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Low-Storage Capture
and Loss-Recovery Stateful Replay of Real Flows

Student: Tsung-Huan Cheng Advisor: Dr. Ying-Dar Lin
Department of Computer Science

National Chiao Tung University

Abstract

Model-based traffic generated in the laboratory might not trigger some device
defects found only by replaying traffic flows. However, capturing real flows might
result in high storage cost and capture, loss;, the latter affects the accuracy of replay.
Replaying real flows should be accuraterand-also Stateful enough to adapt to device
reaction. It should reproduce a.defect efficiently in helping developers to identify the
flows triggering the defect. Therefore,.thiss-work first presents the (N, M, P) capture
scheme to capture N bytes per flow of data and M bytes of P packets after the N bytes.
This scheme reduces 87% storage cost while retaining 99.74% of attack traffic. Next
we develop a tool named SocketReplay with the mechanisms of loss-recovery,
stateful replay, and selective replay to track TCP sequence numbers to identify
capture loss, recover these incomplete flows, follow the TCP/IP protocol behavior,
and incrementally select flows to replay. Numerical results show that SocketReplay
retains the accuracy and statefulness in triggering device defects and could reduce

replayed flows from thousands to tens.
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Chapter 1 Introduction

Generating network traffic as if hosts interact with each other for testing new
network applications, systems, and protocols is highly demanded for network research
community, developer and tester. Currently, there are two main approaches,
model-based traffic generation and trace-based traffic replay, to generate network
traffic. The model-based approach generates network traffic according to protocol
specifications and it is easy to configure the desired parameters such as request
formats for each test case. The trace-based approach replays packet traces captured in
real environments called real flows and it includes more realistic and varied network
conditions and behaviors such as P2P; video streaming, on-line game and proprietary
protocols which is hard to maodel. Therefore, using trace-based traffic replay can
trigger many unexposed device bugs and alerts that are difficultly discovered by
adopting model-based traffic genération.

The intuitive solution is to replay traffic as captured such as Tcpreplay [1].
However, the quality of replay might be low due to insufficient efficiency and
accuracy. Efficiency means how fast the traffic can be replayed while accuracy
represents whether replay is meaningful on testing DUT (Device Under Test). Many
previous works had contributed to raise the efficiency of traffic replay [2] and
improve its accuracy [3-8]. Some studies tried to replay network layer or transport
layer accurately [4-6] while the others tried to replay application layer accurately [7,
8]. However, these existing studies all require the complete trace of packets to
guarantee the accuracy of traffic replay.

In large-scale networks, the miss in capturing, called capture loss throughout the

thesis, may happen due to limited 1/0O speed of network card, memory, or disk,



causing that the previous approaches are not very suitable to the environments. On the
other hand, storing all captured traffic needs a lot of storage. Therefore, an appropriate
method for large-scale networks is required to conquer the problems of capture loss
and huge requirements of storage. Currently, the study of [9] showed how to capture
packets in 10Gbps by splitting traffic and tuning parameters. Also, some studies
[10-11] proposed a method to only capture partial traffic by using the heavy-tail
nature of traffic to reduce storage cost.

In this thesis, we design and implement a tool named SocketReplay, which can
provide an effective way to capture and replay large-scale network traffic.
SocketReplay mainly includes four features: (1) low-storage capture records partial
network traffic according to types of concerned traffic so that storage cost can be
significantly reduced; (2) loss-recovery recovers incomplete connections due to
capture loss so that a complete FCP.stream can be.replayed; (3)stateful replay mimics
TCP/IP protocols and replay payloads-so-that-TCP.semantics can be maintained; and
(4) selective replay reproduces the abnormal events, such as bugs or alerts, with
minimal replaying traces so that the events can be analyzed efficiently.

The rest of this thesis is organized as follows. Chapter 2 shows the background
issues of capture and replay in large-scale environments and related work. Chapter 3
and Chapter 4 describe the design and implementation of our proposed method
SocketReplay, respectively. Chapter 5 displays evaluation of our work. Finally

chapter 6 concludes this work and gives some future directions.

