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Abstract

RDO-Based Error-Resilient Coding of H.264 Video
Using Multiple Reference Frames

Transmission for high-compressed video coding, such as H.264, over error-prone environ-

ment is quite a challenge due to the potential error propagation. In this thesis, we propose

an error-resilient scheme for H.264 based on Error Resilient Rate-Distortion Optimization

(ER-RDO) and Multiple Reference Frames (MRF). Since the error propagation may sub-

stantially degrade the received video quality, we include a Dominant Intra Frame (DIF) as

one reference frame to alleviate error propagation. By predicting from the dominant intra

frame, it can be more coding efficient and more error resilient. Multiple reference frames

technique improves the coding efficiency and suppresses the error propagation. However,

it also brings a major drawback that the computational complexity for motion estimation

(ME) may increase depending on the number of reference frames. To efficiently reduce

the computational complexity of ME, we propose a fast motion estimation algorithm. The

experimental results show that the proposed scheme has substantial improvement over the

existing schemes in providing error resilience using MRF.

Keywords: Video Transmission, Error Resilience, RDO, Multiple Reference Frames
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摘要

使用多重參考幀
在基於R-D最佳化之H.264錯誤恢復影像編碼

對於高壓縮率影像編碼，如 H.264，因為潛在的錯誤傳遞效應，要透過錯誤傾向環境

來進行影像傳輸是一項挑戰。在本篇論文中，我們提出了一個架構在 H.264 影像編

碼下，並結合 Error Resilient Rate-Distortion Optimization (ER-RDO) 及多重參考幀

(Multiple Reference Frames, MRF) 的編碼策略。因為錯誤傳遞 (Error Propagation) 可

能造成接收端影像品質的顯著下降，因此我們加入 Dominant Intra Frame (DIF) 做為

在多重參考幀環境下的一個參考幀。藉由 DIF，可以有效地抑制錯誤傳遞，同時也可

以確保編碼效率。而藉由 ER-RDO 技術，也可以讓影像編碼具有更高的適應性以符

合不同傳輸環境及不同的影像內容。雖然 MRF 在影像編碼的效率及錯誤傳遞的抑制

上有不錯的效果，然而隨著參考幀的增加，計算上的複雜度也相對地提升，尤其是在

Motion Estimation (ME) 上，因此為了有效減少計算複雜度，我們也提出了一個快速

移動估計演算法 (Fast Motion Estimation Algorithm)。最後的實驗結果顯示，我們提出

的方法能比既有架構在 MRF 下的方法提供更多的錯誤恢復效果。

關鍵字: 影像傳輸、錯誤恢復、R-D 最佳化、多重參考幀
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Chapter 1

Introduction

Transmission of compressed video over error-prone environment is a challenge task due

to potential error spread effect. In the typical video transmission system, as figure 1.1,

the video source encoder first encodes source sequence into bit-stream and encapsulates

it as packets. Then, these packets are transmitted to destination through the error-prone

environment. The video source decoder combines received packets and decodes it. During

the stage of transmitting through the error-prone environment, packets might loss due

to signal degradation, oversaturated bandwith, or routing issues. The problem results in

loss of synchronization between decoder and encoder. With high ratio of compression,

especially in H.264/AVC, the loss issue may cause devastatin impact of decoded video

quality due to potential error spread effect, the error propagation.

Video 
Source 

Encoder

Video 
Source 

Decoder

Error 
Prone 

Network

Figure 1.1 A typical video transmission system
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1.1 Error Propagation

1.1 Error Propagation

The main reason causing error propagation is a widely adopted technique in today’s

video coding standards, Motion Compensated Prediction (MCP). With MCP, video in-

formation could be easily predicted according to the previous coded data. This makes a

great coding efficiency by removing temporal redundancy. However, it also creates a de-

pendency between current coded and previous coded data. Even if current coded data is

completely received, it still inherits the error from previous corrupted data, and becomes

corrupted. Then the error propagates frame by frame, as shown in figure 1.2, causing

substantial degradation of decoded video quality.

I P P P P

Corrupted MB

Figure 1.2 The error spread effect - Error Propagation

1.2 Error resilience tools in H.264 standard

In recent years, several error resilience tools [1] for H.264/AVC have been represented

to provide robust video transmission over error-prone environment. Some of them were

already included in H.264 standard, and others are implemented or introduced recently.

These methods include: slices, slice groups with unequal error protection (FMO + FEC),

data partitions, intra placement, and Multiple Reference Frames (MRF).

2



1.2 Error resilience tools in H.264 standard

1.2.1 Slice

If a frame is coded as a packet without slice mode, it means that the loss of a packet

causes the loss of the whole frame. In slice mode, each slice contains an integral number

of macroblocks and will be packetized as, usually if data partitioning is not involved,

a packet. By splitting a frame into slices, the probability of whole frame loss could be

substantially reduced.

1.2.2 Slice Group with Unequal Error Protection

A frame could be coded as one or more slice groups, each containing an integral

number of slices. One and the most important property is that the needed information to

the coded MBs in a slice group is limited within the slice group. In other words, coding

MBs in a slice group will not cross refer to other slice groups. This property makes a

good suppression for spatial error propagation. Flexible Macroblock Ordering (FMO) [2]

allows assigning MBs to slices in different orders, e.q. interleaved and dispersed. The

main goal of this technique is to limit the scatter possible errors to the whole frame, since

the error will not propagate to other slice groups.

Another technique which is well adopted with slice groups for error resilient coding

is Unequal Error Protection (UEP) [3]. It first classifies MBs to different slice groups

according to specified criteria, and then, each slice group is assigned with different numbers

of protection bits. Forward Error Correcting (FEC) [4] such as Reed-Solomon Coding

(RS-Code) [5] is a widely adopted method for data protection. FEC guarentees that, if

the number of erased packets is less than the decoding threshold for the FEC code, the

original data can be recovered perfectly.

3



1.2 Error resilience tools in H.264 standard

1.2.3 Data Partition

Data Partition technique further splits a slice into three partitions, each is encapsulated

as a packet. The three partition types are:

• Partition A, containing header information such as MB types, quantization param-

eters, and motion vectors. This information is the most important part because,

without it, the whole slice becomes unusable, even if the other partitions are avail-

able.

• Partition B (intra partition), containing intra coded residuals. Since intra informa-

tion can stop further error propagation, this partition is more important than the

inter partition.

• Partition C (inter partition), containing inter coded residuals. Inter partition is the

least important part.

If the intra or inter partitions (B or C) are lost, the available header information from

partition A can still be used in error concealment.

1.2.4 Intra Placement

H.264 allows intra macroblock prediction in inter frames. It could not only achieve

better coding efficiency, but also add robustness into inter frames. However, with more

intra information, more coding bits are required.

1.2.5 Multiple Reference Frames (MRF)

Fore old video coding standard such as MPEG II, inter-coded macroblocks in P-frames

predict from only one frame immediately preceeding the current frame. The Multiple

4



1.3 Rate-Distortion Optimization based ER tools

Reference Frames technique in H.264 allows block-level prediction from a set of previously

encoded frames, called candidate reference frames. As shown in figure 1.3, current encoded

MB contains three blocks, the first 8× 8 block referencing to Fn−2, the second 8× 8 block

referencing to Fn−1, and the 8× 16 block referencing to Fn−3.

Fn

MB

Fn-1Fn-2Fn-3

Candidate Reference Frames
(K = 3)

Figure 1.3 Multiple Reference Frames

With MRF, even if some macroblocks in Fn−2 and Fn−1 are corrupted, those blocks

predicted from Fn−3 can still be correctly decoded. By involving MRF, coded video

becomes more error resilient and coding efficient.

1.3 Rate-Distortion Optimization based ER tools

H.264 standard offers a rate-distortion optimized (RDO) technique which gets a great

tradeoff between coding rate and source distortion for motion estimation and mode deci-

sion. Since the original RDO doesn’t consider the channel distortion during video trans-

mission, several error-resilient RDO (ER-RDO) techniques have been proposed for video

transmission in error-prone environment [6, 7].

The R-D optimization technique has been well-studied for the source video coding

in error-free environment [8]. However, it is not applicable to error-prone environment

due to improper distortion estimation scheme which concerns source distortion only. To

5



1.3 Rate-Distortion Optimization based ER tools

encompass error resilience, the R-D optimization scheme should jointly consider the source

distortion and the potential channel distortion together so as to achieve the best tradeoff

between the overall end-to-end distortion and the rate.

Recently, an Error RoBust Rate-Distortion Optimization method, referred to as ERB-

RDO, has been developed for video coding in error-prone environment [6,7], and has been

adopted in the H.264/AVC test model [9]. ERB-RDO eastimates the expected end-to-

end distortion by calculating the mean value of distortion from K copies, each with a

random loss maps. The expected end-to-end distortion can be estimated very accurately

if K is large enough. However, this would cost much higher computational complexity.

