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摘要 

 平方數經常會在數學計算和影像處理中使用到。在傳統上，大都是使用乘法器來產

生平方數。但是乘法器實作上複雜且處理速度較慢。而如何有效率的計算出平方數就變

得十分的重要。 

在 1998 年，謝明得 等教授在 IEEE Transaction on Computers 提出一個使用查表法

的平方產生器 [4]，這個產生器使用簡單的加法來取代乘法，以達到加速平方數的計算。

後來到 2008 年，又提出以遞迴方式，運用更小的 table 使作平方產生器 [5]。 

依據前述的遞迴方式，需要作多次的加法運算。我們提出一個“快速演算法＂來減

少加法運算的次數，再搭配非同步加法器實作平方產生器。在 TSMC 0.13 製成的標準元

件下實作後合成，當最佳的狀況，運用快速演算法可最高可加快 18.13%。 
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Abstract 

 Square number is often used in mathematical calculation and video compression. In the 

past, multipliers are widely needed to generate square numbers. However, multiplier is 

complex, hard to implement and slow. How to reduce overhead of generating square number 

is a very important issue. 

In 1998, Chin-Long Wey and Ming-Der Shieh purposed the Square generator [4]. Instead 

of the multiplier, a look-up table is needed to generate the square number. This method can 

accelerate operating speed to generate square numbers. In 2008, Tsai proposed the recursive 

scheme to reduce the ROM size to implement the square generator [5].  

On our work, we propose the “Fast Algorithm” and implemented it with asynchronous 

circuits. As a result, the square generator with Fast Algorithm implemented on TSMC 
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m0.13μ is 18.13% faster in the best case than the original design. 
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Chapter 1 Introduction 

Generating square number is often used in digital signal processing, mathematical 

calculation and video compression. In the past, generating square number was by multiplier. 

However, multiplier has some disadvantages. First, it is complex and hard to implement. Then, 

speed of multiplier is slow. At last, it has very high overhead of area. How to reduce overhead 

and speedup of generating square number is a very important issue. 

In the recently, this topic was focused. In 1998, Chin-Long Wey and Ming-Der Shieh 

purposed the Square generator [2]. Their method uses the look-up table to produce the square 

number. This method can accelerate operating speed to generate square number. According to 

Wey’s algorithm, it used the recursive scheme to reduce the ROM size. In 2008, Tsai’s paper 

had another approach to improve square generator [3]. 

Asynchronous circuit design [4, 5] is a circuit design methodology. Asynchronous circuit 

design and synchronous circuit design are totally different. Asynchronous circuit design uses 

the handshake protocol to communicate with sub-circuits without a global clock. With the 

protocol, the speed of circuit does not set the worst-case clock cycle time; on the other hand, it 

can achieve average-case speed. Asynchronous circuit design has other advantages for circuit 

design, such as modularity, no clock skew problems and low power consumption etc [7-9]. 

Our design unifies the benefits of the asynchronous circuit design and square generator. 

In asynchronous circuit design, the complete detection adder which is added into square 

generator performs the average-case performance. Then, the proposed Fast Algorithm 



improves the square generator with recursive scheme. According to mathematical analysis, 

Fast Algorithm can speed-up about 11% comparing to the original square generator. Finally, 

the asynchronous square generator with Fast Algorithm is implemented on TSMC 0.13 mμ  

process and the area is 175963.23 . The latency of our design is 64.87ns at most. 

Compare with asynchronous square generator without Fast Algorithm, the rate of improving 

latency is about 18.13%. 

2mμ
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Chapter 2 Related Works 

This chapter will give introduction of asynchronous circuit design and square generator. 

We show the advantages, handshaking protocols, pipeline and C-element of asynchronous 

circuit design. We also give descriptions of square generator. There are two ways to 

implement square generator: folding approach and recursive approach. 

2.1  Asynchronous Circuit Design 

Asynchronous circuit design is a circuit design methodology. Asynchronous circuit is 

practically different from synchronous circuit. There are many advantages in the 

asynchronous circuit design and special ways to design circuit. The following will list 

advantages and handshaking protocols. 

2.1.1 Advantages 

Comparing with the synchronous circuit design, the asynchronous circuit 

design has no global clock and use handshaking protocol between the sub-circuits to 

perform synchronization and communication. The following are advantages of the 

asynchronous circuit design :  

2.1.1.1 Low power consumption: Asynchronous circuit do not supply extra 

power to generate clock tree. The sub-circuits in a synchronous circuit are 

clock-driven, whereas they are demand-driven in an asynchronous circuit. 

