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摘要 

 

 

現在已經發展的循序樣式探勘演算法皆假設事件的發生是在時間點上。然而，在現

實生活上發生的事件通常是持續一段時間的，稱之為“以時間區間為基礎的事件＂。但

是由於時間區間事件間複雜的關係，造成了在設計有效率以時間區間事件為基礎之循序

樣式探勘演算法上的困難。因此，我們提出了“同時發生的事件片段＂的概念來解決時

間區間事件間複雜關係的問題。首先根據時間區間的事件間“同時發生＂的部份將時間

區間事件切割成互斥的更小事件片段，即“同時發生＂的一段時間區間內可能有許多事

件片段，而原本的事件序列可表示成我們所提出新的事件序列表示方式：以“同時發

生＂時間排列的有序序列，稱之為“同時發生事件片段序列表示法＂。因此，我們考慮

事件片段間的相互關係變地相當簡單，即前後、同時。我們提出一個演算法 CTMiner 基

於“同時發生事件片段序列表示法＂來表示事件序列並利用知名的循序樣式探勘演算

法 PrefixSpan 的概念來找出頻繁的時間區間事件循序樣式，並能完全避免產生候選樣

式。最後，為了能理解頻繁的“同時發生事件片段序列＂樣式的意義，我們利用關係序

列來呈現此頻繁樣式中時間區間事件間所有的關係。並且，我們還根據“同時發生的事

件片段＂的特性，設計了一些策略來提升CTMiner演算法的效率。在實際的圖書館借閱

資料和合成資料的實驗結果皆表現出此演算法的效率和適應性。 
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Abstract 
 

Existing sequential pattern mining algorithms assume that events occur instantaneously. 

However, events in real world applications usually have durations which are called 

interval-based events. But complex relationship among event intervals causes difficulty in 

designing an efficient interval-based event mining algorithm. Therefore, the concept of 

“coincidence-slice” is proposed to solve the problem caused by the complex relationship 

among event intervals. The event intervals are incised to disjoint smaller “event slices” 

according to the coincidences among event intervals, that is, several event slices may occur in 

the same time period called “coincidence”. Therefore, an original event sequence can be 

represented as a list of ordered “coincidences” which contains event slices. This new 

representation proposed is called “coincidence sequence representation”. We transform the 

problem of complex relationship among event interval to consider the simple relationship 

among event slices. The proposed interval-based sequential pattern mining algorithm called 

CTMiner is based on the “coincidence sequence representation”. The CTMier also uses the 

concept of well-known sequential pattern mining algorithm PrefixSpan to find temporal 

patterns without candidate generation. Finally, to comprehend the frequent temporal pattern 

represented by “coincidence sequence representation”, we discover and use relation list to 

present all the relationships in a pattern. We also implement some pruning strategies to 

improve the performance of CTMiner by considering the characteristics of the 

“Coincidence-slice”. Experiments on both synthetic datasets and real dataset of library 
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lending indicate the efficiency and scalability of the proposed algorithm. 

 

Index terms: Interval-based event mining, coincidence-slice, temporal patterns 
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Chapter 1 

Introduction 
 

Sequential pattern mining is an active research topic in data mining domain in last 

decade, due to its widespread applicability including the analyses of customer purchase 

behavior, Web access patterns, scientific experiments, disease treatments, natural disasters, 

DNA sequences, and so on. The sequential pattern mining was first proposed by Agrawal and 

Srikant [1] and many studies have contributed to the efficient mining of sequential patterns. 

GSP [2], PSP [3], SPADE [4], PrefixSpan [5], and MEMISP [6] have focused on discovering 

frequent temporal patterns from instantaneous events, that is, events are treated as time points 

without duration. For example, consider a medical database, in which a patient's treatment is 

regarded each time as a time point-based event, indicating the time of the treatment, such as 

"cough→headache→fever". However, in many applications events are not instantaneous; they 

instead occur over a time interval. Time point-based sequential patterns are inadequate to 

express the complex temporal relationships in domains such as medical, multimedia, 

meteorology and finance where the duration of events provides more specific and richer 

information. Interval-based pattern (also called temporal pattern) mining is proposed focusing 

on the domains with interval data.  

Mining patterns from interval data is undoubtedly more complex and arduous. It requires 

a different approach from mining patterns from time point-based data, such as mining 

traditional sequential patterns or episodes. So far, very little attention has been paid to the 

issue of mining time interval-based sequential pattern mining. To the best of our knowledge, 

the related researches in interval-based event mining are based on Allen’s temporal logics [7], 

which are categorized into 13 temporal relations between any two event intervals as: “before,” 

“after,” “overlap,” “overlapped-by,” “contain,” “during,” “start,” “started-by,” “finish,” 
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“finished-by,” “meet,” “met-by,” and “equal”. These 13 relationships can describe any relative 

position of two event intervals based on the arrangements of start points and finish points, as 

shown in Fig. 1-1. However, complex relationship among event intervals causes the difficulty 

while designing an efficient interval-based sequential pattern mining algorithm.  

In this thesis, a new efficient algorithm called “CTMiner” (Coincidence Temporal 

pattern Miner) using the concept of the well-known sequential pattern mining algorithm 

PrefixSpan is proposed to discover temporal patterns from interval-based data without 

candidate generation. To address the problem of complex relationship among event intervals, 

a concept of coincidence-slice is developed. It focuses on coincidences among event intervals 

and incises the event intervals to disjoint smaller event slices according to coincidences then 

gathers the coincident event slices into the coincidence. Thus, the relationship among events 

is transformed to relationship among disjoint, smaller event slices and is simplified to 

“before”, “after” and “equal”. The event sequences are transformed to Coincidence sequences 

and thus facilitate the processing of interval-based pattern mining. Then the method called 

CPrefixSpan (Coincidence PrefixSpan) extends the concept of PrefixSpan to mine the 

frequent coincidence patterns. Due to the characteristic of coincidence-slice, the PrefixSpan is 

modified in order to cover all the frequent coincidence patterns. The multi-projection scheme 

is developed to obtain complete frequent coincidence patterns and three pruning strategies are 

also developed to improve the performance of our proposed algorithm. Finally, to 

comprehend a coincidence pattern, we use relation list to present all temporal relations in the 

coincidence pattern. Experimental studies on both synthetic and real datasets show that the 

proposed algorithm is efficient, scalable and outperforms the state-of-the-art algorithms. 
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Temporal Relation Inversed Relation Pictorial Example time points comparision 

A before B B after A A.f<B.s 

A overlaps B B overlapped-by A A.s<B.s, A.f<B.f, A.f>B.s 

A contains B B during A A.s<B.s, A.f>B.f 

A starts B B started-by A A.s=B.s, A.f<B.f 

A finished-by B B finishes A A.s<B.s, A.f=B.f 

A meets B B met-by A A.f=B.s 

A equal B B equal A A.s=B.s, A.f=B.e 

A after B B before A B.f<A.s 

A overlapped-by B B overlaps A B.s<A.s, B.f<A.f, B.f>A.s 

A during B B contains A B.s<A.s, B.f>A.f 

A started-by B B starts A B.s=A.s, B.f<A.f 

A finishes B B finished-by A B.s<A.s, A.f=B.f 

A met-by B B meets A B.f=A.s 

Table 1-1 The Allen’s 13 relations represent relations between any two event intervals. E.s 
and E,f refer to start point and finish point of event E, respectively. 
 

The rest of the thesis is organized as follows. Chapter 2 gives the motivation and related 

work. Chapter 3 provides the details of problem Definitions and the incision strategy. Chapter 

4 describes the similarities and dissimilarities of projection scheme of PrefixSpan and 

CTMiner. Chapter 5 illustrates the CTMiner algorithm. Chapter 6 gives the experimental 

results and we conclude in Chapter 7. Note that, an event interval, i.e., interval-based event, in 

the rest of thesis is denoted as an event and instantaneous event is denoted as time point-based 

event. The start time point and finish time point of an event interval is denoted stp and ftp, 

respectively. 
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Chapter 2 

Motivation and Related Works 

2.1 Motivation 
 
2.1.1 Representations of a Temporal Pattern 
 

  Allen proposed 13 temporal relations between any two events without ambiguity. 

However, the representation of temporal patterns based on Allen’s logics will bear some 

problems as follows. 

 Various proposed representations suffer from different kinds of drawback. 

Hierarchical representation [8] describes relationships among more than three events 

the which is a compact but lossy encoding method. There are two kinds of ambiguity 

problems in representation of a temporal pattern. First, the same relationship among events 

can be mapped to different temporal patterns. An example is shown in Fig. 2-1(a), in which a 

pattern can be expressed as “(((A overlap B) before C) contain D)” or “((A overlap B) before 

(C contain D)).” Second, a temporal pattern can be represented as different relations among 

events. For example, Fig. 2-1(b) shows that the pattern “((A overlap C) Overlap B))” can be 

represented in two different relations among events. 
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Figure 2-1 Two Ambiguity of representing temporal patterns in hierarchical representation. 
 

Relation matrix [9] and Relation list [10] precisely list all binary relationships among 

events in a pattern, and examples are shown in Fig. 2-2(a) and Fig. 2-2(b), respectively. These 

unambiguous representations exhaustively list all (k×(k-1)/2) pairwise relations in a k-events 

pattern, but it suffers from the problem of scalability in long temporal patterns.  

A 
B 

C 
D 

A 
B 

C 
D 

(((A overlap B) before C) contain D)  ((A overlap B) before (C contain D)) 

A       B           A       B C        D 

Overlap      C       Overlap    Contain      

Before     D         Before 

Overlap 

(a) 

((A overlap C) overlap B))     ((A overlap C) overlap B)) 

A A 
B B 

C C 

(b) 
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Temporal representation [11] utilizes time points arrangement to represent a temporal 

pattern and sequence. For example, the pattern P shown in Fig. 2-2 can be represented in the 

unique expression “(A+<A-<B+<C+<B-<C-)”, where “ +  ” or “ ¯  ” attached to an event 

indicates either a start time point or finish time point to the event, respectively. Due to the 

unique one-one mapping, it describes temporal pattern and sequence unambiguously. 

TKSR (Time series Knowledge Representation) [12] expresses the temporal pattern 

to the temporal concepts of coincidence with partial order. It describes a sequence of disjoint 

overlapped groups among events in order of time. In the same example as shown in Fig. 2-2, 

the pattern P can be represented as the expression “(A)(B)(BC)(C)” for coincidence order. 

The TKSR representation of pattern P and Q are the same because that TKSR does not 

specify overlap of an event to the other event is entire or part. Obviously, TKSR is not easily 

comprehensible and suffers the problem of ambiguity. 

Augmented hierarchical representation [13] based on the hierarchical representation 

solves ambiguity by attaching additional counting information to each hierarchy in 

Figure 2-2 Illustration for different representations of temporal pattern. 

