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摘 要 

此論文的目標是實現一個具可移植性的靜態二進位轉譯系統。 一般來說， 最直

覺且普遍的方式為 : 直接轉譯(Direct Binary Translation)， 這種方式可以

使轉譯後的程式碼得到較佳的執行效能。 然而， 此方法缺乏嵌入式系統所需的

可移植性。 因此， 此論文採用間接轉譯(indirect binary translation)的方

式來增加系統可移植性。 我們先將 ARM 可執行碼轉譯到 LLVM  IR， 目的是為

了能夠利用強大的 LLVM 內建優化器來改進程式執行效能， 再使用 LLVM 後端所

支援的程式碼產生器(Code Generator)編譯出不同目標平台的可執行碼。 論文

內容包含實做上的細節， 轉譯技術上的問題和我們的解決方法， 並且討論了一

些轉譯上的議題並改良轉譯的表示方式來增進程式效能。 在實驗中， 我們建立

了 ARM 到 ARM 的轉譯器來測量效能， 在經過我們改良轉譯的表示方式以及利用

LLVM 強大的優化器之後， 轉譯後的 EEMBC 可執行碼， 只增加了 13%的執行期指

令總數。 
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Abstract 

Our objective is to build a retargetable static binary translation system. A 

straightforward approach is to directly translate source binary into target binary. This 

direct approach can achieve better performance than indirect binary translation. 

However, direct binary translation lacks retargetability. We adopt an alternative 

approach. Our translator first translates source ARM binary into LLVM IR, which is a 

target-independent intermediate representation, in order to take advantage of the 

powerful LLVM compilation- and linker-time optimizations, and generates target 

binaries with LLVM static code generators. We implemented an ARM-to-ARM 

translator as an experimental system. We will present the details of our 

implementation, the technical problems and our solutions, and our special 

improvements for LLVM IR generation. With the powerful LLVM optimizations and 

our improvements for LLVM IR generation, our experiment shows that the runtime 

instruction count increases by only 13% on the EEMBC benchmark. 
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Chapter 1

Introduction

1.1 Dynamic versus Static Binary Transla-

tion Technique

Binary translation, which translates source binary into target binary, is

widely used in various applications, such as binary instrumentation [1], run-

time optimization [2], ISA migration for new hardware architectures [3] [4],

and virtualization environment [5]. Dynamic binary translation has almost

become a standard procedure to migrate the general purpose ISA; for ex-

ample, Aries [4] migrates PA-RISC binaries to the IA-64 architecture, IA-

32EL [6] migrates IA-32 executables to IA-64. A successful binary translation

can reduce the time-to-market requirement for having a large number of ap-

plications available on a new developed ISA. Especially in the embedded

system field, new embedded architecture has been introduced frequently;

as a result, binary translation may become a commonplace in the future.

Dynamic binary translation has some difficulties not completely solved like

real-time deadline issue, memory wasted in the translation cache. These

difficulties may not the serious issues in the general purpose environment,
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but they may be unacceptable in the embedded system environment since

performance and memory footprint are two critial requirements. The ad-

vantage of the static binary translation can avoid the translation overhead

at runtime; therefore, a static binary translation system can perform more

time-consuming optimizations to improve the code quality and the memory

space required for the generated program. Nowadays, more and more em-

bedded applications are generated by compilers rather than hand coding;

thus, static binary translators can handle the code generated by compiler

more easily. In table 1.1, we compare the pro and con of dynamic and static

binary translation.

Type Advantages Disvantages
Dynamic Translation Soundness Low efficiency and wasted translation cache
Static Translation High efficiency Code discover and code location problem

Table 1.1: Comparison Between Dynamic And Static Binary Translation

1.2 Re-Targetability : Direct versus Indirect

Binary Translation

A binary translator could be either direct or indirect. In figure 1.1(a), a direct

translator translates source binary into target binary directly [8], ;so a sepa-

rate translator is needed for each architecture. In contrast, in figure 1.1(b), an

indirect translator first translates source binary into an intermediate repre-

sentation (IR) and then translates IR into target binary. The IR offers extra

opportunities for optimization. Furthermore, if the IR is well accepted, such

as LLVM IR, there could be many existing support modules that we can
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use. In the embedded environment, a system with re-targetability makes

that retargeting costs little extra overhead. In this study, we take the indi-

rect approach. Our experimental system is an ARM-to-ARM static binary

translator, which is comprised of two components: a to-LLVM-IR convertor

and LLVM infrastructure. We use the to-LLVM-IR translator to translate

ARM binary into LLVM IR, leverage existing powerful LLVM optimizations,

and convert LLVM IR to target binary with LLVM static code generator.