This means that the sub-circuits in an asynchronous circuit are only active 

when and where needed. That means that there is no clock tree. According 
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to [6], the power consumption of asynchronous circuit is up to 36% to 

40%. 

2.1.1.2 Average-case speed: The elasticity of the asynchronous pipeline has 

led to the outcome that an asynchronous pipeline can perform ‘average’ 

processing rather than worst case time for each of synchronous pipeline 

stages. When asynchronous pipeline has been completed to receive the data, 

receiver could send acknowledge signal to sender. Sender can do next job 

early. 

However, the pipeline of synchronous circuits choose the longest time 

of pipeline stage to be clock cycle time. Comparing with asynchronous 

pipeline, asynchronous pipeline has individual time of stage. It is 

independent on each asynchronous stage. For this reason, the asynchronous 

circuit can accomplish average-case performance. 

2.1.1.3 Modularity: Because of the simple handshake interfaces and local 

timing, the asynchronous circuit is easy to be divided into different 

modules. Designers only need to take care of synchronization between 

different modules. The speed of a module does not influence other 

modules. 

2.1.1.4 No clock distribution and clock skew problems: Clock plays an 

important role on communication. But there is a serious problem about 
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clock skew. System becomes larger and larger, so it is more and more 

difficult to transmit clock signals. However, the asynchronous circuit has 

no clock distribution. It uses the handshaking protocol to avoid clock skew 

problem. 

2.1.2  Handshaking Protocol 

Handshaking protocol is a way to communicate in the asynchronous circuit 

design. In general, there are two parts in the circuit design. One is data path, and the 

other is control path. In the Handshaking protocol, it defines these parts below: 

 Data path: bundled-data, dual-rail, 1-of-n encoding etc. 

 Control path: 4-phase, 2-phase etc. 

The bundled-data and dual-rail data are two common ways to transfer data 

between sender and receiver. First, the bundled-data channel (Figure 1 (a)) which 

data signals use normal Boolean levels to encode information and separates request 

and acknowledge wires are bundled with the data signals (Figure 1(b)). 

Four-phase bundled-data uses REQ and ACK signals as the synchronization 

signals between the sender and receiver. Four-phase protocol is known as the 

return-to-zero handshake protocol. Initially, REQ and ACK signals are all 0. After 

DATA is valid in the SENDER, REQ signal is asserted to 1 by the SENDER (1). If 

the RECEIVER has accepted the DATA from the SENDER, the RECEIVER would 

have asserted ACK signal to 1(2). After the SENDER receives the ACK signal from 



the RECEIVER, the SENDER will dessert the REQ signal to 0(3) and then stop 

transfer DATA. Finally, RECEIVER will reset the ACK signal to 0 after 

RECEIVER receives REQ = 0(4). When SENDER and RECIEVER finish these 

four operations, it completes a handshaking. At this point, the SENDER can do next 

communication cycle can the started (5). 

 

 

Figure 1(a) Bundled-data channel 

 

 

Figure 1(b) Four-phase bundled-data protocol 

 

The other way of handshaking is dual-rail (Figure 2(a)). In stead of “bundled-data” 
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with the REQ and ACK signals, the dual-rail encoding encodes each 1-bit data with 2 

bits. The encoding method shows in Table 1. It uses 00 to show that there is no data, 01 

to encode the data of 0 and 10 to encode the data of 1. If the system uses dual-rail 

protocol to transfer n-bits data, there will have 2*n data lines.  

 

 d.t d.f 

Empty “E” 0 0 

Valid “0” 0 1 

Valid “1” 1 0 

Not used 1 1 

Table 1 Encoding method 

 

Because the dual-rail circuit does not have REQ signal, the RECEIVER needs extra 

circuits to detect DATA signals are arrival. This is called completion detection. 

Figure 2(b) shows the process of data transfer using dual-rail protocol. Initially, 

DATA is EMPTY, and ACK is 0. When DATA is Valid and RECEIVER detects that 

DATA is ready, RECEIVER captures DATA and pulls up ACK. Then SENDER stops 

sending DATA and DATA changes to EMPTY. Finally RECEIVER pulls down ACK and 

the transfer is finish. 



 

Figure 2(a) Dual-rail 

 

EMPTY VALIDVALIDEMPTYDATA

ACK

 

Figure 2(b) Dual-rail protocol 

 

 Valid DATA will be separated. Dual-rail protocol uses EMPTY to separate each DATA 

(Figure 3). 
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Figure 3 Transfer diagram 
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2.1.3 C-element 

The C-element plays an important role on asynchronous circuit design. It 

usually deals with REQ signal and ACK signal. Table 2 shows behaviors of the 

C-Element. When both inputs are 0, the output Z is set to 0. And when both inputs 

are 1, the output Z is set to 1. When the inputs are different, the output Z is equal to 

‘No Change’ (i.e. keeping previous output). Because C-element is state-holding gate, 

the output is only changed by the different inputs. Figure 4(a) shows the symbol and 

gate-level design of C-element. 