Therefore, a number of approachs have been proposed for accurate end-to-end distortion

estimation at low computational complexity.

Recursive Optimal per-Pixel Estimation (ROPE) proposed by [10] has been recog-

nized as an effective method to estimate the expectation of end-to-end distortion. The

estimation is integrated into a RD-based scheme for optimal mode selection. Several end-

to-end distortion based RDO schemes [10–12] use a similar way to recursively calculate

the expected end-to-end distortion. In [10], R. Zhang proposes a way for mode decision

that recursively calculates the first and second distortion items, which are repesented as

di
n = E{(f i

n − f̃ i
n)2}

= (f i
n)2 − 2f i

nE{f̃ i
n}+ E{(f̃ i

n)2}

However, the seperation is very sensitive to the approximation errors caused by averaging

operations such as subpixel motion compensated prediction. In [11], H. Yang proposes an

end-to-end distortion estimation solution that seperates the distortion into three items:

source distortion, error-propagated distortion and error-concealment distortion. With

their distortion model, they applied error resilient RDO to both motion estimation and

6



1.4 Multiple Reference Frame based ER tools

mode decision. Based on the end-to-end distortion model in [11], Y. Zhang further pro-

poses a generalized estimation model [12] for fitting multiple reference frames (MRF).

1.4 Multiple Reference Frame based ER tools

Multiple Reference Frames (MRF) has been proven a powerful tool to improve both

coding efficiency and suppression of error propagation. Thus, many MRF-based tech-

niques have been proposed for improvement of error resilience [13,14].

1.4.1 Automatic Repeat reQuest (ARQ)

Automatic Repeat Request is an error transmission mechanism, which creates a feed-

back channel for transmitting extra information. The feedback information can be used

to retransmit corrupted video data [15] or by encoder to adjust the encoding behavior,

e.q., to skip the corrupted data area in the motion estimation of succeeding frames [16].

As shown in figure 1.4, the coded data of frame Fn is transmitted through data channel,

and then, the decoder receives the data and finds it is corrupted and unrecoverable. Thus,

the feedback information about the corrupted data is sent back to the encoder. In motion

estimation of (n + 1)th frame, it will not refer to the corrupted area of nth frame. With

multiple reference frames, the encoder can simply skip frame Fn as the reference frames

for succeeding motion estimation.

By an extra feedback channel, the real loss map can be easily obtained by encoder so

the encoder can choose a way to prevent error propagation. However, a major drawback

of ARQ is the requirement of additional communication time for transmission of feedback

infomation. Thus, ARQ is not suitable for low-latency environment.
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1.4 Multiple Reference Frame based ER tools

Fn

Encoder

Data Channel

Fn+1Fn-1 FnFn-1

Decoder

Feedback Channel

Corrupted

2

1

3

4

5

Figure 1.4 Automatic Repeat reQuest in MRF

1.4.2 Periodic Macroblock

In [13], a reference frame selection method is developed, which for every Kth frame,

selects n macroblocks, called Periodic Macroblock, to predict from the frame that is K

frames away, as shown in figure 1.5. For other macroblocks, only the immediately previous

frame is used as reference.

I P P P P

Periodic MB

Period (K frames) Period (K frames)

Figure 1.5 Periodic MB with K period

The authors have shown that, by using long-term frames for motion compensated

prediction, these Periodic MBs can suppress te error propagation and increase the receipt

probability. The selection criteria of Periodic MBs is based on the expected end-to-end

distortion. However, the choice of period K and the number of Periodic MBs, n, are

predefined constant in their algorithm. This makes their approach hard to adapt to

various content characteristics and channel conditions.

8



1.4 Multiple Reference Frame based ER tools

I P P P P

Robust MB

Figure 1.6 Robust MB

1.4.3 Robust Macroblock

Alternatively, robust macroblocks proposed in [14] is another reference frame selection

method. As shown in figure 1.6, every P-frame contains a number of macroblocks called

Robust Macroblock, which predict from the nearest intra frame. The selection criteria of

Robust MBs is similar to that of Periodic MB, which is also based on the expected end-

to-end distortion. With long-term reference to the intra frame, the authors in [14] have

shown that the Robust MBs can get good suppression of error propagation. However, the

number of Robust MBs in every P-frame is a predefined constant, which is independent of

content characteristics and channel conditions. This makes their approach not adaptive

to various video contents and channel conditions.

In this thesis, a MRF-based error resilient scheme is proposed, which includes the

nearest dominant frame as one of the reference frames and adopts error resilient RDO on

the stages of motion estimation and mode decision for optimal coding parameter selec-

tion. The experimental results show that proposed scheme gets a good coding efficiency

over different error-prone environments. Besides, since MRF will increase the computa-

tional complexity of motion estimation, a fast motion estimation algorithm based on the

proposed error-resilient MRF scheme is proposed. The fast algorithm skips unnecessary

reference frames according to two key reference frames (the short-term frame and the

9



1.4 Multiple Reference Frame based ER tools

nearest dominant frame), which determine the dominant factor between source distortion

and error propagated distortion. The experimental results show that the proposed fast

algorithm can speed up motion estimation of MRF without losing any performance.

The rest of the thesis is orginized as follows. In chapter 2, we describe RDO-based

ER tools proposed in recent years. In chapter 3, we summarize the advantages and disad-

vantages of existing RDO-based and MRF-based methods, and present some observations

from experimental results that give motivation to this work. In chapter 4 and chapter 5,

we describe the proposed methods in detail. The experimental results shown in chapter 6

demonstrate that our proposed scheme has substantial improvement over existing schemes

in providing error resilience using MRF. And finally chapter 7 concludes this work.

10



Chapter 2

Related Works

In chapter 1, the reasons causing error propagation and three categories of ER tools

have been introduced. There are many features in these three categories of ER tools, es-

pecially content-adaptibility, network-adaptibility and better coding efficiency over error-

prone environment in RDO-based ER tools. Since ERB-RDO scheme uses the average

distortion from K random loss map as expected distortion, it comes with a potential

drawback, high computational complexity when K is large. Thus, the proposed method

chooses end-to-end distortion based RDO scheme to be based upon. In this chapter, we

introduce details of the end-to-end distortion based RDO scheme.

2.1 Rate-Distortion Optimization in H.264 Standard

H.264 standard provides a Lagrangian method which optimizes the tradeoff between

video quality and bit rate to determine coding parameters. The Lagrangian method is

applied in two stages, Motion Estimation and Mode Decision. In the stage of motion

estimation, the main concern is to determine the best MV for a certain reference frame;

while in the stage of mode decision, the main concern is to decide the best coding mode

11



2.1 Rate-Distortion Optimization in H.264 Standard

and reference frame. The Lagrangian formulation for these two stages are written as

follows.

• Motion Estimation:

J(mv) = Denc + λmotionR(mv) (2.1)

where Denc, denotes the block-level prediction error between the current and the

reference blocks. It is usually measured as SSD or SAD; R(mv) is the estimate bit

rate for specified motion vector; and λmotion is the Lagrange multiplier to control

the weight of the bit rate cost.

• Mode Decision:

J(mode) = Denc + λmodeR(mode) (2.2)

where Denc denotes the macroblock-level difference between the reconstructed MB

and the reference one. It is usually measured as SSD; λmode is the Lagrange multi-

plier for mode decision; and R(mode) denotes the estimated coding rate for specified

mode (reference frame, coding mode, residue, etc.).

The Lagrange multipliers for motion estimation and mode decision can be represented as

λmode = λmotion
2 (2.3)

2.1.1 Expected End-to-End Distortion Model in MRF

Commonly, the expected end-to-end distortion (the overall distortion) is defined using

SAD or SSD. That is

di
n = E{|f i

n − f̃ i
n|} (2.4)

12



2.1 Rate-Distortion Optimization in H.264 Standard

, or

di
n = E{(f i

n − f̃ i
n)2} (2.5)

where f i
n and f̃ i

n denote the original value and the decoder reconstructed value, respec-

tively, for pixel i in frame n. The distortion is measured as the expected difference between

the pixels in encoder and the pixels in decoder. In order to effectively calculate the overall

distortion, the decorder reconstructed value f̃ i
n which is unkonwn in the encoder needs to

be derived further.

