
 

 

國 立 交 通 大 學 
 

資訊科學與工程研究所 

 

碩 士 論 文 

 
 

 

 

 

利 用 圖 形 處 理 器 加 速 3 - D E S 運 算 

Using GPU to speed up 3-DES Computing 

 

 

 

研 究 生：葉秀邦 

指導教授：袁賢銘  教授 

 

 

中 華 民 國  九 十 六  年 六 月



 

i 

 

利 用 圖 形 處 理 器 加 速 3 - D E S 運 算 

 

研究生: 葉秀邦         指導教授: 袁賢銘 

 

國立交通大學資訊科學與工程研究所 

 

摘要 

 加密與解密計算至今已經被開發出各式各樣的演算法，針對不同使用上的需

求提供不同的計算方式，已經幾乎成為網路傳輸中不可或缺的重要角色。然而，

加密與解密的過程是需要龐大的 CPU 計算時間和資源，對一個支援加密傳輸的

web server 而言，往往 web server 本身會花 60%至 70%的資源在執行加解密的計

算，對執行效率來說是很大的瓶頸。本研究探討這限制之最根本的原因，就是加

解密過程耗費過多 CPU 資源，因此提出使用 GPU（圖形處理器）來加速這些加

解密的計算，以減少 CPU 的負擔，讓 CPU 可以更專注於其他 web service 的服

務。 

 本論文並非是目前為止第一個利用了 GPU 的計算能力，來加速加解密運算

之研究。然而加解密的密碼文件(cipher)種類相當多，我們針對計算量相當龐大的

3-DES 演算法進行研究，將用來原本該在 CPU 上之邏輯運算，轉換成可以在 GPU

上平行處理的演算法。在我們的實作中，隨著檔案大小的增加，我們觀察到在

GPU 提供了超過 5 倍目前 CPU 所能提供之運算能力，並大幅減少 CPU 所耗損

的資源，有效的提供 web server 更好的服務品質。 

 

 

 



 

ii 

 

Using GPU to speed up 3-DES Computing 

 

Student: Hsiu-Pang Yeh               Advisor: Shyan-Ming Yuan 

 

Department of Computer Science and Engineering 

National Chiao Tung University 

 

Abstract 

Various cryptography algorithms have been developed to date to provide 

different levels of data security for application domains, such as storage security, 

personal identification, and secure web browsing. Although these algorithms do a 

very good job of protecting your privacy, they consume massive amount of resource 

on the server-side while processing encrypting and decrypting requests from clients. 

Generally speaking, a web server supporting transport security (TLS/SSL) could 

spend up to 60%~70% of its computing resource in encrypting and decrypting data 

and leave 30%~40% for actual client request processing. Therefore in this research, 

we try to address the performance issue by using GPU (Graphics Processing Unit) to 

speed up the data encryption and decryption to reduce the computing resource spent 

on security and ultimately improve the web server throughput.  

In this paper, we chose the widely-used 3-DES and implemented it on GPU. In 

our implementation, we observed the GPU cipher performs 5 times faster than the 

OpenSSL implementation on CPU. As a result, we show a promising direction for 

offloading the data encryption and decryption onto GPU. 



 

iii 

 

Acknowledgement 
首先我要感謝袁賢銘教授給我的指導，在我的研究領域裡給予我很多的意見，並

且給予我最大的空間來發揮我的創意。也感謝所有幫助我的學長宋牧奇、林家峰，

在我研究的過程中給我不少的指導跟建議。還有感謝我的同學羅國亨、徐俊傑等，

在一起討論的過程中激盪出不少的想法。還有所有實驗室內提供電腦給我做實驗

的同學，沒有你們我無法完成實驗。最後我要感謝我的爸媽，給予我這個良好的

環境讓我求學生涯毫無後顧之憂，專心於學業，謹以這篇小小的學術成就來感謝

您們的養育之恩。 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 

 

Table of Contents 
摘要   ............................................................................................................. i

Abstract   ..................................................................................................... ii

Acknowledgement   ................................................................................... iii

Table of Contents   .................................................................................... iv

List of Figure   ........................................................................................... vi

List of Tables   ........................................................................................... vii

Chapter 1 Introduction   ............................................................................. 1

1.1. Preface  ........................................................................................................ 1

1.2. Motivation   .................................................................................................. 2

Chapter 2 Background and Related work   .............................................. 3

2.1. GPU (Graphics Processor Unit) introduction   ............................................ 3

2.2. CUDA (Compute Unified Device Architecture)   ........................................ 4

2.3. CUDA memory introduction  ...................................................................... 7

2.4. Related Work   ............................................................................................ 10

2.4.1. Related Work: AES speed up in CUDA   ....................................... 10

Chapter 3 System Architecture   .............................................................. 12

3.1. DES and 3DES Introduction   .................................................................... 12

3.1.1. DES Architecture   ......................................................................... 12

3.1.2. 3-DES Architecture   ...................................................................... 13

3.2. Implement 3-DES in CUDA   .................................................................... 15

3.2.1. Facing problems in CUDA program   ............................................ 15

3.2.2. 3-DES Architecture for CUDA programming   ............................. 17

3.3. Integrate 3-DES with web server   ............................................................. 19



 

v 

 

Chapter 4 Experimental Results and Analysis   ..................................... 21

4.1. 3-DES implementation in GPU   ............................................................... 21

4.1.1. Move data from CPU to GPU   ...................................................... 21

4.1.2. Initial permutation   ........................................................................ 23

4.1.3. Round function  ............................................................................. 24

4.2. 3-DES Encode implementation  ................................................................ 25

4.3. 3-DES Decode implementation   ............................................................... 29

4.4. Configuration   ........................................................................................... 33

4.4.1. Hardware configuration   ............................................................... 33

4.4.2. Software Configuration   ................................................................ 34

4.5. Evaluation and Analysis   ........................................................................... 34

Chapter 5 Conclusion and Future works   ............................................. 38

5.1. Conclusion   ............................................................................................... 38

5.2. Future work   .............................................................................................. 39

Bibliography   ............................................................................................ 41

 



 

vi 

 

List of Figure 
Fig. 2-1 Floating-Point Operations per Second for the CPU and GPU   ......................... 3

Fig. 2-2 CUDA platform for parallel processing on Nvidia GPUs   ................................ 5

Fig. 2-3 CUDA Architecture from CUDA ZONE   ......................................................... 6

Fig. 2-4 CUDA Memory Architecture from CUDA ZONE   ........................................... 7

Fig. 3-1 Traditional Enciphering Computation   ............................................................ 13

Fig. 3-2 DES Architecture   ............................................................................................ 14

Fig. 3-3 Traditional 3-DES algorithm with too much data moving   ............................. 17

Fig. 3-4 New 3-DESencryption Flowchart   .................................................................. 18

Fig. 3-5 New Web service architecture   ........................................................................ 20

Fig. 4-1 3-DES Pseudo code with moving data details   ............................................... 22

Fig. 4-2 Round function details   ................................................................................... 25

Fig. 4-3 3-DES Encryption Pseudo code   ..................................................................... 27

Fig. 4-4 Input Details of 3-DES Encryption Pseudo Code   .......................................... 29

Fig. 4-5 3-DES Decryption Pseudo code   ..................................................................... 30