A B Z 

0 0 0 

0 1 

1 0 
No Change 

1 1 1 

Table 2 Truth table of C-element 

 

C-element is usually used on circuit of complete detector. This circuit often 

appears on the asynchronous circuit. Because we use the RTL design method, 

Figure 4(b) shows that two inputs C-element with reset scheme. 



Z

A

B

A

B
Z

 

Figure 4(a) C-element 

 

 

Figure 4(b) C-element with Reset 
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2.1.4 Pipeline 

A four-phase bundled-data pipeline is particularly simple and similar to 

synchronous pipeline with local clock. Figure 5(a) shows a FIFO which is without 

data processing and Figure 5(b) shows how to add combinational logic into 

four-phase bundled-data pipeline. This pipeline has several characteristics which are 

listed below: 

1). It is simple and easy to implement. 

2). If the right stage do not receive the acknowledge signal, this pipeline will fill 

and stall. 

3). To maintain correct behavior, the matching delay should be inserted in the 

request signal paths. 

4). When pipeline is full, only half the latches store data.  

5). It is similar to a master-slave flip-flop. 

Req

En

Latch

Ack

En

Latch

Req

Ack

Req
Req

Ack

C C C

Ack

En

Latch

 

Figure 5(a) Four-phase bundled-data pipeline 

  11



DelayReq

Function
Block

En

Latch

Delay

Function
Block

Ack

En

Latch Function
Block

Req

Ack

Req
Req

Ack

C C C

Ack

En

Latch

 

 Figure 5(b) Four-phase bundled-data pipeline with combinational logic 

 

2.2  Square Generator 

High-speed generating square numbers are often required for digital signal 

processing, video compression processing, and many other mathematical calculations. In 

order to generate square number, the multiplier should be used. But multiplier has high 

area cost and is complex. However, square number is often needed on many domains. In 

the recent years, the square generator is developed by different ways [1-4]. Next two 

sections will introduce the square generator. First, generator is implemented by folding 

approach. Second, it use recursive scheme to implement. 
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2.2.1 Square Generator with Folding Approach 

In 1998, Chin-Long Wey and Ming-Der Shieh proposed “Design of a 

High-Speed Square Generator” [2] in the IEEE Transactions on Computers. The 

simplest way for calculating square number used the look-up table in the ROM. 

This section describes development of square generator with huge loop-up 



ROM table. The following are property of square generator. Let A = (an-1an-2…a1a0) 

be an n-bit binary number and |A| can express as : 

∑
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Property 1.  A = (an-1an-2…a1a0), B = (bn-1bn-2…b1b0) : n-bit binary number, where 
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For example, there are two five-bit binary numbers A = (a4a3a2a1a0) = (10101), 

B = (b4b3b2b1b0) = (01010), where ii ab −=1 . Their square number is |A|2 = 441 and 

|B|2 = 100. The difference value is |D| = 341= (01010 10101) = (a3a2a1a00 

b3b2b1b01). 

There are two conditions that A and B are unsigned number and bi is one’s 

complement of ai. If an-1 = 1, the bn-1 = 0. By difference formula, the difference 

value is: 
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)10( 012012
22 aaaaaaBAD nn KK −−=−= ……………………..(3) 

According to property 1, the following property concludes. 

Property 2 Two-Folding Approach: Given an n-bit binary number N = 

(an-1an-2…a1a0). Dependent on Property 1, we obtain DNN +=
2*2  

(Two-folding approach), where N* and D are defined as: 

   

an-1 N* D 

0 )( 012 aaan L−  )0 000   0000( LLL  

1 )( 012 aaan L−  )0..   0..( 012012 aaaaaa nn −−

 

 

 

Table 3 Square Generator with Two-Folding Approach 
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In the folding approach, square generator uses the look-up table simplifies the 

process as a simple addition or subtraction and table look-up. For instance, N is 

six-bit binary number. If N = (011 011) = 27(i.e. an = 0), the N* = (11 011) and D = 

(000000 000000). It represents reducing MSB to loop-up table and then generates 

|N*|2 to be equal to N2.Another condition is an = 1. If N = (110 010) = 50, the N* = 

(01 101) and D = (100100 011011). Then square generator looks up the |N*|2 from 

the ROM. Finally, |N*|2 + |D| is the square result of input data. If input data is n-bit 

binary number, the ROM size will be  bits. However, the two-folding 

approach has huge overhead on the ROM size.  

