A 7R BN R 2w o A e

Dynamic Query Assignment

based on the Location of Mobile Hosts

SEEREREL T

R RE D RP S R

PFERKE L+/1\ £ N\A

A F R R 2 B A A A
Dynamic Query Assignment based on the Location of Mobile Host

S e L S R Student : Bo-Rei Yu

ip s kP Advisor : Ming-Feng Chan

A Thesis
Submitted to Institute of Network Engineering
College of Computer Science
National-Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

August 2009

Hsinchu, Taiwan, Republic of China

ﬁiﬁ:a\‘@],&;,_&,\a

AT oBoxh B B 2 B O A AR

£4 U

B i~ Bl 2477 97 ALt

&

HFARPREFEATDORRRRE B IR AEHEY DR LR
R TR FEER Tk A& BORARS AR i Bk R
Mo REREATUE X Eand BAl o =¥ A9 A iy A5 1 fEN

BFhy AR EHFY - BT oINS S FRF IR ALY T
WEHE o FRER AL - BRI DA AT AR R E G R

WA PIRE R LATE R o P R R RIS S AR RIRFL Y SRy i

“.

PHED SRR e AR BRI R A et
PRGRAERELERPIRES R c ALY > AR DFRFAS S A B - BA

BASEDLATRI T - BEALRFFTRAAETH AR R AE & J s

Kt s pfe- BEVRBEFERE ¢ ZHBEFREZRAT Aok FHELE
B EEFP D AEEINEFRERAFE NN e PIRErHFAE {LATUE A3
BRZTR e AR AN EHRE R et ARPRERAFE O REER

W LA AEGR S R A B TR BT TR

N E R 1 L

Dynamic Query Assignment based on the Location of Mobile Host
Student: Bo-Rei Yu Advisor: Prof. Ming-Feng Chang
Institute of Network Engineering

National Chiao Tung University

Abstract

LBS services are capable of providing information based on the user’s location.
There are many varieties of LBS Query. Continuously queries continuously update its
result until the users terminate the query requests. Range monitoring queries are
typical examples of continuous queries. If there is any change in the region under
monitored, LBS must update«the query result immediately. LBSs are usually
implemented in client-server architecture. WWhen the user population is huge and many
requests are sent to the server. The scalability of the LBS server becomes a problem.
Distributed client-server architecture enable clients to share their computing ability
with the server. One possible distributed solution is that the LBS server assigned
queries near each mobile client so that the clients can check if the queries match.
There are two problems in this approach. One problem is query result update. The
other problem is query assignment. In our design, we compute a rectangle area for
every mobile host. The mobile hosts aware the range monitoring queries in the region.
If the mobile host is inside the region and does not affect any query in the system, it
does not need to report to the server. Our system dynamically assigns range
monitoring queries to the mobile hosts based on their capability. The query update
messages and the server load in the system are reduced. The system scalability is also

increased.

s PT

T AR Wb L T SRR R R o F AR LT T R el
g IR LY R R e B e B AL o F R R g
REVLFFFTRRRES > FHORFLBH=Nm o EHEFA &
e o

b it Hﬁiﬂﬁfuééﬁw CEHTRIOEL > FH LT H P &
PE L AP G REART URE LR SRS
B Hh e PREARRE T R E B HE P LA RFHT 2o 2 R

F A ES R SIEEET

et Ao
Bl 2% B B0 fRAT TR RT

aiza\]g],i‘;,\g,\a

List of Figures

Figure 2-1 An example of Safe REQION.cociiiiiiiiii e, 7
Figure 2-2 An example of Resident DOMAIN.cccceveiiiiieii e 8
Figure 2-3 An example Of BP-TIE.cciiiiiiiee e 10
Figure 2-4 Resident Domain for mobile hoSt A...........coveiveii e, 11
Figure 2-5 BP-Tree for the above domain.cccooiiiiiiiniiieeec e 12
Figure 2-6 Resident Domain for mobile hoSt A’..........ccoveiieiici e, 12
FIgure 3-1 SYSIEM OVEIVIEWoouiiiiiiiiiisiiiiieiieee ettt 14
Figure 3-2 Queries on the map. (the map is from maps.google .com)ccccuvneee. 15
Figure 3-3 Queries that overlaps the domain.cccoceviiiiiiinee s 16
Figure 3-4 Domain node and data node in modified BP-Tree.c.ccccceovevviievinennnnn, 16
Figure 3-5 The edges that are stored in-the data node of Domain D;...........cccccccvvvnene 17
Figure 3-6 The rectangle area-of mobile host Ac.............cvi e, 19
Figure 3-7 The edge lists and the rectangle area of mobile host A. ..., 22
Figure 4-1 The mobile host A and its resident.domain.cccceevevieieere e seenneen, 26
Figure 4-2 The mobile host A and its rectangle area...........ccoceoeveieneiiieniniceee, 26
Figure 4-3 The mobile host A with capability 12 and its resident domain. 27
Figure 4-4 The BP-Tree OF FIQUIE 4-2.cooiiieieieie e 28
Figure 4-5 The size in SUDAOMAINS.ccveiiiiiiiee e 28
Figure 4-6 The Size IN BP-TIEE.coi i 29
Figure 4-7 Random MOVEMENL.c.ccviiieiieiie ettt sre et sre e e e 30
Figure 4-8 Linear MOVEIMENT.c.ooiiiiiiiiiieieie ettt 30
Figure 4-9 Simulation 1(a) (Random mMOVEMENL).........cccccvviveiiere e 32
Figure 4-10 Simulation 1(b) (Linear MOVEMENT)........cccoviriririeieieieese e 32
Figure 4-11 Simulation 2(a) (Random Movement)........c.cccveveveeveeviesecse e 33

iv

Figure 4-12 Simulation 2(b) (Linear MOVEMENT)........cccoriiiririeieeierie e 34

Figure 4-13 Simulation 3(a) (Random MOVEMENL)..........cccvevevieieeiie e 35
Figure 4-14 Simulation 3(b) (Linear MOVEMENT)........cocoriiiririeieeieee e 35
List of Tables
Table 3-1 The Query AsSigNMENt PrOCEAUIEccveiueiieieere et eie e 23
Table 4-1 The position and resident domain changes in Figure 4-1.cc.ccoovvvneen. 26
Table 4-2 The comparison of algorithmscccceoveiiiie i 29
Table 4-3 The parameters of SIMUlation 1. ..o 31
Table 4-4 The parameters of SIMUIAtion 1.c.ccoeiiiieiiicie e 33

