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Using LLVM Compiler Infrastructure
To Perform Re-targetable Static
Binary Translation For ARM-based Applications

Student: Pei-Shiang Hung Advisors: Dr. Wuu Yang

Institute of Computer Science and Engineering
National Chiao Tung University

Abstract

Our objective is to build a retargetable static binary translation system. A
straightforward approach is to directly translate source binary into target binary. This
direct approach can achieve better performance than indirect binary translation.
However, direct binary translation lacks retargetability. We adopt an alternative
approach. Our translator first translates source ARM binary into LLVM IR, which is a
target-independent intermediate representation, in order to take advantage of the
powerful LLVM compilation- and linker-time optimizations, and generates target
binaries with LLVM static code generators. We implemented an ARM-to-ARM
translator as an experimental system. We will present the details of our
implementation, the technical problems and our solutions, and our special
improvements for LLVM IR generation. With the powerful LLVVM optimizations and
our improvements for LLVM IR generation, our experiment shows that the runtime

instruction count increases by only 13% on the EEMBC benchmark.
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Chapter 1

Introduction

1.1 Dynamic versus Static Binary Transla-
tion Technique

Binary translation, which translates source binary into target binary, is
widely used in various applications, such as binary instrumentation [1], run-
time optimization [2], ISA migration for new hardware architectures [3] [4],
and virtualization environment [5]. Dynamic binary translation has almost
become a standard procedure to migrate the general purpose ISA; for ex-
ample, Aries [4] migrates PA-RISC binaries to the IA-64 architecture, TA-
32EL [6] migrates IA-32 executables to IA-64. A successful binary translation
can reduce the time-to-market requirement for having a large number of ap-
plications available on a new developed ISA. Especially in the embedded
system field, new embedded architecture has been introduced frequently;
as a result, binary translation may become a commonplace in the future.
Dynamic binary translation has some difficulties not completely solved like
real-time deadline issue, memory wasted in the translation cache. These

difficulties may not the serious issues in the general purpose environment,



but they may be unacceptable in the embedded system environment since
performance and memory footprint are two critial requirements. The ad-
vantage of the static binary translation can avoid the translation overhead
at runtime; therefore, a static binary translation system can perform more
time-consuming optimizations to improve the code quality and the memory
space required for the generated program. Nowadays, more and more em-
bedded applications are generated by compilers rather than hand coding;
thus, static binary translators can handle the code generated by compiler
more easily. In table 1.1, we compare the pro and con of dynamic and static

binary translation.

Type Advantages | Disvantages
Dynamic Translation | Soundness Low efficiency and wasted translation cache
Static Translation High efficiency | Code discover and code location problem

Table 1.1: Comparison Between Dynamic And Static Binary Translation

1.2 Re-Targetability : Direct versus Indirect
Binary Translation

A binary translator could be either direct or indirect. In figure 1.1(a), a direct
translator translates source binary into target binary directly [8], ;so a sepa-
rate translator is needed for each architecture. In contrast, in figure 1.1(b), an
indirect translator first translates source binary into an intermediate repre-
sentation (IR) and then translates IR into target binary. The IR offers extra
opportunities for optimization. Furthermore, if the IR is well accepted, such

as LLVM IR, there could be many existing support modules that we can



use. In the embedded environment, a system with re-targetability makes
that retargeting costs little extra overhead. In this study, we take the indi-
rect approach. Our experimental system is an ARM-to-ARM static binary
translator, which is comprised of two components: a to-LLVM-IR convertor
and LLVM infrastructure. We use the to-LLVM-IR translator to translate
ARM binary into LLVM IR, leverage existing powerful LLVM optimizations,
and convert LLVM IR to target binary with LLVM static code generator.
Obviously, our translation system can be easily retargeted to other architec-
tures. The only architectural-dependent problem with our system is how to
handle system calls in the to-LLVM-IR translator (which will be discussed

later).



1.3 LLVM Compiler Infrastructure

Low Level Virtual Machine (LLVM) [10] is a compiler infrastructure devel-
oped by University of Illinois. The primary components of the LLVM infras-
tructure are a GCC-based C and C++ front-end, a link-time optimization
framework with a growing set of global and interprocedural analyses and
transformations, static back-ends for many popular architectures, and JIT
(Just-In-Time) compilers for several architectures. LLVM also incorporates a
low-level object code representation that uses simple RISC-like instructions,
but provides rich, language-independent, type information and dataflow in-

formation about operands.

