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行動裝置平台上之樣本比對定位演算法的         

快取記憶體管理 

 

學生: 張哲賓         指導教授: 曾煜棋 教授 

 

國立交通大學網路工程研究所碩士班 

 

摘   要 

 

 

隨著行動裝置與區域無線網路的普及，位置相關系統與服務獲得越來越多的

注意。現今熱門的 GPS 定位系統由於在室內無法定位的缺點，導致其不適用於位

置相關服務。相反地，類似 RADAR 的定位系統在室內外都可以定位，此外，不需

額外硬體成本使的它更適用於位置相關服務。然而目前以 RADAR 為基礎的定位演

算法都需要大量的資料與龐大的計算量來達到可接受的精準度，因此並不適合在

硬體資源有限的行動裝置上運行。為了解決此問題，本論文提出了一個新穎的記

憶體管理機制與預測下載機制。透過這些方法，我們希望能實現一具有一定精準

度且較不須依賴後端伺服器的行動裝置端樣本比對定位系統。 

 

關鍵字:指紋定位演算法、行動運算、樣本比對定位演算法、無線網路。 
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A Cache Management Scheme for Pattern-Matching 

Localization at the Client Side 

 
Student: Che-Pin Chang   Advisor: Prof. Yu-Chee Tseng 
 

Department of Computer Science 
National Chiao-Tung University 

 
ABSTRACT 

 
The proliferation of mobile computing devices and local-area wireless networks 

has fostered a growing interest in location-aware systems and services. Current 
positioning technique, GPS, are not suitable for more and more LBS(Location 
Based Service) because of its incapability of indoor positioning. In contrast, 
RADAR-like system can work both indoor and outdoor. Furthermore, they only 
need to use existing hardware and are, thus, more suitable for LBS. However, existing 
RADAR-like algorithms all need extensive data and large amount of computation 
to achieve acceptable accuracy. Therefore, not suitable for positioning 
on resource limited portable device. In order to solve this problem, we propose a 
novel cache management scheme and prediction method in this paper. By using 
these techniques, we hope to achieve a client-based pattern-matching positioning 
system with fair enough accuracy and less dependent to server. 
 
Keywords: Fingerprinting Localization, Mobile Computing, Pattern-Matching 
Localization, Wireless Network. 
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Chapter 1

Introduction

Recently, portable devices have been more and more popular. From the statis-

tic, global mobile penetration is about 61% now. With the stronger computation

power, much more interesting application has been developed for the portable de-

vice. With the advent of Global Positioning System (GPS) [1] ,cellular-based and

multi-lateration approaches [2] [3], Location-Based Services(LBSs) has gathering

more interest than other application.

Unfortunately, the level of localization accuracy needed in such applications

cannot be achieved by the existing cellular-based methods. Furthermore, cover-

age of the GPS system is limited in indoor environments and dense urban areas.

Therefore, much effort has been focused on the development of Radio Frequency

(RF)-based location-estimation techniques using Received Signal Strength (RSS)

measurements, such as RADAR [4]. Such systems consist of two phases: an of-

fline training phase and an online positioning phase. In the offline training phase,

a mapping between received signal strength (RSS) patterns and location labels at

a set of training locations will be learned. During the online positioning phase,

we can compare the newly received RSS pattern against those of the training lo-

cations [4,5,6,7,8,9,10].

For RADAR-like positioning technique, the larger scale of the sensing field

is, the more training location will be needed. To reduce the location grain size,
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a numerical method is proposed to generate some virtual training data inferred

from nearby real training data [8]. Hence, the training overhead can be limited

to a relatively small number of real training locations. However, when it comes

to a scale of a city, a database is still needed to store the huge amount of training

locations. Limited by the storage size, if we want to make positioning available

on the resource limited portable device whether indoor or outdoor, the only way

possible is via a centralized positioning server. The portable device simply report

its RSS to the central sever. After calculation, the server will response a possible

location to the client. This is the widely used server-client architecture. Under

this situation, the client must stay connected to the Internet to be able to talk to

the server. Since the calculation is done by the server, current location of the

client is not a secret to the server and even worse, might be eavesdropped during

transmission. Therefore, it might incur network connectivity and privacy concern

for portable device.

To solve the insufficient resource, network connectivity and privacy concern

problem, we propose a novel cache management scheme aimed at positioning on

portable device. For different pattern-matching positioning algorithms, we try to

extract feature data from its overall training data first. When portable device starts,

it just need to download partial feature data from the central server relative to its

current location. The current location here can be a rough one to keep privacy.