Obviously, our translation system can be easily retargeted to other architec-

tures. The only architectural-dependent problem with our system is how to

handle system calls in the to-LLVM-IR translator (which will be discussed

later).
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1.3 LLVM Compiler Infrastructure

Low Level Virtual Machine (LLVM) [10] is a compiler infrastructure devel-

oped by University of Illinois. The primary components of the LLVM infras-

tructure are a GCC-based C and C++ front-end, a link-time optimization

framework with a growing set of global and interprocedural analyses and

transformations, static back-ends for many popular architectures, and JIT

(Just-In-Time) compilers for several architectures. LLVM also incorporates a

low-level object code representation that uses simple RISC-like instructions,

but provides rich, language-independent, type information and dataflow in-

formation about operands.

1.4 ARM Architecture

ARM, also known as Advanced RISC Machine, is a 32-bit reduced instruction

set computer (RISC) developed by ARM Holdings. The ARM architecture is

a low-cost, power-efficient microprocessor for embedded control, computing,

digital signal processing, games, consumer multimedia and portable applica-

tions. This has made them dominant in the mobile and embedded electronics

market, about 98 percent of the more than a billion mobile phones sold each

year use at least one ARM processor. Almost all famous embedded applica-

tions provide the executable compiled for the ARM architecture; as a result,

choosing ARM as our source architecture of binary translation is worth doing.
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1.5 Research Motivation and Objective

Performance, memory footprint, and re-targetability are crucial issues in the

embedded environment. Dynamic binary translation has some difficulties not

completely solved like real-time deadline issue, memory wasted in the trans-

lation cache. Those defects makes dynamic binary translation infeasible in

the embedded environment. Direct binary translation costs lots of effort to

re-target to a new architecture. Hence, our translator adopts static binary

translation which allows us to perform more time-consuming optimizations

to improve quality of the generated code. Indirect translation approach en-

hances re-targetability of the binary translation system. In conclusion, this

thesis aims to build a high-quality and re-targetabe binary translation system

suitable in the embedded environment.

1.6 Thesis Organization

In chapter 2, we describe the key translation issues, including register simu-

lation, memory access simulation, system call handling, and indirect branch

handling, and summarize the instruction modeling overhead from ARM ISA

to LLVM IR. In chapter 3, we disscuss a couple of translation issues, and

present improvement to speed up the performance of target ARM binary. In

chapter 4, we evaluate the performance of our static binary translation on

the EEMBC benchmark. Finally, in chapter 5, we conclude this paper.
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(a) Direct binary translation

(b) Indirect binary translation (Our translation System)

Figure 1.1: Translation Categories
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Chapter 2

LLVM IR Generation

In this section, we describe the key translation issues from ARM binary to

LLVM IR, including register simulation, translation details, memory access

simulation, the technical problems and our solutions. Finally, we summarize

the instruction modeling overhead from from ARM binary to LLVM IR. Our

translator does not handle Thumb instructions and coprocessor instructions

since our translator supports user mode only.

2.1 Register Simulation

In order to maintain program behavior and control flow, our translator has

to simulate ARM general-purpose registers and the status registers.

Figure 2.2 shows 7 ARM processor modes and all registers. ARM has 31

general-purpose 32-bit registers. 16 of these registers are visible to applica-

tion programs. The remaining registers are reserved for exception processing.

Registers r8-r14 are banked, which means that there are multiple copies of

these registers. These banked registers are switched among various processor

modes. Since our translator supports user-mode applications only, we do not

7



require all registers in all processor modes but only the 16 general-purpose

registers in the user mode.

All processor state other than the general-purpose register contents is

held in the status registers. The current operating processor status is in

the Current Program Status Register (CPSR). CPSR holds 4 condition flags

(Negative, Zero, Carry and Overflow) and other information that we do

not require [9]. Figure 2.1 shows the format of CPSR.