1.4 ARM Architecture

ARM, also known as Advanced RISC Machine, is a 32-bit reduced instruction
set computer (RISC) developed by ARM Holdings. The ARM architecture is
a low-cost, power-efficient microprocessor for embedded control, computing,
digital signal processing, games, consumer multimedia and portable applica-
tions. This has made them dominant in the mobile and embedded electronics
market, about 98 percent of the more than a billion mobile phones sold each
year use at least one ARM processor. Almost all famous embedded applica-
tions provide the executable compiled for the ARM architecture; as a result,

choosing ARM as our source architecture of binary translation is worth doing.



1.5 Research Motivation and Objective

Performance, memory footprint, and re-targetability are crucial issues in the
embedded environment. Dynamic binary translation has some difficulties not
completely solved like real-time deadline issue, memory wasted in the trans-
lation cache. Those defects makes dynamic binary translation infeasible in
the embedded environment. Direct binary translation costs lots of effort to
re-target to a new architecture. Hence, our translator adopts static binary
translation which allows us to perform more time-consuming optimizations
to improve quality of the generated code. Indirect translation approach en-
hances re-targetability of the binary translation system. In conclusion, this
thesis aims to build a high-quality and re-targetabe binary translation system

suitable in the embedded environment.

1.6 Thesis Organization

In chapter 2, we describe the key translation issues, including register simu-
lation, memory access simulation, system call handling, and indirect branch
handling, and summarize the instruction modeling overhead from ARM ISA
to LLVM IR. In chapter 3, we disscuss a couple of translation issues, and
present improvement to speed up the performance of target ARM binary. In
chapter 4, we evaluate the performance of our static binary translation on

the EEMBC benchmark. Finally, in chapter 5, we conclude this paper.
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Chapter 2
LLVM IR Generation

In this section, we describe the key translation issues from ARM binary to
LLVM IR, including register simulation, translation details, memory access
simulation, the technical problems and our solutions. Finally, we summarize
the instruction modeling overhead from from ARM binary to LLVM IR. Our
translator does not handle Thumb instructions and coprocessor instructions

since our translator supports user mode only.

2.1 Register Simulation

In order to maintain program behavior and control flow, our translator has
to simulate ARM general-purpose registers and the status registers.

Figure 2.2 shows 7 ARM processor modes and all registers. ARM has 31
general-purpose 32-bit registers. 16 of these registers are visible to applica-
tion programs. The remaining registers are reserved for exception processing.
Registers r8-r14 are banked, which means that there are multiple copies of
these registers. These banked registers are switched among various processor

modes. Since our translator supports user-mode applications only, we do not



require all registers in all processor modes but only the 16 general-purpose
registers in the user mode.

All processor state other than the general-purpose register contents is
held in the status registers. The current operating processor status is in
the Current Program Status Register (CPSR). CPSR holds 4 condition flags
(Negative, Zero, Carry and Overflow) and other information that we do

not require [9]. Figure 2.1 shows the format of CPSR.

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

|uund ‘()OIOOO()S

Figure 2.1: CPSR Register Format

The target of our translator is LLVM IR [14], which is a virtual instruc-
tion set. LLVM IR has no physical registers. Initially, our translator maps
16 general-purpose registers and CPSR to 17 global variables of type inte-
ger. However, it is profitable to map the four condition flags in CPSR to
four separate global variables. The first reason is that the four condition
flags are used and updated frequently: all ARM instructions can be exe-
cuted conditionally based on the condition flags and all ALU instructions
and comparison instructions may update the condition flags. The second
reason, doing register mapping using direct binary translation usually has to
consider the number of usable registers in target architecture, but our target
LLVM IR is not limited by the number of physical registers; as a result, we
can utilize as many as global variables to gain performance.