Chapter 2 Background

2.1 Issues of traffic capture in large-scale environment

The quality of traffic capture affects the quality of experiments based on these



packet traces. However, capturing network traffic at high bit rate in large-scale
environment is not an easy task due to limited speed and storage. Therefore, storage

cost and completeness of packet traces are concerned issues.

2.1.1 Storage Cost

Because high bandwidth usage from lots of hosts, it can fill up a hard disk in few
hours. Figure 1 drawn by MRTG (http://oss.oetiker.ch/mrtg/) shows daily bandwidth
usage of 1374 hosts on campus. The average of total bandwidth usage is 600

Megabits per second which can fill up 1 Terabyte hard disk in 4 hours.
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(b) Bandwidth usage between TANET, (Taiwan Academic Network) and campus
Figure 1. Daily bandwidth usage of 1374 hosts. The bar chart represents traffic from
outside to campus and the line represents traffic from campus to outside.

2.1.2 Completeness

It is hard to capture complete sessions or even a complete connection in
large-scale environment. The first reason is capture loss due to inherent system
limitation of 1/O speed. The second reason is that partial connections are established
in the network before starting to capture. As a result, it may reduce the accuracy of

replay because some critical packets are missed during the traffic replay.

2.2 Issues of traffic replay

The goal of traffic replay is to trigger more events and help testers to analyze



events. As described in the introduction, efficiency and accuracy are two major issues.
The efficiency of traffic replay affects the time consumed and the difficulty of event
analysis. If the traffic is not replayed accurately, it failed to test DUT validly and
trigger events.

To replay traffic regarded as valid network traffic by DUTS, it must send out the
correct packets in the correct order and direction so that it follows the states of
protocols, especially TCP protocol and application protocols, to test DUTs which
modify the network traffic passing by.

For example, replaying a TCP connection established from host A to host C on
NAT (Network Address Translation) is in Fig. 2. First, SYN packet must be replayed
from private network to public network. Second, the other interface must wait SYN
packet and then send SYN_ACK: packet with mapped network address and port
number back otherwise this packet.will be filtered. by: NAT and the connection cannot
be established as Fig. 2(b) shows. Therefore,-the program of traffic replay needs to
inspect TCP header modified by NAT: so.that-it knows the correct destination port of
SYN_ACK packet. Besides the TCP header, this program needs to inspect content of
application layer. For example, in the passive mode of the control connection in a FTP
session, the client may ask the server to open a socket and the server puts IP address
and port number in the payload. The socket information may be modified by NAT as
Fig. 2(c) shows. Before establishing the data connection, the program needs to inspect
the FTP header of the control connection to know the correct destination of a FTP

data connection as Fig. 2(d) shows.
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Figure 2. Replay network traffic en NAT,.(a,b).replay a TCP connection (c,d) replay a
FTP session:

The efficiency can be measured by how-fast'is the traffic replay andhow much
traffic volume is required to reproduce an-event. A higher speed of traffic replay can
get a better progress of testing since the testing data (i.e. traffic) is transmitted to
perform the test at a higher rate. However, the efficiency and the accuracy of traffic
replay are trade-off because inspecting APP/TCP/IP protocols is time-consuming. For
event analysis, the smaller volume of traffic replayed to reproduce events, the easier

and faster testers analyze them.

2.3 Related work

Some research papers and tools proposed ways to capture in large-scale
environment and traffic replay. The study of [9] did lots of experiments on testing the

fully capture ability of community hardware configured with the combination of



parameters including number of preprocessors, operating systems, and buffer size. To
reduce storage, Time Machine [10] uses a cutoff of 10K~20K bytes for each
connection because the bulk of traffic in high-volume streams comes from just a few
connections so that it can store small complete connections. Furthermore, the number
of bytes can be adjusted dynamically by NIDS (Network Intrusion Detection System)
[11].

There are many works on replaying the packet traces. TCPreplay [4] replays the
same packets as recorded without inspecting any packet back from DUTs. On the
other hand, Tomahawk [3] inspects the packet back from DUTs and then sends the
next packet. These tools replay traffic without maintaining any state of network
protocols.

