegin

=] if ScanPoint = 0 /4 do not scan all of the Boxes
10 begin

11 if EBall[i] == 1 /4 there is a ball

1z ScanBoxes(Box, 1, ScanPoint);

13 else

14 4/ no-op, scan next ball
15 erud

16 el=e

17 ; ## ne=op

18 end

19

20 gocanBoxes (Box, MNCOBall, ScanPoint)

2l bhegin

2z Temp Bound = Z NOEall NumBox; // #et up bound for specific size boxes
23 if { Temp Eound = 0 }

z4 Bound = max(Temp_ Bound, 1};

25 else

26 Bound = 1;

27

ZE for j from 8ScanPoint to Bound by j-- do

29 begin

30 if (Box[3j] == 1) // There 1= a fitting box

31 begin

3z ScanPoint-—

33 DValue Low[NumBall - 4+9] = DValue[4*NOEall];

34 exit scan box;

F5 end

36 else A Full box

37 ScanPoint

kl=] end

392 end

Figure 10 Pseudo Code of Fast Algorithm

In terms to advantage of asynchronous adder, Fast Algorithm can speed-up the

square generator. In addition, Figure 9 and Table 5 is expressed as probability of |[D|; = 0

is 0.25. As soon as operands of addition are zero, asynchronous adder send complete

signal to accelerate system performance. So, the asynchronous adder is a good choice to

implement the square generator.
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3.2 Analysis of the Fast Algorithm

This section describes the analysis of the Fast Algorithm. We assume a uniform
statistical distribution of the input data whose width is 8 bits to 72 bits. The numerical
results on number of reducing bits is obtained from (1), (1), (111), (IV) (p.p 21) and Fast
Algorithm by computer program execution, are reported in Table 5. The respect value of
number of Operand Bits without Fast Algorithm on the addition is equal to
3/4x(nx(n/2+1)), where 3/4 is probability of non-zero values and (nx(n/2+1))
expresses the sum of number of all DValues bits.

Figure 11 illustrates that the rate of the reducing operand bits depends on the width
of input data progressively. The asynchronous adder design with Fast Algorithm is 8% ~
11% faster than that without Fast Algorithm in square generator (Figure 12).
Asynchronous adder design is faster than synchronous if there is a DValue = 0 and each

width of DValue is not equal.
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Number of Operand

. Number . :

" Bits of Number of Operand Bits | Rate of Reducing

without Fast ) ) with Fast Algorithm Operand Bit

) Reducing Bits
Algorithm

8 30 2.390625 27.609375 7.96875%
12 63 5.633789063 57.36621094 8.9425223%
16 108 10.00982666 97.99017334 9.268358%
20 165 16.04515457 148.9548454 9.7243361%
24 234 23.28934193 210.7106581 9.9527102%
28 315 32.20196016 282.7980398 10.2228445%
32 408 42.35878338 365.6412166 10.3820547%
36 513 54.18483815 458.8151618 10.5623466%
40 630 67.27547568 562.7245243 10.6786469%
44 759 82.03470844 676.9652916 10.808262%
48 900 98.07197134 801.9280287 10.8968857%
52 1053 115.7771509 937.2228491 10.9949811%
56 1218 134.7700275 1083.229972 11.0648627%
60 1395 155.4303336 1239.569666 11.1419594%
64 1584 177.385669 1406.614331 11.1985902%
68 1785 201.0081215 1583.991879 11.2609592%
72 1998 225.931363 1772.068637 11.307876%

Table 6 Numerical result of number of operand bits with Fast Algorithm

Rate of Reducing Operand Bit

0.12

0.1 //'

0.08 *
0.06 |
0.04
0.02

Rate

‘ —&— Rate of Reducing Operand Bit

40

Width of Input data

60 80

Figure 11 Rate of the Reducing Operand Bits
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Figure 12 Improvement Rate with Fast Algorithm
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Chapter 4 Implementation

This chapter will describe the implementation of square generator with Fast Algorithm in
asynchronous circuit design. Our model uses pipeline to achieve higher performance and the
following sections shows the details of the model.

In our designs, the input data size is 16 bits and output size is 32 bits. We use four-phase
bundled-data protocol and three pipeline stages to implement the square generator which
contains a 32 bits hybrid adder with recursive scheme.