Obviously, this simple approach to simulate ARM registers will incur

tremendous overhead since all operands must be loaded from memory before



Modes
Privileged modes:
Exception modes-

User System Supervisor Abort Undefined Interrupt | Fast interrupt
RO RO RO RO RO RO RO
At Al Rt At At Al At
A2 R2 R2 R2 A2 R2 A2
A3 Ra R3 R3 R3 Ra Ao
A4 R4 Ré Ré R4 R4 Ré
RS RS Rs Rs Rs RS RS
A6 R6 R6 Ré Re R6 A6
R7 R7 R7 R7 A7 R7 R7
A8 Re R8 Re Re Re P, Fefia
RY R9 RY RY R9 R9 \ R9_fig
A10 R10 R10 Ri0 R10 R10 \\ R10_fiq
A1l R11 R11 R11 A1 R11 by R11_fig
A2 R12 Ri2 R12 A12 R12 \ R12_fiq
A1 R Riase [N Rfdabt . R13_und S A1 P, Ri3fig
R14 R14 F\ R14_sve \ R14_abt . R14_und N R14_ig \\ R14_fig
PC PC [ PC PC PC PC pC

| CPSR CPSR CPSR CPSR CPSR CPSR CPSR
b SPSRsve [Py SPSRabt [ SPSRund SPSRUg SPSR_fig

indicates that the normal register used by User or System mode has
been replaced by an alternative register specific to the exception mode

instruction execution and be stored afterwards. Fortunately, an LLVM op-

timizer provides the “promote memory to register” optimization [15]. This

promotion can reduce considerable memory accesses.

Figure 2.2: 7 ARM Processor Modes And All ARM Registers
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ARM:
andsne rl, rl, r0, 1sl, #8

LLVM IR:

L_1:

; conditional execution

%tmp_flag_z_1 = load i32x Qflag_z
%pass_z_1 = icmp eq 132 %tmp_flag.z_1, 0
br il %pass_z_1, label %L_1_NI, label %L_2
L_1_SI:

; shifter operand

. %tmp_op_-1 = load i32x Qr0
. %tmp_1 = shl 132 %tmp_opl_1, 8

br label %L_1_NI
L_1_NI:
; instruction body

. %tmp_opl_2 = load i32x* @rl
. %tmp_2 = and 132 %tmp-opl-2, %tmp-_1

store 132 %tmp_2, 132x Qrl
; updating the condition flags
; update N flag

. %tmp_opl_.3 = load i32% @rl
. %tmp-3 = lshr 132 %tmp_opl_-3, 31

store 132 %tmp.3, i32x @flag.n
; update C flag

. %tmp_opl_4 = load i132x Qflag_c

store 132 %tmp_opl_4, i32x @Qflag_c
; update Z flag

. %cmp3_1 = icmp eq 132 %tmp_opl-3, 0
. %tmp4_.1 = select il %cmp3.1, il 1, il 0
. %tmp_4 = zext il %tmp4_1 to 132

store 132 %tmp_4, i32x Qflag_z
br label %L_2

Figure 2.3: Instruction Modeling : A Complete ARM Instruction
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2.2 Translation Detail

In this section, we use the example in figure 2.3 to explain the translation

from ARM binary to the corresponding LLVM IR.

2.2.1 Conditional Execution

Almost all ARM instructions can be conditionally executed, which means
that they have their effects on the program execution state only if the con-
dition flags in CPSR satisfy the condition specified in the instruction. Oth-
erwise, the instruction acts as a NOP (no operation). Field <cond> in
figure 2.4 is the condition field of the instruction. There are 16 combinations

of the condition field in an instruction, which are listed in table 2.1.

AND

31 28 27 26 25 24 23 22 21 20 19 16 15 12 11 0

cond 00 I|00O0O0|S Rn Rd shifter_operand

Figure 2.4: Condition Field in an ARM Instructon
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Opcode | Mnemonic | Meaning Condition
flag state
0000 EQ Equal Z
0001 NE Not equal 'Z
0010 CS/HS Carry set C
/unsigned higher or same
0011 CC/LO Carry clear IC
/unsigned lower
0100 MI Minus/negative N
0101 PL Plus/positive or zero IN
0110 VS Overflow \Y%
0111 VC No overflow 'V
1000 HI Unsigned higher C and !Z
1001 LS Unsigned lower or same IC or Z
1010 GE Signed greater than (N==V)
or equal
1011 LT Signed less than (N 1=V)
1100 GT Signed greater than (Z ==0)
and (N == V)
1101 LE Signed less than or equal | (Z == 1)
or (N !1=V)
1110 AL Always (unconditional) -
1111 (NV) special -

Our translator translates the conditional execution feature into a checking
barrier before the instruction execution. The checking barrier checks whether
the condition flags in CPSR satisfy the condition specified in the instruction;
if it is satisfied then continue the instruction execution, otherwise branch to
the next instruction. In Figure 2.3, the condition field of the ARM instruction

is NE, which means that the ARM instruction will execute only if the Zero

Table 2.1: 16 Combinations Of Condition Field

flag is not set.