Next there are studies solving‘network layer-and transport layer of traffic replay.
TCPopera [4] follows TCP/IP stack.by using.four.heuristics. Monkey [5] replays web
traffic by using socket programming- to-emulate TCP stack and using Dummynet
(http://info.iet.unipi.it/~luigi/ip_dummynet.ntml) * to emulate network conditions.
Avalanche (http://www.spirentfederal.com/IP/Products/Avalanche), which is a
commercial product, uses a trace file to emulate high-volume network traffic of
concurrent users. These tools resolve network layer and transport layer protocols of
traffic replay. Furthermore, some studies [7, 8] solve the application layer. However,
the above available tools are not enough for replay network traffic from large-scale
environment. The reasons are that although most of them inspect states of TCP/IP
stacks, some of them cannot replay incomplete connections caused from capture loss
and all tools cannot replay traffic selectively that reproduce the events and help testers
to analyze them. In this work, we develop a tool named SocketReplay to solve these
problems. Table 1 compares the available tools in terms of three demands needed for

replay the traffic from large-scale environment.

6



Table 1. Comparison of available tools including open source program and
commercial product

Name TCP/IP Stateful Complete Connection Selective Replay
TCPreplay No Not required No
Tomahawk Yes Required No
Monkey Yes Not required No
Avalanche Yes Required No
SocketReplay | Yes Not required Yes




Chapter 3 Design of SocketReplay and capture scheme

This chapter details the design of SocketReplay and capture scheme that are total

solution of traffic capture and replay in large-scale environment.

3.1 Design Goals

The objective of capture is to store valuable traffic that is enough to trigger
events. In other words, this capture scheme ignores part of payload of some packets
which have low probability of triggering events and decreases the replayed traffic
volume to trigger events.

The three objectives for traffic,replay: (1) compact with incomplete TCP
connections due to capture loss or, above capture. scheme; (2) statefully replay at
TCP/IP layer because most of DUTs including NAT, proxy and IPS (Intrusion
Prevention System) modify TCP/IP. headers;-and.(3) replay selective packet traces to
reproduce events. It helps designers to"analyze easily what sessions or connections

trigger events.

3.2 Low-Storage capture scheme

In this work, the capture scheme uses three thresholds (N, M, P) for the payload
length of a connection being captured. The threshold N defines the number of bytes of
data should be stored for each connection, the threshold M defines the number of
bytes of data should be stored for each packet of a connection after length of stored
data exceeds the threshold N, and the threshold P defines the number of packets
should be stored after exceeding the threshold N. The N is set because we believe

most of events can be triggered within the first bytes per connection. The M is set



because we believe after N bytes of connection, most events can be analyzed by
application header and most application header is only small bytes per packet. The P
is set because we believe most events can be triggered by first packets of each
connection. Figure 3 illustrates an example, if the payload length of first three packets
already meets the threshold of N bytes, the following P packets will be capture only

first M bytes of payload and the other will be ignored.

Packet Sequence | 1 2 3 4 P+3 P+4 ...etc

M bytes | M bytes | M bytes

Payload N bytes
Ignored data

Figure 3. Ignored data of three thresholds (N, M, P)

3.3 SocketReplay

SocketReplay is a stateful traffic ‘replay tool that is suitable in large-scale
environment. There are several stages described as follows. Loss-recovery
reconstructs complete streams from capture scheme. Stateful replay minics hosts to
generate traffic without breaking protocol semantic. After triggering events from
stateful replay, selective replay narrow down the scale of replayed packet trace to

reproduce events.

3.3.1 Loss-Recovery

Loss-recovery is an stage that parses the incomplete connections, i.e., broken
streams which come from previous capture scheme or capture loss, into complete
streams so that SocketReplay can replay the connection with the original length of the
stream by inserting dummy bytes. The length of ignored data can be calculated from
the TCP/IP header of the packet. The payload length of capture loss can be found by

inspecting sequence number and acknowledge number of each packets.