The authors in [12] have derived f̃ i
n in a way such that di

n can recursively calculated

at the encoder. We summarize their approach here. Let f̂ i
n and r̂i

n be the reconstructed

value and the reconstructed residue in the encoder, respectively. With a motion vector mv

predicted from reference frame ref , f̂ i
n can be represented as f̂ i

n = f̂ i+mv
ref +r̂i

n. Suppose the

transmission error rate is known as p and frame copy is adopted as the error concealment

policy. When current pixel is lost during transmission, it copies from the same position

in previous frame n− 1. Then, The decoder reconstructed value f̃ i
n can be represented as

f̃ i
n =


f̃ i+mv

ref + r̂i
n , 1− p

f̃ i
n−1 , p

(2.6)

Hence, in [12] the expected end-to-end distortion di
n for inter-coded pixel i in frame n

13



2.1 Rate-Distortion Optimization in H.264 Standard

was derived to be

di
n = E{(f i

n − f̃ i
n)2}

= (1− p)E{(f i
n − (f̃ i+mv

ref + r̂i
n))2}+ pE{(f i

n − f̃ i
n−1)

2}

= (1− p)E{(f i
n − f̂ i

n + f̂ i
n − f̃ i+mv

ref − r̂i
n)2}+ pE{(f i

n − f̃ i
n−1)

2}

= (1− p)E{(f i
n − f̂ i

n + f̂ i+mv
ref − f̃ i+mv

ref )2}+ pE{(f i
n − f̃ i

n−1)
2}

= (1− p)(E{(f i
n − f̂ i

n)2}+ E{(f̂ i+mv
ref − f̃ i+mv

ref )2}) + pE{(f i
n − f̃ i

n−1)
2}

= (1− p)(ds
i
n + dep

i+mv
ref ) + pdec

i
n (2.7)

= (1− p)(ds
i
n + dep

i+mv
ref ) + p(E{(f i

n − f̂ i
n−1)

2}+ dep
i
n−1) (2.8)

where ds denotes the source distortion, dep denotes the error-propagated distortion and dec

denotes the error-concealment distortion. Since ds
i
n and the first part of dec

i
n are known

and can be calculated at the encoder, the estimation of di
n in the encoder mainly relies

on the calculation of dep
i+mv
ref and dep

i
n−1.

Note that dep
i+mv
ref and dep

i
n−1 are in the similar style, thus we derive the generalized

formula dep
i
n as

dep
i
n = E{(f̂ i

n − f̃ i
n)2}

= (1− p)E{(f̂ i
n − (f̃ i+mv

ref + r̂i
n))2}+ pE{(f̂ i

n − f̃ i
n−1)

2}

= (1− p)E{(f̂ i+mv
ref − f̃ i+mv

ref )2}+ p(E{(f̂ i
n − f̂ i

n−1)
2}+ E{(f̂ i

n−1 − f̃ i
n−1)

2}) (2.9)

= (1− p)dep
i+mv
ref + p(E{(f̂ i

n − f̂ i
n−1)

2}+ dep
i
n−1) (2.10)

From (2.10), it is observed that the error-propagated distortion from current frame (i.e.,

dep
i
n) can be recursively calculated by the error-propagated distortion values from previous

frames (i.e., dep
i
n−1 and dep

i+mv
ref ). Since the three distortion items ds, dep and dec can be

calculated directly or recursively, the expected end-to-end distortion can be estimated at

the encoder side.
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Chapter 3

Motivation

In chapter 2, we simply described that R-D Optimization in H.264 standard reveals

a good Rate-Distortion tradeoff in error-free environment. Some RDO-based ER tools

[10–12] has been proposed to modify the distortion estimation model in order to apply

the R-D optimization in error-prone environment. These RDO-based ER tools improve

error resilience by taking into account the channel conditions and error propagations for

optimizing R-D tradeoff in two stages, motion vector determination and mode decision.

However, most of them focus on single reference frame only. On the other hand, MRF-

based ER tools such as Periodic MB [13] and Robust MB [14] have shown that long-term

reference frames can be used to suppress error propagation and improve error resilience.

Therefore, reference frame selection plays an important role in the error resilient motion

estimation when MRF is adopted.

By combining RDO-based ER tools and MRF techniques, we have conducted some

experiments in error-prone environment and the results are shown in figure 3.1, where

GOP size is 30, quantization parameter is 28, the number of reference frames is set to

29 (that is, all the frames in the same GOP can be selected as reference frames), and

15



the RDO-based ER tool in [12] is extended to MRF and adopted in both MV and mode

decisions. The x-axis of figure 3.1 denotes the reference index. For current frame n, the

reference index i (1 ≤ i ≤ 29) means that frame (n− i) is selected as the reference frame

and reference index NIF means that the nearest intra frame is used as the reference frame.

Figure (a) and (b) show the percentage of references for every reference index for Foreman

and Football sequences, respectively. The results are calculated from all the 4× 4 blocks

of all the frames in the corresponding sequence and three different packet loss rates (1%,

5%, 10%) are adopted.

From figure 3.1, it is interesting to observe that

• The percentage curves are varying for different packet loss rates and for different

video sequences.

• About 70% to 80% of blocks reference to the immediately previous frame (i.e.,

reference index = 1) and the nearest intra frame (NIF, i.e., reference index = -1).

• As the packet loss rate increases, the percentage of blocks that select NIF as the

reference frames also increases. This implies that although selecting NIF may in-

crease coding bit rate, it is still beneficial to use it to reduce the impact of error

propagation. Such reduction is substantial, especially when the packet loss rate is

high.

From the observations above, we propose that the nearest intra frame should be consid-

ered as one of the reference frames to alleviate the error propagation. Thus, the proposed

method combines the error resilient RDO scheme and the reference frame selection with

the nearest intra frame to provide a content-adaptive, network-adaptive and high-coding-

efficiency scheme in error-prone environment.
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Chapter 4

Proposed Method

In this chapter, we describe the proposed error resilient method in detail. As mentioned

in chapter 3, a better error resilient scheme should consider content-adaptibility, network-

adaptibility and coding efficiency in error-prone environment. To achieve these goals, we

propose a novel MRF-based error resilient scheme involving Rate-Distortion optimization

on motion vector determination, mode decision and reference frame selection. Besides, to

reduce the computational complexity caused by motion estimation in MRF, we propose

a fast motion estimation algorithm.

4.1 Candidate Reference Frames

In traditional MRF, current frame uses previous K frames as candidate reference

frames to predict from as shown in figure 4.1, where K = 3. However, since these frames

are located closely in the sequence, they have similar characteristics, in terms of error

propagation length. Predicting from one of them has similar error resilience. Reference

to intra-coded frame, however, can suppress the error propagation. According to 3.1, as

the packet loss rate increases, the percentage of the blocks choosed to predict from the
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4.2 Error Resilient RDO

intra-coded frame also increases. Thus, we propose to include the nearest intra frame

(called NIF) as one of the candidate reference frames. In order to keep the same number

of reference frames as usual, the original farest candidate reference frame is excluded. As

shown in figure 4.1, the candidate reference frames of Fn will include Fn−1, Fn−2, and

NIF when K = 3.

NIF Fn

MB

Fn-1Fn-2Fn-3

Candidate Reference Frames
(Traditional, K = 3)

Candidate Reference Frames
(Proposed)

Figure 4.1 Multiple Reference Frames with Nearest Intra Frame

4.2 Error Resilient RDO

In RDO-based ER tools, original Lagrangian minimization formulation is modified as

JER = E{D}+ λER(o)R(o) (4.1)

to get good coding efficiency over error-prone environment. The formulation can be

applied to motion estimation and mode decision to get the best selection of coding options

such as motion vector, coding mode, reference frame, etc. Therefore, the Lagrangian

minimization formulation can be described as the Lagrange cost function problem.
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4.2 Error Resilient RDO

4.2.1 Lagrange Cost Function in Error-Prone Environment

Let O(o) denote the set of all defined coding options. To get good coding efficiency in

error-prone environment, a general cost function for Rate-Distortion optimization can be

represented as

JER(o) = E{D(o)}+ λER(o)R(o) (4.2)

o∗ = arg min
o∈O

(E{D(o)}+ λER(o)R(o)) (4.3)

where o denotes the coding option such as motion vector and reference frame in motion

estimation or coding mode in mode decision, E{D(o)} denotes the overall expected distor-

tion for specified coding option o, λER(o) denotes the Lagrange multiplier for error-prone

environment and R(o) denotes the coding rate for specified coding option o. There are

two parts E{D(o)} and λER(o) need to be derived to get the optimal coding option o∗.

According to [12], λER is equal to (1 − p)λ, where p denotes the transmission error

rate and λ denotes the Lagrange multiplier in error-free environment. As described in

chapter 2, the overall end-to-end distortion can be seperated as

E{D} = (1− p)(E{Ds}+ E{Dep}) + pE{Dec} (4.4)

where Ds, Dep and Dec denote the source distortion, error-propagated distortion and

error-concealment distortion.