With these small amounts of data, a portable device can have its self positioning

ability.

To evaluate the proposed scheme in large-scale environments, we adopt a

close-to-realityradio irregularity model (RIM) [11] to simulate the decay of sig-

nal strengths. This model has been shown to be able to reflect the physical reality

of radio signals, such as the influence of hardware difference, remaining battery,

non-isotropic propagation, and dynamic signal fading effect. These features cause

the difficulty of indoor positioning. In our simulation study, we tune the param-
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eters of RIM to evaluate our cache management scheme under different condi-

tions of such close-to-reality environments. The results support that our cache

management scheme do provide less network connection need and availability of

positioning on resource limited portable device without losing privacy.

The rest of this paper is organized as follows. Section 2 reviews previous

works on pattern-matching localization. The proposed cache management scheme

are presented in Section 3. Performance studies are in Section 4. Finally, Section 6

draws a brief conclusion.
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Chapter 2

Problem Statement

A pattern-matching localization system [4] generally works as follows. We are

given a set ofbeacons B = {b1, b2, . . . , bn}, each capable of transmitting radio

signals periodically in a sensing fieldF ⊆ R
2, and a set of known training loca-

tionsL = {ℓ1, ℓ2, . . . , ℓm} in F . The system works in two phases. In thetraining

phase, at each training locationℓi, i = 1..m, we measure the signal strengths from

beacons for a period of time and create afeature vector υi = [υi,1, υi,2, . . . , υi,n]

for ℓi, whereυi,j ∈ R is the averaged RSS frombj , j = 1..n. The feature space

of υi is written asS ⊆ R
n. The set of feature vectorsV = {υ1, υ2, . . . , υm} is

stored at a location server. In thepositioning phase, an object can measure its RSS

vectors = [s1, s2, . . . , sn] and compares againstV to estimate its location inF .

Traditionally, the positioning task is conducted at the server side. This is due

to the facts that the feature vector setV is typically very large and portable de-

vices have limited resources. Not only the comparison task is costly, but also

transportingV to portable devices requires large bandwidths.

In this work, we are interested in moving the positioning task to the client

side. This implies thatV or part ofV needs to be stored at a portable device.

The positive effect is that the portable device can locate itself even if it loses

network connection and it does not need to keep on inquiring the location server.

Therefore, positioning can be done in a more teal-time manner. For example, if a
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person walks at a speed of 4km/hr and we require a positioning precision of 1m,

then the portable device needs to inquire the server approximately 66.6 times per

minute. When the network connection is unreliable, maintaining such a level of

precision is difficult.

Moving the positioning task to the client side may face two challenges. First,

the data(which we callcache) to be stored at the client should be kept as small

as possible. Second, a cache management strategy is needed when a user moves

out of the region for which his current local cache data is valid, in which case the

local cache needs to be updated. For the first issue, we will adopt thediscriminant

function (DF)-based localization methodology [12], which relies on an path loss

model technique and is believed to place less memory demand on the positioning

job. For the second, we will propose an efficient solution in Section 3.

For completeness, we review the DF-based methodology below. The basic

idea behind the DF-based localization is to construct acontinuous anddifferen-

tiable discriminant functionf : F 7→ R
+ from the givenL, V, ands. Then,

apply an optimization search algorithm to find the location inF that minimizesf .

Instead of evaluating the difference betweens and each vector inV, the search al-

gorithm is expected to quickly find a locationℓest ∈ F that is close to the optimal

locationℓ∗ = arg minℓ∈F f(ℓ). Specifically, it will exploit thegradient descent

search [13] to find the optimizer of the discriminant function. This scheme is an

iterative process which can quickly converge to the minimizer of the given dis-

criminant function. Two possible ways to define the discriminant function were

proposed, calledNewton-PL andNewton-INT . They are based on the path loss

model and the interpolation technique, respectively. Both of them have the conti-

nuity and the differentiability properties and satisfyf(ℓi) ≈ h(ℓi), i = 1..m. The

latter implies that the functionsf andh have similar decreasing trends.

Newton-PL designs its discriminant function by estimating the path loss of

the environment to simulate the channel condition. From path loss, it expects
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to measure the amount of signal strength degradation from each beacon at each

location inF . In the training phase, some path loss-related parameters will be

computed. In the positioning phase, a discriminant function will be constructed

according to the vectors and these parameters. From this function, the estimated

locationℓest will be computed by means of the optimization search algorithm. By

transforming training data to the path loss-related parameters, the data needed for

positioning can be greatly reduced.