Table of Contents

BB B [
AADSIIACT ...ttt ii
. TSROSO iii
Chapter 1 INtrOQUCTIONoovieiecee et sreenne s 1
1.1 MIOTIVAEION ...t bbbttt bbbt ene s 1
1.2 RESEAIrCN QUESTIONSiiiviiiiecctie ettt ettt st rae e sar e e re e sre e e be e sareebeesaeeenns 3
1.3 REIAIEA WOTK ...t 4
1.4 OVEIVIBW......ieeeiite ettt bbbt bbb ettt nn e 5
Chapter 2 Related WOTKooiiie s 6
2.1 The Query Result Update Problem e 6
2.2 The method to deal with Query Result Update........cto.ooviiniiiiiiiciceceseee, 7
2.3 QUETY ASSIONIMENL......cciiueieeirieanaesseaibenttansaeseesi e e s Thesnrestaessesseesseessesseesseensesseesses 9
2.4 The Method of QUErY ASSIGNIMENT. (.e.ueiue ittt ih e e b ettt 9
Chapter 3 System Design and Implementation i ooveiieieeie e 14
3.1 SYSTEM OVEIVIBW ...ttt bbb bbbt 14
KT O 10 1= YA [11=T o o USSR 15
3.3 QUETNY RESUIT UPUALE.cvieiieieiieiieiieee e 18
3.4 QUENY ASSIONMENT......cviiiiiie ittt reesre s e s teebesneesaeeneenee e 19
3.5 SUMIMANY ..ot r et n e 24
Chapter 4 Analysis and EVAlUALIONcccccoveiieiiiic i 25
4.1 Query Result Update AIGOrthmooiiiiiiiee s 25
4.2 Query Assignment AlQOrithM ..o 27
4.3 SIMUIBTION ... bbbttt 30
Chapter 5 Conclusions and FULUIE WOIK...........cccccviieiieieiie e 36

References

vii

Chapter 1 Introduction

1.1 Motivation

The vast development of wireless network and mobile communication
technologies, the widely use of handheld and laptop devices, and the popularity of
Global Positioning System (GPS) make Location-Based Services (LBS) attractive to a
lot of people. In recent years, many powerful mobile phones are available to the
market. The tiny devices have 3G, Wireless LAN, and Bluetooth connectivities, and
many are equipped with two cameras and GPS receiver. User can not only use them to
take pictures but also can use LBS to-enjoy the intelligent lifestyle.

LBS services are capable of providing information based on the user’s location
[1-3]. The application of LBS services is ubiquitous in.our life. Every morning, we
can get local weather information based on our location. If you have a meeting with
somebody, you can just follow the_directions of your phone and know where the
person is. When driving, users can get turn by turn navigation to places. The traffic
information can be used to help us not to get stuck on traffic, which saves time and be
more environmental friendly. On the way to destination, a user can get the
information of nearby gas stations and the lowest gas price on the route. Before
arrival, you can use LBS to help you find a parking place. If you want to use public
transportation, you also can get the schedule and its real-time status. After work, you
see e-coupons on the phone sent by the restaurant in the city you lives. You can
choose whatever you what and make a reservation. On the way home, you can see
where your children are on the phone and pick them up. When got home, you can feel

free to relax because the air conditioner has been ready. All this can be done from a

1

handheld device.

LBS Queries are submitted by users of LBS Services. The server receives a
query request, processes it, and then sends result back to the user. There are many
varieties of LBS Query [4]. The type of query can be range query [5],
nearest-neighbor query [6], and many variants. The range query in LBS is that given a
region area, we can retrieve the interested information in the area. The
nearest-neighbor query is to find the closet point of interest in a space. The duration of
the query can be snapshot or continuously. The snapshot query is one-shot. The result
is static. The continuously query continuously update its result until the user terminate
the query request. The time of the query can be past, present, and future. The query
and object in the query can be stationary or.moving. For example, the user at home
sent a query request for the nearest hospital. The type of this query is nearest-neighbor
query. The duration is snapshot. The time is present. The query and objects in this
case are stationary. The police officersent a query request for continuous report the
number of cars on the freeway. The.type of this query is range query. The duration is
continuous. The time is present and future. The query is stationary and the objects in
this case are moving. The user driving on the highway may be interested in what are
the nearest gas stations for the next hour. The type of this query is nearest-neighbor
query. The duration is continuous [7]. The time is future. The query is moving and the
objects in this case are stationary. The other user at home may be interested in what is
the closest distance between him and his friends yesterday. The type of this query is
closest point query [8]. The duration is snapshot. The time is past. The query and the
objects are moving.

LBSs are usually implemented in client-server architecture [9]. The server

processes the requests from the client side. The client side is usually mobile hosts.

2

Mobile hosts usually have limited computation ability, battery capacity and wireless
bandwidth. To ensure the correctness of query results, the client side usually
periodically reports its position.

When the user population is huge and many requests are sent to the server. The
server will be a bottleneck. The scalability of the LBS will also become a problem.
There are also other architectures for implementation of LBS. The idea of distributed
client-server architecture is to let clients share their computing ability. Divide the
work into server site processing and client site processing. The server managers and
maintains queries, and act as a mediate of requests and clients. The clients monitor the
nearby queries and send the updates of the query result. Another approach is
decentralized peer to peer architecture [10-11] » .This type of LBS system does not
have central control or knowledge of all nodes.

In this thesis, the architectures we used to implement LBS Services is assumed to
be distributed client-server "architecture. The type of query is range query. The
duration is continuous. The time‘is present. The query:-is stationary and the objects are
moving. This query is also known as range monitoring query. The definition is: given
a set of rectangle regions, we want to know the mobile hosts inside them. And we can

get real-time update when the mobile hosts move in and out of these regions.

1.2 Research Questions

In detail, the primary research question that we address is as follows. The result
of range monitoring query is dynamic. Mobile hosts may frequently move in and out
of query region. The result may only valid for a very short time. Continuous update
the results or periodically updates make heavy and unbalanced load on the server. The

mobile hosts also need to communicate to the server through Wireless LAN or Mobile

3

communication interface, which is battery consuming. There are also huge messages
on the network. Decreasing the location update requests not only can lessen the server
load but also save the battery power of mobile hosts. Although the range monitoring
query process was introduced in many papers [12-16], we present a more effective
algorithm based on the location of mobile hosts.

In distributed client-server architecture of LBS, the division of work into
server side is processing and client side processing is still a problem to resolve. Using
the client recourse better can make the LBS more scalable. The distributed
client-server architecture of LBS was used in previous work. However, we present an
algorithm based on the capability of the mobile host.

Another related question is that'mobile hosts have different capability. How to
allocate suitable work that meets the capability of every mobile host is important. We

proposed the algorithm that tries to fit every mobile host’s capability.

