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Abstract

RDO-Based Error-Resilient Coding of H.264 Video
Using Multiple Reference Frames

Transmission for high-compressed video coding, such as H.26/, over error-prone environ-
ment is quite a challenge due to the potential error propagation. In this thesis, we propose
an error-resilient scheme for H.264 based on Error Resilient Rate-Distortion Optimization
(ER-RDO) and Multiple Reference Frames (MRF'). Since the error propagation may sub-
stantially degrade the received video qualityywe include a Dominant Intra Frame (DIF) as
one reference frame to alleviate error propagation. By predicting from the dominant intra
frame, it can be more coding efficient-and more error resilient. Multiple reference frames
technique improves the coding efficiency and suppresses the error propagation. However,
it also brings a major drawback that the computational complexity for motion estimation
(ME) may increase depending on the number of reference frames. To efficiently reduce
the computational complexity of ME, we propose a fast motion estimation algorithm. The
experimental results show that the proposed scheme has substantial improvement over the

existing schemes in providing error resilience using MRF.

Keywords: Video Transmission, Error Resilience, RDO, Multiple Reference Frames
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Chapter 1

Introduction

Transmission of compressed video over error-prone environment is a challenge task due
to potential error spread effect. In the typical video transmission system, as figure 1.1,
the video source encoder first’ encodes source sequence-into bit-stream and encapsulates
it as packets. Then, these packets are transmitted to destination through the error-prone
environment. The video source decoder combines received packets and decodes it. During
the stage of transmitting through the-error-prone environment, packets might loss due
to signal degradation, oversaturated bandwith, or routing issues. The problem results in
loss of synchronization between decoder and encoder. With high ratio of compression,
especially in H.264/AVC, the loss issue may cause devastatin impact of decoded video

quality due to potential error spread effect, the error propagation.

N
|

-
N

Video Error Video
:> Source Prone Source
Encoder Network Decoder

Figure 1.1 A typical video transmission system



1.1 Error Propagation

1.1 Error Propagation

The main reason causing error propagation is a widely adopted technique in today’s
video coding standards, Motion Compensated Prediction (MCP). With MCP, video in-
formation could be easily predicted according to the previous coded data. This makes a
great coding efficiency by removing temporal redundancy. However, it also creates a de-
pendency between current coded and previous coded data. Even if current coded data is
completely received, it still inherits the error from previous corrupted data, and becomes
corrupted. Then the error propagates frame by frame, as shown in figure 1.2, causing

substantial degradation of decoded video quality.

H E E D Corrupted MB
| P P P P

Figure 1.2 The error spread effect - Error Propagation

1.2 Error resilience tools in H.264 standard

In recent years, several error resilience tools [1] for H.264/AVC have been represented
to provide robust video transmission over error-prone environment. Some of them were
already included in H.264 standard, and others are implemented or introduced recently.
These methods include: slices, slice groups with unequal error protection (FMO + FEC),

data partitions, intra placement, and Multiple Reference Frames (MRF).



1.2 FError resilience tools in H.264 standard

1.2.1 Slice

If a frame is coded as a packet without slice mode, it means that the loss of a packet
causes the loss of the whole frame. In slice mode, each slice contains an integral number
of macroblocks and will be packetized as, usually if data partitioning is not involved,
a packet. By splitting a frame into slices, the probability of whole frame loss could be

substantially reduced.

1.2.2 Slice Group with Unequal Error Protection

A frame could be coded as one or more slice groups, each containing an integral
number of slices. One and the mostiimportant property is that the needed information to
the coded MBs in a slice group is limited within the slice group. In other words, coding
MBs in a slice group will not cross refer to other slice groups. This property makes a
good suppression for spatial error propagation. Flexible Macroblock Ordering (FMO) [2]
allows assigning MBs to slices in different orders; €.q. interleaved and dispersed. The
main goal of this technique is to limit the scatter possible errors to the whole frame, since
the error will not propagate to other slice groups.

Another technique which is well adopted with slice groups for error resilient coding
is Unequal Error Protection (UEP) [3]. It first classifies MBs to different slice groups
according to specified criteria, and then, each slice group is assigned with different numbers
of protection bits. Forward Error Correcting (FEC) [4] such as Reed-Solomon Coding
(RS-Code) [5] is a widely adopted method for data protection. FEC guarentees that, if
the number of erased packets is less than the decoding threshold for the FEC code, the

original data can be recovered perfectly.



1.2 FError resilience tools in H.264 standard

1.2.3 Data Partition

Data Partition technique further splits a slice into three partitions, each is encapsulated

as a packet. The three partition types are:

e Partition A, containing header information such as MB types, quantization param-
eters, and motion vectors. This information is the most important part because,

without it, the whole slice becomes unusable, even if the other partitions are avail-

able.

e Partition B (intra partition), containing intra coded residuals. Since intra informa-
tion can stop further error propagation, this partition is more important than the

inter partition.

e Partition C (inter partition), containing inter coded residuals. Inter partition is the

least important part.

If the intra or inter partitions (B.or C) are lost; the available header information from

partition A can still be used in error concealment.

1.2.4 Intra Placement

H.264 allows intra macroblock prediction in inter frames. It could not only achieve
better coding efficiency, but also add robustness into inter frames. However, with more

intra information, more coding bits are required.

1.2.5 Multiple Reference Frames (MRF)

Fore old video coding standard such as MPEG 11, inter-coded macroblocks in P-frames
predict from only one frame immediately preceeding the current frame. The Multiple

4



1.3 Rate-Distortion Optimization based ER tools

Reference Frames technique in H.264 allows block-level prediction from a set of previously
encoded frames, called candidate reference frames. As shown in figure 1.3, current encoded
MB contains three blocks, the first 8 x 8 block referencing to F;,_», the second 8 x 8 block
referencing to F,_1, and the 8 x 16 block referencing to Fj,_s.

Candidate Reference Frames
(K=3)

< D‘/< D/ ﬁ L

Fn-3 Fn-2 Fn-1 Fn

Figure 1.3 Multiple Reference Frames

With MRF, even if some macroblocks in F, .5 and F,_; are corrupted, those blocks
predicted from F),_3 can still be correctly decoded. By involving MRF, coded video

becomes more error resilient and coding efficient.

1.3 Rate-Distortion Optimization based ER tools

H.264 standard offers a rate-distortion optimized (RDO) technique which gets a great
tradeoff between coding rate and source distortion for motion estimation and mode deci-
sion. Since the original RDO doesn’t consider the channel distortion during video trans-
mission, several error-resilient RDO (ER-RDO) techniques have been proposed for video
transmission in error-prone environment [6, 7].

The R-D optimization technique has been well-studied for the source video coding
in error-free environment [8]. However, it is not applicable to error-prone environment

due to improper distortion estimation scheme which concerns source distortion only. To



1.3 Rate-Distortion Optimization based ER tools

encompass error resilience, the R-D optimization scheme should jointly consider the source
distortion and the potential channel distortion together so as to achieve the best tradeoff
between the overall end-to-end distortion and the rate.

Recently, an Error RoBust Rate-Distortion Optimization method, referred to as ERB-
RDO, has been developed for video coding in error-prone environment [6,7], and has been
adopted in the H.264/AVC test model [9]. ERB-RDO eastimates the expected end-to-
end distortion by calculating the mean value of distortion from K copies, each with a
random loss maps. The expected end-to-end distortion can be estimated very accurately
if K is large enough. However, this would cost much higher computational complexity.
Therefore, a number of approachs have been proposed for accurate end-to-end distortion
estimation at low computational eomplexity.