For example, figure 4 shows an established connection of host A and host B. In
real environment, the six packets are transmitted to destination successfully. During
the capture, the fourth packet is lost due to capture loss. The following described the
mechanism packet by packet as Fig. 4 illustrated. (1) The 1st packet is queued
because we are not sure whether this packet can reach the destination. (2) The
sequence number of 2nd packet is checked to see whether these two segments are
overlapped. Again, this packet is queued because we’re not sure whether the packet
can reach the destination. (3) The ACK packet of host B verifies successful
transmissions of 1st and 2nd packets. Therefore, we put 20 bytes of data into the
stream. (4) The 4th packet is lost. (5) The sequence number of 2rd and 5th packet is
not continuous. It can be happened when 4th and 5th packets are out of order.
Therefore, we are not sure whether the 4th packet is lost. (6) This ACK verifies the
4th packet is lost and the data of 5th' packet tstransmitted successfully. Therefore, we
put 20 dummy bytes and the data of 5th'packet.into the stream. After theses operation,

the steam contains 50 bytes.

Packet No. 1 2 3 4 5 6
Hosts A->B A->B B>A |A>B |A>B B>A
Seq. , Ack. a,b a+10,b | b,a+10 | a+20,b | a+40,b | b, a+50
Data length | 10 bytes | 10 bytes | O byte 20 bytes | 10 bytes | 0 byte

Queue
|10 | 10|10 | |10 | 10|
Stream
l | [20]10]
(1) {2) (3
| 10 | [ 10 |
[10]10] |10 [ 10 | |10]10] 20 [10]
(4) (5) (6)

Figure 4. An example of loss-recovery for Established TCP connection with one
packet capture loss
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3.3.2 Stateful Replay

Because loss-recovery constructs a complete stream, this stage focuses on
emulating all TCP and UDP connections. Previous work [8, 9] proposes methods to
determine packet order and emulate TCP connections. This work solves packet order
by the sequence of data inserted into the stream in the loss-recovery stage. Also, this

work follows the work [5] using socket API to emulate TCP and UDP connections.

3.3.3 Selective Replay

After the stage of stateful replay, some events are triggered. To analyze how an
event is triggered, i.e., to analyze what sessions, connections, or packets trigger an
event, it is better to replay selectively from large packet traces. This work can achieve
selective replay according to the event information and replay log from stateful replay.
An event may include time information, connection information, and message of
errors or alerts. Also, the time of connection established and closed can be obtained by
replay log. Therefore, this work selects the potential connections to test whether it can
reproduce the event. If it cannot reproduce the event, including more connections is
needed. Figure 5 shows an example of an event includes the time information and the
address of connection 5. The procedure of selected connection to replay is described
as follows: (1) SocketReplay replays connection 5 to see whether it can reproduce the
event. (2) If it cannot, SocketReplay includes connections with the same IP addresses
of connection 5. In this case, it includes connection 1 and 5. (3) If it still cannot,
SocketReplay includes established connections at time t. In this case, it includes
connection 1, 2, and 5. (4) If it still cannot, SocketReplay includes last connections
that are closed before time t. In this case, it includes connection 1, 2, 3, and 5. (5) If it
still cannot, SocketReplay includes more connections that are closed before time t.

Note that if the event does not provide connection information, SocketReplay will

11



skip step 1 and step 2.
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Figure 5. An example of selective replay
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Chapter 4 SocketReplay Components and Implementations

An installed SocketReplay host emulates interactive hosts by two network
interface as a client or a server. Figure 6 illustrates the components of SocketReplay,
which achieve the design as previous chapter described. Because the volume of real
flows is too large to load all packets into the memory, SocketReplay has to read and
replay packets simultaneously. We explain the details of these components and

implementations in the rest of this chapter.

Selective Replay Interface
II
£
‘pcap _ ., Preprocessor
7
— _Jv" =
IConnectionTracks }rzbl Loss-recovery Engine ]
it
Q\; g
Replay ({1 Replay Engine 3
Log @
a Socket API
! P
Five tuple I L
Start time | ip_route_output_slow | 3-;
Endtime A =
| __mkroute_output | |fib_va|idate_source §
[

DUT

Figure 6. SocketReplay Components

4.1 Preprocessor

The processor uses libpcap library to read packets from a hard disk and
reassemble the IP fragments into an IP datagram. Because most of packets are UDP or

TCP packets, the preprocessor parses two kinds of packets to connection tracks.