Figure 2.1: CPSR Register Format

The target of our translator is LLVM IR [14], which is a virtual instruc-

tion set. LLVM IR has no physical registers. Initially, our translator maps

16 general-purpose registers and CPSR to 17 global variables of type inte-

ger. However, it is profitable to map the four condition flags in CPSR to

four separate global variables. The first reason is that the four condition

flags are used and updated frequently: all ARM instructions can be exe-

cuted conditionally based on the condition flags and all ALU instructions

and comparison instructions may update the condition flags. The second

reason, doing register mapping using direct binary translation usually has to

consider the number of usable registers in target architecture, but our target

LLVM IR is not limited by the number of physical registers; as a result, we

can utilize as many as global variables to gain performance.

Obviously, this simple approach to simulate ARM registers will incur

tremendous overhead since all operands must be loaded from memory before

8



Figure 2.2: 7 ARM Processor Modes And All ARM Registers

instruction execution and be stored afterwards. Fortunately, an LLVM op-

timizer provides the “promote memory to register” optimization [15]. This

promotion can reduce considerable memory accesses.
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1 . ARM:
2 . andsne r1 , r1 , r0 , l s l , #8

3 . LLVM IR :
4 . L 1 :
5 . ; c ond i t i o na l execut ion
6 . %tmp f l ag z 1 = load i32 ∗ @f lag z
7 . %pa s s z 1 = icmp eq i32 %tmp f lag z 1 , 0
8 . br i 1 %pas s z 1 , l a b e l %L 1 NI , l a b e l %L 2
9 . L 1 SI :
10 . ; s h i f t e r operand
11 . %tmp op 1 = load i32 ∗ @r0
12 . %tmp 1 = sh l i 32 %tmp op1 1 , 8
13 . br l a b e l %L 1 NI
14 . L 1 NI :
15 . ; i n s t r u c t i o n body
16 . %tmp op1 2 = load i32 ∗ @r1
17 . %tmp 2 = and i32 %tmp op1 2 , %tmp 1
18 . s t o r e i 32 %tmp 2 , i 32 ∗ @r1
19 . ; updating the cond i t i on f l a g s
20 . ; update N f l a g
21 . %tmp op1 3 = load i32 ∗ @r1
22 . %tmp 3 = l s h r i 32 %tmp op1 3 , 31
23 . s t o r e i 32 %tmp 3 , i 32 ∗ @flag n
24 . ; update C f l a g
25 . %tmp op1 4 = load i32 ∗ @f lag c
26 . s t o r e i 32 %tmp op1 4 , i 32 ∗ @f lag c
27 . ; update Z f l a g
28 . %cmp3 1 = icmp eq i32 %tmp op1 3 , 0
29 . %tmp4 1 = s e l e c t i 1 %cmp3 1 , i 1 1 , i 1 0
30 . %tmp 4 = zext i 1 %tmp4 1 to i32
31 . s t o r e i 32 %tmp 4 , i 32 ∗ @f lag z
32 . br l a b e l %L 2

Figure 2.3: Instruction Modeling : A Complete ARM Instruction

10



2.2 Translation Detail

In this section, we use the example in figure 2.3 to explain the translation

from ARM binary to the corresponding LLVM IR.

2.2.1 Conditional Execution

Almost all ARM instructions can be conditionally executed, which means

that they have their effects on the program execution state only if the con-

dition flags in CPSR satisfy the condition specified in the instruction. Oth-

erwise, the instruction acts as a NOP (no operation). Field <cond> in

figure 2.4 is the condition field of the instruction. There are 16 combinations

of the condition field in an instruction, which are listed in table 2.1.

Figure 2.4: Condition Field in an ARM Instructon
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Opcode Mnemonic Meaning Condition
flag state

0000 EQ Equal Z
0001 NE Not equal !Z
0010 CS/HS Carry set C

/unsigned higher or same
0011 CC/LO Carry clear !C

/unsigned lower
0100 MI Minus/negative N
0101 PL Plus/positive or zero !N
0110 VS Overflow V
0111 VC No overflow !V
1000 HI Unsigned higher C and !Z
1001 LS Unsigned lower or same !C or Z
1010 GE Signed greater than (N == V)

or equal
1011 LT Signed less than (N != V)
1100 GT Signed greater than (Z == 0)

and (N == V)
1101 LE Signed less than or equal (Z == 1)

or (N != V)
1110 AL Always (unconditional) -
1111 (NV) special -

Table 2.1: 16 Combinations Of Condition Field

Our translator translates the conditional execution feature into a checking

barrier before the instruction execution. The checking barrier checks whether

the condition flags in CPSR satisfy the condition specified in the instruction;

if it is satisfied then continue the instruction execution, otherwise branch to

the next instruction. In Figure 2.3, the condition field of the ARM instruction

is NE, which means that the ARM instruction will execute only if the Zero

flag is not set.
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2.2.2 Shifter Operand

Most data-processing instructions take two source operands. One of them

is called a shifter operand, which could be either an immediate value or a

register. If the shifter operand is a register, it can have a shift operation

applied to it. In Figure 2.3, “r0, lsl #8” is a shifter operand. The value of

r0 is logically-shifted-left 8 bits. The resulting value is used as an operand

for the andsne instruction. Table 2.2 shows the five shift types in ARM.

