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低儲存空間消耗的錄製真實流量 

與回復有效狀態的重播真實流量技術 

 

學生: 鄭宗寰                  指導教授: 林盈達 

國立交通大學網路工程研究所 

 

摘要 

 網路產品在真實流量上仍會遇到許多實驗室模擬網路流量測試所無法找到

的問題，而這些問題可藉由重播真實流量的測試來找到。由於真實流量由許多真

實使用者所產生，在錄製時會快速消耗儲存空間使得錄製時間無法很長，與漏錄

影響重播的準確性。在重播時要追蹤流量的有效狀態以應付待測物對流量的反

應，並且要能很快的重製事件的發生以便開發者除錯或尋找原因。因此本論文以

(N, M, P)錄製機制針對每條連線只錄製連線的前 N位元與錄製剩餘 P個封包的

前 M幾位元來節省儲存空間，達到節省 87%的儲存空間但保留 99.74%的攻擊事

件。並且實作實作 SocketReplay 重播工具以回復漏錄重播追蹤 TCP 串流使得漏

錄對觸發事件的數量成比例的下降而不會驟降，有效狀態的重播使待測物認為流

量是真實的，選擇性的重播以漸增方式階段性尋找造成事件的少數流量，達到重

製事件僅需從千條的連線中挑出幾十條連線重製攻擊或病毒的事件。 

 
關鍵字: 流量重播、流量錄製、真實流量、測試、缺陷
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Student: Tsung-Huan Cheng   Advisor: Dr. Ying-Dar Lin 

Department of Computer Science 

National Chiao Tung University 

 

Abstract 

Model-based traffic generated in the laboratory might not trigger some device 

defects found only by replaying traffic flows. However, capturing real flows might 

result in high storage cost and capture loss; the latter affects the accuracy of replay. 

Replaying real flows should be accurate and also stateful enough to adapt to device 

reaction. It should reproduce a defect efficiently in helping developers to identify the 

flows triggering the defect. Therefore, this work first presents the (N, M, P) capture 

scheme to capture N bytes per flow of data and M bytes of P packets after the N bytes. 

This scheme reduces 87% storage cost while retaining 99.74% of attack traffic. Next 

we develop a tool named SocketReplay with the mechanisms of loss-recovery, 

stateful replay, and selective replay to track TCP sequence numbers to identify 

capture loss, recover these incomplete flows, follow the TCP/IP protocol behavior, 

and incrementally select flows to replay. Numerical results show that SocketReplay 

retains the accuracy and statefulness in triggering device defects and could reduce 

replayed flows from thousands to tens.  

 
Keywords: traffic replay, traffic capture, real flows, testing, defects 
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Chapter 1 Introduction 

Generating network traffic as if hosts interact with each other for testing new 

network applications, systems, and protocols is highly demanded for network research 

community, developer and tester. Currently, there are two main approaches, 

model-based traffic generation and trace-based traffic replay, to generate network 

traffic. The model-based approach generates network traffic according to protocol 

specifications and it is easy to configure the desired parameters such as request 

formats for each test case. The trace-based approach replays packet traces captured in 

real environments called real flows and it includes more realistic and varied network 

conditions and behaviors such as P2P, video streaming, on-line game and proprietary 

protocols which is hard to model. Therefore, using trace-based traffic replay can 

trigger many unexposed device bugs and alerts that are difficultly discovered by 

adopting model-based traffic generation. 

The intuitive solution is to replay traffic as captured such as Tcpreplay [1]. 

However, the quality of replay might be low due to insufficient efficiency and 

accuracy. Efficiency means how fast the traffic can be replayed while accuracy 

represents whether replay is meaningful on testing DUT (Device Under Test). Many 

previous works had contributed to raise the efficiency of traffic replay [2] and 

improve its accuracy [3-8]. Some studies tried to replay network layer or transport 

layer accurately [4-6] while the others tried to replay application layer accurately [7, 

8]. However, these existing studies all require the complete trace of packets to 

guarantee the accuracy of traffic replay. 

