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基於虛擬機器做整體系統狀態回復 

研 究 生：許家維     指導教授：謝續平 博士 

 

國 立 交 通 大 學 

網 路 工 程 研 究 所 

 

摘要 

在除錯系統跟惡意軟體分析領域之中，系統執行狀態回復是一項很重要的議題。

系統回復不僅僅可以讓使用者清楚地知道當時出錯的狀況，也可以用於事後的還

原。然而，現今的系統日誌和系統回復的技術並無法被廣泛的被利用。原因就在

於系統回復的功能很難達成，且無法完全地、清楚地讓使用者詳細的知道系統狀

況。系統回復實做的難處在於下列幾點：1)大多數的狀態回復，只能針對單一程

序。2) 由於要獲得回復的資訊，可能要修改現有的作業系統或是軟體。3) 硬體

中斷和程序排程的資訊很難從軟體層獲得。4) 在系統回復的同時，要確保不會

影響到執行的結果。基於以上四點原因，我們利用虛擬機器實做出一個具有回復

性、準確性的回復系統。此系統對於軟體除錯、惡意程式分析和系統還原都具有

極大的貢獻。由於本系統只考慮紀錄不可變因素，已達到有效的減低系統回復的

運算量與其記錄的空間量。根據這些有效的記錄資訊，我們可以精確的回復系統

執行狀態，甚至確保指令執行的順序不被更變，而達到更正確的分析結果。
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Abstract 

Replaying of execution sequence and state transition of a system is very useful 

for software testing, malware analysis and post-attack recovery. However, existing 

system logging and replaying techniques have restricted abilities and hence cannot be 

applied widely. Most of them are unable to perform a general whole-system analysis 

for the following reasons: 1) It can only replay a single process's running. 2) 

Modification needs to be done in OS kernel 3) Non-deterministic events such as 

interrupts and context switches cannot be replayed. 4) An intrusive analysis might 

influence the replaying result. This paper proposed a general whole-system VM-based 

logging and replaying mechanism. To record efficiently, our scheme only takes 

non-deterministic information into account such as most hardware interrupts and 

non-deterministic data from external I/O devices. Based on the recorded data, the 

accuracy of the replaying is assured. The state transition of the whole-system can be 

perfectly replayed; even the execution sequence of all instructions is preserved. 
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1.  Introduction 

Replaying of virtual machine (VM) execution[1-8] is very useful to be applied to software 

testing[3, 4, 9, 10] and malware analysis. Many aspect of software testing make it become a 

complicated work because following reasons. First, non-deterministic event always occur in 

process execution such as hardware interrupts and software exceptions. Sometimes those 

non-deterministic events would not be recorded in system logs or debug messages. What is 

worse that it is hard to reproduce these events in a short time, such as race conditions and 

deadlocks. In some cases, the event cannot be reproduced at all because it is timing-related. 

To review the information, replaying the whole-system is the only option we have. Second, 

intrusive analysis would affect its result. No matter how the analysis is performed, instruction 

must be injected, which would always affect timing, even scheduling.  Virtual machines 

could help us analyze the target process non-intrusively.  

Malware analysis is another application of replaying execution. For example, some 

malwares would only be activated at a specific instant. After that, they may delete themselves 

to erase evidence of existence. Mostly, people analyze the malware after attacks. With 

replaying ability, programmer can analyze the attack process of malware on the fly. Some 

powerful analyzers use emulation, which require a large amount of computation. The 

overhead makes the analysis environment different from the real world. Consequently, we 

need a transparent replaying tool for malware analysis. 

Replaying has been drawing much attention due to its applicability. Numerous works has 

been done already. However, we believed that a successful replaying tool should provide 

following functionalities. 

1.1. Whole-system recording & replaying 

Conventional execution replaying techniques are defective on account of whole-system 
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replaying. Some works record system calls history for replaying and ignore hardware 

interrupts.  Thus they are heavily operating system dependent. It is a cumbersome work to 

maintain different recorder for different versions of system calls. There were also works 

which focus on replaying a single process by recording reads from IPC pipes, files, and all 

system calls. However, in modern software design a process may interact with numerous 

processes, libraries, or modules to accomplish its task. Without whole-system replaying 

mechanism, we can only acquire limited information. It may perform whole-system replaying 

by replaying all of them simultaneously; however the interaction and synchronization would 

be cumbersome. 

