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ABSTRACT

The proliferation of mobile computing devices and local-area wireless networks
has fostered a growing interest in location-aware systems and services. Current
positioning technique, GPS, are not suitable for more and more LBS(Location
Based Service) because of its incapability of indoor positioning. In contrast,
RADAR-like system can work both indoor and outdoor. Furthermore, they only
need to use existing hardware and are, thus, more suitable for LBS. However, existing
RADAR-like algorithms all need.extensive data-and large amount of computation
to achieve acceptable accuracy. Therefore; not suitable for positioning
on resource limited portable device. In order to-solve this problem, we propose a
novel cache management scheme and prediction method in this paper. By using
these techniques, we hope to achieve a client-based pattern-matching positioning
system with fair enough accuracy and less dependent to server.

Keywords: Fingerprinting Localization, Mobile Computing, Pattern-Matching
Localization, Wireless Network.
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Chapter 1

| ntroduction

Recently, portable devices have been more and more popular. From the statis-
tic, global mobile penetration is about 61% now. With the stronger computation
power, much more interesting application has been developed for the portable de-
vice. With the advent of Global Positioning System (GPS$) [1] ,cellular-based and
multi-lateration approachesi[2] [3]; Location-Based Services(LBSs) has gathering
more interest than other application.

Unfortunately, the level of localization accuracy needed in such applications
cannot be achieved by the existing cellular-based methods. Furthermore, cover-
age of the GPS system is limited.in indoor environments and dense urban areas.
Therefore, much effort has been focused on the development of Radio Frequency
(RF)-based location-estimation techniques using Received Signal Strength (RSS)
measurements, such as RADAR [4]. Such systems consist of two phases: an of-
fline training phase and an online positioning phase. In the offline training phase,
a mapping between received signal strength (RSS) patterns and location labels at
a set of training locations will be learned. During the online positioning phase,
we can compare the newly received RSS pattern against those of the training lo-
cations|[4,5,6,7,18,9,10].

For RADAR-like positioning technique, the larger scale of the sensing field

is, the more training location will be needed. To reduce the location grain size,



a numerical method is proposed to generate some virtual training data inferred
from nearby real training data!/[8]. Hence, the training overhead can be limited
to a relatively small number of real training locations. However, when it comes
to a scale of a city, a database is still needed to store the huge amount of training
locations. Limited by the storage size, if we want to make positioning available
on the resource limited portable device whether indoor or outdoor, the only way
possible is via a centralized positioning server. The portable device simply report
its RSS to the central sever. After calculation, the server will response a possible
location to the client. This is the widely used server-client architecture. Under
this situation, the client must stay connected to the Internet to be able to talk to
the server. Since the calculation is done by the server, current location of the
client is not a secret to the server and even worse, might be eavesdropped during
transmission. Therefore, it might incur network connectivity and privacy concern
for portable device.

To solve the insufficient resource, network connectivity and privacy concern
problem, we propose a novel cache management scheme aimed at positioning on
portable device. For different pattern-matching positioning algorithms, we try to
extract feature data from its overall training data first. When portable device starts,
it just need to download partial feature data from the central server relative to its
current location. The current location here can be a rough one to keep privacy.
With these small amounts of data, a portable device can have its self positioning
ability.

To evaluate the proposed scheme in large-scale environments, we adopt a
close-to-realityradio irregularity model (RIM) [11] to simulate the decay of sig-
nal strengths. This model has been shown to be able to reflect the physical reality
of radio signals, such as the influence of hardware difference, remaining battery,
non-isotropic propagation, and dynamic signal fading effect. These features cause

the difficulty of indoor positioning. In our simulation study, we tune the param-



eters of RIM to evaluate our cache management scheme under different condi-
tions of such close-to-reality environments. The results support that our cache
management scheme do provide less network connection need and availability of
positioning on resource limited portable device without losing privacy.

The rest of this paper is organized as follows. Sedtion 2 reviews previous
works on pattern-matching localization. The proposed cache management scheme
are presented in Sectibh 3. Performance studies are in Selction 4. Finally, Section 6

draws a brief conclusion.