In large-scale networks, the miss in capturing, called capture loss throughout the 

thesis, may happen due to limited I/O speed of network card, memory, or disk, 
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causing that the previous approaches are not very suitable to the environments. On the 

other hand, storing all captured traffic needs a lot of storage. Therefore, an appropriate 

method for large-scale networks is required to conquer the problems of capture loss 

and huge requirements of storage. Currently, the study of [9] showed how to capture 

packets in 10Gbps by splitting traffic and tuning parameters. Also, some studies 

[10-11] proposed a method to only capture partial traffic by using the heavy-tail 

nature of traffic to reduce storage cost. 

In this thesis, we design and implement a tool named SocketReplay, which can 

provide an effective way to capture and replay large-scale network traffic. 

SocketReplay mainly includes four features: (1) low-storage capture records partial 

network traffic according to types of concerned traffic so that storage cost can be 

significantly reduced; (2) loss-recovery recovers incomplete connections due to 

capture loss so that a complete TCP stream can be replayed; (3)stateful replay mimics 

TCP/IP protocols and replay payloads so that TCP semantics can be maintained; and 

(4) selective replay reproduces the abnormal events, such as bugs or alerts, with 

minimal replaying traces so that the events can be analyzed efficiently. 

The rest of this thesis is organized as follows. Chapter 2 shows the background 

issues of capture and replay in large-scale environments and related work. Chapter 3 

and Chapter 4 describe the design and implementation of our proposed method 

SocketReplay, respectively. Chapter 5 displays evaluation of our work. Finally 

chapter 6 concludes this work and gives some future directions. 

 

Chapter 2 Background 

2.1 Issues of traffic capture in large-scale environment 

The quality of traffic capture affects the quality of experiments based on these 
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packet traces. However, capturing network traffic at high bit rate in large-scale 

environment is not an easy task due to limited speed and storage. Therefore, storage 

cost and completeness of packet traces are concerned issues. 

 
2.1.1 Storage Cost 

Because high bandwidth usage from lots of hosts, it can fill up a hard disk in few 

hours. Figure 1 drawn by MRTG (http://oss.oetiker.ch/mrtg/) shows daily bandwidth 

usage of 1374 hosts on campus. The average of total bandwidth usage is 600 

Megabits per second which can fill up 1 Terabyte hard disk in 4 hours. 

 
(a) Bandwidth usage between ISP (Internet Service Provider) and campus 

 
(b) Bandwidth usage between TANET (Taiwan Academic Network) and campus 

Figure 1. Daily bandwidth usage of 1374 hosts. The bar chart represents traffic from 
outside to campus and the line represents traffic from campus to outside. 

 
2.1.2 Completeness 

It is hard to capture complete sessions or even a complete connection in 

large-scale environment. The first reason is capture loss due to inherent system 

limitation of I/O speed. The second reason is that partial connections are established 

in the network before starting to capture. As a result, it may reduce the accuracy of 

replay because some critical packets are missed during the traffic replay. 

 

2.2 Issues of traffic replay 

The goal of traffic replay is to trigger more events and help testers to analyze 
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events. As described in the introduction, efficiency and accuracy are two major issues. 

The efficiency of traffic replay affects the time consumed and the difficulty of event 

analysis. If the traffic is not replayed accurately, it failed to test DUT validly and 

trigger events. 

To replay traffic regarded as valid network traffic by DUTs, it must send out the 

correct packets in the correct order and direction so that it follows the states of 

protocols, especially TCP protocol and application protocols, to test DUTs which 

modify the network traffic passing by. 

For example, replaying a TCP connection established from host A to host C on 

NAT (Network Address Translation) is in Fig. 2. First, SYN packet must be replayed 

from private network to public network. Second, the other interface must wait SYN 

packet and then send SYN_ACK packet with mapped network address and port 

number back otherwise this packet will be filtered by NAT and the connection cannot 

be established as Fig. 2(b) shows. Therefore, the program of traffic replay needs to 

inspect TCP header modified by NAT so that it knows the correct destination port of 

SYN_ACK packet. Besides the TCP header, this program needs to inspect content of 

application layer. For example, in the passive mode of the control connection in a FTP 

session, the client may ask the server to open a socket and the server puts IP address 

and port number in the payload. The socket information may be modified by NAT as 

Fig. 2(c) shows. Before establishing the data connection, the program needs to inspect 

the FTP header of the control connection to know the correct destination of a FTP 

data connection as Fig. 2(d) shows. 
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Figure 2. Replay network traffic on NAT. (a,b) replay a TCP connection (c,d) replay a 

FTP session. 
 

