
國 立 交 通 大 學

資訊科學與工程研究所

博　士　論　文

無線慣性感測網路中的
人體動作追蹤及其感測資料壓縮問題

Human Motion Tracking and Its Data Compression in
Body-Area Inertial Sensor Networks

學　　生：吳鈞豪　　　

指導教授：曾煜棋　教授

中　華　民　國　一　百　零　一　年　五　月

無線慣性感測網路中的人體動作追蹤及其感測資料壓縮問題
Human Motion Tracking and Its Data Compression in

Body-Area Inertial Sensor Networks

學　　生：吳鈞豪 Student: Chun-Hao Wu

指導教授：曾煜棋 Advisor: Yu-Chee Tseng

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

博 士 論 文

A Dissertation
Submitted to Institute of Computer Science and Engineering

College of Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Doctor of Philosophy
in

Computer Science

May 2012

Hsinchu, Taiwan, Republic of China

中華民國一百零一年五月

無線慣性感測網路中的人體動作追蹤及其感測資料壓縮問題

學生：吳鈞豪 指導教授：曾煜棋

國立交通大學資訊科學與工程研究所博士班

摘 要

感知科技和無線網路的進步，促成了「無線慣性感測網路」的發展。其可藉由在人體上，穿

戴無線傳輸的慣性感測器，捕捉肢體的動作，並可應用在包含醫療照顧、電子遊戲和情緒運算上。

對於建置高無線傳輸效率、高動作捕捉精度的感測平台所需要的技術，我們在此進行了三項基礎

性的研究。

第一項研究，探討利用資料壓縮，來克服無線慣性感測網路中的感測資料收集議題。我們觀

察到，雖然相鄰的感測節點可能激烈地競爭頻寬，但肢體移動時，其感測資料通常含有些許重覆，

甚至是強烈的時、空相關性。我們為無線慣性感測網路，特別設計壓縮演算法，以適用於其感測

節點可監聽彼此傳輸的特性。為了有效利用監聽的機制，我們將無線慣性感測網路上的資料壓縮

問題，建模為在監聽圖上的組合最佳化問題，證明其計算復雜度，並展示有效的計算方法。我們

亦探討如何設計支援此壓縮模型的無線媒體存取層協定。實驗回報了以皮拉提斯的醫療復建動作

進行的案例分析。結果顯示，我們的解決方法，可比先前研究節省百分之七十以上的傳輸資料量。

不同於第一項研究中，每個節點僅可容許監聽至多 κ = 1 個其它節點的傳輸，在第二項研究

裡，我們進一步考慮「複數空間相關性」，延伸 κ = 1 到 κ > 1，並建構部分排序性的「有向無

環圖」來表示感測節點間的壓縮相依性。相較於 κ = 1 時，可在多項式時間內找到最小成本生成

樹，我們證明即使 κ = 2，尋找最小成本的有向無環圖也是具 NP 完備性的。之後我們提出有效

率的經驗性演算法，並用真實感測資料驗證其效能。

除了資料收集，在第三項研究中，我們亦感興於在人體上佈置多個加速度計，以追蹤人體的

動作。其中一個重要議題是如何計算重力的方向。這是很有挑戰的問題，尤其是當肢體在持續移

動時。假設已將多個加速度計擺置於人體的一個剛性肢節上，一篇近期的論文提出一個資料融合

的方法，可量測此剛體座標上重力的方向。然而，它並未探討，如何找到最佳的擺放位置，以達

到最小的量測誤差。在此，我們定義此擺置最佳化問題，並提出兩個經驗性演算法，名之為「基

於梅式取樣之擺置法」與「最大間距法」。模擬與真實試驗的結果，亦顯示我們的方法，在多種

幾何形狀的剛體上，都能有效地找出近似解。

關鍵字：加速度計、無線慣性感測網路、行動運算、資料壓縮、擺置最佳化、人體動作追蹤

i

Human Motion Tracking and Its Data Compression in

Body-Area Inertial Sensor Networks

Student: Chun-Hao Wu Advisor: Prof. Yu-Chee Tseng

Department of Computer Science, National Chiao Tung University

ABSTRACT

The advance of sensing technology and wireless communication has boosted body-area in-

ertial sensor networks (BISNs), in which wireless wearable inertial sensor nodes are deployed

on a human body to monitor its motion. Applications include medical care, pervasive video

games, and affective computing. We conduct fundamental research into the technologies re-

quired to create an efficient wireless communication BISN that maximizes motion tracking

accuracy and data collection efficiency.

The first work addresses data collection issues in BISNs by data compression. We observe

that, when body parts move, although sensor nodes in vicinity may compete strongly with each

other, the transmitted data usually exists some levels of redundancy and even strong tempo-

ral and spatial correlations. Our scheme is specifically designed for BISNs, where nodes are

likely fully connected and overhearing among sensor nodes is possible. We model the data

compression problem for BISNs, where overhearing should be efficiently utilized, as a combi-

natorial optimization problem on overhearing graphs. We show its computational complexity

and present efficient algorithms. We also discuss the design of the underlying MAC protocol

to support our compression model. An experimental case study in Pilates exercises for patient

rehabilitation is reported. The results show that our schemes reduce more than 70% of overall

transmitted data compared with existing approaches.

Based on the first work, where a node is allowed to overhear at most κ = 1 node’s transmis-

sion, in the second work, we consider multi-spatial correlations by extending κ = 1 to κ > 1

and constructing a partial-ordering directed acyclic graph (DAG) to represent the compression

dependencies among sensor nodes. While a minimum-cost tree for κ = 1 can be found in poly-

nomial time, we show that finding a minimum-cost DAG is NP-hard even for κ = 2. We then

propose an efficient heuristic and verify its performance by real sensing data.

In addition to data collection, in the third work, we are interested in tracking human pos-

ii

tures by deploying accelerometers on a human body. One fundamental issue in such scenarios

is how to calculate the gravity. This is very challenging especially when the human body parts

keep on moving. Assuming multiple accelerometers being deployed on a rigid part of a hu-

man body, a recent work proposes a data fusion method to estimate the gravity vector on that

rigid part. However, how to find the optimal deployment of sensors that minimizes the esti-

mation error of the gravity vector is not addressed. In this work, we formulate the deployment

optimization problem and propose two heuristics, called Metropolis-based method and largest-

inter-distance-based (LID-based) method. Simulation and real experimental results show that

our schemes are quite effective in finding near-optimal solutions for a variety of rigid body

geometries.

Keywords: accelerometer, body-area inertial sensor network, deployment optimization, hu-

man motion tracking, mobile computing, spatial-temporal data compression.

iii

誌 謝

本文從構思到完稿，花費了許多時間與心力，並得到不少人的幫忙才得以完成。在此要向所有幫助過的人，無論

是直接或間接，傳達我的感謝之意。

尤其得特別感謝指導教授，曾煜棋教授，不遺餘力地協助我完成本研究，若本文的任何的貢獻，都得歸功於他的

指導；研究上徬徨迷惘的時候，也給予我許多支持與開導。再來要感謝論文口試的委員們：陳志成教授（資工系）、

溫�岸教授（電工系）、王友群教授（中山大學資工系）、金仲達教授（清華大學資工系）、朱浩華教授（台灣大學

資工系）、鄭智湧教授（海洋大學電機系）與胡竹生教授（電機系）。感謝委員們專業的批評與指教，讓本文更臻完

善。

此外，本文許多的技術知識，得感謝教導我專業科目的老師們。在計算的理論上，得特別感謝蔡錫鈞老師與黃廷

祿老師，帶領我開拓理論的視野。在通訊與訊號處理上，得特別感謝高銘盛老師、杭學鳴老師的殷殷教誨。本文的

實作與系統設計，得特別感謝教導我微處理機技術的曹孝櫟老師，同時也是大學時的專題指導老師，給予過許多的

建議與幫助。

還要感謝一起成長、互相扶持的實驗室同學與助理，以及一起執行計畫的同仁們，不僅陪我渡過這段時光，與你

們研討論文、交流心得，也讓我獲益良多。

最後，感謝我親愛的家人、朋友，以及寵物們。

謹此致謝。

吳鈞豪

中華民國一百零一年五月

iv

Contents

Abstract (Chinese) i

Abstract ii

Acknowledgement iv

Contents v

List of Tables vii

List of Figures viii

1 Introduction 1

1.1 Backgrounds and Motivation . 1

1.1.1 Prototyping Experience: Home Rehabilitation 3

1.1.2 Prototyping Experience: Multi-Screen Cyber-Physical Video Game . . 5

1.2 Issues Addressed in this Dissertation . 10

1.3 Organization of this Dissertation . 12

2 Data Compression by Temporal and Spatial Correlations in a BISN 13

2.1 Introduction . 13

2.2 Related Works . 15

2.3 BISN System Architecture . 16

2.4 Design of Data Compression by Overhearing 18

2.4.1 Basic Idea . 18

2.4.2 Data Compression Model . 21

2.4.3 Algorithms for Constructing the TX Order Tree T 25

2.4.4 Design Issues of the Underlying MAC Protocol 27

v

2.4.5 Retraining the System . 29

2.5 Experiment Results: A Case Study in Pilates Exercises 29

2.5.1 Experiment Setup and Data Collection 29

2.5.2 Effects of γ . 31

2.5.3 Compression Ratio under Ideal Channel Condition 32

2.5.4 Compression Ratio under Non-Ideal Channel Condition 32

2.5.5 Energy Cost . 36

2.5.6 Scalability Issue . 39

2.5.7 Effect of System Retraining . 39

2.6 Conclusions . 40

3 Exploiting Multi-Spatial Correlations of Motion Data for Data Compression 42

3.1 Introduction . 42

3.2 Multi-Spatial Data Compression . 43

3.2.1 Problem Definition . 43

3.2.2 Complexity Analysis . 45

3.2.3 A Greedy Cycle Breaker Heuristic . 46

3.3 Experimental Results . 46

3.3.1 Environment . 47

3.3.2 Compression under Ideal Channels 47

3.3.3 Compression under Lossy Channels 48

3.4 Conclusions . 49

4 Inertial Sensor Deployment Methods for Gravity Measurement 51

4.1 Introduction . 51

4.2 Related Works . 53

4.3 Gravity Measurement and Deployment Optimization Problems 54

4.4 Optimization Heuristics . 56

4.4.1 Metropolis-Based Method . 56

4.4.2 Largest-Inter-Distance-Based Method 57

4.5 Simulation and Experimental Results . 61

4.5.1 Simulation Setup . 62

4.5.2 Comparison of Accuracy and Execution Time 63

vi

4.5.3 Effects of the Number of Sensors . 64

4.5.4 Real Gravity Measurement . 64

4.6 Conclusions . 65

4.7 Appendices . 65

4.7.1 Proof of Theorem 4.4.2 . 65

4.7.2 Proof of Theorem 4.4.3 . 68

5 Conclusions 77

Bibliography 78

Curriculum Vitae 83

vii

List of Tables

2.1 Energy-Related Parameters Used in Our Evaluation 37

viii

List of Figures

1.1 An example of a BISN-based human motion tracking system. 2

1.2 System architecture. 3

1.3 Pilates exercises for low back pain relief. 4

1.4 Software architecture. 4

1.5 Our wireless sensing platforms. 5

1.6 System architecture. 6

1.7 Software architecture. 7

1.8 Human body and equipment model. 8

1.9 Snapshots of the game. 9

1.10 Virtual character and camera settings in Fig. 1.9. 10

2.1 A BISN architecture for motion recognition. 13

2.2 An example of placing sensor nodes on a human body. 17

2.3 Examples of Pilates exercises. 17

2.4 Validation of our temporal and spatial correlation modeling. (a) Calibrated data

X
(1)
i of exercise Fig. 2.3(a). (b) The difference vector ∆X

(1)
i . (c) Predicting

∆X
(1)
4 by ∆X

(1)
5 . (d) Probability distribution of the prediction error vector ǫ(4,1)|5. 20

2.5 Offline and online phases of our data compression model. 22

2.6 An example of the MT method. 27

2.7 The effect of γ. (a) waveforms of X
(1)
i before and after the low-pass filter. (b)

compression ratio vs γ. 31

2.8 Comparison of compression ratios of individual nodes (v1, v2, . . . , v7) under

an ideal wireless channel. (a) exercise Fig. 2.3(a). (b) exercise Fig. 2.3(b). (c)

exercise Fig. 2.3(c). (d) exercise Fig. 2.3(d). 33

2.9 Comparison of overall compression ratios and the partial-ordering trees being

used. (a) overall compression ratio. (b) partial-ordering trees. 34

ix

2.10 The effect of wireless packet loss. 36

2.11 Comparison of the maximal average per-node energy consumption among all

nodes for each exercise. (a) exercise Fig. 2.3(a). (b) exercise Fig. 2.3(b). (c)

exercise Fig. 2.3(c). (d) exercise Fig. 2.3(d). 38

2.12 The effect of system retraining on overall compression ratio. (a) exercise Fig. 2.3(a).

(b) exercise Fig. 2.3(b). (c) exercise Fig. 2.3(c). (d) exercise Fig. 2.3(d). 40

3.1 Data compression models. c(vi |Si) means the compressed size of vi’s data

after vi overhears Si. (a) individual. (b) single-spatial. (c) multi-spatial. 44

3.2 An example of 2-MDC: (a) G, (b) all dependency relations, (c) a possible DAG

G′, and (d) a topological sort of G′. 44

3.3 The sensor locations in our experiments. 47

3.4 The distributions of c(v | S) by |S|. 48

3.5 Comparison of compressed data sizes under ideal channels. 48

3.6 Comparison of compressed sizes under lossy channels. (a) static channels. (b)

dynamic channels. 49

3.7 Percentage of overhearing under static lossy channels. 50

4.1 Gravity measurement in (a) a car and (b) a human body, where g is the gravity

vector. 52

4.2 The geometrical model of our work, where v and φ are unknown to our system

and g is to be calculated. 53

4.3 The kinematical model for one rigid body. 54

4.4 (a) a sphere rigid body attached by three fixed sensors and one moving sensor

and (b) the reciprocals 1/σ2
e(P) by moving point p4. 58

4.5 (a) a cube rigid body attached by three fixed sensors and one moving sensor and

(b) the reciprocals 1/σ2
e(P) by moving point p4. 59

4.6 A rectangular box attached by four sensors with its joint at ×. 60

4.7 An example of iterative projection on three consecutive polygons. 62

4.8 An example of running the LID-based method by Unity. (a) initial deployment.

(b) final deployment. 62

4.9 Rigid body geometries, each with its joint placed at one of three possible positions. 63

x

4.10 Comparison of α, with 95% confidence intervals shown on the bars. (a) geom-

etry (a). (b) geometry (b). (c) geometry (c). (d) geometry (d). (e) geometry

(e). 69

4.11 Comparison of σ2
e , with 95% confidence intervals shown on the bars. (a) geom-

etry (a). (b) geometry (b). (c) geometry (c). (d) geometry (d). (e) geometry

(e). 70

4.12 Comparison of execution time. 71

4.13 Effects of m on α. (a) geometry (a). (b) geometry (b). (c) geometry (c). (d)

geometry (d). (e) geometry (e). 72

4.14 Effects of m on σ2
e(P). (a) geometry (a). (b) geometry (b). (c) geometry (c).

(d) geometry (d). (e) geometry (e). 73

4.15 Effects of m on execution time. (a) geometry (a). (b) geometry (b). (c) geome-

try (c). (d) geometry (d). (e) geometry (e). 74

4.16 Our experimental scenario: (a) geometry model, (b) state “up”, and (c) state

“down”. 75

4.17 The angles between ĝ(t) and the axes. (a) a slow rotation. (b) fast rotations. . . 75

4.18 The SVD process for a regular triangle. 76

xi

Chapter 1

Introduction

1.1 Backgrounds and Motivation

The advance of micro-electro-mechanical systems (MEMS) and wireless communication has

boosted body-area sensor networks (BSNs), in which miniature, integrated wireless sensor

nodes are deployed on a human body to monitor various physical and biological signs, such

as motion, heartbeat rate, and blood pressure [1]. An important application of BSNs is to track

human body motions by deploying inertial sensors on movable body parts, forming a body-area

inertial sensor network (BISN).

An example of a human motion tracking system based on a BISN is shown in Fig. 1.1.

The system senses a user’s motion, analyzes it, understands the intention of the motion, and

provides proper feedback to the user. The BISN, the front-end of the system, includes wireless

inertial sensor nodes deployed on the user’s body and a wireless sink node that collects sensing

data from the network. The application system analyzes the collected sensing data for various

purposes and is usually connected to peer systems and servers on the Internet for remote social

interaction and monitoring.

The use of BISNs has many advantages over traditional camera-based motion capturing

systems. It is much cheaper, immune to the line-of-sight problems in camera-based systems,

easier to track the motion of multiple users, and easier to protect user privacy. Besides, it can

be easily integrated with other types of sensors to provide more body information. Hence,

BISNs have become a promising technology for a variety of applications, including pervasive

video games [2,3], medical care [4,5], sports training [6], affective computing [3], and human-

computer interface [7].

To boost this emerging technique, many fundamental issues need to be addressed. We list

some of them as follows.

1

Sink

Feedback and Application SystemBody-Area Inertial Sensor Network

Sensor Node

Internet

Server Peer System

Local Application System

Figure 1.1: An example of a BISN-based human motion tracking system.

• Data collection. Applications may require real-time and high-resolution sensing data

for various purposes, such as visualizing motions, recognizing body conditions, and di-

agnosing motion disorders. These requirements imply shorter transmission delays and

higher sampling rates for a BISN. In addition, due to the size of a human body, nodes

are typically dense and almost fully connected, leading to severe contention and collision

among their transmissions [8,9]. Since wireless bandwidths are limited, how to efficiently

utilize them is very important.

• Motion tracking. The fidelity of motion tracking has critical impacts on user experience

and application performance. However, due to the complexity and uncertainty of human

motion, improving it is a hard task. Issues and challenges include sensor calibration,

sensing data fusion, sensor deployment, and the design of tracking algorithms.

• Wearable sensor design. The ease of wearing is one of the major concerns in adopting

wearable sensors. Besides making sensors as small and light as possible, some research

has considered how to weave them into clothes. It is also a challenging task to integrate

sensors of multiple modalities into a single system on chip (SoC). In addition to chal-

lenges in hardware manufacturing, many issues arise when sensors are miniaturized. For

example, the greatly constrained battery power may reduce network lifetime, the simplic-

ity of miniaturized hardware may imply little computing power, and a shortened antenna

may have a much shorter transmission range.

• Energy saving and supply. It is desirable to prolong the network lifetime as much as

possible. Recharging batteries is typically quite inconvenient or even impossible when

sensors are implanted in human bodies. Therefore, how to save energy is a critical issue

2

Internet

Remote assisted physical rehabilitation

Exercise Date:2008/02/01

Mission: Upstairs

Steps: 86

Fail: 15 Times

Act Climb at least 100 steps

R Leg: 18.7Left Leg: 20

RMS Leg Angle

Pressure in Gait

R FootL Foot

Self-physical-rehabilitation System

Sensor

Upstairs Test

60

Scores:

R Up: Correct L Up: Incorrect

Figure 1.2: System architecture.

in the design of BSNs, from hardware to software. On the other hand, some research

considers how to scavenge energy from the environment to replenish battery capacity.

Putting all these together, in the following, we build some prototypes to demonstrate novel

application scenarios as well as to motivate our research.

1.1.1 Prototyping Experience: Home Rehabilitation

The BISN technology brings new light to medical care and telerehabilitation. As the aging

population has increased significantly in the past decades, long-term health care has posed an

increasing load for therapists and become an important challenge in the society. Traditionally,

physical rehabilitation programs are instructed and monitored by therapists in the hospital, and

thus consume severe medical resources. Furthermore, since the rehabilitation process is typ-

ically lengthy and boring, many patients may be reluctant to take it, thus further reducing its

effectiveness.

In this prototyping, we demonstrate a system that uses intelligent sensors to capture human

motion for home rehabilitation. Fig. 1.2 shows our system architecture. Here we consider a

set of Pilates exercises for low back pain relief (refer to Fig. 1.3) as suggested by the therapists

in Wan-Fang Hospital, Taipei. For each exercise, the graphical user interface will instruct the

patient to wear sensors at appropriate body parts.

Fig. 1.4 shows the software architecture. The system consists of three parts: a wireless

sensing platform, a motion analysis module, and a game interface. A patient needs to wear

sensors on specified body parts. The motion analysis module evaluates the quality of a patient’s

movements and gives feedback through the game interface.

3

Figure 1.3: Pilates exercises for low back pain relief.

Tri-axial

Accelerometer

Electrical

Compass

CalibrationCalibration

Node

Driver Orientation Matrix

Wireless Module

Wireless Module

Rule Set

Motion

Reconstruction

Recognition

M
o
ti
o
n
A
n
al
y
si
s

M
o
d
u
le

Audio

User Instruction Graphics

Score Log

1a

2a

3a

4a

Game Interface

(, ,)x y zg g g
cq

Sink

b

g

Node
Node

Sink

Figure 1.4: Software architecture.

Wireless sensing platform. We have tested two platforms: Octopus II and ECO systems

(refer to Fig. 1.5). Octopus II is modified from the Tmote Sky system [10] and runs TinyOS,

while ECO [11] is quite tiny and is extremely resource-limited. Both platforms use the TDCM3

electrical compass. Octopus II uses the FreeScale MMA7260QT accelerometer and ECO uses

the Hitachi-Metal H34C accelerometer. These triaxial accelerometers can capture the gravity in

x, y, z-axes. Note that a compass is needed since the rotation angle about the gravity cannot be

inferred from the accelerometer along. Octopus II uses a TDMA protocol provided by TinyOS

to increase data rate. On the other hand, ECO adopts a simple polling protocol. On the sink side,

the accelerometer and compass readings from each node are further combined into orientation

matrices in the world coordinate.