Chapter 2

Problem Statement

A pattern-matching localization system [4] generally works as follows. We are
given a set obeacons B = {b,bs,...,b,}, each capable of transmitting radio
signals periodically in a sensing fieJd C R?, and a set of known training loca-
tionsL = {l1,0s, ..., ¢} in F..Thesystemworks in two phases. In thaining
phase, at each training locatiofy, i =-1..m, we measure the signal strengths from
beacons for a period of time and creatiature vector v; = [v; 1, Vio, .- ., Vi)

for ¢;, wherev, ; € R is the averaged RSS frotp, j ='1..n. The feature space

of v; is written asS C R"."The set of feature vectols = {v;, v, ..., v,,} IS
stored at a location server. In tpesitioning phase, an object can measure its RSS
vectors = [sy, S, . . ., S,] and compare against) to estimate its location itf.

Traditionally, the positioning task is conducted at the server side. This is due
to the facts that the feature vector 3&ts typically very large and portable de-
vices have limited resources. Not only the comparison task is costly, but also
transporting) to portable devices requires large bandwidths.

In this work, we are interested in moving the positioning task to the client
side. This implies tha¥’ or part of V needs to be stored at a portable device.
The positive effect is that the portable device can locate itself even if it loses
network connection and it does not need to keep on inquiring the location server.

Therefore, positioning can be done in a more teal-time manner. For example, if a



person walks at a speed of 4km/hr and we require a positioning precision of 1m,
then the portable device needs to inquire the server approximately 66.6 times per
minute. When the network connection is unreliable, maintaining such a level of
precision is difficult.

Moving the positioning task to the client side may face two challenges. First,
the data(which we caltache) to be stored at the client should be kept as small
as possible. Second, a cache management strategy is needed when a user moves
out of the region for which his current local cache data is valid, in which case the
local cache needs to be updated. For the first issue, we will adogitsttnemi nant
function (DF)-based localization methodolody [12], which relies on an path loss
model technique and is believed to place less memory demand on the positioning
job. For the second, we will propose an efficient solution in Se¢fion 3.

For completeness, we review the DF-based methodology below. The basic
idea behind the DF-based-localization is to construcbrainuous and differen-
tiable discriminant functionf . F — R* from the givenZ, V, ands. Then,
apply an optimization search algorithm to find the locatiogFithat minimizesf.
Instead of evaluating the difference betwesmd each vector iw, the search al-
gorithm is expected to quickly find a locatiép, & F that is close to the optimal
location/* = argmin,.» f(¢). Specifically, it will exploit thegradient descent
search [13] to find the optimizer of the discriminant function. This scheme is an
iterative process which can quickly converge to the minimizer of the given dis-
criminant function. Two possible ways to define the discriminant function were
proposed, calletNewton-PL and Newton-INT . They are based on the path loss
model and the interpolation technique, respectively. Both of them have the conti-
nuity and the differentiability properties and satigfy(;) ~ h(¢;),i = 1..m. The
latter implies that the functiong andh have similar decreasing trends.

Newton-PL designs its discriminant function by estimating the path loss of

the environment to simulate the channel condition. From path loss, it expects



to measure the amount of signal strength degradation from each beacon at each
location inF. In the training phase, some path loss-related parameters will be
computed. In the positioning phase, a discriminant function will be constructed
according to the vectatr and these parameters. From this function, the estimated
location/..; will be computed by means of the optimization search algorithm. By
transforming training data to the path loss-related parameters, the data needed for
positioning can be greatly reduced.

Newton-INT adopts thénverse distance weighted interpolation (or so-called
Shepard interpolation[14]), a numerical data-fitting approach. Similar to Newton-
PL, Newton-INT also needs to infer the received power mdeléf, b;) for each
b; from the training data. The main idea is to use a weighted function to predict
the signal strength at each locatibr F. We assume that training locations that
are closer to will contribute more influence on_.the received signal strength at
¢. Although Newton-INT doesn’t-have the data reduce ability like Newton-PL, it
can achieve better accuracy.especially under complex environments. Therefore,

we will implements both algorithms in this paper:



Chapter 3

The Proposed Cache M anagement
Scheme

By adopting DF-based localization methodology, we can reduce data size to an
extent, but the overall data are still not small enough to fit into a portable device
when the the scale oF becomes the country scale. Downloading partial data
could be one possible solution, butit will yield other new questions like what to be
downloaded or what will happen when the downloaded data is invalid. Therefore,
our main objective is to build a cache management scheme that help portable
devices choose the data they need when they start the positioning system. Also,
we will help portable devices update their cache when they find they are going to
reach out of the region where their local cache is valid. There are also two phases
in our algorithm off-line training andonline positioning phases. In the first phase,

we collect data as usual, but cluster all these data according to some constraints.
During the second phase, portable device will download partial data relative to its
current position for position usage. After several positioning, it may find the data

it owned is not enough for further positioning; this is when the update happens.



