

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

基 於 行 動 端 點 位 置 之 動 態 查 詢 分 配

Dynamic Query Assignment

based on the Location of Mobile Hosts

研 究 生：游柏瑞

指導教授：張明峰 教授

中 華 民 國 九 十 八 年 八 月

基 於 行 動 端 點 位 置 之 動 態 查 詢 分 配

Dynamic Query Assignment based on the Location of Mobile Host

研 究 生：游柏瑞 Student：Bo-Rei Yu

指導教授：張明峰 Advisor：Ming-Feng Chan

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

August 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年八月

i

基 於 行 動 端 點 位 置 之 動 態 查 詢 分 配

學生：游柏瑞 指導教授：張明峰教授

國立交通大學網路工程研究所 碩士班

摘要

隨著無線網路與行動通信的快速發展，與手持裝置與行動裝置的廣泛使用，

以及全球衛星定位系統的普及，位置服務能基於使用者的位置提供在地化的資

訊，使得現代人可以享受的智慧的生活型態。位置查詢的型態也分為很多種類，

連續的位置查詢會持續一段時間，期間的結果也須保持正確，被查詢的物體也可

能會移動。範圍監測查詢是一個連續的查詢，如果指定區域內的狀態有改變，須

回報伺服器來更新結果。目前位置服務大多是採用伺服器與用戶端的架構，當使

用者數目或是查詢要求增加，系統的負擔與可調適性將會是個挑戰。分散式的計

算能讓行動端點分擔伺服器的計算。在本研究中，主要的範圍分為兩個，一個是

查詢結果的更新問題，另一個是分配範圍監測查詢給行動端點之問題。本系統之

設計為分配一個矩形區域給行動端點，包含數個範圍監測查詢，如果行動端點其

在此區域內且不影響到範圍監測查詢，則不須向伺服器回報其位置更新以及查詢

結果之改變。本系統能基於行動端點之位置和能力，分配範圍監測查詢，使得查

詢結果更新之次數減少，整個系統的負擔將會減輕，可調適性增加，系統便可提

供更大容量與更多樣的服務。

ii

Dynamic Query Assignment based on the Location of Mobile Host

Student: Bo-Rei Yu Advisor: Prof. Ming-Feng Chang

Institute of Network Engineering

National Chiao Tung University

Abstract

LBS services are capable of providing information based on the user’s location.

There are many varieties of LBS Query. Continuously queries continuously update its

result until the users terminate the query requests. Range monitoring queries are

typical examples of continuous queries. If there is any change in the region under

monitored, LBS must update the query result immediately. LBSs are usually

implemented in client-server architecture. When the user population is huge and many

requests are sent to the server. The scalability of the LBS server becomes a problem.

Distributed client-server architecture enable clients to share their computing ability

with the server. One possible distributed solution is that the LBS server assigned

queries near each mobile client so that the clients can check if the queries match.

There are two problems in this approach. One problem is query result update. The

other problem is query assignment. In our design, we compute a rectangle area for

every mobile host. The mobile hosts aware the range monitoring queries in the region.

If the mobile host is inside the region and does not affect any query in the system, it

does not need to report to the server. Our system dynamically assigns range

monitoring queries to the mobile hosts based on their capability. The query update

messages and the server load in the system are reduced. The system scalability is also

increased.