According to (4.4), the optimal coding option o∗ (4.3) can be selected with

o∗ = arg min
o∈O

(E{D(o)}+ λER(o)R(o))

= arg min
o∈O

((1− p)(E{Ds(o)}+ E{Dep(o)}) + pE{Dec(o)}+ (1− p)λ(o)R(o)) (4.5)

Since Dec is independent of coding option o, it is unnecessary to be calculated. Therefore,
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4.2 Error Resilient RDO

(4.5) can be further derived as

o∗ = arg min
o∈O

((1− p)(E{Ds(o)}+ E{Dep(o)}) + pE{Dec(o)}+ (1− p)λ(o)R(o))

= arg min
o∈O

((1− p)(E{Ds(o)}+ E{Dep(o)}) + (1− p)λ(o)R(o))

= arg min
o∈O

(E{Ds(o)}+ E{Dep(o)}+ λ(o)R(o)) (4.6)

The proposed RDO method applies (4.6) to both motion estimation and mode decision,

which are represented as follows.

• Motion Estimation (block-based):

JER(mv, ref) =E{Ds(mv, ref)}+ E{Dep(mv, ref)}+ λmotion(R(mv) +R(ref))

(4.7)

(mv, ref)∗ = arg min
mv,ref

(

E{Ds(mv, ref)}+ E{Dep(mv, ref)}+ λmotion(R(mv) +R(ref))

) (4.8)

• Mode Decision (macroblock-based):

JER(mode) =E{Ds(mode)}+ E{Dep(mode)}+ λmode(R(mode)) (4.9)

mode∗ = arg min
mode

(

E{Ds(mode)}+ E{Dep(mode)}+ λmodeR(mode)

) (4.10)

4.2.2 End-to-End Distortion Estimation

Since the Lagrange cost function has been defined, the last and most important task

to do is to accurately estimate the end-to-end distortion. However, end-to-end distortion
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4.2 Error Resilient RDO

is, actually, hard to estimate due to the uncertainty of real channel loss map during

transmission. Y. Zhang’s distortion estimation model in [12] has been recognized as an

effective end-to-end distortion estimation model in MRF. Therefore, the proposed model

is based on Y. Zhang’s model. Since Y. Zhang et. al applied the distortion estimation for

mode decision only, they meansured the distortion using SSD. In this thesis, the distortion

estimation will be applied for both motion estimation stage and mode decision stage.

In order to reduce the computational complexity in motion estimation, the distortion is

measured using SAD (i.e., formula (2.4)) Besides, previous ROPE-based models in [10–12]

didn’t consider spatial error concealment in slice mode. The proposed model further

proposes a more accurate end-to-end distortion estimation model in slice mode.

The proposed model is applied with the following assumptions:

• The video is transmitted over a packet-loss channel.

• The packet loss rate is available at the encoder.

• Slice mode without data patitions, which means a slice is encapsulated in a packet.

• Error concealment policy is Frame Copy, which means that, when a packet is lost,

the encoder simply copies the macroblock at the same location from the previous

decoded frame.

Since H.264 allows intra-coded blocks in inter frames, these intra-coded blocks are more

robust against channel error than inter-coded blocks. However, the distortion estimation

model in [12] only considers inter-coded pixels, which may cause overestimation. In the

proposed model, we consider both intra-coded and inter-coded pixels for more accurate

end-to-end distortion estimation.

Before the derivation of the proposed end-to-end distortion model, we define some
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4.2 Error Resilient RDO

notations to be used. Let f i
n, f̂ i

n and f̃ i
n be the original value, encoder reconstructed

value and decoder reconstructed value, respectively. For intra-coded pixel i in frame n,

both encoder and decoder have the same reconstructed value, i.e., f̃ i
n = f̂ i

n, if this pixel

is received in the decoder. For inter-coded pixel i in frame n which predicts from pixel

i + mv in frame ref with motion vector mv, let r̂i
n be the reconstructed residue in the

encoder, i.e., f̂ i
n = f̂ i+mv

ref + r̂i
n.

When the current pixel i in frame n is lost in the decoder, it copies from the same

location in frame n − 1. This is applied to both intra-coded and inter-coded pixels.

Suppose the packet loss rate is p, the decoder reconstructed value f̃ i
n can be represented

as

• intra-coded pixel

f̃ i
n =


f̂ i

n , 1− p

f̃ i
n−1 , p

(4.11)

• inter-coded pixel

f̃ i
n =


f̃ i+mv

ref + r̂i
n , 1− p

f̃ i
n−1 , p

(4.12)

Hence, the expected end-to-end distortion for intra-coded pixels can be estimated by

di
n = E{|f i

n − f̃ i
n|}

= (1− p)E{|f i
n − f̂ i

n|}+ pE{|f i
n − f̃ i

n−1|}

= (1− p)ds
i
n + pdec

i
n (4.13)

where ds
i
n denotes the source distortion and dec

i
n denotes the error-concealment distortion.
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4.2 Error Resilient RDO

Since dec
i
n depends on random variable f̃ i

n−1, we further derive it as

dec
i
n = E{|f i

n − f̃ i
n−1|}

= E{|f i
n − f̂ i

n−1|}+ E{|f̂ i
n−1 − f̃ i

n−1|}

= E{|f i
n − f̂ i

n−1|}+ dep
i
n−1 (4.14)

where dep
i
n−1 denotes the error propagated distortion. Since dep

i
n−1 depends on random

variable f̃ i
n−1 which is not available at the encoder, we further derive it as

dep
i
n = E{|f̂ i

n − f̃ i
n|}

= E{|f̂ i
n − ((1− p)f̂ i

n + pf̃ i
n−1)|}

= pE{|f̂ i
n − f̃ i

n−1|}

= p(E{|f̂ i
n − f̂ i

n−1|}+ E{|f̂ i
n−1 − f̃ i

n−1|})

= p(E{|f̂ i
n − f̂ i

n−1|}+ dep
i
n−1) (4.15)

Since the first item of formula (4.15) is available at the encoder, the calculation of dep
i
n

only depends on the availability of dep
i
n−1. Therefore, dep

i
n can be recursively calculated

frame by frame, where the dep of the first frame will be discussed in section 4.2.3.

For inter-coded pixel, as described in [12], the expected end-to-end distortion is esti-

mated by

di
n = E{|f i

n − f̃ i
n|}

= (1− p)(E{|f i
n − f̂ i

n|}+ E{|f̂ i+mv
ref − f̃ i+mv

ref |})

+ p(E{|f i
n − f̂ i

n−1|}+ E{|f̂ i
n−1 − f̃ i

n−1|})

= (1− p)(ds
i
n + dep

i+mv
ref ) + pdec

i
n (4.16)

= (1− p)(ds
i
n + dep

i+mv
ref ) + p(E{|f i

n − f̂ i
n−1|}+ dep

i
n−1) (4.17)
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4.2 Error Resilient RDO

where the formula (4.17) is derived from formula (4.16) by substituting dec
i
n with formula

(4.14). Since the calculation of formula (4.17) only depends on error propagated distortion

items (all others are available at the encoder side), we further derive it as

dep
i
n = (1− p)dep

i+mv
ref + p(E{|f̂ i

n − f̂ i
n−1|}+ dep

i
n−1) (4.18)

Since dep
i
n can be recursively calculated frame by frame, the expectation of end-to-end

distortion of inter-coded pixel (i.e., di
n) can be obtained at the encoder side.

4.2.3 Initial Value of Expected End-to-End Distortion

ROPE-based models estimate the expected end-to-end distortion in a manner of re-

cursively calculating accumulated distortion from previous frames. This kind of recursive

way requires an initial value, which is usually determined by intra frames. In traditional

ROPE-based model [10–12], a presupposition is involved to determine the initial value,

which assume that each packet contains one complete compressed frame. When the packet

containing the intra frame is lost, error concealment simply copies previous decoded frame

as current frame. It is reasonable at low bit rate. However, with slice mode enabled, the

error concealment for corrupted slices of intra frames can apply spatial interpolation to

obtain a better performance. Therefore, we proposed a model to estimate the initial value

in slice mode.

Support a frame is seperated to s slices and fec
i
0(k) denotes the error concealment

value with k slices are lost. With packet loss rate p, the expected end-to-end distortion

is represented as

di
0 =

s∑
k=0

(
s

k

)
pk(1− p)s−kE{|f i

0 − fec
i
0(k)|} (4.19)
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4.3 Adaptive DIF Replacement for Scene Change

and the initial value of error-propagated distortion is

dep
i
0 =

s∑
k=0

(
s

k

)
pk(1− p)s−kE{|f̂ i

0 − fec
i
0(k)|} (4.20)

Since the initial value only needs to calculated at the first frame of GOP, the frame number

is marked as 0.