1.3 Related work

To deal with the problem of huge location update in range monitoring query,
Prabhakar et al. proposed the concept of Safe Region[17]. A safe region is defined to
be a circular or a rectangle region that contains mobile host’s location but not overlap
with any query boundary. If mobile host is inside the safe region, it does not affect
any query in the system. If it moves out of the safe region, it instructs the server and
requests a new safe region. Because the safe region cannot overlap with query
boundary, the size of safe region is usually small when the query density is high.
Unfortunately, computing a rectangular safe region takes from O(n) to O(nlog®n),
where n is the number of queries. When adding new queries to the system, the server

may also need to compute all safe regions for the mobile hosts because the new query

4

may affect existing safe regions.

Ying et al. proposed a scalable and adaptive technique, Monitoring Query
Management (MQM)[13], for real-time processing of range monitoring queries. The
resident domain concept they proposed is that a server assigns each mobile host a
resident domain (region) that contains a number of queries based on mobile host’s
current location and ability. The server also notifies the mobile host the queries that
overlap with that domain. When a mobile host detects that it has cross over some
query boundary, it contacts the server to updates the query results. When a mobile
host leaves the resident domain, it reports to the server to get a new resident domain.
They allow the mobile host to monitor its nearby queries and report the result to the
server.

To leverage the computing. capability of mobile host, MQM proposed a
BP-Tree (Binary Partitioning Tree) spatial access method in the server for efficient
query management. BP-Tree can be used to find the resident domain with a number of
queries that meets the capability-of the mobile host. The detail design of MQM will be

described in Chapter 2.

1.4 Overview

This dissertation is organized as follows. Chapter 2 presents related work.
Chapter 3 presents the algorithms and system architecture. Chapter 4 discusses the
results in the system design. Finally, Chapter 5 concludes this thesis and describes the

future work.

Chapter 2 Related Work

In this research, we focus on the query result update problem and query
assignment problem. In the following sections, we define the problems and describe

the related research work.

2.1 The Query Result Update Problem

Unlike conventional range queries, a range-monitoring query is a continuous
query. The query stays active fora period oftime until it is terminated by the user.
The simplest way to keep the result-correct is that whenever mobile host moves,
report its position to the server. The server then processes the request and updates the
query result. There are many . disadvantages in this- approach: The constant or
periodically location update from mobile haests can quickly exhaust the mobile
devices’ battery. For the central server, the requests from mobile host are huge. The
server will be busy process these messages only. The scalability is poor.

In Safe Region, the safe region is defined to be either a circular or a rectangular
region that contains the mobile host’s location and does not overlap with any query
boundary. The mobile host does not need to report its position when it is within the
safe region.

In MQM, a scalable and adaptive technique for real-time processing of range
monitoring queries, which allows mobile hosts to monitor their nearby queries. Every
time when a mobile host moves, it checks if the queries are affected by it. Then send

update messages to the server to ensure real-time and accurate query results. They
6

proposed a resident domain concept to decrease the number location update; a spatial

access method BP-Tree for efficient query management at the server side.

2.2 The method to deal with Query Result Update

In safe region, consider a mobile host that is far way from any query. The
mobile hosts need to travel a large distance before move in one of the queries. The
short distance between a mobile host and a query boundary is called Safe Distance.
The mobile host needs to move a distance of at least Safe Distance before its cross
over any query boundary. They also define a SafeRect, a safe maximal rectangle
around the mobile host’s current location. Figure 2-1 shows mobile host A and its safe
region, the safe region does not overlap any-query.rectangle. If mobile host A does not
move out its safe region, it does not report to the server. If mobile host A cross over its
safe region boundary, it reports to the server. However, mobile host exits its safe
region does not guarantee that the query-is affected. When the queries in the domain
are dense, the safe region will be very small. In addition, computing a rectangular safe

region takes from O(n) to O(nlog®n), where n is the number of queries.

@ (]
Sz Region / as
(SafeRech)

Q7

Figure 2-1 An example of Safe Region

In MQM, they assign each mobile host a resident domain, based on its current

location. The resident domain also includes the queries that overlap with the domain.
When the mobile host detects that it has crossed over a query boundary, the mobile
host will communicate the server to update the affected query results. When the
mobile host moves out of its resident domain, it also needs to report to the server.
Then the server will compute a new resident domain for the mobile host.

There are some assumptions in the MQM. They assume that each query is
represented by a rectangular region. Each mobile host has a limited resource. For
example, the CPU speed, memory capacity, and battery power are all limited. Mobile
host can communicate to the server through wireless or mobile networks. Figure 2-2
shows mobile host A and its resident domain. If mobile host A does not exit its
resident domain, it does not report to.the server. If mobile host A cross over queries in
its resident domain, it will report to the server to update the query result. When
mobile host A exits its resident domain, the server will compute a new resident

domain that fit A’s capability.

Query 1
_...-—-—-"“"'Aﬁ Q3 Q6
Resident Domain
(4]
S - A —
|
|
|
|
1
|
Q7 ‘ 1
| 04
1
lI‘
v

Figure 2-2 An example of Resident Domain.

2.3 Query Assignment

The computing capability of mobile host is measured by the maximum number
of queries it can load and process at a time. For example, if a mobile host’s capability
IS n queries, then the resident domain for it should contain as many queries but not
exceed its capability. The problem of search for a resident domain is trying to find n
query rectangles that are near an object’s current location. When a query overlaps
with a subdomain, the overlapping area is called monitoring region inside the
subdomain. A query may create one or more monitoring region if it spans over
multiple subdomains. A subdomain may have multiple queries, and we can use one or
more subdomains as a mobile host’sresident domain if the number of queries in side
does not exceed the mobile hast’s capability. Subdomains and monitoring regions are

maintained in a BP-Tree.

2.4 The Method of Query Assignment

In MQM, the architecture for implementation of LBS Services is distributed
client-server architecture. The BP-Tree spatial structure is used for query and
subdomain management. When a new query q is submitted, the server searches the
BP-Tree to find the subdomain it overlaps. The server then inserts the monitoring
region to the BP-Tree. When the number of monitoring regions in a subdomain
exceeds the split threshold (the minimum number of query that the least capable
mobile host can load), the subdomain is partitioned into two equal size subdomains.
When a mobile host enters or exit a query boundary (monitoring region), it sends a
location update message to the server, including its current position. Server updates

the query and notifies the mobile host in that query.

9

A BP-Tree consists of two types of nodes: domain node and date node. All
non-leaf nodes are domain node. Each domain node is the decomposition of its parent
node. Figure 2-3 shows the decomposition of D; is D;1 and Dj,. Each domain node
has a variable, size, to record the total number of monitoring regions under this
domain. A data node is a leaf node, consists an array of rectangles that stores queries
(monitoring regions) under its parents. There is also a variable, size, to record the total

number of monitoring regions under this node.