iii

誌謝

首先感謝最敬重的導師 張明峰教授。學生就讀碩士班的期間，教授有耐心

的指導、訓練獨立思考、指引研究方法方向，及細心發掘問題。學校與張教授也

提供良好完善的研究與實驗環境、器材，讓學生能順利完成論文，感謝老師兩年

來的教誨。

在這兩年碩士班就讀期間，感謝實驗室的學長，冠璋、忠育、坤揚和君飛，

同學玄亞、威凱，在研究與修課過程互相勉勵與生活上多采多姿。

最後將論文獻給我最親愛的家人、晏伶。感謝您們在我求學期間全心全意的支持

與鼓勵，讓我得以順利的完成學業。

游柏瑞 謹識於

國立交通大學網路工程研究所碩士班

中華民國九十八年八月

iv

 List of Figures
Figure 2-1 An example of Safe Region .. 7

Figure 2-2 An example of Resident Domain. .. 8

Figure 2-3 An example of BP-Tree. ... 10

Figure 2-4 Resident Domain for mobile host A. .. 11

Figure 2-5 BP-Tree for the above domain. .. 12

Figure 2-6 Resident Domain for mobile host A’. ... 12

Figure 3-1 System Overview ... 14

Figure 3-2 Queries on the map. (the map is from maps.google .com) 15

Figure 3-3 Queries that overlaps the domain. .. 16

Figure 3-4 Domain node and data node in modified BP-Tree. 16

Figure 3-5 The edges that are stored in the data node of Domain Di. 17

Figure 3-6 The rectangle area of mobile host A. .. 19

Figure 3-7 The edge lists and the rectangle area of mobile host A. 22

Figure 4-1 The mobile host A and its resident domain. ... 26

Figure 4-2 The mobile host A and its rectangle area. ... 26

Figure 4-3 The mobile host A with capability 12 and its resident domain. 27

Figure 4-4 The BP-Tree of Figure 4-2. .. 28

Figure 4-5 The size in subdomains. ... 28

Figure 4-6 The size in BP-Tree. ... 29

Figure 4-7 Random movement. ... 30

Figure 4-8 Linear movement. .. 30

Figure 4-9 Simulation 1(a) (Random movement). ... 32

Figure 4-10 Simulation 1(b) (Linear movement). .. 32

Figure 4-11 Simulation 2(a) (Random movement) .. 33

v

Figure 4-12 Simulation 2(b) (Linear movement) ... 34

Figure 4-13 Simulation 3(a) (Random movement) .. 35

Figure 4-14 Simulation 3(b) (Linear movement) ... 35

List of Tables
Table 3-1 The Query Assignment Procedure ... 23

Table 4-1 The position and resident domain changes in Figure 4-1. 26

Table 4-2 The comparison of algorithms ... 29

Table 4-3 The parameters of simulation 1. .. 31

Table 4-4 The parameters of simulation 1. .. 33

vi

Table of Contents
摘要 .. i

Abstract .. ii

誌謝 .. iii

Chapter 1 Introduction ... 1

1.1 Motivation .. 1

1.2 Research Questions .. 3

1.3 Related work .. 4

1.4 Overview .. 5

Chapter 2 Related Work ... 6

2.1 The Query Result Update Problem .. 6

2.2 The method to deal with Query Result Update .. 7

2.3 Query Assignment .. 9

2.4 The Method of Query Assignment ... 9

Chapter 3 System Design and Implementation .. 14

3.1 System Overview ... 14

3.2 Query Insertion .. 15

3.3 Query Result Update .. 18

3.4 Query Assignment .. 19

3.5 Summary .. 24

Chapter 4 Analysis and Evaluation .. 25

4.1 Query Result Update Algorithm .. 25

4.2 Query Assignment Algorithm .. 27

4.3 Simulation .. 30

Chapter 5 Conclusions and Future work .. 36

vii

References .. 37

1

Chapter 1 Introduction

1.1 Motivation

The vast development of wireless network and mobile communication

technologies, the widely use of handheld and laptop devices, and the popularity of

Global Positioning System (GPS) make Location-Based Services (LBS) attractive to a

lot of people. In recent years, many powerful mobile phones are available to the

market. The tiny devices have 3G, Wireless LAN, and Bluetooth connectivities, and

many are equipped with two cameras and GPS receiver. User can not only use them to

take pictures but also can use LBS to enjoy the intelligent lifestyle.

LBS services are capable of providing information based on the user’s location

[1-3]. The application of LBS services is ubiquitous in our life. Every morning, we

can get local weather information based on our location. If you have a meeting with

somebody, you can just follow the directions of your phone and know where the

person is. When driving, users can get turn by turn navigation to places. The traffic

information can be used to help us not to get stuck on traffic, which saves time and be

more environmental friendly. On the way to destination, a user can get the

information of nearby gas stations and the lowest gas price on the route. Before

arrival, you can use LBS to help you find a parking place. If you want to use public

transportation, you also can get the schedule and its real-time status. After work, you

see e-coupons on the phone sent by the restaurant in the city you lives. You can

choose whatever you what and make a reservation. On the way home, you can see

where your children are on the phone and pick them up. When got home, you can feel

free to relax because the air conditioner has been ready. All this can be done from a

2

handheld device.

LBS Queries are submitted by users of LBS Services. The server receives a

query request, processes it, and then sends result back to the user. There are many

varieties of LBS Query [4]. The type of query can be range query [5],

nearest-neighbor query [6], and many variants. The range query in LBS is that given a

region area, we can retrieve the interested information in the area. The

nearest-neighbor query is to find the closet point of interest in a space. The duration of

the query can be snapshot or continuously. The snapshot query is one-shot. The result

is static. The continuously query continuously update its result until the user terminate

the query request. The time of the query can be past, present, and future. The query

and object in the query can be stationary or moving. For example, the user at home

sent a query request for the nearest hospital. The type of this query is nearest-neighbor

query. The duration is snapshot. The time is present. The query and objects in this

case are stationary. The police officer sent a query request for continuous report the

number of cars on the freeway. The type of this query is range query. The duration is

continuous. The time is present and future. The query is stationary and the objects in

this case are moving. The user driving on the highway may be interested in what are

the nearest gas stations for the next hour. The type of this query is nearest-neighbor

query. The duration is continuous [7]. The time is future. The query is moving and the

objects in this case are stationary. The other user at home may be interested in what is

the closest distance between him and his friends yesterday. The type of this query is

closest point query [8]. The duration is snapshot. The time is past. The query and the

objects are moving.

LBSs are usually implemented in client-server architecture [9]. The server

processes the requests from the client side. The client side is usually mobile hosts.

3

Mobile hosts usually have limited computation ability, battery capacity and wireless

bandwidth. To ensure the correctness of query results, the client side usually

periodically reports its position.

When the user population is huge and many requests are sent to the server. The

server will be a bottleneck. The scalability of the LBS will also become a problem.

There are also other architectures for implementation of LBS. The idea of distributed

client-server architecture is to let clients share their computing ability. Divide the

work into server site processing and client site processing. The server managers and

maintains queries, and act as a mediate of requests and clients. The clients monitor the

nearby queries and send the updates of the query result. Another approach is

decentralized peer to peer architecture [10-11] . This type of LBS system does not

have central control or knowledge of all nodes.

 In this thesis, the architectures we used to implement LBS Services is assumed to

be distributed client-server architecture. The type of query is range query. The

duration is continuous. The time is present. The query is stationary and the objects are

moving. This query is also known as range monitoring query. The definition is: given

a set of rectangle regions, we want to know the mobile hosts inside them. And we can

get real-time update when the mobile hosts move in and out of these regions.

1.2 Research Questions

In detail, the primary research question that we address is as follows. The result

of range monitoring query is dynamic. Mobile hosts may frequently move in and out

of query region. The result may only valid for a very short time. Continuous update

the results or periodically updates make heavy and unbalanced load on the server. The

mobile hosts also need to communicate to the server through Wireless LAN or Mobile

4

communication interface, which is battery consuming. There are also huge messages

on the network. Decreasing the location update requests not only can lessen the server

load but also save the battery power of mobile hosts. Although the range monitoring

query process was introduced in many papers [12-16], we present a more effective

algorithm based on the location of mobile hosts.