Another reason for taking hardware interrupts into consideration is correctness. Without 

hardware interrupts recorded, the dependency of threads would be impossible to be replayed 

perfectly. Besides, some of instructions can return non-deterministic or timing-dependent 

values directly without invoking system calls such as rdtsc (Read timestamp counter).  

Neither system call trapping nor single process replaying can replay such execution. 

1.2. Non-intrusive recording 

Recording of execution sequence causes reasonable time and space overhead. Hence, 

intrusive system recording would impact on results of execution dramatically[11]. To avoid 

unnecessary influence, we need to place recording component outside the system. VM-based 

recording could achieve this goal with little performance overhead. Besides, a virtual machine 

gives us full control over the whole-system; therefore, timing inaccuracy caused by recorder 

can be eliminated. Another advantage of using a virtual machine is that we need only record 

interrupts and external I/O of VM, since does not all internal events are deterministic.  
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1.3. Replaying correctness 

To perform a deterministic replay with correct sequence of execution, all inputs from 

external devices and unpredictable hardware interrupts must be recorded since they are 

non-deterministic factors. All non-deterministic events and their timing should be carefully 

logged, so we can replay them at the exact instant as in previous execution. By doing this, 

there is no non-deterministic factor in the replaying process, so that replaying correctness 

could be assured. 

1.4. Transparent replaying 

Most replay system claim they are fine-grain replay for analysis. Generally, the 

transparency depends on their analysis. For example, a database debugger tool always only 

care about the data dependency, a single process analyzer usually do not take the thread 

scheduling into account, a system developer just depends on log of system calls to imagine 

what taken place at system crash. But there are still many hidden information can make 

software analysis more clear such as content switch and hardware activity. That hidden 

information cannot be captured directly by software, so we need to use virtual machine to 

emulate above hardware activity. Our goal is that ensuring the instruction dependency is 

identical with previous execution, even the multi-thread process.  In other words, we replay 

total order of instruction by our replay system. 

In this paper, we proposed a whole-system, transparent and deterministic replaying system, 

which satisfy requirements listed above. It can replay the whole-system states 

instruction-by-instruction. Besides, we have a deterministic replay because of recording 

non-deterministic event in our logs. We implemented our system in QEMU, a faster 

dynamically binary translator, and can be used to integrate analysis tool for many purposes. 
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We can replay the transition of whole-system states with low space and compute overhead. 

Simultaneously, it is a transparent replay without any non-deterministic events.  

The rest of paper is organized as follow. Section 2 gives introduction to related works. In 

section 3 we formalize the replaying problem definition. Architecture of our system and 

implementation is given in Section 4. Some possible future works are shown in section 5. 

Finally, we conclude our work in section 6.
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2. Related Work 

Rollback system recovery and VM-based log analyzer are very popular in recent years. 

With zero day attack raise, computer security faces an unprecedented challenge. Virtual 

machine can provide an isolated environment for analyzing malware. It is also used for 

standalone system debugging as honeypot. Following are related works on replay system 

state: 

2.1. Jockey 

Jockey[12] is a record and replay tool for single process debugging in Linux. It do not 

need to change the target binary and any programming language or API. It can record the 

non-deterministic data by pre-loading as module. Jockey segregates resource of target 

program for avoiding being compromised. But it cannot record hardware level 

non-deterministic event such as memory access races, thread scheduling interrupt and 

interrupts. Jockey only focus on one simply process debugging but cumbersome 

whole-system debugging. 

2.2. Flashback 

Flashback[13] provides rollback and replay ability for software debugging. It forks a new 

process as shadow processes for checkpoint. Then it captures the memory state at specific 

execution point and interaction between processes. Nevertheless, Flashback cannot replay 

thread dependency correctly because it is hard to trap the interrupt of thread scheduling. 

Without the correctly context switching, the dependency of thread would be change at 

re-execution. Thus, even Flashback is a lightweight replay for software debugging; it cannot 



6 

 

debug some problems with hardware interrupts.  