Newton-INT adopts theinverse distance weighted interpolation (or so-called

Shepard interpolation [14]), a numerical data-fitting approach. Similar to Newton-

PL, Newton-INT also needs to infer the received power modelPr(ℓ, bj) for each

bj from the training data. The main idea is to use a weighted function to predict

the signal strength at each locationℓ ∈ F . We assume that training locations that

are closer toℓ will contribute more influence on the received signal strength at

ℓ. Although Newton-INT doesn’t have the data reduce ability like Newton-PL, it

can achieve better accuracy especially under complex environments. Therefore,

we will implements both algorithms in this paper.
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Chapter 3

The Proposed Cache Management
Scheme

By adopting DF-based localization methodology, we can reduce data size to an

extent, but the overall data are still not small enough to fit into a portable device

when the the scale ofF becomes the country scale. Downloading partial data

could be one possible solution, but it will yield other new questions like what to be

downloaded or what will happen when the downloaded data is invalid. Therefore,

our main objective is to build a cache management scheme that help portable

devices choose the data they need when they start the positioning system. Also,

we will help portable devices update their cache when they find they are going to

reach out of the region where their local cache is valid. There are also two phases

in our algorithm,off-line training andonline positioning phases. In the first phase,

we collect data as usual, but cluster all these data according to some constraints.

During the second phase, portable device will download partial data relative to its

current position for position usage. After several positioning, it may find the data

it owned is not enough for further positioning; this is when the update happens.
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3.1 The Off-line Training Phase

During the off-line training phase, we collect training data first as usual and then

generate related parametersP = {p1, p2, . . . , pn}. Then, we observed that in

the positioning phase not all parameters are needed to construct the discriminant

functionf . Both received power modelPr(ℓ, bj) are inverse proportional to the

distance from theℓ to the beacon or the training location. This means that beacons

or locations too far away from the location of the portable device would have very

few effect on its signal strength and we can just ignore it. For this reason, we will

split the sensing fieldF into several small areaT = {t1, t2, . . . , tn}; we refer to

each one of it as atile . The shape or the size of a tile can vary. For simplicity, we

will use the square shape and an uniform size in this paper. Fig. 3.1 is an example

of the partition process.

Since we split the fieldF into several tile, we need to have a connection be-

tween each tilet and the parametersp because what the portable device downloads

is the parameter not the tile. The tile is like the index key to help we find the pa-

rameters we need. For Newton-PL, if we want to construct a discriminant function

inside an area, we need the parameters from all of the beacons that can be heard

inside. Instead of doing the test at every place inside an area, the signal strength

vector of the training data give us a hint. Therefore, a beacon’s parameter will be

put in a tile if one of the training locations inside that tile has received the signal

Figure 3.1: An example of area partition. The original field was split into 4 smaller
area.
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from that beacon. This can be expressed bym:

m(ti) = {pj}, if ℓi is insideti andυi hasυi,j. (3.1)

whereti is the requesting tile. For Newton-INT, the received signal strength func-

tion is generated by interpolating signal strength of neighboring training data.

Therefore, a training location data will be put in a tile if it is inside that tile. This

can be expressed bym:

m(ti) = {pi}, if ℓi is insideti. (3.2)

3.2 The Online Localization Phase

During the online localization phase, the portable device first reports its rough

position and its available storage size to the server. The rough position can be

easily obtained by using GSM Cell-ID or any other primitive way like simply let-

ting user chose its area. Then, the server will try to recognize its belonging tile

and the surrounding tiles. The parameter of these tiles can be look as a basic data

unit for portable device. The portable device will be able to position himself as

long as he has the parameters of the belonging tile. But once he steps out the

positioning-able area, the positioning error will increase rapidly due to the lack

of parameters. In order to prevent this situation from happening, we let portable

device download the parameters of the surrounding tile . Once he reaches out the

central tile, he will need to download new data but still be positioning-able at the

same time. After basic data unit is ready, the server will or will not add up more

tile’s parameter according to portable device’s available storage size or user’s re-

quirement. Anyhow, the overall tiles will form a small field. The dimension of

this field will accompany with all previous parameters to be send to the portable

device. Purpose of transferring the dimension of this field will be explained later.