 In distributed client-server architecture of LBS, the division of work into

server side is processing and client side processing is still a problem to resolve. Using

the client recourse better can make the LBS more scalable. The distributed

client-server architecture of LBS was used in previous work. However, we present an

algorithm based on the capability of the mobile host.

Another related question is that mobile hosts have different capability. How to

allocate suitable work that meets the capability of every mobile host is important. We

proposed the algorithm that tries to fit every mobile host’s capability.

1.3 Related work

To deal with the problem of huge location update in range monitoring query,

Prabhakar et al. proposed the concept of Safe Region[17]. A safe region is defined to

be a circular or a rectangle region that contains mobile host’s location but not overlap

with any query boundary. If mobile host is inside the safe region, it does not affect

any query in the system. If it moves out of the safe region, it instructs the server and

requests a new safe region. Because the safe region cannot overlap with query

boundary, the size of safe region is usually small when the query density is high.

Unfortunately, computing a rectangular safe region takes from O(n) to O(nlog3n),

where n is the number of queries. When adding new queries to the system, the server

may also need to compute all safe regions for the mobile hosts because the new query

5

may affect existing safe regions.

Ying et al. proposed a scalable and adaptive technique, Monitoring Query

Management (MQM)[13], for real-time processing of range monitoring queries. The

resident domain concept they proposed is that a server assigns each mobile host a

resident domain (region) that contains a number of queries based on mobile host’s

current location and ability. The server also notifies the mobile host the queries that

overlap with that domain. When a mobile host detects that it has cross over some

query boundary, it contacts the server to updates the query results. When a mobile

host leaves the resident domain, it reports to the server to get a new resident domain.

They allow the mobile host to monitor its nearby queries and report the result to the

server.

To leverage the computing capability of mobile host, MQM proposed a

BP-Tree (Binary Partitioning Tree) spatial access method in the server for efficient

query management. BP-Tree can be used to find the resident domain with a number of

queries that meets the capability of the mobile host. The detail design of MQM will be

described in Chapter 2.

1.4 Overview

This dissertation is organized as follows. Chapter 2 presents related work.

Chapter 3 presents the algorithms and system architecture. Chapter 4 discusses the

results in the system design. Finally, Chapter 5 concludes this thesis and describes the

future work.

6

Chapter 2 Related Work

In this research, we focus on the query result update problem and query

assignment problem. In the following sections, we define the problems and describe

the related research work.

2.1 The Query Result Update Problem

Unlike conventional range queries, a range-monitoring query is a continuous

query. The query stays active for a period of time until it is terminated by the user.

The simplest way to keep the result correct is that whenever mobile host moves,

report its position to the server. The server then processes the request and updates the

query result. There are many disadvantages in this approach: The constant or

periodically location update from mobile hosts can quickly exhaust the mobile

devices’ battery. For the central server, the requests from mobile host are huge. The

server will be busy process these messages only. The scalability is poor.

In Safe Region, the safe region is defined to be either a circular or a rectangular

region that contains the mobile host’s location and does not overlap with any query

boundary. The mobile host does not need to report its position when it is within the

safe region.

In MQM, a scalable and adaptive technique for real-time processing of range

monitoring queries, which allows mobile hosts to monitor their nearby queries. Every

time when a mobile host moves, it checks if the queries are affected by it. Then send

update messages to the server to ensure real-time and accurate query results. They

7

proposed a resident domain concept to decrease the number location update; a spatial

access method BP-Tree for efficient query management at the server side.

2.2 The method to deal with Query Result Update

In safe region, consider a mobile host that is far way from any query. The

mobile hosts need to travel a large distance before move in one of the queries. The

short distance between a mobile host and a query boundary is called Safe Distance.

The mobile host needs to move a distance of at least Safe Distance before its cross

over any query boundary. They also define a SafeRect, a safe maximal rectangle

around the mobile host’s current location. Figure 2-1 shows mobile host A and its safe

region, the safe region does not overlap any query rectangle. If mobile host A does not

move out its safe region, it does not report to the server. If mobile host A cross over its

safe region boundary, it reports to the server. However, mobile host exits its safe

region does not guarantee that the query is affected. When the queries in the domain

are dense, the safe region will be very small. In addition, computing a rectangular safe

region takes from O(n) to O(nlog3n), where n is the number of queries.

Figure 2-1 An example of Safe Region

In MQM, they assign each mobile host a resident domain, based on its current

8

location. The resident domain also includes the queries that overlap with the domain.

When the mobile host detects that it has crossed over a query boundary, the mobile

host will communicate the server to update the affected query results. When the

mobile host moves out of its resident domain, it also needs to report to the server.

Then the server will compute a new resident domain for the mobile host.

There are some assumptions in the MQM. They assume that each query is

represented by a rectangular region. Each mobile host has a limited resource. For

example, the CPU speed, memory capacity, and battery power are all limited. Mobile

host can communicate to the server through wireless or mobile networks. Figure 2-2

shows mobile host A and its resident domain. If mobile host A does not exit its

resident domain, it does not report to the server. If mobile host A cross over queries in

its resident domain, it will report to the server to update the query result. When

mobile host A exits its resident domain, the server will compute a new resident

domain that fit A’s capability.

Figure 2-2 An example of Resident Domain.

9

2.3 Query Assignment

 The computing capability of mobile host is measured by the maximum number

of queries it can load and process at a time. For example, if a mobile host’s capability

is n queries, then the resident domain for it should contain as many queries but not

exceed its capability. The problem of search for a resident domain is trying to find n

query rectangles that are near an object’s current location. When a query overlaps

with a subdomain, the overlapping area is called monitoring region inside the

subdomain. A query may create one or more monitoring region if it spans over

multiple subdomains. A subdomain may have multiple queries, and we can use one or

more subdomains as a mobile host’s resident domain if the number of queries in side

does not exceed the mobile host’s capability. Subdomains and monitoring regions are

maintained in a BP-Tree.