4.2 Connection Tracks and Loss-recovery Engine

Because real flows contain lots of connections, SocketReplay should allow

13



constant time lookups of each packet which belong to a connection track by perfect
hashing. Figure 7(a) shows how to computer hashes from IP addresses. First,
SocketReplay sorts the source IP address and the destination IP address so that both
directions of packets in a connection are mapped to the same hash. Second, for each
IP address, SocketReplay splits 32-bits address into two 16-bits numbers and
performs a bitwise XOR on them. Third, SocketReplay uses 8-bit left-shift operation
on the 16-bit number which comes from larger IP address at previous step and
performs a bitwise XOR on the 24-bit number and the 16-bit number. Finally,
SocketReplay gets a 24-bit hash. This hash is used by hashing table as Fig. 7(b)
illustrates. Because a session is usually composed of connections between two hosts,
SocketReplay track these connections in a linked list. After tracking each packet, the
loss-recovery engine will inspect the TCP states-and recover incomplete connections

to complete connections, i.e., TEP streams.

| Source IP l |De§tinaf:i0n IP|

Ty
T TN

T T
Compare

its| s/XOR 16bits| ‘leits

es
\

|—)(XOR leits| Table[0xFFFFFF]
\

SHAN

Connection Tracks

/

(a)Hash Function (b) Hash Table

Figure 7. Implementation of Connection Tracks

4.3 Replay Engine
The replay engine is a reverse engineering implemented by socket programming

to establish each connection. Therefore, SocketReplay needs to bind lots of IP

14



addresses and port numbers. In order to manage the connections easily, SocketReplay
mapped each IP address to a class C IP address individually so that SocketReplay can
assign the whole class C IP addresses to the network interface in advance.

The replay log reports the time and the connection information replayed by
SocketReplay. After a packet is sent through an interface, SocketReplay checks
whether each packet is received on the other network interface. If SocketReplay failed

to receive the sent packet, it also logs the event on the replay log.

4.4 Kernel Modification

Since SocketReplay uses Socket API to emulate clients and servers at the same
host, it replays packets in a virtual network, i.e. a loopback interface, and fails to
transmit packets to the real network ‘interfaces. Therefore, kernel modification of
routing policy is needed. This work maodified three functions of Linux kernel 2.6.20.3.
First, the function ip_route aqutput slow of the source code net/ipv4/route.c is
modified to overwrite the outgoing.interface so that packets can be sent to the real
network interface with the source IP address of the packets assigned. Second, the
function __mkroute_outpu of the source code net/ipv4/route.c is modified to
overwrite the default gateway so that SocketReplay can replay network traffic on
gateway devices such as NAT. Thirds, the function fib_validate source of the source
code net/ipv4/fib_frontend.c is modified to accept packets that comes from the same

host.

4.5 Selective Replay Interface
The selective replay interface implements the mechanism as described in chapter
3. The user can indicate the event message from DUT and the replay log from replay

engine so that SocketReplay knows how to replay selectively. At least an event

15



message contains a timestamp of triggered event. If it contains five-tuple information,
SocketReplay starts from step 1. If it contains a source addresses and a destination
address, SocketReplay starts from step 2. If it contains only the timestamp,

SocketReplay starts from step 3.
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Chapter 5 Evaluation

In this chapter, we evaluated the capability of low-storage capture, loss-recovery
and selective replay of SocketReplay in large-scale environment. The evaluations of
low-storage capture focus on storing three types of network traffic: attack, virus, and
P2P. The evaluations of loss-recovery and selective replay focus on the ability of

recovering capture loss and traffic volume of selective replay.

5.1 Test environment for SocketReplay

In our evaluation test, we mirrored the network traffic of 1743 hosts as Fig. 1
shows to a capture device. Then we use SocketReplay to replay real flows to an IPS
(intrusion prevention system) and'collect’its events from system logs.

Completeness is an important factor to'replay on IPS accurately. We prove them
by conducting two simple experiences:-on“a-complete connection that can trigger an
event by TCPreplay. First, we removed 3-way handshake and replayed it again. We
found it failed to trigger the event because IPS did not track this connection on its
session table. Second, we removed a data packet after 3-way handshake and replay it
again. We found it also failed to trigger the event because the sequence numbers of
packets are not reasonable for IPS.