)1(22 1 −×− nn



Figure 6 shows the architecture of square generator which consists of three 

major parts: 

(1). a one’s complementer(OC) 

(2). a ROM(store the look-up table) 

(3). a D-value generator (DG) 

)2(22 2 −×− nn

 

Figure 6 Architecture of Square Generator with Two Folding Approach 
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The above approach can reduce more than half size of look-up ROM table. 

Nevertheless, the look-up ROM is still very huge and square generator needs 2*(n-1) 

bits adder. Next Property will introduce the four-folding approach which is better 

than the two-folding approach in the ROM size. 

 



Property 3 Four-Folding Approach: There is a n-bit binary number N = 

(an-1an-2…a1a0). Based on the Property 2 gets DNN +=
2*2  equation, where N* 

and D are defined as: 

 

an-1 an-2 N* D 

0 0 )( 013 aaan L−  )0 000   0000( LLL  

1 0 )( 013 aaan L−  )0  ......  00   ......01( 013 aaan−  

0 1 )( 013 aaan L−  )1...0   ...00( 013013 aaaaaa nn −−  

)1...0   0..1( 013013 aaaaaa nn −−  )( 013 aaan L−  1 1 

Table 4 Square Generator with Four-Folding Approach 

 

This approach extends the two-folding approach. It depends on the most 

significant two bits to generate N* and difference value. Table 4 describes how to 

use the four-folding approach. The following is an example to show the four-folding 

approach. Figure 7 illustrates the architecture of four-folding approach. There are a 

few differences between the two approaches. One’s complementer decreases 1 bit. A 

 ROM is used in the square generator. Four folding approach divides 

difference value generator into DValue_High and DValue_Low two part which can 

depend on their characteristics to design. 

)2(22 2 −×− nn
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For example, a five-bit binary number N is equal to 10111(23). We know the 

(a4, a3) = (1, 0). Then based on the Table 3, we can obtain the N* = (111), D = 

(01111 00000), and N2 = |N*|2 + D = (11 0001) + (01111 00000) = (10 0001 0001) = 

529. The look-up table size becomes  bits. Thus the needed ROM 

size is about 50% less than that of two-folding approach. Addition length of square 

generator can reduce two bits slightly. The four-folding approach not only improves 

the area cost, but also the operation speed of square generator (because of less 

lengths of addition).  

)2(22 2 −×− nn

)2(22 2 −×− nn
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Figure 7 Architecture of Square Generator with Four Folding Approach 



2.2.2 Square Generator with Recursive Approach 

Due to overhead on the ROM size, Wei-Chang Tai in 2008 proposed a new 

approach [2] whose square generator is implemented with small look-up table. Tai 

was rewritten the equation by recursive scheme and four-folding approach. 

Equation (2) shows the calculation of new approach. In the equation (2), under the 

N and D value represents the width of values. The Table 5 shows the recursive 

scheme for general case. The r number represents times of recursive. 
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Based on four-folding approach, the ROM size is reduced by generating more 

difference values. It may sacrifice the performance reduce the cost of ROM size 

more than 75%. If we do recursive scheme n/2 times, square generator has no 

look-up table ROM and there are n/2 difference values. It has to do addition 

 times. )2/(log n2
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an-2r+1 an-2r N*(r) Di 

0 0 )( 0112 aaa rn L+−  )0 ...... 000   0 ...... 000(  

1 0 )( 0112 aaa rn L+−  )0  ......  00   ......01( 013 aaan−  

0 1 )( 0112 aaa rn L+−  )1...0   ...00( 013013 aaaaaa nn −−  

)( 0112 aaa rn L+−  )1...0   0..1( 013013 aaaaaa nn −−  1 1 

Table 5 Square Generator with Recursive Approach 
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Chapter 3 Designs 

Due to square generator with recursive scheme, there are too many operands. If we use 

synchronous circuits design, system has to set the worst-case delay to be clock cycle time, the 

part of adder tree is the critical path in the square generator. For this reason, we design a new 

circuit to implement square generator with recursive scheme. We use the asynchronous circuit 

design which does not have a global clock to achieve the average-case performance, and use 

zeroflags to reduce the additions. 

In order to design the proposed method with the asynchronous circuit, the handshake 

protocol selected is the four-phase bundled-data. Furthermore, an asynchronous adder with 

complete detection is used to speed up the calculation. Besides, through observing the Table 4, 

we develop the “Fast Algorithm” to reduce the number of bits of addition. This chapter 

describes the model and the analysis of Fast Algorithm. 