Motion analysis module. This module takes the accelerometer readings and the orientation

matrices as input to reconstruct the patient’s motions and gives scores. One major parameter of

4

(a) ECO system (b) OctopusII system

Figure 1.5: Our wireless sensing platforms.

motions is the joint angle information (α1, . . . , α4 in Fig. 1.4). Another is the angle between

each sensor node and the gravity direction (β in Fig. 1.4). Our scoring mechanism analyzes

these parameters to judge if the patient’s performance is acceptable or not. For instance, the

patient is considered to perform exercise (a) in Fig. 1.3 well if (1) the joint angle between two

legs is around 45◦, and (2) the movement of his pelvis is within a small range. Item (1) is

implemented by restricting the joint angle within 45◦ ± 10◦, and item (2) by restricting β, the

angle between the frontal plane and the gravity direction, within a small range.

Game interface. This layer interacts with the user and stores the results of each exercise.

The game has multiple levels, each as one Pilates exercise. The game will create some events,

and the patient should react by performing the specified Pilates exercise. The game interface

queries the motion analysis module to check if the patient’s performance is acceptable, and if

so, some rewards are given. The patient should get enough rewards to pass a level. Most of

the hints are shown on the screen, but if the patient cannot watch the screen in some Pilates

exercises, audio hints will be given instead.

In our demonstration, we show exercises (a) and (b) using Octopus II and ECO, respectively.

In exercise (a), the game is to open a treasure box. The player should raise his leg to about 45◦

to open the lid and collect at least five treasures to pass this level. In exercise (b), the player

should keep his knee joint angle to about 90◦ and raise two legs up simultaneously.

1.1.2 Prototyping Experience: Multi-Screen Cyber-Physical Video Game

Cyber-physical systems (CPS) have drawn a lot of attention recently. In the past two decades,

cyber systems were one of the fastest growing areas due to the advance of mobile computing

technologies (such as portable computers and smart phones) and the standardization of vari-

5

Wired LAN

North Screen

SouthScreen

E
ast
S
creen

: Game Engines

W
es
t
S
cr
ee
n

Sink

: Inertial Sensors

1G

1 2 3 4, , ,G G G G

2G

3G

4G

: Cyber-Physical Game Controllerc

c

1 2 3 4, , ,v v v v

1v

2v

3v4v

Figure 1.6: System architecture.

ous wireless communication and networking technologies (such as ZigBee, WiFi, Bluetooth,

WiMAX, 2G/3G/3.5G, LTE, etc.), which are tightly integrated under the Internet environment.

On the other hand, a major advance in physical systems is the development of micro-electro-

mechanical systems (MEMS), which can greatly enrich cyber systems with more physical inputs

and actuators.

We are interested in CPS for cyber-physical video games. Traditionally, cyber video games

are supported by game engines that take players’ inputs from keyboards and joysticks. Enhanc-

ing such systems with more physical inputs, such as body motions captured by inertial sensors,

has attracted a lot of attention recently. We call such systems cyber-physical games. The Nin-

tendo Wii [2] is one example with MEMS-based inertial sensors. Reference [7] shows that by

using MEMS-based inertial sensors and a wired network, body motions can be reconstructed

through computer animation with little distortion. Wireless-based body-area inertial sensor

networks (BISNs) have been studied in [12]. On the other hand, new display technologies, such

as LCD, plasma, and back-projection displays, can further enrich cyber-physical games with

better visual effects [13].

The above advances motivate us to develop a multi-screen cyber-physical video game with

physical inputs from players equipped with BISNs. We demonstrate our prototype of the BISN

platform, the Cyber-Physical Game Controller, and the Game Engines.

System description. Our system architecture is shown in Fig. 1.6. We consider a single-

6

Triaxial

Accelerometer

Triaxial

Electronic Compass

CalibrationCalibration

S
en
so
r
N
o
d
es

Wireless

Communication

Wireless

Communication
S
in
k

Compression Compression

Orientation MatrixC
y
b
er
-P
h
y
si
ca
l

G
am
e
C
o
n
tr
o
ll
er

Decompression

Human Body and Equipment Model

G
am
e
E
n
g
in
es

Input Dispatcher

1v 2v

G
ra
p
h
ic
s
L
ib
ra
ry

(O
p
en
G
L
)

Event Handler

Network Input

Common

Scene Data

Local Profile

G
am
e
K
er
n
el

B
IS
N
P
la
tf
o
rm

3v

4v

3G

G
ra
p
h
ic
s
L
ib
ra
ry

(O
p
en
G
L
)

Event Handler

Network Input

Common

Scene Data

Local Profile

G
am
e
K
er
n
el

4G

Event Handler

Network Input

1G

Common

Scene Data

Local Profile

G
am
e
K
er
n
el

2G

G
ra
p
h
ic
s
L
ib
ra
ry

(O
p
en
G
L
)

Event Handler

Network Input

Common

Scene Data

Local Profile

G
am
e
K
er
n
el

G
ra
p
h
ic
s
L
ib
ra
ry

(O
p
en
G
L
)

Polling

MAC

Polling

MAC
Triaxial

Accelerometer

Triaxial

Electronic

Compass

CalibrationCalibration

Wireless

Communication

Compression Compression

.

.

.

Triaxial

Accelerometer

Triaxial

Electronic

Compass

CalibrationCalibration

Wireless

Communication

Compression Compression

.

.

.

Triaxial

Accelerometer

Triaxial

Electronic

Compass

CalibrationCalibration

Wireless

Communication

Compression Compression

.

.

.

Figure 1.7: Software architecture.

player game. A BISN is deployed on the player. The sensing data is collected by the sink node

attached to the Cyber-Physical Game Controller, which will process the sensing data and feed

it to four game engines G1, G2, G3, and G4 via wired LAN interfaces. The four game engines

are set to four camera angles (east, west, north, and south) and they together provide a 360◦

panorama view of the game scene. The software architecture is shown in Fig. 1.7. Below, we

describe each component.

BISN platform. The platform consists of one sink node and four inertial sensor nodes

v1, v2, v3, and v4. Each node consists of some inertial sensors, a micro-controller, and a wireless

module. In our current implementation, each node is equipped with a triaxial accelerometer

and a triaxial electronic compass. The triaxial accelerometer senses the gravity in x, y, and

z-axes, while the triaxial compass senses the earth magnetic force in x, y, and z-axes. The

“Calibration” module removes noises and converts sensing signal into meaningful data. Since

sensing data is streaming data, the “Compression” module executes a differential coding to

reduce data transmission. The compressed data is reported to the sink through the “Wireless

Communication” module. The sink node runs a “Polling MAC” to avoid collisions and to

improve throughput.

Cyber-physical game controller. This component has two main functions: 1) to convert

7

Jennic JN5139

Cell-phone Battery

Inertial Sensor (OS5000)

x
Sensor

Axis

x

y

z

East

North

Up

Orientation

Matrix

Sensor Coordinate

Earth Coordinate

x

y

z

x

y

z

x

y

z

1 2
x

y

z

Figure 1.8: Human body and equipment model.

sensing data into game inputs (by “Orientation Matrix” and “Human Body and Equipment

Model”) and 2) to dispatch game inputs to each game engine (by “Input Dispatcher”). Fig. 1.8

illustrates the conversion process. The player wears four inertial sensor nodes, one on the

broomstick, one on forearm, one on upper arm, and one on the club. From the sensing inputs,

the “Orientation Matrix” represents the absolute orientations of all sensor nodes with respect

to the earth coordinate. The “Human Body and Equipment Model” derives the direction of the

broomstick (by its x̂ axis) and two articulation angles θ1 and θ2 (by orientation matrices and

limb lengths). These parameters are then fed to the game engines via wired LAN interfaces.

Typical game engines do not support multiple screens. Our game controller tries to simulate

a multi-screen game engine by sending proper data, via the “Input Dispatcher” to four game

engines, as explained below.

Game engines. Each game engine has a “Game Kernel”, which takes inputs from four

modules. The “Common Scene Data” module describes the virtual world. It is the same for all

game engines. The “Network Input” module receives game inputs from the “Cyber-Physical

Game Controller” and updates the virtual world in the game. The “Event Handler” module

processes the interactions, especially collisions, between virtual objects and the player. For

example, when the player hits a ball, it bounces away, and the “Event Handler” increases the

player’s score. Each game engine contains a camera, whose direction is specified by the “Lo-

8

(a) (b)

Figure 1.9: Snapshots of the game.

cal Profile”, that takes pictures for its virtual world and feeds the captured data to the “Game

Kernel”, which calls the “Graphics Library” to display the results. Since we have four game

engines with four cameras facing to east, west, north, and south, a 360◦ panorama view of the

virtual world is provided to support better visual effect to the player.

Demonstration. We adopt the Quidditch sports in “Harry Potter” as our game scenario. The

player rides a flying broom in a practice field, and she tries to attack approaching balls by her

club. She flies at a constant speed and controls her broomstick to change directions.

For the BISN platform, we adopt Jennic JN5139 [14] and OS5000 sensor [15] (refer to

Fig. 1.8). Each Jennic JN5139 consists of a micro-controller and a IEEE 802.15.4 wireless

transmission module, and each OS5000 has a triaxial accelerometer and a triaxial electronic

compass. The sampling rate is set to 20Hz, a common value for motion capturing [16]. The

average packet loss rate of our polling MAC is about 0.16%, and the average delay for collecting

a complete set of sensing data from a node is around 83 ms.

Fig. 1.9 shows some snapshots of the game. The player flies a short distance to the north

in Fig. 1.9(a), and then she turns to the west in Fig. 1.9(b). We adopt Unity [17] as our game

engine, which features a fully integrated editor and a physics engine for rapid 3D game proto-

typing. Fig. 1.10(a) and Fig. 1.10(b) show the corresponding settings of the west and the north

game engines in Fig. 1.9(a), respectively. The virtual character, who is controlled by the player,

looks to the north in both game engines. The camera of Fig. 1.10(a), whose viewing volume is

illustrated by white lines, looks to the west, while the camera of Fig. 1.10(b) looks to the north.

Fig. 1.10(c) and Fig. 1.10(d) correspond to the west and the north screens in Fig. 1.9(b), respec-

tively, where both of the player and the virtual character look to the west, but the directions of

the cameras remain unchanged.

9

(a) (b)

(c) (d)

Camera attached

on the character

Border of viewing volumeCamera position and rotation

Light

Figure 1.10: Virtual character and camera settings in Fig. 1.9.

1.2 Issues Addressed in this Dissertation

We conduct fundamental research into the technologies required to create an efficient wireless

communication BISN that maximizes tracking accuracy and spectrum efficiency. Specifically,

we conduct three pieces of research. The first work addresses the data collection issue by data

compression by exploiting temporal-spatial correlations of sensing data. Based on the first

work, the second work considers multi-spatial correlations of motion data to better exploit pos-

sible spatial correlations. In the third work, we address a fundamental issue in motion tracking,

the gravity measurement problem. Below, we briefly describe each piece of our research.

Concerning that human bodies are relatively small and wireless packets are subject to more

serious contention and collision, the first work of this dissertation addresses the data compres-

sion problem in a BSN. We observe that, when body parts move, although sensor nodes in

vicinity may compete strongly with each other, the transmitted data usually exists some lev-

els of redundancy and even strong temporal and spatial correlations. Unlike traditional data

compression approaches for large-scale and multi-hop sensor networks, our scheme is specifi-

cally designed for BSNs, where nodes are likely fully connected and overhearing among sensor

nodes is possible. We model the spatial-temporal data compression problem, where overhearing

should be efficiently utilized, as a combinatorial optimization problem on graphs, showing its

hardness, and presenting efficient algorithms to approximate optimal solutions. We also discuss

the design of the underlying MAC protocol to support our compression model. An experimental

case study in Pilates exercises for patient rehabilitation is reported. The results show that our

schemes reduce more than 70% of overall transmitted data compared with existing approaches.

10

The first work has shown how to compress motion data by allowing a node to overhear at

most κ = 1 node’s transmission and exploit the correlation with its own data for data compres-

sion. In the second work, we consider multi-spatial correlations by extending κ = 1 to κ > 1

and constructing a partial-ordering directed acyclic graph (DAG) to represent the compression

dependencies among sensor nodes. While a minimum-cost tree for κ = 1 can be found in poly-

nomial time, we show that finding a minimum-cost DAG is NP-hard even for κ = 2. We then

propose an efficient heuristic and verify its performance by real sensing data.

In addition to data collection, in the third work, we are interested in tracking human postures

by deploying accelerometers on a human body. One fundamental issue in such scenarios is how

to calculate the gravity. This is very challenging especially when the human body parts keep

on moving. Fortunately, it is likely that there is a point of the body that touches the ground

in most cases. This allows sensors to collaboratively calculate the gravity vector. Assuming

multiple accelerometers being deployed on a rigid part of a human body, a recent work proposes

a data fusion method to estimate the gravity vector on that rigid part. However, how to find

the optimal deployment of sensors that minimizes the estimation error of the gravity vector is

not addressed. In this work, we formulate the deployment optimization problem and propose

two heuristics, called Metropolis-based method and largest-inter-distance-based (LID-based)

method. Simulation and real experimental results show that our schemes are quite effective in

finding near-optimal solutions for a variety of rigid body geometries.

To summarize, there are four significant innovations that resulted from this research:

1. Greatly improved spectrum efficiency of the wireless communications in a BISN by us-

ing spatial-temporal data compression on sensing data. This is accomplished by exploit-

ing the spatial-temporal features inherent in human body motions and creating a data

compression methodology that resulted in an energy-efficient, low-delay communication

protocol that is suitable for real-time, accurate human motion capturing.

2. The theoretical findings that show the sharp increase in the computational complexity

of exploiting spatial correlations. The optimal data compression scheme can be found in

polynomial time when each node is restricted to overhear up to one other node; otherwise,

allowing overhearing more nodes makes finding an optimal data compression scheme a

NP-hard problem. We propose efficient heuristics to solve the NP-hard problem. The

hardness results also apply to other types of WSNs.

11

3. The inertial sensor deployment scheme that maximizes tracking accuracy. Intuitively

speaking, we place sensors on different locations of a target body part to collabora-

tively capture more information about its motions. We model the kinematics of sensors’

readings and propose algorithms to find optimal deployments that capture the maximal

amount of information, which can be fused to improve tracking accuracy.

4. The development of innovative applications using the motion tracking system to demon-

strate its capabilities and to serve as a proof of concept for the technology in a variety of

consumer usage models.

• A cyber-physical video game where the user is able to control the game in a body-

intuitive way, and is able to control the panoramic view of the game scenes in a

sensor-controlled way.

• A remote physical rehabilitation system that enables patients to avoid having to wait

for rehabilitation appointments in the hospital, eliminating travel time, and reducing

demands for medical resources.

1.3 Organization of this Dissertation

The rest of dissertation is organized as follows. Chapter 2 addresses data collection issues by

exploiting data compression by taking advantage of the spatial-temporal features of sensing

data when sensors are deployed on a human body and the possibility that sensors can overhear

each others’ transmissions in a BISN. Based on Chapter 2, Chapter 3 consider multi-spatial

correlations of motion data for data compression. Besides data collection, Chapter 4 addresses

a fundamental issue in human motion tracking, the gravity measurement problem. Chapter 5

concludes this dissertation.

12

Chapter 2

Data Compression by Temporal and

Spatial Correlations in a BISN

2.1 Introduction

In Section 1.1.1, we have demonstrated applying BISNs to physical rehabilitation, where pa-

tients have to frequently practice certain fixed-pattern exercises repeatedly [5]. Such a scenario

can be shown as in Fig. 2.1, where a BISN is deployed on a patient to capture her body mo-

tions. Via wireless links, the sink is able to collect sensing data, the data analyzer is able to

analyze and visualize her motions, and the application system is able to give comments and

send feedbacks to therapists for further diagnosis.

Such applications may require real-time and high-resolution sensing data for various pur-

poses, such as visualizing motions, recognizing body conditions, and diagnosing diseases.

These requirements imply shorter transmission delays and higher sampling rates for the BISN.

In addition, due to the size of a human body, nodes are typically dense and almost fully con-

nected, leading to severe contention and collision among their transmissions [8, 9]. Since wire-

less bandwidths are limited, how to efficiently utilize them is very important.

We attack these issues by exploiting data compression by taking advantage of the special

Internet

Sink Data Analyzer

Feedback and

Application System

Figure 2.1: A BISN architecture for motion recognition.

13

features of sensing data when sensors are deployed on a human body and the possibility that

sensors can overhear each others’ transmissions in a BISN. We observe that when human body

parts move, it usually exhibits strong temporal and spatial correlations among sensing data.

By temporal correlation, body signs sensed by a single node typically change smoothly and

slowly. By spatial correlation, body signs measured on different nodes are typically correlated

because body components are connected and they normally move with certain rhymes. On the

other hand, since nodes in a BISN are typically fully connected, spatial correlations can be

efficiently exploited through overhearing, a nature of wireless communication, among nodes

to minimize the total amount of transmissions. Although data compression schemes that ex-

ploit temporal and spatial correlations in wireless sensor networks (WSNs) have been widely

discussed [18, 19], such schemes are usually designed for large-scale networks with multi-hop

communications and are thus not suitable for BISNs, which are likely fully connected, provid-

ing a room for customized data compression of body motion data.

Since wearable devices are typically lightweight and have limited computation power and

resources, the corresponding sensing data processing, compression, and MAC protocol should

be lightweight, too. In particular, the following guidelines are important in designing data com-

pression schemes for BISNs. First, the general form to model the temporal-spatial correlations

of human body parts should not be too complicated, especially when considering the correlation

among multiple sensors on different nodes. Second, we have to take the data gathering process

and the distributed nature of a BISN into consideration. For example, the rich connectivity of a

BISN normally incurs higher contention and collision among transmissions.

In this chapter, we propose a novel data compression method for BISNs based on over-

hearing. We exploit temporal and spatial correlations among sensing data to facilitate data

compression and transmissions. Each node samples its data, overhears others’ transmissions,

compresses its data, and then transmits. Temporal and spatial correlations are modeled by dif-

ferential coding and linear regression, respectively. Note that our data compression is lossless.

In our method, an offline phase is conducted to learn these correlations and various system

parameters. Then, nodes are sorted into a partial ordering tree, which specifies the preferred

transmission order of nodes (level-1 nodes transmit first, followed by level-2 nodes, etc.). Dur-

ing the online phase, each node overhears others’ transmissions, decodes some of them, encodes

its own sample according to the learned correlations, and transmits the encoded result. It is to

be noted that under our modeling, the compression ratio is indeed affected by nodes’ transmis-

14

sion order. Our scheme can also tolerate that the actual transmission deviates from the ideally

planned order, at the cost of a higher compression ratio. We show how to construct an optimal

partial-ordering tree, called Minimum-Cost Tree (MT), such that the total data transmitted on the

air is minimal statistically. The MT scheme, however, may need to decode and encode a long

sequence of overheard data. An alternative is a near-optimal Minimum-Cost, Depth-Bounded

Tree (MDT), which limits the number of transmissions to be overheard by each node. The MDT

scheme is more practical, but unfortunately, it has been proven that optimizing tree cost given

any bound on its depth is NP-hard.

To summarize, major contributions of this chapter are three-fold. First, a distributed data

compression method suitable for BISNs is proposed to exploit temporal and spatial correlations

of sensing data. Our method considers the correlation among multiple sensors on different

nodes. The computation complexity and communication overhead are kept as low as possible.

Second and more importantly, we utilize overhearing, a nature of wireless communication,

and investigate the prediction directions in spatial correlations. We show how to construct

an optimal partial-ordering tree, based on which nodes can sent their transmission sequences

and overhear others’ transmissions in a cooperative way so as to minimize the total amount of

transmissions. To the best of our knowledge, applying overhearing in data compression is never

explored before. We also propose a more practical minimum-cost, depth-bounded tree, which

turns out to be NP-hard. These techniques may be applied to other distributed source coding,

too. Third, to verify our results, an experimental case study in Pilates exercises for patient

rehabilitation is reported.

The rest of chapter is organized as follows. Section 2.2 reviews some related works. Section

2.3 describes our BISN system architecture. Section 2.4 gives our data compression models and

algorithms, including some notes on practical issues. Experimental results and our prototypes

are shown in Section 2.5. Section 2.6 concludes this chapter.

2.2 Related Works

BSN is an emerging technique. Its bandwidth utilization issues have started to receive attention.

Assuming a fully connected BSN, a QoS framework similar to IEEE 802.16 is proposed for

BSNs in [20] to grant connections and allocate bandwidths based on applications’ requests.

Several lossy data compression methods have been proposed. In [21], sensors with higher

priorities are allowed to transmit their sensing data with higher precision. If the data sources

15

are sparse, e.g., in the case of PPG signals, compressed sensing techniques can be applied to

reduce the required sampling rates [22]. For motion capturing, [12] has tested the performance

of several existing lossless and lossy compression algorithms on motions that exhibit repetitive

patterns, such as running. However, the compression is performed by each individual sensor and

does not consider the correlations among sensors. We extend their work to consider correlations

among sensors (both on the same node and on different nodes). Although our data compression

model is lossless, any lossy transform (e.g., FFT and wavelet transform mentioned in [12])

can be applied to the data source before passing through our data compression model. If the

application is interested only in certain events, rather than the sensing values, distributed motion

classification/annotation would be most efficient [23, 24].