Our translator translates the shifted register operand as additional in-

structions before the instruction body. In this example, the second source

operand r0 will be logically shifted left by 8 before it is used by the AND

instruction.

Shift type Meaning Instruction Percentage in the EEMBC
ASR arithmetic shift right 0.94%
LSL logically shift left 2.83%
LSR logically shift right 2.26%
ROR rotate right 0.15%
RRX rotate right with extension 0.14%

Table 2.2: 5 Shift(Rotation) Types

13



2.2.3 Updating Condition Flags

The condition flags in CPSR are usually modified by the comparison in-

structions (CMN, CMP, TEQ or TST) and some arithmetic, logical, and move

instructions with the S qualifier. Table 2.3 shows the four condition flags

and their meaning after instruction execution.

Our translator generates additional instructions to update the condition

flags after instruction body if the instruction has the S qualifier. In Figure

2.3, the andsne instruction updates N, Z, and C flags.

Condition flag Value and Meaning
N (Negative) Result less than 0 ? 1 : 0
Z (Zero) Result is 0 ? 1 : 0
C (Carry) Operation produced a carry? 1 : 0

Operation produced a borrow? 0 : 1
V (Overflow) Operation has signed overflow ? 1 : 0

Table 2.3: 4 Condition Flags
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2.3 Memory Access Simulation

In this section, we disscuss memory management in target binary. First,

we describe static and dynamic memory allocation. Second, we illustrate an

example of memory access and present an issue. Third, we propose a solution

to improve this issue.

static allocation - our translator keeps the source ARM static section

(.text and .data) in the target binary. The purpose is for accessing general

data in data section and PC-relative data in text section. We place the source

ARM static section at the target address which is the same in the source

binary, this decision makes that no extra address computation is needed.

dynamic allocation - Heap and stack allocation are supported by li-

brary; as a result, we disscuss the issus of linking approach here. Our

source binary is compiled with static linking instead of dynamic linking.

Static linking approach makes library become part of our translated code,

so it avoids the parameter identification problem and makes our translator

more portable in different operating system. Taking an example to explain

the parameter identification problem, for example : when translating ”bl

printf”, we may translate this call instruction into LLVM ”call i32 (i8*, ...)*

@printf(parameter list)”. But, it is difficult to identify the parameter list of

printf from source binary. Stack allocation is handled by a function’s prolog

and epilog, and those code are also part of our translated code.

Example and issue In figure 2.5, we illustrate an example of load word

instruction. This instruction loads a value from stack and the correspond

LLVM IR are easy to be understanded. An intresting issue is if we translate

15



1 . ARM :
2 . l d r r0 , [ sp , #8]

3 . LLVM IR :
4 . %tmp1 = load i32 ∗ @sp
5 . %tmp2 = add i32 %tmp1 , 8
6 . %tmp3 = in t t op t r i 32 %tmp2 to i32 ∗
7 . %tmp4 = load i32 ∗ %tmp3
8 . s t o r e i 32 %tmp4 , i 32 ∗ @r0

Figure 2.5: Instruction Modeling : An ARM load word Instruction

stack-operation instructions like general data access, target stack will not be

used anymore. (ie. SP register is wasted since variable SP will be mapped

to a data register instead of SP register) So, an intresting isssue is whether

we should allocate target stack for other purpose ? We will explain our

improvement in chapter 3.
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2.4 Program Layout

We contrast the runtime layout of the source ARM binary and the target

ARM binary in figure 2.6. The target sections can be divided into two parts:

the sections of source ARM binary and its own sections. Keeping the source

ARM’s text section in target binary is necessary for dynamic translation

in the furture, and it also allows the target binary to pc-relative data in

the source ARM binary. All the source ARM sections are allocated at the

target address which is the same as the address in the source ARM binary.