2.4 The Method of Query Assignment

In MQM, the architecture for implementation of LBS Services is distributed

client-server architecture. The BP-Tree spatial structure is used for query and

subdomain management. When a new query q is submitted, the server searches the

BP-Tree to find the subdomain it overlaps. The server then inserts the monitoring

region to the BP-Tree. When the number of monitoring regions in a subdomain

exceeds the split threshold (the minimum number of query that the least capable

mobile host can load), the subdomain is partitioned into two equal size subdomains.

When a mobile host enters or exit a query boundary (monitoring region), it sends a

location update message to the server, including its current position. Server updates

the query and notifies the mobile host in that query.

10

A BP-Tree consists of two types of nodes: domain node and date node. All

non-leaf nodes are domain node. Each domain node is the decomposition of its parent

node. Figure 2-3 shows the decomposition of D1 is D11 and D12. Each domain node

has a variable, size, to record the total number of monitoring regions under this

domain. A data node is a leaf node, consists an array of rectangles that stores queries

(monitoring regions) under its parents. There is also a variable, size, to record the total

number of monitoring regions under this node.

Figure 2-3 An example of BP-Tree.

To let all mobile hosts can load at least one subdomain, the size of data nodes is

limited by the minimum processing capability mobile hosts. The parameter is the split

threshold for data nodes.

The BP-Tree efficiently supports the resident domain search. Given a position p

and capability n queries of the mobile host, the server searches the BP-Tree from the

root. If the number of monitoring regions inside the subdomain fit the mobile host’s

capability (smaller or equal to n) and the mobile host is also inside, the subdomain can

be the resident domain of the mobile host. Otherwise, the server descends the tree to

check the domain that contains the mobile host. In the worst case, we may take the

11

subdomain that has data node. When a resident domain is selected, the server then

retrieves all queries inside to notify the mobile host.

In Figure 2-4, the BP-Tree’s split threshold is set to 1 for clearly show on the

figure. Each subdomain has only one monitoring region (query). The mobile host A’s

capability is 5. Figure 2-5 shows the BP-Tree of this domain.

To search a resident domain for mobile host A in Figure 2-4, the server first

process the request of resident domain from mobile host A. When mobile host is

initializing or exits a resident domain, it will request the server to assign a resident

domain. The mobile host’s capability is 5. Server searches from root of BP-Tree, find

subdomain d2 is suitable for the mobile host. Finally, server assigns d2 as the mobile

host’s resident domain. The queries in the resident domain is also fit A’s capability.

Figure 2-4 Resident Domain for mobile host A.

When mobile host A moves out of its current resident domain, as show in Figure

2-6. The mobile host requests the server to assign new resident domain again. The

server assign d1 as A’s new resident domain.

12

Figure 2-5 BP-Tree for the above domain.

Figure 2-6 Resident Domain for mobile host A’.

13

However, A is not in the center of its resident domain, A may easily moves out of

its current resident domain. And most of time the mobile host has requested for new

resident domain, it just moved out of the last resident domain. The position of mobile

host is near the boundary of multiple resident domains. In addition, the position

reported by mobile host from GPS has some error, the mobile host may detect that it

is cross over its resident domain boundary. This make mobile host request for a new

resident domain again and again.

There is still one problem in MQM. The mobile host A’s capability is 5 queries,

but the resident domain assign to it contains 4 queries. The server searches resident

domain from the root. In this case, the number of queries in root domain exceeds the

mobile host’s capability, and then the server descends the tree to check the subdomain

d2 that contains the mobile host A. Server only allocate one or more whole unit

domain to mobile host. This makes the mobile host’s capability would not always be

satisfied.

The distributed client-server architecture, computing ability requirement, and

memory storage requirement will also be required in our system. We then present the

algorithm based on the location and capability of mobile host. We will allocate a

rectangle area for the mobile host, which the mobile host is in the center of rectangle

area. We will extend the safe region rectangle to overlap queries, not only load a

whole unit domain, so that we can try to meet the capability of the mobile host. In this

study, we may decrease the number query result update by using rectangle area, and

share the server load with the mobile hosts by query assignment.

14

Chapter 3 System Design and Implementation

3.1 System Overview

In this research, we aim to create a real-time range-monitoring query

management system. The system accepts range-monitoring query from a user, and

real-time update the query result. The design of our system is based on the following

assumptions: (1) The mobile hosts have computing abilities to monitor nearby queries.

(2) Mobile hosts are able to locate their positions and have synchronized clocks, e.g.

using GPS. (3) The mobile hosts can set up connections to the server through mobile

or WLAN network. Figure 3-1 shows the system architecture. In this section, we will

describe the solutions of the query insertion, query result update and query

assignment problems.

Figure 3-1 System Overview

15

3.2 Query Insertion

3.2.1 Overview

In this section, we present our method of query insertion. In our system, the

domain area is a geographical area, as a city or a district. We presented the domain by

a rectangle. The query is also represented by a rectangle that overlaps on the domain

area. Figure 3-2 shows five queries on the map, we can think the domain as a city map

and the queries are small areas that the users interest in on the map. We index the

domain and queries on the tree data structure to support domain searching and query

assignment.