The efficiency can be measured by how fast is the traffic replay andhow much 

traffic volume is required to reproduce an event. A higher speed of traffic replay can 

get a better progress of testing since the testing data (i.e. traffic) is transmitted to 

perform the test at a higher rate. However, the efficiency and the accuracy of traffic 

replay are trade-off because inspecting APP/TCP/IP protocols is time-consuming. For 

event analysis, the smaller volume of traffic replayed to reproduce events, the easier 

and faster testers analyze them. 

 

2.3 Related work 

Some research papers and tools proposed ways to capture in large-scale 

environment and traffic replay. The study of [9] did lots of experiments on testing the 

fully capture ability of community hardware configured with the combination of 
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parameters including number of preprocessors, operating systems, and buffer size. To 

reduce storage, Time Machine [10] uses a cutoff of 10K~20K bytes for each 

connection because the bulk of traffic in high-volume streams comes from just a few 

connections so that it can store small complete connections. Furthermore, the number 

of bytes can be adjusted dynamically by NIDS (Network Intrusion Detection System) 

[11]. 

There are many works on replaying the packet traces. TCPreplay [4] replays the 

same packets as recorded without inspecting any packet back from DUTs. On the 

other hand, Tomahawk [3] inspects the packet back from DUTs and then sends the 

next packet. These tools replay traffic without maintaining any state of network 

protocols.  

Next there are studies solving network layer and transport layer of traffic replay. 

TCPopera [4] follows TCP/IP stack by using four heuristics. Monkey [5] replays web 

traffic by using socket programming to emulate TCP stack and using Dummynet 

(http://info.iet.unipi.it/~luigi/ip_dummynet.html) to emulate network conditions. 

Avalanche (http://www.spirentfederal.com/IP/Products/Avalanche), which is a 

commercial product, uses a trace file to emulate high-volume network traffic of 

concurrent users. These tools resolve network layer and transport layer protocols of 

traffic replay. Furthermore, some studies [7, 8] solve the application layer. However, 

the above available tools are not enough for replay network traffic from large-scale 

environment. The reasons are that although most of them inspect states of TCP/IP 

stacks, some of them cannot replay incomplete connections caused from capture loss 

and all tools cannot replay traffic selectively that reproduce the events and help testers 

to analyze them. In this work, we develop a tool named SocketReplay to solve these 

problems. Table 1 compares the available tools in terms of three demands needed for 

replay the traffic from large-scale environment. 
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Table 1. Comparison of available tools including open source program and 

commercial product 
Name TCP/IP Stateful Complete Connection Selective Replay  

TCPreplay No Not required  No 

Tomahawk Yes Required No 

Monkey Yes Not required  No 

Avalanche Yes Required No 

SocketReplay Yes Not required  Yes 
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Chapter 3 Design of SocketReplay and capture scheme 

This chapter details the design of SocketReplay and capture scheme that are total 

solution of traffic capture and replay in large-scale environment. 

 

3.1 Design Goals 

The objective of capture is to store valuable traffic that is enough to trigger 

events. In other words, this capture scheme ignores part of payload of some packets 

which have low probability of triggering events and decreases the replayed traffic 

volume to trigger events.  

The three objectives for traffic replay: (1) compact with incomplete TCP 

connections due to capture loss or above capture scheme; (2) statefully replay at 

TCP/IP layer because most of DUTs including NAT, proxy and IPS (Intrusion 

Prevention System) modify TCP/IP headers; and (3) replay selective packet traces to 

reproduce events. It helps designers to analyze easily what sessions or connections 

trigger events. 