Recursive Optimal per-Pixel Estimation (ROPE) proposed by [10] has been recog-
nized as an effective method to estimate the expectation of end-to-end distortion. The
estimation is integrated into.a RD-based scheme for.optimal mode selection. Several end-
to-end distortion based RDO schemes {10=12] use a similar way to recursively calculate
the expected end-to-end distortion. In [10], R. Zhang proposes a way for mode decision

that recursively calculates the first and second distortion items, which are repesented as

d, = E{(f, = [.)*}
= (f2)° = 20, B{[.} + B{(/))}

However, the seperation is very sensitive to the approximation errors caused by averaging
operations such as subpixel motion compensated prediction. In [11], H. Yang proposes an
end-to-end distortion estimation solution that seperates the distortion into three items:
source distortion, error-propagated distortion and error-concealment distortion. With
their distortion model, they applied error resilient RDO to both motion estimation and

6



1.4 Multiple Reference Frame based ER tools

mode decision. Based on the end-to-end distortion model in [11], Y. Zhang further pro-

poses a generalized estimation model [12] for fitting multiple reference frames (MRF).

1.4 Multiple Reference Frame based ER tools

Multiple Reference Frames (MRF) has been proven a powerful tool to improve both
coding efficiency and suppression of error propagation. Thus, many MRF-based tech-

niques have been proposed for improvement of error resilience [13,14].

1.4.1 Automatic Repeat reQuest (ARQ)

Automatic Repeat Request is.an error transmission mechanism, which creates a feed-
back channel for transmitting extra-information.. The feedback information can be used
to retransmit corrupted video data [15] or by encoder to adjust the encoding behavior,
e.q., to skip the corrupted data area in the-motion estimation of succeeding frames [16].
As shown in figure 1.4, the coded data of frame-F, is transmitted through data channel,
and then, the decoder receives the data and finds it is corrupted and unrecoverable. Thus,
the feedback information about the corrupted data is sent back to the encoder. In motion
estimation of (n + 1) frame, it will not refer to the corrupted area of n'* frame. With
multiple reference frames, the encoder can simply skip frame F}, as the reference frames
for succeeding motion estimation.

By an extra feedback channel, the real loss map can be easily obtained by encoder so
the encoder can choose a way to prevent error propagation. However, a major drawback
of ARQ is the requirement of additional communication time for transmission of feedback

infomation. Thus, ARQ is not suitable for low-latency environment.



1.4 Multiple Reference Frame based ER tools

Encoder Cormupted Decoder

: ® 1

/®\\r‘4"/—-\\ | Data Channel > IR
< - < -
< Feedback Channel ' B |} EEECEEEE
©)
Fn-1 Fn Fn+1 Fn-1 Fn

Figure 1.4 Automatic Repeat reQuest in MRF

1.4.2 Periodic Macroblock

In [13], a reference frame selection method is developed, which for every K frame,
selects n macroblocks, called Periodic Macroblock, to predict from the frame that is K
frames away, as shown in figure 1.5. For other macroblocks, only the immediately previous

frame is used as reference.

f=——— Period (K frames) } Period (K frames) —————=]
- 4\ |j/< - \ [ Periodic MB
| P P P P

Figure 1.5 Periodic MB with K period

The authors have shown that, by using long-term frames for motion compensated
prediction, these Periodic MBs can suppress te error propagation and increase the receipt
probability. The selection criteria of Periodic MBs is based on the expected end-to-end
distortion. However, the choice of period K and the number of Periodic MBs, n, are
predefined constant in their algorithm. This makes their approach hard to adapt to

various content characteristics and channel conditions.



1.4 Multiple Reference Frame based ER tools

ﬁ%/‘//m ‘EI ‘\D 4\5 [ Robust MB

| P P P P
Figure 1.6 Robust MB

1.4.3 Robust Macroblock

Alternatively, robust macroblocks proposed in [14] is another reference frame selection
method. As shown in figure 1.6, every P-frame contains a number of macroblocks called
Robust Macroblock, which predict from the nearest intra frame. The selection criteria of
Robust MBs is similar to that. of Periodic MB;which is also based on the expected end-
to-end distortion. With long-term-reference to the intra frame, the authors in [14] have
shown that the Robust MBs can get good suppression of error propagation. However, the
number of Robust MBs in every P-frame is a predefined-constant, which is independent of
content characteristics and channel eonditions. This makes their approach not adaptive
to various video contents and channel conditions.

In this thesis, a MRF-based error resilient scheme is proposed, which includes the
nearest dominant frame as one of the reference frames and adopts error resilient RDO on
the stages of motion estimation and mode decision for optimal coding parameter selec-
tion. The experimental results show that proposed scheme gets a good coding efficiency
over different error-prone environments. Besides, since MRF will increase the computa-
tional complexity of motion estimation, a fast motion estimation algorithm based on the
proposed error-resilient MRFE scheme is proposed. The fast algorithm skips unnecessary

reference frames according to two key reference frames (the short-term frame and the



1.4 Multiple Reference Frame based ER tools

nearest dominant frame), which determine the dominant factor between source distortion
and error propagated distortion. The experimental results show that the proposed fast
algorithm can speed up motion estimation of MRF without losing any performance.
The rest of the thesis is orginized as follows. In chapter 2, we describe RDO-based
ER tools proposed in recent years. In chapter 3, we summarize the advantages and disad-
vantages of existing RDO-based and MRF-based methods, and present some observations
from experimental results that give motivation to this work. In chapter 4 and chapter 5,
we describe the proposed methods in detail. The experimental results shown in chapter 6
demonstrate that our proposed scheme has substantial improvement over existing schemes

in providing error resilience using MRF'. And finally chapter 7 concludes this work.

10



Chapter 2

Related Works

In chapter 1, the reasons causing error propagation and three categories of ER tools
have been introduced. There are many features in‘these three categories of ER tools, es-
pecially content-adaptibility, network-adaptibility. and better coding efficiency over error-
prone environment in RDO-based ER tools. Since ERB-RDO scheme uses the average
distortion from K random'loss map as expected distortion, it comes with a potential
drawback, high computational complexity-when K" is large. Thus, the proposed method
chooses end-to-end distortion based RDO scheme to be based upon. In this chapter, we

introduce details of the end-to-end distortion based RDO scheme.

2.1 Rate-Distortion Optimization in H.264 Standard

H.264 standard provides a Lagrangian method which optimizes the tradeoff between
video quality and bit rate to determine coding parameters. The Lagrangian method is
applied in two stages, Motion Estimation and Mode Decision. In the stage of motion
estimation, the main concern is to determine the best MV for a certain reference frame;

while in the stage of mode decision, the main concern is to decide the best coding mode

11



2.1 Rate-Distortion Optimization in H.264 Standard

and reference frame. The Lagrangian formulation for these two stages are written as

follows.

e Motion Estimation:

J(mv) = Depe + Amotion R(Mv) (2.1)

where D,,., denotes the block-level prediction error between the current and the
reference blocks. It is usually measured as SSD or SAD; R(mwv) is the estimate bit
rate for specified motion vector; and A,oi0n is the Lagrange multiplier to control

the weight of the bit rate cost.

e Mode Decision:

J(mode) = Dyt Npioae R(mode) (2.2)

where D.,,. denotes the macroblock-level difference between the reconstructed MB
and the reference one: It is usually measured as SSD; A,,0q4 is the Lagrange multi-
plier for mode decision;.and R(mode) denotesthe estimated coding rate for specified

mode (reference frame, coding mode; residue, etc.).

The Lagrange multipliers for motion estimation and mode decision can be represented as

/\mode - /\moti(m2 (23)

2.1.1 Expected End-to-End Distortion Model in MRF

Commonly, the expected end-to-end distortion (the overall distortion) is defined using

SAD or SSD. That is

d, = E{|f, = I} (2.4)

12



2.1 Rate-Distortion Optimization in H.264 Standard

, or

d, = E{(f; - /\)*} (2.5)
where f! and ffm denote the original value and the decoder reconstructed value, respec-
tively, for pixel 7 in frame n. The distortion is measured as the expected difference between
the pixels in encoder and the pixels in decoder. In order to effectively calculate the overall
distortion, the decorder reconstructed value ffl which is unkonwn in the encoder needs to
be derived further.