On the other hand, for large-scale WSNs, data compression has been intensively studied.

We classify these solutions as follows.

• Cross-layer solutions. The impact of joint routing and compression is studied in [25].

Reference [26] studies the feasibility of sublinear scaling laws under different cooperation

schemes for spatially correlated data.

• Data aggregation. Data compression may be performed by relay nodes or cluster heads

via data aggregation. TAG [27] organizes a network into a tree and proposes SQL-like

semantics to aggregate streaming data into histograms for low-power aggregation. Multi-

resolution spatial and temporal coding is addressed in [28].

• Data acquisition. As acquiring sensing data from a large-scale WSN to a user’s hand-

held device may involve long delays, non-uniform energy consumptions, and network

impairments, model-driven data acquisition models are proposed in [18,19,29]. Although

these methods are suitable for infrequent queries and slow-changing environments, they

are not practical for motion capturing, as motion data usually changes more rapidly.

2.3 BISN System Architecture

We consider a BISN deployed on a human body for motion recognition. An example is the

Pilates exercises for patient rehabilitation. The system architecture is shown in Fig. 2.1. Wear-

able sensor nodes are placed at main movable body parts. These nodes will periodically report

their readings to a sink node, which is connected to the data analyzer. The data analyzer will try

16

Figure 2.2: An example of placing sensor nodes on a human body.

Figure 2.3: Examples of Pilates exercises.

to understand how well the person conducts some motions. The application server can further

send feedbacks to the person and reconstruct, store, and replay these motions.

As an example, to recognize Pilates exercises for lower back pain relief [30, 31], nodes can

be placed at main body parts as shown in Fig. 2.2. Some Pilates exercises are shown in Fig. 2.3.

In the upper leg lifting exercise (b), one has to lie on his side and put legs and feet together in

parallel. Then, lift the top leg up from 0◦ to about 45◦, stay for about 5 seconds, and then return

to the start. The exercise needs to be repeated several times.

Due to the size of a human body, nodes in a BISN are typically fully connected. There-

fore, when a node is transmitting, the other nodes can overhear its transmission. In addition,

their data could be highly correlated. By utilizing the overheard information, one may con-

duct compression based on sensor data’s spatial and temporal correlations. We show that by

properly arranging nodes’ transmission order, not only the competition and interference among

nodes can be relieved, but also significant compression can be done. In this work, we place a

17

triaxial accelerometer in each sensor node. The sampling rate on each axis is set to 20 Hz, a

common value for body motion measurement [16]. (However, the applicability of our work is

not limited to these assumptions.) Sensor readings are calibrated and compressed locally, but

the computation should be kept as simple as possible.

2.4 Design of Data Compression by Overhearing

We first present our basic idea in Section 2.4.1. Then we present our data compression model

and two algorithms to sort nodes’ overhearing sequences in Section 2.4.2 and Section 2.4.3,

respectively. Although our model does not require to change the underlying MAC protocol, we

discuss the corresponding design issues in Section 2.4.4. Finally, in Section 2.4.5, we discuss

how to retrain the system where there are deviations between the training parameters and the

actual behaviors.

2.4.1 Basic Idea

We consider a BISN with n nodes v1, v2, . . . , vn, each equipped with m sensors. Note that in

the case of triaxial accelerometer, each axis is regarded as one separate sensor. We will design

a compression scheme to exploit the temporal and spatial correlations of sensor readings. The

goal is to automatically learn these correlations to facilitate compression. Our system has an

offline phase and an online phase. During the offline phase, we will collect the raw outputs of

the jth sensor of vi into a column vector R
(j)
i , where the tth sampling result is stored at the tth

entry in the vector and is written as R
(j)
i [t]. Note that since the same Pilates exercise should

be repeated multiple times by the same person to make the training results more representative,

R
(j)
i should contain the result of several repetitions of the same Pilates exercise. Then R

(j)
i is

calibrated into a column vector X
(j)
i of the same size carrying meaningful data. Note that we

do not specify the size of vector R
(j)
i . A larger vector means more statistics, leading to higher

accuracy in our prediction of correlations.

Temporal correlation hereby means the similarity of sensing values over the time axis, i.e.,

∆X
(j)
i [t] = X

(j)
i [t]−X

(j)
i [t− 1] is very likely to fall within a small range relative to that of the

original value X
(j)
i [t]. Previous researches [12,16] also show that body movements are normally

centered at very slow frequencies and do not change rapidly in nearby samples.

Spatial correlation hereby means that human motions in nearby body parts show inherent

rhythm, making it a good source for data compression. Specifically, one may easily predict

18

∆X
(1)
i , ∆X

(2)
i , . . . , ∆X

(m)
i given ∆X

(1)
k , ∆X

(2)
k , . . . , ∆X

(m)
k , if nodes vi and vk are attached

to correlated body parts. To achieve low-complexity compression, we would investigate the

possibility of establishing the following linear correlation:

∆X
(j)
i = α(i,j)|k1 + β(i,j)|(k,1)∆X

(1)
k +

β(i,j)|(k,2)∆X
(2)
k + · · ·+ β(i,j)|(k,m)∆X

(m)
k +

ǫ(i,j)|k,

(2.1)

where α(i,j)|k and β(i,j)|(k,1), . . . , β(i,j)|(k,m) are scalars, 1 is a column vector containing all 1s, and

ǫ(i,j)|k is a column vector to compensate the prediction errors. If the outputs of some sensor of

vk have little correlation with ∆X
(j)
i , its corresponding β should approach zero. With properly

selected coefficients α and β, vector ǫ(i,j)|k would contain all very small values, making it much

less costly to represent ǫ(i,j)|k than ∆X
(j)
i . The number of bits required to represent ǫ(i,1)|k,

ǫ(i,2)|k, . . . , ǫ(i,m)|k is used as the cost to compress sensing data of vi when the data of vk is

known. Intuitively, we try to recover vi’s data from vk’s data. In subsequent sections, we will

show how to find the optimal predictor vk of each node vi (by building a partial ordering tree)

so as to minimize the overall cost.

On the other hand, sensors of the same node vi (such as ∆X
(j)
i and ∆X

(k)
i) may also exhibit

strong spatial correlations, especially among the three axes of a triaxial accelerometer. We call

such spatial correlations intranode spatial correlations, and those among sensors of different

nodes internode spatial correlations. So Eq. (2.1) is generalized as follows to include intranode

spatial correlations:

∆X
(j)
i = α(i,j)|k1 +

m
∑

p=1

β(i,j)|(k,p)∆X
(p)
k +

∑

q∈L(i,j)|k

β(i,j)|(i,q)∆X
(q)
i + ǫ(i,j)|k,

(2.2)

where we use all sensors of vk and a set L(i,j)|k of sensors of vi to predict ∆X
(j)
i . Note that to

conduct data compression, we must avoid circular dependency among sensors of the same vi.

L(i,j)|k is to specify the set of sensors of vi whose sensing data are encoded before that of sensor

j. Later on, we will show how to determine the set L(i,j)|k. By learning the intranode spatial

correlations in Eq. (2.2), the resulting error vector ǫ(i,j)|k of Eq. (2.2) is expected to be even

smaller than that of Eq. (2.1), making compressing the former more efficient than compressing

the latter.

19

0 50 100 150 200 250 300
−1000

−500

0

500

time index

m
g

X
4

(1)
X

5

(1)
X

6

(1)
X

7

(1)

(a)

0 50 100 150 200 250 300

−50

0

50

time index

m
g

∆ X
4

(1)
∆ X

5

(1)
∆ X

6

(1)
∆ X

7

(1)

(b)

0 50 100 150 200 250 300

−50

0

50

time index

m
g

∆ X
4

(1)
0.6∆ X

5

(1)
 − 0.19

(c)

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

mg

P
ro

b
a

b
ili

ty

(d)

Figure 2.4: Validation of our temporal and spatial correlation modeling. (a) Calibrated data

X
(1)
i of exercise Fig. 2.3(a). (b) The difference vector ∆X

(1)
i . (c) Predicting ∆X

(1)
4 by ∆X

(1)
5 .

(d) Probability distribution of the prediction error vector ǫ(4,1)|5.

20

Our experiences show that the above modeling is quite effective in recognizing Pilates ex-

ercises. Consider the sensor deployment in Fig. 2.2 and the exercise in Fig. 2.3(a) and as-

sume that each node has only one x-axis accelerometer. Fig. 2.4(a) shows the calibrated data

X
(1)
4 , . . . , X

(1)
7 . We see that X

(1)
4 and X

(1)
5 exhibit strong spatial correlations, and so are X

(1)
6

and X
(1)
7 . By taking the difference operation on X

(1)
i , Fig. 2.4(b) shows that ∆X

(1)
i has a much

smaller range, and the aforementioned spatial correlations still exist. So we can apply Eq. (2.2)

to predict ∆X
(1)
4 by ∆X

(1)
5 , as shown in Fig. 2.4(c). Fig. 2.4(d) shows the corresponding prob-

ability distribution of the contents of the error vector ǫ(4,1)|5. As can be seen, the distribution

concentrates around 0mg.

By overhearing among sensor nodes, we will investigate the feasibility of learning these

correlations in the offline phase and exploring real-time data compression in a BISN during the

online phase. We will also address the issue of the supporting MAC protocol, especially the

design of packet collision, in Section 2.4.4.

2.4.2 Data Compression Model

Data flows of our offline and online phases are shown in Fig. 2.5. Temporal correlation will

be exploited on individual sensors by a simple differential coding, while spatial correlation

will be exploited across sensors and will be learned from the offline phase. The learned re-

sults consist of some coefficients and some transmission and encoding orders, which are sent

to the sensor nodes for them to conduct online data compression. The transmission order,

which is represented by a spanning tree, specifies the partial ordering of nodes’ transmissions

and the target nodes that a node should overhear. To simplify the notations, we will abbre-

viate R
(1)
i , . . . , R

(m)
i by R

(1:m)
i , ∆X

(1)
i , . . . ,∆X

(m)
i by ∆X

(1:m)
i , β(j,q)|(i,1), . . . , β(j,q)|(i,m) by

β(j,q)|(i,1:m), ǫ(i,1)|j , . . . , ǫ(i,m)|j by ǫ(i,1:m)|j , β(j,q)|(j,l) for all l ∈ L(j,q)|i by β(j,q)|(j,L(j,q)|i), and

so on.

Offline phase. In the offline phase, for each type of motion, training data are collected from

the BISN in the “Data Collection” block and then sent to an external data analyzer, where the

rest of the blocks will be executed.

Data collection. We will collect from nodes v1, v2, . . . , vn column vectors R
(1:m)
1 ,R

(1:m)
2 ,

. . . , R
(1:m)
n . In the collection process, each node vi puts the tth sampling result of its qth sensor

into R
(q)
i [t]. R

(1:m)
i should be stored in vi and then forwarded to the sink in a reliable way

to avoid the impact of network impairments. The same Pilates exercise should be repeated

21

Calibration

(1:)

1,...,

m

i
i n

R
=

Diff Coding
TX Order

Determination

Data Recovery

Calibration

(,1:)| []i m j te

(1:)[]m

iR t (1:)[]m

iX t (1:)[]m

iX tD

(1:)[]m

jX tD

compressed

data

Offline Phase: Similarity Test

sM T

overheard data

Diff Coding

Huffman

Calibration

(1:)[]m

iR t (1:)[]m

iX t
(1:)[]m

iX tD compressed data

Diff Coding Huffman

Online Phase: (for each node)ivOnline Phase: (for each node)iv

(1) is a level-1

node:
iv

(2) is a

non-level-1

node:

iv

Data

Collection

Sensing

Sensing

(1:)

1,...,

m

i
i n

X
=

(1:)

1,...,

m

i
i n

X
=

D

Deviation CheckDeviation Check

overhearing

status?

fail

succeed

Intra-Node

Deviation Check

(,1:)| []i m tfe

Intra-Node

Deviation Check

(,1:)| []i m tfe

Figure 2.5: Offline and online phases of our data compression model.

multiple times by the same person to make the training results more representative, i.e., R
(j)
i

should contain the results of several repetitions of the same Pilates exercise. To make the learned

results effective, it is assumed that the same Pilates exercise is performed by the same person in

the online phase.

Calibration. Each R
(j)
i , i = 1 . . . n, j = 1 . . .m, is converted into a meaningful vector

X
(j)
i . For example, the raw outputs of an accelerometer may be converted from voltages into

physical units (e.g., Guass). Then we may apply various data filtering techniques to refine the

data. For human motion, we propose to use a low-pass filter to remove noise. We adopt the

FIR filter based on Kaiser window function [32]. A low-pass filter will zero out the signal

components whose frequencies are higher than a predefined stopband frequency. As the energy

of the filtered signal components become larger, the resulting signal waveform will become

smoother. To automatically determine the stopband, we apply a fast Fourier transform to R
(j)
i

such that the removed energy is equal to γ percent of the total energy. We will test different

values of γ in Section 2.5. The filtered data are rounded to the nearest integers and recorded in

X
(j)
i .

Diff coding. To exploit temporal correlation, each X
(j)
i is converted into a differential

column vector ∆X
(j)
i such that ∆X

(j)
i [t] = X

(j)
i [t]−X

(j)
i [t− 1].

Similarity test. Our goal is to identify the correlation between the outputs of each pair of vi

and vj . Specifically, an n × n similarity matrix Ms will be constructed. Ms[i][j] is to measure

how well we can predict the data of vj given the data of vi. For ease of explanation, for now

we assume that L(j,1:m)|i is given (we will explain how to find it later). To compute Ms[i][j],

22

we apply Eq. (2.2) and try to build the following equality for each q = 1, 2, . . . , m, where

t = 1, 2, . . . :

∆X
(q)
j [t] = α(j,q)|i +

m
∑

p=1

β(j,q)|(i,p)∆X
(p)
i [t]+

∑

l∈L(j,q)|i

β(j,q)|(j,l)∆X
(l)
j [t].

Then we can computeα(j,q)|i, β(j,q)|(i,1:m) and β(j,q)|(j,L(j,q)|i) for each q by linear regression analy-

sis [33]. Note that linear regression only tries to use the coefficients on the right-hand side to ap-

proximate∆X
(q)
j [t], so we let the difference ǫ(j,q)|i[t] = ∆X

(q)
j [t]−α(j,q)|i−

∑m

p=1 β(j,q)|(i,p)∆X
(p)
i [t]−

∑

l∈L(j,q)|i
β(j,q)|(j,l)∆X

(l)
j [t]. Intuitively, if ∆X

(1:m)
i is obtained by overhearing, we only need

to transmit the difference vector ǫ(j,q)|i to obtain ∆X
(q)
j . Here we use the notation ǫ(j,q)|φ to

represent that vi’s transmission is not based on any overhearing. Let the offline and online

distributions of ǫ(j,q)|i be f(j,q)|i and g(j,q)|i, respectively. Assuming that the Huffman encod-

ing [34] is applied, we will use the distribution of ǫ(j,q)|i measured during the offline phase to

transmit the data measured during the online phase. So we let Ms[i][j] be the total of entropies,
∑m

q=1H(f(j,q)|i). To compute this term, we also need to determine the encoding sequence of the

m sensors of vj , i.e., L(j,q)|i, q = 1 . . .m. We develop a greedy heuristic as follows. We work in

the backward direction starting from the last sensor. Specifically, for q = 1 . . .m, we compute

H(f(j,q)|i), assuming that L(j,q)|i contains all other sensors 6= q. Then the sensor q with the

minimum entropy is selected as the last one in the sequence. We then exclude this sensor and

repeat the the same process for the rest of the m − 1 sensors. After determining the encoding

sequence, Ms[i][j] can be obtained.

Note that when i = j, Ms[i][i] is a special case, which means that vi is the first node to

transmit and cannot overhear any information. In this case, we will ignore the factor of internode

correlation in Eq. (2.2) and only consider intranode correlation. So we reduce Eq. (2.2) to the

following:

∆X
(q)
i = α(i,q)1 +

∑

l∈L(i,q)

β(i,q)|(i,l)∆X
(l)
i + ǫ(i,q)|φ. (2.3)

With a similar greedy process, we can compute Ms[i][i]. So the whole matrix Ms is obtained.

TX order determination. Based on Ms, the main goal of this block is to find a proper

order of nodes’ transmission time based on the correlations of their data to achieve the best

compression ratio. The ordering instructs a node vi to sequentially overhear the transmissions

of some earlier nodes, so as to compute vi’s error vector ǫ(i,1:m)|j with respect to vj’s data. In the

23

offline phase, assuming ideal error-free transmissions, we model the ordering problem as one of

finding a spanning tree T along a directed weighted complete graph G = ({u}∪V,E), where u

is a virtual node, V = {v1, v2, . . . , vn}, and E contains all possible edges between nodes. The

directed edge 〈vi, vj〉 ∈ E means “predicting ∆X
(1:m)
j from ∆X

(1:m)
i ” and the directed edge

〈u, vi〉 ∈ E means “sending ∆X
(1:m)
i to the sink directly without overhearing”. So the weight

of 〈vi, vj〉 is w(〈vi, vj〉) = Ms[i][j] and the weight of 〈u, vi〉 is w(〈u, vi〉) = Ms[i][i]. Since

virtual node u will not overhear any node, we let w(〈vi, u〉) = ∞ for all vi. Note that T is an

outgoing directed tree and is always rooted at u. In Section 2.4.3, we will propose two solutions

to construct T .

Online phase. The online phase is performed by each node in a distributed manner (refer to

Fig. 2.5). Consider the transmission of the tth sampling result of vi. There are two cases: vi is a

level-1 node and vi is a non-level-1 node. In both cases, it will go through the “Sensing” block

to collect the raw data and the “Calibration” and the “Diff Coding” blocks to obtain ∆X
(1:m)
i [t].

If vi is a level-1 node in T , ∆X
(1:m)
i [t] will go through the “Intranode Deviation Check” block

and the resulting ǫ(i,1:m)|φ[t] will be compressed by the “Huffman” block and then transmitted

without overhearing. If vi is a non-level-1 node, then it has to overhear all precedent nodes

along the path from the root u to itself in T . If all these data are overheard successfully, the

sequence of blocks “Data Recovery”, “Deviation Check”, and “Huffman” will be activated, as

shown in the lower path of Fig. 2.5. However, it is possible that vi may miss some expected

overhearing targets for some reasons. In this case, vi should transmit without going through

overhearing; it activates the “Intranode Deviation Check” block and the “Huffman” block, as

shown in the upper path of Fig. 2.5.

Intranode deviation check. In the above discussion, vi has to transmit without over-

hearing. From ∆X
(1:m)
i [t], vi follows Eq. (2.3) to calculate ǫ(i,q)|φ[t] = ∆X

(q)
i [t] − α(i,q) −

∑

l∈L(i,q)
β(i,q)|(i,l)∆X

(l)
i [t] for q = 1, . . . , m to obtain ǫ(i,1:m)|φ[t].

Data recovery. Let u → vj1 → vj2 → · · · → vjp → vi be the path in tree T from

the root u to vi. Node vi has to overhear the transmissions by vj1 , vj2 , . . . , vjp and recover

the original ǫ(j1,1:m)|φ[t], ǫ(j2,1:m)|j1[t], ǫ(j3,1:m)|j2[t], . . . , ǫ(jp,1:m)|jp−1[t] through Huffman decod-

ing. If all the necessary data are overheard successfully, the lower path of Fig. 2.5 is exe-

cuted. Otherwise, it follows the upper path of Fig. 2.5 (i.e., this block and the subsequent

“Deviation Check” block are ignored). In the former case, vi first applies ∆X
(q)
j1

= α(j1,q)1 +
∑

l∈L(j1,q)
β(j1,q)|(j1,l)∆X

(l)
j1
+ǫ(j1,q)|φ for q = 1, . . . , m to obtain∆X

(1:m)
j1

. Then it follows the en-

24

coding sequence and repeatedly applies ∆X
(q)
jk+1

[t] = α(jk+1,q)|jk+
∑m

r=1 β(jk+1,q)|(jk,r)∆X
(r)
jk

[t]+
∑

l∈L(jk+1,q)
β(jk+1,q)|(jk+1,l)∆X

(l)
jk+1

[t] + ǫ(jk+1,q)|jk [t] for each of its own sensor q, and for k =

1, . . . , p− 1, until ∆X
(1:m)
jp

[t] are obtained.

Deviation check. From ∆X
(1:m)
i [t] and ∆X

(1:m)
jp

[t] (obtained by the “Data Recovery”

block), vi calculates ǫ(i,q)|jp[t] = ∆X
(q)
i [t]− α(i,q)|jp −

∑m

r=1 β(i,q)|(jp,r)∆X
(r)
jp

[t]−
∑

l∈L(i,q)|jp
β(i,q)|(i,l)∆X

(l)
i [t] for q = 1, . . . , m to obtain ǫ(i,1:m)|jp [t].

Huffman. If the lower path of Fig. 2.5 is taken, vi follows its encoding sequence to encode

ǫi(q)|jp[t] for each q = 1 . . .m by Huffman encoding, puts the encoding results together, and

transmits the compressed data. Note that the average compressed data size should be pretty

close to the total entropies of ǫ(i,1:m)|jp computed in the offline phase if the exercises are con-

ducted similarly to the offline phase. If the upper path of Fig. 2.5 is taken, vi also encodes

∆X
(q)
i [t] for each q = 1 . . .m by Huffman encoding, puts the encoding results together, and

transmits the compressed data.