4.3 Adaptive DIF Replacement for Scene Change

When scene change happened, the difference between the two consecutive frames right

before and after the scene cut may increase substantially, resulting in a frame with high-

ratio of intra-coded MBs (marked as scene-change frame). For those frames after the

scene-change frame, selecting NIF as their reference frames may suffer from large predic-

tion error, which will reduce coding efficiency dramatically. This implies that it would

be no longer beneficial to select NIF as reference because the gain from error propaga-

tion reduction may not be able to compensate the loss in the coding efficiency. On the

other hand, the scene-change frame has high ratio of intra-coded MBs, which provides

a certain ability to alleviate error propagation. Compared with NIF, reference to scene

change frames provides a better coding efficiency for those frames after scene cut. Thus,

we propose a DIF replacement mechanism which changes the candidate reference frame

from the nearest intra frame to the scene-change frame. To be more general, we define a

dominant intra frame (DIF), which can be either

• A nearest intra frame (NIF), or

• A nearest inter frame with high-ratio intra-coded MBs (i.e., scene-change frame)

As shown in figure 4.2, assume the number of reference frames is 2 and a scene change

happened between frames Fn−4 and Fn−3. Without DIF replacement mechanism, candi-
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4.3 Adaptive DIF Replacement for Scene Change

...

...

FNIF (DIF) Fn-2 Fn-1 Fn

FNIF

Fn-4 Fn-3 (DIF)

Fn-2 Fn-1 FnFn-4 Fn-3

With NIF Replacement

Without NIF Replacement

Scene Change

Figure 4.2 DIF Replacement Mechanism for Scene Change

date reference frames of frame Fn will be Fn−1 and FNIF . In this case, most MBs in Fn

would prefer to predict from Fn−1 because of its high coding efficiency. However, using

Fn−1 as reference frame will suffer from the error propagation from Fn−3 and Fn−2. With

DIF replacement mechanism, the candidate reference frames of Fn become Fn−1 and Fn−3

since both Fn−3 and Fn are in the same scene, the loss in coding efficiency of using Fn−3

as reference is not as high as that using FNIF . The loss in coding efficiency has the propa-

bility to be covered by the gain of getting rid of error propagation from Fn−3 to Fn−2 if

Fn−3 is selected as the reference frame.
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Chapter 5

Fast Motion Estimation

Multiple reference frames can be adopted to increase the coding efficiency and sup-

press the error propagation. However, this technique requires more computational time

for mode decision and, especially, for motion estimation, which comsumes most of com-

putational time. In general, the computational complexity depends on the number of

candidate reference frames K. Therefore, we propose a fast motion estimation algorithm

for the proposed error resilient MRF scheme in order to reduce the computational com-

plexity.

5.1 Reference Trend Decision

From the experimental results in figure 3.1, it can be seen that

• more than 90% of blocks choose to reference to the first four reference frames as

well as the DIF, and

• about 70% to 80% of blocks reference to the two key frames (the immediately

previous frame & the DIF)
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5.2 Fast Motion Estimation Algorithm

Thus, we propose to use five reference frames at most, and use two key frames first to

decide the trend of prediction because of the different properties of the four previous frames

and the DIF. Reference to DIF has good error resilience but poor coding efficiency, while

reference to the four previous frames has good coding efficiency but poor error resilience.

Assume current frame is n. With two key frames as reference, if frame n−1 is selected by

proposed ER-RDO formula, it means the gain from coding efficiency is more important

than that from error resilience. This could be due to good channel conditions (i.e., low

packet loss rate) or video content with high motion. In this case, motion estimation

will continue with candidate reference frames n − 2, n − 3 and n − 4. On the contrary,

selecting dominant intra frame as reference frame means that error resilience capability

is more important than coding efficiency. In this case, candidate reference frames n− 2,

n− 3 and n− 4 will be skipped, and motion estimation process can be early terminated.

5.2 Fast Motion Estimation Algorithm

Figure 5.1 shows the H.264 standard ME algorithm.

Step 1. Get next available MB in current frame.

Step 2. Choose next unprocessed mode.

Step 3. Do motion estimation for each candidate reference frame (Fn−i, 1 ≤ i ≤ 5) in

selected mode.

Step 4. Apply H.264 standard RDO to ME for each candidate reference frame.

Step 5. If all modes for current MB are done, go to Step 6. Otherwise, go to Step 2.

Step 6. Apply H.264 standard RDO to mode decision to determine the final coding mode.
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5.2 Fast Motion Estimation Algorithm

Get next available 
MB in current frame

All MBs in current 
frame are done?

Do ME for each 
candidate frames

(Fn-1, Fn-2, Fn-3, Fn-4, Fn-5)

No

End of encoding in 
current frame
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unprocessed mode

RDO on ME for each 
candidate frames

RDO on mode 
decision

Are all modes for 
current MB done?

No
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3

4

5

67

8

2

Figure 5.1 H.264 Motion Estimation flow chart

Step 7. If all MBs in current frame are done, go to Step 8. Otherwise, go to Step 1 to get

next MB for encoding.

Step 8. End of encoding in current frame.

As described above, the proposed fast motion estimation algorithm changes the order

of ME for two key frames as shown in figure 5.2.

Step 1. Get next available MB in current frame.

Step 2. Choose next unprocessed mode.
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5.2 Fast Motion Estimation Algorithm
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Figure 5.2 Fast Motion Estimation flow chart

Step 3. Do motion estimation for 2 key frames (Fn−1 and FDIF ) in selected mode.

Step 4. Apply Error Resilient RDO to ME for 2 key frames.

Step 5. If DIF is selected as reference frame rather than the immediately previous frame,
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5.2 Fast Motion Estimation Algorithm

use it as best reference frame in selected mode and go to Step 8. Otherwise, go

to Step 6.

Step 6. Do ME for the remaining candidate frames. (Fn−2, Fn−3, Fn−4)

Step 7. Apply Error Resilient RDO to ME for the remaining candidate frames.

Step 8. If all modes for current MB are done, go to Step 9. Otherwise, go to Step 2.

Step 9. Apply Error Resilient RDO to mode decision to determine the final coding mode.

Step 10. If all MBs in current frame are done, go to Step 11. Otherwise, go to Step 1 to

get next MB for encoding.

Step 11. Detect whether scene change happened by the ratio of intra-coded MBs in current

frame. If scene change happened, go to Step 12. Otherwise, go to Step 13.

Step 12. Apply DIF replacement mechanism.

Step 13. End of encoding in current frame.

With the comparison between figure 5.1 and figure 5.2, it can be seen that the proposed

fast motion estimation algorithm, which only changes the order of ME for two key frames

without affecting to the ER-RDO applying to both motion estimation and mode decision

stages.
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5.3 Motion Vector Prediction for DIF

5.3 Motion Vector Prediction for DIF

Since the dominant intra frame may be far from current frame, using co-located MB

as the center of search window in motion estimation may not be adequate. Thus, we have

designed a scheme to predict MV on the DIF. Our approach is based on FDVS (Forward

Dominant Vector Selection) [17], which is a MV composition method originally designed

for transcoding with frame skipping applications.

FnFn-1Fn-2

MV(n, n-1)MV(n-1, n-2)

MVoffset(n, n-1)
MV(n, n-2)

Figure 5.3 FDVS - Fast Dominant Vector Selection

Considering a simple sample as shown in figure 5.3, we have motion MV (n, n − 1)

between frame n and frame n− 1, and MV (n− 1, n− 2) between frame n− 1 and frame

n − 2, respectively. If frame n − 1 is skipped, the most common way to represent the

corresponding motion between frame n and frame n−2 would be MV (n, n−1)+MV (n−

1, n−2). However, for each MB in frame n, the area pointed by its MV may not be aligned

on the MB boundary of frame n− 1. In FDVS method, the MV associated with the MB

with the largest overlapping area out of the four neighboring MBs on frame n − 1 is

selected. To compensate the shift in frame n − 1, the authors in [18] suggested to add

the offset (denoted by MVoffset(n, n− 1)) to the composed MV. Therefore, the MV from

frame n to frame n− 2 can be predicted as

PMV (n, n− 2) = MV (n, n− 1) +MV (n− 1, n− 2) +MVoffset(n, n− 1) (5.1)
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5.3 Motion Vector Prediction for DIF

This MV prediction technique can be easily extended to across more frames. Assume

current frame is frame n and DIF is frame m (m < n). The predict MV from frames n

to m can be represented as

PMV (n,m) =
n−1∑
i=m

[MV (i+ 1, i) +MVoffset(i+ 1, i)] (5.2)

It can be seen that such MV prediction relies on all the MVs between frame n and frame

m. However, all the required MVs may not be available in the encoding buffer, especially

when n−m > k, where k is the number of reference frames. To rope with this problem, we

propose a modified FDVS scheme called Accumulated Forward Dominant Vector Selection

(AFDVS) by using Accumulated Motion Vector (AMV).