3.1  Fast Algorithm 

According to Table 5, we observe a condition that second half part of the difference 

value (DValue) is zero when (an-2r+1, an-2r) = (1, 0). If there is a 2n-bits DValue ( |D|a ) 

with all zero in the second half bits, and we can use Fast Algorithm to find a n-bits 

non-zero DValue ( |D|b ). The new DValue ( |D|c ) is generated by combining |D|a with 

|D|b. For instance, N is 12-bit binary number. After using recursive scheme, square 

generator produces six difference values which are |D|24、|D|20、|D|16、|D|12、|D|8 and |D|4. 

Figure 8(a) expresses this condition. It should be noted that the width should be matched. 



i.e. |D|12 can only put into |D|24, |D|8 can be put into both |D|24 and |D|20, and |D|4 which 

has the minimum width can be put into |D|24、|D|20 and |D|16. We suppose second half of 

|D|24、|D|20 and |D|16 are zero and all of |D|12、|D|8 and |D|4 are non-zero number. In the 

Figure 8(a) condition, (iv) can put into (i), (v) can input to (ii), and (vi) can put into (iii). 

Finally, Figure 8(b) illustrates the result after finished previous operations. This approach 

is called the “Fast Algorithm”. 
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Figure 8(a) Original Addition of DValue 
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Figure 8(b) Addition of DValue with Fast Algorithm 

 Because previous description is hard to understand, we re-define the relationship 

between the first half difference values and the second half difference values. We define a n/2 

bits flag as “DValue”. DValue includes the ‘Box’ and ‘Ball’ flags which describes as Figure 9. 

Box is a flag to record if all second half bits of first half DValues are zeros. If the value of 

Box is 1, the second half bits of the DValue are zeros. Ball is a flag to represent if all second 

half difference values are non-zero values. If the value of Ball is 1, the DValue are non-zero 

values. For example, Box ={ } and Ball =0124/14/ xxxx nn L−− { }0124/14/ bbbb nn L−− . If xi =1, it 

expresses (an/2+2i+1, an/2+2i) = (0, 1), and bj = 1 when (a2j+1, a2j) = (0, 1). We assume that the 

input data is a uniform statistical distribution. The probability of xi = 1 is 0.25(i.e. (I)), which 

of xi = 0 is equal to 0.75(i.e. (II)). For the same reason, the probability of bj = 1(exist the ball) 

is 0.75(i.e. (III)). On the other hand, the bj = 0(no ball) is 0.25(i.e. (IV)). Based on the above 

description of probability, next section will compile statistics about improvement rate with 

Fast Algorithm. 
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Figure 9 Expression of DValue Flag 

 

Figure 10 is the pseudo code of Fast Algorithm which expresses how to search 

empty box and available ball. First of all, if an available ball is scanned, it will enter the 

ScanBoxes function to find a suitable box. The way to find the suitable box in the 

ScanBoxes is setting the bound to search. The ScanPoint variable records box point of 

last searching position.  
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Figure 10 Pseudo Code of Fast Algorithm 

  

In terms to advantage of asynchronous adder, Fast Algorithm can speed-up the 

square generator. In addition, Figure 9 and Table 5 is expressed as probability of |D|i = 0 

is 0.25. As soon as operands of addition are zero, asynchronous adder send complete 

signal to accelerate system performance. So, the asynchronous adder is a good choice to 

implement the square generator. 
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3.2  Analysis of the Fast Algorithm 

This section describes the analysis of the Fast Algorithm. We assume a uniform 

statistical distribution of the input data whose width is 8 bits to 72 bits. The numerical 

results on number of reducing bits is obtained from (I), (II), (III), (IV) (p.p 21) and Fast 

Algorithm by computer program execution, are reported in Table 5. The respect value of 

number of Operand Bits without Fast Algorithm on the addition is equal to 

, where 3/4 is probability of non-zero values and ))12/((4/3 +×× nn ))12/(( +× nn  

expresses the sum of number of all DValues bits. 

Figure 11 illustrates that the rate of the reducing operand bits depends on the width 

of input data progressively. The asynchronous adder design with Fast Algorithm is 8% ~ 

11% faster than that without Fast Algorithm in square generator (Figure 12). 