12




2.2.2 Shifter Operand

Most data-processing instructions take two source operands. One of them

is called a shifter operand, which could be either an immediate value or a

register. If the shifter operand is a register, it can have a shift operation

applied to it. In Figure 2.3, “r0, 1sl #8” is a shifter operand. The value of

r0 is logically-shifted-left 8 bits. The resulting value is used as an operand

for the andsne instruction. Table 2.2 shows the five shift types in ARM.

Our translator translates the shifted register operand as additional in-

structions before the instruction body. In this example, the second source

operand r0 will be logically shifted left by 8 before it is used by the AND

instruction.
Shift type | Meaning Instruction Percentage in the EEMBC
ASR arithmetic shift right 0.94%
LSL logically shift left 2.83%
LSR logically shift right 2.26%
ROR rotate right 0.15%
RRX rotate right with extension | 0.14%

Table 2.2: 5 Shift(Rotation) Types

13




2.2.3 Updating Condition Flags

The condition flags in CPSR are usually modified by the comparison in-
structions (CMN, CMP, TEQ or TST) and some arithmetic, logical, and move
instructions with the S qualifier. Table 2.3 shows the four condition flags
and their meaning after instruction execution.

Our translator generates additional instructions to update the condition
flags after instruction body if the instruction has the S qualifier. In Figure

2.3, the andsne instruction updates N, Z, and C flags.

Condition flag | Value and Meaning

N (Negative) Result less than 0 7 1 : 0

Z (Zero) Result is 0 ? 1: 0

C (Carry) Operation produced a carry? 1 : 0
Operation produced a borrow? 0 : 1

V (Overflow) Operation has signed overflow 7 1: 0

Table 2.3: 4 Condition Flags

14



2.3 Memory Access Simulation

In this section, we disscuss memory management in target binary. First,
we describe static and dynamic memory allocation. Second, we illustrate an
example of memory access and present an issue. Third, we propose a solution
to improve this issue.

static allocation - our translator keeps the source ARM static section
(.text and .data) in the target binary. The purpose is for accessing general
data in data section and PC-relative data in text section. We place the source
ARM static section at the target address which is the same in the source
binary, this decision makes that no extra address computation is needed.

dynamic allocation - Heap and stack allocation are supported by li-
brary; as a result, we disscuss the issus of linking approach here. Our
source binary is compiled with static linking instead of dynamic linking.
Static linking approach makes library become part of our translated code,
so it avoids the parameter identification problem and makes our translator
more portable in different operating system. Taking an example to explain
the parameter identification problem, for example : when translating ”bl
printf”, we may translate this call instruction into LLVM "call 132 (i8%*, ...)*
@printf(parameter list)”. But, it is difficult to identify the parameter list of
printf from source binary. Stack allocation is handled by a function’s prolog
and epilog, and those code are also part of our translated code.

Example and issue In figure 2.5, we illustrate an example of load word
instruction. This instruction loads a value from stack and the correspond

LLVM IR are easy to be understanded. An intresting issue is if we translate

15



1. ARM :

2. ldr r0, [sp, #S8§]

3. LLVM IR:

4. %tmpl = load i32% @sp

5. %tmp2 = add i32 %tmpl, 8

6. %tmp3 = inttoptr 132 %tmp2 to i32x
7. %tmp4 = load i32x %tmp3

8. store 132 %tmpd, i32x Qr0

Figure 2.5: Instruction Modeling : An ARM load word Instruction

stack-operation instructions like general data access, target stack will not be
used anymore. (ie. SP register is wasted since variable SP will be mapped
to a data register instead of SP register) So, an intresting isssue is whether
we should allocate target stack for other purpose 7 We will explain our

improvement in chapter 3.

16




2.4 Program Layout

We contrast the runtime layout of the source ARM binary and the target
ARM binary in figure 2.6. The target sections can be divided into two parts:
the sections of source ARM binary and its own sections. Keeping the source
ARM’s text section in target binary is necessary for dynamic translation
in the furture, and it also allows the target binary to pc-relative data in
the source ARM binary. All the source ARM sections are allocated at the
target address which is the same as the address in the source ARM binary.
This decision makes the memory accesses much easier to handle since no
additional address computation is required for memory access. The part of
target section has the text, data, bss section, and stack section. Target data
section contains the additional data used to help memory access simulation,
target text section contains the generated code and the address mapping
table to handle indirect branch, and target stack is allocated to speed up

accessing global variables.