(b) Relation list for P 

(A meet B) ^ 
(A before C) ^ 
(B overlap C) 

A 
C 

B 

Pattern P 

A   B   C 

A 
B 
C 

=   m   b 
*   =    o 
*   *    = 

(a) Relation matrix for P and Q 

C1 

Pattern Q 

A1 C2 B2 B1

A1  B1  B2  C1  C2 

A1 
B1 
B2 
C1 
C2 

=   b    b   b   b 
*   =    b   b   b 
*   *    =   e   b 
*   *    *   =   b 
*   *    *   *   = 
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chronological order. It has been proven that utilizing additional 5 counters i.e., contain, 

finish-by, meet, overlap, start denoted as [c, f, m, o, s] to accumulate those 5 temporal 

relations between the event e and all events occurring before e is sufficient to achieve an 

unambiguous representation. Take the pattern P in Fig. 2-2 as an example. First, we have “A 

meet B” so we set meet counter to 1 and it is represented as (A meet [00100] B). Then “B 

overlap C” is attached to the expression and increments the length of the expression then 

accumulates all 5 relations hence we set overlap and meet counter to 1. The pattern P can be 

expressed as “((A meet [00100] B) overlap [00110] C)”. The expression is not easily 

comprehensible and wastes (k-1)× 6 memory space in a k-events pattern. 

 

2.1.2 The Problems of Complex relationship on Different Temporal Pattern 

Mining Approaches 

 

 The relationships between two events in the temporal patterns are substantially 

complex. 

The relationship between any two time point-based events only indicates “before”, 

“after” and “equal” but there are Allen’s 13 temporal logics to represent the relationship 

among interval-based events due to the characteristic of time duration. Although the Allen’s 

13 temporal logics can be normalized to 7 as the first 7 temporal relations shown in Fig. 1-1, 

i.e., “before”, “overlap”, “contain”, “start”, “finished-by”, “meet” and “equal”, by following 

the order of start time, finish time and event type. However, normalized Allen’s 7 temporal 

logics remain complex and cause the problem while applying it to different interval-based 

event mining approaches.  

Generation-and-test approach [8, 9, 10, 12, 13]: It usually requires multiple iterations 

to find all sequential patterns. In each iteration, some candidate patterns were generated and 

testified the frequency. Thus, reducing the number of candidate patterns is the main bottleneck 
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and challenge. The complicated relationships in interval-based event sequential pattern 

mining will lead to the generation of huge number of candidate patterns and bear tedious 

workload of support counting for candidate patterns. 

Frequent Pattern-growth based approach [11, 14] is an efficient mining approach 

which applies to time point-based patterns mining without candidate generation. It recursively 

partitions the time point-based event sequence database into smaller projected databases and 

grow the sequential patterns by exploring frequent time point-based events in associated 

projected database. The sequential pattern grows without candidate generation due to 

monotonic relationship between frequent 1-events and the corresponding prefix, i.e., only 

“before” and “equal”. A frequent 1-event can append directly to the prefix. To apply the 

approach to interval-based event pattern mining still requires candidate generation because of 

complicated relationship among events. 

Based on the above observation, complex relationship is really a critical issue which 

causes prohibitively cost on time and space in mining processing. If the complicated 

relationship among events can be reduced in temporal pattern, then the efficient and effect of 

interval-based event mining algorithm will be improved substantially. 

 Related research themes of temporal pattern mining 

A lot of extended researches [24, 25, 26, 27] of sequential pattern mining are very 

important and necessary, such as closed pattern mining, maximal patterns mining and 

incremental mining, sequential patterns classification, to name a few. Those researches 

developed based on time point-based event may not be suitable for interval-based event since 

the complex relationships among event intervals may degrade performance dramatically. To 

the best of our knowledge, there have been a few related researches about the extension of 

temporal pattern mining. Addressing the issue of complex relationship among events in 

temporal patterns provides us the opportunity for designing efficient related extensions of 

temporal pattern mining. 
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According to our observation, the different extent of overlap causes the complexity 

among events. Besides relation of “before” and “meet”, other five relations illustrate different 

extent of overlap. For instance, the “overlap” relation shows the overlapping on the front part 

and rear part of two events. Different correlated positions of an event which is fully 

overlapped by another event forms different relations, i.e., “start”, “contain”, “finished-by” or 

“equal”. Therefore, we classify different parts of event as event slices into overlap or 

non-overlap. Then, the relationship between event slices is very simple, i.e., “before”, “equal”. 

In general, event sequence also exhibits many overlaps among events. Therefore, in this paper, 

the concept of coincidence-slice and incision strategy is proposed which transform events of 

event sequence to event slices. The complex relationship among events is transformed to 

simpler relationship among event slices. The proposed concept of coincidence-slice and 

incision strategy is described in details in Chapter 3. 

 

2.2 Related Works 

 

Some recent researches have investigated the mining of sequential patterns with 

interval-based events [8, 9, 10, 11, 12, 13, 14]. Kam et al. [8] designed an Apriori-based 

algorithm that uses the hierarchical representation to discover frequent temporal patterns. The 

representation only keeps (k-1) relations and two time points of earliest and latest time points 

in a k-pattern. Therefore, the hierarchical representation is ambiguous and many spurious 

patterns are generated. Hoppner [9] also proposed an Apriori-based algorithm that counts 

support of all candidate patterns of length k by scanning database once with a sliding window. 

It also defined the supporting level of a pattern as the total time in which the pattern can be 

observed in a sliding window to improve the performance of the algorithm. However, a major 

concern for this approach is how to decide the proper size of the sliding window, since the 
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sliding window directly dominates the mining results and efficiency of the algorithm. It also 

needs to scan database repeatedly. Mochen [12] proposed a new representation, called TKSR, 

which uses the coincidence concept to facilitate the process of temporal patterns discovery. 

An event sequence can be treated as a series of disjoint overlaps named “coincidences”. It 

treats coincidence and event as itemset and item. Then it adopted CHARM [15] to find 

frequent itemsets as marginal-closed coincidences then applied the CloSpan [16] to mine the 

closed sequential patterns as partial ordering marginal-closed coincidences. The pattern 

represented with TKSR is ambiguous and is not easily comprehensible. Edi et al. [14] 

developed a pattern-growth algorithm, named ARMADA based on an efficient sequential 

patter mining algorithm MEMISP to find frequent temporal patterns and also reduces the 

memory space of projected databases. However, it still uses lots of memory space because 

temporal patterns are expressed by relation matrix. It requires only two database scans but it 

also generates a lot of candidates and accesses memory frequently due to complex 

relationship among events. Papapetrou et al. [10] proposed the Hybrid-DFS algorithm which 

is Apriori-based approach to mine temporal arrangements of temporal intervals and a relation 

list to express temporal patterns. It also proposed an enumeration tree structure to improve the 

performance of the algorithm. First, it scans database twice to obtain frequent 1-patterns and 

all related records of frequent 2-patterns as first and second levels of the tree respectively by 

BFS traverse order. To obtain the frequent k-patterns in the level k of the tree, it firstly merges 

frequent (k-1)-patterns and frequent 1-patterns in level (k-1) and 1, respectively. Because the 

k-patterns can be treated as the combination of frequent 2-patterns, so it scans related records 

in level 2 to verify the frequency of a specific k-pattern by DFS traverse order. It transforms 

an event sequence into a vertical representation using id-lists. The id-list of an event is merged 

with the id-list of other events to generate temporal patterns. This approach does not scale 

well when the length of temporal pattern increases. Wu et al. [11] derived a pattern-growth 

based algorithm called TprefixSpan for mining temporal pattern from interval-based events 
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and represents temporal patterns in compact but ambiguous temporal representation. It first 

discovers single frequent events from the projected database. Next, all the possible candidates 

could be generated while appending a discovered frequent 1-event to the prefix and all the 

possible relations between them need to be considered. Last, it scans the projected database 

again for support counting. TPrefixSpan still needs to scan the projected database multiple 

times and it does not employ any pruning strategy to reduce the search space. Patrel et al. [13] 

proposed an Apriori-based algorithm named IEMiner. It utilizes the additional counting 

information to achieve lossless hierarchical representation called augmented representation 

and generates frequent temporal patterns iteratively and increases the pattern length by one 

after iteration. It also proposed a support counting method to scan database once to derive the 

frequency of all candidate patterns in each iteration. When scans the database, many temporal 

patterns are generated by composing the events in database. If a generated pattern is a 

candidate pattern then we accumulate the support of the candidate pattern. After scanning, the 

frequency of candidate patterns is determined. The operation is very costly due to the 

complexity of augmented representation. 

 

2.2.1 Sequential Pattern Mining Algorithm: PrefixSpan  

 

We use the concept of the well-known pattern-growth based sequential pattern mining 

algorithm called PrefixSpan (i.e., Prefix-projected Sequential pattern mining), which 

explores prefix-projection in sequential pattern mining. For the sequential database S in Table 

2-1 with minimum support = 2, sequential patterns in S can be mined by a prefix-projection 

method in the following steps. 

Step 1: Find length-1 sequential patterns. Scan S once to find all frequent items in 

sequences. Each of these frequent items is a length-1 sequential pattern. They are 〈A〉: 4, 〈B〉: 

4, 〈C〉: 4, 〈D〉: 3, 〈E〉: 3 and 〈F〉: 3, where 〈pattern〉: count indicates the pattern and its 
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associated support count. 

Step 2: Append each frequent 1-item to the prefix and create projected database with 

respect to the appended prefix. For the first time to append each frequent 1-item to the 

prefix, we directly set each frequent 1-item as appended prefix. And the complete frequent 

sequential patterns can be partitioned into |L1| parts, where |L1| is the number of frequent 

1-items. Therefore, we have six projected databases with respect to the appended prefix, i.e., 

〈A〉, 〈B〉,…, and 〈F〉. The projected databases with respect to prefixes 〈A〉 and 〈B〉 are shown in 

the 2nd row of Table 2-2, respectively. 