3.1 TheOff-line Training Phase

During the off-line training phase, we collect training data first as usual and then
generate related parameté?s= {pi,ps,...,pn}. Then, we observed that in
the positioning phase not all parameters are needed to construct the discriminant
function f. Both received power modét. (¢, b;) are inverse proportional to the
distance from thé to the beacon or the training location. This means that beacons
or locations too far away from the location of the portable device would have very
few effect on its signal strength and we can just ignore it. For this reason, we will
split the sensing fiel& into several small ared = {t4,ts,...,t,}; we refer to
each one of it asile. The shape or the size of a tile can vary. For simplicity, we
will use the square shape and an uniform size in this papef_Flg. 3.1 is an example
of the partition process.

Since we split the fieldF into several tile, we need to have a connection be-
tween each tileé and the parametergecause what the portable device downloads
is the parameter not the tile. The tile is like the index key to help we find the pa-
rameters we need. For Newton-PL; if we want to construct a discriminant function
inside an area, we need the parameters from all of the beacons that can be heard
inside. Instead of doing the test at every place inside an area, the signal strength
vector of the training data give us a hint. Therefore, a beacon’s parameter will be

put in a tile if one of the training locations inside that tile has received the signal

II[]I:>

Figure 3.1: An example of area partition. The original field was splitinto 4 smaller
area.



from that beacon. This can be expressedrby
m(t;) = {p,}, if {; is insidet; andv, hasv; ;. (3.2)

wheret; is the requesting tile. For Newton-INT, the received signal strength func-
tion is generated by interpolating signal strength of neighboring training data.
Therefore, a training location data will be put in a tile if it is inside that tile. This

can be expressed by:

3.2 TheOnlineL ocalization Phase

During the online localization phase; the portable device first reports its rough
position and its available storage size to the server. The rough position can be
easily obtained by using GSM Cell-ID or any other primitive way like simply let-
ting user chose its area. .Then, the server will try to recognize its belonging tile
and the surrounding tiles..The parameter of these tiles can be look as a basic data
unit for portable device. The portable device will be able to position himself as
long as he has the parameters of.the belonging tile. But once he steps out the
positioning-able area, the positioning error will increase rapidly due to the lack
of parameters. In order to prevent this situation from happening, we let portable
device download the parameters of the surrounding tile . Once he reaches out the
central tile, he will need to download new data but still be positioning-able at the
same time. After basic data unit is ready, the server will or will not add up more
tile’s parameter according to portable device’s available storage size or user’s re-
quirement. Anyhow, the overall tiles will form a small field. The dimension of
this field will accompany with all previous parameters to be send to the portable
device. Purpose of transferring the dimension of this field will be explained later.

Fig.[3.2 shows an example of the initialization.



|
|
— = -

1 ] 1 1 |
1 1 1 1 1
1 1 1 1 1 s
B 0 1 =
! | | Portable Device | 1
i R I I = D il il bl
1 1 | l 1 | | 1 1 RSSl or Cell ID, ...
1 1 1 i [ Wil | = il 1 I 1
FET 0" T 0 s T T T T
1 1 1 1 1 1 1 1 1 1 1
N R I S M Lo L _d_
1 1 =) 1 1 ] 1 1 1 1 1
1 1 | 1 11 1 1 1 1
—Hd-—=4=-=—t—-=-F~=T- """ r—-"1——1-
1 1 | 1 1 1 1 1 1 1
1 1 | 1 1 1 1 1 1 1 A
% - N
Parameters ... S

Location Server

Figure 3.2: An illustration of the positioning system initialization on the portable
device.