Fig. 4-6 Output function of 3-DES Decryption Pseudo code   ...................................... 32

Fig. 4-7 DES performance comparison   ....................................................................... 35

Fig. 4-8 3-DES performance comparison   .................................................................... 36

 



 

vii 

 

List of Tables 
Table 2-1 Memory Types in CUDA   ............................................................................... 9

Table 2-2 Memory Access time in CUDA   ..................................................................... 9

Table 4-1 Bit number   ................................................................................................... 23

Table 4-2 Input / output bit ordering on Pentium   ........................................................ 23

Table 4-3 Initial permutation   ....................................................................................... 24

Table 4-4 Hardware Configuration   .............................................................................. 33

Table 4-5 NVIDIA 9800GT Hardware Specification   .................................................. 33

Table 4-6 Software Configuration   ............................................................................... 34

Table 4-7 Comparison DES in CPU and in GPU   ........................................................ 34

Table 4-8 Comparison 3-DES in CPU and in GPU   ..................................................... 36

 



 

1 

 

Chapter 1 Introduction 

1.1. Preface 
Cipher encryption could be the most important thing in internet security in recent 

ten years. As network technology evolved rapidly, the security problems need to be 

concerned seriously. Data Encryption Standard (DES) is proved as a standard method 

at 1976 [1]. Due to limitation of 64 bits key strength, DES has been superseded by 

3-DES or the Advanced Encryption Standard. 

3-DES could be seen as a transitional form between AES [2] and DES, it 

strengthen the DES’s security, which is a stamp of approval possessing adequate 

security capability. The main function of 3-DES is manipulating DSE three times in a 

row. Theoretically, it can achieve more than 3 times of DES’s security capability, and 

consumes CPU capability three times more vice versa. Therefore in many cases, it 

can’t provide instant real time computing, which triggered emergence of the like AES 

highlighted the security and effectiveness capability. 

Despite the newly generation of AES, the former computing methods still are 

irreplaceable. For instance, the newly version of OPENSSL still provide both DES 

and 3-DES for users [3]. The speed of 3-DES isn’t fast enough in many circumstances 

though, it performs well in a none-instant-calculating condition. Many researchers 

still are aimed at improvements with these computing methods. 

  

 



 

2 

 

1.2. Motivation 
The main streams of ciphers are DES, 3-DES and AES as before [3]. The lack of 

64 bits key length of DES, a special effective way enables to decrypt within 24 hours 

allegedly, though it hasn’t been proved, did alert the awareness of code safety. By 

increasing longer code or creating a more sophisticated computing method, we may 

guarantee the safety of coded data. 

The advantages of AES, fast calculating speed, strong defense capability and 

easily parallelization, the latter one especially convenient for inventers, are the 

reasons made it popular. 

The characteristics of 3-DES, 3 times more computing time and competitiveness 

of computing, are the inevitable result made its inferiority besides comparatively good 

quality of security as AES [4]. Most people turn to other ciphers which contain certain 

quality of speed and security. However, to invent new cipher involves quite long time. 

If focusing on improve the disadvantage of consumption of CPU resource in 3-DES, 

not only could fasten the DES but also provide more commodious user interface. 

 

 

  



 

3 

 

Chapter 2                      
Background and Related work                                                   

2.1. GPU (Graphics Processor Unit) 

introduction 
Nowadays GPU is not only the T&L (transform & lighting) and render hardware, 

but also the general purpose computation hardware. This is the basic concept of 

general purpose computation on graphics hardware, also called GPGPU [5]. It means 

we can do lots of computing as CPU can do on GPU hardware. In fact, some kinds of 

computation have better performance on GPU than CPU, such as floating-point 

operation. The comparison of computation power between GPU and CPU in 

floating-points computation was depicted as Fig. 2-1. It is obviously that GPU and 

CPU do the same performance in floating-points computation in 2003. But in 2005, 

GPU do the twice performance than CPU in floating-points computation. However 

GPU can do triple or quadruple performance than CPU can do now.  

 

Fig. 2-1 Floating-Point Operations per Second for the CPU and GPU 



 

4 

 

 Besides of floating-points computation, it is more easy and effective to do 

parallel processing on GPU hardware. The major CPU has two or four cores on it, but 

the major GPU card has about 128 even more cores on it. If we can find a way to 

divide a computation-sensitive problem to many parallel threads, it might get better 

performance to run on the GPU hardware. However the mapping has many 

constraints and is not straightforward. We may need to design some special data 

structures and modify the algorithm in the way we do graphics rendering. There are 

now two most famous general purpose GPU architecture, CUDA by NVIDIA and 

OpenCL by AMD/ATI.  

2.2. CUDA (Compute Unified Device 

Architecture)  
CUDA (Compute Unified Device Architecture) is the architecture to unify the 

general computation model on NVIDIA’s graphics card devices [6]. Based on 

traditional C or C++ program language, CUDA is a new program language added 

some extension syntax and auxiliary libraries. The programmers can use the CUDA 

language to coding programming with ease just like C++ language programming [7]. 

Since we use CUDA to speed up our 3-DES encryption and decryption, we will 

discuss the advantage to CUDA architecture and enumerate main different between 

CUDA and OpenCL [8]. 

The objective of CUDA programming can be summarized as the following two 

parts: 

 Easy to write program 

CUDA programming is almost as easy as C++ programming. The main 



 

5 

 

difference between CUDA and C++ programming is how to optimize your program. A 

programmer needs to know lots of hardware details about the graphic card while 

optimizing a CUDA program. 

 

 

Fig. 2-2 CUDA platform for parallel processing on Nvidia GPUs 

 

 Fit parallel processing 

Unlike C++ programming for sequential processing, CUDA programming is suit 

for parallel processing. For instance, some loops need to be executed for 

hundreds or thousands times in sequential processing. But in CUDA 

programming, we can easily break a loop to hundreds or thousands threads. With 

parallel processing, sometimes we can get five to ten times performance than 

sequential processing [9]. 



 

6 

 

 

Fig. 2-3 CUDA Architecture from CUDA ZONE 

 

 scattered write capability 

Scattered write means that CUDA program codes can write to arbitrary addresses 

in GPU memory. In traditional GPU pipeline, it is impossible to assign any memory 

address by programmers. With the scattered write capability, it is more efficiently for 

us to build a parallel algorithm just like build an algorithm on C program [10]. 

 On chip shared memory 

One special difference between NVIDIA and AMD/ATI is that NVIDIA GPU 

has shared memories on it [10]. With the shared memory, we can access data directly 

from shared memory without accessing the global memory on graphic card. Since it 

needs 4 hundred or 6 hundred cycles to access the global memory at a time, memory 

accessing is tone of key points to optimize parallel processing programs [11]. 



 

7 

 

 

Fig. 2-4 CUDA Memory Architecture from CUDA ZONE 

2.3. CUDA memory introduction 
In fact, there are six different types of memory that can be access by programmer 

when writing a CUDA program. 

Register’s calculating speed is the fastest among all the other reservoirs. Most of 

the local variable of threads including array are manipulated by register spontaneously. 

In some conditions: Being “co-occupied” by too many variables that maxed out space 

of register breaching the limitation of compiler (using content N of --maxrregcount 

with N=128 presumed); using dynamic variables as indexes to access array (due to the 

need of order formation of array), it’ll be replaced by local memory of compiler with 

lower speed [12]. The following we would talk about all kinds of memories on 

graphic card. 