Fig. 3.2 shows an example of the initialization.
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L o c a t i o n S e r v e r
R S S I o r C e l l I D , …

P a r a m e t e r s … S e l e c t i o n
P o r t a b l e D e v i c e

Figure 3.2: An illustration of the positioning system initialization on the portable
device.

After downloads all these data, the portable device will be capable of posi-

tioning by itself. The only job it need to do is to plug-in current receiveds into

the received power modelPr(ℓ, bj), then constructs the discriminant functionf

and applies an optimization search algorithm to find the location. Sooner or later,

the portable device will detect that it is going to reach out the field. It will have

to report to the server and downloads new data again. We refer to this process

ascache update. This process can be further divided into two parts:deletion and

selection.

3.2.1 Deletion

Since the storage is limited, we can never add new data in whenever old data are

still there. Otherwise, we will face the problem of out of the memory. Every time

we want to do cache update, we need to delete old tile data first. Then the problem

comes: What are we going to delete first? The simplest answer is by deleting all

data and ask for whole new data we need for further positioning usage. But this

could just waste a lot of still usable data and increase network communication

cost. By observing that the field of user owned tiles usually overlaps with the last
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time’s field, we know we can keep the overlapping tiles and delete those not. The

dimension of the field can help portable device finds out what is needed and what

is not. After deleting those not needed, the portable device can simply report other

needed tiles to the server.

3.2.2 Selection

As mentioned previously, we let overall tiles downloaded composed of at least

one data unit. More tiles can be added according to any different requirements.

We refer to the adding process asselection . In the following, we introduce three

different selection methods including one basic method and two advanced meth-

ods.

Basic Selection

The basic selection do the same thing as the first time positioning. The selection

process starts from the belonging tile of the portable device and selects 8 sur-

rounding tiles too. Through out whole positioning process, the portable device

will always download a basic data unit only. This is the most fundamental selec-

tion method. But since the storage size limit may exceed the size of a basic data

unit and our goal is try to reduce network connection time and be as independent

as possible, we should try to use a smarter selection method.

Greedy Selection

As implied by the name, the greedy selection just simply tries to select as more

tile as it can. The selection process starts from the belonging tile of the portable

device. Choosing the surrounding tile one after another until the required size of

the parameters meets the limit of the storage size of the portable device. Fig. 3.3

is an example of greedy selection under different storage constraints. Assume the

storage requirement for each tile is 1 MB, the portable device can download at

11



most 9 tiles when its available storage is 9 MB. But when its available storage

size increases to 25 MB, it will download at most 25 tiles.

The advantage of greedy selection is it is suitable for most situation. But since

people tend to move in a fix direction for short period, this will waste most of the

data not in the current moving direction from the belonging tile. The connection

time may be reduced, but overall hit rate may decrease.

Selection using Mobility Pattern Prediction

If we can predict where user will be later, then we may be able to select tiles based

on this predicted position. There are many techniques about mobility pattern pre-

diction, we will adopt Vector-Based tracking [15] in this paper. In vector tracking,

the future positions of a moving object are given by a linear function of time,

i.e., by a start position and a velocity vector. The user’s current velocity could be

calculated by his current position and previous position.

Vx = (ℓix − ℓ(i−1)x)/(ti − t(i−1)) (3.3)

Vy = (ℓiy − ℓ(i−1)y)/(ti − t(i−1)) (3.4)

A velocity vector consists of speed and heading. The heading helps us select tiles

along which direction. The speed helps us determine how far do we need for

Figure 3.3: An illustration of the greedy selection under different storage con-
straints.
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selection. If the user moves fast, he will need more tiles in order to reduce the

need for update. On the contrary, fewer tiles would be needed for a user moves at

a slow pace.

Fig. 3.5 is an example of the selection using mobility pattern prediction. The

blue area is the portable device currently owned tiles and the red arrow shows the

moving direction of the portable device. The tiles inside the pink area are selected

according to the velocity of the portable device and will be downloaded later. The

shape of the field formed by all the tiles selected will no longer be like a square

due to the mechanism of its selection.