Asynchronous adder design is faster than synchronous if there is a DValue = 0 and each 

width of DValue is not equal. 
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n 

Number of Operand 
Bits 

without Fast 
Algorithm 

Number  
Of 

 Reducing Bits

Number of Operand Bits 
with Fast Algorithm 

Rate of Reducing 
Operand Bit 

8 30 2.390625 27.609375 7.96875% 
12 63 5.633789063 57.36621094 8.9425223% 
16 108 10.00982666 97.99017334 9.268358% 
20 165 16.04515457 148.9548454 9.7243361% 
24 234 23.28934193 210.7106581 9.9527102% 
28 315 32.20196016 282.7980398 10.2228445% 
32 408 42.35878338 365.6412166 10.3820547% 
36 513 54.18483815 458.8151618 10.5623466% 
40 630 67.27547568 562.7245243 10.6786469% 
44 759 82.03470844 676.9652916 10.808262% 
48 900 98.07197134 801.9280287 10.8968857% 
52 1053 115.7771509 937.2228491 10.9949811% 
56 1218 134.7700275 1083.229972 11.0648627% 
60 1395 155.4303336 1239.569666 11.1419594% 
64 1584 177.385669 1406.614331 11.1985902% 
68 1785 201.0081215 1583.991879 11.2609592% 
72 1998 225.931363 1772.068637 11.307876% 

Table 6 Numerical result of number of operand bits with Fast Algorithm 
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Figure 11 Rate of the Reducing Operand Bits 
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Figure 12 Improvement Rate with Fast Algorithm 
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Chapter 4 Implementation 

This chapter will describe the implementation of square generator with Fast Algorithm in 

asynchronous circuit design. Our model uses pipeline to achieve higher performance and the 

following sections shows the details of the model. 

In our designs, the input data size is 16 bits and output size is 32 bits. We use four-phase 

bundled-data protocol and three pipeline stages to implement the square generator which 

contains a 32 bits hybrid adder with recursive scheme. 

4.1  Architecture of Square Generator with Fast Algorithm 

and Asynchronous Adder 

In our design, we separate the square generator into three parts: one’s complementer, 

difference value generator (DVG), and asynchronous adder. In the first stage, we have to 

generate the eight one’s complement numbers of 2

32
N : 

482832
DDDD ++++ L , 

and then we store the these values in each time of recursive scheme in order to produce 

all of the difference values in the next stage. In the second stage, DValues are generated 

by DValue generator (DVG) and passed to Fast Algorithm to check if they can be 

combined with others. If the DValue can be combined, it will be ignored in the next stage, 

and one operation can be omitted. In the final stage, an asynchronous adder adds up the 

eight DValues to produce a square number (Figure 13). 

  28

In the previous two stages, there are two matched-delays in the four phase control 

path. Length of the delays depends on the logic in their stages. To make sure the delay 



length correct is very important. If delay length is too long, whole system will be slowed 

down; on the contrary, the delay length will be short. In the final stage, our design is used 

the local four-phase counter and complete detection to control last stage.  
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Figure 13 Architecture of Square Generator with Fast Algorithm and Asynchronous Adder 

 

4.2  One’s Complementer 

Based on square generator with recursive scheme ((2) in p.p 17), one’s 

complementer generates seven |N*| values in the first stage. Each of the recursion 

produces one |N*| that effects the DValue in the next stage (Figure 14). Figure 15 

illustrates all of the one’s complementers are composed of XOR gates. Because there are 

seven times to do recursive scheme, there are seven one’s complementers whose size are 

2, 4, … , and 14 bits. As the result, the total gate counts are 56 XOR gates. 
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Figure 14 The Flow Path of One’s Complementer 
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Figure 15 Gate level of One’s Complementer 



4.3  DValue Generator and Fast Algorithm 

As One’s complement numbers are generated in the first stage, we produce the 

DValues and use Fast Algorithm to combine the DValues in the second stage. The stage 

is composed (Figure 16) of five parts: Box Flag, Ball Flag, Zero Flag, DVG and Fast 

Algorithm. According to Fast Algorithm, Box Flag and Ball Flag are used to identify if 

the Ball can be put into Box. Zero Flag is equal to one when the DValue is zero. 

 

 

Figure 16 Architecture of DValue generator and FastAlgorithm 

 

4.3.1  Implementation of DValue Generator 
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In [6] and Table 5, DVG is partitioned into DVG_H and DVG_L. Figure 15(a) 

and 15(b) shows the hardware implementation of DVG_H and DVG_L respectively. 



In order to save hardware cost, only the DVG_H is implemented with 4-to-1 

multiplexers.. Because the NOR gate is one of the basic gates, the area and delay of 

NOR gate much less than multiplexer. The DVG_L is implemented by using (n-2) 

NOR gates and one inverter.  