Shared memory’s applied range is block, which only could be operated within the 

same block. The limitations of it are the scale and the necessity to synchronize threads, 



 

8 

 

avoiding unexpected error of data filing. Its potency next only to register, is the focal 

point of optimization. Besides, we can’t initialize it in the beginning process other 

than core implementation, nor access it in host machine. CUDA only provides API to 

assign its scale in current stage. 

Local memory is the inevitable outcome while compiler automatically replacing 

data to global memory, similar to page swap in operating system. It has negative 

effect in efficiency, and the effect is hardly control. Therefore, when optimizing 

program, it has to be tracked by --ptxas-options to avoid it. Sometimes, to increase the 

number of blockDim in a block, we need --maxrregcount N to limit the usage amount 

of the maximum usable registers to each thread [13]. They have to compromise 

between the number of variables and the scale due to its necessity. 

Other than device as a tag proclaim, reservoirs which are located by API directly 

through cudaMalloc also be seem as global memory. Global memory, which means all 

operating units could operate on it, and anything could be operate by threads in 

DRAM, threads in different block included. Its accessing without cache is differing 

from texture cache, which belongs to different ports in hardware and acquired 

coalesced read. (Coalesced read, is the constant block of reservoir in reading half the 

warp of thread, which synchronizes the controller of reservoir.) 

Constant memory and texture cache belong to the same administrative level, but 

it has lower error rate cause of its size limitation. Despite the consuming of loading 

time in the very first time, its operating speed is as fast as shared memory. It can apply 

in all range and only can be access in the initial stage of setting a file or through the 

API in host machine.  

Because of buffering of cache, texture memory doesn’t acquire collaboration in 

accessing. The dozens computing cycles is the reason of slightly lower speed compare 



 

9 

 

to global memory which access directly, but still much faster than global memory 

which doesn’t collaborate while reading data. Therefore, texture memory is prior in a 

very sophisticated condition of collaborating accessing. 

Texture memory is unrevised for cache’s locality. CUDA provide not only 1D 

cache pattern, but also 2D and 3D texture cache which applies inclusively for the need 

of plotting. 

The following table 2-1 and table 2-2 show the summary of GPU memory. 

Type Tag Life Period Access Scope Hardware  

Register (none) block Thread R/W On chip 

Local memory (none) block Thread R/W DRAM 

Shared memory __shared__ block Block R/W On chip 

Texture memory (none) program Global R/W DRAM + cache 

Constant memory __constant__ program Global R DRAM + cache 

Global memory __device__ program Global R/W DRAM 

Table 2-1 Memory Types in CUDA 

Type Access time (clocks) Performance Factor 

Register Immediately none 

Local memory 400 ~ 600 Compiler auto 

Shared memory 4 Memory bank conflict 

Texture memory 4, 400 ~ 600(miss) Cache miss 

Constant memory 4, 400 ~ 600(miss) Cache miss 

Global memory 400 ~ 600 Memory bank conflict 

Table 2-2 Memory Access time in CUDA 



 

10 

 

2.4. Related Work 
In recently years, more and more people try to speed up the compute-sensitive 

work in CUDA programming. This is because graphic card is much cheaper than 

other hardware device. User just needs to buy the NVIDIA graphic card and install 

their driver. In additional, users may get better performance by offering a good 

parallel algorithm in CUDA programming. Moreover, there is some commercial 

software supported to CUDA. For example, TMPGENC’s video encoder software 

supports CUDA speed up in 2008. That is why some people say multi-cores is the 

final goal for CPU [14]. 

2.4.1. Related Work: AES speed up in CUDA   

It is fully benefits of the most optimized known AES techniques in the 

CUDA-AES implementation. The CUDA-AES implementation is designed for 32-bit 

processors. Given the flexibility of memory model, it is possible to efficiently use the 

four T-look-up tables each one containing 256 entries of 32 bits each. The 

CUDA-AES implementation is based on combination of the round stages, which 

allows a very fast execution on processors with word length of 32 bits. In this paper, 

the author brings up a formula that stands for his AES architecture [15]. 

 

 

Where a is the round input, e is the round output of bytes, T[ ] is a look-up table, 

⊕ means XOR and Kj is one column of the stage key. This solution takes only 4 

look-ups and 4 XORs per column per round [16].  

It is obviously that the CUDA-AES implementation takes few operation in a 



 

11 

 

round rather than DES. That is the reason why AES encryption is as fast as DES 

encryption. Furthermore, AES is more suitable for CUDA programming because of 

using massive matrix. It can easily parallelize all the AES system by spreading up the 

linear operations in matrix to corresponding threads in GPU hardware [17]. This 

CUDA-AES implementation in this paper speeds up the about 5 times on G80. The 

detail data statistics will be analyzed with our results. We put all the data statistics in 

chapter four. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

12 

 

Chapter 3 System Architecture 
In this chapter, we present the system overview of our framework that includes 

DES and 3-DES (Triple DES) architecture. Additionally, we not only do the 

encryption and decryption speed up work but also combine the 3-DES to web service. 

We will describe the whole system in the last subsection. 

3.1. DES and 3DES Introduction 

3.1.1. DES Architecture 

Since that DES is the main core of 3-DES operation, so we first analysis the DES 

architecture to find out how many components in DES can be improved by CUDA 

[14]. DES is a block cipher system with a secret key. The principle of DES is that 

divide the plaintext into many 64-bits blocks. First, each of 64-bits blocks is subjected 

to an initial permutation IP. Then do sixteen times logic operation with sixteen 

sub-keys. Finally we do IP−1 operation to this text to get the final cipher text, so we 

can send the 64-bits cipher text to other people with DES encryption [18]. 

In traditional DES architecture is as the Fig. 3-1, all the operations including 

input, initial permutation, permuted input, sub-key generation, IP−1 operation, and 

output are all achieved by CPU hardware [19]. Therefore, all logic operations in CPU 

waste too many CPU time and CPU recourses. Our job is to assign some operations 

form CPU to GPU to speed up the whole system and decrease the CPU recourses 

wastage. 



 

13 

 

  

Fig. 3-1 Traditional Enciphering Computation 

3.1.2. 3-DES Architecture 

The secret key DES only has 64 bits (including 8 bits for error detection), people 

believe that DES may easily be cracked by modern computer because of the short 

secret key. However 3-DES is one of the methods to improve the weakness of the 

short secret key problem. By 3-DES, we can improve the secret key from 64 bits to 



 

14 

 

192 bits [20]. Anyway we don’t need to worry about the secret problem in 3-DES 

operation, but the computation time is 3-DES is such a big problem for user. 

3-DES is based on DES architecture. In order to create a longer secret key, 

3-DES tries to do DES encryption and decryption three times to get triple length as 

the secret key in DES [21]. As Fig. 3-2, we can see that 3-DES needs triple more CPU 

time to finish a job. 

 

 

Fig. 3-2 DES Architecture 

In detail, 3-DES’s encryption can divide to three parts. First, we use the first key 

to do DES encryption to plaintext. Then we use the second key to do DES decryption 

and finally do the DES encryption with the third key to accomplish the 3-DES 

encryption. Therefore the 3-DES decryption is inverse operation to 3-DES encryption. 