Vx

Vy

Figure 3.4: An illustration of the velocity calculation.
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Figure 3.5: An illustration of the selection using mobility pattern prediction.
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Chapter 4

Simulation Results

We consider a sensing field of size500 × 500 m2. There are 121 beacons placed

at (0+50× i, 0+50× j, 2), i = 0..10 andj = 0..10. To simulate a more realistic

environment, some walls are given. Training locations are placed at grid locations

where the grid size is a 5. We collect100 training data and then average them

at each training location. We modify the RIM [11] to model the decay of signal

strengths:

Pr(ℓ, bj) = P V SP
t − PLDOI(ℓ, bj) − PLOBS(ℓ, bj)

+N(0, σf ), (4.1)

whereP V SP
t is the transmit power, which may vary among different hardware,

PLDOI(ℓ, bj) is the path loss which can reflect non-isotropic and continuous prop-

erties,PLOBS(ℓ, bj) is the path loss which can simulate the signal attenuation

caused by the obstacles in the environment, andN(0, σf) is a zero-mean normal

random variable with a standard deviationσf to stand for dynamic noise.

In RIM, impacts of hardware difference and remaining battery on transmit

power is modeled by thevariance of sending power (VSP), e.g.,

P V SP
t = Pt × (1 + N(0,VSP)) , (4.2)

wherePt denotes the initial transmit power andN(0,VSP) is a zero-mean nor-

mal random variable with a standard deviationVSP. The parameterVSP controls
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the degree of variance of sending power among different beacons. Each beacon

randomly selects itsP V SP
t when the simulation starts.

In real-world experiments, the irregularity of signal fading is a common phe-

nomenon. However, most path loss models do not take this non-isotropic property

into consideration. To capture this effect, RIM imports thedegree of irregularity

(DOI) to control the amount of path loss in different directions, e.g.,

PLDOI(ℓ, bj) = PL(‖ℓ, bj‖) × Ki, (4.3)

wherePL(‖ℓ, bj‖) is the optimal obstacle-free path loss formulation

PL(d) = PL(d0) + 10φ log(
d

d0
), (4.4)

and the coefficientKi is to model the level of irregularity at degreei (i = 0..359)

such that

Ki =

{

1 if i = 0
Ki−1 ± W (0, σd, γ) × DOI if i = 1..359

(4.5)

where|K0 − K359| ≤ DOI andW (0, σd, γ) is a zero-mean Weibull random vari-

able. The parameterDOI controls the allowable difference of two successional

degrees1. Specifically, a larger|Ki − 1| means that the amount of path loss has

greater deviation from the optimal path loss formulation at thei-th degree. The

iterative definition ofKi lets the variation of irregularity be continuous.

In an indoor environment, complicate partition is one of the major factors

which influence the performance of positioning algorithms. When signals pene-

trate through obstacles, such as walls, they should have dramatic signal strength

attenuation. In our simulations, the modified RIM model takes this property into

consideration. Specifically, there are some walls defined in our simulation envi-

ronment. The path lossPLOBS(ℓ, bj) stands for the amount of signal strengths

1The irregularity of those non-integer degrees can be inferred by interpolating the values of
two adjacent coefficientsKi andKi+1 with integer degrees.
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absorbed by the obstacles between the transmitterbj and the receiver atℓ. We

adopt the concept ofwall attenuation factor (WAF) proposed in [4]:

PLOBS(ℓ, bj) = max(Nobs, C) × WAF, (4.6)

whereNobs is the number of obstacles which exist in the middle of the line-of-sight

path of signal transmission frombj to ℓ, C is the maximum number of obstacles

which can influencePLOBS(ℓ, bj), andWAF is a system parameter which denotes

the amount of signal attenuation caused by one obstacle. Note that different ma-

terials have differentWAF values.

In order to simulate a real moving pattern, an object moving by a waypoint

model is simulated. Fig. 4.1 shows an example of how we walk. Blue lines

represent the walls and red lines are the simulated path. It will switch between

the moving and pausing states. In the moving state, the object will uniformly

select a destination in the sensing field and moves to it at the speed1 m/sec. After

reaching the destination, the object will switch to the pausing state and stay at this

location for 3 sec. The tracked object measures the signal strengths of all beacons

every1 sec. The total simulation time for the whole trip is2, 194 sec. The default

simulation parameters are set toPt = 15 dBm, d0 = 1 m, PL(d0) = 37.3 dBm,

φ = 4, σf = 2, VSP = 0.2, DOI = 0.005, WAF = 3.1, C = 4, σd = 0.1, γ = 1,

∆ℓmin = 1 m, and the grid size is 5 m.

The performance study includes the comparisons of Newton-PL, Newton-INT,

and the NNSS positioning algorithm [4] with two advanced selection algorithms,

greedy and prediction. This makes total six combinations. Three performance

metrics are considered: positioning error , update count, and average data size per

update.

Fig. 4.2 evaluates three positioning algorithms under different levels of noise.