Domain D Domain D
1
I 1
¥
: D.L DZ
Dy D r
1 f_l—
] Dyy Dy, Dy Dy,
Dy D2 I I._I_I I I
,,,,,,,,,,,,,,,,,,,,,,,,
Dy ! D2 data node Dy Dyz, data node datanode
: S e —e e —e
‘ Wy VL
ou | On el
; data node data node
Dizi Dizz} D

Figure 2-3 An example of BP-Tree.

To let all mobile hosts can load at least one subdomain, the size of data nodes is
limited by the minimum processing capability mobile hosts. The parameter is the split
threshold for data nodes.

The BP-Tree efficiently supports the resident domain search. Given a position p
and capability n queries of the mobile host, the server searches the BP-Tree from the
root. If the number of monitoring regions inside the subdomain fit the mobile host’s
capability (smaller or equal to n) and the mobile host is also inside, the subdomain can
be the resident domain of the mobile host. Otherwise, the server descends the tree to

check the domain that contains the mobile host. In the worst case, we may take the

10

subdomain that has data node. When a resident domain is selected, the server then
retrieves all queries inside to notify the mobile host.

In Figure 2-4, the BP-Tree’s split threshold is set to 1 for clearly show on the
figure. Each subdomain has only one monitoring region (query). The mobile host A’s
capability is 5. Figure 2-5 shows the BP-Tree of this domain.

To search a resident domain for mobile host A in Figure 2-4, the server first
process the request of resident domain from mobile host A. When mobile host is
initializing or exits a resident domain, it will request the server to assign a resident
domain. The mobile host’s capability is 5. Server searches from root of BP-Tree, find
subdomain d2 is suitable for the mobile host. Finally, server assigns d2 as the mobile

host’s resident domain. The queries in the resident domain is also fit A’s capability.

d1111 d1112

Query 1
Q3 Qs
-«
dii21 di122 d211 | d212
s o]
Cal
d1211 a d221 d222

.. =
B :

di1211 diz2
2 &

¥ "Kscapabilty 15 5.
Figure 2-4 Resident Domain for mobile host A.

When mobile host A moves out of its current resident domain, as show in Figure

2-6. The mobile host requests the server to assign new resident domain again. The

server assign d1 as A’s new resident domain.

11

Figure 2-5 BP-Tree for the ahove domain.

di111 d1112
Query1l
03 Qe
<€
di121 d1122 d211 | d212
d1211 o d221 | d222

‘ 9.~
- m

d1211 d122
v v

¥ ~&'s capabiity is 5.

Figure 2-6 Resident Domain for mobile host A’.

12

However, A is not in the center of its resident domain, A may easily moves out of
its current resident domain. And most of time the mobile host has requested for new
resident domain, it just moved out of the last resident domain. The position of mobile
host is near the boundary of multiple resident domains. In addition, the position
reported by mobile host from GPS has some error, the mobile host may detect that it
is cross over its resident domain boundary. This make mobile host request for a new
resident domain again and again.

There is still one problem in MQM. The mobile host A’s capability is 5 queries,
but the resident domain assign to it contains 4 queries. The server searches resident
domain from the root. In this case, the number of queries in root domain exceeds the
mobile host’s capability, and then the server descends the tree to check the subdomain
d2 that contains the mobile host A. Server only allocate one or more whole unit
domain to mobile host. This.makes the mobile host’s capability would not always be
satisfied.

The distributed client-server architecture, computing ability requirement, and
memory storage requirement will also be required in our system. We then present the
algorithm based on the location and capability of mobile host. We will allocate a
rectangle area for the mobile host, which the mobile host is in the center of rectangle
area. We will extend the safe region rectangle to overlap queries, not only load a
whole unit domain, so that we can try to meet the capability of the mobile host. In this
study, we may decrease the number query result update by using rectangle area, and

share the server load with the mobile hosts by query assignment.

13

Chapter 3 System Design and Implementation

3.1 System Overview

In this research, we aim to create a real-time range-monitoring query
management system. The system accepts range-monitoring query from a user, and
real-time update the query result. The design of our system is based on the following
assumptions: (1) The mobile hosts have computing abilities to monitor nearby queries.
(2) Mobile hosts are able to locate their positions and have synchronized clocks, e.g.
using GPS. (3) The mobile hosts can set up connections to the server through mobile
or WLAN network. Figure 3-1 shows the system architecture. In this section, we will
describe the solutions of the query. insertion, ‘query result update and query

assignment problems.

Web sever 4_The result
of query

I -

g Quer /l/l/ It

338 y Resu
N Update

s
Mobile Host ﬂ‘)O/

with GPS Mobile Host

Figure 3-1 System Overview

14

3.2 Query Insertion

3.2.1 Overview

In this section, we present our method of query insertion. In our system, the
domain area is a geographical area, as a city or a district. We presented the domain by
a rectangle. The query is also represented by a rectangle that overlaps on the domain
area. Figure 3-2 shows five queries on the map, we can think the domain as a city map
and the queries are small areas that the users interest in on the map. We index the
domain and queries on the tree data structure to support domain searching and query

assignment.

) RS R an g e
sHi Fo Y &

il i}

o P : lf’
KL z S Fne = &
P o D e
Pk T maE— ¥ o iy
£ f=r [:

F L (71 L
) ;9“ & Ay i
e Ll Pt gl e a b
Lang T % M - 3= lmin ~j
5 ' % i s T >
58 " o L2 LR
L LA .-
3 .
‘J\F Q 7. e
gt Cqete o ke uery-2 .
,%a T :!
;‘w“-".‘a‘j,‘
Zun
&, 1
“ Query 1
% e
* »
#, Tl
& & ' - e
& & *’?-’/, & e L
15’ -] B = x
: B
) e i
) o H Wy
Daomain...,
& m-GR e & z

Figure 3-2 Queries on the map. (the map is from maps.google .com)
3.2.2 The method of Query Insertion
We use and modify the BP-Tree and algorithms provided by MQM. Figure 3-3
shows 6 queries overlap a small area on the domain. The query rectangle edges that
cross the borders of domain rectangle, and the edges of the query that inside the
domain will be stored in the data node. Figure 3-4 shows the domain node and data
node structure. The domain node D; has stores its domain rectangle D;.domain which

contains the lower left and upper right coordinate of the rectangle, a pointer to its
15

parent domain Dj.parent, a pointer to its child domain or data node D;.child and
Di.size records the total number of query rectangles stored descending from D;. The
data node d; stores the total number of query rectangles in D;.size, and it contains two
ordered lists that stores the edges of query rectangles. d;.X_list stores ordered edge list
of query rectangle ascendantly by X-coordinate, and d;.Y_list stores ordered edge list
of query rectangle ascendantly by Y-coordinate. Figure 3-5 shows the value of

di.X_list and di.Y _list in data node of domain D;.