This decision makes the memory accesses much easier to handle since no

additional address computation is required for memory access. The part of

target section has the text, data, bss section, and stack section. Target data

section contains the additional data used to help memory access simulation,

target text section contains the generated code and the address mapping

table to handle indirect branch, and target stack is allocated to speed up

accessing global variables.

17



(a) Source ARM
binary

(b) Target ARM
binary

Figure 2.6: Runtime Binary Layout

2.5 System Call Handling

As we have known, system call is a mechanism to communicate between

user program and operating system. Each architecture provides different

instruction to handle this kind of exception in their defined ISA, such as

the Software Interrupt instruction (SWI) in ARM, SYSCALL instruction in

MIPS, and INT instruction in x86. Our source architecture ARM provides

the Software Interrupt instruction (SWI) to enter Supervisor mode to request

a particular supervisor function. Furthermore, user program also has to pass

18



a number of parameters to operating system such as system call number that

indicates which vector in exception vector table will be performed. After

operating system finishes its exception service routine, it also returns result

to the user program. However, how parameters passed to the operating

system and how result returned from operating system are defined by the

architecture EABI; for example, ARM architecture passes parameters by

registers r0-r3 and returns result of SWI instruction by register r0.

As we have known, the mapping between variables and registers is de-

cided by register allocation phase; as a result, the EABI standard introduces

a technical restriction in our translator, which is how our translator maps

LLVM variables r0-r3 to target physical registers r0-r3 before SWI instruc-

tion execution and maps target physical register r0 back to LLVM variable

r0 after SWI instruction execution in order to comply with EABI stardard.

Our translator solves this mapping restriction by translating an ARM

SWI instruction into a function call and passing the parameters of system

call as the parameters of function call, so that we can utilize ARM procedure

call standard. In detail, procedure call standard of ARM and MIPS specifies

that physical register r0-r3 are used to hold argument values passed to a

procedure call and register r0 also helds result returned from a procedure

call.

The codes in figure 2.7 are the corresponding LLVM IR against an ARM

SWI instruction, and it does solve the mapping restriction from variables r0-

r3 to physical register r0-r3. However, if the definition of syscall function is

written using LLVM IR, it won’t solve the mapping restriction from physical

register r0 back to variable r0 because the value stored to variable r0 will

19



1 . ARM:
2 . swi 0x00123456

3 . LLVM IR :
4 . %sw i r0 = load i32 ∗ @r0
5 . %sw i r1 = load i32 ∗ @r1
6 . %sw i r2 = load i32 ∗ @r2
7 . %sw i r3 = load i32 ∗ @r3
8 . %sw i r t = c a l l i 32 @sysca l l ( i 32 %swi r0 , i 32 %swi r1 , i 32 %

swi r2 , %sw i r3 )
9 . s t o r e i 32 %sw i r t 1 , i 32 ∗ @r0

Figure 2.7: Instruction Modeling : An ARM System Call Instruction

1 . . t ex t
2 . . g l oba l s y s c a l l
3 . . a l i g n 2
4 . s y s c a l l :
5 . swi 0x00123456
6 . . LBB1 1 :
7 . bx l r
8 . . s i z e s y s c a l l , .− s y s c a l l

Figure 2.8: Definition Of syscall Function (Written in ARM assembly code)
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be the return value of syscall function instead of the return value of ARM

SWI instruction since both standards use the same register r0 as their return

value. Thus, our translator writes the definition of syscall function in target

assembly code to ensure that the value returned from physical r0 is the return

value of ARM SWI instruction instead of the return value of syscall function.
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2.6 Program Control Management

2.6.1 Indirect Branch Handling

Direct branches can be handled easily in our static translator since their

target addresses are known at translation time. Generally speaking, indirect

branches are classified as two categories: the structured and unstructured

indirect branch. Structured indirect branches are like return-based indirect

branches and switch-based indirect branches in the jump table generated by

switch statement. Unstructured indirect branches are the others. Typical

static binary translator handles return-based indirect branches with Return

Address Stack(RAS) [13], switch-based indirect branches by recovering jump

table, and unstructured indirect branches with an address mapping table.

Our translator adopts the similar ideas to handle indirect branches except

Return Address Stack(RAS). In brief, the reason why not to adopt Return

Address Stack is that the standard LLVM IR does not support an array of

label type; hence, it is hard to implement the Return Address Stack.

2.6.2 Address Mapping Table

Our translator generates an ARM-to-LLVM address mapping table as a spe-

cific function to handle return-based indirect branches and other unstruc-

tured indirect branches. The table maps the address of an ARM instruction

to a corresponding LLVM label when a non-switch indirect branch occurs.