First of all, we define AMV (i) to denote the predict MV from frame i to DIF

PMV (i,DIF ). Assume each frame i has only one candidate reference frame, which

is its immediately previous frame i − 1. Therefore, by equation (5.1), AMV (i) can be

recursively derived from AMV (i− 1) as

AMV (i) = MV (i, i− 1) + AMV (i− 1) +MVoffset(i, i− 1) (5.3)

where the initial AMV (m) = 0 if DIF is frame m. From (5.3), it is interesting to notice

that once AMV (i) is obtained, AMV (i − 1), MV (i, i − 1) and MVoffset(i, i − 1) are

unnecessary for calculating AMV (i+ 1), that is, they can be removed from the encoding

buffer. In other words, if AMV in reference frame (frame n− 1) is available, the predict

MV from current frame n to DIF (frame m) can be derived by

PMV (n,m) = MV (n, n− 1) + AMV (n− 1) +MVoffset(n, n− 1) (5.4)

To be more general, we further modify the equation (5.4) for MRF, as shown in figure

5.4. The predict MV PMV (n,m) from current frame n to DIF (frame m) is represented
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5.3 Motion Vector Prediction for DIF

FnFrefFm(DIF)

...

MV(n, ref)AMV(ref)

MVoffset(n, ref) PMV(n, m)

Figure 5.4 AFDVS - Accumulated Fast Dominant Vector Selection

as

PMV (n,m) = MV (n, ref) + AMV (ref) +MVoffset(n, ref) (5.5)

where ref denotes the frame number of reference frame.

The equation (5.5) shows that the current predict MV can be calculated by tracing

the reference frame. Since the MV prediction may across all candidate reference frames,

even if AMV (n) is obtained, AMV (ref) still cannot be immediately removed from the

encoding buffer.

To be more clearly, assume the number of reference frames K is 3, as shown in figure

5.5. At frame 1, it only predicts from DIF (frame 0), thus the predict MV PMV (1, 0)

is simply equal to MV (1, 0). At frame 2, it may predict from previous frame 1 or from

DIF, thus these two cases has to be considered to estimate the predict MV PMV (2, 0).

If it chooses frame 0 as reference frame, the MV MV (2, 0) is directly set as PMV (2, 0),

since AMV (0) is 0, otherwise, it combines MV (2, 1) and AMV (1), which is calculated at

frame 1, as PMV (2, 0). At frames 3 to 5, there are only 3 cases needs to be considered

(K = 3), and by using the same way at frame 2, the predict MVs PMV (3, 0), PMV (4, 0)

and PMV (5, 0) can be easily composed. Thus, a general formula is proposed to represent
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5.4 Time Complexity of Fast Motion Estimation

the accumulated predict MV PMV (n, 0) from frames n to DIF

PMV (n, 0) =



MV (n, 0) , if select DIF (frame 0)

MV (n, n− 1) + AMV (n− 1)

+MVoffset(n, n− 1) , if select frame n− 1

MV (n, n− 2) + AMV (n− 2)

+MVoffset(n, n− 2) , if select frame n− 2

(5.6)

From equation (5.6), it can be seen that, to obtain predict MV PMV (n, 0) from current

frame n to DIF, we only need 2 AMV s from frame n − 1 and from frame n − 2 when

K = 3. That is, at most of K − 1 AMV s need to be keep in encoding buffer.

Moreover, an accurate predict MV to DIF can also shrink the search range of motion

estimation to reduce the computational complexity. In our thesis, the search range on

DIF is set as 4.

5.4 Time Complexity of Fast Motion Estimation

Assume the following

• number of reference frames: k

• search range of DIF: from 32 to 4

• reference ratio of DIF (skip ME of k − 2 reference frames): r (about 14% to 26%)

Thus, the time complexity ratio of ME is estimated as

r

(
2

k

)((
4

32

)2
1

2
+

1

2

)
+ (1− r)

((
4

32

)2
1

k
+
k − 1

k

)
(5.7)

For 5 reference frames (K = 5), it performs about 28% to 35% reduction.
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5.4 Time Complexity of Fast Motion Estimation

By applying fast motion estimation algorithm to proposed scheme, the computational

complexity in motion estimation can be substantially reduced.
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Figure 5.5 AFDVS with 3 Reference Frames
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Chapter 6

Experimental Results

The proposed ER-RDO-based MRF method is integrated into the latest JVT reference

software JM15.1 [19]. The parameters of our experimental environment are set as follows.

• Test sequence: Foreman, Football, News

• Number of frames: 100 frames

• Frame rate: 30 fps

• Structure of the Group of Picture (GOP): I P P P P ...

• GOP size: 30 frames

• Frame format: CIF (352× 288 pixels)

• Number of slices per frame: 6 slices

• 100 random loss patterns for each of different packet loss rates (1%, 5%, 10%)

The methods used for comparison are listed as follows.

• H.264: the original RDO method in H.264 standard.
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6.1 Bit Rate v.s. Average PSNR

• Periodic MB: Periodic Macroblock proposed by J. Zheng in [13], where the period

K = 5.

• Robust MB: Robust Macroblock proposed by Q. Zhang in [14], where the number

of robust MBs per frame is 120.

• ER-RDO: The ER-RDO model in [12]. Note that, in [12], the ER-RDO is applied

to mode decision stage only.

• ER-RDO [12] + ME: The ER-RDO model in [12] is used, but it is applied to

both the mode decision stage and the motion estimation stage.

• Proposed w/o Fast ME: the proposed method without fast motion estimation

mechanism.

• Proposed w/o IMB: the proposed method without end-to-end distortion estima-

tion for intra-coded MBs.

• Proposed: the full version of proposed method.

6.1 Bit Rate v.s. Average PSNR

The measured average PSNR results of sequences Foreman, Football, News with packet

loss rates 1%, 5% and 10% are shown in figure 6.1, figure 6.2, figure 6.3 and table 6.1.

We can see that the proposed method is better than methods proposed in [12–14]. It is

observed that for sequence Foreman in figure 6.1, the Robust MB scheme in [14] achieves

good performance at packet loss rates 1% and 5%, however, it has about 0.7 dB lower

than the proposed method at packet loss rate 10%; And for sequence News in figure 6.3,

it can achieve good performance at packet loss rates 5% and 10%, however, it has about
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6.1 Bit Rate v.s. Average PSNR

0.8 dB lower than the proposed method at packet loss rate 1%. The results are due to

that although the scheme in [14] choosed Robust MBs according to estimated distortion,

the number of Robust MBs for each frame is a fixed constant which makes it hard to

adopt to different channel conditions. On the other hand, the scheme in [14] achieved

good performance for sequences Foreman and News, but it has about 2.5 dB lower than

the proposed method for sequence Football. The results again show that a fixed number

of Robust MBs per frame is not suitable for various sequences. The proposed method

adopts ER-RDO at the stage of ME, which will select the best MV and reference frame

for each MB, resulting in an optimal number of MBs that reference to intra-coded MBs.

Therefore, the proposed method is adaptive to varying channel conditions and various

video sequences.

According to the results of ‘Proposed w/o IMB’ and ‘ER-RDO [12]’, by involving

DIF as one of reference frames, ‘Proposed w/o IMB’ can gain about 1.2 dB higher than

‘ER-RDO [12]’ for sequence Foreman and about 0.7 dB higher for sequence News. The

reason that the gain for sequence Football is relatively low (less than 0.5 dB) is due to

that Football is a high-motion sequence and, referencing to DIF will cause too much

increase in the coding bits. As a consequence, a relative high ratio of MBs choose intra-

coding to alleviate error propagation. This makes the performance difference between

‘Proposed w/o IMB’ and ‘ER-RDO [12]’ become small. By involving end-to-end distortion

estimation for intra-coded MBs, the proposed method can still gains more than 0.7 dB in

low packet loss rate, and especially, more than 2 dB in high packet loss rate.
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6.1 Bit Rate v.s. Average PSNR

Loss Rate 1% 5% 10%

QP 30 29 28 27 26 30 29 28 27 26 30 29 28 27 26

Foreman

Proposed (5 Ref)
BR 478.54 558.38 672.85 801.63 925.52 615.96 726.59 871.34 1048.37 1226.96 741.82 876.60 1048.78 1250.61 1445.71

PSNR 33.69 34.17 34.73 35.24 35.60 30.63 30.87 31.52 31.88 32.20 28.48 28.78 29.45 29.69 29.84

H.264
BR 420.51 488.40 581.65 688.73 788.36 420.51 488.40 581.65 688.73 788.36 420.51 488.40 581.65 688.73 788.36

PSNR 32.15 32.52 32.72 33.27 33.38 27.94 28.08 28.33 28.32 28.42 25.18 25.20 25.35 25.39 25.41

Periodic MB [13]

(Period 5)