Divop
I------------------ll--
Qo I
TCur 1
: Qe Qu Qe 1
Que Qg I
1
| _ Qu Qfas !
Dllsfi Domain Dl' lDiRig}ﬂ
|
¥ Qsr 1
! [
1 Qe Qay 1
l——-——— QSL————%RI-—- - e mm e e ol
Diaultﬁm
Figure 3-3 Queries that overlaps the domain.
D, Domain
D.Parent
Domain D D, Chitd
. size
D,. Dormain D,,Damain (——————— DzDomain
D,.Parent D, Parent Dg. Parent
D..Child Dy D, Child D: D, Chikd
Dy.size D, size Dz aize
D';f. Damain r ™ r :I:
;. Parent r—————
Oy, Child D Dy datanode
D,,.size
d, size
d,.X_fist
N~———— d,. ¥ _list
datanode data node
d,;.size d,.size
d,,. X_list d . X_list
d,,. Y_list d,.Y_list

Figure 3-4 Domain node and data node in modified BP-Tree.

16

4. X_list: Qg <>Q <> Q<> Q<> Qs> Q> Q<> Q<> Qg
4. Y_list: Qup<=> Qup<=> Q<> Q> Q> Q.

Figure 3-5 The edges that are stored in the data node of Domain D;.
The query rectangles that overlap the domain rectangles have the property

below:

The four edges of the domain rectangle D;: Dieft, Dirignt, Digottom, Ditop
The four edges of the query rectangle Qi : QiLeft, Qiright, Qigottom, QiTop
For all edges that are overlap the domain rectangles,

Ditert < Qiert (1)

Diright > Qiright (2)

Digottom < Qigottom (3)

DiTop > QiTop (4)

The query rectangle edges that satisfy these inequalities will be stored on the
X_list or Y_list of date node.To find the query rectangle edges, we may refer to the
rectangle intersection problem[18]. In-our system, we check the query rectangle edges
and store the edges that satisfy these inequalities. The AddQuery and InserList

algorithms are below.

AddQuery(Di, QJ)
{
/IDescend BP-tree to find the data nodes to store query.
e |If D; is a domain node, then for each entry (D;, P), call
AddQuery(D;.P, Q;) if D;overlaps with Q;.
e |f D; has a data node, then:
InsertList(D;, Qj);
e |[fD;is full,
SplitDataNode(D;); //Provided by MQM

17

InsertList(D;, Q;)

{
Il Insert Q;’s point to Dy’s data node(d;) if it overlaps D;

If (QjLeft> DiLert)

Insert (QjLefr, Di. X _list);
If (Qjright < Diright)

Insert (QjRight, D;. X _list);
If (QjTop < DiTOp)

Insert (Qjrop, Di.Y_list);
If (QjBottom > DiBottom)

Insert (QjBottoma Di.Y_list);

3.3 Query Result Update

3.3.1 Overview

In this section, we present our-method of query result update strategy which is a
solution of the location update problem. In this distributed architecture, server
allocates some queries to mobile host to relieve its load. We leverage the mobile
host’s tiny computing power to share the load with the central server. We also observe
that the mobile host’s position in resident domain will affect the number of location
update.

3.3.2 The method of computing the Rectangle Area

We use and modify the resident domain concept and algorithms provided by
MQM. In our system, the Rectangle Area is a rectangle that around the mobile host. It
also includes n queries that can fit the mobile host’s capability. When the mobile host
is just registered to our system or leaves its current rectangle area, it sends a request
for rectangle area. The information contains its current location and current time by
GPS on the mobile host. And its capability is also reported to the server. The server

then computes the rectangle area based on the current location and capability of the

18

mobile host. The rectangle area is extended from the current position of mobile host
to include n queries.

After receiving its rectangle area and queries, the mobile host checks whether it
is still in the rectangle area when it moves. It also checks if it is cross over any query
boundary. If it is in the rectangle area and not crosses over query boundary, it does not
need to report to the server for query results update. Thus, the location update is
avoided. The server load and communication costs are saved. When the mobile host
detects that it has cross over some query boundary, it contacts the server to updates
the query results. Or when a mobile host leaves it rectangle area, it sends a request to
the server to get the new rectangle area and queries. Figure 3-6 shows the concept of

rectangle area, the mobile host in the figure is A with capability 2.

a Q2
Q3
Qg
4 Qa6 Q9
aii o
Ql2
® a7 Qlo

Figure 3-6 The rectangle area of mobile host A.

3.4 Query Assignment

3.4.1 Overview

The domain represents a rectangle area in geography. Query is also a rectangle

19

that overlaps the domain area. Their relationship is managed in the BP-Tree. The
server searches the BP-Tree down to the data node to find the mobile host’s position
in the query rectangle edges lists. Then it computes rectangle area for mobile hosts by
extending its border to include n queries to fit mobile host’s capability. The detail
design and algorithms are introduced below.
3.4.2 The method of Query Assignment

The AssignQuery algorithm input Domain Root D; and mobile host O; to assign
rectangle area and query for the mobile host. Initially, it calls FindDomain to find the
leaf domain where the mobile host in it. LoadList loads the data node inside the leaf
domain to retrieve the edge lists in it, and set two pointers point to the border of

domain rectangle. Then it calls ComputeRECT to compute the rectangle area.

AssignQuery(D;, O;)
{

FindDomain(D;, O;); /Find the leaf-domain D;where O; is in.
LoadList(D;); //Load the D;.X_list and D;.Y_list.
FindList(D;, O;); /Find O;’s position on the Query List.
e D;pX points to the first equivalent position or points to the first
element that is higher than O; on the D;.X_list.
e DipY points to the first equivalent position or points to the first
element that is higher than O; on the D;.Y_list.
e RECT = ComputeRECT(D;, Gj)
e Return RECT; //Return the Rectangle area and Queries for MH.

In ComputeRECT, it extends its rectangle area to enclose n queries to fit the
mobile host’s capability. It starts from the mobile host’s position. For each query
rectangle it reaches, we compute the minimum step from mobile host’s X-coordinate
to reach the boarder of Qiiert OF Qiright. And the minimum step from mobile host’s
Y-coordinate to reach the boarder of Qjtop OF Qigottom, respectively. Then we choose the
maximum of these two values as the step to extend to reach the query rectangle, stores

the query id and this value to the priority queue. Then it checks that the steps of

20

rectangle area extended are larger than the minimum step in the priority queue or not.
If it is true, it represents that the rectangle area has cross the query boundary. The
extend process is to adjust the domain edge border pointer that point to edge lists of
query rectangle in data node. We extend the rectangle from the position of mobile host.
If it reaches the border of current domain, it should load the edge lists in other data
node. LoadDomain algorithm checks the subdomain covered by the rectangle area,
calls MergeList to merge these ordered edge lists. If ComputeRECT has added n
queries, it returns the queries and current position of extended rectangle as the mobile

host’s rectangle area. Then the AssignQuery procedure completed.