 

3.2 Low-Storage capture scheme 

In this work, the capture scheme uses three thresholds (N, M, P) for the payload 

length of a connection being captured. The threshold N defines the number of bytes of 

data should be stored for each connection, the threshold M defines the number of 

bytes of data should be stored for each packet of a connection after length of stored 

data exceeds the threshold N, and the threshold P defines the number of packets 

should be stored after exceeding the threshold N. The N is set because we believe 

most of events can be triggered within the first bytes per connection. The M is set 
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because we believe after N bytes of connection, most events can be analyzed by 

application header and most application header is only small bytes per packet. The P 

is set because we believe most events can be triggered by first packets of each 

connection. Figure 3 illustrates an example, if the payload length of first three packets 

already meets the threshold of N bytes, the following P packets will be capture only 

first M bytes of payload and the other will be ignored. 

 
Packet Sequence 1 2 3 4 … P+3 P+4 …etc 

Payload N bytes 

M bytes M bytes M bytes  

Ignored data 

Figure 3. Ignored data of three thresholds (N, M, P) 
 

3.3 SocketReplay 

 SocketReplay is a stateful traffic replay tool that is suitable in large-scale 

environment. There are several stages described as follows. Loss-recovery 

reconstructs complete streams from capture scheme. Stateful replay minics hosts to 

generate traffic without breaking protocol semantic. After triggering events from 

stateful replay, selective replay narrow down the scale of replayed packet trace to 

reproduce events. 

 

3.3.1 Loss-Recovery 

Loss-recovery is an stage that parses the incomplete connections, i.e., broken 

streams which come from previous capture scheme or capture loss, into complete 

streams so that SocketReplay can replay the connection with the original length of the 

stream by inserting dummy bytes. The length of ignored data can be calculated from 

the TCP/IP header of the packet. The payload length of capture loss can be found by 

inspecting sequence number and acknowledge number of each packets.  
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For example, figure 4 shows an established connection of host A and host B. In 

real environment, the six packets are transmitted to destination successfully. During 

the capture, the fourth packet is lost due to capture loss. The following described the 

mechanism packet by packet as Fig. 4 illustrated. (1) The 1st packet is queued 

because we are not sure whether this packet can reach the destination. (2) The 

sequence number of 2nd packet is checked to see whether these two segments are 

overlapped. Again, this packet is queued because we’re not sure whether the packet 

can reach the destination. (3) The ACK packet of host B verifies successful 

transmissions of 1st and 2nd packets. Therefore, we put 20 bytes of data into the 

stream. (4) The 4th packet is lost. (5) The sequence number of 2rd and 5th packet is 

not continuous. It can be happened when 4th and 5th packets are out of order. 

Therefore, we are not sure whether the 4th packet is lost. (6) This ACK verifies the 

4th packet is lost and the data of 5th packet is transmitted successfully. Therefore, we 

put 20 dummy bytes and the data of 5th packet into the stream. After theses operation, 

the steam contains 50 bytes.  

 
Packet No. 1 2 3 4 5 6 

Hosts A B A  B B  A A  B A  B B  A 

Seq. , Ack. a, b a+10, b b, a+10 a+20, b a+40, b b, a+50 

Data length 10 bytes 10 bytes 0 byte 20 bytes 10 bytes 0 byte 

 
Figure 4. An example of loss-recovery for Established TCP connection with one 
packet capture loss 
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3.3.2 Stateful Replay 

Because loss-recovery constructs a complete stream, this stage focuses on 

emulating all TCP and UDP connections. Previous work [8, 9] proposes methods to 

determine packet order and emulate TCP connections. This work solves packet order 

by the sequence of data inserted into the stream in the loss-recovery stage. Also, this 

work follows the work [5] using socket API to emulate TCP and UDP connections.  

 
3.3.3 Selective Replay 

After the stage of stateful replay, some events are triggered. To analyze how an 

event is triggered, i.e., to analyze what sessions, connections, or packets trigger an 

event, it is better to replay selectively from large packet traces. This work can achieve 

selective replay according to the event information and replay log from stateful replay. 