17
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Figure 2.6: Runtime Binary Layout
2.5 System Call Handling

As we have known, system call is a mechanism to communicate between
user program and operating system. Each architecture provides different
instruction to handle this kind of exception in their defined ISA, such as
the Software Interrupt instruction (SWI) in ARM, SYSCALL instruction in
MIPS, and INT instruction in x86. Our source architecture ARM provides
the Software Interrupt instruction (SWI) to enter Supervisor mode to request

a particular supervisor function. Furthermore, user program also has to pass

18



a number of parameters to operating system such as system call number that
indicates which vector in exception vector table will be performed. After
operating system finishes its exception service routine, it also returns result
to the user program. However, how parameters passed to the operating
system and how result returned from operating system are defined by the
architecture EABI; for example, ARM architecture passes parameters by
registers r0-r3 and returns result of SWI instruction by register r0.

As we have known, the mapping between variables and registers is de-
cided by register allocation phase; as a result, the EABI standard introduces
a technical restriction in our translator, which is how our translator maps
LLVM variables r0-r3 to target physical registers r0-r3 before SWI instruc-
tion execution and maps target physical register r0 back to LLVM variable
r0 after SWI instruction execution in order to comply with EABI stardard.

Our translator solves this mapping restriction by translating an ARM
SWI instruction into a function call and passing the parameters of system
call as the parameters of function call, so that we can utilize ARM procedure
call standard. In detail, procedure call standard of ARM and MIPS specifies
that physical register r0-r3 are used to hold argument values passed to a
procedure call and register r0 also helds result returned from a procedure
call.

The codes in figure 2.7 are the corresponding LLVM IR against an ARM
SWI instruction, and it does solve the mapping restriction from variables r0-
r3 to physical register r0-r3. However, if the definition of syscall function is
written using LLVM IR, it won’t solve the mapping restriction from physical

register r0 back to variable r0 because the value stored to variable r0 will

19



1. ARM:

2. swi 0x00123456

3. LLVM IR:

4. %swi_r0 = load i32% @r0

5. %swi_rl = load i32x* @rl

6. %swi-r2 = load i32x @r2

7. %swi_r3 = load i32x @r3

8. %swi_tt = call 132 @syscall (132 %swi_r0, 132 %swi_rl, i32 %

swi_r2, %swi_r3)
9. store 132 %swi_rt_1, i32x Qr0

Figure 2.7: Instruction Modeling : An ARM System Call Instruction

.text
.global syscall
.align 2
syscall:
swi 0x00123456
.LBB1_.1:
bx Ir
.size syscall , .—syscall

0O Ui Wi+

Figure 2.8: Definition Of syscall Function (Written in ARM assembly code)
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be the return value of syscall function instead of the return value of ARM
SWI instruction since both standards use the same register r0 as their return
value. Thus, our translator writes the definition of syscall function in target
assembly code to ensure that the value returned from physical r0 is the return

value of ARM SWI instruction instead of the return value of syscall function.
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2.6 Program Control Management

2.6.1 Indirect Branch Handling

Direct branches can be handled easily in our static translator since their
target addresses are known at translation time. Generally speaking, indirect
branches are classified as two categories: the structured and unstructured
indirect branch. Structured indirect branches are like return-based indirect
branches and switch-based indirect branches in the jump table generated by
switch statement. Unstructured indirect branches are the others. Typical
static binary translator handles return-based indirect branches with Return
Address Stack(RAS) [13], switch-based indirect branches by recovering jump
table, and unstructured indirect branches with an address mapping table.
Our translator adopts the similar ideas to handle indirect branches except
Return Address Stack(RAS). In brief, the reason why not to adopt Return
Address Stack is that the standard LLVM IR does not support an array of

label type; hence, it is hard to implement the Return Address Stack.

2.6.2 Address Mapping Table

Our translator generates an ARM-to-LLVM address mapping table as a spe-
cific function to handle return-based indirect branches and other unstruc-
tured indirect branches. The table maps the address of an ARM instruction
to a corresponding LLVM label when a non-switch indirect branch occurs.
In order to minimize the size of the address mapping table, our translator
does not keep entries for all ARM instructions. Instead, our translator al-

locates an entry for the leading instruction of each recognized basic block
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in our imprecise control flow graph. If the target address is not found in
the address mapping table, the executing program will throw an exception
and abort the process. Indeed, those corner cases will be handled by adding
LLVM dynamic components in the future.