ComputeRECT(D;, O;)

{
for (step=0; gcount < O;.n; step++)
{ /I O;.n: capability of O;
min_x = min(abs(0;.X - Di.pX.), abs(0;.X - Di.pXR))
min_y = min(abs(0;.Y - Di.pYr), abs(0;.Y - Di.pYs))
stepToGo=max(min_x, min_y);
AddtoPriorityQueue(Di.p, stepToGo) //Add query and step to PQ
if(P_MIN<step)
{//PQ’s smallest item’s key < step; Query is bounded.
O;.QList = O;.PQ.pop(step); //Pop items from PQ whose key<step
gcount++; //gcount is the total query added to O;
}
Di.pX_ <=NextElementInX_List;
Di.pXr <=NextElementInX_List;
Di.pYt <=NextElementlnY _L.ist;
Di.pYs <=NextElementlnY_L.ist;
if((Di.pXL< Di.XL) or (Di.pXgr> Di.Xg) or (D;.pY1> Di.YT) or
(Di.pXg<Di.Yg)) {LoadDomain(D, Dj); }
H/IEnd of for
}
LoadDomain(D, Dj)
{
Ds=Intersect(D, Rect(D;.pXy, Di.pXgr, Di.pYT, Di.pYs));
/[Find the Subdomains covered by Rectangle area
MergeL.ist(Ds, Dj); //Merge all List below D.
}

21

MergeL.ist(Ds, D)

{
if(Di.pXL< Di. XL) Merge(Ds.X_list, D;.X_list);
if(Di.pXr> Di.Xgr) Merge(D;.X_list, Ds.X_list);
if(Di.pYT> Di.YT1) Merge(Ds.Y _list, D;.Y_list);
if(Di.pXg < Di.Yg) Merge(D;.Y_list, Ds.Y_list);
MergeSort((Di. XL, Di.pXL), (Di.pXgr, Di.Xg), Ds.X_list(>D;.pX_. , <Di.pXr));
MergeSort((Di.Yg, Di.pYs), (Di.pYT, Di.YT), Ds.Y_list(>Di.pYt, <Di.pY3s));
}
2 [l]
1
1
17
! a - 9
1
1 as
; a8
11
1 a4 a6 a9
9
8
; at2 11 o
5
p |
3 as &7 ate
2
1
0 1 2 3 4 5 6 7 8 9 10 11 12 1314 15 18 17 18 19 20

Drx_“_"‘: Qi Q- par Qraer Laer Qo L iwe Ruan- Qe a1 Ruirr Qur st Q- aes Qo Can Lo Qns Cor R Qo Lem
D, ¥ _list-Cypp Qrpr Qsp Qi Qe Quor Qi2e- Quie- L Qure Qe Qg Lo Wope Qi Qe Qor Qi Qi Wap- G Qyr Qo et

Figure 3-7 The edge lists and the rectangle area of mobile host A.

At the end of Chapter 3, we demonstrate the procedure of Query Assignment. In
Figure 3-7, mobile host A’s position is (9,7) with capability 2. The grids do not exist
in our system. It is just to help us to see the steps clearly. At first, we found A on the
edge lists. In X_list of current data node, we start at Qs e, In Y_list of current data
node, we start at Qqitop and Qqo1op. Table 3-1 shows the detail procedure of query

assignment. The red colored words represent the data changed.

22

At Step 0, edges Qspeft, Qi1Top, and Qio1op are processed and their minimum
steps to the four edges are compared. The maximum of these two values and its id
stored to priority queue. Step 1 to Step 3 is similar. In the ComputeRECT Procedure
of step 3, the MAX(X,Y) and Priority Queue’s minimum key (P_MIN) is compared.
The AssignQuery procedure output query list contains Q6 and Q11 to the mobile host
A whose capability is 2. After pop the priority queue, the P_MIN is 3. And the
pointers which point to the position of next element in X_List and Y_List are also
returned as the rectangle area’s boundary. We also adjust the rectangle to extend as

large as possible until it is almost reach more than n queries.

Table 3-1 The Query Assignment Procedure

MIN MAX 1} .
Step | Query | STEP Priority Queue P_MIN Query List
(X,Y)
XY

0 Qs | 0| 6 67| Qu(2)7Q4(6), Q1»(6)

0 Qur [2] 0 2 2 -

0 | Qur |60 6

1 Qu |18 8 | Qs(1), Qui(2), Q7(3),

1 Qe | 1|1 1 | Qa(5), Qs(6), Qo(6),

1 Qwr |13 3 | Q3(6), Q12(6), Q2(8) 1)

1 Qs | 6|1 6

1 Qe |61 6

1 Qm |51 5

2 | Quor | 32| 3 |Qu(2) Qx«3),
Q10(3),Qa4(5), Qs(6), 5 o
Qq(6), Q3(6), Q12(6),
Q2(8)

Qr [3| 7] 7 [Q:«3) Qu(3),Qa(5),
Qst | 53] 5 |Qs(5),Qs(6), Qu(6), 3 06,011

Qa(6), Q12(6),
Q1(7),Q2(8)

23

3.5 Summary

In this chapter, we present the algorithm of query insertion, query result update
and query assignment algorithms in our system. We use the feature of mobile host’s
location and extend the rectangle area to fit mobile host’s capability. The analysis of

the dynamic query assignment is presents in Chapter 4.

24

Chapter 4 Analysis and Evaluation

In this thesis, we present a Query Result Update algorithm and a Query
Assignment algorithm. In this section, we will evaluate our proposed algorithms with
other methods. In the end of this chapter, we also show the simulation of our proposed

algorithm.

4.1 Query Result Update Algorithm

In the query result update algorithm, we propose the rectangle area concept to
reduce the number of location update. And it contains n queries for the mobile host to
share the load with server. We will'compare -our method with Resident Domain
concept which proposed by MQM.