2.4.3 Algorithms for Constructing the TX Order Tree T

Recall that in the “TX Order Determination” block in the offline phase, we are given a directed

weighted complete graph G, in which each edge represents the corresponding message volume

when a node’s transmission is based on overhearing another node’s transmission. Our goal is

to form a TX order tree T from G for the best transmission efficiency. We will propose two

solutions. The first one, called Minimum-Cost Tree (MT), can achieve optimal compression

ratio, but may require a node to overhear and decompress the transmissions of multiple nodes

before it can transmit its own data. The second one, called Minimum-Cost, Depth-Bounded Tree

(MDT), allows a node to bound the number of nodes that it has to overhear and is thus more

practical for wireless environments with non-negligible transmission errors. Note that given a T

and a path u → vi → vj → vk → . . . in T , the underlying meanings is: “vi transmits to the sink

directly”, “vj overhears vi’s transmission, recovers vi’s original data, and compresses its own

data”, “vk overhears vi’s transmission, recovers vi’s original data, overhears vj’s transmission,

recovers vj’s original data, and compress its own data”, etc. For vk, overhearing only vj’s

transmission is not sufficient because vj’s data is compressed data and can be decompressed

only if vi’s original data is known. This chain effect is not preferred, especially for BISNs.

The MT scheme works by finding an outgoing tree T rooted at u from G with the smallest

total edge weight. We adopt an efficient polynomial-time algorithm [35, 36] to find T , which

25

works similarly to Kruskal’s algorithm for undirected graphs. The algorithm greedily selects

incoming edges with minimum weights and breaks cycles, if any.

1. We will pick a set S of edges from G to form the edges of T . Edges entering u are first

removed from G. For all incoming edges of each vi, select the one with the smallest

weight into S. Now, S contains n edges. For each vi ∈ V , we denote by prev(vi) the

(only) node such that 〈prev(vi), vi〉 ∈ S.

2. If S contains no cycles, then T = ({u} ∪ V, S) is an optimal tree and the algorithm

terminates. Note that T is connected because it is acyclic and every node except the root

u has an incoming edge. Otherwise, continue to the following steps to break the cycles.

(Note that there are many polynomial time algorithms to identify cycles in a graph.)

3. Find any cycle C in S. For each edge 〈vi, vj〉 ∈ E such that vi 6∈ C and vj ∈ C, we

re-weight it as follows:

w′(〈vi, vj〉) = w(〈vi, vj〉)− w(〈prev(vj), vj〉).

Note that w′(〈vi, vj〉) ≥ 0 because 〈prev(vj), vj〉 has the smallest weight among all vj’s

incoming edges in E (see step 1).

4. From all re-weighted edges in step 3, let 〈vi, vj〉 be the one with the smallest weight

w′(〈vi, vj〉). Break the cycle by deleting 〈prev(vj), vj〉 from S and adding 〈vi, vj〉 to S.

5. After breaking the cycle, edges in C do not need to be considered any more. So we

adjust G by contracting the nodes in C into a pseudo-node vk, by removing all nodes and

edges in C from G and adding a vk to G. For each vi 6∈ C, we let weight w(〈vk, vi〉) =
min{w(〈vj, vi〉), vj ∈ C} and weight w(〈vi, vk〉) = min{w′(〈vi, vj〉), vj ∈ C}, where w′

means the new weight in step 3.

6. Go to step 2 with the contracted graph G.

It is proved in [35, 36] that the T found above is the minimum outgoing tree. For example,

consider the network in Fig. 2.6(a). The solid arrows are selected into S in step 2. There is

one cycle containing nodes v1, v2, and v3. The cycle is contracted into a pseudo-node v5 in

Fig. 2.6(b). We delete 〈v1, v2〉 from S and add 〈u, v2〉 to S. Weights of edges to and from v5 are

recalculated. After one iteration, tree T is found.

26

u

5
5

5

2

3

2

1

4

4

edges in

1v 2v

3v 4v

4

4

4

3

4

4 4

(a) (b)

u
5

1v 2v

3v

4v

5v

2

3

3

S

Figure 2.6: An example of the MT method.

The second MDT scheme enforces that the depth of T be bounded by a constant δ. For

example, if we set δ = 2, then a level-1 node can transmit anytime and a level-2 node only

needs to overhear its previous node’s transmission. Limiting T ’s depth would be more practical

for BISNs. However, it turns out that optimizing this “bicriteria lowest-cost, bounded-depth”

problem is NP-hard [37]. It has been proved that approximating this problem cannot be achieved

within a log factor and an approximation algorithm is proposed in [37], which can bound the

cost within a factor of O(logn) of the optimal solution. Several heuristics for finding bounded-

diameter minimum spanning trees in an undirected graph have been proposed (refer to [38] and

the references therein). Although their goals are similar to our MDT problem in that bounding

the depth of the tree to δ can be enforced by bounding its diameter to 2δ, they are only applicable

to undirected graphs. So we will adopt the solution in [37] in our simulation studies. It remains

an open issue to find better heuristics for the MDT problem.

2.4.4 Design Issues of the Underlying MAC Protocol

The above overhearing and transmitting activities can rely on any general wireless MAC pro-

tocols to achieve our goal of data compression. The only requirement would be to support

assigning priorities to nodes so as to utilize the partial ordering tree T . For example, one may

use a polling-based protocol, a prioritized CSMA, or even a polling-based protocol on top of

an existing underlying MAC protocol. However, if modifying the underlying MAC is possible,

better performance may be achieved. Below, we comment on the desired changes on exist-

ing MAC protocols to facilitate our overhearing behavior. Our discussions will consider both

polling-based and CSMA-based protocols.

• Backoff window. Recall the partial ordering tree T . Nodes should transmit their sensing

data according to their levels in T . If a polling-based MAC is adopted, no change is

27

needed; the sink node can simply poll nodes level-by-level. If a CSMA-based MAC

is adopted, then we can assign nodes’ backoff timers based on their levels. A lower-

level node should adopt a smaller backoff window, while a higher-level one should adopt

a larger backoff window. (This is similar to the design of IEEE 802.11e, which uses

differential backoff windows.)

• Packet loss behavior. Next, we consider the packet loss issue. Packet loss may happen

to the sink as well as a node which intends to overhear the packet. For loss at the sink

node, if a polling-based MAC is used, it can simply re-poll the sender; if a CSMA-

based MAC is used, the sender will automatically retransmit following the protocol’s

definition. For loss at a node intending to overhear the packet, no matter which kind

of MAC is adopted, when the opportunity for it to transmit appears before it already

overhears all needed packets that it intends to overhear, it runs into a dilemma of whether

to transmit or not. However, a node missing the packet that it intends to overhear should

not request for retransmission because this would further complicate the problem (e.g.,

reference [39] also suggests avoiding retransmitting lost packets because doing so may

violate the delay requirement). There are two options. One way is to repeat the backoff

process, expecting that all needed packets that it intends to overhear would arrive correctly

later on. The other way is to still transmit but assume that it is a level-1 node (i.e., without

compression by overhearing). We would recommend using the second option because

the former approach may encounter a cascaded effect and even a dilemma where a packet

may have been correctly received by the sink but simply missed by the node. Also note

that our data collection is lossless. Missing intended overhearing packets at a node only

increases the compression ratio, but the accuracy of collected data is unaffected.

• Data aggregation. In the above discussion, to keep our presentation simple, we have fo-

cused on each piece of data individually and discussed its compression. To improve band-

width utilization, it is better to pack several (compressed) sensing data into one packet

instead of sending multiple small packets. This would depend on the maximum payload

size agreed on the underlying MAC protocol. Since our overhearing scheme can further

reduce the size of transmitted data, any data aggregation scheme can directly benefit from

our scheme. (Note that since we adopt Huffman coding, which is a prefix-free coding, no

delimiter character needs to be inserted between two pieces of encoded data.)

28

2.4.5 Retraining the System

So far, we have assumed that the training data in the offline phases can precisely reflect the

behaviors during the online phase. In practice, there may exist some degree of mismatch in the

predicted correlations, thus causing inefficiency. Specifically, there could be two major sources

of such mismatch. One is that the trained Huffman codes may not match the online probability

distribution of the ǫ functions. The other is that the trained αs and βs may drift from the actual

coefficients during the online phase. Fortunately, these problems are solvable because our data

compression model is lossless, implying that the online user motions are always recoverable,

as long as the communication channel remains working. So long as the user’s motions are

repetitive, retraining the system by the data analyzer is always possible.

When the learned probability distributions of the ǫ functions do not match with the online

distributions, the amount of additional bits in the online transmission is known as the relative

entropy [34]. We may use adaptive Huffman coding [40] to measure current distributions, adjust

the Huffman trees accordingly, and forward the results to the sensor nodes.

Sometimes the online spatial correlations (αs and βs) may not match with the learned results

for many reasons. For example, the user may simply perform a different motion, or the system

is worn by a different person. (Note that this is less serious in the case of Pilates exercises

because they are a set of standard and repetitive motions.) To make our scheme adaptive, the

data analyzer can keep a window of past sensing data in its database, periodically compute new

αs and βs, and update them to sensor nodes whenever mismatch is detected.

2.5 Experiment Results: A Case Study in Pilates Exercises

To verify the effectiveness of the proposed compression method, we have conducted some ex-

periments on Pilates exercises. We collect sensing data, split them into a training data set and a

test data set, build the offline data compression model by the training data set, and then analyze

performance by the test data set.

2.5.1 Experiment Setup and Data Collection

We conduct experiments on the four Pilates exercises as shown in Fig. 2.3. We place n = 7

nodes on appropriate body parts to monitor human motions (refer to Fig. 2.2). Each node is

a Jennic JN5139 single-chip microprocessor [14] with a 16-MIPS RISC CPU, 192KB ROM,

29

96KB RAM, a ZigBee-compliant module, and an OS5000 triaxial accelerometer [15]. Note

that we regard a triaxial accelerometer as m = 3 sensors. We index the x-, y-, and z-axis

accelerometers as sensors 1, 2, and 3, respectively. Each piece of raw data in each axis is

16 bits, and the sampling rate is set to 20 Hz. To fairly compare different methods, we collect

sensing data from the BISN, calibrate it on a PC, and also test different methods on the same

set of calibrated data on the PC. Each exercise is repeated 20 times by the same person, and

the sensing results, which consist of thousands of sensing values, are stored in nodes and then

forwarded to the sink in a reliable way to avoid the impact of network impairments. Two-third

of the calibrated sensing data are used as the training data set, and the rest one-third as the

test data set. We use compression ratio (size of the compressed data divided by that of the

uncompressed data) as our main performance metric.

For each exercise, we compare three data compression methods.

• Zlib. This lossless method is used in [12] to compress motion data. It first accumulates

pieces of sensing data in a fix-sized buffer, compresses the buffer by the zlib compression

algorithm once it is full, and transmits the compressed buffer directly to the sink. So it

compresses data in a block-by-block fashion. Note that it has no sense of overhearing in

its design.

• MT. This is our MT method.

• MDT. This is our MDT method with depth bounded by δ = 2. The MDT tree is found

by the approximation method in [37].

• Diff. To see the improvement made by exploiting spatial correlations, this method utilizes

only differential coding, intranode correlations among sensors, and Huffman encoding.

Technically, it is our MDT method with depth bounded by δ = 1.

To make comparison, we also implement a method with no data compression, called uncom-

pressed method. Note that we realize the “Huffman” block based on the implementations rec-

ommended by [41,42]. The other blocks, from our experiences, only take a few multiplications

and additions to complete. This is also true for the FIR filter in the “Calibration” block. So

the feasibility of our scheme has been verified by our prototyping. The performance part done

on a PC is mainly for comparing data compression ratio and energy consumption of different

methods (Since we do not have the implementations of other methods on our sensor platform).

30

0 50 100 150 200 250 300 350 400
−500

0

500

1000

1500
No filtering

m
g

0 50 100 150 200 250 300 350 400
−500

0

500

1000

1500

γ = 30%

m
g

0 50 100 150 200 250 300 350 400
−500

0

500

1000

1500

γ = 60%

time index

m
g

X
1

(1)
X

2

(1)
X

3

(1)
X

4

(1)
X

5

(1)
X

6

(1)
X

7

(1)

(a)

0% 10% 20% 30% 40% 50% 60%
0.2

0.25

0.3

0.35

0.4

γ

C
o
m

p
re

s
s
io

n
 R

a
ti
o

(b)

Figure 2.7: The effect of γ. (a) waveforms of X
(1)
i before and after the low-pass filter. (b)

compression ratio vs γ.

This PC-based simulation can correctly capture the intended metrics, except network behaviors

(which will be modeled by some network simulations).

2.5.2 Effects of γ

In the “Calibration” block, the parameter γ of the low-pass filter tries to remove noises while

retain information of interest. Note that its purpose is to smooth out the raw data; it does not

change the size of a piece of sensing data. Fig. 2.7(a) shows the low-pass-filtered X
(1)
i in the

x-axis of exercise Fig. 2.3(d) for γ = 0%, 30%, and 60% (the results for y-axis and z-axis are

similar and are not shown here). Fig. 2.7(b) shows the compression ratios achieved by different

γs when the MT method is applied. Considering both accuracy and compression ratio, we will

set γ = 30% in the rest of our experiments.

31

2.5.3 Compression Ratio under Ideal Channel Condition

First, we consider an ideal wireless channel. That is, the effect of network impairments, such

as transmission errors, is ignored here. For MT, MDT, and Diff methods, we build the data

compression models by the training data set and measure their online compression ratios by

the test data set. For each method, the offline phase outputs a transmission scheduling tree T ,

the corresponding coefficients αs and βs, and the Huffman codewords for each sensor. Note

that all nodes in the Diff method are level-1 nodes, so there is no overhearing. These results

are applied to the online phase to compress the test data set. The “Huffman” block adopts the

adaptive Huffman coding. For the Zlib method, we buffer the test data in every four seconds in

a block and then conduct compression (note that in Zlib, the block size is a trade-off between

compression ratio and delay [12]). Note that this is not an issue for our methods because our

methods can perform compression on each piece of sensing data ∆X
(1:m)
i [t].

Fig. 2.8 shows the compression ratios achieved by individual nodes. Fig. 2.9(a) compares

the overall compression ratios after summing up the data transmitted by all nodes. The corre-

sponding partial-ordering trees are shown in Fig. 2.9(b). Our MT, MDT, and Diff outperform

Zlib significantly in all nodes and all exercises. Note that nodes that move more frequently

exhibit higher compression ratios. Also note that Diff can be regarded as a special case of

our scheme which only tries to exploit the correlation of intranode data. So these performance

curves show the importance of exploiting the correlation of internode data. For most nodes,

MT outperforms MDT by small gaps (for very few nodes, MDT may outperform MT because

MT tries to minimize the average of compressed data sizes). From Fig. 2.9(b), we also see

that the number of level-1 nodes of a partial-ordering tree has major impact on the compression

ratio of a scheme (Diff can be regarded as consisting of only level-1 nodes). This observation

again proves the importance of exploiting spatial correlations. We believe that this is even more

important when the network becomes larger. While the overall performance of MT is always

better than MDT, MDT is much simpler and is more robust against network impairments, as to

be shown later on.

2.5.4 Compression Ratio under Non-Ideal Channel Condition

Since MT and MDT rely on overhearing, we intend to evaluate how packet loss may degrade

the performance of our methods (note that when a node fails to overhear the packets that it

expects to receive, it will simply compress its data based on temporal and intranode spatial

32

0

0.2

0.4

0.6

0.8

1

v1 v2 v3 v4 v5 v6 v7

C
o

m
p

re
ss

io
n

 R
a

tio

MT MDT Diff Zlib

(a)

0

0.2

0.4

0.6

0.8

1

v1 v2 v3 v4 v5 v6 v7

C
o
m

p
re

ss
io

n
 R

a
tio

MT MDT Diff Zlib

(b)

0

0.2

0.4

0.6

0.8

1

v1 v2 v3 v4 v5 v6 v7

C
o

m
p

re
ss

io
n

 R
a

tio

MT MDT Diff Zlib

(c)

0

0.2

0.4

0.6

0.8

1

v1 v2 v3 v4 v5 v6 v7

C
o
m

p
re

ss
io

n
 R

a
tio

MT MDT Diff Zlib

(d)

Figure 2.8: Comparison of compression ratios of individual nodes (v1, v2, . . . , v7) under an

ideal wireless channel. (a) exercise Fig. 2.3(a). (b) exercise Fig. 2.3(b). (c) exercise Fig. 2.3(c).

(d) exercise Fig. 2.3(d).

33

ex. (a) ex. (b) ex. (c) ex. (d)
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

O
v
e

ra
ll

C
o

m
p

re
s
s
io

n
 R

a
ti
o

0
.1

7
5

0
.1

7
9

0
.1

9
4

0
.6

7
9

0
.1

0
1

0
.1

0
1

0
.1

0
7

0
.4

1
4

0
.1

9
5

0
.2

0
0

0
.2

1
0

0
.7

0
2

0
.2

3
2

0
.2

3
4

0
.2

5
7

0
.7

9
9MT MDT Diff Zlib

(a)

!"!#

$%&!
'(')(

*+,

- -

. .

/

/

0 0

!! 1 1

2 2 3 3

- -

. .

/ /

0 0

!!

1 1

2 2

3 3

*4,

-

.

/

0 ! 1

2

3

-

.

/

0 ! 1

2

3

*$,

-

.

/

0

!

1

2

3

-

.

/

0

!

1

2

3

*5,

-

-

.

.

/

/

0

0
 !! 1 1 2 2 3

3

-

.

/

0

!

1

2

3

(b)

Figure 2.9: Comparison of overall compression ratios and the partial-ordering trees being used.

(a) overall compression ratio. (b) partial-ordering trees.

34

correlations). The packet loss probabilities of wireless links typically vary over time and space,

depending on the environment [43]. We simulate the network behavior by MATLAB because

the probability of packet loss in a real test-bed is not controllable. In our simulation, we set a

packet loss probability pl for each wireless link (i.e., the network is fully connected, but each

link has a loss probability of pl) and vary pl for the whole network to observe the compression

performance. We believe that using the same pl for all links suffices because our BISN is not

large (with eight nodes) and varying pl for individual links may bias the observed results.

We use a simple polling MAC, which works as follows.

1. The sink node sorts nodes of the partial-ordering scheduling tree T (shown in Fig. 2.9(b))

by a BFS traversal. The result is the polling order.

2. In each round, the sink node polls nodes according to the above polling order. It asks each

polled node vi to either report ǫ(i,1:m)|φ or ǫ(i,1:m)|jp depending on whether the sink node

could recover the received data.

3. Upon receiving the polling request, the polled node broadcasts its reply packet, which

contains 10 consecutive pieces of sensing data. All other nodes, including the sink node,

have a probability of (1− pl) to correctly receive the packet.

4. The sink node retransmits its polling request at most twice in case of packet loss, and then

polls the next node.

Note that in the above MAC protocol, the event of packet loss is solely based on each node’s

own observation of success/failure (and thus has the same loss probability of pl). We run the

simulation 1000 times and calculate the overall compression ratio over all nodes. The polling

message sent by the sink node is a one-byte packet consisting of the node ID of the polled

node and the expected type of reply (ǫ(i,1:m)|φ or ǫ(i,1:m)|jp). The reply packet (for MT and

MDT) contains a 9-byte MAC header and a variable-size payload (say, ǫ(i,1:m)|jp[t], ǫ(i,1:m)|jp [t+

1], . . . , ǫ(i,1:m)|jp [t+9]). To eliminate the impact of packet loss, the MAC header always includes

the first piece of the original sensing data, i.e., X
(1:m)
i [t]. For the uncompressed method, the

reply packet contains a 2-byte MAC header and a fix-size payload (say, X
(1:m)
i [t], X

(1:m)
i [t +

1], . . . , X
(1:m)
i [t + 9]).

Fig. 2.10 shows the overall compression ratios and the corresponding overhearing percent-

ages for each exercise under different methods, where the overhearing percentage is defined as

35

0 0.05 0.1 0.15 0.2
0.32

0.33

0.34
ex. (a)

0 0.05 0.1 0.15 0.2
0.4

0.6

0.8

1
ex. (a)

0 0.05 0.1 0.15 0.2
0.245

0.25

0.255

0.26

0.265
ex. (b)

O
v
e

ra
ll

C
o

m
p

re
s
s
io

n
 R

a
ti
o

0 0.05 0.1 0.15 0.2
0.1

0.2

0.3

P
e

rc
e

n
ta

g
e

 o
f

O
v
e

rh
e

a
ri
n

g

ex. (b)

0 0.05 0.1 0.15 0.2
0.34

0.35

0.36
ex. (c)

0 0.05 0.1 0.15 0.2
0.2

0.4

0.6
ex. (c)

0 0.05 0.1 0.15 0.2

0.38

0.39

0.4
ex. (d)

Packet Loss Probability

0 0.05 0.1 0.15 0.2
0

0.5

1

Packet Loss Probability

ex. (d)

MT MDT MT MDT

Figure 2.10: The effect of wireless packet loss.

the number of reply packets that send ǫ(i,1:m)|jp divided by the total number of reply packets.

Intuitively, a higher percentage of overhearing will help reduce the overall compression ratio.

As we can see, as pl increases, both MT’s and MDT’s compression ratios will increase, but

MDT will gradually outperform MT as pl increases.