In order to speed up the search in the address mapping table, typical
static binary translator designs a hash function to index the address map-
ping table. However, as we have mentioned before, LLVM does not support
an array of label type; as a result, hash function and other search algorithms
are infeasible in our binary translation. The only choose to implement the
address mapping table is switch statement in LLVM IR. As we have known,
if case values in the switch statement are in a narrow range, jump table will
be generated, otherwise a sequence of if-else statements are generated. Un-
fortunately, our address mapping table is belong to latter switch statement,

so the program must do linear search in the address mapping table.
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2.7 Summary of Instruction Modeling Over-
head

In this section, we list some instruction medeling which cost a sequence of

LLVM IR.

1. Register Simulation

As we have mentioned in subsection ”register emulation”, our translator
uses the global variables to emulate ARM physical registers. Therefore,
the generated program must load the source operands from memory
before instruction execution, and store the destination operand back

to memory. We can imagine this does create a huge burden.

2. Redundant Condition Flag Update

It is possible for our translator to generate code that updates only the
flags that will be used later. In Figure 2.3, assume that only the Z
flag of the andsne instruction will be used later. It is not necessary
to generate code that updates the N and C flags. Our translator will
generate code that updates all three flags. We will rely on an existing
opimization pass ”global value numbering” in LLVM that will remove

the unnecessary code.

3. Updating Condition Flags and Shifter Operand

There are some special operations in ARM ISA such as ROR(32 bits
rotation), RRX(33 bits rotation) in shift type, and carryFrom, bor-
rowFrom, overflowFrom [9] in order to update condition flags. Our

translator must emulate single operation of those with several LLVM
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IR; however, the frequency of those instructions on the EEMBC bench-
mark is pretty rare; thus, those instructions don’t impact performance

of the whole binary translation system.

. Accessing Multiple Registers

ARM architecture is capable of loading multiple and storing multiple
registers. Those instructions perform a block transfer of any number of
the general-purpose registers to or from memory. LLVM IR does not
provide the similar feature for our translator to do semantic mapping;
as a result, our translator translates a Load Multiple(LDM) and Store
Multiple(STM) instruction into a sequence of Load(LDR) and Store

Register(STR) instructions.
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Chapter 3

Translation Issues And
Improvement

3.1 Target Stack Allocation

The defect of our proposed solution to simulate memory access is that SP(Stack
Pointer) register won’t be used anymore because we didn’t use the target
stack to simulate the source stack. Registers are the valuable resource of
CPU; accordingly, our translator allocates target stack to access all simu-
lated global register and data (16 ARM registers, 4 condition flags. The
reason is that ARM architecture requires two load instructions to accessing
a global variable, one is for loading the address of the global variable, and
the other is for loading the value. Therefore, we allocate the target stack
in our translated binary and copy all global variables onto the target stack
in order to accelerate the access of all global variables. Accessing a local
variable from stack requires merely one load instruction with the help of SP
register. This improvement shows great profit in the generated program since
accessing the global variable is necessary before and after translating each

ARM instructions.
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3.2 Address Mapping Table Improvement

Performing a linear search in the address mapping table would cause a bottle-
neck in our generated programs; hence, our translator improves the design of
the address mapping table. First, our translator divides the address mapping
table into a lot of smaller address mapping tables according to the quotient
of the ARM PC divided by the value of a predefined divisor. Second, a non-
switch indirect branch would jump to a runtime dispatcher. This runtime
dispatcher would perform the same operation to obtain a result as the way to
divide the address mapping table. Then, this result would be used to index a
jump table to decide which address mapping table should be searched. The
key to speed up the linear search in each address mapping table is to decide
the value of the predefined mask, so that each smaller address mapping table
contains only a couple of entries. With this improvement, the time spent on
the address mapping table in our translator is approaching the time spent on
the address mapping table using hash algorithm in other binary translator.
Figure 3.1 contrasts the structure of original address mapping table against

our improved address mapping table.
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Figure 3.1: Structure Of Address Mapping Table

3.3 Switch Table Recovery

As we have known, the jump table will be used to implement the switch
statement if case values are in a narrow range. The indirect branch in the
jump table used to index the target address is named as switch-based indirect
branch. Although this kind of indirect branches can be handled by our
address mapping table, our translator still recovers the jump tables in the

ARM binary to speed up the generated programs [7].
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Chapter 4

Experiments And Results

In this chapter, we list our simulation environment, the benchmark, and
the result of performance evaluation. Due to the toolchain constraints, we
choose LLVM ARM backend as our target architecture to faithfully reflect

the performance of our translation system.