In order to minimize the size of the address mapping table, our translator

does not keep entries for all ARM instructions. Instead, our translator al-

locates an entry for the leading instruction of each recognized basic block
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in our imprecise control flow graph. If the target address is not found in

the address mapping table, the executing program will throw an exception

and abort the process. Indeed, those corner cases will be handled by adding

LLVM dynamic components in the future.

In order to speed up the search in the address mapping table, typical

static binary translator designs a hash function to index the address map-

ping table. However, as we have mentioned before, LLVM does not support

an array of label type; as a result, hash function and other search algorithms

are infeasible in our binary translation. The only choose to implement the

address mapping table is switch statement in LLVM IR. As we have known,

if case values in the switch statement are in a narrow range, jump table will

be generated, otherwise a sequence of if-else statements are generated. Un-

fortunately, our address mapping table is belong to latter switch statement,

so the program must do linear search in the address mapping table.
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2.7 Summary of Instruction Modeling Over-

head

In this section, we list some instruction medeling which cost a sequence of

LLVM IR.

1. Register Simulation

As we have mentioned in subsection ”register emulation”, our translator

uses the global variables to emulate ARM physical registers. Therefore,

the generated program must load the source operands from memory

before instruction execution, and store the destination operand back

to memory. We can imagine this does create a huge burden.

2. Redundant Condition Flag Update

It is possible for our translator to generate code that updates only the

flags that will be used later. In Figure 2.3, assume that only the Z

flag of the andsne instruction will be used later. It is not necessary

to generate code that updates the N and C flags. Our translator will

generate code that updates all three flags. We will rely on an existing

opimization pass ”global value numbering” in LLVM that will remove

the unnecessary code.

3. Updating Condition Flags and Shifter Operand

There are some special operations in ARM ISA such as ROR(32 bits

rotation), RRX(33 bits rotation) in shift type, and carryFrom, bor-

rowFrom, overflowFrom [9] in order to update condition flags. Our

translator must emulate single operation of those with several LLVM
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IR; however, the frequency of those instructions on the EEMBC bench-

mark is pretty rare; thus, those instructions don’t impact performance

of the whole binary translation system.

4. Accessing Multiple Registers

ARM architecture is capable of loading multiple and storing multiple

registers. Those instructions perform a block transfer of any number of

the general-purpose registers to or from memory. LLVM IR does not

provide the similar feature for our translator to do semantic mapping;

as a result, our translator translates a Load Multiple(LDM) and Store

Multiple(STM) instruction into a sequence of Load(LDR) and Store

Register(STR) instructions.
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Chapter 3

Translation Issues And
Improvement

3.1 Target Stack Allocation

The defect of our proposed solution to simulate memory access is that SP(Stack

Pointer) register won’t be used anymore because we didn’t use the target

stack to simulate the source stack. Registers are the valuable resource of

CPU; accordingly, our translator allocates target stack to access all simu-

lated global register and data (16 ARM registers, 4 condition flags. The

reason is that ARM architecture requires two load instructions to accessing

a global variable, one is for loading the address of the global variable, and

the other is for loading the value. Therefore, we allocate the target stack

in our translated binary and copy all global variables onto the target stack

in order to accelerate the access of all global variables. Accessing a local

variable from stack requires merely one load instruction with the help of SP

register. This improvement shows great profit in the generated program since

accessing the global variable is necessary before and after translating each

ARM instructions.
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3.2 Address Mapping Table Improvement

Performing a linear search in the address mapping table would cause a bottle-

neck in our generated programs; hence, our translator improves the design of

the address mapping table. First, our translator divides the address mapping

table into a lot of smaller address mapping tables according to the quotient

of the ARM PC divided by the value of a predefined divisor. Second, a non-

switch indirect branch would jump to a runtime dispatcher. This runtime

dispatcher would perform the same operation to obtain a result as the way to

divide the address mapping table. Then, this result would be used to index a

jump table to decide which address mapping table should be searched. The

key to speed up the linear search in each address mapping table is to decide

the value of the predefined mask, so that each smaller address mapping table

contains only a couple of entries. With this improvement, the time spent on

the address mapping table in our translator is approaching the time spent on

the address mapping table using hash algorithm in other binary translator.