4.1 Architecture of Square Generator with Fast Algorithm

and Asynchronous Adder

In our design, we separate the square generator into three parts: one’s complementer,
difference value generator (DVG), and asynchronous adder. In the first stage, we have to
generate the eight one’s complement numbers of |N|§2: D|,, +|D),, +---+|D|, +|D|, .
and then we store the these values in each time of recursive scheme in order to produce
all of the difference values in the next stage. In the second stage, DValues are generated
by DValue generator (DVG) and passed to Fast Algorithm to check if they can be
combined with others. If the DValue can be combined, it will be ignored in the next stage,
and one operation can be omitted. In the final stage, an asynchronous adder adds up the
eight DValues to produce a square number (Figure 13).

In the previous two stages, there are two matched-delays in the four phase control

path. Length of the delays depends on the logic in their stages. To make sure the delay
28



length correct is very important. If delay length is too long, whole system will be slowed

down; on the contrary, the delay length will be short. In the final stage, our design is used

the local four-phase counter and complete detection to control last stage.

Ack_out

Ackl

JAN

Reql

Reqg2_in

-/ C
oo Y| )

NUML5:0] One’ s

Complementer |

Latch

OCNum

Dvalue
Generator

¥
FastAlgorithm

En

Latch

Dvalue
+

ZeroFlag

Req2_out, | C /

Ack_out

e

Req_out

Hybrid_Adder3
2 with Local 4-
phase

En

Latch

Result[31:0]

—

Figure 13 Architecture of Square Generator with Fast Algorithm and Asynchronous Adder

4.2 One’s Complementer

Based on square generator with recursive scheme ((2) in p.p 17), one’s

complementer generates seven |N’| values in the first stage. Each of the recursion

produces one |N| that effects the DValue in the next stage (Figure 14). Figure 15

illustrates all of the one’s complementers are composed of XOR gates. Because there are

seven times to do recursive scheme, there are seven one’s complementers whose size are

2,4, ..., and 14 bits. As the result, the total gate counts are 56 XOR gates.
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Figure 14 The Flow Path of One’s Complementer
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Figure 15 Gate level of One’s Complementer
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4.3 DValue Generator and Fast Algorithm

As One’s complement numbers are generated in the first stage, we produce the

DValues and use Fast Algorithm to combine the DValues in the second stage. The stage

is composed (Figure 16) of five parts: Box Flag, Ball Flag, Zero Flag, DVG and Fast

Algorithm. According to Fast Algorithm, Box Flag and Ball Flag are used to identify if

the Ball can be put into Box. Zero Flag is equal to one when the DValue is zero.

DValue32_High

DValue28_High
DValue24_High

——DValue32—» DValue32_Low———»|
DValue28—» DValue28 Low——»|
——DValue24—» DValue24_Low——»

fNew_DValueSZ_LowJ
——New_DValue28_Low—
——New_DValue24_Low—
New_DValuel6———New_DValue

—

New_ZeroFlag——»

———OCNuml16—»
DValuel6—————¥ . New_DValuel2
Dvalue DValuel2 > Hastelzorithin New_DValue8
Generator DValue8————————»|
———OCNum2—»
DValue20 . N f‘
DValue4 i
OCNum16[15:14] BallEmpty[2:0]
~—OCNum14[13:12]—»| Box Box[2:0]
OCNum12[11:10]
OCNum8|[7:6]
———OCNum6[S:4]—»| Ball Ball[2:0]
OCNum4[3:2]
OCNum16[15:14] v
— . —» Zero Zero[7:0] OR
OCNum2[1:0]

Figure 16 Architecture of DValue generator and FastAlgorithm

4.3.1 Implementation of DValue Generator

In [6] and Table 5, DVG is partitioned into DVG_H and DVG_L. Figure 15(a)

and 15(b) shows the hardware implementation of DVG_H and DVG_L respectively.
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In order to save hardware cost, only the DVG_H is implemented with 4-to-1

multiplexers.. Because the NOR gate is one of the basic gates, the area and delay of

NOR gate much less than multiplexer. The DVG_L is implemented by using (n-2)

NOR gates and one inverter.

DVG_H

7(000 ...... 0)_> 00
—~01a,4 - ajap »01
—dnq - dpeadn >

—00a,1 - ajapg > 10

—1an.q - ajagd > 11

an-1@n-2

Figure 17(a) First Half of DValue Generator
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DVG L

0 > dn-1

an-3 : >: dn-z
an-4 T : >: dn-3

a A d,

do 74ij B > d,
anz ¥ e

v

do

Figure 17(b) Second Half of DValue Generator

4.3.2 Implementation of Fast Algorithm

In the previous chapter, Fast Algorithm has been introduced and it could provide
performance speed up about 9% to 11%. In practice, we use the multiplexer to
implement the Fast Algorithm, so the hardware implementation of Fast Algorithm
may be the critical path in the whole square generator. In order to accelerate the Fast