The authors in [12] have derived f! in a way such that d’ can recursively calculated
at the encoder. We summarize their approach here. Let J?f; and 7’ be the reconstructed
value and the reconstructed residue in the encoder, respectively. With a motion vector mwv
predicted from reference frame ref, f}z can be represented as ffL = Aﬁ:fm” +7¢. Suppose the
transmission error rate is known as p and frame copy is-adopted as the error concealment

policy. When current pixel-is lost during transmission,.it copies from the same position

in previous frame n — 1. Then, The‘decoder reconstructed value ffl can be represented as

f;:fmv—i_rfj% ’ 1_p
.= (2.6)

n—1 y D

Hence, in [12] the expected end-to-end distortion d’, for inter-coded pixel 7 in frame n

13



2.1 Rate-Distortion Optimization in H.264 Standard

was derived to be
= E{(f\, - )"}
= (L=p)B{(fn = (FZ" + 7))+ pE{(f;, — [i0)*}
= =p)B{(fi — fi+ i = Fil = #)Y + pE{(fi — fi_)*}
= (L=p)E{(f; = o+ 13 = By + pE{(fs = o))
= (L=p)(E{(fr = LY + E{(F3 = ) + nE{(f = Fis)™)

= (1= p)(dsy, + depy (™) + Pdecy, (2.7)
= (1= p)(dsy, + depyi™) + D(E{(fy, = [io1)?} + depy,_y) (2.8)

where dy denotes the source distortion, de; denotes the error-propagated distortion and d..
denotes the error-concealment distortion. Since ds and the first part of dec” are known
and can be calculated at the encoder, the estimation of d’ in the encoder mainly relies
on the calculation of dep““}m and depn #

Note that dep’:}"” and dgp,, ., ‘are in the-similar/style, thus we derive the generalized

formula d.,’ as
depy, = E{(f3, = 1)}

= (L=p)E{(fs = (7™ + 7))} +pE{(fi = -}

= (L=p)B{(fi5" - Nﬁ;?m”)z} +p(B{(fi = [io)Y + E{(fics = fis)™) (29)

= (1= p)depei 7™ + p(E{(fs = fis1)®} + depr, ) (2.10)
From (2.10), it is observed that the error-propagated distortion from current frame (i.e.,
depfl) can be recursively calculated by the error-propagated distortion values from previous
frames (i.e., depf%l and depg}””). Since the three distortion items d;, de, and d.. can be

calculated directly or recursively, the expected end-to-end distortion can be estimated at

the encoder side.

14



Chapter 3

Motivation

In chapter 2, we simply described that R-D Optimization in H.264 standard reveals
a good Rate-Distortion tradeoff in error-free environment. Some RDO-based ER tools
[10-12] has been proposed«to modify the distortion estimation model in order to apply
the R-D optimization in error-prone environment. These RDO-based ER tools improve
error resilience by taking inte account the channel conditions and error propagations for
optimizing R-D tradeoff in two stages;-motion vector determination and mode decision.
However, most of them focus on single reference frame only. On the other hand, MRF-
based ER tools such as Periodic MB [13] and Robust MB [14] have shown that long-term
reference frames can be used to suppress error propagation and improve error resilience.
Therefore, reference frame selection plays an important role in the error resilient motion
estimation when MRF is adopted.

By combining RDO-based ER tools and MRF techniques, we have conducted some
experiments in error-prone environment and the results are shown in figure 3.1, where
GOP size is 30, quantization parameter is 28, the number of reference frames is set to

29 (that is, all the frames in the same GOP can be selected as reference frames), and

15



the RDO-based ER tool in [12] is extended to MRF and adopted in both MV and mode
decisions. The z-axis of figure 3.1 denotes the reference index. For current frame n, the
reference index ¢ (1 <4 < 29) means that frame (n — i) is selected as the reference frame
and reference index NIF means that the nearest intra frame is used as the reference frame.
Figure (a) and (b) show the percentage of references for every reference index for Foreman
and Football sequences, respectively. The results are calculated from all the 4 x 4 blocks
of all the frames in the corresponding sequence and three different packet loss rates (1%,
5%, 10%) are adopted.

From figure 3.1, it is interesting to observe that

e The percentage curves are varying for different packet loss rates and for different

video sequences.

e About 70% to 80%-of blocks reference to the immediately previous frame (i.e.,

reference index = 1) and the nearest intra frame (NIF, i.e., reference index = -1).

e As the packet loss rate increases; the percentage of blocks that select NIF as the
reference frames also increases. This implies that although selecting NIF may in-
crease coding bit rate, it is still beneficial to use it to reduce the impact of error
propagation. Such reduction is substantial, especially when the packet loss rate is

high.

From the observations above, we propose that the nearest intra frame should be consid-
ered as one of the reference frames to alleviate the error propagation. Thus, the proposed
method combines the error resilient RDO scheme and the reference frame selection with
the nearest intra frame to provide a content-adaptive, network-adaptive and high-coding-

efficiency scheme in error-prone environment.
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Chapter 4

Proposed Method

In this chapter, we describe the proposed error resilient method in detail. As mentioned
in chapter 3, a better error resilient scheme should ¢onsider content-adaptibility, network-
adaptibility and coding efficiency in-error-prone environment. To achieve these goals, we
propose a novel MRF-based error resilient scheme involving Rate-Distortion optimization
on motion vector determination, mode decision and reference frame selection. Besides, to
reduce the computational complexity eaused by motion estimation in MRF, we propose

a fast motion estimation algorithm.

4.1 Candidate Reference Frames

In traditional MRF, current frame uses previous K frames as candidate reference
frames to predict from as shown in figure 4.1, where K = 3. However, since these frames
are located closely in the sequence, they have similar characteristics, in terms of error
propagation length. Predicting from one of them has similar error resilience. Reference
to intra-coded frame, however, can suppress the error propagation. According to 3.1, as

the packet loss rate increases, the percentage of the blocks choosed to predict from the
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4.2 Error Resilient RDO

intra-coded frame also increases. Thus, we propose to include the nearest intra frame
(called NIF) as one of the candidate reference frames. In order to keep the same number
of reference frames as usual, the original farest candidate reference frame is excluded. As
shown in figure 4.1, the candidate reference frames of F, will include F,, |, F,,_5, and

NIF when K = 3.

Candidate Reference Frames
(Traditional, K = 3)
A

i | :
: i -,/ 4 1
Ny i < : - ::: -MB
|

e ]
B (
_______ - - "'"'""'"'"'"""_";'/_"'_";':';”_"_"'_"_";"_"_"'_':';"_"_'"_'
NlF\\ Fna i Fn-2 Fn-1 Fn
\ /
S~ v
“a Candidate Reference Frames
(Proposed)

Figure 4.1 Multiple Reference Frames with. Nearest Intra Frame

4.2 Error Resilient RDO

In RDO-based ER tools, original Lagrangian minimization formulation is modified as

Jpr = E{D} + Apr(0)R(0) (4.1)

to get good coding efficiency over error-prone environment. The formulation can be
applied to motion estimation and mode decision to get the best selection of coding options
such as motion vector, coding mode, reference frame, etc. Therefore, the Lagrangian

minimization formulation can be described as the Lagrange cost function problem.
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4.2 FError Resilient RDO

4.2.1 Lagrange Cost Function in Error-Prone Environment

Let O(o) denote the set of all defined coding options. To get good coding efficiency in
error-prone environment, a general cost function for Rate-Distortion optimization can be

represented as

Jer(0) = E{D(0)} + Agr(0)R(0) (4.2)
0" = argergin(E{D(o)} + Agr(0)R(0)) (4.3)

where o denotes the coding option such as motion vector and reference frame in motion
estimation or coding mode in mode decision, E{D(0)} denotes the overall expected distor-
tion for specified coding option o, Apg(0) denotes the Lagrange multiplier for error-prone
environment and R(o) denotes the coding,rate for specified coding option o. There are
two parts E{D(0)} and Apg(0).need to be derived to get the optimal coding option o*.
According to [12], Agg-is equal to (1= p)A, where p denotes the transmission error
rate and A\ denotes the Lagrange multiplier in error-free environment. As described in

chapter 2, the overall end-to-end distortion can be seperated as

E{D} = (1 —p)(E{D,} + E{D.,}) + pE{D..} (4.4)

where Dg, D., and D,.. denote the source distortion, error-propagated distortion and
error-concealment distortion.