We sample 22185 connections from real flows within 30 seconds. Figure 8
illustrates the status of each connection. There are 10660 connections established
before staring the capture so that we can’t capture the 3-way handshake, 7753
uni-direction connections because some of hosts sent SYN packet while the
destination host did not reply or refuse the establishment, 3682 connections that has

complete three-way handshake, 254 connections that have capture loss by inspecting
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acknowledge numbers, and 2309 connections closed by a reset packet. From previous
simple experience, if we use TCPreplay to replay all the traffic, the gray area of 10914
connections could not accurately replay on the IPS. However, SocketReplay can

replay them accurately by loss-recovery mechanism.

Uni-direction 9017 No three-way handshake
4
7327 | 226 pases 1o
449
254
3323 > Capturcloss

Three-wayhandshake

Figure 8. Status of connections‘in real flows

5.2 Test Results for SocketReplay
5.2.1. Attack

This work collects 1929 attack events from real flows triggered by an IPS and we
try to reproduce these events. SocketReplay successfully reproduced events at the step
1 of selective replay, which is efficient to replay from large packet traces. Next we
examined the effectiveness of loss-recovery by using TC
(tldp.org/HOWTO/Traffic-Control-HOWTO/) to simulate the condition of capture
loss. We compared SocketReplay and TCPreplay to see how the capture loss effects
the event reproduction. Figure 9 shows that the proportion of triggered events of
SocketReplay and the rate of capture loss are inversely proportional because some of
packets with capture loss are critical to trigger the events. However, the proportion of
triggered events of TCPreplay drop quickly when capture loss grows because a

capture loss can affect the accuracy of whole replayed connections.
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Next, we examined the percentage of capture loss in a commercial Network
Monitoring System which uses libpcap to capture packets. We observed the number of
packets dropped by kernel and received by filter after capturing 10 minutes of real
flows and found that the percentage of capture loss is varied from 3% to 20% which is

relative to the total packet numbers.

. 100%
% of riggered events
0%

60% = - SocketRen|ay

TCPreplay
A0%

20%

0%
0% 20% 40% 60% 0%

Capturelass

Figure 9. The effect of capture loss on event reproductions for SocketReplay and
TCPreplay

5.2.2. FTP session

A FTP session contains a control connection and data connections. To reproduce
an event of a data connection, replaying the-data-connection is not enough and it
should include its control connection. ‘Besides, in the active mode or the passive mode
of FTP protocol, the control connection sent IP address and port number, which
should be coherent with the data connection. In this work, we collect virus events that
triggered by transmitting virus through FTP protocol to make sure that FTP sessions
can be replayed accurately on IPS. SocketReplay successfully reproduced these virus
events at the step 2 of selective replay, which is efficient to replay from large packet

traces.

5.3 Test environment for low-storage capture
After using SocketReplay to replay captured traffic to an IPS (intrusion

prevention system) and collect its events from system logs including attack and virus,
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we include P2P events and use three thresholds (N, M, P) as Section 3.2 described to
replay part of connection to figure out the best configuration of (N, M, P) that can

produce more events and reduce more storage cost for these three types of events.

5.4 Test results for low-storage capture
5.4.1 Attack

This work collects 1929 attack events triggered by replaying real flows to an IPS
and we can reproduce these events at the step 1 of selective replay. Table 2 lists top 10
types of attacks that cover 98.4% of 1929 attacks. The most frequent attack is
Microsoft Windows RPC DCOM  Service Buffer Overflow attack
(www.cert.org/advisories/CA-2003-16:html) and., its data length is 1828 bytes. Also,

we found that only 333 connections’ data length exceed 2000 bytes.

Table 2. Majortypesof attack events

Event Count | Ratio (%) | Alert Message
1493 75% | Microsoft Windows RPC DCOM Service buffer overflow attempt
237 12% | Microsoft Windows LSASS buffer overflow attempt
117 6% FTP command overflow attempt
18 0.9% | SQL Injection comment attempt
11 0.5% | NETBIOS DCERPC NCACN-IP-TCP ISystemActivator RemoteCreatelnstance little endian attempt
7 0.4% | SHELLCODE x86 0x90 unicode NOOP
6 0.3% | SQL sa brute force failed login unicode attempt
4 0.2% | SQL SA brute force login attempt TDS v7/8
4 0.2% | Microsoft Windows MS08-067 attempt
3 0.2% | FTPinvalid MODE