Step 3: Recursively go back to step 1 to find whole frequent sequential patterns. For the 

running example above, the frequent length-1 item of projected database with respect to 

prefix 〈A〉 are 〈B〉: 4, 〈_B〉: 2, 〈C〉: 4, 〈D〉: 2, 〈F〉: 2, where 〈_B〉 indicates item B occurs 

simultaneously with the items of last itemset in the prefix. After appending each frequent 

length-1 item to the prefix, the projected database of appending 〈_B〉 to the prefix 〈A〉 to form 

a new prefix 〈(AB)〉 is shown in 3rd row of Table 2-2. Similarly, the complete frequent 

sequential patterns begin with item A are generated and are shown in the last row of Table 2-2 

if we keep going on the process. 
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Sequence_id Sequence 
10 〈A(ABC)(AC)D(CF)〉 
20 〈(AD)C(BC)(AE)〉 
30 〈(EF)(AB)(DF)CB〉 
40 〈 EG(AF)CBC 〉 

Table 2-1 A sequence database 
 
 

Prefix Projected (postfix) database Prefix Projected (postfix) database 
〈A〉 10: 〈(ABC)(AC)D(CF)〉 

20: (_D)C(BC)(AE) 
30: 〈(_B)(DF)CB 〉 
40: 〈(_F)CBC 〉 

〈B〉 10: 〈(_C)(AC)D(CF)〉 
20: 〈(_C)(AE)〉 
30: 〈(_B)(DF)CB 〉 
40: 〈C〉 

〈(AB)〉 10: 〈(_C)(AC)D(CF)〉 
30: 〈(DF)CB〉 

〈(BC)〉 10: 〈(AC)D(CF)〉 
20: 〈(AE)〉 

〈(AB)D〉 10: 〈(CF)〉 
30: 〈(_F)CB〉 

〈(BC)A〉 10: 〈(_C)D(CF)〉 
20: 〈(_E)〉 

〈(AB)DC〉 10: 〈(F)〉 
30: 〈B〉 

  

Frequent sequential patterns begin with event 
A 
〈A〉,〈AA〉,〈AB〉,〈A(BC)〉,〈A(BC)A〉,〈ABA〉,〈ABC〉, 
〈(AB)〉,〈(AB)C〉,〈(AB)D〉,〈(AB)F〉,〈(AB)DC〉,〈AC〉, 
〈ACA〉,〈ACB〉,〈ACC〉,〈AD〉,〈ADC〉,〈AF〉 

Frequent sequential patterns begin with event 
B 
〈B〉,〈BA〉,〈BC〉,〈(BC)〉,〈(BC)A〉,〈BD〉, 
〈BDC〉,〈BF〉 

Table 2-2 Projected databases and sequential patterns 
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Chapter 3 

Problem Definitions and Incision Strategy 

We focused on the discussion of temporal pattern mining due to the widespread 

applicability and lacking of researches. In this chapter, we define the problem of temporal 

pattern mining and introduce the incision strategy. The interval-based mining problem is 

much more arduous than traditional time point-based mining problem. Since relationship 

among events are more complicated than that of the time point-based events. The complex 

relation between two events is the major bottleneck for mining temporal pattern. Therefore, 

the incision strategy is proposed to transform event sequence to Coincidence sequence which 

addresses the critical issue of temporal pattern mining. 

Definition 1 (Event interval) Let E = {e1, e2,…, ek} be a set of all event types. Without loss 

of generality, we define a set of uniformly spaced time points based on the real number R. We 

say the triplet (ei, si, fi) ∈ E × R × R is an event interval or temporal interval, where ei ∈ E, si, fi 

∈ R and si < fi. The two time points si and fi are called start time point and finish time point 

and denoted as stp and ftp, respectively. The set of all event intervals over E is denoted by I. 

We write (e, s, f) ⊆ (e’, s’, f’) if s ≤ s’, f ’ ≤ f. 

Definition 2 (Event sequence and maximal property) An event sequence ei ∈ E is a series 

of event interval triplets 〈(e1, s1, f1), (e2, s2, f2), …, (em, sn, fn)〉, where m ≤ n since an event 

may occurs many times, si ≤ si+1, and si < fi  ∀i. Every interval (ei, si, fi) must be maximal in 

sequence, i.e., there is no (ei, sj, fj) in the sequence such that neither sj nor fj occurs in the 

interval [si, fi]. We call this assumption, maximal property, defined as follows: 

∀ ( ep, si, fi ), ( eq, sj, fj ) ∈ I, ( ep, si, fi ) ≠ ( eq, sj, fj ): si ≤ sj ∧ fi ≥ sj ∧ ep ≠ eq    －(1) 

Equation (1) above is also called the maximality assumption [15]. The maximal property 

guarantees that each event interval is maximal in the series. If maximal property is violated, 

we can merge both event intervals and replace them by their union (ei, min(si, sj), max(fi, fj)). 
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Definition 3 (Temporal database) Considering a database D = {r1, r2, …, rm}, each record ri, 

where 1 ≤ i ≤ m, consists of a sequence-id and an event interval (ei , si , fi). Given a sequence 

set {q1, q2, …, qn}, each sequence qj is an event sequence with grouping the records in D with 

same sequence-id. D = {q1, q2, …, qn} is called a temporal database. 

Actually, all events can be grouped together by the same sequence-id and arranged by 

non-decreasing order of start time, end time and event type into an event sequence. As the 

result, the database D can be viewed as a collection of event sequences. For example, in Table 

3-1, the temporal database consists of 17 events, and 4 event sequences. We use normalized 

Allen’s 7 interval logics to describe the temporal relation between every two events in a 

sequence. 

Definition 4 (Temporal pattern) Given n events (ei, si, fi), 1 ≤ i ≤ n, a temporal pattern of 

size n > 1 is defined as a matrix M ∈ An × n where A is a set of Allen’s temporal relations and 

each index i maps to the corresponding event ei, the element M[i, j] denotes the relationship 

between two event intervals (ei, si, fi) and (ej, sj, fj). The number of intervals in the temporal 

pattern P is called the dimension of P, denoted as dim(P). If dim(P) = k, then P is called a 

k-pattern. 

Various representations have been proposed for temporal pattern, as we mentioned above. 

We adopt relation list to represent temporal pattern since it can precisely and unambiguously 

list all pairwise relationships among events in a pattern.  

 

3.1 Incision Strategy 

 

The coincidence-slice architecture is implemented by incision strategy. The proposed 

strategy cuts events into disjoint smaller event slices based on the global information of event 

sequence, i.e., time points of events, and the simultaneous event slices are collected into a 
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group called coincidence. We define event slice and coincidence as follows. 

Definition 5 (Coincidence, Event time set and Event slice) Given an event sequence q = 

〈(e1, s1, f1), (e2, s2, f2), …, (en, sn, fn)〉, A set T ={t1, t2 …tm-1, tm} ,where ti ∈ {s1, f1, s2, f2,…, sn, 

fn} , ti ≠ ti+1, and ti < ti+1 for 1 ≤ i < m without repetition, is called an event time set which 

collects all time points of event intervals with no repeat and in increasing order of time in q. A 

coincidence of q is a time period denoted as ci = (ti, ti+1) where ti, ti+1 ∈ T and 1≤ i<m. 

Therefore, we have (m-1) successive coincidences c1,c2,…,cm-1 in q. Furthermore, four types 

of event slices are defined as follows. 

1. Start slice: A start slice of event ei in q is defined as an interval which belongs to 

coincidence ci and denoted as ei
＋ if and only if (1) ti = si and (2) ti+1 < fi. 

2. Finish slice: A finish slice of event ei in q is defined as an interval which belongs to 

coincidence ci and denoted as ei
－ if and only (1) ti+1 = fi and (2) ti > si.  

3. Intermediate slice: An intermediate slice of event ei in q is defined as an interval which 

belongs to coincidence ci and denoted as ei
* if and only if (1) ti > si and (2) ti+1 < fi.  

4. Intact slice: An intact slice of event ei in q is defined as an interval which belongs to 

coincidence ci and denoted as ei if and only if (1) ti = si, (2) ti+1 = fi. 

For example, in Table 3-1, sequence 2 has 4 events: (B, 1, 5), (D, 8, 14), (E, 10, 13), (F, 

10, 13) and its corresponding event time set = {1, 5, 8, 10, 13, 14}. There are five successive 

coincidences c1=(1,5), c2=(5,8), c3=(8,10), c4(10,13) and c5=(13,14). Hence the event D have 

three event slices: 1. start slice D＋ = (D, c3), 2. intermediate slice D* = (D, c4) and 3. finish 

slice D－ = (D, c5). The only event slice of event B is B = (B, c1). Obviously, an event can only 

have a pair of start slice and finish slice or one intact slice but it could have many 

intermediate slices. Actually, intermediate slices do not help in the mining processing due to a 

pair of start slice and finish slice or an intact slice is sufficient to imply the relative time 

positions of an event in an event sequence. 
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ID 
Event 

symbol 

Start 

time 

Finish 

time 
Relative Positions Coincidence sequence 

1 A 2 7 

1 B 5 10 

1 C 5 12 

1 D 16 22 

1 E 18 20 

〈(A＋)( B＋C＋A－)(B－)(C－)(D＋)(E)(D－)〉

2 B 1 5 

2 D 8 14 

2 E 10 13 

2 F 10 13 

〈(B)(D＋)(EF)(D－)〉 

3 A 6 12 

3 B 7 14 

3 D 14 20 

3 E 17 19 

〈(A＋)( B＋A－)(B－)(@D＋)(E)(D－)〉 

4 B 8 16 

4 A 18 21 

4 D 24 27 

4 E 25 28 

〈(B)(A)(D＋)(E)(D－)〉 

Table 3-1 Event sequences in the temporal database and its corresponding coincidence 
sequences. 

 

We obviously perceive that both event interval and event slice are composed of two 

time points of events in an event sequence. There are 4 kinds of event slices in two 

consecutive time points in an event sequence, as shown in Fig. 3-1. We only consider the 

period time between ti and ti+1, i.e., the coincidence ci. The event intervals finished at ti or 

started at ti+1 are not processed since we handle them in ci-1 = (ti－1, ti) and ci+1 = (ti+1, ti+ 2), 

respectively. For instance, in Fig. 3-1, events E and F are processed in ci-1 and ci+1, 

respectively. A start slice A+ in ci indicates that event A starts at ti and finishes after at ti+1 and 

a finish slice B- in ci indicates that event B starts before ti and finishes at ti+1. An intermediate 

slice C* in ci means that event C occurs across ci and an intact slice D in ci means that the 

duration of event D equals ci. The relationship between any two event slices can only be 

A 
B 
C D 

E 

B D 
E 
F 

A 
B 

D 
E 

A B D 
E 
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“before”, “after” and “equal”. The relation between two event slices in the same period is 

“equal” and the relation between event slices in different periods is either “before” or “after”. 

 

Definition 6 (Coincidence sequence with respect to an event sequence) A Coincidence 

sequence denoted as Csequence consists of an ordered set of event slices and meet tokens 

represent an event sequence unambiguously. Given an event sequence q = 〈(e1, s1, f1), (e2, s2, 

f2), …, (en, sn, fn)〉, an event time set {t1, t2 …tm-1, tm} of q is created. Totally (m-1) continuous 

coincidences c1,c2,…,ci,…,cm-1 are created. The event sequence q is transformed to Csequence 

by the incision strategy. The incision strategy transforms an event sequence q to coincidence 

sequence by the following operations. 