According to (4.4), the optimal coding option o* (4.3) can be selected with

0" = argmin(E{D(0)} + Agr(0)R(0))

0€0

= argmin((1 — p)(E{Ds(0)} + E{Dep(0)}) + pE{Dec(0)} + (1 = p)A(0) R(0))  (4.5)

0e0

Since D, is independent of coding option o, it is unnecessary to be calculated. Therefore,
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4.2 FError Resilient RDO

(4.5) can be further derived as

0" = argmin((1 — p)(E{Ds(0)} + E{Dey(0)}) + pE{Dec(0)} + (1 — p)A(0) R(0))

0€0

= argmin((1 — p)(E{Ds(0)} + E{Dep(0)}) + (1 — p)A(0) B(0))

0e0

= argmin(E{D;(0)} + E{D.,(0)} + A(o)R(0)) (4.6)

0€0

The proposed RDO method applies (4.6) to both motion estimation and mode decision,

which are represented as follows.

e Motion Estimation (block-based):

Jer(mu,ref) =E{Ds(muv,ref)} + E{Dep(muv,ref)} + Anotion(R(mv) + R(ref))
(4.7)

(mu,ref)" =argmin(
mu,ref

E{D (mv,ref)} + E{D.,(mv,ref)} + Anotion(R(mv) + R(ref))

) (4.8)
e Mode Decision (macroblock-based):

Jer(mode) =E{D(mode)} + E{D.,(mode)} + Amode(R(mode)) (4.9)

mode® = arg min(
mode

E{Ds(mode)} + E{D.y(mode)} + Amode R(mode)

) (4.10)

4.2.2 End-to-End Distortion Estimation

Since the Lagrange cost function has been defined, the last and most important task
to do is to accurately estimate the end-to-end distortion. However, end-to-end distortion
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4.2 FError Resilient RDO

is, actually, hard to estimate due to the uncertainty of real channel loss map during
transmission. Y. Zhang’s distortion estimation model in [12] has been recognized as an
effective end-to-end distortion estimation model in MRF. Therefore, the proposed model
is based on Y. Zhang’s model. Since Y. Zhang et. al applied the distortion estimation for
mode decision only, they meansured the distortion using SSD. In this thesis, the distortion
estimation will be applied for both motion estimation stage and mode decision stage.
In order to reduce the computational complexity in motion estimation, the distortion is
measured using SAD (i.e., formula (2.4)) Besides, previous ROPE-based models in [10-12]
didn’t consider spatial error concealment in slice mode. The proposed model further
proposes a more accurate end-to-end distortion estimation model in slice mode.

The proposed model is applied with the following assumptions:

The video is transmitted over a packet-loss channel.

The packet loss rate is available at the encoder.

Slice mode without data patitions, which means a slice is encapsulated in a packet.

e Error concealment policy is Frame Copy, which means that, when a packet is lost,
the encoder simply copies the macroblock at the same location from the previous

decoded frame.

Since H.264 allows intra-coded blocks in inter frames, these intra-coded blocks are more
robust against channel error than inter-coded blocks. However, the distortion estimation
model in [12] only considers inter-coded pixels, which may cause overestimation. In the
proposed model, we consider both intra-coded and inter-coded pixels for more accurate
end-to-end distortion estimation.

Before the derivation of the proposed end-to-end distortion model, we define some
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4.2 FError Resilient RDO

notations to be used. Let f!, f,’l and ffl be the original value, encoder reconstructed
value and decoder reconstructed value, respectively. For intra-coded pixel ¢ in frame n,
both encoder and decoder have the same reconstructed value, i.e., fjl = f}z, if this pixel
is received in the decoder. For inter-coded pixel ¢ in frame n which predicts from pixel
i +mu in frame ref with motion vector mv, let 7, be the reconstructed residue in the
encoder, i.e., fi = Aﬁ:fm” + 7.

When the current pixel ¢ in frame n is lost in the decoder, it copies from the same
location in frame n — 1. This is applied to both intra-coded and inter-coded pixels.

Suppose the packet loss rate is p, the decoder reconstructed value f,’l can be represented

as

e intra-coded pixel

= (4.11)

n—1 , P

e inter-coded pixel

~. fj:fmv + f’; ) 1- p
fi = (4.12)

i

n—1 y D

Hence, the expected end-to-end distortion for intra-coded pixels can be estimated by

d, = E{|f, — I}
= (L=p)B{/, = L} +pE{S = faca}

- (1 - p)dsiL + pdecf@ (413)

where ds; denotes the source distortion and decil denotes the error-concealment distortion.
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4.2 FError Resilient RDO

Since d..., depends on random variable f! | we further derive it as

decyy = E{|fo = fizal}
= E{|f, = isal} + B{fics = Faca}

= B{fs = fical} + depyy (4.14)

where d.,. . denotes the error propagated distortion. Since d.,’ . depends on random
Pn—1 Pn—1

variable faiq which is not available at the encoder, we further derive it as

depy, = E{|f5 = [}
= B{lf, = (L =p)fs +phi)l}
=pE{fi =711
=p(B{{fi fasill + E{fzs — Fil})

= p(E{1fa = i} + depy ) (4.15)

Since the first item of formula (4.15) is available at the encoder, the calculation of d.,.
only depends on the availability of dep;-r Therefore, dep; can be recursively calculated
frame by frame, where the d,, of the first frame will be discussed in section 4.2.3.

For inter-coded pixel, as described in [12], the expected end-to-end distortion is esti-

mated by
d,, = E{|f, = [il}
= (L=p)(E{Ifs = o} + BASE™ = £ 1)

+p(E{If; = fial} + E{fics = Faca D)

= (1= p)(dap, + depyi ™) + Dllecy, (4.16)
= (1= p)(dapy + depit7™) + p(E{| £} = fi a1} + depl_y) (4.17)
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4.2 FError Resilient RDO

where the formula (4.17) is derived from formula (4.16) by substituting d..’ with formula
(4.14). Since the calculation of formula (4.17) only depends on error propagated distortion

items (all others are available at the encoder side), we further derive it as

dezoi =(1- p)depf«:;nv +p(E{|f7Zz - Z—1|} + depjm—l) (4.18)

Since depfz can be recursively calculated frame by frame, the expectation of end-to-end

distortion of inter-coded pixel (i.e., d’) can be obtained at the encoder side.

4.2.3 Initial Value of Expected End-to-End Distortion

ROPE-based models estimate the expected end-to-end distortion in a manner of re-
cursively calculating accumulated distortion from previous frames. This kind of recursive
way requires an initial value, which-is usually determined by intra frames. In traditional
ROPE-based model [10-12], a presupposition is involved to determine the initial value,
which assume that each packet contains one complete compressed frame. When the packet
containing the intra frame is lost; error-econcealment simply copies previous decoded frame
as current frame. It is reasonable at low bit rate. However, with slice mode enabled, the
error concealment for corrupted slices of intra frames can apply spatial interpolation to
obtain a better performance. Therefore, we proposed a model to estimate the initial value
in slice mode.