After downloads all these data; the portable device will be capable of posi-
tioning by itself. The only job it need to do isto plug-in current receigadto
the received power modét.(/, b;),-then constructs the discriminant functign
and applies an optimization search algorithm to find'the location. Sooner or later,
the portable device will detect that it-is going to reach out the field. It will have
to report to the server and downloads new data again. We refer to this process
ascache update. This process can be-further divided into two paddetion and

selection.

3.2.1 Deletion

Since the storage is limited, we can never add new data in whenever old data are
still there. Otherwise, we will face the problem of out of the memory. Every time
we want to do cache update, we need to delete old tile data first. Then the problem
comes: What are we going to delete first? The simplest answer is by deleting all
data and ask for whole new data we need for further positioning usage. But this
could just waste a lot of still usable data and increase network communication

cost. By observing that the field of user owned tiles usually overlaps with the last
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time’s field, we know we can keep the overlapping tiles and delete those not. The
dimension of the field can help portable device finds out what is needed and what
is not. After deleting those not needed, the portable device can simply report other

needed tiles to the server.

3.2.2 Sdection

As mentioned previously, we let overall tiles downloaded composed of at least
one data unit. More tiles can be added according to any different requirements.
We refer to the adding processsebection . In the following, we introduce three

different selection methods including one basic method and two advanced meth-

ods.

Basic Selection

The basic selection do the:same-thing as the first time positioning. The selection
process starts from the belonging tile of the portable device and selects 8 sur-
rounding tiles too. Through out whole positioning process, the portable device
will always download a basic data unit only. This'isithe most fundamental selec-
tion method. But since the storage size limit.may exceed the size of a basic data
unit and our goal is try to reduce netwark connection time and be as independent

as possible, we should try to use a smarter selection method.

Greedy Selection

As implied by the name, the greedy selection just simply tries to select as more
tile as it can. The selection process starts from the belonging tile of the portable
device. Choosing the surrounding tile one after another until the required size of
the parameters meets the limit of the storage size of the portable device. Fig. 3.3
is an example of greedy selection under different storage constraints. Assume the

storage requirement for each tile is 1 MB, the portable device can download at

11



most 9 tiles when its available storage is 9 MB. But when its available storage
size increases to 25 MB, it will download at most 25 tiles.

The advantage of greedy selection is it is suitable for most situation. But since
people tend to move in a fix direction for short period, this will waste most of the
data not in the current moving direction from the belonging tile. The connection

time may be reduced, but overall hit rate may decrease.

Selection using M obility Pattern Prediction

If we can predict where user will be later, then we may be able to select tiles based
on this predicted position. There are many techniques about mobility pattern pre-
diction, we will adopt Vector-Based trackirig |[15] in this paper. In vector tracking,
the future positions of a moving object are given by a linear function of time,
I.e., by a start position and a velocity vector. The user’s current velocity could be

calculated by his current position-and previous position.

Ve = (e = Loy (G ="t0-1)) (3.3)
Vy =\ Wiy &liiyylitivmy L L1)) (3.4)

A velocity vector consists of speed.and heading. The heading helps us select tiles

along which direction. The speed helps us determine how far do we need for
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Figure 3.3: An illustration of the greedy selection under different storage con-
straints.

12



selection. If the user moves fast, he will need more tiles in order to reduce the
need for update. On the contrary, fewer tiles would be needed for a user moves at
a slow pace.

Fig.[3.5 is an example of the selection using mobility pattern prediction. The
blue area is the portable device currently owned tiles and the red arrow shows the
moving direction of the portable device. The tiles inside the pink area are selected
according to the velocity of the portable device and will be downloaded later. The
shape of the field formed by all the tiles selected will no longer be like a square

due to the mechanism of its selection.

il

Predicted next location AL

&

IR 3 TVy
«—

= I/X ~ \
@ Current location

5
e

Figure 3.4: An illustration of the velocity calculation.
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Figure 3.5: An illustration of the selection using mobility pattern prediction.
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Chapter 4

Simulation Results

We consider a sensing field of siz@0 x 500 m?. There are 121 beacons placed
at(0+50x¢,0+50x 7 2),i=0..10and;j = 0..10. To simulate a more realistic
environment, some walls are given. Training locations are placed at grid locations
where the grid size is a 5. We colleti0 training data and then average them

at each training location. We modify the RIM.[11]}'to model the decay of signal

strengths:
P.(£,b;) = PYSP — PLPPL( b;) — PLOP(¢,b;)
+N(0,04), (4.1)

where P/5F is the transmit power, which' may vary among different hardware,
PLPOI(¢,b;) is the path loss which can reflect non-isotropic and continuous prop-
erties, PLYP5(¢,b;) is the path loss which can simulate the signal attenuation
caused by the obstacles in the environment, &id, o ;) is a zero-mean normal
random variable with a standard deviationto stand for dynamic noise.