 It is obviously that 3-DES is a computation-sensitive work. It may cost too much 

CPU time and CPU recourse [22]. What we need to do is using CUDA programming 

to speed up the 3-DES computation in GPU. 

 

 



 

15 

 

3.2. Implement 3-DES in CUDA  

3.2.1. Facing problems in CUDA program 

A trivial idea to implement 3-DES system in CUDA programming is put the 

encryption and decryption operation on graphic card with keep the tradition 3-DES 

architecture. However it may face several problems in CUDA programming. 

 Parallel algorithm is not easy to build 

 When we try to rewrite the DES architecture for CUDA programming, one of 

the main problems in CUDA programming is how to parallelize 3-DES architecture. 

Since DES architecture is a sequential execution program as in Fig. 3-2, it is so 

difficult to parallelize the internal flow of DES. In fact, AES uses massive matrixes to 

solve this problem. The restriction of DES is not easy to crack because there is no 

good matrix solution to DES. 

 To solve this problem, we modify the traditional DES algorithm to fit CUDA 

program. Traditional DES deals with 64-bits plaintext once. In our idea, we input 

about 64 * N bits plaintext once [23]. N means how many threads we use on graphic 

card. By inputting 64 *N bits plaintext, we can easily create a new DES architecture 

with parallel algorithm. Nevertheless, there are still many problems when you try to 

input 64 * N bits plaintext once, we will talk about this later. 

 How to optimize your system using GPU memory 

Another troublesome problem is how to perfect assign the GPU memory. While 

we try to input 64 * N bits plaintext once, we find out that the system efficiency goes 

down quickly. The main reason is that we did not well assign the GPU memory [24]. 

In our original idea, we try not to rewrite the whole 3-DES architecture and want 



 

16 

 

Algorithm 3-DES Encryption ((plaintext, ciphertext) ; 
Input: plaintext (64 * N bits plaintext). 
Output: ciphertext (64 * N bits ciphertext). 
 
// N means how many threads we use in device.   
 
begin 
 declare integer plaintext[64 * N], temptext[64 * N], ciphertext[64 * N]; 
 declare integer key1[64], key2[64], key3[64] ; 
   

input (plaintext, temptext); //put plaintextin to temp buffer 
 key_schedule (key1, key2, key3);  // generate subkeys  
  
 copy temptext form host memory to device memory 
 __global__DES_encryption (temptext, key1); 
 copy temptext form device memory to host memory 

 

to get benefits by CUDA programming. In fact, this is a terrible mistake that we waste 

too much time in data moving from host memory (CPU memory) to device memory 

(GPU memory). Although copying data form host memory to device memory can use 

Direct Memory Access (DMA) to optimize the device’s high-performance, we still 

have to reduce the frequency of data moving [25]. 

 Traditional 3-DES encryption contains three components, including two DES 

encryptions and one DES decryption [26]. While we rewrite the 3-DES encryption 

and decryption form C code to CUDA code, it is necessary to reduce the frequency of 

data moving. For example that we first write two function call named 

__global__DES_encryption() and __global__DES_decryption(), “__global__” means 

this function call will be executed by GPU core. In Fig. 3-3, it is obviously that it 

needs too much data moving to complete 3-DES encryption once [27]. However what 

we need is to combine three operations into one operation, so we can reduce the six 

data moving operations to two data moving operation. 



 

17 

 

 
 copy temptext form host memory to device memory 
 __global__DES_decryption (temptext, key2); 
 copy temptext form device memory to host memory 
 

copy temptext form host memory to device memory 
 __global__DES_encryption (temptext, key3); 
 copy temptext form device memory to host memory 
 
 swap (ciphertext , temptext); 
 output (ciphertext); 

end 

Fig. 3-3 Traditional 3-DES algorithm with too much data moving 

3.2.2. 3-DES Architecture for CUDA programming 

A new 3-DES architecture is a special design for CUDA programming. In our 

design, we try many kinds of method to optimise the architercture. The final answer 

we get is the following flow chart as Fig. 3-4. The implement details of the flow chart 

will be discuss in next chapter, we just need to know how this architecture work and 

compare this new 3-DES architecture with traditional 3-DES architecture. In fact, Fig. 

3-4 only show how 3-DES encryption work. The 3-DES decryption’s flow chart is 

almost like 3-DES encryption flow chart but still exist some differents. We will also 

talk about the differents on next chapter. 



 

18 

 

 

Fig. 3-4 New 3-DESencryption Flowchart 



 

19 

 

3.3. Integrate 3-DES with web server 
 

To analysis the efficiency of 3-DES encryption and decryption, we construct a 

website that offers 3-DES encryption and decryption service. The website is used for 

ensuring internal security. All data stored in the website is encrypted. While users 

want to download the data form website, the website will immediately decode the 

encryption data and send the result to users. On the other hand, when a user wants to 

upload a file to web server, the website will encode the file first and then put the 

cipher text into web server. 

 

In Fig. 3-5, it is conspicuous to realize how this data server works. After the user 

upload a file to server, the website will refresh the download page and list a new cyber link to 

the new upload file. That is because we want to test the 3-DES speed up performance through 

the environment of integrating 3-DES with web service. In traditional 3-DES encryption and 

decryption, the efficiency is too low to tolerate. After we implement 3-DES in CUDA 

programming, the 3-DES encryption and decryption become fast enough for general purpose. 

Moreover, users would not know that web server do the 3-DES decryption when they push 

the download button.  



 

20 

 

 

Fig. 3-5 New Web service architecture 

Unfortunately we run into many troubles in implement the whole environment. 

The most important trouble is the security problem. While a user tries to download a 

file from this server, the CPU in the web server would send a signal to call DMA for 

moving data form host memory to device memory ideally in our theory. But it is not 

working actually. Final we find out that there is some security measures for avoiding 

any unsuitable access to host computer. In other hand, the host computer would not 

accept the GPU access request that is sent from apache server. We will discuss how 

we solve this problem in next chapter. 

 



 

21 

 

Chapter 4                       
Experimental Results and Analysis 

In this chapter we will discuss our implement methods in detail. Based on the 

framework we talked in chapter three, we would introduce that how we construct each 

of these components. Therefore, since that there are too much components in our 

architecture, we just introduce the important or particular design in our 

implementation and some exceptional troubles programmers may face. 

4.1. 3-DES implementation in GPU 

4.1.1. Move data from CPU to GPU 

The First step of DES encryption and decryption is moving plaintexts or cipher 

texts from host to device. Host means CPU and device means graphic card. First, the 

host will instruct the device to malloc same size of data in GPU memory. Second, the 

host would send data from host memory to device memory with DMA. Finally GPU 

receive the data, the host can further call GPU to do computing on shaders. 

While GPU receive the data and the instruction from CPU, we need to map the 

data to threads in shaders. In DES implementation, a plaintext is 64-bits. We use a 

unsigned char array with 8 elements to store the 64-bits and we store all the 64 * N 

bits in the unsigned char array named block. First GPU reads all elements in array 

block and send each element to different thread. We use J = (blockIdx.x*blockDim.x+ 

threadIdx.x) to indicate each thread. J means absolutely thread ID, blockIdx means 

how many blocks in a grid, blockDim mean how many threads in a block, and 

threadIdx means the relative thread ID in a block. Second we divide the plaintext to 



 

22 

 

two parts named left and right. Each of Left and right are contains 32 bits, so we can 

combine four unsigned char elements individually to left and right like Fig. 4-1. 