Figure 3-2 Queries on the map. (the map is from maps.google .com)

3.2.2 The method of Query Insertion

We use and modify the BP-Tree and algorithms provided by MQM. Figure 3-3

shows 6 queries overlap a small area on the domain. The query rectangle edges that

cross the borders of domain rectangle, and the edges of the query that inside the

domain will be stored in the data node. Figure 3-4 shows the domain node and data

node structure. The domain node Di has stores its domain rectangle Di.domain which

contains the lower left and upper right coordinate of the rectangle, a pointer to its

Domain

Query 5

Query 2

Query 3

Query 1 Query 4

16

parent domain Di.parent, a pointer to its child domain or data node Di.child and

Di.size records the total number of query rectangles stored descending from Di. The

data node di stores the total number of query rectangles in Di.size, and it contains two

ordered lists that stores the edges of query rectangles. di.X_list stores ordered edge list

of query rectangle ascendantly by X-coordinate, and di.Y_list stores ordered edge list

of query rectangle ascendantly by Y-coordinate. Figure 3-5 shows the value of

di.X_list and di.Y_list in data node of domain Di.

Figure 3-3 Queries that overlaps the domain.

Figure 3-4 Domain node and data node in modified BP-Tree.

17

Figure 3-5 The edges that are stored in the data node of Domain Di.

The query rectangles that overlap the domain rectangles have the property

below:

The query rectangle edges that satisfy these inequalities will be stored on the

X_list or Y_list of date node. To find the query rectangle edges, we may refer to the

rectangle intersection problem[18]. In our system, we check the query rectangle edges

and store the edges that satisfy these inequalities. The AddQuery and InserList

algorithms are below.

The four edges of the domain rectangle Di : DiLeft, DiRight, DiBottom, DiTop

The four edges of the query rectangle Qi : QiLeft, QiRight, QiBottom, QiTop

For all edges that are overlap the domain rectangles,

DiLeft < QiLeft (1)

DiRight > QiRight (2)

DiBottom < QiBottom (3)

DiTop > QiTop (4)

AddQuery(Di, Qj)
{
//Descend BP-tree to find the data nodes to store query.

 If Di is a domain node, then for each entry (Di, P), call
AddQuery(Di.P, Qj) if Di overlaps with Qj.

 If Di has a data node, then:
 InsertList(Di, Qj);

 If Di is full,
 SplitDataNode(Di); //Provided by MQM
}

18

3.3 Query Result Update

3.3.1 Overview

In this section, we present our method of query result update strategy which is a

solution of the location update problem. In this distributed architecture, server

allocates some queries to mobile host to relieve its load. We leverage the mobile

host’s tiny computing power to share the load with the central server. We also observe

that the mobile host’s position in resident domain will affect the number of location

update.

3.3.2 The method of computing the Rectangle Area

We use and modify the resident domain concept and algorithms provided by

MQM. In our system, the Rectangle Area is a rectangle that around the mobile host. It

also includes n queries that can fit the mobile host’s capability. When the mobile host

is just registered to our system or leaves its current rectangle area, it sends a request

for rectangle area. The information contains its current location and current time by

GPS on the mobile host. And its capability is also reported to the server. The server

then computes the rectangle area based on the current location and capability of the

InsertList(Di, Qj)
 {

// Insert Qj’s point to Di’s data node(di) if it overlaps Di
 If (QjLeft > DiLeft)

Insert (QjLeft, Di.X_list);
 If (QjRight < DiRight)

Insert (QjRight, Di.X_list);
 If (QjTop < DiTop)

Insert (QjTop, Di.Y_list);
 If (QjBottom > DiBottom)

Insert (QjBottom, Di.Y_list);
}

19

mobile host. The rectangle area is extended from the current position of mobile host

to include n queries.

After receiving its rectangle area and queries, the mobile host checks whether it

is still in the rectangle area when it moves. It also checks if it is cross over any query

boundary. If it is in the rectangle area and not crosses over query boundary, it does not

need to report to the server for query results update. Thus, the location update is

avoided. The server load and communication costs are saved. When the mobile host

detects that it has cross over some query boundary, it contacts the server to updates

the query results. Or when a mobile host leaves it rectangle area, it sends a request to

the server to get the new rectangle area and queries. Figure 3-6 shows the concept of

rectangle area, the mobile host in the figure is A with capability 2.

Figure 3-6 The rectangle area of mobile host A.

3.4 Query Assignment

3.4.1 Overview

The domain represents a rectangle area in geography. Query is also a rectangle

20

that overlaps the domain area. Their relationship is managed in the BP-Tree. The

server searches the BP-Tree down to the data node to find the mobile host’s position

in the query rectangle edges lists. Then it computes rectangle area for mobile hosts by

extending its border to include n queries to fit mobile host’s capability. The detail

design and algorithms are introduced below.

3.4.2 The method of Query Assignment

The AssignQuery algorithm input Domain Root Di and mobile host Oi to assign

rectangle area and query for the mobile host. Initially, it calls FindDomain to find the

leaf domain where the mobile host in it. LoadList loads the data node inside the leaf

domain to retrieve the edge lists in it, and set two pointers point to the border of

domain rectangle. Then it calls ComputeRECT to compute the rectangle area.

In ComputeRECT, it extends its rectangle area to enclose n queries to fit the

mobile host’s capability. It starts from the mobile host’s position. For each query

rectangle it reaches, we compute the minimum step from mobile host’s X-coordinate

to reach the boarder of QiLeft or QiRight. And the minimum step from mobile host’s

Y-coordinate to reach the boarder of QiTop or QiBottom, respectively. Then we choose the

maximum of these two values as the step to extend to reach the query rectangle, stores

the query id and this value to the priority queue. Then it checks that the steps of

AssignQuery(Di, Oj)
{

 FindDomain(Di, Oj); //Find the leaf-domain Di where Oj is in.
 LoadList(Di); //Load the Di.X_list and Di.Y_list.
 FindList(Di, Oj); //Find Oj’s position on the Query List.

 Di.pX points to the first equivalent position or points to the first
element that is higher than Oj on the Di.X_list.