1. Transforms event intervals to event slices 

 An event occurs exactly at coincidence ci then the corresponding intact slice is 

created and is put into ci. 

 An event occurs from ti to tj, where ti < tj and ti is the start time of cp and tj is the 

finish time of cq, then its corresponding start slice and finish slice are created and 

are put into cp and cq, respectively. 

2. Place meet token to distinguish adjacent event intervals 

 If there are two events (ei, si, fi) and (ei, sj, fj) meets at time t, i.e., t = fi = sj, and t is 

the finish time of cp and the start time of cp+1 then a meet token “@” is put into cp+1. 

interval E 

interval C 

interval B 

interval A 

interval D 

intermediate slice C* 

start slice A+ 

E or E 

－ 

finish slice B－ 

ti ti+1 

Intact slice D 

F or F 
 

+ interval F

Figure 3-1 All possible interval layouts between two consecutive end time points. 

coincidence ci 
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3. Finally, empty coincidences are removed and the remaining ordered coincidences form the 

Csequence.  

Note that, event slices in coincidence are ordered by (1.) Intact slice (2.) Start slice (3.) Finish 

slice and event slices with the same type of event slice are ordered by event type. 

We decide to remove all empty coincidences to save memory space. For instance, 

consider the sequence 4 in Table 3-1, There are two empty coincidences in the sequence 

which is represented as coincidence representation, i.e., 〈(B)( )(A)( )(D＋)(E)(D－)〉. Although the 

incision strategy looks promising, actually it has a fatal defect. We cannot distinguish between 

two adjacent intervals and two separate intervals due to empty coincidence elimination. A 

meet token “@” is used to address this drawback. For example, there are two event sequences 

“A before B” and “A meet B” with the same coincidence representation 〈(A)(B)〉 by applying 

the incision strategy. A meet token “@” is placed in the coincidence ci+1 of Csequence of “ A 

meet B” where event A finished at ci which met event B started at ci+1, denote as 〈(A)(@B)〉. 

The Allen’s temporal logics between any two events can be mapped to Csequence 

representation without ambiguity as shown in Table 3-2. To represent temporal relations 

among more than two events in an event sequence is still unambiguous since it maintains the 

relative positions of time points of events and additional meet tokens distinguish two adjacent 

events .  

 
Temporal Relation Pictorial Example Coincidnece Sequence Representation 

A before B 〈(A)(B)〉 
A overlaps B 〈(A+)(B+A-)(A-)〉 

A contains B 〈(A+)(B)(A-)〉 
A starts B 〈(AB+)(B-)〉 

A finished-by B 〈(A+)(BA-)〉 

A meets B 〈(A)(@B)〉 

A equal B 〈(AB)〉 

Table 3-2 Allen’s temporal relations map to coincidence representations. 

A 
A 
A 

B

A 
A 
A 

B
B
B
B

B

A B
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The occurrence number is attached to every event of an event sequence to distinguish 

multiple occurrences of the same event type. In the example shown in Fig. 3-2(a), both event 

A and B occur twice in the event sequence. After transforming the event sequence to the 

Csequence, the occurrence numbers are also attached to the corresponding event slices as 

shown in Fig. 3-2(b). Note that, an event incised to a pair of start slice and finish slice has the 

same occurrence number. The first occurrence of event A and B incised to a pair of start slice 

and finish slice with the same occurrence number of 1. 

 

Figure 3-2 Illustration for occurrence numbers in event sequence and its corresponding 
Csequence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2

2

1 

1 
A 
B 

(a) (b) 

Csequence: 
〈(A1

+)(B1
+A1

-)(B1
-)(A2)(B2)〉 



 - 21 -

Chapter 4 

Projection Scheme 
 

The projection process is a significant contribution of PrefixSpan algorithm, since it 

partitions both the data and the sets of frequent patterns to be tested, and confines each test to 

its corresponding smaller projected database. This approach can reduce the search space 

effectively. For a frequent pattern, we only require searching its corresponding projected 

database for local frequent items, and then append them to the prefix to form a new frequent 

pattern. 

We extend the projection process of PrefixSpan and do some modification to adapt to 

coincidence representation. The major concern is to represent each subsequence of an event 

sequence by coincidence representation correctly. Given an event sequence and its 

corresponding Csequence, a subsequence of an event Csequence can be treated as choosing 

some pairs of start slice and its corresponding finish slice and some intact slices to stay in the 

Csequence and eliminating the rest of event slices. An event is represented as a pair of start 

slice and finish slice in the Csequence because the event has different extent overlaps with the 

other k events where k ≥ 1. If the k events are eliminated, the event must be represented as an 

intact slice instead of a pair of start and finish slices in the Csequence. For example, a 

sequence of event A obviously is a subsequence of the event sequence “A contains B”. Event 

A represented in Csequence as 〈(A)〉 is not a subsequence of 〈(A+)(B)(A-)〉, i.e., 〈(A)〉≠

〈(A+)(A-)〉. Therefore, the merge operation is proposed to transform the Csequence into a new 

Csequence which forms a coincidence representation of subsequence of corresponding event 

sequence correctly. The merge operation is defined as follows. 

Definition 7 (merge(α,e+) operation) The merge operation merges the start slice e+ and its 

corresponding finish slice e- to form an intact slice e and adjusts related event slices in 
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Csequence α. Then, a new Csequence α’ is generated which is also a subsequence of the 

Csequence α. Essentially, α’ is a coincidence representation of subsequence of 

corresponding event sequence with respect to α. The intact slice e is recovered by merging a 

series of coincidences started with the start slice e+ and finished by the finish slice e- and 

event slices correlated to the new coincidence need to be adjusted.  

Fig. 4-1 shows all possible events related with event A which is incised to a pair of event 

slices, i.e., A+ and A-. The event sequence shown in Fig. 4-1(a) contains event A and all its 

related events B, C, D to M. The coincidence representation of the event sequence is  

      〈(I)(JK+L+M+)(@A+B+C+ K-)(@DE+F+)(A-B-E-L-)(@GC-F-M-)(H)〉  

and we want to merge start slice A+ and finish slice A- to an intact slice A by merging a series 

of coincidences started with A+ and finished by A-. Three successive coincidences, ci, ci+1 and 

ci+2, shown in Fig. 4-1(a) are merged to form a new one as shown in Fig. 4-1(b).  

  Adjustments of 12 events related to event A, i.e., events B, C, D to M, are classified 

into 3 categories. First, events occur before or after the new coincidence, i.e. events I, J, G and 

H, do not need any adjustment. Second, events not fully coincident with the new coincidence, 

i.e. events D, E, F and K, will be omitted. Third, event slices coincident fully with the new 

coincidence, i.e. events B, C, L and M, remain in the new coincidence. If both start slice and 

finish slice are of the same event type in the new coincidence ci, we merge the event slices to 

become an intact slice. After merge operation on event slices A+ and A-, the new Csequence is 

formed and is represented as 〈(I)(JL+M+)(@ABC+ L-)(@GC-M-)(H)〉 as shown in Fig 4-1(b). 
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Definition 8 (CSubsequence) The subsequence β without single start slice or single finish 

slice of Csequence α, i.e., either a pair of start slice and its corresponding finish slice or an 

intact slice of α appears in the subsequence, is called a Csubsequence of α. Furthermore, the 

Csequence β’ is generated after multiple merge(e,β) operations where e is a start slice in β, 

and the β’  is a Csubsequence of α too. 

Definition 9 (support count of a Csequence) Given a coincidence database Dc, a tuple 〈sid, 

s〉 is said to contain a Csequence β, if β is a subsequence of s. The support of a Csequence β 

in a coincidence database Dc is the number of tuples in the database containing β, i.e., 

  support (β) = | { 〈sid, s〉 | ( 〈sid, s〉 ∈ Dc) ∧ (β� s) } | 

Given a positive integer min_sup as the support threshold, a Csequence β is called a 

coincidence pattern if support (β) ≥ min_sup. 

Definition 10 (prefix, projection and postfix) 

(b) 
new coincidence ci ci   ci+1   ci+2 

I 
J
K
L
M 

L+                 L- 

M+                     M- 

I 

K+ K- 

J 

H
G

F+       F- 
E+    E- 
D 

C+                 C-

B+            B- 

A+            A- 

(a) 

B
C
D
E
F
G
H 

A 

L+         L- 

M+                     M- 

J

I

H 
G 

C+         C - 

A 

B 

Figure 4-1 Illustration for merging event slice A+ and A- to form A and adjusting related 
events. 
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1. prefix: Given a Csequence α = 〈e1,e2,…en〉, a Csequence β= 〈e’1,e’2,…e’m〉 (m ≤ n) 

is called a prefix of α if and only if (1) β is a Csubsequence of α with least merge 

operations, that is, there exists a Csequence α’ = 〈e’’1,e’’2,…e’’q〉 (m ≤ q) which is the largest 

super-sequence of β after least merge operations of α. (2) ei’ = e’’i, for i ≤ m-1 (3) e’m ⊆ 

e’’m, and (4) all the event slices in (e’’m - e’m) are orderly after those in e’m. 

2. projection: Given Csequences α and β such that β is a Csubsequence α and α’ 

is the largest super-sequence of β with respect to α. A subsequence δ of Csequence α’ 

(i.e., δ ⊆ α’) is called a projection of α with respect to prefix β if and only if (1) δ has 

prefix β and (2) there exist no proper super-subsequence δ’ of δ, δ’≠δ, such that δ’ is 

a subsequence of α’ and also has prefix β. 

3. postfix: Let δ= 〈e1e2…en〉 be the projection of α with respect to prefix β= 

〈e1e2…em-1e’m〉 (m ≤ n) and α’ is the largest super-sequence of β with respect to α. A 

CSequence γ = 〈e’’mem+1…en〉 is called the postfix of α with respect to prefix β and α’, 

denoted as γ=α’/β, where e’’m = (em – e’m). We also denote α’=β．γ. If β is not a 

subsequence of α’, both projection and postfix of α with respect to β and α’ are empty. 

    An example as shown in Fig. 4-2, 〈(A+)〉, 〈(A+)(B+)〉, 〈(A+)(B+)(C) 〉, 〈(A+)(B+)(C)(A-)〉, 

〈(A+)(B+)(C)(A-B-)〉 are the prefixes of sequence α = 〈(A+)(B+)(C)(A-B-)〉 and 〈(A)〉, 〈(A+)(B)〉, 

〈(A+)(B)(A-)〉 are also prefixes of α due to merge(α, A+) =α’= 〈(A)〉 and merge(α, B+) 

=α’’= 〈(A+)(BA-)〉. But neither 〈(B+)(C)〉 nor 〈(C)〉 is considered as a prefix of α. 