2.5.5 Energy Cost

As energy consumption is an important factor in BISNs, we conduct experiments to observe

how our methods perform with respect to this. We adopt the polling MAC protocol in Sec-

tion 2.5.4. Table 2.1 summarizes the parameters used in this evaluation. The round length of

the polling MAC will depend on the sampling rate. In the beginning of each round, each node

has to wake up. The sink node then polls nodes according to the polling order. In the case of

packet loss from the polled node, the sink can re-poll at most two more times. Loss is deter-

mined by the polling timeout parameter. Each node has to keep on listening to the channel until

36

it receives a polling request. After being polled and transmitting its data, the node can turn off

its transceiver until the beginning of the next round. Note that after transmission, a node has to

wait an additional polling timeout interval before turning off its transceiver to make sure that

the sink will not re-poll it.

Table 2.1: Energy-Related Parameters Used in Our Evaluation

Parameter Value

Round length 250 ms

Polling timeout 10 ms

Polling retry limit 2

Overhead of uncompressed MAC 2 bytes

MAC overhead of MT (MDT) 9 bytes

PHY overhead 16 bytes

RF reception power 35.5 mW

RF transmission power 35.5 mW

RF idle power 10 mW

Bit time 4 µs

RX/TX switching time 10 µs

The power consumption of a sensor node mainly comes from its computing module, sensor

module, and wireless module. Here, we are mainly interested in the power consumption of

the wireless module because the other factors are irrelevant to our work. The parameters in

Table 2.1 are mainly based on those in [44, 45], which consider IEEE 802.15.4-compatible

transceivers operating in 2.4 GHz with a data rate of 250 kbps. A node can switch among three

modes: reception, transmission, and idle modes. When being turned off, a wireless module

consumes no power. The bit time is the reverse of the data rate. The RX/TX switching time

specifies the time interval required for a reception followed by an immediate transmission to

account the nodal processing time.

We mainly observe the average energy consumption per node per polling round. Assuming

the same initial battery energies for all nodes, it follows that the node that exhausts the maximal

average energy per round dies first. In Fig. 2.11, we run our simulation 1000 rounds for each

exercise and show the maximal per-node, per-round energy consumption among all nodes under

different packet loss probabilities. As we can see, both MT and MDT save over 40% of energy

as opposed to the uncompressed case.

37

0 0.05 0.1 0.15 0.2
0.4

0.6

0.8

1

1.2

1.4

Packet Loss Probability

E
n

e
rg

y
C

o
n

su
m

p
tio

n
/R

o
u

n
d

 (
m

J)

MT MDT Uncompressed

(a)

0 0.05 0.1 0.15 0.2
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Packet Loss Probability

E
n

e
rg

y
C

o
n

su
m

p
tio

n
/R

o
u

n
d

 (
m

J)

MT MDT Uncompressed

(b)

0 0.05 0.1 0.15 0.2
0.4

0.6

0.8

1

1.2

1.4

Packet Loss Probability

E
n

e
rg

y
C

o
n

su
m

p
tio

n
/R

o
u

n
d

 (
m

J)

MT MDT Uncompressed

(c)

0 0.05 0.1 0.15 0.2
0.4

0.6

0.8

1

1.2

1.4

Packet Loss Probability

E
n

e
rg

y
C

o
n

su
m

p
tio

n
/R

o
u

n
d

 (
m

J)

MT MDT Uncompressed

(d)

Figure 2.11: Comparison of the maximal average per-node energy consumption among all

nodes for each exercise. (a) exercise Fig. 2.3(a). (b) exercise Fig. 2.3(b). (c) exercise Fig. 2.3(c).

(d) exercise Fig. 2.3(d).

38

2.5.6 Scalability Issue

In addition, given a fixed channel bandwidth, the overall compression ratio also reflects how

many sensor nodes may co-exist in a BISN. So this also implies the scalability of a method.

For example, in Fig. 2.10, the compression ratios of both MT and MDT are upper-bounded by

0.4. This implies that our methods can roughly tolerate a BISN that is 2.5 times that of the

uncompressed method. Of course, the impact of contention and collision among nodes are not

taken into consideration. Since our work is not targeted at MAC design, we will leave this issue

for future study.

2.5.7 Effect of System Retraining

In the previous experiments, we have assumed that the training and testing data are collected

from the same person. In reality, a set of training data may be used to serve a different person

who performs exercises in a different fashion. In this case, the system needs to be retrained,

as discussed in Section 2.4.5, when we find deviations between the training parameters and the

actual behaviors. Fortunately, our data compression is lossless, which means that any deviation

can be accurately captured. The cost is a higher compression ratio before the retraining is done.

We evaluate this problem below.

We conduct this experiment with two users. A window-based method is adopted to keep

the most recent sensing data. Before the network starts, the initial data compression model

is built by the training data of one user. Recall that a model includes coefficients αs and βs

in Eq. (2.2), Huffman codewords, and partial ordering trees. Then the second user conducts

exercises on the system. Upon receiving new sensing data, the data analyzer inserts it at the

end of the sliding window and removes the same amount of old data from the window. In this

evaluation, a sliding window which can keep 20 seconds of sensing data is used. Originally,

it contains sensing data from the first person. Testing data is divided into blocks of length of

five seconds. These blocks will gradually replace all data of the first user. In Fig. 2.12, we

evaluate the overall compression ratio under ideal channels before the ith block is moved into

the sliding window. To make comparison, we also show overall compression ratios where the

initial data compression models are trained by the actual user who performs the online testing

(i.e., the second person). We can see that there is a higher compression ratio before retraining

starts. The gap diminishes as the second person’s data gradually replaces the first person’s in

the sliding window. After the fifth block, the sliding window is completely filled with the actual

39

1 2 3 4 5 6 7

0.1

0.15

0.2

0.25

O
ve

ra
ll

C
o

m
p

re
ss

io
n

 R
a

tio

Block Index (Time Index)

Trained by Different User Trained by Actual User

(a)

1 2 3 4 5 6 7

0.1

0.12

0.14

0.16

0.18

0.2

O
ve

ra
ll

C
o

m
p

re
ss

io
n

 R
a

tio

Block Index (Time Index)

Trained by Different User Trained by Actual User

(b)

1 2 3 4 5 6 7

0.18

0.2

0.22

0.24

0.26

0.28

O
ve

ra
ll

C
o

m
p

re
ss

io
n

 R
a

tio

Block Index (Time Index)

Trained by Different User Trained by Actual User

(c)

1 2 3 4 5 6 7

0.24

0.26

0.28

0.3

0.32

0.34

O
ve

ra
ll

C
o

m
p

re
ss

io
n

 R
a

tio

Block Index (Time Index)

Trained by Different User Trained by Actual User

(d)

Figure 2.12: The effect of system retraining on overall compression ratio. (a) exercise

Fig. 2.3(a). (b) exercise Fig. 2.3(b). (c) exercise Fig. 2.3(c). (d) exercise Fig. 2.3(d).

user’s data, so there is no deviation between the training parameters and the actual behaviors.

We can see that our data compression model can be accurately retrained within a short delay.

2.6 Conclusions

In this chapter, we have introduced a novel data compression framework to attack the multi-

sensor, multi-node compression problem in BISNs. We exploit the temporal and spatial corre-

lations among sensing data from multiple sensor nodes by differential coding and overhearing

among sensor nodes via linear regression. We also formulated the transmission-ordering prob-

lem to determine nodes’ overhearing sequence to better exploit spatial correlations and thus

minimize the total amount of transmissions. We proposed two scheduling methods, which dif-

fer in the longest sequence of nodes that a node needs to overhear. Our experiments on capturing

Pilates exercises demonstrated the effectiveness of our approach. Our approach only requires

a sensor node to overhear at most one other node. One future direction that deserves further

40

research is to exploit the correlation between a node and a set of other nodes.

41

Chapter 3

Exploiting Multi-Spatial Correlations of

Motion Data for Data Compression

3.1 Introduction

In Chapter 2, we have shown how to compress motion data by considering single-spatial cor-

relations of motion data, allowing a node to overhear at most κ = 1 node’s transmission and

to exploit the correlation with its own data for data compression. It is based on the following

two observations. First, since a BISN is likely fully connected, overhearing among nodes is

possible. This opens a space to relieve collision and contention among transmissions. Second,

since human body motions have inherent rhymes, it typically results in strong spatial correla-

tions among measurements of different nodes. This opens another space to compress sensing

data when overhearing is possible.

In this chapter, we extend Chapter 2 by considering multi-spatial correlations of motion

data in a BISN. That is, we further allow a node to overhear κ > 1 nodes’ transmissions.

By overhearing multiple nodes, the spatial correlations of motion data can be better exploited,

resulting in better compression ratios. However, such an extension is nontrivial. To solve the

overhearing dependencies among nodes, we formulate the problem as one of finding an optimal

DAG that minimizes the total amount of transmissions in a BISN. While a minimum-cost tree

for κ = 1 can be found in polynomial time, we show that finding a minimum-cost DAG is

NP-hard even for κ = 2. We then propose an efficient heuristic. Experimental results with real

BISN motion data are presented, which show more than 50% improvement over Chapter 2.

The rest of chapter is organized as follows. Section 3.2 formulates the multi-spatial data

compression problem, shows its NP-hardness, and proposes a heuristic. Experimental results

are shown in Section 3.3. Section 3.4 concludes this chapter.

42

3.2 Multi-Spatial Data Compression

3.2.1 Problem Definition

We consider a BISN with n sensor nodes v1, v2, . . . , vn deployed on a human body. Each node

has an inertial sensor. Via wireless links, nodes periodically report their readings to a sink in

a round-by-round fashion. Since a human body is relatively small, nodes are assumed to be

mostly fully connected and thus overhearing is possible.

In order to reduce transmission, a node may conduct data compression. Let us consider three

models. In Fig. 3.1(a), each node simply compresses its own data individually. In Fig. 3.1(b),

a node may compress its data based on its spatial correlation with another node. In Fig. 3.1(c),

the compression may be based on correlations with multiple nodes. Chapter 2 adopts the model

in Fig. 3.1(b) and uses an offline phase to learn the spatial correlations among sensors. A case

study in Pilates exercises shows significant compression effect using the model in Fig. 3.1(b).

In this work, we extend Chapter 2 by considering the multi-spatial data compression (κ-

MDC) problem. A node vi may compress its data based on overhearing the data of a set Si of

nodes. The average size of the compressed data sent by vi is denoted by c(vi |Si). Note that

when no spatial correlation is applied, Si = ∅. Our goal is to find a proper set Si for each vi

such that
∑n

i=1 c(vi |Si) is minimized. To be more practical, we enforce |Si| ≤ κ for a constant

κ.

The problem can be formulated as follows. We model the links of the BISN by a complete

directed graph G = (V,E), where V = {v1, v2, . . . , vn}. The operation of letting vi overhear

Si ⊆ V \ {vi} is formulated as finding a subset Ei ⊂ E such that 〈vj, vi〉 ∈ Ei iff vj ∈ Si. So

there are
(

n−1
0

)

+
(

n−1
1

)

+ · · ·+
(

n−1
κ

)

combinations for the selection of Si. The corresponding

transmission cost is c(vi |Si). It follows that any DAG G′ = (V,E ′ ⊂ E) found from G

represents an acyclic overhearing relation among nodes and has a total cost of
∑n

i=1 c(vi |Si).

The concept is shown in Fig. 3.2. Our goal is to find the minimum-cost DAG. From G′, the

transmission sequence can be determined by a topological sort on G′ [46].

Note that c(vi |Si) may be represented by conditional entropies and should be learned in

advance from offline training. Also note that in practice vi may fail to overhear some nodes

in Si. In this case, vi may either transmit only c(vi) or suboptimal c(vi |S ′
i) such that the

transmissions of nodes in S ′
i have been overheard by vi. That is, the DAG G′ represents the best

strategy, but each node can dynamically change its compression strategy at a higher cost when

43

collision zone

1()c v(1)

sink

4v
3v
2v
1v

2()c v(2)

(3)

(4)

3()c v

4()c v

(a)

collision zone

1()c v(1)

sink

4v
3v
2v
1v

{ }2 1(|)c v v(2)

{ }3 2(|)c v v(3)

{ }4 3(|)c v v(4)

(b)

collision zone

3()c v(1)

sink

4v
1v
2v
3v

{ }2 3(|)c v v(2)

{ }1 2 3(| ,)c v v v(3)

{ }4 1 2(| ,)c v v v(4)

(c)

Figure 3.1: Data compression models. c(vi |Si) means the compressed size of vi’s data after vi
overhears Si. (a) individual. (b) single-spatial. (c) multi-spatial.

1v 2v

3v 4v

1v 2v

3v 4v

3()c v

{ }1(| ,), , 2,3,4j kc v v v j k =1()c v { }1(|), 2,3,4jc v v j =

G G¢(a)

(b)

(c) DAG (d)

4()c v

2()c v

0iS = 1iS = 2iS =

{ }2(|), 1,3,4jc v v j =

{ }3(|), 1,2,4jc v v j =

{ }4(|), 1,2,3jc v v j =

{ }2(| ,), , 1,3,4j kc v v v j k =

{ }3(| ,), , 1,2,4j kc v v v j k =

{ }4(| ,), , 1,2,3j kc v v v j k =

3 2 1 4(, , ,)v v v v

Figure 3.2: An example of 2-MDC: (a) G, (b) all dependency relations, (c) a possible DAG G′,

and (d) a topological sort of G′.

44

needed.

3.2.2 Complexity Analysis

In [47], it is shown that finding a minimum-cost DAG for κ = 1 can be solved efficiently in

polynomial time. Below, we show that even for the simplest generalization of κ = 2, finding an

optimal DAG is NP-hard. The proof is based on a variant of the feedback arc set (FAS) problem,

a well-known NP-hard problem [48].

Definition 3.2.1. Given a digraph Gf = (Vf , Ef), the FAS problem is to find a feedback arc set

E ′
f ⊆ Ef with the minimal size |E ′

f | such that G′
f = (Vf , Ef \ E ′

f) is a DAG.

Lemma 3.2.2. The FAS problem remains NP-hard for in-degree-2 digraphs, where each node

has at most two incoming arcs.

Proof: It is known that the FAS problem remains NP-hard for digraphs in which the

total in-degree and out-degree of each node is no more than three [49]. By noting that in such

digraphs, no node with three incoming arcs can be in a cycle, the lemma follows directly.

Theorem 3.2.3. The κ-MDC problem is NP-hard for κ ≥ 2.

Proof: We will show the case of κ = 2, and other cases can be shown similarly. The proof

is based on reduction from Lemma 3.2.2. Given an in-degree-2 digraph G = (V,E) of the

FAS problem, we construct an instance of the κ-MDC problem G′ = (V,E ′ ⊇ E), a complete

digraph whose cost c(· | ·) is described later. Note that both problems ask for finding DAGs, the

former by removing arcs from G and the latter by selecting arcs from G′. Hence, the cost of

removing an arc from G is translated to the additional cost when this arc is not selected from

G′.

Below, we show how to assign c(vi |S) for any vi and S. For each vi that has no incoming

arc in G, we let c(vi) = 0 and all other c(vi |S) = ∞ (or a value large enough). For each vi

that has only one incoming arc 〈vj, vi〉 in G, we let c(vi) = 1, c(vi | {vj}) = 0, and all other

c(vi |S) = ∞. Note that an additional cost is incurred when 〈vj , vi〉 is not selected from G′.

Similarly, for each vi that has two incoming arcs 〈vj, vi〉 and 〈vk, vi〉 in G, we let c(vi) = 2,

c(vi | {vj}) = c(vi | {vk}) = 1, c(vi | {vj, vk}) = 0, and all other c(vi |S) = ∞. The additional

cost depends on how many of 〈vj, vi〉 and 〈vk, vi〉 are not selected from G′.

45

By this construction, the total cost of a DAG found from G′ is the number of arcs to be

removed from G. Hence, once the minimum-cost DAG is found from G′, the optimum FAS of

G is found.

3.2.3 A Greedy Cycle Breaker Heuristic

To the best of our knowledge, there is no known approximation for the κ-MDC problem. We

thus propose a heuristic called greedy cycle breaker (GCB), which is inspired by the FAS prob-

lem. Given a complete digraph G = (V,E), it works by selecting an optimal subgraph and then

breaking cycles greedily.

1. For each vi, find the set S∗
i ⊆ V \ {vi} such that |S∗

i | ≤ κ and c(vi |S∗
i) is minimized.

Then, for each vj ∈ S∗
i , add arc 〈vj , vi〉 to set E ′. This forms an optimal subgraph

G′ = (V,E ′).

2. If the above G′ contains no cycle, then G′ is the minimum-cost DAG and the algorithm

terminates. (There are many polynomial time algorithms to identify cycles in a graph.)

Otherwise, continue to step 3.

3. Find a set U ⊆ V such that for each vi ∈ U , S∗
i ⊆ U and the overhearing relations among

U is a DAG. Note that U may be empty. Below, we will add nodes to U iteratively.

4. For each vi ∈ V \ U , compute a suboptimal set U∗
i ⊆ U such that the additional cost

c(vi |U∗
i) − c(vi |S∗

i) is minimal. Among all these nodes, choose the one, say vi, such

that the additional cost is minimal. Then, we add vi to U and set its overhearing set to be

U∗
i .

5. Repeat step 4 until U = V .

In our experience, such a greedy method is quite effective for motion data. Experimental

results in Section 3.3 show that GCB is quite close to the optimum in most cases.

3.3 Experimental Results

We conduct experiments on real BISN motion data to verify the performance of GCB as well

as the effects brought by multi-spatial correlations.

46

Figure 3.3: The sensor locations in our experiments.

3.3.1 Environment

We place n = 10 nodes on a human body to capture motions. Two nodes are placed on each

limb, and the rest two are placed around the waist (refer to Fig. 3.3). Each node is a Jen-

nic JN5139 single-chip microprocessor [14] with a 16-MIPS RISC CPU, 192KB ROM, 96KB

RAM, a ZigBee-compliant module, and an triaxial accelerometer [50]. Each piece of raw data

in each axis is 16 bits, and the sampling rate is set to 20 Hz. For ease of presentation, we use

only one axis. The results can be straightforwardly extended to multiple axes.

We collect three sets of motion data: (a) walking, (b) walking upstairs, and (c) running. For

each motion, we compare three data compression methods.

• 1-MDC. This is the single-spatial compression method in Chapter 2.

• 2-GCB. This is our GCB method with κ = 2.

• 2-OPT. This is an exhaustive search for the optimum results of 2-MDC.

3.3.2 Compression under Ideal Channels

First, we consider ideal wireless channels as follows. We assume that nodes can overhear all

intended packets without loss. Toward this end, we collect all nodes’ raw data first and use

two-third of them for learning inter-node correlations and the rest for testing. From the learning

47

motion (a) motion (b) motion (c)
0

2

4

6

8

10

m
ea

n
c
(v

|
S

)
(b

it
/s

am
p
le

)

|S| = 0 |S| = 1 |S| = 2

Figure 3.4: The distributions of c(v | S) by |S|.

motion (a) motion (b) motion (c)
0.5

1

1.5

2

2.5

3

3.5

4

4.5

d
a
ta

 s
iz

e
 (

b
it
/s

a
m

p
le

)

1−MDC 2−GCB 2−OPT

Figure 3.5: Comparison of compressed data sizes under ideal channels.

data set, we obtain the cost functions c(vi |Si) through Huffman compression for all possible

Sis. Its distribution is shown in Fig. 3.4. The results verify that multi-spatial correlations are

worth exploiting.

Based on these c(vi |Si)s, we then develop different compression schemes. Then, we use

the testing data set and run a simulation program to make comparison. The results are shown

in Fig. 3.5. For motion (a), each piece of compressed data without overhearing is about 8 bits

(refer to Fig. 3.4). The 1-MDC and 2-GCB methods reduce the data sizes to 4.3 bits and 2.1 bits,

respectively. The optimum size by 2-OPT is 1.7 bits. The trends for other motions are similar.

This verifies the effectiveness of GCB.

3.3.3 Compression under Lossy Channels

From the same learning and testing data sets, we further simulate environments with lossy

channels as follows. Let pij(t) be the probability that a packet sent by vi at time t may be lost

at vj . We consider both static and dynamic channels. For the former, we consider a fixed value

ps for all pij(t)s. For the latter, we let each pij(t) be randomly drawn from [0, pd], where pd is a

constant. When a node vi loses any intended packet, it simply compresses by itself (thus the cost

is c(vi) bits). The results are shown in Fig. 3.6. When ps = 0 or pd = 0, it represents the ideal

channels. Evidently, a higher ps or pd would impair our schemes since there is a less chance

48

0 0.05 0.1 0.15 0.2
0

2

4

6 Motion (a)

ps =

0 0.05 0.1 0.15 0.2
0

2

4
Motion (b)

D
a

ta
 S

iz
e

 (
b

it
/s

a
m

p
le

)

ps =

0 0.05 0.1 0.15 0.2
0

2

4

6 Motion (c)

ps =

1−MDC 2−GCB 2−OPT

(a)

0.1 0.2
0

1

2

3

4

5
Motion (a)

D
a
ta

 S
iz

e
 (

b
it
/s

a
m

p
le

)

pd

0.1 0.2
0

1

2

3

4
Motion (b)

pd

0.1 0.2
0

1

2

3

4

5
Motion (c)

pd

1−MDC 2−GCB 2−OPT

(b)

Figure 3.6: Comparison of compressed sizes under lossy channels. (a) static channels. (b)

dynamic channels.

for overhearing. As the loss probability increases, the portion of data that is compressed by

spatial correlations also decreases (refer to Fig. 3.7 for static channels). One possible solution

deserving investigation is to adaptively fall back to 1-MDC when the channels are found lossy.