Intuitively, no matter which positioning algorithm is adopted, the positioning er-

ror should be increased in a noisier environment. Fig. 4.2 illustrates that three

algorithms have similar increasing trend. Different selection algorithms do not
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Figure 4.1: Simulation environment

affect the positioning error. It shows that a basic data unit is good enough for

positioning.

Fig. 4.3 compares update count for three positioning algorithms with two se-

lection algorithms. Overall, selection using prediction is better than greedy selec-

tion since it tries to select more useful data. Therefore, less update is needed. But

when noise level becomes larger, the update count using prediction will become

greater too. On the other hand, the update count using greedy selection stays the

same. This can be explained by more false prediction incurred from higher po-

sitioning error. But greedy selection selects tile omnidirectionally and becomes

resistible to higher positioning error.

In Fig. 4.4, the average size per update of the data that portable device has

to download is shown. By transferring raw training data into simple coefficients

of beacon, the Newton-PL algorithm only needs very few memory space com-
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Figure 4.2: Comparisons of positioning error for NNSS, Newton-PL, and Newton-
INT under different noise levels with different selection algorithms.
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Figure 4.3: Comparisons of update count for NNSS, Newton-PL, and Newton-
INT under different noise levels with different selection algorithms.
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pared to other two algorithms. For Newton-INT, the additional gradient coefficient

makes it need more memory space than NNSS.

In summary, after evaluating the algorithms NNSS, Newton-PL, and Newton-

INT under different noise level, we have some suggestions. First of all, if device

available storage is the major concern, Newton-PL is an acceptable choice because

it takes very few memory space and also provides rational positioning accuracy.

However, if the portable device is a high-end device and needs more accurate

localization service in a well-trained and complex environment, Newton-INT can

satisfy this requirement.
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Chapter 5

Experimental Results

The proposed cache management scheme is implemented and integrated to adis-

criminant function (DF)-based localization system. In this section, we will de-

scribe the experimental settings and show the experimental results.

5.1 Experimental Settings

We conducted the experiments on the fifth floor of our department building, where

the Department of Computer Science and Engineering, Chiao Tung University, is

located. The building is deployed with an IEEE 802.11b

g wireless network in the 2.4 GHz frequency bandwidth. The layout of the floor

is shown in Fig. 5.1. This area measures60m × 30m.

We developed a simple Visual C#-based application to assist us in the process

of gathering fingerprints. To record a fingerprint, we first identify the current

position by clicking on a map of the building. The application then records the

signal strengths reported by the 802.11 card using Intel Mobile Platform SDK [16]

provided by Intel. Fig. 5.2 is a screen shot of the Visual C#-based application.

Each points are located 2 to 3 meters apart. We collected 50 measurements per

location. For evaluation, we wait for an hour and do the collection process again.

We only collect 15 locations and 10 measurements per location to compare with

the first training data set. The collecting results for both trail are shown in Fig. 5.2
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Figure 5.1: The layout of the fifth floor of the Department of Computer Science
and Engineering, Chiao Tung University.

and Fig. 5.3.

5.2 Experimental Results

We set the tile size to10m × 10m and compare both Newton-PL and Newton-

INT with or without basic cache management scheme. Table 5.1 shows the result.

As we can see, Newton-INT performs better than Newton-PL basically. With

the cache management scheme, error distance for Newton-INT was decreased.

The reason for this is because the discriminant function will not be influenced by

training data too far away. But for Newton-PL, the coefficients of the beacons

downloaded were less related to the position of the portable device, hence shows

less differences.

Newton-INT Newton-PL Cached Newton-INT Cached Newton-PL

Error Distance(m) 5.46 6.10 4.83 6.42

Table 5.1: Comparison of error distance under different algorithms.
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Figure 5.2: The collecting result of the training data set.

Figure 5.3: The collecting result of the comparing data set.
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Chapter 6

Conclusions

In this paper, we have presented a novel cache management scheme, which can

help client-based pattern-matching positioning system. It has large potential to be

applied in portable device. By pushing on-line search part from the server side to

the client side, the portable devices would be able to position itself even when it

is not connected to the network. During the on-line search process, much storage

can be saved because the large volume of training data has been transformed to

a few scalars of the discriminant function at the off-line stage. This relieves the

problem of limited storage resource on the portable device. With two advanced

selection algorithms, overall update count is reduced by 99%, from 2196 times to

30 times. We believe these features can greatly support real-time LBSs in large-

scale environments [17].
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