Therefore, we adjusted thresholds (N, 0, 0) which mean SocketReplay replays
first N bytes data of connections and observe whether the intrusion prevention system

can detect them as Fig. 10(a) shows. We found that 317 of 333 events were triggered
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by simply replaying first 2K bytes of data per connection and a few events were
triggered when we adjusted N from 5K to 50K. We pick 16 events that not triggered
by using thresholds (2000, 0, 0) and increase the threshold N to see the percentage of
triggered events and storage cost as Fig. 10(b) shows, we found that if we want to
cover most of events, threshold N should be very high which cuase that percentage of
storage cost is high. Therefore, we conclude that replaying 2K bytes of data of
connections are enough to trigger most of attack events.

Next we picked four events that can’t be triggered by replaying first 50K bytes of
date and reproduce these events by adjusting thresholds (0, M, oo) which means
SocketReplay replays first M bytes data of each packet and found the minimum M as
Table 3 shows. The first event is a false positive and the minimum M of last events is
bounded by 200 bytes because these events weretriggered from application headers.
Therefore, we conduct another-experience which uses thresholds (2000, M, ) to
replay 16 events that can’t be triggered by using thresholds (2000, 0, 0). As fig. 10(c)
shows, we found that when M is 200 byies, 11-0f 16 events are triggered.

Next we adjusted the threshold P to find out the relation of storage cost and
events that triggered by using thresholds (2000, 200, oo). As fig. 10(d) shows, we
found that when P is set to 1300, all 16 events are all triggered and 87% of storage is
reduced. Also, when P is set to 200, 8 of 11 events are triggered and 90% of storage is
reduced.

To sum up, besides the threshold N, the threshold M is effective to trigger more
attack events. If we set the thresholds (N, M, P) to be (2000, 200, 1300), the
low-storage capture scheme can record 99.74% of events that can be triggered by
SocketReplay and reduce 87% of storage cost. We set P to 1300 in order to trigger

rare events that can’t be trigger by using the thresholds (N, M, 200).
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Table 3. Minimum M that triggers events that can’t be triggered by two
thresholds (50000, 0, 0)

Alert Message Total Payload Size | Minimum M
SHELLCODE x86 setgid 0 151611 1300
SQL Injection comment attempt 206085 140
Web-CLIENT Windows Media Player zero length bitmap 390745 200
Adobe BMP Image Handler Buffer Overflow 561305 90
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Figure 10. (a, c) Number of triggered events after setting the thresholds (N, 0, 0) and
(N, M, o0); (b, d) Percentage of Storage Cost and Triggered events after setting the
thresholds (N, 0, 0) and (N, M, P)

5.4.2 Virus

This section finds out the capture scheme for collecting virus events. This work
collected computer virus from VX Heavens (vx.netlux.org), which contains a massive,
continuously updated virus samples and sources. We made 44 FTP sessions manually
that transferred viruses and triggered events from anti-virus systems and captured
these sessions. Next, we applied three thresholds of SocketReplay to replay these

sessions and observe whether they can trigger these events again.
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The dotted line of Fig. 11(a) draws size distribution of viruses. This line shows
that 20% of viruses are larger than 100000 bytes, which is absolutely larger than the
payload length of attack traffic. The actual line of Fig. 11(a) and Fig. 11(b) draws the
percentage of triggered events by using SocketReplay to replay 44 FTP sessions with
thresholds (N, 0, 0). Although 40% of viruses’ size is bigger than 8K bytes, these
virus events can be triggered by replaying first 8000 bytes of each connection. We

observe that replaying first 60000 bytes is enough to trigger 93% of virus events and

reduce 70% of storage cost.