Algorithm, we use the mathematical analysis to find a better approach to design.
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n=16

Width of DValue | Probability of Putting Ball into Box | Rate of Reducing Operand Bits
4 0.108535767 0.043371687
8 0.290222168 0.231949805
12 0.354492188 0.424973018
16 0.1875 0.29970549

Table 7(a) Probability of Putting Ball into Box if n = 16

n=20
Width of DValue | Probability of Putting Ball into Box | Rate of Reducing Operand Bits
4 0.074933052 0.018680544
8 0.182693481 0.091089671
12 0.405166626 0.303019799
16 0.354492188 0.353494569
20 0.1875 0.233715418
Table 7(b) Probability of Putting Ball into Box if n = 20
n=24
Width of Dvalue | Probability of Putting Ball into Box | Rate of Reducing Operand Bits
4 0.055988073 0.009616085
8 0.137329817 0.047173447
12 0.324520111 0.167211308
16 0.405166626 0.278353336
20 0.354492188 0.304424392
24 0.1875 0.193221432
Table 7(c) Probability of Putting Ball into Box if n = 24
n=28
Width of DValue | Probability of Putting Ball into Box | Rate of Reducing Operand Bits
4 0.04014175 0.004986249
8 0.094671026 0.02351932
12 0.210719883 0.078524369
16 0.430890083 0.214093841
20 0.405166626 0.251640971
24 0.354492188 0.264201696
28 0.1875 0.163033554

Table 7(d) Probability of Putting Ball into Box if n = 28
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We still assume a uniform statistical distribution of the input data whose width

varies from 16 bits to 28 bits. The numerical results on probability of putting ball

into box is obtained from (1), (1I), (111), (IV) and Fast Algorithm by computer

program execution, are reported in Table 7(a), 7(b), 7(c) and 7(d). Figure 18(a), 18(b),

18(c) and 18(d) are observed that the probability of putting 4-bits DValue into Box is

about 4% to 10%. The rate of reducing operand bits on 4-bits DValue in Figure 18(e)

is decreased exponentially by width of input data.

In summary, although we reduce the minimum box and ball to sacrifice a few

performance, our design obtains lower cost. Figure 19 shows that the circuit of the

Fast Algorithm which is a multiplexer. This multiplexer is based on our algorithm to

merge the DValues and output the BallEmpty flag to next stage.

Probability of Putting Ball into Box

Probability
(@]
(\&)

. / > —+—n=16
0.1

0 5 10 15 20
Width of DValue

Figure 18(a) Probability of Putting Ball into Box in n=16
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Figure 18(c) Probability of Putting Ball into Box in n=24
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Figure 18(e) Rate of Reducing Operand Bits in 4-bits DValue




4.3.3

In the final stage, an asynchronous adder adds up the eight DValues to generate a

square number. Asynchronous adder has to do seven additions at most so it must have a

counter to control the input data. Figure 20(a) and Figure 20(b) are four phase control

with counter and 32-bit hybrid adder respectively. Counter in the control path is

implemented by local four phase controller. Controller has two part: counter and

ZeroPass circuit. First of all, the counter increases until the controller is triggered by

global request signal. The Adder will do seven times to generate the square number.

When the counter is equal to 7, this controller is stopped and passes the global complete

signal. Second, the ZeroPass scheme detects the zero flag if DValue is zero. If DValue is

zero, the ZeroPass scheme will send early complete signal without waiting adder

complete signal.

DValuel6———— b

DValuel2———————Pp|

DValue§———— b

FastAlgorithm

New_DValue32_Low—>»
New_DValue28_Low—»
New_DValue24_Low—>»
New_DValuel6—»
New_DValuel2—»
New_DValue8§—»

BallEmpty[2:0]——»

Box|[2:0]

Ball[2:0]

Figure 19 Circuit of Fast Algorithm
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In the combinational part, there are two latches to store DValue to add. The above

latch in the Figure 20(b) store the temporary sum and the other pass DValue to

asynchronous adder. The following section will describe the hybrid adder in detail.

Global_Rin

Local_Aout

4« Local_Ain

Local Four Phase
Controller Zero_Detect |— ZeroFlag—»
With Counter

Local_Rin——» |_Counter>

Adder_Done

Figure 20(a) Four Phase Control with Counter in 32-bit Hybrid Adder
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Adder Done—————»
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Latch | |
1~-6 En
a
Inputl——»
|
CounterJA Local_Rin
| Hybrid_Adder
| 32
Input2——»|
~ DValue2s  »{0
En
—DValue24—»1 T
' > L Local_Rin
En
DValued—— » ¢ ?
Local_Rin

Counter—T ‘_

Figure 20(b) Data Path of 32-bit Hybrid Adder

4.4 Implementation of Hybrid Adder

Asynchronous adders in [3, 5-8] can send complete signal if carry chain is finished.
However, square generator has two properties. First, the size of square number from
input data is fixed so there is no carry out in the MSB. i.e. size of input data N is n-bit,
and then size of square number is 2n-bit. Next, the carry in always is equal to zero.