Support a frame is seperated to s slices and fecé(k) denotes the error concealment
value with k slices are lost. With packet loss rate p, the expected end-to-end distortion

is represented as

&= 3 ()90 -0 BUS - £} (4.19)

k=0
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4.3 Adaptive DIF Replacement for Scene Change

and the initial value of error-propagated distortion is

s

oty =3 (3 )= B - L) (4.20)

k=0

Since the initial value only needs to calculated at the first frame of GOP, the frame number

is marked as 0.

4.3 Adaptive DIF Replacement for Scene Change

When scene change happened, the difference between the two consecutive frames right
before and after the scene cut may increase substantially, resulting in a frame with high-
ratio of intra-coded MBs (marked as.secene-change frame). For those frames after the
scene-change frame, selecting NIF as their reference frames may suffer from large predic-
tion error, which will reduce coding efficiency dramatically. This implies that it would
be no longer beneficial to'select NIF as reference because the gain from error propaga-
tion reduction may not be able to compensate theloss in the coding efficiency. On the
other hand, the scene-change frame has high ratio of intra-coded MBs, which provides
a certain ability to alleviate error propagation. Compared with NIF, reference to scene
change frames provides a better coding efficiency for those frames after scene cut. Thus,
we propose a DIF replacement mechanism which changes the candidate reference frame
from the nearest intra frame to the scene-change frame. To be more general, we define a

dominant intra frame (DIF), which can be either

e A nearest intra frame (NIF), or

e A nearest inter frame with high-ratio intra-coded MBs (i.e., scene-change frame)

As shown in figure 4.2, assume the number of reference frames is 2 and a scene change
happened between frames F,,_4 and F,,_3. Without DIF replacement mechanism, candi-
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4.3 Adaptive DIF Replacement for Scene Change

Scene Change

Without NIF Replacement

]
}
With NIF Replacement |
|

‘emaaass 80000 e’ | T s s

Fnir oiF) Fns Fn3 oiF Fn-2 Fn-1 Fn

Figure 4.2 DIF Replacement Mechanism for Scene Change

date reference frames of frame F,, will be F;,_; and Fy;r. In this case, most MBs in F),
would prefer to predict from F,,_; because of its high coding efficiency. However, using
F,,_1 as reference frame will suffer from the error propagation from F;,,_3 and F,,_,. With
DIF replacement mechanism, the candidate reference frames of F;, become F,_; and F},_3
since both Fj,_3 and F,, arein the same scene, the lossin coding efficiency of using F;,_3
as reference is not as high as that using Fnsp. The loss in coding efficiency has the propa-
bility to be covered by the gain of getting rid of error.propagation from F), 3 to F,,_o if

F,,_5 is selected as the reference frame.
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Chapter 5

Fast Motion Estimation

Multiple reference frames can be adopted to increase the coding efficiency and sup-
press the error propagation. However, this technique requires more computational time
for mode decision and, especially, for motion estimation, which comsumes most of com-
putational time. In general, the computational complexity depends on the number of
candidate reference frames K. Therefore, we propose a fast motion estimation algorithm
for the proposed error resilient MRE scheme in order to reduce the computational com-

plexity.

5.1 Reference Trend Decision

From the experimental results in figure 3.1, it can be seen that

e more than 90% of blocks choose to reference to the first four reference frames as

well as the DIF, and

e about 70% to 80% of blocks reference to the two key frames (the immediately

previous frame & the DIF)
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5.2 Fast Motion Estimation Algorithm

Thus, we propose to use five reference frames at most, and use two key frames first to
decide the trend of prediction because of the different properties of the four previous frames
and the DIF. Reference to DIF has good error resilience but poor coding efficiency, while
reference to the four previous frames has good coding efficiency but poor error resilience.
Assume current frame is n. With two key frames as reference, if frame n —1 is selected by
proposed ER-RDO formula, it means the gain from coding efficiency is more important
than that from error resilience. This could be due to good channel conditions (i.e., low
packet loss rate) or video content with high motion. In this case, motion estimation
will continue with candidate reference frames n — 2, n — 3 and n — 4. On the contrary,
selecting dominant intra frame as reference frame means that error resilience capability
is more important than coding efficiency. In this.case, candidate reference frames n — 2,

n — 3 and n — 4 will be skipped, and-motion estimationprocess can be early terminated.

5.2 Fast Motion Estimation Algorithm
Figure 5.1 shows the H.264 standard ME algorithm.

Step 1. Get next available MB in current frame.
Step 2. Choose next unprocessed mode.

Step 3. Do motion estimation for each candidate reference frame (F,_;,1 < i < 5) in

selected mode.
Step 4. Apply H.264 standard RDO to ME for each candidate reference frame.
Step 5. If all modes for current MB are done, go to Step 6. Otherwise, go to Step 2.

Step 6. Apply H.264 standard RDO to mode decision to determine the final coding mode.
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Choose next
unprocessed mode

Get next available
MB in current frame

Do ME for each
candidate frames
+ (Fn-1, Fn-2, Fn-3, Fn-4, Fn-5)

RDO on ME for each
candidate frames

®

Are all modes for
current MB done?

Yes

@ 6 l
All MBs in current RDO on mode
frame are done? decision

8
End of encoding in
current frame

Figure 5.1 H.264 Motion Estimation flow chart

Step 7. If all MBs in current frame are done, go to Step 8. Otherwise, go to Step 1 to get

next MB for encoding.

Step 8. End of encoding in current frame.

As described above, the proposed fast motion estimation algorithm changes the order

of ME for two key frames as shown in figure 5.2.

Step 1. Get next available MB in current frame.

Step 2. Choose next unprocessed mode.
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5.2 Fast Motion Estimation Algorithm
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Figure 5.2 Fast Motion Estimation flow chart

Step 3. Do motion estimation for 2 key frames (F,,_; and Fp;r) in selected mode.

Step 4. Apply Error Resilient RDO to ME for 2 key frames.

Step 5. If DIF is selected as reference frame rather than the immediately previous frame,
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5.2 Fast Motion Estimation Algorithm

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.

Step 11.

Step 12.

Step 13.

use it as best reference frame in selected mode and go to Step 8. Otherwise, go

to Step 6.

Do ME for the remaining candidate frames. (F,_o, F,_3, F,_4)

Apply Error Resilient RDO to ME for the remaining candidate frames.

If all modes for current MB are done, go to Step 9. Otherwise, go to Step 2.

Apply Error Resilient RDO to mode decision to determine the final coding mode.

If all MBs in current frame are done, go to Step 11. Otherwise, go to Step 1 to

get next MB for encoding.

Detect whether scene change happened by the ratio of intra-coded MBs in current

frame. If scene change happened; go to Step 12. Otherwise, go to Step 13.

Apply DIF replacement mechanism.

End of encoding in current frame.

With the comparison between figure 5.1 and figure 5.2, it can be seen that the proposed

fast motion estimation algorithm, which only changes the order of ME for two key frames

without affecting to the ER-RDO applying to both motion estimation and mode decision

stages.
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5.3 Motion Vector Prediction for DIF

5.3 Motion Vector Prediction for DIF

Since the dominant intra frame may be far from current frame, using co-located MB
as the center of search window in motion estimation may not be adequate. Thus, we have
designed a scheme to predict MV on the DIF. Our approach is based on FDVS (Forward
Dominant Vector Selection) [17], which is a MV composition method originally designed

for transcoding with frame skipping applications.