〈(B+)(C)(A-B-)〉 is the postfix of the sequence α with respect to prefix 〈(A+)〉, 〈(C)(A-B-)〉 is 

the postfix with respect to prefix 〈(A+)(B+)〉, and 〈(_A-)〉 is the postfix with respect to prefix 

〈(A+)(B)〉. 
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4.1 Multi-projection Technique 

 

In PrefixSpan, the relations between items are only before, after and equal. However, 

CTMiner not only considers the three relations between event slices but also considers the 

limitation caused by the characteristic of paired start slice and finish slice. If we adopt 

projection scheme without considering such limitation, then the obtained information is not 

sufficient. In other words, the obtained frequent temporal patterns are incomplete. We discuss 

the limitation and the difference of the projection scheme between PrefixSpan and CTMiner 

in details as follows. 

For example, after projecting the time point-based event sequence S1 = 

〈(A1)(B1C1)(A2)(B2D1)〉 with respect to the prefix 〈(A)(B)〉 and the projected sequence 

〈(_C1)(A2)(B2D1)〉 will be generated since the pattern (A1
 before B1

 ) occurs firstly in S. The 

(c) 

(b) 

(a) 

c1  c2   c3   c4 

A 
B 
C 

(A+)  (B+) (C)  (A-B-) 

c1 
new coincidence merged by c2 to c4 

A 
B 
C 

(B) 

new coincidence merged by c1 to c4 

A 
B 
C 

(A) 

Figure 4-2 (a) Original Csequence α, (b) α’ = merge (A+,α), (b) α’’ = merge 



 - 26 -

projected sequence is accurate since the relationship between any two time point-based events 

is simpler. Take another example as shown in Fig. 4-3, the temporal event sequence S2 = 

〈(A1
+)(B1

+)(C1)(A1
-B1

-)(A2
+)(B2

+)(C2)(A2
-)(B2

-)〉 is projected with respect to the prefix 

〈(A+)(B+)(C)〉 as shown in Fig. 4-3(a). The pattern A1
+ before B1

+ occurs firstly in S2. If we 

adopt projection approach of PrefixSpan without considering the limitation, the only projected 

sequence 〈(A1
-B1

-)(A2
+)(B2

+)(C2)(A2
-)(B2

-)〉 is generated as shown in Fig. 4-3(b), where A1
- 

and B1
- in bold represent the corresponding finish slices of A1

+ and B1
+ in the prefix, 

respectively. Although the projected result looks fine, actually the obtained information is 

inadequate. The first occurrence of 〈(A+)(B+)(C)〉 in S2 implies the temporal relation between 

event A and B is (A finished-by B), but the second occurrence of 〈(A+)(B+)(C)〉 implies the 

temporal relation is (A overlap B). After the projection, The postfix sequences only keep the 

first occurrence pattern and ignore the rest of patterns with the same prefix of 〈(A+)(B+)(C)〉 

since A2
- and B2

- are not the corresponding finish slices which cannot be appended to the 

prefix. In other words, for a given pattern, the original projection method forms the projected 

database from collecting all projected sequences with regards to only the first occurrence of 

the prefix in each Csequence. In this paper, a new projection strategy called multi-projection 

is proposed to address this problem. 
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Figure 4-3 Multi-projecting prefix 〈(A+)(B+)(C)〉 in (a) creates two postfix sequences (b) and  
(c) to obtain complete frequent coincidence patterns. 

 

Multi-projection projects every occurrence of the prefix in Csequences then collects all 

generated postfix sequences with respect to the prefix with start slices to form the projected 

database. Therefore, it may generate more than one postfix sequences. From the running 

example above, multi-projecting a temporal sequence shown in Fig. 4-3(a) with regard to the 

prefix 〈(A+)(B+)(C)〉 will generate two postfix sequences 〈(A1
-B1

-)(A2
+)(B2

+)(C2)(A2
-)(B2

-)〉 and 

〈(A2
-)(B2

-)〉 as shown in Fig. 4-3(b) and Fig. 4-3(c), respectively. Obviously, the size of 

projected database constructed by multi-projection is dominated by the proportion of frequent 

multiple start slice repetitions in the Csequence. With regard to the prefix with start slices, the 

more occurrences of the prefix in the sequence, the more projected sequences with respect to 

the prefix will be generated. The workload for multi-projection is additional postfix sequences 

generation and collection.  

S2 = 〈(A1
+)(B1

+)(C1)(A1
-B1

-)(A2
+)(B2

+)(C2)(A2
-)(B2

-)〉 

A 
B 
C 

〈(A1
-B1

-)(A2
+)(B2

+)(C2)(A2
-)(B2

-)〉 

A 
B 
C 

〈(A2
-)(B2

-)〉 

A 
B 
C 

(a) 

(b) 

(c) 
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    To reduce the memory usage of projected databases caused by multi-projection scheme, 

we apply the pseudo-projection technique proposed by Pei et al. [5] to address this problem. 

Instead of performing physical projection, pseudo-projection registers the identifier of the 

sequence we need to project and the starting position of the projected suffix in the sequence. 

Then, a physical projection of the sequence is replaced by registering the sequence identifier 

and the projected position index. With this technique, the usage of memory can be reduced 

substantially. The projection scheme of CTMiner utilizes pseudo-projection technique to 

avoid physically copying postfix sequences. Therefore, the running time and memory usage 

of CTMiner is efficient. The details of pseudo-projection technique are described in [5]. The 

experimental result shows that the performance of multi-projection in both synthetic data and 

real data still scales well when processing considerable temporal sequences. 
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Chapter 5 

Proposed Interval-based Event Mining Algorithm: CTMiner 
 

In this chapter, the new algorithm called CTMiner is proposed to find all frequent 

temporal patterns. CTMiner utilizes the coincidence-slice concepts to accomplish the frequent 

time interval-based pattern mining task. It can be decomposed into three phases: incision and 

projection, coincidence mining and temporal relation discovery. Chapter 3 describes the 

idea and method of incision strategy to transform an event sequence in temporal database into 

unambiguous Csequences. And we also define prefix, projection and postfix which are 

different from traditional PrefixSpan algorithm and describe the projection scheme as 

preliminary of coincidence mining phase. In this Chapter, we will give a high level 

description of PrefixSpan and details CTMiner algorithm and the proposed three pruning 

mechanisms for coincidence pattern mining. Finally, we describe the algorithm which 

transforms frequent coincidence patterns back to temporal patterns in a frequent temporal 

pattern then discovers all the temporal relations between any two events expressed as a 

relation list. 

In Fig. 5-1, algorithm 1, CTMiner illustrates the main framework. It first scans the 

temporal database to discover all frequent events and remove infrequent intervals and empty 

event sequences (Line 2-3, algorithm 1). Then Incision_and_projection is called to 

transform the original temporal database into coincidence database and get all projected 

coincidence temporal databases with respect to each frequent 1-pattern (Lines 4, algorithm 1). 

Then the coincidence mining task CPrefixSpan is called for each projected coincidence 

database to get frequent coincidence patterns (Lines 5, 6, algorithm 1). Finally, we discover a 

relation list which illustrates all temporal relations among events in a frequent coincidence 

pattern by called Temporal_relation_discovery. (Line 7, algorithm 1). 
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Algorithm 1: CTMiner ( D,min_sup )  
Input: A temporal database D, and the minimum support threshold min_ sup 
Output: Frequent temporal sequential patterns L  
Variables: All frequent coincidence patterns F, all frequent temporal 1-patterns L1, 
a set P which collects all projected databases with respect each 1-pattern, projected 
database D |a ∈ P with respect to the prefix a  
 
1: F←∅, L←∅ 
2: scan temporal database D to find all frequent 1-patterns and remove infrequent 

intervals and empty event sequences , L1← all frequent 1-patterns. 
3: L←L1; 
4: P = Incision_and_Projection(L1,D,F, min_sup);             //incision phase 
5: for each projected database D |a ∈ P do 
6:    CPrefixSpan(D|a, min_supp, F);             //coincidence mining phase 
7: Temporal_relation_discovery(F, L);        //temporal relation discovery phase
8: output frequent temporal sequential patterns in L; 

Figure 5-1 The CTMiner algorithm. 

5.1 Phase I: Incision and Projection 
 

Given a temporal database, the events associated with the same SID can be grouped into 

an event sequence. In incision and projection phase, we scan the temporal database to handle 

each event sequence. Each event sequence is incised to Csequence then it is projected to the 

postfix sequences with respect to each frequent 1-event slice as a prefix. The postfix 

sequences with the same SID are grouped and dispatched to the corresponding projected 

database. After handling all event sequences, the procedure returns a set of projected 

coincidence databases with respect to frequent 1-event slices. Algorithm 2 illustrates the 

details of incision and projection as shown in Fig. 5-2. 

First, each event sequence is transformed to Csequence by the following operations 

(Line1-20, algorithm 2). The information of start/finish time points of each event is added to a 

list called time_points_list then sorts all the records in the list in the order of time (Line 3,4, 

algorithm 2). Then the records are grouped into time_list by the same time and Csequence is 
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generated simultaneously (Line 5-20, algorithm 2). Two pointers cur_time_list and 

last_time_list point to the first two cur_time_lists (Line 7, algorithm 2) and the coincidence is 

decided by dealing the records of cur_time_list and last_time_list. 

 
Algorithm 2: Incision_and_Projection(L1,D,F,min_sup) 
Input: All frequent temporal 1-patterns L1, a temporal database D, all frequent 
coincidence patterns F, and the minimum support threshold min_ sup 
Output: A set P which collects all projected databases with respect each 1-pattern,  
Variable: time_list , time_points_list,cur_time_list, last_time_list, coincidence, 
sequence, postfix_seq’ ,postfix_seq’’,D|p’, D|p’’ 
 
1: for each sequence s in D do 
2:   sequence←∅; 
3:   for each interval a in s do 
4:       add the information of time points of a (a.time,a.event_type,a.type) to 

time_points_list. 
5:       sort records in time_points_list by time and event type in increasing order; 
6:       grouping the records in time_points_list with the same time into time_list; 
7:       cur_time_list and last_time_list point to the first two time_list; 
8:       while cur_time_list is not points to a null time_list do, 
9:            coincidence←∅; 
10:           if there exist two records i, j with type start and finish respectively in 

last_time_list do 
11:               coincidence← coincidence ∪ “@”;            //meet token 

12:           for each record r in last_time_list do 
13:               if r.type = start then                         //start slice 
14:                   coincidence← coincidence ∪ “r.event_type” with “+”; 
15:           for each record r in time_list do 
16:               if r.type = finish then                        //finish slice 
17:                   coincidence← coincidence ∪ “r.event_type” with “-”; 
18:           merge start slice and finish slice with same event type to an intact 

slice in coincidence;                            //intact slice 
19:        sequence ← sequence ◇ 〈 coincidence 〉; 
20:        last_time_list and cur_time_list point to next time_list; 
21:   for each frequent 1-pattern p in L1 do 
22:      create start slice p’ and intact slice p’’ of p. 
23:          postfix_seqes = Multiprojection_to_coincidence_seq(sequence,p’); 



 - 32 -

24:          postfix_seq1 = projection_to_coincidence_seq(sequence,p’’); 
25:          D|p’ ← D|p’ ∪ postfix_seqes ; 
26:          D|p’’ ← D|p’’ ∪ postfix_seq1 ; 
27: for each projected coincidence database D|prefix do, 
28:    If |D|prefix| ≥ min_supp then 
29:      P ← P ∪ D|prefix ; 
30: output P; 

Figure 5-2 The Incision_and_Projection algorithm. 