In MQM, the subdomain ‘is partitioned by the threshold of the less capable
mobile host’s capability. The computation of resident domain is down from the root of
BP-Tree to the subdomain that the mobile host is<in and fits its capability. When the
mobile host moves out of its resident domain, it reports to the server to compute a
new resident domain. When the mobile host just exits its current domain, its position
is near the boundary of multiple resident domains. And the position reported by
mobile hosts from GPS may have some error. The mobile host may detect that it is
cross over its resident domain boundary. Figure 4-1 shows mobile host A’s movement
and Table 4-1 shows its position and corresponding resident domains. Because the
movement of the mobile host is not always linear and predictable, the mobile host
also nears the boundary of resident domain. This makes the mobile host send a lot of

request of resident domain request in a short time.

25

Figure 4-1 The mobile host A and its resident domain.

Table 4-1 The position and resident domain changes in Figure 4-1.

Position Resident Domain
In Dy RD 1
In D1y RD 2
InDy, RD.3
In-Dy RD 4
In D1, RD 3

Figure 4-2 The mobile host A and its rectangle area.
In our method, we compute rectangle area based on the mobile host’s position.
Figure 4-2 shows the concept of our algorithm. We assume the directions the mobile

host moves are random. The probability of choose each direction (North, Northeast,
26

East, Southeast, South, Southwest, West, Northwest) is equal. We extend the rectangle
area from the position of the mobile host and try to include n queries to fit the

capability of the mobile host.

4.2 Query Assignment Algorithm

The other part of this thesis is query assignment. We use BP-Tree in MQM to search
for the data node that corresponding to the mobile host’s position. In MQM, the server
searches subdomains in BP-Tree for the mobile host as the resident domain that the
mobile host is in and the queries in the subdomain may small or equal to the mobile
host’s capability. The split threshold ensures that every mobile host could be allocated
at least one resident domain. Figure 4-2 shows mobile host A with capability 12 is in
the subdomain D12, , and the size of D1z IS 8. The size is.smaller than mobile host A’s
capability. So Dy, is assigned to mobile host A as its.resident domain. The server
cannot assign D1, to mobile host A because the size of Dj,is 18, as we can see in

Figure 4-3. D1, fits the mobile host A’s capability, but there are better choices.

DJ.l ; DZ.L
Size:14 | Size:20
RD
D12y D12 D2,
Size:10 Size:8 Size:16

Figure 4-3 The mobile host A with capability 12 and its resident domain.

27

Domain D

Size: 68
1
f_l—
D, D,
Size:32 Size:36
I
—1 —l
Dll D]_z Dll D22
Size: 14 Size: 18 Size:20 Size:16
Din D12z \ y /J\\/
data node Size: 10 Size: 8 data node data node
Size: 14 | | Size:20 Size: 16
\-—/ \. _./ o S
data node data node
Size:10 Size:B
~—e

In our system, the size of the subdomain is the number of queries in it. A query
may span over multiple subdomains. Figure 4-4 shows query 1 span over Dy, Di,
D21, and D,,. Query 2 also spans.over two subdomains. Figure 4-5 shows the size in

each subdomain. We consider size as the different queries in that subdomain. Table

Figure4-4The BP-Tree of Figure 4-2.

4-2 shows that the comparison of range monitoring process algorithms.

Dy D,y
Size:2 Size:2
Q2
T Query 1t
DlZ D22
Size:2 Size:1

Q3

Figure 4-5 The size in subdomains.

28

Domain D
Size: 3

Dy
Size:2
I 1) I 1 .
Dy Ds» D, D>,
Size: 2 Size: 2 Size:2 Size:1
Size: 2 Size:2 Size:2 Size: 1
Figure 4-6 The size in BP-Tree.
Table 4-2The comparison.of algorithms
Name Simple Safe Region Resident Rectangle
Location Domain Area
Property Update (Proposed)
Distributed No No Yes Yes
Computing ability | No Yes Yes(more) Yes(more)
on MH
Memory Storage | No Yes Yes(more) Yes(more)
on MH
Compute a region | N/A O(n) to O(logn) O(n) to
for MH O(nlog3n) O(nlog3n)
n: the number of
queries

29

4.3 Simulation

In this thesis, we have implemented a simulator for MQM and our technique.
We measure the number of request for resident domain messages as the scalability
regard to the number of queries and the length of query rectangles. The movement
types of the mobile host in our system are random and linear. Figure 4-7 shows
random movement. The mobile hosts first start from a random position in the root
domain. Then randomly choose eight directions to move. When it moves out of the
root domain border, it restarts from origin (0, 0) and continue to move. If the step we
set to move is satisfied, it stops. Figure 4-8 shows linear movement. The mobile hosts

start from the origin (0, 0) to the Top-Right position of root domain rectangle.

%¢
O -0
o

\‘

Figure 4-7 Random movement.

Figure 4-8 Linear movement.
30

Table 4-2 shows the parameters of simulation 1. Figure 4-9 and Figure 4-10
show the result of simulation 1 under different movement type respectively.
Simulation 1 changes the number of queries from 1,000 to 10,000. In simulation 1(a),
the mobile host start at (50000, 50000) and randomly choose a direction to go. The
mobile host moves out its current resident domain and it sends a request for resident
domain message to the server. The server computes the new resident domain for the
mobile host. Because the movement of the mobile host is random, it can just enter the
resident domain and exit at next step. In MQM, the mobile host is near the border of
the new resident domain, so it may exit the current resident domain just computed and
request for a new one. This makes the number of request for resident domain
messages of MQM in simulation 1_much higher than our method. In contrast, as we
can see in simulation 1(b), the.movement is linear. In this case, MQM performs better.
Because the mobile host of .MQM is near the entry border of resident domain, the

distance to move out the other border of resident domain.rectangle is a little longer.

Table 4-3 The parameters of simulation 1.

Parameter Value
Domain space 2t'x2Y
Number of mobile host 1
Capability of mobile host 50
Query square length 1000
Start point of random move (50000, 50000)
Step of random move 500
Distance of random move 5400614
Distance of linear move 2y 212

31

Scalibility regarding to the number of queries

800

..oooi‘.
700 o

600 .

500 "

400 » e e e [VIQM

. = Proposed

200 =

/

100 /

1000 2000 3000 4000 5000 6000 7000_ 8000 S000 10000
Number of Queries

Number of Request for Resident Domain
Messages

Figure 4-9 Simulation.1(a) (Random movement).

Scalibility regarding to the number of queries

30

25 /
20
15 P e eee NMQV
e
L
10 S

Number of Request for Resident Domain
Messages

1000 2000 3000 4000 RPS?T] %{}0071;)8“%(}(}0689000 10000

Figure 4-10 Simulation 1(b) (Linear movement).
Table 4-3 shows the parameters of simulation 2. Figure 4-11 and Figure 4-12
show the result of simulation 2 under different movement type respectively.
Simulation 2 changes the length of query square from 1,000 to 10,000. In simulation

2(a), the mobile host also start at (50000, 50000) and randomly choose a direction to
32

go. The result in simulation 2 is similar to simulation 1. We can observe that the
length of query square can also affect the number of request for resident domain
message. Because the query square length can also affect the density of query in root
domain.