MV(Z-I, n-2) MV(n, n-1)
‘/g)/ / [ -
- \

ﬁ\
oﬁ’set(n, n-
Fn-2 Fn-1

Figure 5.3 FDVS - Fast Dominant; Vector Selection

MV(n, n-2) F

Considering a simple sample as shown in figure 5.3, we have motion MV (n,n — 1)
between frame n and frame n — 1, and MV(n — 1,n — 2) between frame n — 1 and frame
n — 2, respectively. If frame n — 1 is skipped, the most common way to represent the
corresponding motion between frame n and frame n— 2 would be MV (n,n—1)4+ MV (n—
1,n—2). However, for each MB in frame n, the area pointed by its MV may not be aligned
on the MB boundary of frame n — 1. In FDVS method, the MV associated with the MB
with the largest overlapping area out of the four neighboring MBs on frame n — 1 is
selected. To compensate the shift in frame n — 1, the authors in [18] suggested to add
the offset (denoted by MV, ffset(n, n — 1)) to the composed MV. Therefore, the MV from

frame n to frame n — 2 can be predicted as

PMV(n,n—2)=MV(n,n—1)+MV(n—1,n—2)+ MV,fpset(n,n — 1) (5.1)
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5.3 Motion Vector Prediction for DIF

This MV prediction technique can be easily extended to across more frames. Assume
current frame is frame n and DIF is frame m (m < n). The predict MV from frames n

to m can be represented as
n—1
PMV(n,m) =Y [MV(i+1,0) + MVyspaer(i + 1,1)] (5.2)
It can be seen that such MV prediction relies on all the MVs between frame n and frame
m. However, all the required MVs may not be available in the encoding buffer, especially
when n—m > k, where k is the number of reference frames. To rope with this problem, we
propose a modified FDVS scheme called Accumulated Forward Dominant Vector Selection
(AFDVS) by using Accumulated Motion Vector (AMV).
First of all, we define AMV (i) to denote the predict MV from frame i to DIF
PMV (i, DIF). Assume each frame ¢ has only one candidate reference frame, which

is its immediately previous frame i — 1. Therefore, by equation (5.1), AMV (i) can be

recursively derived from AMV(i — 1) as
AMV (i) = MV (i, 4 = Iy F AMVE — 1) + MVyppaerliyi — 1) (5.3)

where the initial AMV (m) = 0 if DIF is frame m. From (5.3), it is interesting to notice
that once AMV (i) is obtained, AMV (i — 1), MV (i,i — 1) and MV, ffset(i, i — 1) are
unnecessary for calculating AMV (i + 1), that is, they can be removed from the encoding
buffer. In other words, if AMV in reference frame (frame n — 1) is available, the predict

MYV from current frame n to DIF (frame m) can be derived by
PMV(n,m)=MV(n,n—1)4+AMV(n — 1)+ MV,pset(n,n — 1) (5.4)

To be more general, we further modify the equation (5.4) for MRF, as shown in figure

5.4. The predict MV PMV (n,m) from current frame n to DIF (frame m) is represented
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AMV(ref) MV (n, ref)

MVopse(n, ref)

Fref PV (s, m) Fn

Figure 5.4 AFDVS - Accumulated Fast Dominant Vector Selection

FmoiF)

as

PMV(n,m) =MV (n,ref)+ AMV (ref) + MVt tset(n, ref) (5.5)

where ref denotes the frame number of reference frame.

The equation (5.5) shows that the current predict MV can be calculated by tracing
the reference frame. Since the MV prediction may across all candidate reference frames,
even if AMV (n) is obtained, AMV (ref) still cannot be immediately removed from the
encoding buffer.

To be more clearly, assume the.number of reference frames K is 3, as shown in figure
5.5. At frame 1, it only predicts from DIF (frame 0), thus the predict MV PMV(1,0)
is simply equal to MV (1,0). At frame 2, it may predict from previous frame 1 or from
DIF, thus these two cases has to be considered to estimate the predict MV PMV (2,0).
If it chooses frame 0 as reference frame, the MV MV (2,0) is directly set as PMV(2,0),
since AMV (0) is 0, otherwise, it combines MV (2,1) and AMV (1), which is calculated at
frame 1, as PMV (2,0). At frames 3 to 5, there are only 3 cases needs to be considered
(K = 3), and by using the same way at frame 2, the predict MVs PMV(3,0), PMV (4,0)

and PMV (5,0) can be easily composed. Thus, a general formula is proposed to represent
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the accumulated predict MV PMV (n,0) from frames n to DIF

(

MV (n,0) , if select DIF (frame 0)
MV(n,n—1)+AMV(n—1)

PMV(n,0) = +MVysfser(n,n — 1) , if select frame n — 1 (5.6)
MV (n,n—2)+ AMV(n—2)

+MVysfser(n,n —2) , if select frame n — 2

\

From equation (5.6), it can be seen that, to obtain predict MV PMV (n,0) from current
frame n to DIF, we only need 2 AMV's from frame n — 1 and from frame n — 2 when
K = 3. That is, at most of K — 1 AMV's need to be keep in encoding buffer.

Moreover, an accurate predict MV to DIF.-can also shrink the search range of motion

estimation to reduce the computational complexity. In'our thesis, the search range on

DIF is set as 4.

5.4 Time Complexity of Fast Motion Estimation
Assume the following
e number of reference frames: &
e scarch range of DIF: from 32 to 4
e reference ratio of DIF (skip ME of k — 2 reference frames): r (about 14% to 26%)
Thus, the time complexity ratio of ME is estimated as
(2) ((g)};) c- ((—)k’%) 5

For 5 reference frames (K = 5), it performs about 28% to 35% reduction.
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By applying fast motion estimation algorithm to proposed scheme, the computational

complexity in motion estimation can be substantially reduced.
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Figure 5.5 AFDVS with 3 Reference Frames
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Chapter 6

Experimental Results

The proposed ER-RDO-based MRF method is integrated into the latest JVT reference

software JM15.1 [19]. The parameters of our experimental environment are set as follows.
e Test sequence: Foreman,Football, News

Number of frames: 100 frames

Frame rate: 30 fps

Structure of the Group of Picture (GOP): IP P P P ...

o GOP size: 30 frames

Frame format: CIF (352 x 288 pixels)

Number of slices per frame: 6 slices

100 random loss patterns for each of different packet loss rates (1%, 5%, 10%)

The methods used for comparison are listed as follows.

e H.264: the original RDO method in H.264 standard.
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6.1 Bit Rate v.s. Average PSNR

e Periodic MB: Periodic Macroblock proposed by J. Zheng in [13], where the period

K =5.

e Robust MB: Robust Macroblock proposed by Q. Zhang in [14], where the number

of robust MBs per frame is 120.

e ER-RDO: The ER-RDO model in [12]. Note that, in [12], the ER-RDO is applied

to mode decision stage only.

e ER-RDO [12] + ME: The ER-RDO model in [12] is used, but it is applied to

both the mode decision stage and the motion estimation stage.

e Proposed w/o Fast ME:.the propesed method without fast motion estimation

mechanism.

e Proposed w/o IMB: the proposed method without end-to-end distortion estima-

tion for intra-coded MBs.

e Proposed: the full version of proposed method.

6.1 Bit Rate v.s. Average PSNR

The measured average PSNR results of sequences Foreman, Football, News with packet
loss rates 1%, 5% and 10% are shown in figure 6.1, figure 6.2, figure 6.3 and table 6.1.
We can see that the proposed method is better than methods proposed in [12-14]. It is
observed that for sequence Foreman in figure 6.1, the Robust MB scheme in [14] achieves
good performance at packet loss rates 1% and 5%, however, it has about 0.7 dB lower
than the proposed method at packet loss rate 10%; And for sequence News in figure 6.3,

it can achieve good performance at packet loss rates 5% and 10%, however, it has about
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6.1 Bit Rate v.s. Average PSNR

0.8 dB lower than the proposed method at packet loss rate 1%. The results are due to
that although the scheme in [14] choosed Robust MBs according to estimated distortion,
the number of Robust MBs for each frame is a fixed constant which makes it hard to
adopt to different channel conditions. On the other hand, the scheme in [14] achieved
good performance for sequences Foreman and News, but it has about 2.5 dB lower than
the proposed method for sequence Football. The results again show that a fixed number
of Robust MBs per frame is not suitable for various sequences. The proposed method
adopts ER-RDO at the stage of ME, which will select the best MV and reference frame
for each MB, resulting in an optimal number of MBs that reference to intra-coded MBs.
Therefore, the proposed method is adaptive to varying channel conditions and various
video sequences.