If two records with different types exist in last_time_list then the meet token “@” is 

placed into coincidence to distinguish from two adjacent events (Line 10, 11, algorithm 2). 

Note that, the type indicates the time point either a stp or a ftp. The start slices with 

corresponding stps in last_time_list are created and placed into the coincidence and the finish 

slices with corresponding ftps in cur_time_list are also created and placed into the 

coincidence (Line 12-17, algorithm 2). If the start slice and the finish slice in the coincidence 

have the same event type, we combine them to form an intact slice (Line 18, algorithm 2). 

Then the ordered coincidence formed a Csequence (Line 19, algorithm 2). For each frequent 

1-pattern p, two projected coincidence databases with respect to a start slice and an intact slice 

of p are generated to handle the temporal patterns beginning with the start slice and the intact 

slice, respectively (Line 21-26, algorithm 2). Output all projected coincidence databases with 

the number of Csequences greater than the minimal support (Line 27-30, algorithm 2). Finally, 

the temporal database has transformed to a set of projected coincidence databases which 

consist of start slices, finish slices, intact slices and meet toke. For the example as shown in 

Fig. 5-3, Incision_and_Projection operates on event sequence 3 in Table 3-1. The 

cur_time_list is pointing to the 6th time_list and the last_time_list always points to the 

previous time_list which cur_time_list is pointing to, i.e., the 6th time list = {E+}. First, we 

check if there exist both start slice and finish slice in last_time_list to distinguish two adjacent 

events then put all start slices in last_time_list and all finish slices in cur_time_list into 

coincidence, i.e., (E+E-). The same event with both start slice and finish slice in coincidence 
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will be transformed to an intact slice, i.e., (E). Finally, the ordered coincidences form a 

Csequence, i.e., 〈(A+)(B+A-)(B-)(@D+)(E)(D-)〉. 

 
 
 
 
 
 
 
 
 
 
 

Figure 5-3 Illustration for Incision_and_Projection on event sequence 3 in Table 3-1. The 
cur_time_list and last_time_list point to the 6th and 5th time_list, respectively. 

 

5.2 Phase II: Coincidence Mining 
 

By using the concepts of the sequential pattern mining algorithm PrefixSpan [4], the 

mining phase of CTMiner, CPrefixSpan algorithm is proposed to discover all frequent 

coincidence patterns, which are defined in Def. 6. In the following, we first provide a brief 

description of PrefixSpan, and then we present the CPrefixSpan algorithm in details.  

PrefixSpan uses a divide-and-conquer strategy to solve the sequential pattern mining 

problem on time point-based data. First, it scans the database to find all frequent 1-patterns, 

i.e., L1. Second, suppose there are |L1| patterns in L1, the original database is divided into |L1| 

partitions, where each partition is the projection of the sequence database with respect to each 

frequent 1-pattern as a prefix. Third, similar to the first step, each partition is treated as the 

original one and all the local frequent 1-patterns are found in this partition. Appending these 

frequent 1-patterns to the prefix will generate frequent sequential patterns with the length 

increased by one. Finally, recursively running step two and step three will derive all frequent 

time_points_list 
A+ 6 
B+ 7 
A- 12 
B- 14 
D+ 14 
E+ 17 
E- 19 
D- 20 

Ordered time_lists 
1: A+ 6 
2: B+ 7 
3: A- 12 
4: B-, D+ 14 
5: E+ 17 
6: E- 19 
7: D- 20 

last_time_list 
cur_time_list 

→(A+) 
→(B+A-) 
→(B-) 
→(@D+) 
→(E+E -)→(E) 
→(D-) (Not yet.)
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sequential patterns until prefixes cannot be extended any more. From a high-level point of 

view, CPrefixSpan is similar to PrefixSpan. However, the PrefixSpan uses itemsets and items 

to represent a time point-based event sequence and CPrefixSpan uses coincidences and event 

slices to represent an interval-based event sequence.  

Here we discuss similarity and dissimilarity of the above mining algorithms: 

conceptually, the relationship of “event slice versus coincidence” is analogous to “item versus 

itemset.” Since we have incised each event sequence to event slices and transformed the 

complex relationship among events to the relationship among event slices. Though the 

relationship between items is the same as that of event slices i.e., “after”, “before” and 

“equal”, however, in a lower level, many implementations in CPrefixSpan are still different 

from those in PrefixSpan. The main reason for these differences is the characteristics of 

interval-based event and coincidence representation. The optimizations are proposed and 

adapted to the characteristics of paired start slice and finish slice. Therefore, essentially, 

PrefixSpan can be adopted as the fundamental extension of the proposed algorithm. The 

pseudo code of CPrefixSpan is shown in Fig. 5-4. 
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Algorithm 3: CPrefixSpan(D|a,min_supp,F) 
Input: A projected database D|a, a prefix is represented in Csequence a, the 
minimum support threshold min_supp, a set of frequent coincidence patterns F 
Output: A set of updated frequent coincidence patterns F 
Variables: coincidence,E1 
 
1: for each sequence s in D|a do 
2:   Count_freq_event_slices(s); 
3: put all frequent 1-event slices into E1; 
4: for each finish slice e in E1 do 
5:   elimination_test(e, a);                   // an intact slice is formed w.r.t e
6: for each frequent 1-event slice e in E1 do 
7:   a’ ← append event slice e to a; 
8:   construct projected database D|a’; 
9:   if form_a_pattern_test(a’) then 
10:     F←F ∪ a’; 
11:  if |D|a’| ≥ min_supp then 
12:      call CPrefixSpan(D|a’, min_supp,F); 

Figure 5-4 The CPrefixSpan algorithm. 

Algorithm CPrefixSpan scans projected coincidence database to collect all local frequent 

1-event slices and three pruning strategies are performed here to avoid further meaningless 

processing. Intuitively, all event slices in postfix sequences are counted to obtain all frequent 

1-event slices. An event can be represented either as a pair of start and finish slices or as an 

intact slice. Therefore, when a start slice is appended to the prefix we need to mark its 

corresponding finish slice in the postfix sequence. The finish slice will append to the prefix in 

the further processing. In the example as shown in Fig. 5-5, initially, we have a temporal 

database with frequent 1-event slices {A, A+, C, C+, D} and minimum support=2. After 

running the CPrefixSpan once on the original database, five projected databases are created 

with respect to frequent 1-event slices. We utilize the projected database with prefix 〈(A+)〉 

and the potential frequent 1-event slices {A-, C, C+, C-, D} in the projected database as the 

example to illustrate the following three pruning strategies. 
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Temporal DB 
Sid1: 〈(A+)(C+)(B)(C-)(A-)(D)〉
Sid2: 〈(A+)(C+)(A-)(DC-)〉 

 
Figure 5-5 Illustrating three pruning strategies. 

 

 Pruning strategy 1: The finish slices in a postfix sequence without its corresponding start 

slices in the prefix are not counted. Once the finish slice is appended to the prefix then the 

further processing will exclude its corresponding start slice. Existence of either a single start 

slice or a single finish slice in a pattern is meaningless. The finish slice with its corresponding 

start slice in the prefix is marked to speedup the further processing. For example, both A- and 

C- occurs in two event sequences in projected database with prefix 〈(A+)〉 in Fig. 5-5 but C- 

without it corresponding start slice C+ in the prefix. If we treat C- as the frequent 1-event slice 

and append it to the prefix, the new prefix 〈(A+)(C-)〉 and only one postfix sequence 〈(A-)(D)〉 

are generated. The coincidence pattern 〈(A+)(C-)〉 is incomplete and it will not have the chance 

to become a complete coincidence pattern due to C+ has been omitted by projection scheme 

permanently. Thus, we can prune the C- as a frequent 1-event slice in this case. 

 Pruning strategy 2: The event slices which occur before the first marked finish slice in 

postfix sequence are counted. The first marked finish slice indicates that its corresponding 

start slice exists in the prefix. Obviously, if the event slice after the first marked finish slice is 

Projected DB with prefix 〈(A+)〉 
Sid1: 〈(C+)(B)(C-)(A-)(D)〉 
Sid2: 〈(C+)(A-)(DC-)〉 

Pruning 1 Pruning 2 Pruning 3 

〈(A+)〉 〈(C)〉 〈(C+)〉 〈(D)〉 

〈(A+)(C)〉 〈(A+)(C-) 〈(A+)(D)〉 

〈(A)〉 

〈(A+)(C+)〉 〈(A)〉=〈(A+)(A-)〉 
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appended to the prefix then further processing will omit the first marked finish slice and the 

property of paired start slice and finish slice is violated. Therefore, further processing with 

respect to the prefix is meaningless. For the running example in Fig. 5-5, the intact slice D 

after the first marked event slice A- is a frequent 1-event slice. The new prefix 〈(A+)(D)〉 is 

formed by appending the frequent intact slice D then the only postfix sequence 〈(C-)〉 is 

created with respect to the new prefix. We can find that the marked finish slices A1
- is omitted 

in the further processing permanently. Therefore, the pattern 〈(A+)(D)〉 being a prefix is 

incomplete and meaningless for the further processing. The function 

Count_freq_event_slices(α) implements the above two pruning strategies, while counting 

frequent 1 event slices in postfix sequence α(Line 2, algorithm 3). 

 Pruning strategy 3: The new prefix is formed by appending each frequent finish slice to 

the original prefix. The third pruning strategy tests that the finish slice and its corresponding 

start slice forms the intact slice properly in the new prefix. If the intact slice forms without 

any event slice elimination, the further processing of the new prefix can be skipped due to 

divide and conquer strategy. Actually, the further processing with respect to the new prefix is 

performed by another data partition with the new prefix. Still, for the running example in Fig. 