 

Fig. 4-1 3-DES Pseudo code with moving data details 

Algorithm __golbal__DES_EN (block, key) ;  // Same as 3-DES_DE 
Input: block (64 * N bits plaintext) 

Key(64 * 3 keys) 
Output: block (64 * N bits cipher) 
// N means how many threads we use in device.   
begin 

unsigned long left,right; 
 int j=blockIdx.x*blockDim.x+threadIdx.x; 
 
 left = ((unsigned long) block[0 + 8 * j] << 24) 
  | ((unsigned long) block[1  + 8 * j] << 16) 
  | ((unsigned long) block[2  + 8 * j] << 8) 
  | (unsigned long) block[3  + 8 * j]; 
 right = ((unsigned long) block[4 + 8 * j ] << 24) 
  | ((unsigned long) block[5  + 8 * j] << 16) 
  | ((unsigned long) block[6  + 8 * j] << 8) 
  | (unsigned long) block[7  + 8 * j]; 
 
 Permutation 
 Do 64 times of round function  
 Inverse permutation 
 
 block[0 + 8 * j] = right >> 24; 
 block[1 + 8 * j ] = right >> 16; 
 block[2 + 8 * j ] = right >> 8; 
 block[3 + 8 * j ] = right; 
 block[4 + 8 * j ] = left >> 24; 
 block[5  + 8 * j] = left >> 16; 
 block[6 + 8 * j ] = left >> 8; 
 block[7  + 8 * j] = left; 
end 



 

23 

 

4.1.2. Initial permutation 

The permutations employed by the cipher are described using bit numbers. The 

numbering used in the standards documents is enumerating the bits from left to right, 

starting at 1. When displayed as a matrix, row major order is used. This is best 

illustrated by the identity transform shown in Table 4.1. 

 

Table 4-1 Bit number 

The Pentium processor reads its memory using the opposite bytes (row) order, 

giving the bit number matrix shown in Table 4.2. We have here divided the matrix in 

upper and lower halves. On the Pentium we need one 32-bit register to store each half, 

and hence swapping the halves amounts to swapping the roles of those two registers. 

 

Table 4-2 Input / output bit ordering on Pentium 

The initial permutation of the DES has a very simple structure, and can be 



 

24 

 

performed as a series of bit block swaps known as Hoey's Initial Permutation 

Algorithm. This algorithm is shown in Table 4.1. Note that there is also an implicit 

swap of the upper and lower halves at the beginning. To optimize the algorithm for 

Pentium, Richard Outerbridge's C code implementing the algorithm was analyzed, 

providing a set of bit exchanges between the two halves of the input block. Though 

not the same implementation, the idea for how to code each swap came from Eric 

Young's libdes. IP.1 is applied by performing the swaps of IP in reverse order. 

 

Table 4-3 Initial permutation 

In our CUDA programming, the initial permutation will be computed on GPU 

device. 

4.1.3. Round function 

DES needs 16 times of round function to complete encryption and decryption. 

Generally we make a DES function and recursive call this function to complete 

3-DES encryption and decryption. In fact, this may waste lots of CPU time to move 

data between CPU memory and GPU memory. The solution to reduce the unnecessary 

memory access is to do 64 times of round function continuously. Thus program only 

needs two memory accesses to finish one 3-DES encryption or decryption. 

The main important things to rewrite the Round function are to care about the on 



 

25 

 

chip memory access. We use a constant unsigned long memory to store our spbox. 

Constant memory’s speed is usually faster than global memory and would not occupy 

the space of shared memory. After assign the accuracy values to the spbox, we do the 

round function for 64 times just like the following Fig. 4-2. 

 

Fig. 4-2 Round function details 

4.2. 3-DES Encode implementation 
Since we want to design a 3-DES encryption program, we need to consider all 

kinds of file type. For example in the word files like PowerPoint or WordPad, it uses 

‘\0’ to be its end symbol. In this situation that we just need to determine what the 

input word is. But in streaming data like music or movie files, the ‘\0’ is not the end 

symbol. This means we need to adjust our program to fit all the file types. 

Moreover, we input 64 * n bits plaintext once rather than 64 bits plaintext. This 

While (I < 64) 
 { 

//phase i 
work = ((right >> 4) | (right << 28)) ^ ks[i]; 

  left ^= Spbox[6][work & 0x3f]; 
  left ^= Spbox[4][(work >> 8) & 0x3f]; 
  left ^= Spbox[2][(work >> 16) & 0x3f]; 
  left ^= Spbox[0][(work >> 24) & 0x3f]; 
  work = right ^ ks[i+1]; 
  left ^= Spbox[7][work & 0x3f]; 
  left ^= Spbox[5][(work >> 8) & 0x3f]; 
  left ^= Spbox[3][(work >> 16) & 0x3f]; 
  left ^= Spbox[1][(work >> 24) & 0x3f]; 
 } 



 

26 

 

may make a mistake for us to determine where the end symbol is. For instance, if we 

input 1000 words of plaintext once and the end symbol ‘\0’ is the 1250th word of the 

plaintext, we must need to do the input loop for two times to input all the plaintext. 

However after we do the loop for two times, we read the 2000th word of the plaintext. 

Because the 2000th word is a empty word that compiler could not recognize, the loop 

would not be stopped.  

For the two reasons we describe above, we bring up follow pseudo codes to 

explain how we solve these problems. First is the pseudo code of 3-DES encryption in 

Fig. 4-3. 



 

27 

 

 

Fig. 4-3 3-DES Encryption Pseudo code 

In the figure above, it is obviously that only the function named 

__global__3DES_encryption () would be executed in GPU. This is because of parallel 

factor. Besides the __global__3DES_encryption function, only the key_schedule 

function can be parallelized. But the key_schedule function has few computation that 

it is not worth executing in CUDA, its memory access time is larger than its 

computation time.  

Another interesting thing deserves to mention is the input function. Since we 

Algorithm 3-DES Encryption ((plaintext, ciphertext) ; 
Input: plaintext (64 * N bits plaintext). 
Output: ciphertext (64 * N bits ciphertext). 
 
// N means how many threads we use in device.   
 
begin 
 declare integer plaintext[64 * N], temptext[64 * N], ciphertext[64 * N]; 
 declare integer key1[64], key2[64], key3[64], key[192] ; 
 declare integer plaintextsize = 64 * N;  
 
 While(not reach the end of file) 
 { 

input_EN (plaintext, temptext); //put plaintext tinto temp buffer 
  key = key_schedule (key1, key2, key3);  // generate subkeys  
  
  copy temptext form host memory to device memory 
  __global__3DES_encryption (temptext, key); 
  copy temptext form device memory to host memory 
 
  swap (ciphertext , temptext); 
  output_EN (ciphertext); 
 } 

end 

 

 



 

28 

 

want to design a mature code to support all the file types, we need to devise new end 

symbol judgment methods. Our method is to design a new end symbol for all file 

types. If input 1000 words which equals to 8000 bits of plaintext once, the design 

details are follows: 

I. Design a new end symbol  

End symbol is a unique word that only recognized by program, so we cannot 

choose the common word to be the end symbol. We choose the word “/nend/ab” 

for our end symbol. This can distinguish the end symbol from other words. 