3.4 Conclusions

In this chapter, we have demonstrated how to exploit multi-spatial correlations in motion data

compression. We model the problem in a BISN and prove its relation with NP-hardness. We

then propose a heuristic and verify its effectiveness through real experimental data under differ-

ent channel models.

49

0 0.05 0.1 0.15 0.2
0

0.5

1
Motion (a)

0 0.05 0.1 0.15 0.2
0

0.5

1

P
e

rc
e

n
ta

g
e

 o
f

O
v
e

rh
e

a
ri
n

g

Motion (b)

0 0.05 0.1 0.15 0.2
0

0.5

1

Packet Loss Probability

Motion (c)

1−MDC 2−GCB 2−OPT

Figure 3.7: Percentage of overhearing under static lossy channels.

50

Chapter 4

Inertial Sensor Deployment Methods for

Gravity Measurement

4.1 Introduction

A body-area inertial sensor network (BISN) consists of multiple accelerometers, magnetome-

ters, and gyroscopes connected by wired/wireless links. An important usage of a BISN is to

track human motions through these inertial sensors. Its applications include video games [51],

robotic balancing [52], localization [53], sports training [6], medical care [47,54], and computer

graphics [7].

Regarding a human body as multiple rigid parts connected by joints, many researchers con-

sider a full-body motion as the combination of the motions of multiple rigid parts through the

human body skeleton structure. Basically, the motion of each rigid part is measured by some

inertial sensors deployed on a human body [55]. Many gesture applications have been devel-

oped [4, 54, 56].

One fundamental issue in BISNs is the gravity measurement problem. We want to measure

the gravity vector with respect to a rigid part of a human body, no matter it is moving or not. A

trivial case is when an accelerometer is mounted on a car driving on a flat plane as in Fig. 4.1(a).

The gravity vector ~g with respect to the accelerometer is always the same. However, as shown in

Fig. 4.1(b), for a human body, the orientation of each rigid part keeps on changing. Therefore,

for accelerometers, determining the gravity vector of a rigid part is a fundamental issue to be

solved before trying to track human motions.

To solve the gravity measurement problem, [52] considers a rigid part of a human body

as being held by a joint which is at a constant velocity with respect to the Earth coordinate.

Assuming multiple accelerometers deployed at known locations on the rigid part, it proposes

51

g

Earth-fixed

coordinate

sensor's

coordinate

x
y

z

x y

z

g

(a)

sensor

Earth-fixed

coordinate
joint

sensor's coordinate

motion
gx

y

z

x

yz

g

(b)

Figure 4.1: Gravity measurement in (a) a car and (b) a human body, where g is the gravity

vector.

a data fusion method to calculate the gravity vector on the rigid part. However, it only partly

addresses the error issue, which is common to sensor reading. Also, the locations of these sen-

sors may highly impact the potential value of errors. In this paper, based on the model in [52],

we further formulate the deployment optimization problem as one of finding the best locations

of accelerometers on a rigid part that minimize the estimation error of the gravity vector. The

problem is difficult even for simple geometries of rigid parts. We propose two heuristics, called

Metropolis-based method and largest-inter-distance-based (LID-based) method. The former

follows a probabilistic search principle that would eventually reach near-optimal solutions. The

latter is based on a “largest inter-distance (LID)” guideline obtained from our observations,

which states that sensors should be evenly distributed over the surface of the rigid part. We

show that this guideline leads to an optimal solution for some special cases and near-optimal

solutions in general. Experimental results show that both methods perform quite well, even for

complicated geometries.

We remark that although the LID guideline, which tries to push accelerometers away from

each other on one rigid part, has been widely adopted in other fields, its validity on our sensing

model is not yet verified. Our analysis starts from the kinematical model of rigid parts and we

demonstrate its effectiveness simulation- and experiment-wise.

Our results are applicable to any geometrical model illustrated in Fig. 4.2, where a rigid part

is held by a joint that moves at a constant velocity v with respect to an Earth-fixed coordinate.

The rigid part may rotate at any angular velocity φ about the joint. Both v and φ are unknown

to our system. This allows us to apply it to many physical rehabilitation, robotic balancing, and

gait analysis scenarios.

The rest of paper is organized as follows. Section 4.2 reviews related works. Section 4.3

52

Earth-fixed

coordinate

sensor

g

f
x

y

z
x

y
z

v

g

Figure 4.2: The geometrical model of our work, where v and φ are unknown to our system and

g is to be calculated.

formulates the gravity measurement and the deployment optimization problems. Section 4.4

presents our heuristics. Performance studies are discussed in Section 4.5. Conclusions are

drawn in Section 4.6.

4.2 Related Works

The deployment of sensors directly determines the network topology and influences communi-

cations. This issue has long been studied in wireless sensor networks. A comprehensive survey

can be found in [57]. Many deployment algorithms have been proposed for isotropic sensors

with unit-disc sensing coverage [58–61]. Directional sensors, such as cameras, have been stud-

ied in [62, 63]. The irregularity of sensing quality has been studied in [64]. However, none of

these studies is suitable for accelerometers when they are deployed on a human body for motion

sensing.

Comprehensive surveys on BISNs can be found in [1, 65], and surveys on human motion

tracking can be found in [66, 67]. Traditionally, one accelerometer is deployed on one rigid

part of a human body to measure its orientation, and the results from multiple parts are com-

bined through a skeleton model to reconstruct full-body motions [53, 55, 68]. With additional

motion constraints, [69–72] further avoid infeasible orientations. However, these approaches

rely on empirical methods to eliminate such factors. To solve this issue, [52] assumes multiple

accelerometers being deployed on one rigid part and proposes a kinematical method that opti-

mally measures the gravity. However, how to optimize the locations of accelerometers so as to

remove as much sensor reading errors as possible is left by as an open problem.

53

B C

A

1

A

B

B

ip

ө-coordinate

system
r-coordinate

system

rz

rx ry

jp

rigid body

()ip t¢

()r t

is

ms

1s

js

g

z
q

x
q

y
q

Figure 4.3: The kinematical model for one rigid body.

4.3 Gravity Measurement and Deployment Optimization Prob-

lems

We are interested in tracking human postures by deploying accelerometers on a human body.

One fundamental issue in such scenarios is how to calculate the gravity, no matter when the

body parts are moving or not [55]. A human body can be regarded as multiple movable parts,

each being a rigid body, connected to another part by a rotational joint [73, 74]. Multiple

accelerometers are placed on each rigid body for gravity measurement.

To formulate the gravity measurement problem, we consider one rigid body deployed with

multiple sensors as in Fig. 4.3. We assume that there is an Earth-fixed coordinate system,

representing views of a fixed observer, with θ = (0, 0, 0) as its origin and xθ, yθ, and zθ as its

axes. The gravity ~g with respect to this θ-coordinate is thus 1 g (or 9.8 m/sec2) along the −zθ

axis. Let the joint of the rigid body be at location r(t) with respect to the θ-coordinate at time t.

For the rigid body, we assume that there is a fixed coordinate with respect to the joint with r(t)

as its origin and xr, yr, and zr as its axes. Therefore, each point on the rigid body has a fixed

coordinate with respect to the r-coordinate, no matter the rigid body moves or not. For any

point at location p with respect to the r-coordinate, its location with respect to the θ-coordinate

changes over time t and can be written as p′(t) = r(t)+R(t)p, where R(t) is the 3× 3 rotation

matrix that translates (xr, yr, zr) to (xθ, yθ, zθ) [73].

Let s1, s2, . . . , sm be m accelerometers deployed on the rigid body and p1, p2, . . . , pm be

their locations at the r-coordinate, respectively. Without loss of generality, we assume that these

54

accelerometers are properly pre-calibrated in the sense that their x-, y-, and z-axes are aligned

to the xr, yr, and zr axes of the r-coordinate, respectively (otherwise, a rotation matrix from the

r-coordinate to each sensor’s coordinate would do the translation). This implies that the gravity

being observed by the joint is the same as that being observed by any sensor.

Now, consider any sensor si, i = 1, 2, . . . , m. Its location with respect to the θ-coordinate

at time t is p′i(t) = r(t) + R(t)pi (note that pi is time-invariant). Taking the second derivative

of p′i(t), we have its acceleration with respect to the θ-coordinate:

p̈′i(t) = r̈(t) + R̈(t)pi. (4.1)

Since si is calibrated to the r-coordinate, its actual reading ai(t) should be ai(t) = RT (t) (−p̈′i(t) + ~g)+

ni(t), where RT (t) is the inverse/transpose of R(t) (the inverse of a rotation matrix equals its

transpose) and ni(t) is the noise. Note that both ai(t) and ni(t) are 3× 1 vectors with respect to

the r-coordinate, and each element of ni(t) has a zero mean with a standard deviation σn. (For

example, when the rigid body is at rest, p̈′i(t) = 0 and ai(t) = RT (t)g + ni(t); when it falls

freely, ai(t) = ni(t).)

Below, assuming a fixed t, we will omit time information in our formulation. Plugging

Eq. (4.1) into ai, we have

ai = RT
(

−r̈ − R̈pi + ~g
)

+ ni

=
[

RT (−r̈ + ~g) , −RT R̈
]

[

1
pi

]

+ ni.

Putting m equations for all si’s together, we have the equality:

A = QP +N, (4.2)

where

A =
[

a1 . . . am
]

∈ ℜ3×m,

Q =
[

RT (−r̈ + g) , −RT R̈
]

∈ ℜ3×4,

P =

[

1 . . . 1
p1 . . . pm

]

∈ ℜ4×m,

N =
[

n1 . . . nm

]

∈ ℜ3×m.

Here, A and P are known and Q is to be determined. P is called the deployment matrix of

sensors s1, s2, . . . , sm.

55

Assuming that the joint moves at a constant velocity with respect to θ, we can plug r̈ = 0

in Eq. (4.2). Hence, Q’s first column vector RT (−r̈ + g) = RTg. By estimating Q, we can

determine RTg. Let Q̂ be an estimation of Q. Following [52], a Q̂ that makes Q̂ − Q as small

as possible can be found by Q̂ = AP+, where P+ is the Moore-Penrose pseudoinverse of P

when m > 4 and P+ = P−1 (the inverse of P) when m = 4 [75]. This implies that to find Q̂

we need at least four sensors. Since Q̂−Q is zero-mean, to measure how Q̂ is close to Q, [52]

defines an error variance, which solely depends on the deployment matrix P :

σ2
e(P) = 3σ2

n

4
∑

k=1

1

ρ2k(P)
, (4.3)

where ρk(P) is the kth largest singular value of P . It is claimed that a smaller σ2
e(P) implies

a more accurate Q̂. Therefore, we formulate the deployment optimization problem as follows:

given a rigid body and m accelerometers to be deployed on the surface of the rigid body, the

goal is to find a deployment matrix P such that the error variance σ2
e(P) is minimized. Note

that since the 3σ2
n in Eq. (4.3) is a constant, we only need to focus on the summation part.

4.4 Optimization Heuristics

The above formulation has related the sensor deployment problem to one of finding a P that

minimizes σ2
e(P). The problem is difficult even for simple geometries. Below, we present two

heuristics, called Metropolis-based and largest-inter-distance-based (LID-based) methods. The

former is based on probabilistic optimization, and the latter is based on some observations and

guidelines.

4.4.1 Metropolis-Based Method

We present a Metropolis-based deployment method that can be applied to rigid bodies of arbi-

trary shapes. It follows a probabilistic search to get rid of local optimal solutions. It, however,

has longer search time. This is acceptable for our sensor deployment problem since once a good

solution is found, it can be used repeatedly.

In this method, we partition the surface of the rigid body into mesh-like grid points. We

say that two deployment matrices Pi and Pj are neighbors if they differ by exactly one sensor’s

location and this sensor’s locations in Pi and Pj are neighboring grids. We define the eight

nearest grid points of a grid point as the latter’s neighbors. Therefore, each Pi has up to 8m

neighbors. We denote by B(Pi) the set of Pi’s neighbors. The algorithm works as follows:

56

1. Select any arbitrary deployment matrix Pi.

2. From Pi, we choose one of its neighbors, say Pj , as the next deployment with probability

qij (discussed below). Note that
∑

∀j qij = 1.

3. Repeat step 2 for a predefined number of times, and output the best deployment (with the

smallest σ2
e(P)) along the above search path.

We design the transition probability qij according to the Metropolis’ theorem [76]. The

resulting qijs should ensure: if we run the above search process long enough, each deployment

P should be visited by a mathematically stationary distribution π(P) such that

π(P) =
(1/σ2

e(P))
λ

C
, (4.4)

where the parameter λ > 3 and C =
∑

P (1/σ2
e(P))

λ
. Note that C normalizes the distribution,

and a higher λ ensures that a better deployment will be allocated a higher visiting probability.

By Metropolis’ theorem, this transition probability should be defined as

qij =











1
8m

min{1, π(Pj)

π(Pi)
} if Pj ∈ B(Pi),

0 if Pj 6∈ B(Pi),

1−∑

Pj 6=Pi
qij if Pj = Pi.

(4.5)

Note that the actual value of C is immaterial in Eq. (4.5).

We argue that, though simple, this algorithm is highly probable to obtain a near-optimal

solution. This is because Eq. (4.4) is devised similar to a (continuous) Pareto distribution with

a density function f(x) = C ′/xλ defined over a ≤ x, where C ′ and a are constants [77]. The

Pareto distribution has a mean of (λ− 1)a/(λ− 2), which is very close to the minimal value a

for a large λ. Through this similarity, we can expect the mean
∑

P σ2
e(P)π(P) to be very close

to the minimum σ2
e . Note that the variance of a Pareto distribution is also very tight for a large

λ. Hence, once the search reaches the stationary distribution, the output deployment is highly

probable to be a near-optimal solution.

4.4.2 Largest-Inter-Distance-Based Method

While the Metropolis-based method takes a long time to search near-optimal solutions, this

method is based on some observations and a guideline, making it both efficient and effective

in most cases. To minimize the term
∑4

k=1 1/ρ
2
k(P) in Eq. (4.3), we propose the following

“largest inter-distance (LID)” guideline: Sensors should be evenly distributed over the surface

57

−2
0

2
−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
y

z

p
1

p
3

p
2

range of p
4

(a)

−2

0

2
−2 −1 0 1 2

0

0.2

0.4

0.6

0.8

1

p
4x

p
4y

1
/σ

2 e
(P

)

(b)

Figure 4.4: (a) a sphere rigid body attached by three fixed sensors and one moving sensor and

(b) the reciprocals 1/σ2
e(P) by moving point p4.

area such that the distance between each pair of them is maximized. The guideline is drawn

from observations on some special cases where optimal deployments can be found. Below, we

discuss these special cases and then present the LID-based method.

To show the optimality of a deployment, we present the following lemma.

Lemma 4.4.1. The error variance σ2
e(P) of a 4 ×m deployment matrix P = (Pij) is bounded

by

σ2
e(P) ≥ 16/|P |2, (4.6)

where |P | =
√

∑

i,j P
2
ij . The equality holds iff ρ1(P) = ρ2(P) = ρ3(P) = ρ4(P).

Proof: The harmonic mean of ρ2k(P), k = 1 . . . 4, can be expressed by

4

1/ρ21(P) + 1/ρ22(P) + 1/ρ23(P) + 1/ρ24(P)
=

4

σ2
e(P)

.

By properties of the Frobenius matrix norm [78], we have ρ21(P) + ρ22(P) + ρ23(P) + ρ24(P) =

|P |2, so the arithmetic mean of ρ2k(P)s is |P |2/4. The lemma is a direct consequence of the

fact that the arithmetic mean is always larger than the harmonic mean. Eq. (4.6) holds when

ρ2i (P) = ρ2j(P) for all i and j [79], or simply ρi(P) = ρj(P) because ρi(P) ≥ 0 for all i.

Lemma 4.4.1 also suggests that when the joint of a rigid body is at its geometric center, a

near-optimal deployment may be obtained according to the LID guideline. To see this, con-

sider a spherical rigid body with its joint at its center. Since each point on the sphere is

equidistant to the joint, the |P | has a fixed value. In Fig. 4.4(a), we deploy three fixed sen-

sors at p1 = (1/
√
3 − 1, 1 + 1/

√
3,−

√
3/3), p2 = (1 + 1/

√
3, 1/

√
3 − 1,−

√
3/3), and

58

1p

2p

3p

(1,1,1)(1,1,1)-

(1, 1,1)-(1, 1,1)- -

(1,1, 1)-(1,1, 1)- -

(1, 1, 1)- -(1, 1, 1)- - -

4prange of

(a)

−1
−0.5

0
0.5

1 −1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

p
4y

p
4x

1
/σ

2 e
(P

)
(b)

Figure 4.5: (a) a cube rigid body attached by three fixed sensors and one moving sensor and (b)

the reciprocals 1/σ2
e(P) by moving point p4.

p3 = (−2/
√
3,−2/

√
3,−

√
3/3), and move the fourth sensor p4 around on the upper part of

the sphere. Let the coordinate of p4 be (p4x, p4y, p4z). Fig. 4.4(b) shows the reciprocal 1/σ2
e(P)

with respect to (p4x, p4y). Evidently, a larger 1/σ2
e(P), or a smaller σ2

e(P), can be obtained by

moving p4 farther away from other sensors. The maximal value of 1/σ2
e(P) appears at p4 =

(0, 0,
√
3). Under this configuration, we actually have ρ1(P) = ρ2(P) = ρ3(P) = ρ4(P) = 2.

Since |P | is fixed for all P s, the optimality directly follows from Lemma 4.4.1. Basically,

following the LID guideline to move four sensors around a sphere will result in forming a reg-

ular tetrahedron, whose faces are regular triangles. It can be shown that such deployments are

optimal (see the proof in Section 4.7.1). We summarize the results with a theorem.

Theorem 4.4.2. Given four sensors to be deployed on a sphere rigid body whose joint is at its

geometric center, a regular tetrahedron deployment gives the minimum σ2
e(P).

The LID guideline can also be applied to other geometries. In Fig. 4.5(a), we consider four

sensors to be deployed on a cube whose joint is at its geometric center. We fix three sensors at

p1 = (1,−1,−1), p2 = (−1,−1, 1), and p3 = (−1, 1,−1) and move p4 = (p4x, p4y, 1) around

the top surface where −1 ≤ p4x ≤ 1 and −1 ≤ p4y ≤ 1. Fig. 4.5(b) shows the reciprocal

1/σ2
e(P) with respect to (p4x, p4y). As can be seen, when p1, p2, p3, and p4 follows the LID

guideline and results in forming a regular tetrahedron, the deployment is optimal (see the proof

in Section 4.7.2).

59

1p

2p

3p

4p
(15,-2.5,2.5)

(15,2.5,2.5)

(15,-2.5,-2.5)

(15,2.5,-2.5)

(0,2.5,2.5)

(0,-2.5,2.5)

(0,-2.5,-2.5)

(0,2.5,-2.5)
(0,0,0)

Figure 4.6: A rectangular box attached by four sensors with its joint at ×.

Theorem 4.4.3. Given four sensors to be deployed on a cube rigid body whose joint is at its

geometric center, a regular tetrahedron deployment at the vertices gives the minimum σ2
e(P).

For the case of a rectangular box with the joint placed at its geometric center, we have

experimented many cases with four sensors and found that a tetrahedron-like deployment (such

as the one in Fig. 4.6) always gives the minimum σ2
e(P). However, we can not derive a formal

proof of its optimality yet. On the other hand, when the joint is not at its geometric center, we

do find a counterexample as follows. In the case of Fig. 4.6, where the joint is at the left surface

(marked by a ×), the σ2
e(P) is 0.5844. With the same joint position, when p1 = (0, 2.5, 1.6),

p2 = (0,−0.7,−2.46), p3 = (1.56,−2.5, 2.48), and p4 = (12.84, 2.5,−2.48), we find a smaller

σ2
e(P) = 0.5347. Hence, the LID guideline is able to give optimal solutions in some special

cases and near-optimal solutions in general.

Now, we present an algorithm to implement the LID guideline for rigid bodies of arbitrary

shapes. It distributes sensor nodes by introducing virtual forces that mimics the electronic par-

ticles distribution principle: the nearer the particles, the stronger the repelling forces between

them. This algorithm works as follows.

1. Initially, randomly place sensors s1, s2, . . . , sm on the surface of the rigid body. Let p1,

p2, . . . , pm be their locations, respectively.

2. For each pair of si and sj , the repelling force contributed by sj on si is defined by a 3× 1

vector

fji =

(

1

‖pi − pj‖
+ β

)

pi − pj
‖pi − pj‖

,

where β is a constant speed to expedite the iterative process. In the exceptional case of

pi = pj , we set fji to a unit vector of any direction. The total force contributed by all

other sensors on si is fi =
∑

j 6=i fji.

60

3. For each sensor si, we let it move a displacement vector of kfi, where k is a scaling

constant. So the new location of si is pi + kfi. Since this location may not be on the

surface of the rigid body, a projection operation is needed (we will discuss this below).

4. Let p
(old)
i and p

(new)
i be the previous and next locations of si, respectively. We test whether

∑m

i=1‖p
(new)
i − p

(old)
i ‖ ≤ σth, where σth is a threshold value, or the allowed number of

iterations is reached. If so, we terminate this algorithm; otherwise, go back to step 2.

The above algorithm follows the virtual-force discipline [80] to maximize the inter-distances

among sensors. Note that since the final locations depend on the initial locations, to avoid

falling into a local minimum, we may repeat the algorithm several times with randomized initial

locations.