 Di.pY points to the first equivalent position or points to the first
element that is higher than Oj on the Di.Y_list.

 RECT = ComputeRECT(Di, Oj)
 Return RECT; //Return the Rectangle area and Queries for MH.

}

21

rectangle area extended are larger than the minimum step in the priority queue or not.

If it is true, it represents that the rectangle area has cross the query boundary. The

extend process is to adjust the domain edge border pointer that point to edge lists of

query rectangle in data node. We extend the rectangle from the position of mobile host.

If it reaches the border of current domain, it should load the edge lists in other data

node. LoadDomain algorithm checks the subdomain covered by the rectangle area,

calls MergeList to merge these ordered edge lists. If ComputeRECT has added n

queries, it returns the queries and current position of extended rectangle as the mobile

host’s rectangle area. Then the AssignQuery procedure completed.

LoadDomain(D, Di)
{
 Ds=Intersect(D, Rect(Di.pXL, Di.pXR, Di.pYT, Di.pYB));
 //Find the Subdomains covered by Rectangle area
 MergeList(Ds, Di); //Merge all List below D.
}

ComputeRECT(Di, Oj)
{
 for (step=0; qcount < Oj.n; step++)
 { // Oj.n: capability of Oj
 min_x = min(abs(Oj.X - Di.pXL), abs(Oj.X - Di.pXR))
 min_y = min(abs(Oj.Y - Di.pYT), abs(Oj.Y - Di.pYB))
 stepToGo=max(min_x, min_y);
 AddtoPriorityQueue(Di.p, stepToGo) //Add query and step to PQ

 if(P_MIN<step)

{ //PQ’s smallest item’s key < step; Query is bounded.
 Oj.QList = Oj.PQ.pop(step); //Pop items from PQ whose key<step
 qcount++; //qcount is the total query added to Oj
 }

 Di.pXL <=NextElementInX_List;

Di.pXR <=NextElementInX_List;
 Di.pYT <=NextElementInY_List;

Di.pYB <=NextElementInY_List;
 if((Di.pXL.< Di.XL) or (Di.pXR.> Di.XR) or (Di.pYT.> Di.YT) or

(Di.pXB.< Di.YB)) { LoadDomain(D, Di); }
 }//End of for
}

22

Figure 3-7 The edge lists and the rectangle area of mobile host A.

At the end of Chapter 3, we demonstrate the procedure of Query Assignment. In

Figure 3-7, mobile host A’s position is (9,7) with capability 2. The grids do not exist

in our system. It is just to help us to see the steps clearly. At first, we found A on the

edge lists. In X_list of current data node, we start at Q3Left. In Y_list of current data

node, we start at Q11Top and Q12Top. Table 3-1 shows the detail procedure of query

assignment. The red colored words represent the data changed.

MergeList(Ds, Di)
{
 if(Di.pXL.< Di.XL) Merge(Ds.X_list, Di.X_list);
 if(Di.pXR.> Di.XR) Merge(Di.X_list, Ds.X_list);
 if(Di.pYT.> Di.YT) Merge(Ds.Y_list, Di.Y_list);
 if(Di.pXB.< Di.YB) Merge(Di.Y_list, Ds.Y_list);
 MergeSort((Di.XL, Di.pXL), (Di.pXR, Di.XR), Ds.X_list(>Di.pXL , <Di.pXR));
 MergeSort((Di.YB, Di.pYB), (Di.pYT, Di.YT), Ds.Y_list(>Di.pYT , <Di.pYB));
}

23

At Step 0, edges Q3Left, Q11Top, and Q12Top are processed and their minimum

steps to the four edges are compared. The maximum of these two values and its id

stored to priority queue. Step 1 to Step 3 is similar. In the ComputeRECT Procedure

of step 3, the MAX(X,Y) and Priority Queue’s minimum key (P_MIN) is compared.

The AssignQuery procedure output query list contains Q6 and Q11 to the mobile host

A whose capability is 2. After pop the priority queue, the P_MIN is 3. And the

pointers which point to the position of next element in X_List and Y_List are also

returned as the rectangle area’s boundary. We also adjust the rectangle to extend as

large as possible until it is almost reach more than n queries.

Table 3-1 The Query Assignment Procedure

Step Query
MIN
STEP

MAX
(X,Y)

Priority Queue P_MIN Query List
X Y

0 Q3L 0 6 6 Q11(2), Q3(6), Q12(6)
2 - 0 Q11T 2 0 2

0 Q12T 6 0 6
1 Q2L 1 8 8 Q6(1), Q11(2), Q7(3),

Q4(5), Q8(6), Q9(6),
Q3(6), Q12(6), Q2(8)

1 -

1 Q6L 1 1 1
1 Q7R 1 3 3
1 Q8B 6 1 6
1 Q9B 6 1 6
1 Q4B 5 1 5
2 Q10T 3 2 3 Q11(2), Q7(3),

Q10(3),Q4(5), Q8(6),
Q9(6), Q3(6), Q12(6),
Q2(8)

2 Q6

3 Q1R 3 7 7 Q7(3), Q10(3),Q4(5),
Q5(5),Q8(6), Q9(6),
Q3(6), Q12(6),
Q1(7),Q2(8)

3 Q6,Q11
3 Q5T 5 3 5

24

3.5 Summary

In this chapter, we present the algorithm of query insertion, query result update

and query assignment algorithms in our system. We use the feature of mobile host’s

location and extend the rectangle area to fit mobile host’s capability. The analysis of

the dynamic query assignment is presents in Chapter 4.

25

Chapter 4 Analysis and Evaluation

 In this thesis, we present a Query Result Update algorithm and a Query

Assignment algorithm. In this section, we will evaluate our proposed algorithms with

other methods. In the end of this chapter, we also show the simulation of our proposed

algorithm.