Based on above two characteristics, Figure 21 shows the architecture of specific 32-bits
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hybrid adder [7] for square generator. The complete signal can be used to decrease one

bit signal due to no carry out.

The Figure 22(a), 22(b) and 22(c) shows architecture of one-bit asynchronous

adders, which is modified from the self-time adder in AMULETL processor [12]. The

Figure 22(a) whose operands and the result is bundled data and the carry is dual-rail.

Because carry-in signal is equal to zero, the Figure 22(b) specific design reduces the gate

count than Figure 22(a). Similarly, Figure 22(c) is slightly modified to detect the 30th bit

carry out signal.

The fan-in of complete detector in hybrid adder is so many inputs that

implementation of C-element has heavy area cost. In order to solve above problem,

Figure 23 illustrates the completion detector which make fan-in put into the AND gate

and NAND gate.
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Figure 22(a) 1-bit Hybrid Adder
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Figure 23 Alternative C-element
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Chapter 5 Simulation

In order to demonstrate the performance of the proposed asynchronous square generator
with Fast Algorithm, the architecture presented in the previous chapter is implemented by
using standard cell library of TSMC 0.13 zm CMOS process.

We use the ModelSim 6.0 simulator to show the waveform and use Design Compiler to
synthesize our design to gate-level model. The results of area and latency are described in the
following sections.

5.1 Timing Simulation

Because the asynchronous square generator with Fast Algorithm has best-case and
worst-case performance, the input values are (AA55), and (6655), respectively for the
best-case and worst-case. The best-case represents that all of the balls can be put into the
boxes; in contrast, the worst-case means that all of the balls can not be put into the boxes.

Figure 24(a) and Figure 24(b) show the waveforms and latencies for these two cases.

Table 8 shows the comparison of the asynchronous square generator with Fast
Algorithm and without Fast Algorithm. In the best case, asynchronous square generator
with Fast Algorithm is 18.13% faster than that without it; in other words, asynchronous
adder with ZeroPass scheme provides speedup computation for the addition time. In the
worst case, Fast Algorithm approach is 2.99% slower than that without it. Because Fast
Algorithm does not combine with any DValues, it becomes the overhead of the system;

that is, asynchronous square generator without Fast Algorithm can generate the DValues
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to add directly.

Cursar 1 [36710ps

Figure 24(b) Worst-case for Fast Algorithm when input value = (6655),

46



Without

Latency(ns Fast Algorithm Improvement Rate
y(ns) g Fast Algorithm P
Best Case 64.869 79.232 18.13%
Worst Case 87.671 85.128 -2.99%

Table 8 Latency between with Fast Algorithm and without Fast Algorithm

5.2 Area Simulation

The area of asynchronous square generator with Fast Algorithm and without
improving is shown in Table 8. The area of the asynchronous square generator with Fast

Algorithm is 175963.23 um* and the area of that without it is 132179.82 um?®. The area

overhead with Fast algorithm is about 133.12%.

Area( xm?)
FastAlgorithm 175963.23
Without
: 132179.82
FastAlgorithm

Table 9 Area of between With Fast Algorithm and Without Fast Algorithm
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Chapter 6 Conclusion and Future Works

In the design, we implement the square generator with Fast Algorithm in asynchronous
circuit design. The differential values (DValues) can be combined by Fast algorithm; thus,
square generator reduces the additions and improves the performance. The numerical result of
analysis can improve about 8% ~ 11%.

Based on recursive scheme of square generator, our design is divided into three
asynchronous pipeline stages. The one’s complement numbers is produced in the first stage.
Subsequently, the DValues are generated by DValue generator (DVG) and then they pass to
Fast Algorithm to combine DValues. After finishing above operation, this stage send the zero
flag and DValues are sent to the next stage. Finally, the hybrid adder with ZeroPass can
accelerate the addition to produce the square number.

The results of simulation using standard cell library in TSMC 0.13 zm CMOS process
demonstrate that our design is 18.13% faster in the best-case than asynchronous square
generator without Fast Algorithm.

In the future, improving Fast Algorithm plays an important role on the proposed
asynchronous square generator. Furthermore, using faster asynchronous pipeline can also

speed-up the synchronization with each stage.
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