Below, we explain the projection operation in step 3. To be computationally feasible, we

approximate a surface by polygons as usually done in computer graphics. Fig. 4.7 shows an

example. Sensor si is at location pi and is pushed by a displacement kfi. The projection is

conducted in a polygon-by-polygon manner. First, pi + kfi is projected to polygon 1. Since

the projected point is beyond the range of polygon 1, we regard that a partial displacement d1

out of kfi has been consumed and si has been moved to p′i, which is at the edge of polygon

1 (see Fig. 4.7). A remaining displacement of kfi − d1 needs to be applied to p′i. Similarly,

p′i + (kfi − d1) is projected to polygon 2. Since the projected point is also beyond the range of

polygon 2, we regard that a partial displacement d2 out of kfi−d1 has been consumed and si has

been moved to p′′i , which is at the edge of polygon 2 (see Fig. 4.7). A remaining displacement

of kfi − d1 − d2 needs to be applied to p′′i . Finally, p′′i + (kfi − d1 − d2) is projected to polygon

3. Since the projected point is within the range of polygon 3, the final location of si is p′′′i on

polygon 3. Note that the above iterative process is indeed supported by many 3D game engines,

such as Unity [17]. Fig. 4.8 shows how we configure an arm by polygons in Unity and run our

LID-based method.

4.5 Simulation and Experimental Results

We have conducted simulations and real experiments to verify our schemes.

61

1d

2d

Polygon 1 Polygon 2 Polygon 3
ip

ip¢ ip¢¢
ip¢¢¢

ikf
1ikf d-

1 2ikf d d- -

Figure 4.7: An example of iterative projection on three consecutive polygons.

joint

rigi
d b
ody

1p2p

3p4p

(a)

joint

rigi
d b
ody

1p

2p

3p

4p

(b)

Figure 4.8: An example of running the LID-based method by Unity. (a) initial deployment. (b)

final deployment.

4.5.1 Simulation Setup

We consider five rigid body geometries in Fig. 4.9. For each geometry, we simulate its joint at

three possible positions, one at its geometric center (shown by ◦), one at the center of a face

(shown by ×), and one at a corner (shown by △). The combinations of geometries and joints

give a total of 15 rigid bodies to be evaluated.

For each rigid body, we compare the following three deployment methods.

• Random Deployment. This method distributes sensors at random positions. It represents

previous approaches, which place sensors without any optimization [52].

• Metropolis-Based Deployment. This is our Metropolis-based deployment method. In

62

(a) cube (b) box (c) prism (d) cylinder (e) arm

30

15
15

4

30

15

30

7.5

21

joint position 1 joint position 2 joint position 3

Figure 4.9: Rigid body geometries, each with its joint placed at one of three possible positions.

our simulations, we give each run 10,000 iterations and set the grid sizes of geometries

(a) to (e) in Fig. 4.9 to 0.1, 0.4, 0.4, 0.2, and 0.15, respectively.

• LID-Based Deployment. This is our LID-based deployment method. In our simulations,

we set β = 0.5, k = 1, and σth = 0.0001. The maximum iteration number of a run is set

to 2,000.

To simulate the estimation of gravity vectors, for each deployment matrix P , we follow

Eq. (4.2) to calculate Q̂. Without any loss of generality, R in Eq. (4.2) is set to the identity

matrix, so the real gravity vector RT~g (which is hidden in Q) becomes ~g. The R̈ is arbitrarily

set to the identity matrix because it is filtered out by our estimation scheme. The noise level σn

is set to 50 mg (note that the magnitude of ~g is 1000 mg). The estimated gravity vector ĝ is the

first column of Q̂. Since ~g has a constant magnitude, we compare the angle α between ĝ and ~g.

4.5.2 Comparison of Accuracy and Execution Time

First, we consider using m = 4 sensors only. For each rigid body, each method is run 200 times

(each with its own randomized initial sensor positions) to constitute an averaged simulation

result. We compare methods by α, σ2
e , and the execution time.

The results of α and σ2
e are shown in Fig. 4.10 and Fig. 4.11, respectively. The unit of

σ2
e is ignored since it is merely used for comparison. Comparing Fig. 4.10 and Fig. 4.11, we

see that optimizing α can be done through σ2
e . The random deployment method always gives

large α and σ2
e . Our proposed methods obtain significant improvements and also show tight

confidence intervals. The LID-based method outperforms the Metropolis-based method in most

cases, except a few cases in Fig. 4.11(c) for the triangular prism. One possible reason for the

exceptions may be that it does not consider the joint position. Since both proposed methods

give very small σ2
e , we can believe that their results are near-optimal.

63

Fig. 4.12 compares the execution time measured on a PC with an Intel i7 CPU. We report the

cases when joints are at the geometric centers. The random method terminates almost imme-

diately after execution, but it gives poor results. The Metropolis-based method trades notably

longer execution time for better results. Evidently, the LID-based method is both effective and

efficient.

4.5.3 Effects of the Number of Sensors

The previous results only consider m = 4. Here we vary m to observe the effect. For each value

of m, we repeat the previous simulations for our proposed methods. The random deployment

method is ignored (for better presentation). Fig. 4.13 and Fig. 4.14 show the mean α and the

mean σ2
e , respectively, where we denote by “J1” the joint position 1 (refer to Fig. 4.9), by “J2”

the joint position 2, and so on. The results show that deploying more sensors does reduce the

errors. The LID-based method is still preferred. Note that in Fig. 4.13(c), for the joint position

2, the LID-based method can outperform the Metropolis-based method by using m = 5 sensors.

Fig. 4.15 compares the execution time. The LID-based method is not sensitive to the value of

m, whereas the Metropolis-based method has linearly increasing execution time as m increases.

4.5.4 Real Gravity Measurement

In addition to simulations, we also conducted real experiments to measure the gravity vector.

We constructed a rectangular box, fixed the box by a hinge joint, deployed eight lab-made ac-

celerometers on its surface, and then rotated the box to measure the gravity. Fig. 4.16 shows

our experiment scenario and how we rotated the box around the beam. Here, the joint is set

to be (0, 0, 0) of the r-coordinate, whose three axes are denoted by xr, yr, and zr, respectively.

Note that the xr axis is along the beam. We consider two motions, one consisting of a slow ro-

tation between “up”, “down”, and “up” states and the other consisting of repeated fast rotations

between “up” and “down” states. The sampling rate was set to 10 Hz. The sensing data was

stored at each sensor node and reported to a sink in a reliable way. Then, we computed offline

by a PC the estimated gravity vector ĝ(t) with respect to the r-coordinate.

Although the real gravity vector RT~g(t) is desired for comparison, it was unavailable in

our experiments. Therefore, we verify the accuracy of ĝ(t) by the appearance of its waveform,

which should correspond to how we rotated the box. Let αx(t) be the angle between ĝ(t) and xr,

αy(t) be between ĝ(t) and yr, and αz(t) be between ĝ(t) and zr. Fig. 4.17(a) shows the results of

64

the slow rotation. We can see that all angles are measured quite accurately. The αx(t) is nearly

constant, reflecting that fact that the rotation was about the xr-axis. The values of αy(t) and

αz(t) also match the sequence of “up”, “down”, and “up” states. Note that the curves cannot be

perfectly smooth because the rotation was manually conducted. Fig. 4.17(b) shows the results

of the fast rotations. The αx(t) is slightly fluctuating since the beam was unexpectedly shaken

during the fast rotations. However, αy(t) and αz(t) still match the repeated rotations between

“up” and “down” states. The experimental results show that our schemes also work well in real

situations.

4.6 Conclusions

In this paper, we have investigated the gravity measurement problem for rigid bodies. We have

modeled the sensor deployment problem by considering the locations of sensors on one rigid

body to minimize the measurement errors. The model is quite suitable for BISNs. Based on

our formulation, we proposed two heuristics to find near-optimal deployments for arbitrary

rigid bodies. One is based on a probabilistic optimization technique that eventually finds near-

optimal solutions. The other is based on a “largest inter-distance” guideline, which leads to

optimal solutions in some special cases. Experimental results showed that our methods are

quite effective and significantly outperform previous approaches.

4.7 Appendices

4.7.1 Proof of Theorem 4.4.2

In Section 4.4.2, we show that Theorem 4.4.2 holds for a sphere of radius
√
3. Here, we show

that Theorem 4.4.2 also holds for spheres of any radii. Specifically, let the position of a sensor

si, i = 1, . . . , 4, be pi = (pix, piy, piz). Deploying si on a sphere of radius d implies that

p2ix + p2iy + p2iz = d2. We show that when pis form a regular tetrahedron, the deployment is

optimal.

A deployment matrix P is a 4× 4 matrix, where each column is a four dimensional vector.

Although the geometrical interpretation of singular value decomposition (SVD) of P plays

an important role in understanding Theorem 4.4.2, it is hard to show the SVD process for four

dimensional vectors. Noting that the LID guideline can be applied under dimension reduction of

P , instead of considering a 3D sphere and its four-dimensional P directly, we will first consider

65

deploying m = 3 sensors on a 2D circle, analyze properties of its three-dimensional P (a 3× 3

matrix) geometrically, and show that following the LID guideline, a regular triangle deployment

is optimal. Then, the analysis will be extended to a four-dimensional P in a straightforward

manner to complete the proof.

In the 2D reduction, three sensors are deployed on a circle of radius d. Each si’s location

pi = (pix, piy) satisfies p2ix + p2iy = d2. The deployment matrix becomes

P =





1 1 1
p1x p2x p3x
p1y p2y p3y



 . (4.7)

Similarly, |P | has a fixed value. Below, we apply Lemma 4.4.1 to Eq. (4.7) to show that when

pis form a regular triangle (the counterpart of a regular tetrahedron), the deployment is optimal.

Each column of P in Eq. (4.7) is a vector that points to a circle on the x = 1 plane (refer

to Fig. 4.18(b)). It turns out that when we consider a circle of any radius d, the equalities

ρ1(P) = ρ2(P) = ρ3(P) in Lemma 4.4.1 may not exist. To overcome such difficulties, we

extend P in Eq. (4.7) to

P̃ =





δ δ δ
p1x p2x p3x
p1y p2y p3y



 ,

where δ > 0. Note that in the 3D space of P̃ , the circle is translated from the x = 1 plane to the

x = δ plane.

Lemma 4.7.1. The equalities ρ1(P̃) = ρ2(P̃) = ρ3(P̃) hold if and only if ‖p1 − p2‖ = ‖p2 −
p3‖ = ‖p3 − p1‖ and d =

√
2δ.

Proof: Let the SVD of P̃ be P̃ = R2ΞR1, where R1 and R2 are rotation matrices,

and Ξ is the diagonal matrix whose diagonal entries are ρ1(P̃), ρ2(P̃), and ρ3(P̃). As shown

in Fig. 4.18, the three matrices are applied to the base vectors e1 = (1, 0, 0), e2 = (0, 1, 0),

and e3 = (0, 0, 1) to carry out the transformation. If ρ1(P̃) = ρ2(P̃) = ρ3(P̃), we have

P̃ = R2ΞR1 = ρ1(P̃)R2R1. That is, after multiplying P̃ , the base vectors remain orthogonal to

each other and each ei is scaled by ρ1(P̃). At the x = δ plane, setting radius d =
√
2δ preserves

the orthogonality, which also implies that p1, p2, and p3 form a regular triangle. The “only if”

part can be shown similarly.

In moving from the x = δ plane back to the x = 1 plane, the following property holds.

Lemma 4.7.2. The product of singular values ρ1(P)ρ2(P)ρ3(P) equals ρ1(P̃)ρ2(P̃)ρ3(P̃)/δ.

66

Proof: By properties of SVD, the squares of singular values of a matrix P , namely ρ2k(P)s,

are the eigenvalues of P TP . Since the determinant of a square matrix equals the product of its

eigenvalues, we have

det(P TP) = ρ21(P)ρ22(P)ρ23(P).

We may decompose P̃ as

P̃ =





δ 0 0
0 1 0
0 0 1



P = ∆P.

By properties of determinants, we also have

det(P̃ T P̃) = det
[

(∆P)T (∆P)
]

= det(∆P) det(∆P)

= det(∆)2 det(P TP)

= δ2 det(P TP).

Since singular values are larger than zero, we have the desired result.

Because the arithmetic mean
∑3

k=1 ρ
2
k(P̃)/3 is fixed for all deployments, from Lemma 4.7.1

and the power mean inequality [79], we know that an extended P̃ where sensors form a regular

triangle has the largest geometric mean
√
3ρ21(P̃)ρ22(P̃)ρ23(P̃) and the largest harmonic mean

3/
∑3

k=1 ρ
−2
k (P̃), and they are equal to the arithmetic mean. Hence, by Lemma 4.7.2, we also

know that the original P has the largest geometric mean. Now that the arithmetic mean is fixed

for all deployments, we can expect that P has the largest harmonic mean, supporting our claim.

We now extend the above discussion to the original 4× 4 deployment matrix. We show that

a regular tetrahedron, where every tuple of three points pi, pj , and pk forms a regular triangle,

is an optimal deployment on a sphere. The extension can be done in a straightforward manner.

Lemma 4.7.1 and Lemma 4.7.2 are extended as follows.

Lemma 4.7.3. The equalities ρ1(P̃) = ρ2(P̃) = ρ3(P̃) = ρ4(P̃) hold if and only if d =
√
3δ

and p1, p2, p3, and p4 form a regular tetrahedron.

Lemma 4.7.4. The following equality holds for a deployment matrix P and its extension P̃ :

ρ1(P)ρ2(P)ρ3(P)ρ4(P) = ρ1(P̃)ρ2(P̃)ρ3(P̃)ρ4(P̃)/δ.

Again, since the arithmetic mean of ρ2k(P)s is fixed for all deployments, we can expect a

tetrahedron, which has the largest geometric mean, to also have the largest harmonic mean. We

show it by an example in Fig. 4.4. Since the harmonic mean is the reciprocal of error variance

σe(P), we conclude that a regular tetrahedron is optimal.

67

4.7.2 Proof of Theorem 4.4.3

First, we show that Theorem 4.4.3 holds for the cube in Fig. 4.5(a). The four sensor locations

p1, p2, p3, and p4 in Fig. 4.5(a) form a regular tetrahedron, and the deployment matrix P has

the maximal norm |P |. Because a cube can be circumscribed by an outer sphere, the regular

tetrahedron in Fig. 4.5(a) is indeed a rotation of the regular tetrahedron in Fig. 4.4(a). From

Theorem 4.4.2, we know that a regular tetrahedron deployment is optimal for a fixed |P |. Then,

the optimality ensues from Lemma 4.4.1. Similarly, Theorem 4.4.3 also holds for cubes of other

edge lengths.

68

1 2 3
0

5

10

15

20

25
m

ea
n

α
(d

eg
re

e)

joint position

Rand. Met. LID

(a)

1 2 3
0

5

10

15

20

25

m
ea

n
α

(d
eg

re
e)

joint position

Rand. Met. LID

(b)

1 2 3
0

5

10

15

20

25

30

m
ea

n
α

(d
eg

re
e)

joint position

Rand. Met. LID

(c)

1 2 3
0

5

10

15

20

25
m

ea
n

α
(d

eg
re

e)

joint position

Rand. Met. LID

(d)

1 2 3
0

5

10

15

20

25

m
ea

n
α

(d
eg

re
e)

joint position

Rand. Met. LID

(e)

Figure 4.10: Comparison of α, with 95% confidence intervals shown on the bars. (a) geometry

(a). (b) geometry (b). (c) geometry (c). (d) geometry (d). (e) geometry (e).

69

1 2 3
0

0.5

1

1.5
m

e
a

n
 =

 1
7

3
.5

2

m
e

a
n

 =
 2

9
4

2
.6

6

m
e

a
n

 =
 4

7
2

.0
1m

ea
n

σ
2 e

joint position

Rand. (text only) Met. LID

(a)

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
e

a
n

 =
 1

1
8

2
.5

0

m
e

a
n

 =
 3

1
2

3
.9

6

m
e

a
n

 =
 3

7
1

3
.4

4m
ea

n
σ

2 e

joint position

Rand. (text only) Met. LID

(b)

1 2 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
e
a
n
 =

 1
2
5
1
.7

2

m
e
a
n
 =

 5
4
4
0
.0

2

m
e
a
n
 =

 2
4
3
4
1
.6

6

m
ea

n
σ

2 e

joint position

Rand. (text only) Met. LID

(c)

1 2 3
0

0.5

1

1.5

m
e
a
n
 =

 1
2
6
9
.2

3

m
e
a
n
 =

 6
4
4
.7

9

m
e
a
n
 =

 4
5
2
4
4
5
.1

0

m
ea

n
σ

2 e

joint position

Rand. (text only) Met. LID

(d)

1 2 3
0

0.5

1

1.5

2

m
e

a
n
 =

 2
0

8
6

.8
9

m
e

a
n
 =

 8
9

4
.6

8

m
e

a
n
 =

 6
4

3
.8

1m
ea

n
σ

2 e

joint position

Rand. (text only) Met. LID

(e)

Figure 4.11: Comparison of σ2
e , with 95% confidence intervals shown on the bars. (a) geometry

(a). (b) geometry (b). (c) geometry (c). (d) geometry (d). (e) geometry (e).

70

(a) (b) (c) (d) (e)
0

5

10

15

20

25

30

35

m
e

a
n

 e
x
e

c
u

ti
o

n
 t

im
e

 (
s
e

c
)

geometry

Rand. Met. LID

Figure 4.12: Comparison of execution time.

71

4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

m
ea

n
α

(d
eg

re
e)

m

Met., J1

LID, J1

Met., J2

LID, J2

Met., J3

LID, J3

(a)

4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

m
ea

n
α

(d
eg

re
e)

m

Met., J1

LID, J1

Met., J2

LID, J2

Met., J3

LID, J3

(b)

4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

m
ea

n
α

(d
eg

re
e)

m

Met., J1

LID, J1

Met., J2

LID, J2

Met., J3

LID, J3

(c)

4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

m
ea

n
α

(d
eg

re
e)

m

Met., J1

LID, J1

Met., J2

LID, J2

Met., J3

LID, J3

(d)

4 5 6 7 8
1

1.5

2

2.5

3

3.5

4

4.5

m
ea

n
α

(d
eg

re
e)

m

Met., J1

LID, J1

Met., J2

LID, J2

Met., J3

LID, J3

(e)

Figure 4.13: Effects of m on α. (a) geometry (a). (b) geometry (b). (c) geometry (c). (d)

geometry (d). (e) geometry (e).

72

4 5 6 7 8
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

m
ea

n
σ

2 e

m

Met., J1

Met., J2

Met., J3

LID, J1

LID, J2

LID, J3

(a)

4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
ea

n
σ

2 e

m

Met., J1

Met., J2

Met., J3

LID, J1

LID, J2

LID, J3

(b)

4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4

m
ea

n
σ

2 e

m

Met., J1

Met., J2

Met., J3

LID, J1

LID, J2

LID, J3

(c)

4 5 6 7 8
0

0.2

0.4

0.6

0.8

1

1.2

1.4
m

ea
n

σ
2 e

m

Met., J1

Met., J2

Met., J3

LID, J1

LID, J2

LID, J3

(d)

4 5 6 7 8
0

0.5

1

1.5

m
ea

n
σ

2 e

m

Met., J1

Met., J2

Met., J3

LID, J1

LID, J2

LID, J3

(e)

Figure 4.14: Effects of m on σ2
e(P). (a) geometry (a). (b) geometry (b). (c) geometry (c). (d)

geometry (d). (e) geometry (e).

73

4 5 6 7 8
0

20

40

60

80

m
e
a
n
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

m

Met. LID

(a)

4 5 6 7 8
0

20

40

60

80

m
e
a
n
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

m

Met. LID

(b)

4 5 6 7 8
0

20

40

60

80

m
e
a
n
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

m

Met. LID

(c)

4 5 6 7 8
0

10

20

30

40

50

60

m
e
a
n
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

m

Met. LID

(d)

4 5 6 7 8
0

10

20

30

40

50

60

m
e
a
n
 e

x
e
c
u
ti
o
n
 t
im

e
 (

s
e
c
)

m

Met. LID

(e)

Figure 4.15: Effects of m on execution time. (a) geometry (a). (b) geometry (b). (c) geometry

(c). (d) geometry (d). (e) geometry (e).

74

1p

2p 3p

4p

(6,2,8.5)-

(0,0,0)(0,0,0)

(6,2,-8.5)

5p

6p 7p

8p

(6,28,8.5)(6,28,8.5)

(6,28,-8.5)

(6,2,-8.5)(6,2,-8.5)(6,2,-8.5)(6,2,-8.5)(6,2,-8.5)

(6,2,8.5)

(6,28,-8.5)-

(6,28,8.5)-

rxĝ
ry

rz

xxaa

30 cm

1
5
cm

15
cm

(a)

1p

2p

3p
4p

7p

6p

(b)

1p

2p

3p

4p

7p

(c)

Figure 4.16: Our experimental scenario: (a) geometry model, (b) state “up”, and (c) state

“down”.

0 5 10 15 20 25
60

80

100

120

140

160

180

d
e
g
re

e

time

α
x

α
y

α
z

(a)

0 10 20 30 40 50
40

60

80

100

120

140

160

180

d
e
g
re

e

time

α
x

α
y

α
z

(b)

Figure 4.17: The angles between ĝ(t) and the axes. (a) a slow rotation. (b) fast rotations.

75

0

1

−1
0

1

−1

0

1

x

y

z

e1

e2

e3

p̃1

p̃3

p̃2

d

(a)

0

1

−1
0

1

−1

0

1

x

y

z

p̃1

p̃3

p̃2

d

(b)

Figure 4.18: The SVD process for a regular triangle.