4.1 Query Result Update Algorithm

 In the query result update algorithm, we propose the rectangle area concept to

reduce the number of location update. And it contains n queries for the mobile host to

share the load with server. We will compare our method with Resident Domain

concept which proposed by MQM.

 In MQM, the subdomain is partitioned by the threshold of the less capable

mobile host’s capability. The computation of resident domain is down from the root of

BP-Tree to the subdomain that the mobile host is in and fits its capability. When the

mobile host moves out of its resident domain, it reports to the server to compute a

new resident domain. When the mobile host just exits its current domain, its position

is near the boundary of multiple resident domains. And the position reported by

mobile hosts from GPS may have some error. The mobile host may detect that it is

cross over its resident domain boundary. Figure 4-1 shows mobile host A’s movement

and Table 4-1 shows its position and corresponding resident domains. Because the

movement of the mobile host is not always linear and predictable, the mobile host

also nears the boundary of resident domain. This makes the mobile host send a lot of

request of resident domain request in a short time.

26

Figure 4-1 The mobile host A and its resident domain.

Table 4-1 The position and resident domain changes in Figure 4-1.

Position Resident Domain

In D21 RD 1

In D11 RD 2

In D12 RD 3

In D22 RD 4

In D12 RD 3

Figure 4-2 The mobile host A and its rectangle area.

In our method, we compute rectangle area based on the mobile host’s position.

Figure 4-2 shows the concept of our algorithm. We assume the directions the mobile

host moves are random. The probability of choose each direction (North, Northeast,

27

East, Southeast, South, Southwest, West, Northwest) is equal. We extend the rectangle

area from the position of the mobile host and try to include n queries to fit the

capability of the mobile host.

4.2 Query Assignment Algorithm

The other part of this thesis is query assignment. We use BP-Tree in MQM to search

for the data node that corresponding to the mobile host’s position. In MQM, the server

searches subdomains in BP-Tree for the mobile host as the resident domain that the

mobile host is in and the queries in the subdomain may small or equal to the mobile

host’s capability. The split threshold ensures that every mobile host could be allocated

at least one resident domain. Figure 4-2 shows mobile host A with capability 12 is in

the subdomain D122 , and the size of D122 is 8. The size is smaller than mobile host A’s

capability. So D122 is assigned to mobile host A as its resident domain. The server

cannot assign D12 to mobile host A because the size of D12 is 18, as we can see in

Figure 4-3. D122 fits the mobile host A’s capability, but there are better choices.

Figure 4-3 The mobile host A with capability 12 and its resident domain.

28

Figure 4-4 The BP-Tree of Figure 4-2.

In our system, the size of the subdomain is the number of queries in it. A query

may span over multiple subdomains. Figure 4-4 shows query 1 span over D11, D12,

D21, and D22. Query 2 also spans over two subdomains. Figure 4-5 shows the size in

each subdomain. We consider size as the different queries in that subdomain. Table

4-2 shows that the comparison of range monitoring process algorithms.

Figure 4-5 The size in subdomains.

29

Figure 4-6 The size in BP-Tree.

Table 4-2 The comparison of algorithms

Name

Property

Simple

Location

Update

Safe Region Resident

Domain

Rectangle

Area

(Proposed)

Distributed No No Yes Yes

Computing ability

on MH

No Yes Yes(more) Yes(more)

Memory Storage

on MH

No Yes Yes(more) Yes(more)

Compute a region

for MH

n: the number of

queries

N/A O(n) to

O(nlog3n)

O(logn) O(n) to

O(nlog3n)

30

4.3 Simulation

In this thesis, we have implemented a simulator for MQM and our technique.

We measure the number of request for resident domain messages as the scalability

regard to the number of queries and the length of query rectangles. The movement

types of the mobile host in our system are random and linear. Figure 4-7 shows

random movement. The mobile hosts first start from a random position in the root

domain. Then randomly choose eight directions to move. When it moves out of the

root domain border, it restarts from origin (0, 0) and continue to move. If the step we

set to move is satisfied, it stops. Figure 4-8 shows linear movement. The mobile hosts

start from the origin (0, 0) to the Top-Right position of root domain rectangle.

Figure 4-7 Random movement.

Figure 4-8 Linear movement.

31

 Table 4-2 shows the parameters of simulation 1. Figure 4-9 and Figure 4-10

show the result of simulation 1 under different movement type respectively.

Simulation 1 changes the number of queries from 1,000 to 10,000. In simulation 1(a),

the mobile host start at (50000, 50000) and randomly choose a direction to go. The

mobile host moves out its current resident domain and it sends a request for resident

domain message to the server. The server computes the new resident domain for the

mobile host. Because the movement of the mobile host is random, it can just enter the

resident domain and exit at next step. In MQM, the mobile host is near the border of

the new resident domain, so it may exit the current resident domain just computed and

request for a new one. This makes the number of request for resident domain

messages of MQM in simulation 1 much higher than our method. In contrast, as we

can see in simulation 1(b), the movement is linear. In this case, MQM performs better.

Because the mobile host of MQM is near the entry border of resident domain, the

distance to move out the other border of resident domain rectangle is a little longer.

Table 4-3 The parameters of simulation 1.

Parameter Value

Domain space 217x217

Number of mobile host 1

Capability of mobile host 50

Query square length 1000

Start point of random move (50000, 50000)

Step of random move 500

Distance of random move 5400614

Distance of linear move 217x 21/2

32

Figure 4-9 Simulation 1(a) (Random movement).

Figure 4-10 Simulation 1(b) (Linear movement).

Table 4-3 shows the parameters of simulation 2. Figure 4-11 and Figure 4-12

show the result of simulation 2 under different movement type respectively.