BR 503.16 590.63 710.95 847.18 980.75 503.16 590.63 710.95 847.18 980.75 503.16 590.63 710.95 847.18 980.75

PSNR 33.54 34.01 34.56 34.96 35.42 29.47 29.62 29.83 29.92 30.15 26.54 26.58 26.70 26.71 26.81

Robust MB [14]
BR 595.12 682.82 820.31 962.12 1104.80 595.12 682.82 820.31 962.12 1104.80 595.12 682.82 820.31 962.12 1104.80

PSNR 34.02 34.52 35.18 35.68 36.22 30.63 30.97 31.33 31.60 31.86 27.78 28.03 28.22 28.39 28.57

ER-RDO [12] (5

Ref)

BR 459.01 534.34 642.54 758.73 878.86 555.06 650.45 777.01 926.23 1072.47 627.80 731.27 869.33 1027.60 1185.56

PSNR 32.26 32.86 33.11 33.49 33.83 29.11 29.49 29.61 30.15 30.33 26.77 27.06 27.24 27.50 27.59

[12] + ME (5

Ref)

BR 464.06 540.69 644.44 764.82 884.90 567.85 666.89 800.34 946.59 1090.68 652.83 762.64 908.26 1066.61 1229.08

PSNR 32.25 32.69 32.82 33.48 33.67 29.19 29.56 29.75 30.26 30.16 26.84 26.85 27.08 27.58 27.58

Football

Proposed (5 Ref)
BR 1561.42 1742.15 1990.05 2246.20 2475.27 1743.87 1924.36 2187.41 2450.12 2678.87 1819.74 2002.47 2270.71 2541.25 2775.20

PSNR 34.00 34.56 34.87 35.79 36.65 30.78 31.46 31.98 32.66 33.23 28.77 29.32 29.80 30.25 30.94

H.264
BR 1413.31 1574.89 1796.35 2025.08 2216.43 1413.31 1574.89 1796.35 2025.08 2216.43 1413.31 1574.89 1796.35 2025.08 2216.43

PSNR 32.16 32.87 33.28 33.74 33.92 26.20 26.37 26.44 26.87 26.45 23.07 23.24 23.19 23.44 23.12

Periodic MB [13]

(Period 5)

BR 1452.26 1614.98 1840.68 2073.20 2271.72 1452.26 1614.98 1840.68 2073.20 2271.72 1452.26 1614.98 1840.68 2073.20 2271.72

PSNR 33.10 33.45 34.18 34.63 35.19 27.01 27.19 27.52 27.46 27.77 23.66 23.81 24.09 24.01 24.26

Robust MB [14]
BR 1590.18 1751.79 1987.37 2222.81 2433.85 1590.18 1751.79 1987.37 2222.81 2433.85 1590.18 1751.79 1987.37 2222.81 2433.85

PSNR 33.86 34.23 34.92 35.47 36.04 28.53 28.65 28.99 29.27 29.66 25.22 25.09 25.42 25.64 25.96

ER-RDO [12] (5

Ref)

BR 1491.89 1662.10 1896.45 2137.11 2348.33 1566.64 1738.76 1978.30 2226.08 2437.10 1598.62 1769.74 2014.96 2261.93 2476.05

PSNR 32.64 33.21 34.12 34.71 35.22 27.82 28.15 28.50 29.11 29.22 24.66 24.92 24.94 25.32 25.36

[12] + ME (5

Ref)

BR 1497.06 1664.85 1901.07 2138.51 2349.88 1586.71 1757.63 2003.59 2247.24 2459.89 1636.38 1808.78 2056.69 2307.52 2516.06

PSNR 32.79 33.29 34.07 34.58 35.05 27.93 28.30 28.54 28.89 29.08 25.01 25.22 25.58 25.62 25.68

News

Proposed (5 Ref)
BR 275.90 309.95 355.23 402.50 449.78 307.47 348.30 403.25 460.43 520.42 347.76 392.22 454.35 520.36 586.65

PSNR 35.68 36.33 36.97 37.58 38.15 32.39 32.82 33.37 33.78 34.19 29.73 30.10 30.56 30.87 31.24

H.264
BR 266.02 298.40 340.54 385.44 428.55 266.02 298.40 340.54 385.44 428.55 266.02 298.40 340.54 385.44 428.55

PSNR 35.13 35.82 36.41 36.94 37.42 30.70 31.12 31.35 31.52 31.79 27.67 27.91 28.04 28.12 28.25

Periodic MB [13]

(Period 5)

BR 291.02 326.38 372.74 419.35 465.54 291.02 326.38 372.74 419.35 465.54 291.02 326.38 372.74 419.35 465.54

PSNR 35.78 36.36 37.04 37.61 38.21 32.02 32.33 32.79 33.11 33.41 28.97 29.10 29.42 29.64 29.84

Robust MB [14]
BR 338.89 379.21 430.13 484.33 539.83 338.89 379.21 430.13 484.33 539.83 338.89 379.21 430.13 484.33 539.83

PSNR 35.77 36.43 37.04 37.66 38.21 32.56 33.04 33.44 33.82 34.18 29.74 30.07 30.28 30.56 30.85

ER-RDO [12] (5

Ref)

BR 271.43 304.92 350.41 397.48 442.27 291.01 327.16 377.02 430.54 483.54 309.66 347.49 401.18 458.72 513.13

PSNR 35.38 35.93 36.64 37.22 37.59 31.45 31.82 32.30 32.62 32.96 28.58 28.97 29.27 29.59 29.54

[12] + ME (5

Ref)

BR 271.75 305.00 349.76 396.54 442.50 293.81 330.49 380.03 432.59 483.60 314.31 354.39 407.67 462.49 514.38

PSNR 35.28 35.99 36.66 37.17 37.57 31.48 31.94 32.28 32.74 33.09 28.63 29.07 29.30 29.63 29.66

Table 6.1 Table of Bit Rate v.s. Avg. PSNR in different packet loss rates
p = 0.01, 0.05, 0.10 and QP = 26, 27, 28, 29, 30
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6.2 The Effects of Intra-coded MBs in End-to-End Distortion Estimation

Sequence Method
Percentage of intra-coded MBs

p = 1% p = 5% p = 10%

Foreman
Proposed (5 Ref) 10% 22% 32%

Proposed w/o IMB (5 Ref) 8% 16% 20%

Football
Proposed (5 Ref) 53% 72% 80%

Proposed w/o IMB (5 Ref) 42% 49% 53%

News
Proposed (5 Ref) 3% 6% 8%

Proposed w/o IMB (5 Ref) 3% 4% 5%

Table 6.2 Intra-coded MB Rates with different packet loss rates p =
0.01, 0.05, 0.10 and QP = 28 for sequences Foreman, Football and News

6.2 The Effects of Intra-coded MBs in End-to-End

Distortion Estimation

As described in chapter 4, our proposed method considers intra-coded MBs in end-to-

end distortion estimation to get accurate expectation of end-to-end distortion. Therefore,

in our experiment, we compare methods ‘Proposed’ with ‘Proposed w/o IMB’. Table 6.2

shows the intra-coded MB rate for different sequences and different packet loss rates with

QP = 28. It can be seen that, the inclusion of intra-coded MBs for end-to-end distortion

causes increase of the intra-coded MB rate. That is because, actually, the intra-coded MBs

in inter frames may cause error propagation if it is not received. Without considering it,

the end-to-end distortion estimation may underestimate the impact of error propagation

from intra-coded MBs, especially for high-motion equences and high packet loss rate, since

they usually reveals in high intra rate. Figure 6.4 shows the average PSNR frame by frame

with packet loss rate 10% and QP = 28 for different sequences Foreman, Football and

News. Since the intra-coded MB rate has a big gap (27%) between the methods with and

without consideration of intra-coded MB in end-to-end distortion estimation for sequence

Football with packet loss rate 10%, the degradation of average PSNR is high.
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6.3 Performance of Fast Motion Estimation

6.3 Performance of Fast Motion Estimation

The proposed fast motion estimation algorithm (FME) involves AFDVS to predict

MVs on DIF rather than the way using co-located MBs. Moreover, two key frames (the

DIF and the immediately previous frame) are used to determine the trend of prediction.

Table 6.3 shows the reference ratios referencing to DIF and the four previous frames.

From the table, we can see that, by involving fast motion estimation algorithm, the

percentage of reference to the DIF increases about 4.2%, 1.2% and 0.3% at low packet

loss rate for Foreman, Football and News, respectively. At high packet loss rate, the

difference of reference ratio is about 6.1%, 1.8% and 0.6% for Foreman, Football and

News, respectively. Those blocks which change reference frame to DIF may provide more

resilience against error propagation. However, referencing to the DIF may require more

coding bits. From the performance comparison, as shown in figure 6.5, the performance of

proposed method with FME is better than the one without FME for News and, especially,

for Foreman, however, it’s worse for Football. The main reason is that, for low intra rate

sequences such as Foreman and News, the gain of referencing to the DIF is higher enough

to counterbalance against the increase of coding bits. The effect is obvious at high packet

loss rate. However, for high-motion sequences such as Football, the gain of referencing to

the DIF is quite small due to high intra rate. Futhermore, the coding bits by referencing to

the DIF is much higher for high-motion sequences than the one for low-motion sequences.