II. Add end symbol to plaintext every 1000 words 

The program will check if the plaintext reaches the end every 1000 words. We 

use fread() to determine if we had already read in all the plaintext. If fread() 

return the value of 8000, which means input 8000 bits or 1000 words. This 

means the file may not reach the end. We should add the end symbol to this point 

and go on search for the end of the plaintext. So we accurately output 1008 

words (1000 words + 8 words end symbol) at one time. 

III. Find out the end of the plaintext 

While the value returned form fread() is less than 8000, this means we have 

found the end of the plaintext. Since we process 1000 words once, we need to fill 

it to reach 1000 words. The end symbol “/nend/ab” is only 8 words. After the end 

symbol, we fill the vacancy with “\0” to reach 1008 words. 

IV. The stop condition 

After we find out the end of the plaintext, next round the fread() would return the 

value of 0. 0 means nothing left in the plaintext, so the program will break the 

loop to stop 3-DES encryption. 



 

29 

 

 

Fig. 4-4 Input Details of 3-DES Encryption Pseudo Code 

4.3. 3-DES Decode implementation 
3-DES decode implementation is similar to 3-DES encode implementation. But 

3-DES decryption needs more decision operation, which means that needs more CPU 

Algorithm 3-DES input_EN (plaintext, *temptext) ; 
Input: plaintext (64 * N bits ciphertext). 
Output: ciphertext (64 * N bits plaintext). 
 
// N means how many threads we use in device.   
begin 
 int trueinputsize = inputsize -8; 
 int len = fread(cp , sizeof(unsigned char), trueinputsize, fileinput); 
  
 if(len equals to the size of input file) 
 { // add end symbol after the end 
  temptext[len] = '/';             temptext [len+1] = 'n'; 
  temptext [len+2] = 'e';    temptext [len+3] = 'n'; 
  temptext [len+4] = 'd';   temptext [len+5] = '/'; 
  temptext [len+6] = 'a';   temptext [len+7] = 'b'; 
 } 
 if( len is less than the size of input file and len doesn’t equals to 0) 
 { // add end symbol after the end and fill 1008 words with ‘\0’ 
  temptext [len] = '/';    temptext [len+1] = 'n'; 
  temptext [len+2] = 'e';   temptext [len+3] = 'n'; 
  temptext [len+4] = 'd';   temptext [len+5] = '/'; 
  temptext [len+6] = 'a';   temptext [len+7] = 'b'; 
  for (i = (len+8); i < inputsize ; i++) 
   temptext [i] = '\0'; 
 } 
 if(file reach the end or len is 0) 
  break; 

end 



 

30 

 

time to determine when to stop. Unlike 3-DES encode implementation, the input of 

3-DES decryption is all cipher texts. We need to decode the cipher texts before we 

analysis it. 

 

Fig. 4-5 3-DES Decryption Pseudo code 

The main implementation difference between encryption and decryption is the 

decision condition. In 3-DES encryption program, system can use feof() to see if the 

file reaches the end. But in 3-DES decryption, all inputs are cipher texts. If we just 

Algorithm 3-DES Decryption (plaintext, *temptext) ; 
Input: ciphertext (64 * N bits ciphertext). 
Output: plaintext (64 * N bits plaintext). 
 
// N means how many threads we use in device.   
 
begin 
 declare integer plaintext[64 * N], temptext[64 * N], ciphertext[64 * N]; 
 declare integer key1[64], key2[64], key3[64], key[192] ; 
 declare integer ciphertextsize = 64 * N;  
 
 While(not reach the end of file) 
 { 

Input_DE (ciphertext, temptext, ciphertextsize); //put ciphertext 
into temp buffer 

  key = key_schedule (key3, key2, key1);  // generate subkeys  
  
  copy temptext form host memory to device memory 
  __global__3DES_encryption (temptext, key); 
  copy temptext form device memory to host memory 
 
  swap (plaintext , temptext); 
  output_DE (plaintext); 
 } 

end 

 



 

31 

 

decode and output, we would get the plaintext with many end symbols inside. The 

following figure is our implement details. 

 

I. Input 1008 words and decode 

While this program starts, it would input 1008 words form cipher text. After 

inputting 1008 words, the program will send the cipher text to GPU for decoding. 

This phase will continue until there are no words of cipher text to input. 

II. Analysis after decoding 

After decoding, the program would analysis the last eight words of the plaintext. 

If the eight words is “/nend/ab”, it means the input file does not reach the end. 

The program will output the result without “/nend/ab” and return to stage one. 

Else if the eight words is not “/nend/ab”, it means the input file reaches the end. 

The program should trace the 1008 words to find out where the end symbol is. 

When the program finds out the position of the end symbol, it would send the 

result without “/nend/ab\0\0\0……” to plaintext. After that, the program will 

break from the loop and finish all the jobs. 

 

 

 

 

 



 

32 

 

 

Fig. 4-6 Output function of 3-DES Decryption Pseudo code 

Algorithm 3-DES output_DE ((plaintext, *temptext) ; 
Input: ciphertext (64 * N bits ciphertext). 
Output: plainrtext (64 * N bits plaintext). 
 
// N means how many threads we use in device.   
 
begin 
 int countertemp = 0; 
  
 if (there is nothing inputs form file) 
  return; // reach the file end 
 if( (temptext[len-8] = ‘/’ ) && ( temptext [len-7] = 'n' ) && 
   (temptext [len-6] = 'e’) && ( temptext [len-5] = 'n ) &&; 
   (temptext [len-4] = 'd’) && ( temptext [len-3] = '/' ) && 
   (temptext [len-2] = 'a') && ( temptext [len-1] = 'b') 
 } 
  Countertemp= inputsize - 8; // set the size for output 

esle 
 { 
  unsigned char *temp = temptext; 
  for( int i = 0; i < inputsize; i ++ ) 
  { 
   if( (temp [i] = '/’) && (temp [i+1] = 'n') && 
     (temp [i+2] = 'e’)&& (temp [i+3] = 'n') && 
     (temp [i+4] = 'd')&& (temp[i+5] = '/') && 
     (temp [i+6] = 'a')&& (temp[[i+7] = 'b') ) 
     Break; 
   else 
    countertemp ++; // set the size for output 
  } 
 } 
 fwrite(temptext, size of (unsigned char), countertemp, Decodeoutput); 
 // Decodeoutput is a pointer to the output file. 

end 

 



 

33 

 

4.4.  Configuration  

4.4.1. Hardware configuration 

To support CUDA computing, we have the following hardware configuration: 

CPU Intel® Core™2 Quad Processor Q6600 (2.4GHz, quad-core) 

Motherboard ASUS P5E-VM-DO-BP, Intel® X38 Chipset 

RAM Transcend 2G DDR-800 

GPU NVIDIA 9800GT 521MB (ASUS OEM) 

HDD WD 320G w/ 8MB buffer 

Table 4-4 Hardware Configuration 

Since we want to compare the performance of CPU versus GPU, we list the 

specification of the GPU in detail as follows: 

 

Table 4-5 NVIDIA 9800GT Hardware Specification 



 

34 

 

4.4.2. Software Configuration 

 

OS OPEN SUSE 11.1 (32bit version) 