According to the results of ‘Proposed w/o IMB’ and ‘ER-RDO [12]’, by involving
DIF as one of reference frames, ‘Proposed w/o IMB’ can gain about 1.2 dB higher than
‘ER-RDO [12]" for sequence.Foreman and about 0.7/dB higher for sequence News. The
reason that the gain for sequence Footballis relatively low (less than 0.5 dB) is due to
that Football is a high-motion sequence and, referencing to DIF will cause too much
increase in the coding bits. As a consequence, a relative high ratio of MBs choose intra-
coding to alleviate error propagation. This makes the performance difference between
‘Proposed w/o IMB’ and ‘ER-RDO [12]" become small. By involving end-to-end distortion
estimation for intra-coded MBs, the proposed method can still gains more than 0.7 dB in

low packet loss rate, and especially, more than 2 dB in high packet loss rate.
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6.1 Bit Rate v.s. Average PSNR

Loss Rate 1% 5% 10%

QP 30 29 28 27 26 30 29 28 27 26 30 29 28 27 26

BR 478.54 | 558.38 | 672.85 | 801.63 | 925.52 | 615.96 | 726.59 | 871.34 | 1048.37 | 1226.96 || 741.82 | 876.60 | 1048.78 | 1250.61 | 1445.71

Proposed (5 Ref)
PSNR 33.69 A7 34.73 35.24 35.60 30.63 30.87 31.52 31.88 32.20 28.48 28.78 29.45 29.69 29.84

H.264 BR 420.51 | 488.40 | 581.65 | 688.73 | 788.36 || 420.51 | 488.40 | 581.65| 688.73 | 788.36 || 420.51 | 488.40 | 581.65 | 688.73 | 788.36
.264

PSNR 32.15 32.52 32.72 33.27 33.38 27.94 28.08 28.33 28.32 28.42 25.18 25.20 25.35 25.39 25.41

Foreman
Periodic MB [13] BR 503.16 | 590.63 | 710.95| 847.18 | 980.75 503.16 | 590.63 | 710.95| 847.18 | 980.75 503.16 | 590.63 | 710.95 | 847.18 | 980.75

(Period 5) PSNR 33.54 34.01 34.56 34.96 35.42 29.47 29.62 29.83 29.92 30.15 26.54 26.58 26.70 26.71 26.81

BR 595.12 | 682.82 | 820.31 | 962.12 | 1104.80 || 595.12 | 682.82 | 820.31 | 962.12 | 1104.80 || 595.12 | 682.82 | 820.31 | 962.12 | 1104.80

Robust MB [14]

PSNR 34.02 34.52 35.18 35.68 36.22 30.63 30.97 31.33 31.60 31.86 27.78 28.03 28.22 28.39 28.57
ER-RDO [12] (5 BR 459.01 | 534.34 | 642.54 | T758.73 | 878.86 || 555.06 | 650.45 | 777.01 | 926.23 | 1072.47 | 627.80 | 731.27 | 869.33 | 1027.60 | 1187

Ref) PSNR 32.26 32.86 33.11 33.49 33.83 29.11 29.49 29.61 30.15 30.33 26.77 27.06 27.24 27.50 27.59

[12] + ME (5 BR 464.06 | 540.69 | 644.44 | 764.82+ 1884.90 || 567.85.| 666.89 | 800.34 | 946.59 | 1090.68 || 652.83 | 762.64 | 908.26 | 1066.61 | 1229.08
Ref) PSNR 32.25 32.69 32.82 33.48 33.67 29119, 29.56 29.75 30.26 30.16 26.84 26.85 27.08 27.58 27.58

BR 1561.42 | 1742.15 | 1990.05 | 2246:20 | 2475.27 || 1743.87 |11924.36 | 2187.41 | 2450.12 | 2678.87 || 1819.74 | 2002.47 | 2270.71 | 2541.25 | 2775.20

Proposed (5 Ref) -
PSNR 34.00 34.56 34.87 35.79 36.65 30.78 31.46 31.98 32.66 33.23 28.77 29.32 29.80 30.25 30.94

H.264 BR 1413.31 | 1574.89 |.1796.35 | 2025.08.{.2216.43 || 1413.31 | 1574.89 | 1796.35 | 2025.08 | 2216 1413.31 1796.35 | 2025.08 | 2216.43
Football PSNR 32.16 32.87 33.28 33.74 33.92 26.20 26.37 26.44 26.87 26.45 23.07 23.24 23.19 23.44 23.12
Periodic MB [13] BR 1452.26 | 1614.98 | 1840.68 | 2073.20-| 2271.72 || 1452.26 | 1614:98 | 1840.68 | 2073.20 | 2271.72 || 1452.26 | 1614.98 | 1840.68 | 2073.20 | 2271.72
(Period 5) PSNR 33.10 33.45 34.18 34.63 35.19 27.01 27.19 27.52 27.46 27.77 23.66 23.81 24.09 24.01 24.26
Robust MB [14] BR 1590.18 | 1751.79 | 1987.37 | 2222.81 | 2433.85 || 1590.18 | 1751.79 | 1987.37 | 2222.81 | 2433.85 || 1590.18 | 1751.79 | 1987.37 | 2222.81 | 2433.85
PSNR 33.86 34.23 34.92 35.47 36.04 28.53 28.65 28.99 29.27 29.66 25.22 25.09 25.42 25.64 25.96
ER-RDO [12] (5 BR 1491.89 | 1662.10 | 1896.45 | 2137.11 | 2348.33 || 1566.64 | 1738.76 | 1978.30.|.2226.08 | 2437.10 || 1598.62 | 1769.74 | 2014.96 | 2261.93 | 2476.05
Ref) PSNR 32.64 33.21 34.12 3471 35.22 27.82 28.15 28.50 29.11 29.22 24.66 24.92 24.94 25.32 25.36
[12] + ME (5 BR 1497.06 | 1664.85 | 1901.07 |12138.51 | 2349.88 || 1586.71 | 1757.63 | 2003.59 | 2247.24 | 2459.89 || 1636.38 | 1808.78 | 2056.69 | 2307.52 | 2516.06
Ref) PSNR 32.79 33.29 34.07 34.58 35.05 27.93 28.30 28.54 28.89 29.08 25.01 25.22 25.58 25.62 25.68
BR 275.90 | 309.95 | 355.23 | 1402.50 | 449.78 307.47 | 34830 40325 | 460.43 | 520.42 347.76 | 392.22 | 454.35 | 520.36 | 586.65
Proposed (5 Ref) -
PSNR 35.68 36.33 36.97 37.58 38.15 32.39 32.82 33.37 33.78 34.19 29.73 30.10 30.56 30.87 31.24
H964 BR 266.02 | 298.40 | 340.54 | (385.44 |.428.55 || 266:02 | 298.40 | 340.54 | 385.44 | 428.55 || 266.02 | 298.40 | 340.54 | 385.44 | 428.55
News PSNR 35.13 35.82 36.41 36.94 37.42 30.70 3112 31.35 31.52 31.79 27.67 27.91 28.04 28.12 28.25