5-5, A- is a frequent 1-event slice. The new prefix 〈(A+)(A-)〉 is generated and the pattern 

actually can instead be an intact slice 〈(A)〉. According to the divide and conquer strategy, the 

further processing is the same as the processing on the projected database with prefix 〈(A)〉 

which can be omitted. The third pruning strategy is implemented in function 

elimination_test(e, a) (Line 5, algorithm 3) where e is a frequent finish slice and a is the 

prefix. For the example shown in Fig. 5-6, if we append A- to the prefix 〈(A+B＋C＋)〉 to form a 

new prefix 〈(A+B＋C＋)(A－)〉, the following conditions are checked to determine whether 

elimination_test(A-, a) operation works. We assume A+ and A- in coincidence ci and cj in a, 

respectively. (1) There is no coincidence between ci and cj in a. If there are coincidences 

between ci and cj, then to form the intact slice A has to eliminate event slices in those 
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coincidences between ci and cj, i.e., A+ and A- cannot be merged properly. (2) There is no 

other event slices in ci and cj besides the start slices occurring after A+ in ci, i.e., the relation 

between event A and the event with the start slice may start or equal due to the same start time. 

After operating the function elimination_test, the new prefix can be represented as 〈(AB＋C＋)〉 , 

i.e., A+ and A- form A, and further processing of the prefix can be eliminated. 

After the above two functions, each frequent 1-event slices can be appended to the 

original prefix to generate new pattern with the length increased by one. This way, the 

prefixes are successfully extended. 

 

In PrefixSpan algorithm, the frequent patterns are output by appending each frequent 

1-event to the prefix. But in CPrefixSpan, a lot of prefixes are treated as intermediate 

coincidence patterns but not frequent coincidence patterns. The function 

form_a_pattern_test(p) verifies the prefix p either an intermediate coincidence pattern or a 

frequent coincidence pattern (Line 9, algorithm 3). The prefix is treated as a frequent 

coincidence pattern if all the start slices and finish slices are paired correctly in the prefix. 

Finally, if the number of sequences in projected database is greater than min_supp, then 

recursively run the projected database with respect to the extended prefix until the prefix 

cannot be extended successfully. Then, all frequent coincidence patterns will be discovered 

(Lines 11, 12, algorithm 3). 

We take the database in Table 5-1 with min_sup = 2 as an example. There are 17 event 

records which can be regarded as 4 event sequences in the temporal database. After scanning 

prefix: 〈(A+B＋C＋)〉 

Figure 5-6 Illustration for elimination_test on A- successfully with all possible correlative 
event slices in the prefix. 

A 
B 
C 
D 

D 
C+           C- 

A+       A- 

B+       B- 
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the original temporal database, we find all the frequent 1-patterns. They are 〈A〉: 3, 〈B〉: 4, 〈D〉: 

4, and 〈E〉: 4, where the notation” 〈pattern〉 : count” represents the pattern and its associated 

support count.  

For each original event sequence in Table 5-1, the Csequences are constructed and 

projected with respect to event slices created by frequent 1-patterns as shown in the first two 

columns in Table 5-2 and the pictorial examples corresponding to the projected databases are 

shown in Fig. 5-7. Furthermore, we take the coincidence database with event A as example to 

discuss in details. We have to consider the patterns prefixed with intact slice 〈A〉 and start slice 

〈A＋〉. Note that when counting the support and constructing projected database with regard to 

intact slice 〈A〉, we also require considering the occurrence of start slice 〈A＋〉 in sequences 

since both represent the existence of event A. The projected sequences with respect to 〈A〉 has 

3 sequences: SID 1: 〈(C＋)(B－C－)(D＋)(E)(D－)〉, SID3: 〈(B－)(@D＋)(E)(D－)〉 and SID 4: 〈(D

＋)(E)(D－)〉. Simultaneously, we also project sequence with respect to 〈A＋〉, so we have 2 

sequences: 〈(B＋C＋A－)(B－C－)(D＋)(E)(D－)〉 and 〈(B＋A－)(B－)(@D＋)(E)(D－)〉.  Then we 

collect the corresponding sequences with respect to the coincidence prefix to coincidence 

database, so both D|〈(A)〉 and D|〈(A+)〉 are obtained. Continuing the recursive process with the 

D|〈(A)〉 and D|〈(A＋)〉, we can discover all frequent coincidence patterns prefixed with 〈(A)〉 and 

〈(A＋)〉, respectively. The last column in Table 5-2 lists all frequent coincidence patterns. 
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Original coincidence database with frequent 1 event slices 
Sequence 1: 〈(A＋)(B＋A－)(B－)(D＋)(E)(D－)〉 
Sequence 2: 〈(B)(D＋)(E)(D－)〉 
Sequence 3: 〈(A＋)(B＋A－)(B－)(@D＋)(E)(D－)〉 
Sequence 4: 〈(B)(A)(D＋)(E)(D－)〉 

Table 5-1 Coincidence database. 
 

prefix Projected database Frequent coincidence patterns

〈(A)〉 1:〈(B－)(D＋)(E)(D－)〉 
3:〈(B－)(@D＋)(E)(D－)〉 
4:〈(D＋)(E)(D－)〉 

〈(A)(D)〉 
〈(A)(E)〉 
〈(A)(D＋)(E)(D－)〉 

〈(A＋)〉 1:〈(B＋A－)(B－)(D＋)(E)(D－)〉 
3:〈(B＋A－)(B－)(@D＋)(E)(D－)〉 

〈(A＋)(A－B＋)(B－)〉 
〈(A＋)(A－B＋)(B－)(D)〉 
〈(A＋)(A－B＋)(B－)(E)〉  
〈(A＋)(A－B＋)(B－)(D＋)(E)(D－)〉

〈(B)〉 1:〈(D＋)(E)(D－)〉 
2:〈(D＋)(E)(D－)〉 
3:〈(@D＋)(E) (D－)〉 
4:〈(A)(D＋)(E)(D－)〉 

〈(B)(D)〉 
〈(B)(E)〉 
〈(B)(D＋)(E)(D－)〉 

〈(B＋)〉 1:〈(_A－)(B－)(D＋)(E)(D－) 〉1 
3:〈(_A－)(B－)(@D＋)(E)(D－)〉 

∅ 

〈(D)〉 ∅ ∅ 
〈(D＋)〉 1:〈(E)(D－)〉 

2:〈(E)(D－)〉 
3: 〈(E)(D－)〉 
4: 〈(E)(D－)〉 

〈(D＋)(E)(D－)〉 

〈(E)〉 ∅ ∅ 
〈(E＋)〉 ∅ ∅ 

Table 5-2 Projected databases and frequent temporal patterns 
___________________________ 

1. Note that, the first coincidence with “_” in projected Csequence indicates that the last 
coincidence in the prefix is the same as the first coincidence in the projected Csequence. The 
finish slice of italic and bold indicates which has corresponding start slice in the prefix. 
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(d) Csequence of SID 4 and projected sequence w.r.t intact slice B. 

(c) Csequence of SID 3 and projected sequence w.r.t intact slice B. 

(b) Csequence of SID and projected sequence w.r.t intact slice B. 

(a) Csequence of SID 1 and projected sequence w.r.t intact slice B. 
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Figure 5-7 Database of Csequences and projected databases w.r.t intact slice B 
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5.3 Phase III: Temporal Relation Discovery 
  

The frequent coincidence representation can describe the relations among events in a 

pattern non-ambiguously. This representation utilizes the slice-coincidence architecture to 

facilitate the mining process of interval-based pattern discovery effectively and efficiently 

since the complex relationship among event slices is simple. 

    The objective of last phase is to present each coincidence pattern to a relation list which 

consists of temporal relations in a coincidence pattern. We use positions of coincidences to 

represent the relative positions of time points, named pseudo time points, of an event and 

compare the pseudo time points to determine the relation between any two events as the last 

column of Table 1-1. 

The detailed algorithm of temporal relation discovery is shown in Fig. 5-8. An intact 

slice or a start slice in coincidence pattern implies the existence of an event and we set pseudo 

time points of each event by the following operations. For an intact slice of an event in 

coincidence ci, we set both its’ pseudo stp and pseudo ftp to i (Line 5-6, 11-12, Algorithm 4). 

For a start slice of an event in ci and the corresponding finish slice in cj, we set its’ pseudo stp 

to i and pseudo ftp to j (Line 7-9, 13-15, Algorithm 4). The temporal relation of two events is 

determined by comparing the pseudo time points of them and a meet token “@” assists to 

distinguish the relation of two events in two consecutive coincidences being “meet” or 

“before” (Line 16-19 Algorithm 4).  
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Algorithm 4: Temporal_Relation_Discovery(F,L) 
Input: a set of frequent coincidence patterns F, a set of frequent temporal patterns L 
Output: a set of frequent temporal patterns L 
 
1: for each coincidence pattern p in F do 
2:   Relation_list←∅; 
3:   for each event slice e1 of coincidence pattern p in coincidence ci do 
4:      src.start_time=src.finish_time=des.start_time=des.finish_time=0; 
5:      if e1.type=intact slice then 
6:         src.start_time = src.finish_time= i; 
7:      else if e1.type=start slice then 
8:         get e1’ is corresponding finish slice of e in coincidence ck 

9:            src.start_time=i; src.finish_time=k; 
10:     for each event slice e2 in coincidence cj occurs after e1 do 
11:        if e2.type=intact slice then 
12:           des.start_time = des.finish_time= j; 
13:        else if e2.type=start slice then 
14:           get e2’ is corresponding finish slice of e2 in coincidence cl 

15:               des.start_time=j; des.finish_time=l; 
16:     if src.finish_time+1=des.start_time and the src.finish_time-th coincidence 

with “@” then 
17:        relation=meet; 
18:     else 
19:        relation=get_relation(src,des); 
20:     Relation_list ← Relation_list ∪ (e1.event_type relation e2.event_type); 
21:   L← L ∪ Relation_list; 
22:output L; 

Figure 5-8 The Temporal_Relation_Discovery algorithm. 

In the example shown in Fig. 5-9(a), there is a frequent coincidence pattern 

〈(A+)(BC+)(A-)(@C-D)〉. First, we set pseudo time points for each event, then (A: 1,3), (B: 2,2), 

(C: 2,4) and (D: 4,4) are obtained. Then, by comparing the pseudo time points with each event, 

the temporal relations (A contain B), (A overlaps C), (A meet D), (B starts C), (B before D), 

(C finished-by D) of the pattern are obtained as shown in Fig. 5-9(b). Note that, (X: i,j) 

denotes event X with stp at i and ftp at j and X.s, X.f denotes the stp and ftp of event X. 



 - 44 -

 
Figure 5-9 Illustration for discovering temporal relations. (a) illustrates the Csequence and (b) 
illustrates the relations determined by comparing the pseudo time points. 