Simulation 2 changes the length of query square from 1,000 to 10,000. In simulation

2(a), the mobile host also start at (50000, 50000) and randomly choose a direction to

Number of Queries

Number of Queries

33

go. The result in simulation 2 is similar to simulation 1. We can observe that the

length of query square can also affect the number of request for resident domain

message. Because the query square length can also affect the density of query in root

domain.

Table 4-4 The parameters of simulation 1.

Parameter Value

Domain space 217x217

Number of mobile host 1

Capability of mobile host 50

Number of Query 5000

Start point of random move (50000, 50000)

Step of random move 500

Query length 1000~5000

Distance of random move 5400614

Distance of linear move 217x 21/2

Figure 4-11 Simulation 2(a) (Random movement)
Length of Query Square

34

Figure 4-12 Simulation 2(b) (Linear movement)

In simulation 3, the parameter of simulation is the same as Table 4-3. Figure 4-13

and figure 4-14 show the area ratio of rectangle area and resident domain. The size of

rectangle area is usually larger than the size of resident domain.

In this chapter, we analysis our method of query location update and query

assignment. The mobile host’s position in resident domain and its move type will

affect the number of request for resident domain message.

Length of Query Square

35

Figure 4-13 Simulation 3(a) (Random movement)

Figure 4-14 Simulation 3(b) (Linear movement)

Number of Queries

Number of Queries

36

Chapter 5 Conclusions and Future work

In this thesis, we present an algorithm for query result update and dynamic

query assignment. First, query result update algorithm computes a rectangle area for

each mobile host. When the mobile host is still in the rectangle area and does not

affect any query, it does not need to report to the server about the query result update.

Thus the communication cost is saved. Second, in dynamic query assignment, the

server also assigns queries to the mobile host based on the position and capability of

the mobile host.

In MQM, they proposed resident domain concept to solve query result update

problem and used BP-Tree to solve query assignment problem. However, the mobile

host may near the border of its resident domain. This makes the mobile host more

likely move out of its resident domain. Thus the number of requests for resident

domain may be huge. Our method is modified from MQM. We extend the rectangle

area from the position of the mobile host. When the movement of the mobile host is

random, our method performs better.

In the future, we may extend our system to support processing on moving

queries over moving objects. There are many interesting applications based on the

LBS. We can modify our system to support various types of queries. The scalability of

the system is very important. One may change the distributed architecture to

peer-to-peer architecture.

37

References

[1] Kupper, A., Location-based Services: Fundamentals and Operation. 2005:
John Wiley & Sons.

[2] D'Roza, T. and G. Bilchev, An Overview of Location-Based Services. BT
Technology Journal, 2003. 21(1): p. 20-27.

[3] Dao, D., C. Rizos, and J. Wang, Location-based services: technical and
business issues. GPS Solutions, 2002. 6(3): p. 169-178.

[4] Zhang, J., et al., Location-based spatial queries, in Proceedings of the 2003
ACM SIGMOD international conference on Management of data. 2003, ACM:
San Diego, California. p. 443-454.

[5] Guttman, A., R-trees: a dynamic index structure for spatial searching.
SIGMOD Rec., 1984. 14(2): p. 47-57.

[6] Song, Z. and N. Roussopoulos, K -Nearest Neighbor Search for Moving Query
Point. 2001. p. 79-96.

[7] Tao, Y., D. Papadias, and Q. Shen, Continuous nearest neighbor search, in
Proceedings of the 28th international conference on Very Large Data Bases.
2002, VLDB Endowment: Hong Kong, China. p. 287-298.

[8] Shamos, M.I. and D. Hoey. Closest-point problems. in Foundations of
Computer Science, 1975., 16th Annual Symposium on. 1975.

[9] Hu, H., J. Xu, and D.L. Lee, A generic framework for monitoring continuous
spatial queries over moving objects, in Proceedings of the 2005 ACM
SIGMOD international conference on Management of data. 2005, ACM:
Baltimore, Maryland. p. 479-490.

[10] Rowstron, A. and P. Druschel, Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. 2001. p. 329.

[11] Yu, K., et al. A Location-Based Peer-to-Peer Network for Context-Aware
Services in a Ubiquitous Environment. in Applications and the Internet
Workshops, 2005. Saint Workshops 2005. The 2005 Symposium on. 2005.

[12] Mokbel, M., et al., Continuous Query Processing of Spatio-Temporal Data
Streams in PLACE. GeoInformatica, 2005. 9(4): p. 343-365.

[13] Ying, C., et al., Real-time processing of range-monitoring queries in
heterogeneous mobile databases. Mobile Computing, IEEE Transactions on,
2006. 5(7): p. 931-942.

[14] Stojanovic, D., et al., Continuous range monitoring of mobile objects in road

38

networks. Data & Knowledge Engineering, 2008. 64(1): p. 77-100.
[15] Mokbel, M.F., X. Xiong, and W.G. Aref, SINA: scalable incremental

processing of continuous queries in spatio-temporal databases, in Proceedings
of the 2004 ACM SIGMOD international conference on Management of data.
2004, ACM: Paris, France. p. 623-634.

[16] Gedik, B. and L. Ling, MobiEyes: A Distributed Location Monitoring Service
Using Moving Location Queries. Mobile Computing, IEEE Transactions on,
2006. 5(10): p. 1384-1402.

[17] Prabhakar, S., et al., Query Indexing and Velocity Constrained Indexing:
Scalable Techniques for Continuous Queries on Moving Objects. IEEE Trans.
Comput., 2002. 51(10): p. 1124-1140.

[18] Six, H.W. and D. Wood, The rectangle intersection problem revisited. BIT
Numerical Mathematics, 1980. 20(4): p. 426-433.

	組合
	c sign
	c sign001
	e sign002
	e sign003