An event may include time information, connection information, and message of 

errors or alerts. Also, the time of connection established and closed can be obtained by 

replay log. Therefore, this work selects the potential connections to test whether it can 

reproduce the event. If it cannot reproduce the event, including more connections is 

needed. Figure 5 shows an example of an event includes the time information and the 

address of connection 5. The procedure of selected connection to replay is described 

as follows: (1) SocketReplay replays connection 5 to see whether it can reproduce the 

event. (2) If it cannot, SocketReplay includes connections with the same IP addresses 

of connection 5. In this case, it includes connection 1 and 5. (3) If it still cannot, 

SocketReplay includes established connections at time t. In this case, it includes 

connection 1, 2, and 5. (4) If it still cannot, SocketReplay includes last connections 

that are closed before time t. In this case, it includes connection 1, 2, 3, and 5. (5) If it 

still cannot, SocketReplay includes more connections that are closed before time t. 

Note that if the event does not provide connection information, SocketReplay will 
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skip step 1 and step 2. 

 

Figure 5. An example of selective replay 
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Chapter 4 SocketReplay Components and Implementations 

An installed SocketReplay host emulates interactive hosts by two network 

interface as a client or a server. Figure 6 illustrates the components of SocketReplay, 

which achieve the design as previous chapter described. Because the volume of real 

flows is too large to load all packets into the memory, SocketReplay has to read and 

replay packets simultaneously. We explain the details of these components and 

implementations in the rest of this chapter. 

 

Figure 6. SocketReplay Components 
 

4.1 Preprocessor 

The processor uses libpcap library to read packets from a hard disk and 

reassemble the IP fragments into an IP datagram. Because most of packets are UDP or 

TCP packets, the preprocessor parses two kinds of packets to connection tracks. 

 

4.2 Connection Tracks and Loss-recovery Engine 

Because real flows contain lots of connections, SocketReplay should allow 
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constant time lookups of each packet which belong to a connection track by perfect 

hashing. Figure 7(a) shows how to computer hashes from IP addresses. First, 

SocketReplay sorts the source IP address and the destination IP address so that both 

directions of packets in a connection are mapped to the same hash. Second, for each 

IP address, SocketReplay splits 32-bits address into two 16-bits numbers and 

performs a bitwise XOR on them. Third, SocketReplay uses 8-bit left-shift operation 

on the 16-bit number which comes from larger IP address at previous step and 

performs a bitwise XOR on the 24-bit number and the 16-bit number. Finally, 

SocketReplay gets a 24-bit hash. This hash is used by hashing table as Fig. 7(b) 

illustrates. Because a session is usually composed of connections between two hosts, 

SocketReplay track these connections in a linked list. After tracking each packet, the 

loss-recovery engine will inspect the TCP states and recover incomplete connections 

to complete connections, i.e., TCP streams. 

 
Figure 7. Implementation of Connection Tracks 

 

4.3 Replay Engine 

The replay engine is a reverse engineering implemented by socket programming 

to establish each connection. Therefore, SocketReplay needs to bind lots of IP 
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addresses and port numbers. In order to manage the connections easily, SocketReplay 

mapped each IP address to a class C IP address individually so that SocketReplay can 

assign the whole class C IP addresses to the network interface in advance. 

The replay log reports the time and the connection information replayed by 

SocketReplay. After a packet is sent through an interface, SocketReplay checks 

whether each packet is received on the other network interface. If SocketReplay failed 

to receive the sent packet, it also logs the event on the replay log. 

 

4.4 Kernel Modification 

Since SocketReplay uses Socket API to emulate clients and servers at the same 

host, it replays packets in a virtual network, i.e. a loopback interface, and fails to 

transmit packets to the real network interfaces. Therefore, kernel modification of 

routing policy is needed. This work modified three functions of Linux kernel 2.6.20.3. 