Besides threshold N, we conduct experience to answer whether threshold M is
effective. Thethresholds (8000, 400, <o) of replay can trigger 88% of events and
reduce 67% of storage cost and another thresholds (8000, 1000, o) of reply can
trigger 90% of events and reduce 35% of storage. Therefore, we found that the
increase of threshold M is ineffective to trigger more events. Also, the benefit of two
cases is not better than previous-case:with-thresholds (60000, 0, 0) which trigger 93%
of events and reduce 70% of storage. Therefore, we suggest setting threshold N to

60000 is enough to collect virus events of real flows and the thresholds M and P are

set to zero.
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% of triggered events for each N bytes

Figure 11. Virus Size Distribution and Thresholds (N, 0, 0) for reproduce % of virus
events

5.4.3 Peer-to-Peer

The section focuses on how to collect minimum traffic to identify P2P events.
Unlike attack and virus events, P2P applications use UDP protocol frequently to
transfer unencrypted queries so that some of IPSs examines these queries and identify
P2P applications such as BitTorrent, .Skype and Edonkey. Furthermore, some
techniques [12, 13] use statistical approach to. identify P2P applications by TCP/IP
headers. Therefore, the capture-scheme simply needs: to capture all UDP packets and

headers of TCP packets.
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Chapter 6 Conclusion

The low-storage capture scheme and a replay tool SocketReplay provides a total
solution on capture and replay in large-scale environment. The thresholds of capture
scheme should adjust according to different traffic source, concerned traffic and types
of devices that generate events. In campus-scale environment, the thresholds (2000,
200, 1300) are suitable for recording attack which triggers 99.74% of events and
reduce 87% of storage, the thresholds (60000, 0, 0) are suitable for recording virus
which triggers 93% of events and reduce 70% of storage. Also, capturing UDP
packets and TCP headers are enough to trigger P2P events. By loss-recovery and
stateful replay, SocketReplay can replay traffic.from capture scheme and complete
connections accurately that don’t break protocol.semantics regardless of capture loss.
Furthermore, SocketReplay can reproduce the events efficiently by selective replay.

This work provides an accurate and efficient way to play with real flows.

25



Reference

[1] A. Turner, Tcpreplay, http://tcpreplay.synfin.net/trac/.

[2] W. Feng, A. Goel, A. Bezzaz, W. Feng, J. Walpole, "TCPivo: A
High-Performance Packet Replay Engine,” ACM SIGCOMM 2003 Workshop on
Models, Methods, and Tools for Reproducible Network Research (MoMeTools),
August 2003.

[3] Tomahawk, http://www.tomahawktesttool.org/, 2005.

[4] G H. Hong and S. F. Wu., “On interactive internet traffic replay,” in 8th
Symposium on Recent Advanced Intrusion Detection (RAID), LNCS, Seattle,
September 2005.

[5] Y.-C. Cheng, U. Holzle, N. Cardwell, S. Savage, and G. Voelker, “Monkey see,
monkey do: A tool for tcp tracing and replaying,” In Proceedings of the 2004
USENIX Annual Technical Conference, June 2004.

[6] A. Turner, “Flowreplay design notes,” http://synfin.net/papers/flowreplay.pdf.

[71 Weidong Cui, Vern Paxson, «Nick::C. Weaver, and Randy H. Katz.,
“Protocol-Independent Adaptive Replay .of Application Dialog,” in Proceedings

of the 13th Annual Network and: Distributed System Security Symposium
(NDSS), Feb 2006.

[8] James Newsome, David Brumley,Jason Franklin, and Dawn Song, “Replayer:
Automatic Protocol Replay by Binary Analysis,” ACM Conference on Computer
and Communications Security, October 2006.

[9] F. Schneider, J. Wallerich, A Feldmann, “Packet Capture in 10-Gigabit Ethernet
Environments Using Contemporary Commodity Hardware,” Passive and Active
Measurement Conference , April 2007.

[10] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann and R. Sommer, “Building a
Time Machine for Efficient Recording and Retrieval of High-Volume Network
Traffic,” in Proceedings of ACM Internet Measurement Conference, October
2005.

[11] G. Maier, R. Sommer, H. Dreger, A. Feldmann, V. Paxson and F. Schneider,
“Enriching Network Security Analysis with Time Travel,” in Proceedings of
ACM SIGCOMM, August 2008.

[12] T. Karagiannis, A. Broido, M. Faloutsos, and K. Claffy, “Transport Layer
Identification of P2P Traffic”, In Proceedings of the 4th ACM SIGCOMM
conference on internet measurement 2004.

[13] L. Bernaille, R. Teixeira, I. Akodjenou, A. Soule, K. Salamatian, “Traffic
Classification On The Fly”, ACM SIGCOMM Computer Communication

26



Review 2006.

27