 

5.4 Handling large databases 

 

The CTMiner algorithm only works if the database fits into memory. If the database is 

too large to fit into memory, the frequent temporal patterns are discovered by 

partition-and-validation technique. First, the database is partitioned so that each partition can 

be processed in memory by CTMiner. A temporal pattern is frequent in the database it has to 

be frequent in at least one partition. Thus, we can obtain the set of potential frequent patterns 

by collecting the discovered patterns after running CTMiner on those partitions. Then, we 

validate the frequency of each potential frequent pattern. The validation needs one more data 

scan to get all frequent temporal patterns. 
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A contain B: A.s < B.s and A.f > B.f 
A overlap C: A.s < C.s and A.f < C.f and A.f > C.s 
A meet D: A.f = D.s with “@” in c4 
B start C: B.s = C.s and B.f < C.f 
B before D: B.f = D.s without “@” in c4 
C finished-by D: C.s < D.s and C.f = D.f 

(a) 
〈(A+)(BC+)(A-)(@C-D)〉 

(b) 
(A: 1,3),(B: 2,2),(C: 2,4),(D: 4,4) 
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Chapter 6 

Experimental Result 
 

To evaluate the performance of CTMiner, three temporal pattern mining algorithms, 

TPrefixSpan [11], H-DFS [10], and IEMiner [13] were implemented for comparison. All 

algorithms were implemented in C++ language and tested on a Pentium D 3.0 GHz with 4.0 

GB of main memory running Windows XP system. The comprehensive performance study 

has been conducted on both synthetic and real datasets. In section 6.1.1, to compare the 

performance of CTMiner, TPrefixSpan, H-DFS and IEMiner, we perform experiments for the 

four algorithms on small (10K), medium (100K) and large (200K) synthetic datasets and 

varying the minimal support threshold. We discuss the memory usage of each algorithm in 

section 6.1.2. In section 6.1.3, to verify the scalability of CTMiner, we also test the CTMiner 

on different sizes of synthetic datasets. Besides the experiments on synthetic datasets, we also 

perform CTMiner on real dataset of library lending which is described in section 6.2. The 

detailed description of the parameters in the experiment is listed in Table 6-1. 

 
Parameters Description 

|D| Number of customers 
|C| Average number of transactions per customer 
|T| Average number of items per transaction 
|S| Average length of maximal potentially large sequences 
|I| Average size of itemsets in maximal potentially large sequences 
Ns Number of maximal potentially large sequences 
Ni Number of maximal potentially large itemsets 
N Number of items 

Table 6-1 Parameters of synthetic data generator 
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6.1 Experiments on synthetic datasets 

 

6.1.1 Runtime comparisons 

Some parameters are fixed in the runtime experiments: |C|=10, |T|=2.5, |S|=4, |I|=1.25, 

Ns=500, Ni=2,500. That means that the average length of sequences is 25, i.e., |C|×|T|, and the 

average length of temporal patterns is 6, i.e., |S|×|I|, and parameters Ns and Ni are set to small 

values which indicates plenty temporal patterns will be generated. Three runtime experiments 

on different data sizes will be testified individually which are small, medium and large 

datasets. The first experiment testifies small dataset of 10K sequences in temporal database 

and 500 different event types and varying minimum support threshold from 4 % to 1 %.  

Fig. 6-1 and Fig. 6-2 illustrate the running time and the number of temporal patterns of 

small dataset with respect to different minimum support threshold, respectively. Fig. 6-3 

shows the distribution of the length of frequent temporal patterns. Obviously, when the 

minimum support threshold decreases, the running time required for all algorithms increases. 

However, the runtime for IEMiner, H-DFS and TPrefixSpan increase drastically compared to 

CTMiner. When minimum support is 1 %, the data set contains a large number of frequent 

temporal patterns (3,184). CTMiner takes 509 seconds, which is 5 times faster than 

TPrefixSpan (2,532 seconds), more than 8 times faster than IEMiner (4,337 seconds) and 

more than 13 times faster than H-DFS (6,676 seconds). 
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Figure 6-1 Performance of the four algorithms on data set with D10k – C10 – I1.25 – Ns 
500 – Ni 2,500 – N10k 

Figure 6-2 The number of generated frequent patterns on dataset D10k – C20 – I2.5 – Ns 
500 – Ni 2,500 – N500. 
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Figure 6-3 The distribution of frequent patterns of dataset with D10k – C20 – I2.5 – Ns 500 – 
Ni 2,500 – N500 

The second experiment testifies medium dataset of 100K sequences in temporal database 

and 10K different event types and varying minimal support threshold from 1 % to 0.5%. Both 

the data size and event types of the medium dataset are 10 times larger than the small dataset. 

Fig 6-4 and Fig. 6-5 show the running time and number of temporal patterns of medium 

dataset with respect to different minimum support threshold, respectively. The Fig. 6-6 shows 

the distribution of the length of frequent temporal patterns. The data set contains a large 

number of frequent temporal patterns when minimum support is reduced to 0.5 % (2,880). 

CTMiner takes 4,695 seconds, which is 4 times faster than TPrefixSpan (18,789 seconds), 

more than 8 times faster than IEMiner (38,678 seconds) and more than 12 times faster than 

H-DFS (59,489 seconds). 
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Figure 6-5 The number of generated frequent patterns on dataset with D100k – C20 – I2.5 – 
Ns 500 – Ni 2,500 – N10k. 
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Figure 6-6 The pattern length distribution of frequent patterns on dataset with D100k – C20 – 
I2.5 – Ns 500 – Ni 2,500 – N10k. 

The third experiment testifies large dataset of 200K sequences in temporal database and 

10K different event types and varying minimum support threshold from 1 % to 0.5%. The 

data size of the large dataset is 2 times larger than the medium dataset. As shown in Fig. 6-7, 

when minimum support is reduced to 0.5 %, CTMiner takes 6,257 seconds, which is more 

than 4 times faster than TPrefixSpan (26,751 seconds), more than 9 times faster than IEMiner 

(56,972 seconds), while H-DFS never terminates in the experiment. Fig. 6-8 and Fig. 6-9 
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Figure 6-7 Performance of the four algorithms on data set with D200k – C10 – I2.5 – Ns 
500 – Ni 2,500 – N10k  

 
Figure 6-8 The number of generated frequent pattern on dataset with D200k – C20 – I2.5– Ns 
500 – Ni 2,500 – N10k 
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Figure 6-9 The pattern length distribution of frequent patterns on dataset with D200k – C20 – 
I2.5 – Ns 500 – Ni 2,500 – N10k. 
 

6.1.2 Discussion of memory usage  

 

The memory usage of the four algorithms on medium dataset of 100K is shown in Fig. 
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because it stores a huge amount of related records of frequent 2-patterns and brute-and-force 
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are generated by the proposed multi-projection scheme. The memory usage of CTMiner from 
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Figure 6-10 Memory usage comparison of the four algorithms on data set with D100k – 
C10 – I2.5 – Ns 500 – Ni 2,500 – N10k 
 
6.1.3 Scalability 
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linearly with respect to different database sizes.  

 
Figure 6-11 Scalability test of the CTMiner algorithm with different database size and 
minimum supports. 
 

 
Figure 6-12 The number of generated frequent patterns with different database sizes and 
minimum supports. 
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6.2 Experiment on Real world dataset 

 

In addition to using synthetic data sets, we have also performed experiments on real world 

dataset to compare the performance and validate the applicability of time interval-based 

pattern mining. The database used in the experiments collected 1,098,142 library records 

(including borrowing and returning) for last three years from the National Chiao Tung 

University Library. The experimental database includes 206,844 books, i.e., N=206,844, 

28,339 readers and |D|=28,339. An event is constructed by a book ID and its associated 

borrowing and returning time. The size of the database is the number of sequences in the 

database i.e., total 28,339 readers. Fig. 6-13 indicates the running time of four temporal 

pattern mining algorithm with varying minimum support thresholds from 0.1 % to 0.05 % and 

the number of detected patterns under different thresholds is shown in Fig. 6-14. The 

distribution of the length of frequent temporal patterns is shown in Fig. 6-15. The experiments 

show that when the minimum support is greater than 0.1 %, most of generated frequent 

patterns are of length one or two. As the minimum support drops down to 0.05 %, there are 

14,549 frequent patterns and the running time of CTMiner takes 4,771 seconds, which is 

about 2 times faster than TPrefixSpan (8,235 seconds), about 4 times faster than IEMiner 

(15,424 seconds) and H-DFS has never terminated. 

We apply the CTMiner algorithm on books borrowing dataset to extract the readers’ 

behavior. The experimental result shows that a lot of frequent patterns are related to a series of 

TV soaps or books. For instance, the frequent temporal pattern, ”Friends of season 1  

overlaps Friends of season 2” ^ ”Friends of season 1 before Friends of season 3” ^ “Friends of 

season 2 before Friends of season 3”, indicates users’ behavior especially on borrowing a 

series of TV soaps. When a user wants to borrow a series of TV soaps, he always likely holds 

as many videos as he can. 
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Figure 6-13 Experimental result of the CTMiner algorithm with varying minimal supports on 
real dataset. 

 
Figure 6-14 The number of generated frequent patterns with varying minimum support. 
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 Figure 6-15 The pattern length distribution of pattern length of real dataset with varying 
minimum support. 
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Chapter 7 

Conclusion and Future works 

 

    In this thesis, we observe and analyze the drawbacks of different proposed temporal 

representations based on the complex temporal relation among interval-based events. Then an 

unambiguous, scalable and efficient coincidence representation based on the concept of 

coincidence-slice is proposed to address the problem of the complex relationship among 

events which causes the inefficiency in temporal mining algorithms. Base on the coincidence 

representation, we also develop a pattern growth-based algorithm called CTMiner by 

borrowing the concept of PrefixSpan algorithm without candidate generation. According to 

the characteristics of coincidence representation, we also propose three pruning strategies to 

reduce the search space and avoid meaningless processing. Hence, the performance of our 

proposed algorithm CTMiner is improved. To comprehend a coincidence pattern, we discover 

all the relations in a pattern and present the relations by relation list representation. 

Experiments on synthetic datasets and real world datasets of library lending demonstrate the 

efficiency and scalability of our proposed algorithm.  

Many extended researches based on interval-based events can be developed by using 

CTMiner algorithm such as mining partial orders of temporal pattern and closed patterns, 

maximal patterns, incremental mining and classification and so on. The notation of mining 

partial orders of temporal patterns has been introduced in [24] and the interesting approach 

has been recently proposed for closed sequential patterns in [25]. Many real life sequence 

databases grow incrementally. It is undesirable to mine sequential patterns from scratch each 

time when a small set of sequences grow, or when some new sequences are added into the 

database. The incremental mining algorithm has been proposed in [26]. However, these 

methods again assume that the events are instantaneous. The proposed algorithm provides the 
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opportunity to design more efficient algorithms in extend researches. 
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