Periodic MB [13] BR 291.02 | 326.38 | 372.74 | 419.35 | 465.54 || 291.02 | 326.38 | 372.74 | 419.35 | 465.54 || 291.02 | 326.38 | 372.74 | 419.35 | 465.54

(Period 5) PSNR 35.78 36.36 37.04 37.61 38.21 32.02 32.33 32.79 33.11 33.41 28.97 29.10 29.42 29.64 29.84

BR 338.89 430.13 | 484.33 | 539.83 338.89 | 379.21 430.13 | 484.33 | 539.83 338.89 | 379.21 | 430.13 | 484.33 | 539.83
Robust MB [14]

PSNR 35.77 37.04 37.66 38.21 32.56 33.04 33.44 33.82 34.18 29.74 30.07 30.28 30.56 30.85

ER-RDO [12] (5 BR 271.43 | 304.92 | 35041 | 397.48 | 442.27 | 291.01 | 327.16 | 377.02 | 430.54 | 483.54 || 309.66 | 347.49 | 401.18 | 458.72 | 513.13

Ref) PSNR 35.38 35.93 36.64 37.22 31.45 31.82 32.30 32.62 32.96 28.58 28.97 29.27 29.59 29.54
[12] + ME (5 BR 271.75 | 305.00 | 349.76 | 396.54 293.81 | 330.49 | 380.03 | 432.59 | 483.60 || 314.31 | 354.39 | 407.67 | 462.49 | 514.38
Ref) PSNR 35.28 35.99 36.66 37.17 31.48 31.94 32.28 32.74 33.09 28.63 29.07 29.30 29.63 29.66

Table 6.1 Table of Bit Rate v.s. Avg. PSNR in different packet loss rates
p =0.01,0.05,0.10 and QP = 26, 27,28, 29, 30
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6.2 The Effects of Intra-coded MBs in End-to-End Distortion Estimation

Percentage of intra-coded MBs
Sequence | Method
p=1% | p=5% p=10%
Proposed (5 Ref) 10% 22% 32%
Foreman
Proposed w/o IMB (5 Ref) 8% 16% 20%
Proposed (5 Ref) 53% 72% 80%
Football
Proposed w/o IMB (5 Ref) 42% 49% 53%
Proposed (5 Ref) 3% 6% 8%
News
Proposed w/o IMB (5 Ref) 3% 4% 5%

Table 6.2 Intra-coded MB Rates with different packet loss rates p =
0.01,0.05,0.10 and QP = 28 for sequences Foreman, Football and News

6.2 The Effects of Intra-coded MBs in End-to-End

Distortion Estimation

As described in chapter 4, our proposed method considers intra-coded MBs in end-to-
end distortion estimation to get accurate expectation of end-to-end distortion. Therefore,
in our experiment, we compare methods ‘Proposed’ with ‘Proposed w/o IMB’. Table 6.2
shows the intra-coded MB rate for different sequences and different packet loss rates with
QP = 28. It can be seen that, the inclusion of intra-coded MBs for end-to-end distortion
causes increase of the intra-coded MB rate. That is because, actually, the intra-coded MBs
in inter frames may cause error propagation if it is not received. Without considering it,
the end-to-end distortion estimation may underestimate the impact of error propagation
from intra-coded MBs, especially for high-motion equences and high packet loss rate, since
they usually reveals in high intra rate. Figure 6.4 shows the average PSNR frame by frame
with packet loss rate 10% and QP = 28 for different sequences Foreman, Football and
News. Since the intra-coded MB rate has a big gap (27%) between the methods with and
without consideration of intra-coded MB in end-to-end distortion estimation for sequence

Football with packet loss rate 10%, the degradation of average PSNR is high.
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6.3 Performance of Fast Motion Estimation

6.3 Performance of Fast Motion Estimation

The proposed fast motion estimation algorithm (FME) involves AFDVS to predict
MVs on DIF rather than the way using co-located MBs. Moreover, two key frames (the
DIF and the immediately previous frame) are used to determine the trend of prediction.
Table 6.3 shows the reference ratios referencing to DIF and the four previous frames.
From the table, we can see that, by involving fast motion estimation algorithm, the
percentage of reference to the DIF increases about 4.2%, 1.2% and 0.3% at low packet
loss rate for Foreman, Football and News, respectively. At high packet loss rate, the
difference of reference ratio is about 6.1%, 1.8% and 0.6% for Foreman, Football and
News, respectively. Those blocks which-change reference frame to DIF may provide more
resilience against error propagation.-However, referencing to the DIF may require more
coding bits. From the perforrance comparison, as shown.in figure 6.5, the performance of
proposed method with FME is better than the one without FME for News and, especially,
for Foreman, however, it’s worse for Football. The main reason is that, for low intra rate
sequences such as Foreman and News, the gain of referencing to the DIF is higher enough
to counterbalance against the increase of coding bits. The effect is obvious at high packet
loss rate. However, for high-motion sequences such as Football, the gain of referencing to
the DIF is quite small due to high intra rate. Futhermore, the coding bits by referencing to
the DIF is much higher for high-motion sequences than the one for low-motion sequences.
That is the reason that, for Football, the proposed method with FME gains lower than
the method without FME. Even though fast motion estimation causes lower gain for
high-motion sequences, it still costs low computational complexity, which is described in

chapter 5.
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6.4 Performance of DIF Replacement Mechanism

Percentage of Reference

Sequence | Method Reference Frame
p=1% | p=5% | p=10%
DIF 14.2% | 21.4% 28.1%
Proposed (5 Ref)
Others 85.8% | 78.6% 71.9%
Foreman
DIF 10.0% | 16.4% 22.0%
Proposed w/o Fast ME (5 Ref)
Others 90.0% | 83.6% 78.0%
DIF 10.3% | 19.2% 27.0%
Proposed (5 Ref)
Others 89.7% | 80.8% 73.0%
Football
DIF 9.1% | 16.4% 25.2%
Proposed w/o Fast ME (5 Ref)
Others 90.8% | 83.6% 74.8%
DIF 5.3% 5.7% 6.2%
Proposed (5 Ref)
Others 94.7% | 94.3% 93.8%
News
DIF 5.0% 5.2% 5.6%
Proposed w/o Fast ME (5 Ref)
Others 95.0% | 94.8% 94.4%

Table 6.3 Reference Ratios with different packet loss rates p = 0.01,0.05,0.10

and QP = 28 for sequencees Foremamns, Football . and News

6.4 Performance of DIF Replacement Mechanism

In chapter 4, we propose a DIEF replacement mechanism which adaptively changes

the dominant intra frame when scene.change-happened. In the experiment, we cascade

sequences Foreman and Stefan as a composite sequence of 100 frames with scene changes

at frame 34 and frame 63. Figure 6.6 shows the performance comparison of the proposed

methods with and without DIF replacement mechanism. According to the results, we can

see that, by involving DIF replacement mechanism, the performance gain is about 0.1 dB

and 0.3 dB for packet loss rates low and high, respectively.
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6.4 Performance of DIF Replacement Mechanism
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6.4 Performance of DIF Replacement Mechanism

foreman-stefan, GOP=30, LR=0.01
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Chapter 7

Conclusion

In this thesis, an RDO-based error resilient scheme using MRF has been presented.
We propose a candidate reference frame set with inclusion of the dominant intra frame
(called DIF) to suppress the error propagation and an error resilient RDO model applied
to both stages Motion Estimation and Mode Decision for better coding efficiency in dif-
ferent network conditions and different contents. Futhermore, we propose a fast motion
estimation algorithm to reduce the eomputational complexity. To fit in the situation with
scene changes, we also propose a replacement mechanism for DIF. The experimental re-
sults show that, our proposed scheme improves coding efficiency with different content
and network conditions but without much increase of computational complexity in the

MRF environment.
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