GPU Driver Version 97.73 

CUDA Version 2.0 beta 

Table 4-6 Software Configuration 

4.5. Evaluation and Analysis 
The following is our statistics of experimentation. We got the data by testing the 

CPU time in OpenSSL and implementing DES and 3-DES on graphic card. Besides 

DES and 3-DES cryptography, AES cryptography had been implemented on CUDA in 

2007 by Svetlin A. Manavski [28]. We will discuss how many differences between 

our results. 

cipher \ compute method  OpenSSL on CPU  Implement DES on CUDA in 

our work 

DES  

(64bits)  

4M  60ms  32ms  

8M  108ms  41ms  

109.8M  2s 100ms  712ms 

697M  14s 313ms  4s808ms  

Table 4-7 Comparison DES in CPU and in GPU 



 

35 

 

 

Fig. 4-7 DES performance comparison 

 

There are two parts in table 4-7. One is about the CPU time to implement DES in 

CPU and the other one is about the CPU time to implement DES in CUDA 

programming. We test the DES’s original CPU time in OpenSSL. It is obviously that 

we get better performance in CUDA programming. In plaintext of 4M byte, DES in 

CUDA programming has about 1/2 CPU time to DES of OpenSSL in CPU. In 

plaintext of 697M, we even get about three to four times of performance in CUDA 

programming. This means we would get more benefits in larger plaintext size to fit 

parallel algorithm. 

 

 

 

 

 

60 108

2100

14313

30 41 712

4808

0

2000

4000

6000

8000

10000

12000

14000

16000

4M 8M 109.8M 697M

CP
U

 ti
m

e 
(m

s)

plaintext size

DES performance comparison

DES on CPU

DES on GPU



 

36 

 

cipher \ compute method  3-DES on CPU  Implement 3-DES on CUDA in 

our work 

3-DES  

(192bits)  

4M  220ms  44ms  

8M  244ms  56ms  

109.8M  6s 936ms  1s 160ms  

697M  47s 15ms  8s 225ms  

Table 4-8 Comparison 3-DES in CPU and in GPU 

 

 

Fig. 4-8 3-DES performance comparison 

In 3-DES, we can see that it would get about five times performance in GPU 

than in CPU while the file size is near to 4M bytes. Moreover, it would get more than 

six times performance if the file size is larger than 700M bytes. The new 3-DES on 

220 244

6936

47015

44 56 1160

8225

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

4M 8M 109.8M 697M

CP
U

 ti
m

e(
m

s)

plaintext size

3-DES perfromance comparison

3-DES on CPU

3-DES on GPU



 

37 

 

GPU is faster than AES on CPU in all the situations. This means that we can do the 

same encryption and decryption in 3-DES to get the similar performance. The 

following is relationship between AES on CPU and 3-DES on GPU. 

In the related work about speeding up AES with CUDA programming by Svetlin 

A. Manavski, a comparison has been made between GPUs and a CPU implementation 

based on the OpenSSL [29] library. Both the internal GPU elaboration time is shown 

and the total time, that includes the time needed for the download and read-back 

operations (that means copying data from the host memory to the GPU device and 

back). The CUDA-AES [30] implementation on NVIDIA card is faster than the CPU 

on every input size with reference both to the internal GPU and to the total time [31]. 

A peak throughput rate of 8.28 Gbit/s is achieved with an input size of 8MB. In that 

case the GPU is 19.60 times faster than the CPU [32]. So we have both have about six 

times in GPU than in CPU when the file size is more than 512M bytes. 

 

 

 

 

 

 

 

 

 

 

 



 

38 

 

Chapter 5                      
Conclusion and Future works 

5.1. Conclusion 
Parallel programming nowadays becomes more and more important to 

programmer. This is because multi-cores is the trend to both CPU and GPU 

architecture development. However not all the programs are parallel program and this 

paper provide a method to solve this program. Find out the main points to parallelize a 

program is the most important thing to programmer. 

CUDA code is not easy to optimize if the user do not understand the architecture 

of CUDA. Sometimes this makes programmer to abuse the graphic memory. Then the 

new CUDA program may have worse performance than original program on CPU. So 

the final performance is decided by programmer’s effort. 

Although DES and 3-DES is an old cipher, there still many people use them to 

do encoding and decoding. This is because it needs a long time to verify the security 

of a cipher. DES and 3-DES however both have the trusty security. 3-DES is a 

compute-sensitive program, so it usually is used for off-time computing. For example, 

many finance institutions and banks use 3-DES to protect their system while making 

an inventory. Each cipher has its advantages and disadvantages, what we have to do is 

to properly use the advantages and keep of the disadvantages. It is better to ameliorate 

a defective cipher rather than abandon it rashly. 

 In the result we can see that CUDA programming is a cheap way to speed up a 

compute-sensitive program. Rather than implement a system on chip or on FPGA for 

about more than one hundred thousand, use just need to pay about five to eight 



 

39 

 

thousand to get CUDA. Maybe a program gets better performance on FPGA than on 

graphic card. But this is a cheap and easy method for a program to learn how to speed 

up a program or a system in parallel program. 

5.2. Future work 
(1) Speed up more cipher in CUDA programming 

Except for DES and 3-DES, there are still many ciphers that we can try to speed 

them up in CUDA programming. But some cipher is not easy to implement on graphic 

card. For example the RSA cipher is very hard to get better performance in CUDA 

programming. RSA is an algorithm for public-key encryption. The encryption fun of 

RSA is . C means cipher text, m and n are integers that 0 < m 

< n. It is obviously that is very hard to parallelize the encryption function of RSA. 

Although there is still some methods like squaring algorithm can improve this 

situation. However the performance is still too bad compared with programming in 

CPU and CUDA unless those programmers can design a new parallel algorithm to 

RSA. Entirely more high performance ciphers bring us more convenient life. It is 

necessary that programmers try to speed up more cipher in CUDA programming. 

(2) Add the new 3-DES architecture to SSL 

Secure Sockets Layer (SSL), are cryptographic protocols that provide security 

and data integrity for communications over networks such as the Internet. SSL 

encrypt the segments of network connections at the transport layer end-to-end. SSL 

contains three parts of cipher system, public-key cryptography, symmetric -secret 

system, and one-way hash function. 3-DES is one kind of public-key cryptography. If 

programmers furthermore implement the new 3-DES architecture to SSL, it may 

improve the all the transport layer performance. 



 

40 

 

(3) Improve the new 3-DES-website’s security 

Our new 3-DES-website only offers data encryption and decryption. It could be 

safer if adding more safety mechanisms. However website security design is not our 

professional specialty. After this drawback has been reformed, the new 3-DES-websitr 

can be used to ensure internal management of enterprises.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

41 

 

Bibliography 
[1]  E.Biham and A. Shamir, “ Differential Cryptanalysis of DES-like 

Cryptosystems.” Journal of Cryptology, Vol.4, pp.3-72, (1911). 

[2]  National Institute of Standards and Technology (NIST), “FIPS 197: Advanced 

Encryption Standard (AES)”, 2001. 

[3]  E.Biham and A.Shamir, “ Differential Cryptanalysis of FEAL and N-Hash, 

“ Advance in Cryptology – EUROCRYPT’91, Lecture Note in Computer 

Science, Vol.547, p.1-16, (1991). 