First, the function ip_route_output_slow of the source code net/ipv4/route.c is 

modified to overwrite the outgoing interface so that packets can be sent to the real 

network interface with the source IP address of the packets assigned. Second, the 

function __mkroute_outpu of the source code net/ipv4/route.c is modified to 

overwrite the default gateway so that SocketReplay can replay network traffic on 

gateway devices such as NAT. Thirds, the function fib_validate_source of the source 

code net/ipv4/fib_frontend.c is modified to accept packets that comes from the same 

host. 

 

4.5 Selective Replay Interface 

The selective replay interface implements the mechanism as described in chapter 

3. The user can indicate the event message from DUT and the replay log from replay 

engine so that SocketReplay knows how to replay selectively. At least an event 
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message contains a timestamp of triggered event. If it contains five-tuple information, 

SocketReplay starts from step 1. If it contains a source addresses and a destination 

address, SocketReplay starts from step 2. If it contains only the timestamp, 

SocketReplay starts from step 3. 
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Chapter 5 Evaluation 

In this chapter, we evaluated the capability of low-storage capture, loss-recovery 

and selective replay of SocketReplay in large-scale environment. The evaluations of 

low-storage capture focus on storing three types of network traffic: attack, virus, and 

P2P. The evaluations of loss-recovery and selective replay focus on the ability of 

recovering capture loss and traffic volume of selective replay. 

 

5.1 Test environment for SocketReplay 

In our evaluation test, we mirrored the network traffic of 1743 hosts as Fig. 1 

shows to a capture device. Then we use SocketReplay to replay real flows to an IPS 

(intrusion prevention system) and collect its events from system logs. 

Completeness is an important factor to replay on IPS accurately. We prove them 

by conducting two simple experiences on a complete connection that can trigger an 

event by TCPreplay. First, we removed 3-way handshake and replayed it again. We 

found it failed to trigger the event because IPS did not track this connection on its 

session table. Second, we removed a data packet after 3-way handshake and replay it 

again. We found it also failed to trigger the event because the sequence numbers of 

packets are not reasonable for IPS. 

 We sample 22185 connections from real flows within 30 seconds. Figure 8 

illustrates the status of each connection. There are 10660 connections established 

before staring the capture so that we can’t capture the 3-way handshake, 7753 

uni-direction connections because some of hosts sent SYN packet while the 

destination host did not reply or refuse the establishment, 3682 connections that has 

complete three-way handshake, 254 connections that have capture loss by inspecting 
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acknowledge numbers, and 2309 connections closed by a reset packet. From previous 

simple experience, if we use TCPreplay to replay all the traffic, the gray area of 10914 

connections could not accurately replay on the IPS. However, SocketReplay can 

replay them accurately by loss-recovery mechanism. 

 

 

Figure 8. Status of connections in real flows 
 

5.2 Test Results for SocketReplay 
5.2.1. Attack 

This work collects 1929 attack events from real flows triggered by an IPS and we 

try to reproduce these events. SocketReplay successfully reproduced events at the step 

1 of selective replay, which is efficient to replay from large packet traces. Next we 

examined the effectiveness of loss-recovery by using TC 

(tldp.org/HOWTO/Traffic-Control-HOWTO/) to simulate the condition of capture 

loss. We compared SocketReplay and TCPreplay to see how the capture loss effects 

the event reproduction. Figure 9 shows that the proportion of triggered events of 

SocketReplay and the rate of capture loss are inversely proportional because some of 

packets with capture loss are critical to trigger the events. However, the proportion of 

triggered events of TCPreplay drop quickly when capture loss grows because a 

capture loss can affect the accuracy of whole replayed connections. 
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Next, we examined the percentage of capture loss in a commercial Network 

Monitoring System which uses libpcap to capture packets. We observed the number of 

packets dropped by kernel and received by filter after capturing 10 minutes of real 

flows and found that the percentage of capture loss is varied from 3% to 20% which is 

relative to the total packet numbers. 