76

Chapter 5

Conclusions

In this dissertation, we have proposed a BISN-based human motion capturing platform that

enhances both motion tracking accuracy and data collection efficiency. We have proposed

a spatial-temporal data compression scheme to address the data collection issues in BISNs.

Our data compression scheme exploits the possibility of overhearing among nodes in a BISN.

We have extended our data compression scheme to allow exploiting multi-spatial correlations

of motion data. For motion tracking accuracy, we have proposed inertial sensor deployment

schemes to optimize sensors’ collaboration on motion tracking. We have also demonstrated

home rehabilitation systems and cyber-physical video games based on this platform.

77

Bibliography

[1] G.-Z. Yang, Ed., Body Sensor Networks. Springer, 2006.

[2] Nintendo, “Wii,” http://wii.com, 2011.

[3] S. Kang, J. Lee, H. Jang, Y. Lee, S. Park, and J. Song, “A scalable and energy-efficient
context monitoring framework for mobile personal sensor networks,” IEEE Trans. Mobile
Comput., vol. 9, no. 5, pp. 686–702, 2010.

[4] J. Brutovsky and D. Novak, “Low-cost motivated rehabilitation system for post-operation
exercises,” in Proc. of Int’l Conf. on Engineering in Medicine and Biology Society (EMBS),
2006.

[5] J. M. Winters, Y. Wang, and J. M. Winters, “Wearable sensors and telerehabilitation: Inte-
grating intelligent telerehabilitation assistants with a model for optimizing home therapy,”
IEEE Engineering in Medicine and Biology Magazine, vol. 22, pp. 56–65, 2003.

[6] D. T. W. Fong, J. C. Y. Wong, A. H. F. Lam, R. H. W. Lam, and W. J. Li, “A wireless motion
sensing system using ADXL MEMS accelerometers for sports science applications,” in
Proc. of World Congress on Intelligent Control and Automation, 2004.

[7] D. Vlasic, R. Adelsberger, G. Vannucci, J. Barnwell, M. Gross, W. Matusik, and
J. Popović, “Practical motion capture in everyday surroundings,” ACM Trans. on Graph-
ics, vol. 26, no. 3, p. 35, 2007.

[8] D. Cavalcanti, R. Schmitt, and A. Soomro, “Performance analysis of 802.15.4 and 802.11e
for body sensor network applications,” in Proc. of Int’l Conf. on Wearable and Implantable
Body Sensor Networks (BSN), 2007.

[9] B. de Silva, A. Natarajan, and M. Motani, “Inter-user interference in body sensor net-
works: Preliminary investigation and an infrastructure-based solution,” in Proc. of Int’l
Conf. on Wearable and Implantable Body Sensor Networks (BSN), 2009.

[10] Moteiv, “Tmote Sky Zigbee-based WSN platform,” http://www.moteiv.com, 2007.

[11] C. Park and P. H. Chou, “Eco: ultra-wearable and expandable wireless sensor platform,”
in Proc. of Int’l Conf. on Wearable and Implantable Body Sensor Networks (BSN), 2006.

[12] L. Cheng, S. Hailes, Z. Cheng, F.-Y. Fan, D. Hang, and Y. Yang, “Compressing inertial
motion data in wireless sensing systems – an initial experiment,” in Proc. of Int’l Conf. on
Wearable and Implantable Body Sensor Networks (BSN), 2008.

[13] Panasonic, “Life Wall — 150-inch interactive TV wall,” http://www.panasonic.com/
cesshow, 2008.

[14] Jennic, “JN5139 — low power, low cost wireless microcontroller,” http://www.jennic.
com, 2011.

[15] OceanServer, “OS5000 family – triaxial accelerometer and electronic compass,” http://
www.ocean-server.com, 2008.

78

[16] C. V. C. Bouten, K. T. M. Koekkoek, M. Verduin, R. Kodde, and J. D. Janssen, “A triax-
ial accelerometer and portable data processing unit for the assessment of daily physical
activity,” IEEE Trans. Biomed. Eng., vol. 44, no. 3, pp. 136–147, 1997.

[17] Unity, “Unity — 3D game engine,” http://unity3d.com, 2011.

[18] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong, “Model-driven
data acquisition in sensor networks,” in Proc. of Int’l Conference on Very Large Data
Bases (VLDB), 2004.

[19] D. Chu, A. Deshpande, J. M. Hellerstein, and W. Hong, “Approximate data collection in
sensor networks using probabilistic models,” in Proc. of Int’l Conference on Data Engi-
neering (ICDE), 2006.

[20] G. Zhou, J. Lu, C.-Y. Wan, M. Yarvis, and J. Stankovic, “BodyQoS: Adaptive and radio-
agnostic QoS for body sensor networks,” in Proc. of IEEE INFOCOM, 2008.

[21] D. Jea, W. Wu, W. J. Kaiser, and M. B. Srivastava, “Approximate data collection using
resolution control based on context,” in Proc. of Int’l Conf. on Wearable and Implantable
Body Sensor Networks (BSN), 2007.

[22] P. K. Baheti and H. Garudadri, “An ultra low power pulse oximeter sensor based on com-
pressed sensing,” in Proc. of Int’l Conf. on Wearable and Implantable Body Sensor Net-
works (BSN), 2009.

[23] H. Ghasemzadeh, E. Guenterberg, and R. Jafari, “Energy-efficient information-driven cov-
erage for physical movement monitoring in body sensor networks,” IEEE J. Sel. Areas
Commun., vol. 27, no. 1, pp. 58–69, 2009.

[24] E. Guenterberg, H. Ghasemzadeh, and R. Jafari, “A distributed hidden markov model for
fine-grained annotation in body sensor networks,” in Proc. of Int’l Conf. on Wearable and
Implantable Body Sensor Networks (BSN), 2009.

[25] A. Scaglione and S. D. Servetto, “On the interdependence of routing and data compression
in multi-hop sensor networks,” in Proc. of ACM Int’l Conference on Mobile Computing
and Networking (MobiCom), 2002.

[26] T. ElBatt, “On the trade-offs of cooperative data compression in wireless sensor networks
with spatial correlations,” IEEE Trans. Wireless Commun., vol. 8, no. 5, pp. 2546–2557,
2009.

[27] S. Madden, M. Franklin, J. Hellerstein, and W. Hong, “TAG: a tiny aggregation service for
ad-hoc sensor networks,” ACM SIGOPS Operating Systems Review, vol. 36, pp. 131–146,
2002.

[28] Y.-C. Wang, Y.-Y. Hsieh, and Y.-C. Tseng, “Multiresolution spatial and temporal coding in
a wireless sensor network for long-term monitoring applications,” IEEE Trans. Comput.,
vol. 58, no. 6, pp. 827–838, June 2009.

[29] A. Silberstein, G. Puggioni, A. Gelfand, K. Munagala, and J. Yang, “Suppression and
failures in sensor networks: A bayesian approach,” in Proc. of Int’l Conference on Very
Large Data Bases (VLDB), 2007.

[30] R. Rydeard, A. Leger, and D. Smith, “Pilates-based therapeutic exercise: Effect on sub-
jects with nonspecific chronic low back pain and functional disability: A randomized con-
trolled trial,” Journal of Orthopaedic & Sports Physical Therapy (JOSPT), vol. 36, no. 7,
pp. 472–484, 2006.

[31] I. Garci’a, S. de Barros, and M. Saldanha, “Isokinetic evaluation of the musculature in-
volved in trunk flexion and extension: Pilates method effect,” Revista Brasileira de Medic-
ina do Esporte, vol. 10, no. 6, pp. 491–493, 2004.

[32] A. Oppenheim and R. Schafer, Discrete-Time Signal Processing. Prentice-Hall, 1989.

79

[33] D. C. Montgomery, E. A. Peck, and G. G. Vining, Introduction to Linear Regression Anal-
ysis, 4th ed. Wiley-Interscience, New York, 2006.

[34] T. M. Cover and J. A. Thomas, Elements of Information Theory. Wiley-Interscience,
New York, 1991.

[35] Y. J. Chu and T. H. Liu, “On the shortest arborescence of a directed graph,” Science Sinica,
vol. 14, pp. 1396–1400, 1965.

[36] J. Edmonds, “Optimum branchings,” J. Research of the National Bureau of Standards, vol.
71B, pp. 233–240, 1967.

[37] J. Naor and B. Schieber, “Improved approximations for shallow-light spanning trees,” in
Proc. of IEEE Symposium on Foundations of Computer Science (SFCS), 1997.

[38] T. T. H. Binh, R. I. McKay, N. X. Hoai, and N. D. Nghia, “New heuristic and hybrid
genetic algorithm for solving the bounded diameter minimum spanning tree problem,” in
Proc. of ACM conference on Genetic and evolutionary computation (GECCO), 2009.

[39] M. Keally, G. Zhou, and G. Xing, “Watchdog: Confident event detection in heteroge-
neous sensor networks,” in IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), 2010.

[40] D. E. Knuth, “Dynamic Huffman coding,” J. Algorithms, vol. 6, no. 2, pp. 163–180, 1985.

[41] H.-A. Pham, V.-H. Bui, and A.-V. Dinh-Duc, “An adaptive, memory-efficient and fast
algorithm for Huffman decoding and its implementation,” in Proc. of Int’l Conference on
Interaction Sciences (ICIS), 2009.

[42] R. Hashemian, “Design and hardware implementation of a memory efficient Huffman
decoding,” IEEE Trans. Consum. Electron., vol. 40, no. 3, pp. 345–352, 1994.

[43] A. Natarajan, B. de Silva, K.-K. Yap, and M. Motani, “Link layer behavior of body area
networks at 2.4 ghz,” in Proc. of ACM Int’l Conference on Mobile Computing and Net-
working (MobiCom), 2009.

[44] J. Ammer and J. Rabacy, “The energy-per-useful-bit metric for evaluating and optimizing
sensor network physical layers,” in Proc. of IEEE Sensor and Ad Hoc Communications
and Networks Conference (SECON), 2006.

[45] A. Y. Wang and C. G. Sodini, “A simple energy model for wireless microsensor
transceivers,” in Proc. of IEEE Global Telecommunications Conference (Globecom), 2004.

[46] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms.
The MIT Press, 2009.

[47] C.-H. Wu and Y.-C. Tseng, “Data compression by temporal and spatial correlations in
a body-area sensor network: A case study in pilates motion recognition,” IEEE Trans.
Mobile Comput., vol. 10, no. 10, pp. 1459–1472, 2011.

[48] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1979.

[49] F. Gavril, “Some NP-complete problems on graphs,” in Proc. of Conf. on Information
Sciences and Systems (CISS), 1977.

[50] Analog Devices, “ADXL345 triaxial accelerometer,” http://www.analog.com, 2011.

[51] C.-H. Wu, Y.-T. Chang, and Y.-C. Tseng, “Multi-screen cyber-physical video game: An
integration with body-area inertial sensor networks,” in Proc. of Int’l Conf. on Pervasive
Comput. and Commun. (PerCom), 2010.

80

[52] S. Trimpe and R. D’Andrea, “Accelerometer-based tilt estimation of a rigid body with only
rotational degrees of freedom,” in Proc. of IEEE Int’l Conf. on Robotics and Automation
(ICRA), 2010.

[53] M. Sippel, A. Abduhl-Majeed, W. Kuntz, and L. Reindl, “Enhancing accuracy of an in-
door radar by the implementation of a quaternion- and unscented kalman filter- based
lightweight, planar, strapdown IMU,” in Proc. of the European Navigation Conf. (ENC-
GNSS), 2008.

[54] L. Atallah, G. G. Jones, R. Ali, J. J. Leong, B. Lo, and G.-Z. Yang, “Observing recovery
from knee-replacement surgery by using wearable sensors,” in Proc. of Int’l Conf. on
Wearable and Implantable Body Sensor Networks (BSN), 2011.

[55] J. K. Lee and E. J. Park, “A minimum-order kalman filter for ambulatory real-time hu-
man body orientation tracking,” in Proc. of IEEE Int’l Conf. on Robotics and Automation
(ICRA), 2009.

[56] C.-C. Lo, C.-P. Chiu, Y.-C. Tseng, S.-A. Chang, and L.-C. Kuo, “A walking velocity up-
date technique for pedestrian dead-reckoning applications,” in IEEE Symposium on Per-
sonal, Indoor, Mobile and Radio Commun. (PIMRC), 2011.

[57] J. Chen, E. Shen, and Y. Sun, “The deployment algorithms in wireless sensor networks: A
survey,” Information Technology Journal, vol. 8, no. 3, pp. 293–301, 2009.

[58] Y.-C. Wang and Y.-C. Tseng, “Distributed deployment schemes for mobile wireless sen-
sor networks to ensure multi-level coverage,” IEEE Trans. on Parallel and Distributed
Systems, vol. 19, no. 9, pp. 1280–94, 2008.

[59] C.-F. Huang, L.-C. Lo, Y.-C. Tseng, and W.-T. Chen, “Decentralized energy-conserving
and coverage-preserving protocols for wireless sensor networks,” ACM Trans. Sen. Netw.,
vol. 2, no. 2, pp. 182–187, 2006.

[60] G. Xing, X. Wang, Y. Zhang, C. Lu, R. Pless, and C. Gill, “Integrated coverage and
connectivity configuration for energy conservation in sensor networks,” ACM Trans. Sen.
Netw., vol. 1, no. 1, pp. 36–72, 2005.

[61] C.-F. Huang and Y.-C. Tseng, “The coverage problem in a wireless sensor network,” in
ACM Int’l Workshop on Wireless Sensor Networks and Applications (WSNA), 2003.

[62] D. Tao, H. Ma, and L. Liu, “Coverage-enhancing algorithm for directional sensor net-
works,” in Mobile Ad-hoc and Sensor Networks, ser. Lecture Notes in Computer Science.
Springer Berlin/Heidelberg, 2006, vol. 4325, pp. 256–267.

[63] Y. Wang and G. Cao, “On full-view coverage in camera sensor networks,” in Proc. of IEEE
INFOCOM, 2011.

[64] A. Krause, C. Guestrin, A. Gupta, and J. Kleinberg, “Robust sensor placements at infor-
mative and communication-efficient locations,” ACM Trans. Sen. Netw., vol. 7, no. 4, pp.
31:1–31:33, 2011.

[65] M. Chen, S. Gonzalez, A. Vasilakos, H. Cao, and V. Leung, “Body area networks: A
survey,” ACM/Springer Mobile Networks and Applications, vol. 16, no. 2, pp. 171–193,
2011.

[66] G. Welch and E. Foxlin, “Motion tracking: No silver bullet, but a respectable arsenal,”
IEEE Comput. Graph. Appl., vol. 22, no. 6, pp. 24–38, 2002.

[67] D. A. Rodrguez-Silva, F. Gil-Castieira, F. J. Gonzlez-Castao, R. J. Duro, F. Lpez-Pea,
and J. Vales-Alonso, “Human motion tracking and gait analysis: a brief review of current
sensing systems and integration with intelligent environments,” in IEEE Int’l Conf. on
Virtual Environments, Human-Computer Interfaces, and Measurement Systems, 2008.

81

[68] B. Huyghe, J. Doutreloigne, and J. Vanfleteren, “3D orientation tracking based on un-
scented kalman filtering of accelerometer and magnetometer data,” in IEEE Sensors Ap-
plications Symposium (SAS), 2009.

[69] Y.-X. Lai, L. Shu, A. Vasilakos, J. J. P. C. Rodrigues, C.-F. Lai, and Y.-M. Huang, “3D
adaptive reconstruction of human motion from multi-sensors,” in Int’l Workshop on Wire-
less Sensor, Actuator, and Robot Networks (WiSARN), 2011.

[70] A. D. Young, “Use of body model constraints to improve accuracy of inertial motion cap-
ture,” in Proc. of Int’l Conf. on Wearable and Implantable Body Sensor Networks (BSN),
2010.

[71] Z. Zhang, L. W. Wong, and J.-K. Wu, “3D upper limb motion modeling and estimation
using wearable micro-sensors,” in Proc. of Int’l Conf. on Wearable and Implantable Body
Sensor Networks (BSN), 2010.

[72] Z. Zhang, “Ubiquitous human motion capture using wearable micro-sensors,” in Proc. of
Int’l Conf. on Pervasive Comput. and Commun. (PerCom), 2009.

[73] J. Carig, Introduction to Robotics. Prentice Hall, New Jersey, 2005.

[74] A. D. Young, “Comparison of orientation filter algorithms for realtime wireless inertial
posture tracking,” in Proc. of Int’l Conf. on Wearable and Implantable Body Sensor Net-
works (BSN), 2009.

[75] D. R. Basu and A. Lazaridi, “Stochastic optimal control by pseudo-inverse,” The Review
of Economics and Statistics, vol. 65, no. 2, pp. 347–350, 1983.

[76] S. Chib and E. Greenberg, “Understanding the metropolis-hastings algorithm,” American
Statistician, vol. 49, no. 4, pp. 327–335, 1995.

[77] Wikipedia, “Pareto distribution — wikipedia, the free encyclopedia,” http://en.wikipedia.
org/wiki/Pareto distribution, 2011.

[78] ——, “Frobenius matrix norm — wikipedia, the free encyclopedia,” http://en.wikipedia.
org/wiki/Matrix norm, 2011.

[79] ——, “Power mean inequality — wikipedia, the free encyclopedia,” http://en.wikipedia.
org/wiki/Power mean, 2011.

[80] G. Wang, G. Cao, and T. F. La Porta, “Movement-assisted sensor deployment,” IEEE
Trans. Mobile Comput., vol. 5, no. 6, pp. 640–652, 2006.

82

Curriculum Vitae

Chun-Hao Wu

Contact Information

Address Department of Computer Science, National Chiao Tung University, 1001 University

Road, Hsinchu, 30010, Taiwan.

Email wchunhao@cs.nctu.edu.tw

Education

• Taipei Municipal Ckien Kuo High School, 2000.9-2003.6.

• B.S., Department of Computer Science, National Chiao Tung University, 2003.9-2007.6.

• Ph.D., Department of Computer Science, National Chiao Tung University, 2007.9-2012.5.

Research Interests

• Body Sensor Networks

• Distributed Computing

• Pervasive and Mobile Computing

• Wireless Sensor Networks

Research Projects

• Undergraduate project, “Design and Implementation of End-to-End WiMAX/802.16e

Wireless Network Simulator, and Its Performance Evaluation”, granted by NSC, 2006-

2007.

• Ph.D. student investigator, “Bio-information and motion tracking system for physical re-

habilitation”, granted by I.I.I., 2008.

• Ph.D. student investigator, “Multi-Screen Cyber-Physical Video Game Based on BSNs”,

granted by Ministry of Economic Affairs, 2009.

• Ph.D. student investigator, “Hand motion based wireless multitouch input device”, in

association with Fontal Tech., granted by National Science Council, 2009-2010.

83

• Ph.D. student investigator, “Intelligent Living Applications in ZigBee-Based Wireless

Sensor Networks”, granted by Ministry of Economic Affairs, 2011-2012.

Publication Lists

Journal papers.

1. C.-H. Wu, Y.-C. Tseng, “Data Compression by Temporal and Spatial Correlations in a

Body-Area Sensor Network: A Case Study in Pilates Motion Recognition,” IEEE Trans.

Mobile Computing, vol. 10, no. 10, 2011 (SCI, SCIE, EI).

2. C.-H. Wu, Y.-C. Tseng, “Exploiting Multi-Spatial Correlations of Motion Data in a Body

Sensor Network,” IEEE Communications Letters, 2012 (accepted).

3. C.-H. Wu, Y.-C. Tseng, “Deploying Sensors for Gravity Measurement in a Body-Area

Inertial Sensor Network,” IEEE Trans. Information Technology in BioMedicine (submit-

ted).

Conference papers.

1. Y.-C. Tseng, C.-H. Wu, F.-J. Wu, C.-F. Huang, C.-T. King, C.-Y. Lin, J.-P. Sheu, C.-Y.

Chen, C.-Y. Lo, C.-W. Yang, and C.-W. Deng, “A Wireless Human Motion Capturing

System for Home Rehabilitation”, Mobile Data Management, May, 2009, Taipei, Taiwan

(Recipient of Best Demo Award).

2. C.-H. Wu, Y.-T. Chang, and Y.-C. Tseng, “Multi-Screen Cyber-Physical Video Game:

An Integration with Body-Area Inertial Sensor Networks”, Int’l Conf. on Pervasive Com-

puting and Communications (PerCom), March, 2010, Mannheim, Germany.

3. C.-H. Wu, Y.-T. Chang, and Y.-C. Tseng, “On Optimization of Accelerometers Deploy-

ment for Human Posture Tracking”, Int’l Conf. on Wearable and Implantable Body Sen-

sor Networks (BSN), May, 2011, Texas, USA.

4. J.-Z. Wang, C.-H. Wu, Y.-C. Tseng, “VirtualTouch: A Finger Glove to Simulate Touch

Screen Commands,” IEEE Sensors, 2012 (accepted).

Academic Activities

Reviewer contribution.

1. IEEE Trans. Systems, Man, and Cybernetics: Part B.

2. Ad Hoc Networks.

3. Int’l J. of Sensor Networks.

4. Int’l Conf. on Future Information Networks.

5. IEEE Trans. Parallel and Distributed Systems.

Technical program committee.

1. IEEE International Conference on Ubiquitous Intelligence and Computing, 2012.

2. IEEE Symp. on Business, Engineering and Industrial Applications, 2012.

84