[4]  E.Biham and A.Shamir, “Differential Cryptanalysis of the full 16-round DES, 

“ CRYPTO’92 Extended Abstracts, p.12-1-12-5, (1992). 

[5]  General Purpose Computation Using Graphics Hardware,  

 http://www.gpgpu.org. 

[6]  NVidia CUDA , http://developer.NVidia.com/object/CUDA.html. 

[7]  OpenGL Shading Language Specification, Version 1.20 

http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf 

[8]  AMD CTM, http://ati.amd.com/companyinfo/researcher/documents.html. 

[9]  NVIDIA CUDA Programming Guide, Version 0.8.2 

http://developer.download.nvidia.com/compute/cuda/0_81/NVIDIA_CUDA_Pr

ogramming_Guide_0.8.2.pdf 

 

http://www.gpgpu.org/�
http://developer.nvidia.com/object/CUDA.html�
http://www.opengl.org/registry/doc/GLSLangSpec.Full.1.20.8.pdf�
http://developer.download.nvidia.com/compute/cuda/0_81/NVIDIA_CUDA_Programming_Guide_0.8.2.pdf�
http://developer.download.nvidia.com/compute/cuda/0_81/NVIDIA_CUDA_Programming_Guide_0.8.2.pdf�


 

42 

 

[10]  I. Buck, A. Lefohn, P. McCormick, J. Owens, T. Purcell, R. Strodka, “General 

Purpose Computation on Graphics Hardware”. IEEE Visualization 05, 

Minneapolis, USA, 2005. 

[11]  OpenGL Architecture Review Board, M. Woo, J. Neider, T. Davis, D. Shreiner, 

“The OpenGL Programming Guide: The Official Guide to Learning OpenGL, 

Version 2”, 5th edition. ISBN 0321335732, Addison-Wesley, New York, 2005. 

[12]  D. L. Cook, A. D. Keroymytis, “Cryptographics: Exploiting Graphics Cards for 

Security”, Advancements in Information Security series, Springer, 2006.  

[13]  Svetlin A. Manavski, CUDA Compatible GPU as an Efficient Hardware 

Accelerator for AES Cryprography, Springer-Verlag, New York, 2007. 

[14]  A.Tardy-Corfdir and H.Gilbert, “A Known Plaintext Attack of FEAL-4 and 

FEAL-6, “ Advances in Cryptology – CRYPTO’91, Lecture Notes in Computer 

Science, Vol.576, (1991). 

[15]  M. Matsui and A. Yamagishi, “A New Method for Known Plaintext Attack of 

FEAL Cipher, “ Advances in Cryptology – EUROCRY’92, Lecture Notes in 

Computer Science, Vol.658 , (1992). 

[16]  A. Shamir, “ On the Security of DES, “ Advances in Cryptology –CRYPTO’85, 

Lecture Notes in Computer Science, (1985). 

[17]  R.A.Rueppel, “Analysis and Design of stream Cipher, “Springer Verlag, 

(1986). 



 

43 

 

[18]  Federal Information Processing Standards Publication (FIPS PUB) 46-2, Data 

Encryption Standard (DES), National Institute of Standards and Technology, 

Washington, DC, 1993.  

[19]  M. J. Wiener, “Efficient DES Key Search,” Technical Federal Information 

Processing Standards Publication (FIPS PUB) 46-2, Data Encryption Standard 

(DES), National Institute of Standards and Technology, Washington, DC, 1993.  

[20]  M. J. Wiener, “Efficient DES Key Search,” Technical Report TR-244, School 

of Computer Science, Carleton University, Ottawa, Canada, May 1994. 

Presented at the rump session of Crypto’93. 

[21]  F. Hendessi and M. R. Aref, “A Successful Attack Against the DES,” 

Information Theory and Application, Third Canadian Workshop Proceedings, 

1994, pp. 78-90. 

[22]  Frank Rubin, “Foiling an Exhaustive Key-Search Attack,” CRYPTOLOGIA 11, 

No. 2, 102-107 (April 1987). 

[23]  M. Hellman, “A Cryptanalytic Time-Memory Trade-off,” IEEE Trans. Info. 

Theory IT-26, No. 4, 401-406 (1980). 

[22]  E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption 

Standard, Springer-Verlag, New York, 1993. 

[24]  E. Biham and A. Shamir, Differential Cryptanalysis of the Data Encryption 

Standard, Springer-Verlag, New York, 1993. 



 

44 

 

[25]  M. Matsui, “The First Experimental Cryptanalysis of the Data Encryption 

Standard,” Lecture Notes in Computer Science 839, Advances in 

Cryptology-Crypto ’94 Proceedings, Springer-Verlag, New York, 1994.  

[26]  D. Coppersmith, “The Data Encryption Standard (DES) and Its Strength 

Against Attacks,” IBM J. Res. Devebp. 38, NO. 3, 243-250 (1994). 

[27]  B. S. Kaliski, Jr. and M. J. B. Robshaw, “Multiple Encryption: Weighing Security and 

Performance,” Dr. Dobb’s Journal 21, No. 1, 123-127 (1996) 

[28]  J. Daemen, V. Rijmen, “AES Proposal: Rijndael”. Original AES Submission to 

NIST, 1999. 

[29]  OpenSSL Open Source Project, http://www.openssl.org. 

[30]  C. Su, T. Lin, C. Huang, C. Wu, “A High-Throughput Low-Cost AES 

processor”. IEEE Communications Magazine, vol. 41, no. 12, pp. 86-91, 2003.  

[31]  J. Wolkerstorfer, E. Oswald, M. Lamberger, “An ASIC Implementation of the 

AES Sboxes”. RSA Conference 02, San Jose CA, 2002. 

[32]  A. Hodjat, I. Verbauwhede, “Minimum Area Cost for a 30 to 70 Gbits/s AES 

Processor”. IEEE Computer Society Annual Symposium on VLSI (ISVLSI 

2004), Eerging Trends in VLSI System Design, pp 83-88, 2004.  

http://www.openssl.org/�

	Acknowledgement
	Table of Contents
	List of Figure
	Chapter 1  Introduction
	1.1. Preface
	1.2. Motivation

	Chapter 2                       Background and Related work                                                  
	2.1. GPU (Graphics Processor Unit) introduction
	2.2. CUDA (Compute Unified Device Architecture) 
	2.3. CUDA memory introduction
	2.4. Related Work
	2.4.1. Related Work: AES speed up in CUDA  


	Chapter 3  System Architecture
	3.1. DES and 3DES Introduction
	3.1.1. DES Architecture
	3.1.2. 3-DES Architecture

	3.2. Implement 3-DES in CUDA 
	3.2.1. Facing problems in CUDA program
	3.2.2. 3-DES Architecture for CUDA programming

	3.3. Integrate 3-DES with web server

	Chapter 4                        Experimental Results and Analysis
	4.1. 3-DES implementation in GPU
	4.1.1. Move data from CPU to GPU
	4.1.2. Initial permutation
	4.1.3. Round function

	4.2. 3-DES Encode implementation
	4.3. 3-DES Decode implementation
	4.4.  Configuration 
	4.4.1. Hardware configuration
	4.4.2. Software Configuration

	4.5. Evaluation and Analysis

	Chapter 5                       Conclusion and Future works
	5.1. Conclusion
	5.2. Future work

	Bibliography