In RIM, impacts of hardware difference and remaining battery on transmit

power is modeled by theariance of sending power (VSP), e.g.,
PY5P = P, x (14 N(0,VSP)), (4.2)

where P, denotes the initial transmit power aid(0, VSP) is a zero-mean nor-

mal random variable with a standard deviat\@®P. The paramete¥SP controls

15



the degree of variance of sending power among different beacons. Each beacon
randomly selects it®"” when the simulation starts.

In real-world experiments, the irregularity of signal fading is a common phe-
nomenon. However, most path loss models do not take this non-isotropic property
into consideration. To capture this effect, RIM imports tlegree of irregularity

(DA ) to control the amount of path loss in different directions, e.g.,
PLPO(0,b;) = PL(||¢,b;]]) x K, (4.3)
wherePL(||¢, b;]|) is the optimal obstacle-free path loss formulation

PL(d) = PL(dy) + 10¢ log(; ), (4.4)

0
and the coefficienify; is to model the level of irregularity at degréé = 0..359)
such that

1 it 7= 0
K = { Kot W0, 04 4) <D0 —if i 1..359 (4.5)

where| Ky — K3s9| < DO @andW (0, 045%) is @ zero-mean Weibull random vari-
able. The parametddO controls the allowable difference of two successional
degreﬂ Specifically, a largefK; — 1{-means that the amount of path loss has
greater deviation from the optimal path loss formulation at:ttie degree. The
iterative definition ofK; lets the variation of irregularity be continuous.

In an indoor environment, complicate partition is one of the major factors
which influence the performance of positioning algorithms. When signals pene-
trate through obstacles, such as walls, they should have dramatic signal strength
attenuation. In our simulations, the modified RIM model takes this property into
consideration. Specifically, there are some walls defined in our simulation envi-

ronment. The path losBLY55(¢,b;) stands for the amount of signal strengths

The irregularity of those non-integer degrees can be inferred by interpolating the values of
two adjacent coefficient®’; and K; 1, with integer degrees.

16



absorbed by the obstacles between the transntittand the receiver at. We

adopt the concept afall attenuation factor (WAF) proposed in[[4]:
PLOB5(4,b;) = max(Ny,, C) x \WAF, (4.6)

whereN,,, is the number of obstacles which exist in the middle of the line-of-sight
path of signal transmission frof to ¢, C' is the maximum number of obstacles
which can influencé” L5 (¢, b;), andWAF is a system parameter which denotes
the amount of signal attenuation caused by one obstacle. Note that different ma-
terials have differen\AF values.

In order to simulate a real moving pattern, an object moving by a waypoint
model is simulated. Fid. 4.1 shows an example of how we walk. Blue lines
represent the walls and red lines are the simulated path. It will switch between
the moving and pausing states. «In the moving state, the object will uniformly
select a destination in the sensing field. and moves to it at the $paéskc. After
reaching the destination, the object will switch to the pausing state and stay at this
location for 3 sec. The tracked object measures the signal strengths of all beacons
everyl sec. The total simulationtime for the whole trip2isl 94 sec. The default
simulation parameters are setfp= 15 dBm, dy.= 1 m, PL(d,) = 37.3 dBm,
¢ =4,0p=2,VSP =0.2,DA = 0.005,VWAF = 3.1, =4,0,=0.1,7v=1,

Al = 1 m, and the grid size is 5 m.

The performance study includes the comparisons of Newton-PL, Newton-INT,
and the NNSS positioning algorithim [4] with two advanced selection algorithms,
greedy and prediction. This makes total six combinations. Three performance
metrics are considered: positioning error , update count, and average data size per
update.