That is the reason that, for Football, the proposed method with FME gains lower than

the method without FME. Even though fast motion estimation causes lower gain for

high-motion sequences, it still costs low computational complexity, which is described in

chapter 5.
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Sequence Method Reference Frame
Percentage of Reference

p = 1% p = 5% p = 10%

Foreman

Proposed (5 Ref)
DIF 14.2% 21.4% 28.1%

Others 85.8% 78.6% 71.9%

Proposed w/o Fast ME (5 Ref)
DIF 10.0% 16.4% 22.0%

Others 90.0% 83.6% 78.0%

Football

Proposed (5 Ref)
DIF 10.3% 19.2% 27.0%

Others 89.7% 80.8% 73.0%

Proposed w/o Fast ME (5 Ref)
DIF 9.1% 16.4% 25.2%

Others 90.8% 83.6% 74.8%

News

Proposed (5 Ref)
DIF 5.3% 5.7% 6.2%

Others 94.7% 94.3% 93.8%

Proposed w/o Fast ME (5 Ref)
DIF 5.0% 5.2% 5.6%

Others 95.0% 94.8% 94.4%

Table 6.3 Reference Ratios with different packet loss rates p = 0.01, 0.05, 0.10
and QP = 28 for sequences Foreman, Football and News

6.4 Performance of DIF Replacement Mechanism

In chapter 4, we propose a DIF replacement mechanism which adaptively changes

the dominant intra frame when scene change happened. In the experiment, we cascade

sequences Foreman and Stefan as a composite sequence of 100 frames with scene changes

at frame 34 and frame 63. Figure 6.6 shows the performance comparison of the proposed

methods with and without DIF replacement mechanism. According to the results, we can

see that, by involving DIF replacement mechanism, the performance gain is about 0.1 dB

and 0.3 dB for packet loss rates low and high, respectively.

45



6.4 Performance of DIF Replacement Mechanism

 32

 32.5

 33

 33.5

 34

 34.5

 35

 35.5

 36

 36.5

 400  500  600  700  800  900  1000  1100  1200

Av
er

ag
e 

PS
N

R
 (d

B)

Bit Rate (kbps)

foreman, GOP=30, LR=0.01

Robust MB [14]
ER-RDO [12] (Ref 5)

ER-RDO [12] + ME (Ref 5)
Proposed (Ref 2)

Proposed w/o IMB (Ref 5)
Proposed (Ref 5)

 29

 29.5

 30

 30.5

 31

 31.5

 32

 32.5

 500  600  700  800  900  1000  1100  1200  1300

Av
er

ag
e 

PS
N

R
 (d

B)

Bit Rate (kbps)

foreman, GOP=30, LR=0.05

Robust MB [14]
ER-RDO [12] (Ref 5)

ER-RDO [12] + ME (Ref 5)
Proposed (Ref 2)

Proposed w/o IMB (Ref 5)
Proposed (Ref 5)

 26.5

 27

 27.5

 28

 28.5

 29

 29.5

 30

 500  600  700  800  900  1000  1100  1200  1300  1400  1500  1600

Av
er

ag
e 

PS
N

R
 (d

B)

Bit Rate (kbps)

foreman, GOP=30, LR=0.10

Robust MB [14]
ER-RDO [12] (Ref 5)

ER-RDO [12] + ME (Ref 5)
Proposed (Ref 2)

Proposed w/o IMB (Ref 5)
Proposed (Ref 5)
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Figure 6.3 News - Bit Rate v.s. Average PSNR with p = 0.01, 0.05, 0.10

48



6.4 Performance of DIF Replacement Mechanism

 25

 26

 27

 28

 29

 30

 31

 32

 33

 34

 35

 0  10  20  30  40  50  60  70  80  90

PS
N

R
 (d

B)

Frame No.

foreman, GOP=30, QP=28, LR=0.10

Proposed
Proposed w/o IMB

 20

 22

 24

 26

 28

 30

 32

 34

 36

 38

 0  10  20  30  40  50  60  70  80  90

PS
N

R
 (d

B)

Frame No.

football, GOP=30, QP=28, LR=0.10

Proposed
Proposed w/o IMB

 27

 28

 29

 30

 31

 32

 33

 34

 0  10  20  30  40  50  60  70  80  90

PS
N

R
 (d

B)

Frame No.

news, GOP=30, QP=28, LR=0.10

Proposed
Proposed w/o IMB

Figure 6.4 Frame v.s. PSNR with p = 0.10 for sequences (a) Foreman (b)
Football (c) News

49



6.4 Performance of DIF Replacement Mechanism

 28

 28.5

 29

 29.5

 30

 30.5

 31

 31.5

 32

 32.5

 33

 33.5

 34

 34.5

 35

 35.5

 36

 400  500  600  700  800  900  1000  1100  1200  1300  1400  1500

Av
er

ag
e 

PS
N

R
 (d

B)

Bit Rate (kbps)

foreman, GOP=30

Proposed w/o Fast ME (Ref 5, LR 1%)
Proposed (Ref 5, LR 1%)

Proposed w/o Fast ME (Ref 5, LR 5%)
Proposed (Ref 5, LR 5%)

Proposed w/o Fast ME (Ref 5, LR 10%)
Proposed (Ref 5, LR 10%)

 28.5
 29

 29.5
 30

 30.5
 31

 31.5
 32

 32.5
 33

 33.5
 34

 34.5
 35

 35.5
 36

 36.5
 37

 1400  1600  1800  2000  2200  2400  2600  2800

Av
er

ag
e 

PS
N

R
 (d

B)

Bit Rate (kbps)

football, GOP=30

Proposed w/o Fast ME (Ref 5, LR 1%)
Proposed (Ref 5, LR 1%)

Proposed w/o Fast ME (Ref 5, LR 5%)
Proposed (Ref 5, LR 5%)

Proposed w/o Fast ME (Ref 5, LR 10%)
Proposed (Ref 5, LR 10%)

 29.5
 30

 30.5
 31

 31.5
 32

 32.5
 33

 33.5
 34

 34.5
 35

 35.5
 36

 36.5
 37

 37.5
 38

 38.5

 250  300  350  400  450  500  550  600

Av
er

ag
e 

PS
N

R
 (d

B)

Bit Rate (kbps)

news, GOP=30

Proposed w/o Fast ME (Ref 5, LR 1%)
Proposed (Ref 5, LR 1%)

Proposed w/o Fast ME (Ref 5, LR 5%)
Proposed (Ref 5, LR 5%)

Proposed w/o Fast ME (Ref 5, LR 10%)
Proposed (Ref 5, LR 10%)

Figure 6.5 Performance comparison between the proposed methods with and
without FME for sequences (a) Foreman (b) Football (c) News

50



6.4 Performance of DIF Replacement Mechanism

 33

 33.5

 34

 34.5

 35

 35.5

 36

 36.5

 1200  1300  1400  1500  1600  1700  1800  1900  2000  2100  2200  2300

Av
er

ag
e 

PS
N

R
 (d

B)

Bit Rate (kbps)

foreman-stefan, GOP=30, LR=0.01

Proposed (Ref 5)
Proposed w/o DIF Replacement (Ref 5)

 30

 30.5

 31

 31.5

 32

 32.5

 33

 1600  1800  2000  2200  2400  2600  2800  3000

Av
er

ag
e 

PS
N

R
 (d

B)

Bit Rate (kbps)

foreman-stefan, GOP=30, LR=0.05

Proposed (Ref 5)
Proposed w/o DIF Replacement (Ref 5)

 28.5

 29

 29.5

 30

 30.5

 31

 1800  2000  2200  2400  2600  2800  3000  3200

Av
er

ag
e 

PS
N

R
 (d

B)

Bit Rate (kbps)

foreman-stefan, GOP=30, LR=0.10

Proposed (Ref 5)
Proposed w/o DIF Replacement (Ref 5)
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Chapter 7

Conclusion

In this thesis, an RDO-based error resilient scheme using MRF has been presented.

We propose a candidate reference frame set with inclusion of the dominant intra frame

(called DIF) to suppress the error propagation and an error resilient RDO model applied

to both stages Motion Estimation and Mode Decision for better coding efficiency in dif-

ferent network conditions and different contents. Futhermore, we propose a fast motion

estimation algorithm to reduce the computational complexity. To fit in the situation with

scene changes, we also propose a replacement mechanism for DIF. The experimental re-

sults show that, our proposed scheme improves coding efficiency with different content

and network conditions but without much increase of computational complexity in the

MRF environment.
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