Table 4-4 The parameters of simulation 1.

Parameter Value
Domain space 212"
Number of mobile host 1
Capability of mobile host 50
Number of Query 5000
Start point of random move (50000, 50000)
Step of random 'move 500
Query‘length 1000~5000
Distance of random move 5400614
Distance of linear move 217x 212
Scalibility regarding to the length of queries
1400
-g 1200 P i =i
8 Lot
§ 1000 5
ke o
‘E Eﬂ 800 ,'-
Q m© «*
:: a .] - w v e MOM
‘é g GO0 = Proposed
3
E 400
°
é 200 ﬁ_—
3 —
(1]
1000 2000 3000 4000 5000 6000 /UU0D BOUU 2000 10000

Length of Query Square
Figure 4-11 Simulation 2(a) (Random movement)

33

Scalibility regarding to the length of queries

35
30 /
25

20 .
L]
/ . ee 0o MQM

15 *

Proposed

10

Number of Request for Resident
Domain Messages

1000 2000 3000 4000 5000 6000 7000 8000 S000 10000

Length of Query Square
Figure 4-12 Simulation 2(b) (Linear movement)

In simulation 3, the parameter of simulation is the same as Table 4-3. Figure 4-13
and figure 4-14 show the area ratio of rectangle area-and resident domain. The size of

rectangle area is usually larger than the size of resident domain.

In this chapter, we analysis our method of query location update and query

assignment. The mobile host’s position in resident domain and its move type will

affect the number of request for resident domain message.

34

Area Ratio of (Rectangle Area/Resident

Domain)
35
30
o 25 —
B
o 20 —
o 15 H = Ratio
S
o I I I I
s HH
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Number of Queries
Figure 4-13 Simulation 3(a) (Random movement)
AreaRatio of (Rectangle Area/Resident
Domain)
2
1.8
1.6
1.4
O
= 1.2
(T
e
© Rati
E 0.8 M Ratio
<
06
0.4
0.2
0

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Number of Queries
Figure 4-14 Simulation 3(b) (Linear movement)

35

Chapter 5 Conclusions and Future work

In this thesis, we present an algorithm for query result update and dynamic
query assignment. First, query result update algorithm computes a rectangle area for
each mobile host. When the mobile host is still in the rectangle area and does not
affect any query, it does not need to report to the server about the query result update.
Thus the communication cost is saved. Second, in dynamic query assignment, the
server also assigns queries to the mobile host based on the position and capability of
the mobile host.

In MQM, they proposed resident domain concept to solve query result update
problem and used BP-Tree to solve query assignment problem. However, the mobile
host may near the border of its resident domain. This makes the mobile host more
likely move out of its resident'domain. Thus the number of requests for resident
domain may be huge. Our method is modified from MQM. We extend the rectangle
area from the position of the mobile host. When the movement of the mobile host is
random, our method performs better.

In the future, we may extend our system to support processing on moving
queries over moving objects. There are many interesting applications based on the
LBS. We can modify our system to support various types of queries. The scalability of
the system is very important. One may change the distributed architecture to

peer-to-peer architecture.

36

References

[1]

[2]

3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

Kupper, A., Location-based Services: Fundamentals and Operation. 2005:
John Wiley & Sons.

D'Roza, T. and G. Bilchev, An Overview of Location-Based Services. BT
Technology Journal, 2003. 21(1): p. 20-27.

Dao, D., C. Rizos, and J. Wang, Location-based services: technical and
business issues. GPS Solutions, 2002. 6(3): p. 169-178.

Zhang, J., et al., Location-based spatial queries, in Proceedings of the 2003
ACM SIGMOD international conference on Management of data. 2003, ACM:
San Diego, California. p. 443-454.

Guttman, A., R-trees: a dynamic index structure for spatial searching.
SIGMOD Rec., 1984. 14(2): p. 47-57.

Song, Z. and N. Roussopoulos, K--Nearest Neighbor Search for Moving Query
Point. 2001. p. 79-96.

Tao, Y., D. Papadias;.and Q. Shen, Continuous. nearest neighbor search, in
Proceedings of the 28th international conference on Very Large Data Bases.
2002, VLDB Endowment: Hong Kong, China. p.-287-298.

Shamos, M.l. and D. Hoey. Closest-point problems. in Foundations of
Computer Science, 1975.,.16th. Annual Symposium on. 1975.

Hu, H., J. Xu, and D.L. Lee, A generic framework for monitoring continuous
spatial queries over moving objects, in Proceedings of the 2005 ACM
SIGMOD international conference on Management of data. 2005, ACM:
Baltimore, Maryland. p. 479-490.

Rowstron, A. and P. Druschel, Pastry: Scalable, Decentralized Object
Location, and Routing for Large-Scale Peer-to-Peer Systems. 2001. p. 329.
Yu, K., et al. A Location-Based Peer-to-Peer Network for Context-Aware
Services in a Ubiquitous Environment. in Applications and the Internet
Workshops, 2005. Saint Workshops 2005. The 2005 Symposium on. 2005.
Mokbel, M., et al., Continuous Query Processing of Spatio-Temporal Data
Streams in PLACE. Geolnformatica, 2005. 9(4): p. 343-365.

Ying, C., et al., Real-time processing of range-monitoring queries in
heterogeneous mobile databases. Mobile Computing, IEEE Transactions on,
2006. 5(7): p. 931-942,

Stojanovic, D., et al., Continuous range monitoring of mobile objects in road

37

[15]

[16]

[17]

[18]

networks. Data & Knowledge Engineering, 2008. 64(1): p. 77-100.

Mokbel, M.F.,, X. Xiong, and W.G. Aref, SINA: scalable incremental
processing of continuous queries in spatio-temporal databases, in Proceedings
of the 2004 ACM SIGMOD international conference on Management of data.
2004, ACM: Paris, France. p. 623-634.

Gedik, B. and L. Ling, MobiEyes: A Distributed Location Monitoring Service
Using Moving Location Queries. Mobile Computing, IEEE Transactions on,
2006. 5(10): p. 1384-1402.

Prabhakar, S., et al., Query Indexing and Velocity Constrained Indexing:
Scalable Techniques for Continuous Queries on Moving Objects. IEEE Trans.
Comput., 2002. 51(10): p. 1124-1140.

Six, HW. and D. Wood, The rectangle intersection problem revisited. BIT
Numerical Mathematics, 1980. 20(4): p. 426-433.

38

	組合
	c sign
	c sign001
	e sign002
	e sign003