 

 

Figure 17(a) First Half of DValue Generator 
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Figure 17(b) Second Half of DValue Generator 

 

4.3.2  Implementation of Fast Algorithm 

In the previous chapter, Fast Algorithm has been introduced and it could provide 

performance speed up about 9% to 11%. In practice, we use the multiplexer to 

implement the Fast Algorithm, so the hardware implementation of Fast Algorithm 

may be the critical path in the whole square generator. In order to accelerate the Fast 

Algorithm, we use the mathematical analysis to find a better approach to design.  
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n=16 
Width of DValue Probability of Putting Ball into Box Rate of Reducing Operand Bits

4 0.108535767 0.043371687 
8 0.290222168 0.231949805 
12 0.354492188 0.424973018 
16 0.1875 0.29970549 

Table 7(a) Probability of Putting Ball into Box if n = 16 

n=20   
Width of DValue Probability of Putting Ball into Box Rate of Reducing Operand Bits

4 0.074933052 0.018680544 
8 0.182693481 0.091089671 
12 0.405166626 0.303019799 
16 0.354492188 0.353494569 
20 0.1875 0.233715418 

Table 7(b) Probability of Putting Ball into Box if n = 20 

n=24   
Width of Dvalue Probability of Putting Ball into Box Rate of Reducing Operand Bits

4 0.055988073 0.009616085 
8 0.137329817 0.047173447 
12 0.324520111 0.167211308 
16 0.405166626 0.278353336 
20 0.354492188 0.304424392 
24 0.1875 0.193221432 

Table 7(c) Probability of Putting Ball into Box if n = 24 

n=28   
Width of DValue Probability of Putting Ball into Box Rate of Reducing Operand Bits

4 0.04014175 0.004986249 
8 0.094671026 0.02351932 
12 0.210719883 0.078524369 
16 0.430890083 0.214093841 
20 0.405166626 0.251640971 
24 0.354492188 0.264201696 
28 0.1875 0.163033554 

Table 7(d) Probability of Putting Ball into Box if n = 28 



We still assume a uniform statistical distribution of the input data whose width 

varies from 16 bits to 28 bits. The numerical results on probability of putting ball 

into box is obtained from (I), (II), (III), (IV) and Fast Algorithm by computer 

program execution, are reported in Table 7(a), 7(b), 7(c) and 7(d). Figure 18(a), 18(b), 

18(c) and 18(d) are observed that the probability of putting 4-bits DValue into Box is 

about 4% to 10%. The rate of reducing operand bits on 4-bits DValue in Figure 18(e) 

is decreased exponentially by width of input data. 

In summary, although we reduce the minimum box and ball to sacrifice a few 

performance, our design obtains lower cost. Figure 19 shows that the circuit of the 

Fast Algorithm which is a multiplexer. This multiplexer is based on our algorithm to 

merge the DValues and output the BallEmpty flag to next stage. 
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Figure 18(a) Probability of Putting Ball into Box in n=16 
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Figure 18(b) Probability of Putting Ball into Box in n=20 
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Figure 18(c) Probability of Putting Ball into Box in n=24 
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Figure 18(d) Probability of Putting Ball into Box in n=28 
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Figure 18(e) Rate of Reducing Operand Bits in 4-bits DValue 

 

  37



 

Figure 19 Circuit of Fast Algorithm 

 

4.3.3  Hybrid Adder with ZeroPass Scheme 

In the final stage, an asynchronous adder adds up the eight DValues to generate a 

square number. Asynchronous adder has to do seven additions at most so it must have a 

counter to control the input data. Figure 20(a) and Figure 20(b) are four phase control 

with counter and 32-bit hybrid adder respectively. Counter in the control path is 

implemented by local four phase controller. Controller has two part: counter and 

ZeroPass circuit. First of all, the counter increases until the controller is triggered by 

global request signal. The Adder will do seven times to generate the square number. 

When the counter is equal to 7, this controller is stopped and passes the global complete 

signal. Second, the ZeroPass scheme detects the zero flag if DValue is zero. If DValue is 

zero, the ZeroPass scheme will send early complete signal without waiting adder 

complete signal. 
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In the combinational part, there are two latches to store DValue to add. The above 

latch in the Figure 20(b) store the temporary sum and the other pass DValue to 

asynchronous adder. The following section will describe the hybrid adder in detail. 

 

 

Figure 20(a) Four Phase Control with Counter in 32-bit Hybrid Adder 
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Figure 20(b) Data Path of 32-bit Hybrid Adder 

 

4.4   Implementation of Hybrid Adder 

Asynchronous adders in [3, 5-8] can send complete signal if carry chain is finished. 

However, square generator has two properties. First, the size of square number from 

input data is fixed so there is no carry out in the MSB. i.e. size of input data N is n-bit, 

and then size of square number is 2n-bit. Next, the carry in always is equal to zero. 