 
Figure 9. The effect of capture loss on event reproductions for SocketReplay and 

TCPreplay 
 

5.2.2. FTP session 

 A FTP session contains a control connection and data connections. To reproduce 

an event of a data connection, replaying the data connection is not enough and it 

should include its control connection. Besides, in the active mode or the passive mode 

of FTP protocol, the control connection sent IP address and port number, which 

should be coherent with the data connection. In this work, we collect virus events that 

triggered by transmitting virus through FTP protocol to make sure that FTP sessions 

can be replayed accurately on IPS. SocketReplay successfully reproduced these virus 

events at the step 2 of selective replay, which is efficient to replay from large packet 

traces. 

 

5.3 Test environment for low-storage capture 

After using SocketReplay to replay captured traffic to an IPS (intrusion 

prevention system) and collect its events from system logs including attack and virus, 
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we include P2P events and use three thresholds (N, M, P) as Section 3.2 described to 

replay part of connection to figure out the best configuration of (N, M, P) that can 

produce more events and reduce more storage cost for these three types of events.  

 

 

5.4 Test results for low-storage capture 
5.4.1 Attack 

 This work collects 1929 attack events triggered by replaying real flows to an IPS 

and we can reproduce these events at the step 1 of selective replay. Table 2 lists top 10 

types of attacks that cover 98.4% of 1929 attacks. The most frequent attack is 

Microsoft Windows RPC DCOM Service Buffer Overflow attack 

(www.cert.org/advisories/CA-2003-16.html) and its data length is 1828 bytes. Also, 

we found that only 333 connections’ data length exceed 2000 bytes.  

 
Table 2. Major types of attack events 

Event Count Ratio (%) Alert Message 

1493 75% Microsoft Windows RPC DCOM Service buffer overflow attempt 

237 12% Microsoft Windows LSASS buffer overflow attempt 

117 6% FTP command overflow attempt  

18 0.9% SQL Injection comment attempt  

11 0.5% NETBIOS DCERPC NCACN-IP-TCP ISystemActivator RemoteCreateInstance little endian attempt

7 0.4% SHELLCODE x86 0x90 unicode NOOP 

6 0.3% SQL sa brute force failed login unicode attempt 

4 0.2% SQL SA brute force login attempt TDS v7/8 

4 0.2% Microsoft Windows MS08-067 attempt 

3 0.2% FTP invalid MODE 

 

 Therefore, we adjusted thresholds (N, 0, 0) which mean SocketReplay replays 

first N bytes data of connections and observe whether the intrusion prevention system 

can detect them as Fig. 10(a) shows. We found that 317 of 333 events were triggered 
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by simply replaying first 2K bytes of data per connection and a few events were 

triggered when we adjusted N from 5K to 50K. We pick 16 events that not triggered 

by using thresholds (2000, 0, 0) and increase the threshold N to see the percentage of 

triggered events and storage cost as Fig. 10(b) shows, we found that if we want to 

cover most of events, threshold N should be very high which cuase that percentage of 

storage cost is high. Therefore, we conclude that replaying 2K bytes of data of 

connections are enough to trigger most of attack events.  

 Next we picked four events that can’t be triggered by replaying first 50K bytes of 

date and reproduce these events by adjusting thresholds (0, M, ∞) which means 

SocketReplay replays first M bytes data of each packet and found the minimum M as 

Table 3 shows. The first event is a false positive and the minimum M of last events is 

bounded by 200 bytes because these events were triggered from application headers. 

Therefore, we conduct another experience which uses thresholds (2000, M, ∞) to 

replay 16 events that can’t be triggered by using thresholds (2000, 0, 0). As fig. 10(c) 

shows, we found that when M is 200 bytes, 11 of 16 events are triggered. 

 Next we adjusted the threshold P to find out the relation of storage cost and 

events that triggered by using thresholds (2000, 200, ∞). As fig. 10(d) shows, we 

found that when P is set to 1300, all 16 events are all triggered and 87% of storage is 

reduced. Also, when P is set to 200, 8 of 11 events are triggered and 90% of storage is 

reduced.  