4.1 Experimental Environment

Our experiment translates the source ARM binary into the target ARM bi-
nary. The benchmark we use in the experiment is the EEMBC [12] suite ver-
sion 1.1. EEMBC benchmark standardizes on real-world, embedded bench-
mark software to help designers select the right embedded processors for
their systems. The EEMBC benchmark is consist of six suites: 8-16 bit,
automotive, consumer, networking, office, and telecom. We compile 55 test
programs in the EEMBC benchmark as lite versions in order to speed up
our simulation. The cross compiler for ARM applications is GCC 3.4.3 with
static linking, and we use a modified GDB 6.8 [11] to verify ARM binaries

and target ARM binary, and to help data collection. The version of LLVM
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we used is version 2.5.

4.2 Experimental Results

In this section, we evaluate the performance of our translation system. Fig-
ure 4.1 shows the performance of the baseline translation and our improve-
ment. Figure 4.2 shows the performance after each LLVM optimization we

leveraged.

4.2.1 Runtime Instruction Ratio : After Our Improve-
ment

1. Baseline translation

Our translation system can correctly translate all programs in the
EEMBC benchmark, and we show the performance gain of each im-
provement we mentioned in chapter 3 in figure 4.1; for example, the
performance of the baseline translation, which is labeled as ”baseline
translation” is 14.64 on the EEMBC benchmark. The number 14.64
means the number of the runtime instructions of the source ARM bi-
nary to the number of runtime instructions of the target ARM binary
is 14.64. In other words, for each ARM instruction, on average, the
baseline translation takes 14.64 target ARM instructions for simula-
tion. The figure of 14.64 shows the tremendous instruction modeling

overhead from ARM binary to LLVM IR.

2. Allocate target stack

This improvement utilizes the unused target stack to accelerate the
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access all simulated ARM registers since accessing a local variable from
stack requires merely one load instruction with the help of SP register.
After the improvement,the performance ratio is reduced to 12.17 on
the EEMBC benchmark. This improvement shows great performance

gain for our translation system.

. Memory Approach

We present two approaches to simulate memory access. First is using
LLVM getelementptr. Second is using LLVM inttoptr. Both approaches
can correctly simulate memory access, but later approach can achieve
better performance. After the improvement, the performance ratio is

reduced to 10.48 on the EEMBC benchmark.

. Improve Address mapping table

In baseline translation, since LLVM doesn’t support an array of label
type, performing a linear search in the address mapping table is re-
quired. Our translator re-designs the expression of address mapping
table by adding a runtime dispatcher. After the improvement, the per-

formance ratio is reduced to 5.7623 on the EEMBC benchmark.

. Recover Switch Table

In baseline translation, switch-based indirect branches are handled by
the address mapping table. Our improvement recovers the jump table
in the source ARM binary so that switch-based indirect branches are no
longer handled by the address mapping table. After the improvement,

the performance ratio reduces 0.0008 fold to reach 5.7615 fold on the
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EEMBC benchmark. The EEMBC benchmark rarely uses the switch
statement; this is why the improvement is nearly zero after recovering

the switch table.
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Baseline Allocate Target Stack ~ Memory Access MemoryAccess  Improveaddress  Recover Switch Table
(with getelementptr)  (with inttoptr | mapping table

Runtime Instruction Ratio

Qur Improvement

Figure 4.1: Runtime Instruction Ratio : After Our Improvement

4.2.2 Runtime Instruction Ratio : After LLVM Opti-
mizations

1. LLVM Optimization - Promote Memory To Register One of the mo-
tivations to adopt LLVM compiler infrastructure is its powerful opti-
mizations. we show the performance gain of each LLVM optimization
figure 4.2. In the section "reigster simulation”’, we map 16 ARM regis-

ters and 4 condition flags to LLVM global variables. Thus, we load the
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value of the source registers from memory before instruction body and
store the value back to the destination register afterward. This simple
approach makes implementation more easier, but it introduces serious
redundent memory access. In this section, we utilize LLVM ”Promote
Memory To Register” optimization to eliminate redundent memory ac-
cess. After this LLVM optimization, the performance ratio is reduced
to 3.29 on the EEMBC benchmark. (Note: Our experiment merely
uses 43 programs out of the EEMBC benchmark to perform LLVM
optimizations; the reason is that some aggressive LLVM optimizations

will produce incorrect output.)