Based on above two characteristics, Figure 21 shows the architecture of specific 32-bits 
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hybrid adder [7] for square generator. The complete signal can be used to decrease one 

bit signal due to no carry out. 

The Figure 22(a), 22(b) and 22(c) shows architecture of one-bit asynchronous 

adders, which is modified from the self-time adder in AMULET1 processor [12]. The 

Figure 22(a) whose operands and the result is bundled data and the carry is dual-rail. 

Because carry-in signal is equal to zero, the Figure 22(b) specific design reduces the gate 

count than Figure 22(a). Similarly, Figure 22(c) is slightly modified to detect the 30th bit 

carry out signal. 

The fan-in of complete detector in hybrid adder is so many inputs that 

implementation of C-element has heavy area cost. In order to solve above problem, 

Figure 23 illustrates the completion detector which make fan-in put into the AND gate 

and NAND gate. 
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Figure 21 32-bits Hybrid Adder for Square Generator 
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Figure 22(a) 1-bit Hybrid Adder 
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Figure 22(b) 1-bit Hybrid Adder on the LSB 

 

 

Figure 22(c) 1-bit Hybrid Adder on the 30th Bit 
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Figure 23 Alternative C-element 
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Chapter 5 Simulation 

In order to demonstrate the performance of the proposed asynchronous square generator 

with Fast Algorithm, the architecture presented in the previous chapter is implemented by 

using standard cell library of TSMC 0.13 mμ  CMOS process. 

We use the ModelSim 6.0 simulator to show the waveform and use Design Compiler to 

synthesize our design to gate-level model. The results of area and latency are described in the 

following sections. 

5.1  Timing Simulation 

Because the asynchronous square generator with Fast Algorithm has best-case and 

worst-case performance, the input values are  and  respectively for the 

best-case and worst-case. The best-case represents that all of the balls can be put into the 

boxes; in contrast, the worst-case means that all of the balls can not be put into the boxes. 

Figure 24(a) and Figure 24(b) show the waveforms and latencies for these two cases. 

hAA )55( h)6655(
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Table 8 shows the comparison of the asynchronous square generator with Fast 

Algorithm and without Fast Algorithm. In the best case, asynchronous square generator 

with Fast Algorithm is 18.13% faster than that without it; in other words, asynchronous 

adder with ZeroPass scheme provides speedup computation for the addition time. In the 

worst case, Fast Algorithm approach is 2.99% slower than that without it. Because Fast 

Algorithm does not combine with any DValues, it becomes the overhead of the system; 

that is, asynchronous square generator without Fast Algorithm can generate the DValues 



to add directly.  

 

Figure 24(a) Best-case for Fast Algorithm when input value =  hAA )55(

 

Figure 24(b) Worst-case for Fast Algorithm when input value =  h)6655(
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Latency(ns) Fast Algorithm 
Without 

Fast Algorithm 
Improvement Rate

Best Case 64.869 79.232 18.13% 
Worst Case 87.671 85.128 -2.99% 

Table 8 Latency between with Fast Algorithm and without Fast Algorithm 

 

5.2  Area Simulation 

The area of asynchronous square generator with Fast Algorithm and without 

improving is shown in Table 8. The area of the asynchronous square generator with Fast 

Algorithm is 175963.23  and the area of that without it is 132179.82 . The area 

overhead with Fast algorithm is about 133.12%. 

2mμ 2mμ

 

 Area( ) 2mμ

FastAlgorithm 175963.23 
Without 

FastAlgorithm 
132179.82 

Table 9 Area of between With Fast Algorithm and Without Fast Algorithm 

 

 

 

 

 

 



Chapter 6 Conclusion and Future Works 

In the design, we implement the square generator with Fast Algorithm in asynchronous 

circuit design. The differential values (DValues) can be combined by Fast algorithm; thus, 

square generator reduces the additions and improves the performance. The numerical result of 

analysis can improve about 8% ~ 11%. 

Based on recursive scheme of square generator, our design is divided into three 

asynchronous pipeline stages. The one’s complement numbers is produced in the first stage. 

Subsequently, the DValues are generated by DValue generator (DVG) and then they pass to 

Fast Algorithm to combine DValues. After finishing above operation, this stage send the zero 

flag and DValues are sent to the next stage. Finally, the hybrid adder with ZeroPass can 

accelerate the addition to produce the square number. 

The results of simulation using standard cell library in TSMC 0.13 mμ  CMOS process 

demonstrate that our design is 18.13% faster in the best-case than asynchronous square 

generator without Fast Algorithm. 

In the future, improving Fast Algorithm plays an important role on the proposed 

asynchronous square generator. Furthermore, using faster asynchronous pipeline can also 

speed-up the synchronization with each stage. 
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