Figure 3.1 contrasts the structure of original address mapping table against

our improved address mapping table.
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(a) Struction of Original Ad-
dress Mapping Table (Linear
Search)

(b) Struction of Improved Address Mapping
Table (Jump Table plus Linear Search)

Figure 3.1: Structure Of Address Mapping Table

3.3 Switch Table Recovery

As we have known, the jump table will be used to implement the switch

statement if case values are in a narrow range. The indirect branch in the

jump table used to index the target address is named as switch-based indirect

branch. Although this kind of indirect branches can be handled by our

address mapping table, our translator still recovers the jump tables in the

ARM binary to speed up the generated programs [7].
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Chapter 4

Experiments And Results

In this chapter, we list our simulation environment, the benchmark, and

the result of performance evaluation. Due to the toolchain constraints, we

choose LLVM ARM backend as our target architecture to faithfully reflect

the performance of our translation system.

4.1 Experimental Environment

Our experiment translates the source ARM binary into the target ARM bi-

nary. The benchmark we use in the experiment is the EEMBC [12] suite ver-

sion 1.1. EEMBC benchmark standardizes on real-world, embedded bench-

mark software to help designers select the right embedded processors for

their systems. The EEMBC benchmark is consist of six suites: 8-16 bit,

automotive, consumer, networking, office, and telecom. We compile 55 test

programs in the EEMBC benchmark as lite versions in order to speed up

our simulation. The cross compiler for ARM applications is GCC 3.4.3 with

static linking, and we use a modified GDB 6.8 [11] to verify ARM binaries

and target ARM binary, and to help data collection. The version of LLVM
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we used is version 2.5.

4.2 Experimental Results

In this section, we evaluate the performance of our translation system. Fig-

ure 4.1 shows the performance of the baseline translation and our improve-

ment. Figure 4.2 shows the performance after each LLVM optimization we

leveraged.

4.2.1 Runtime Instruction Ratio : After Our Improve-
ment

1. Baseline translation

Our translation system can correctly translate all programs in the

EEMBC benchmark, and we show the performance gain of each im-

provement we mentioned in chapter 3 in figure 4.1; for example, the

performance of the baseline translation, which is labeled as ”baseline

translation” is 14.64 on the EEMBC benchmark. The number 14.64

means the number of the runtime instructions of the source ARM bi-

nary to the number of runtime instructions of the target ARM binary

is 14.64. In other words, for each ARM instruction, on average, the

baseline translation takes 14.64 target ARM instructions for simula-

tion. The figure of 14.64 shows the tremendous instruction modeling

overhead from ARM binary to LLVM IR.

2. Allocate target stack

This improvement utilizes the unused target stack to accelerate the
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access all simulated ARM registers since accessing a local variable from

stack requires merely one load instruction with the help of SP register.

After the improvement,the performance ratio is reduced to 12.17 on

the EEMBC benchmark. This improvement shows great performance

gain for our translation system.

3. Memory Approach

We present two approaches to simulate memory access. First is using

LLVM getelementptr. Second is using LLVM inttoptr. Both approaches

can correctly simulate memory access, but later approach can achieve

better performance. After the improvement, the performance ratio is

reduced to 10.48 on the EEMBC benchmark.

4. Improve Address mapping table

In baseline translation, since LLVM doesn’t support an array of label

type, performing a linear search in the address mapping table is re-

quired. Our translator re-designs the expression of address mapping

table by adding a runtime dispatcher. After the improvement, the per-

formance ratio is reduced to 5.7623 on the EEMBC benchmark.

5. Recover Switch Table

In baseline translation, switch-based indirect branches are handled by

the address mapping table. Our improvement recovers the jump table

in the source ARM binary so that switch-based indirect branches are no

longer handled by the address mapping table. After the improvement,

the performance ratio reduces 0.0008 fold to reach 5.7615 fold on the
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EEMBC benchmark. The EEMBC benchmark rarely uses the switch

statement; this is why the improvement is nearly zero after recovering

the switch table.

Figure 4.1: Runtime Instruction Ratio : After Our Improvement

4.2.2 Runtime Instruction Ratio : After LLVM Opti-
mizations

1. LLVM Optimization - Promote Memory To Register One of the mo-

tivations to adopt LLVM compiler infrastructure is its powerful opti-

mizations. we show the performance gain of each LLVM optimization

figure 4.2. In the section ”reigster simulation”’, we map 16 ARM regis-

ters and 4 condition flags to LLVM global variables. Thus, we load the
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value of the source registers from memory before instruction body and

store the value back to the destination register afterward. This simple

approach makes implementation more easier, but it introduces serious

redundent memory access. In this section, we utilize LLVM ”Promote

Memory To Register” optimization to eliminate redundent memory ac-

cess. After this LLVM optimization, the performance ratio is reduced

to 3.29 on the EEMBC benchmark. (Note: Our experiment merely

uses 43 programs out of the EEMBC benchmark to perform LLVM

optimizations; the reason is that some aggressive LLVM optimizations

will produce incorrect output.)