 To sum up, besides the threshold N, the threshold M is effective to trigger more 

attack events. If we set the thresholds (N, M, P) to be (2000, 200, 1300), the 

low-storage capture scheme can record 99.74% of events that can be triggered by 

SocketReplay and reduce 87% of storage cost. We set P to 1300 in order to trigger 

rare events that can’t be trigger by using the thresholds (N, M, 200). 
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Table 3. Minimum M that triggers events that can’t be triggered by two 
thresholds (50000, 0, 0) 

Alert Message Total Payload Size Minimum M 

SHELLCODE x86 setgid 0 151611 1300 

SQL Injection comment attempt 206085  140 

Web-CLIENT Windows Media Player zero length bitmap  390745 200 

Adobe BMP Image Handler Buffer Overflow 561305 90 

 
 

Figure 10. (a, c) Number of triggered events after setting the thresholds (N, 0, 0) and 
(N, M, ∞); (b, d) Percentage of Storage Cost and Triggered events after setting the 

thresholds (N, 0, 0) and (N, M, P) 
 

5.4.2 Virus 

 This section finds out the capture scheme for collecting virus events. This work 

collected computer virus from VX Heavens (vx.netlux.org), which contains a massive, 

continuously updated virus samples and sources. We made 44 FTP sessions manually 

that transferred viruses and triggered events from anti-virus systems and captured 

these sessions. Next, we applied three thresholds of SocketReplay to replay these 

sessions and observe whether they can trigger these events again. 
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 The dotted line of Fig. 11(a) draws size distribution of viruses. This line shows 

that 20% of viruses are larger than 100000 bytes, which is absolutely larger than the 

payload length of attack traffic. The actual line of Fig. 11(a) and Fig. 11(b) draws the 

percentage of triggered events by using SocketReplay to replay 44 FTP sessions with 

thresholds (N, 0, 0). Although 40% of viruses’ size is bigger than 8K bytes, these 

virus events can be triggered by replaying first 8000 bytes of each connection. We 

observe that replaying first 60000 bytes is enough to trigger 93% of virus events and 

reduce 70% of storage cost. 

Besides threshold N, we conduct experience to answer whether threshold M is 

effective. Thethresholds (8000, 400, ∞) of replay can trigger 88% of events and 

reduce 67% of storage cost and another thresholds (8000, 1000, ∞) of reply can 

trigger 90% of events and reduce 35% of storage. Therefore, we found that the 

increase of threshold M is ineffective to trigger more events. Also, the benefit of two 

cases is not better than previous case with thresholds (60000, 0, 0) which trigger 93% 

of events and reduce 70% of storage. Therefore, we suggest setting threshold N to 

60000 is enough to collect virus events of real flows and the thresholds M and P are 

set to zero. 
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Figure 11. Virus Size Distribution and Thresholds (N, 0, 0) for reproduce % of virus 

events 
 
5.4.3 Peer-to-Peer 

 The section focuses on how to collect minimum traffic to identify P2P events. 

Unlike attack and virus events, P2P applications use UDP protocol frequently to 

transfer unencrypted queries so that some of IPSs examines these queries and identify 

P2P applications such as BitTorrent, Skype and Edonkey. Furthermore, some 

techniques [12, 13] use statistical approach to identify P2P applications by TCP/IP 

headers. Therefore, the capture scheme simply needs to capture all UDP packets and 

headers of TCP packets. 
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Chapter 6 Conclusion 

The low-storage capture scheme and a replay tool SocketReplay provides a total 

solution on capture and replay in large-scale environment. The thresholds of capture 

scheme should adjust according to different traffic source, concerned traffic and types 

of devices that generate events. In campus-scale environment, the thresholds (2000, 

200, 1300) are suitable for recording attack which triggers 99.74% of events and 

reduce 87% of storage, the thresholds (60000, 0, 0) are suitable for recording virus 

which triggers 93% of events and reduce 70% of storage. Also, capturing UDP 

packets and TCP headers are enough to trigger P2P events. By loss-recovery and 

stateful replay, SocketReplay can replay traffic from capture scheme and complete 

connections accurately that don’t break protocol semantics regardless of capture loss. 

Furthermore, SocketReplay can reproduce the events efficiently by selective replay. 

This work provides an accurate and efficient way to play with real flows. 
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