Fig.[4.2 evaluates three positioning algorithms under different levels of noise.
Intuitively, no matter which positioning algorithm is adopted, the positioning er-
ror should be increased in a noisier environment. [FEig. 4.2 illustrates that three

algorithms have similar increasing trend. Different selection algorithms do not
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Figure 4.1: Simulation environment

affect the positioning error. It shows that @ basic data unit is good enough for
positioning.

Fig.[4.3 compares update count for three pasitioning algorithms with two se-
lection algorithms. Overall, selection using prediction is better than greedy selec-
tion since it tries to select more useful data. Therefore, less update is needed. But
when noise level becomes larger, the update count using prediction will become
greater too. On the other hand, the update count using greedy selection stays the
same. This can be explained by more false prediction incurred from higher po-
sitioning error. But greedy selection selects tile omnidirectionally and becomes
resistible to higher positioning error.

In Fig.[4.4, the average size per update of the data that portable device has
to download is shown. By transferring raw training data into simple coefficients

of beacon, the Newton-PL algorithm only needs very few memory space com-
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Figure 4.2: Comparisons of positioning errorfor NNSS, Newton-PL, and Newton-
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INT under different noise levels with different selection algorithms.
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pared to other two algorithms. For Newton-INT, the additional gradient coefficient
makes it need more memory space than NNSS.

In summary, after evaluating the algorithms NNSS, Newton-PL, and Newton-
INT under different noise level, we have some suggestions. First of all, if device
available storage is the major concern, Newton-PL is an acceptable choice because
it takes very few memory space and also provides rational positioning accuracy.
However, if the portable device is a high-end device and needs more accurate
localization service in a well-trained and complex environment, Newton-INT can

satisfy this requirement.
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Chapter 5

Experimental Results

The proposed cache management scheme is implemented and integraties to a
criminant function (DF)-based localization system. In this section, we will de-

scribe the experimental settings and show the experimental results.

5.1 Experimental-Settings

We conducted the experiments on the fifth floor of our department building, where
the Department of Computer Science and Engineering, Chiao Tung University, is
located. The building is deployedwith an [IEEE802.11b

g wireless network in the 2.4 GHz frequency bandwidth. The layout of the floor
is shown in FigL5.1. This area measuéés: x 30m.

We developed a simple Visual C#-based application to assist us in the process
of gathering fingerprints. To record a fingerprint, we first identify the current
position by clicking on a map of the building. The application then records the
signal strengths reported by the 802.11 card using Intel Mobile Platform SDK [16]
provided by Intel. Figl5]2 is a screen shot of the Visual C#-based application.
Each points are located 2 to 3 meters apart. We collected 50 measurements per
location. For evaluation, we wait for an hour and do the collection process again.
We only collect 15 locations and 10 measurements per location to compare with

the first training data set. The collecting results for both trail are shown i Fig. 5.2
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Figure 5.1: The layout of the fifth floor of the Department of Computer Science
and Engineering, Chiao Tung University.

and Fig[5.B.

5.2 Experimental Results

We set the tile size ta0mx 10m and compare both Newton-PL and Newton-

INT with or without basic cache management scheme. Table 5.1 shows the result.

As we can see, Newton-INT performs better than Newton-PL basically. With

the cache management scheme; error.distance for Newton-INT was decreased.

The reason for this is because the discriminant function will not be influenced by

training data too far away. But for Newton-PL, the coefficients of the beacons

downloaded were less related to the position of the portable device, hence shows

less differences.

Newton-INT

Newton-PL

Cached Newton-INT|

Cached Newton-PL

Error Distance(m

5.46

6.10

4.83

6.42

Table 5.1: Comparison of error distance under different algorithms.
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Chapter 6

Conclusions

In this paper, we have presented a novel cache management scheme, which can
help client-based pattern-matching positioning system. It has large potential to be
applied in portable device. By pushing on-line search part from the server side to
the client side, the portable devices would be able to position itself even when it
is not connected to the network:-During the on-line search process, much storage
can be saved because the large volume of training data has been transformed to
a few scalars of the discriminant function at the off-line stage. This relieves the
problem of limited storage resource on the portable device. With two advanced
selection algorithms, overall update count is.-reduced by 99%, from 2196 times to
30 times. We believe these features can greatly support real-time LBSs in large-

scale environments [17].
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