2. LLVM Optimization - Instruction Combining This optimization com-

bines instructions to form fewer, simple instructions. For instance,

”add X, X” or ”mul X, 2” are transformed into ”shl X, 1”. ”%Y = add

i32 %X, 1” and ”%Y = add i32 %X, 1” are transformed into ”%Z =

add i32 %X, 2” After this LLVM optimization, the performance ratio

reduces 1 fold to reach 2.29 fold on the EEMBC benchmark.

3. LLVM optimization - Global Value Numbering In the section ”Trans-

lation Detail”, we illustrate an example of redundent condition flag

update. we leave this opportunity to LLVM ”Global Value Number-

ing” optimization. This optimization eliminates fully and partially re-

dundant instructions. After this LLVM optimization, the performance

ratio reduces 0.78 fold to reach 1.51 fold on EEMBC benchmark.

4. other LLVM optimizations

We also enable some LLVM link-time optimizations to optimize the
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generated code. Finally, the runtime instruction ratio can reach 1.13

fold on the EEMBC benchmark.

Figure 4.2: Runtime Instruction Ratio : After LLVM Optimizations

4.2.3 Binary Size Ratio

In figure 4.3, it shows the ratio of the static code size of the target ARM

binary to the source ARM binary; for example, Label Text means the static

size of .text section in target ARM binary is 2.45 times the ratio of the static

size of .text section in source ARM binary, label Data means the static size

of .data section in target ARM binary is 10.23 times the ratio of the static

size of .data section in the source ARM binary and label Total means the
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static size of target ARM binary is 2.62 times the ratio of the static size of

the source ARM binary. The text section in the target ARM binary contains

the address mapping table to handle indirect branch thus the code size is

a little bigger than the text section of the source ARM binary. The target

ARM binary’s data section contains all source ARM binary’s sections, so the

code size ratio is of 10.23 fold.

Figure 4.3: Binary Size Ratio
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Chapter 5

Conclusion

5.1 Limitation Of Our Translator

In this section, we list some limitation of our re-targetable static binary tranl-

sator.

1. Source binary should be compiled with static linking.

2. Our translator supports user mode only. Co-processor mode and thumb

mode are not supported.

3. Applications should be performed on the same operating system envrion-

ment. (ie. library should be the same version.)

4. Self-Referencing and Self-modifying code are not supported because the

code actually executing is translated code, not the original source code. Our

translated code did’t simulate the same behavior of these code.

5. Source binary should be compiled with static linking to avoid parameter

identification problem.

6. Our translator aims to translate the compiler-based applications. Hand-

coded applications may incur code location problem which cannot be cor-

rectly handled by our address mapping table.
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5.2 Conclusion

Dynamic binary translation is usually used to migrate applications to new

architectures; however, dynamic binary translation has some difficulties not

completely solved like real-time deadline issue, memory wasted in the trans-

lation cache. Hence, we develop a static binary translation system so that

we can perform more time-consuming optimizations to improve the qual-

ity for the generated code. Direct binary translation lacks re-targetability,

so developming a re-targetable static binary translation is promising on the

embedded system environment.

The ARM architecture has some features that must be handled carefully

in binary translation; for instance, the conditional execution instructions, the

condition flag updates. We also pointed out the key challenges to perform

the indirect binary translation from a lower level ARM ISA to a higher level

LLVM IR. Our translator not only overcomes the challenges but also presents

some issues that can affect the performance of the generated program. Our

baseline ARM-to-ARM translation without the special improvements and

LLVM optimizations achieves runtime instruction ratio of 14.64 on EEMBC

benchmark, after our improvements for LLVM IR generation, the runtime

instruction ratio is reduced from 14.64 fold to 5.76 fold. Furthermore, after

we leverage the powerful LLVM optimizations, the runtime instruction ratio

is reduced from 5.76 fold to 1.13 fold.

Our re-targetable static translation system shows great performance on

the EEMBC benchmark thus we are confident that developing a re-targetable

static binary translation system is promising.
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