. LLVM Optimization - Instruction Combining This optimization com-
bines instructions to form fewer, simple instructions. For instance,
"add X, X” or "mul X, 2”7 are transformed into ”"shl X, 1”7. "%Y = add
132 %X, 17 and "%Y = add i32 %X, 1”7 are transformed into "%Z =
add 132 %X, 2”7 After this LLVM optimization, the performance ratio

reduces 1 fold to reach 2.29 fold on the EEMBC benchmark.

. LLVM optimization - Global Value Numbering In the section ”Trans-
lation Detail”, we illustrate an example of redundent condition flag
update. we leave this opportunity to LLVM ”Global Value Number-
ing” optimization. This optimization eliminates fully and partially re-
dundant instructions. After this LLVM optimization, the performance

ratio reduces 0.78 fold to reach 1.51 fold on EEMBC benchmark.

. other LLVM optimizations

We also enable some LLVM link-time optimizations to optimize the
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generated code. Finally, the runtime instruction ratio can reach 1.13

fold on the EEMBC benchmark.
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Figure 4.2: Runtime Instruction Ratio : After LLVM Optimizations

4.2.3 Binary Size Ratio

In figure 4.3, it shows the ratio of the static code size of the target ARM
binary to the source ARM binary; for example, Label Text means the static
size of .text section in target ARM binary is 2.45 times the ratio of the static
size of .text section in source ARM binary, label Data means the static size
of .data section in target ARM binary is 10.23 times the ratio of the static

size of .data section in the source ARM binary and label Total means the
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static size of target ARM binary is 2.62 times the ratio of the static size of
the source ARM binary. The text section in the target ARM binary contains
the address mapping table to handle indirect branch thus the code size is
a little bigger than the text section of the source ARM binary. The target
ARM binary’s data section contains all source ARM binary’s sections, so the

code size ratio is of 10.23 fold.
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Code Size Ratio
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Text Section Data Section Whole Binary

Figure 4.3: Binary Size Ratio
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Chapter 5

Conclusion

5.1 Limitation Of Our Translator

In this section, we list some limitation of our re-targetable static binary tranl-
sator.

1. Source binary should be compiled with static linking.

2. Our translator supports user mode only. Co-processor mode and thumb
mode are not supported.

3. Applications should be performed on the same operating system envrion-
ment. (ie. library should be the same version.)

4. Self-Referencing and Self-modifying code are not supported because the
code actually executing is translated code, not the original source code. Our
translated code did’t simulate the same behavior of these code.

5. Source binary should be compiled with static linking to avoid parameter
identification problem.

6. Our translator aims to translate the compiler-based applications. Hand-
coded applications may incur code location problem which cannot be cor-

rectly handled by our address mapping table.
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5.2 Conclusion

Dynamic binary translation is usually used to migrate applications to new
architectures; however, dynamic binary translation has some difficulties not
completely solved like real-time deadline issue, memory wasted in the trans-
lation cache. Hence, we develop a static binary translation system so that
we can perform more time-consuming optimizations to improve the qual-
ity for the generated code. Direct binary translation lacks re-targetability,
so developming a re-targetable static binary translation is promising on the
embedded system environment.

The ARM architecture has some features that must be handled carefully
in binary translation; for instance, the conditional execution instructions, the
condition flag updates. We also pointed out the key challenges to perform
the indirect binary translation from a lower level ARM ISA to a higher level
LLVM IR. Our translator not only overcomes the challenges but also presents
some issues that can affect the performance of the generated program. Our
baseline ARM-to-ARM translation without the special improvements and
LLVM optimizations achieves runtime instruction ratio of 14.64 on EEMBC
benchmark, after our improvements for LLVM IR generation, the runtime
instruction ratio is reduced from 14.64 fold to 5.76 fold. Furthermore, after
we leverage the powerful LLVM optimizations, the runtime instruction ratio
is reduced from 5.76 fold to 1.13 fold.

Our re-targetable static translation system shows great performance on
the EEMBC benchmark thus we are confident that developing a re-targetable

static binary translation system is promising.
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