2.3. Revirt 

Revirt[7] logs enough information for replay even in long-term system. Because of based 

on virtual-machine monitor (VMM), it needs to modify the kernels of guest OS. Revirt consist 

of two parties to monitor, one is guest user, and another is guest kernel. Both of them are 

building on host system as processes. By delivering signal SIGUSR1, the guest kernel can 

trap the system called by guest user. Additionally, it records non-deterministic events to 

follow a set pattern by using SIGIO and SIGSEGV. Revirt also replace some instruction can 

return non-deterministic results. Specifically, the rdtsc (read timestamp counter) and rdpmc 

(read performance monitoring counter) get CPU's information directly. It replaces that 

functionality by using other time-related system call. Thus the environment of whole-system 

would be some differences from real. Moreover, Revirt only replays specified guest system 

and have some restricts for guest OS. This feature makes Revirt losing generality for many 

applications. A useful replay system must achieve a transparent and general replaying for 

general purpose. 

2.4. XenLR 

XenLR[8] is achieved on a lightweight VM (Mini OS) replay. It causes a little time and 

space overhead to log the keystroke and time updating on Mini OS. XenLR do not think about 

file system and process interaction because of Xen, a vitalization VM so that many 

non-deterministic events cannot be capture. But in real system, the file system and threads are 

usually an essential part of the system.  
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2.5. BugNet 

BugNet[14] focuses on replaying application‟s execution and sequence of memory access, 

not a whole-system replay. It collects the execution information of program before crash. It 

uses the First-Load Log (FLL) to record the load instruction return value. They also record 

synchronization information by Memory Race Logs (MRL) so that it can replay race 

condition of memory.  

Even BugNet can replay at least tens of millions of instructions with low overhead, but it 

only cares about memory access. There are still many events it cannot replay such as 

hardware interrupts and I/O from device. Replay interval of BugNet can be terminated by 

interrupts and system calls, so it is still not enough for analysis if we wonder know what 

happened before several minutes. 

2.6. FDR 

FDR[15] can replay multi-processor with low overhead by using hardware recorder. To 

achieve faithful replay, all of external inputs in cache need to be recorded on each processor. 

It can provide approximately 1 second replay because of the size limitation of record buffer. 

However, FDR is hard to be applied widely because its short replay interval of system and 

hardware support. In our system, we use VM to make replay system more flexible to have 

long period replay. 

 

2.7. ExecRecorder 

Based on Bochs, ExecRecorder[5] perform hardware interrupts and whole-system replay. 

It can replay the executions of entire system by checkpoints and logs of non-deterministic 
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events. A checkpoint is a duplicate of Bochs VM process via the fork system call. When 

replaying the system, ExecRecorder invokes the suspended child process by SIGUSR1. Same 

as our system, the implementation of ExecRecorder does not address DMA and 

multiprocessors. But Bochs has heavy computation overhead in emulation so that it is hard to 

be applied in large-scale analysis.  

2.8. Summary 

All of above replay system cannot guarantee that the instruction order is absolutely 

identical with previous run. Ignoring the instruction dependency does not impact the analysis 

result of execution because they only care about race condition between multi-threads. Mostly, 

there are many system issues in virtue of instruction dependency such as cause of program 

crash and activity of malware. By only synchronizing resource of processes, which erases 

much information for instruction level analysis. In our system, we focus on instruction 

dependency and reproduce the same execution order to ensure the faithful analysis result. 
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Application Level Replay 

Flashback No No 
Single process, 

memory 
No 

Jockey No Partial 
Single process, 

memory 
No 

BugNet No Partial 
Single process, 

memory 
Yes 

System Level Replay 

Revirt Yes Yes 
Multi-thread 

dependency 
No 

Our Scheme Yes Yes 
Instruction 

dependency  
No 

XenLR Yes Partial 
Keyboard input, 

Time 
No 

ExecRecorder Yes Yes 
Multi-thread 

dependency 
No 

FDR Yes Yes Multi-processor Yes 

Table 2.1 Related work comparison 
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3. Problem Definition 

A machine state s is a set of states of register bank r, memory region m, and hardware disk 

content hd. Let us denote s = {r, m, hd}. We state that s = s’ if and only if s and s’ have same 

values in their register bank, memory and hard disk. Using the above definition of s, the state 

of a virtual machine M at the time i could be denoted as sMi. A special state sM0 stands for the 

initial system state. After executing n serious instructions, the trace of the state transition can 

be symbolized as SM = {sM0, sM1,  ..., sMn}. Now, we can formally define the replaying 

problem: 

Given M‟s trace of the state transition SM = {sM0, sM1,  ..., sMn}, we say that machine N 

replays M‟s execution SM if and only if sMn = sNn. Note that above definition does not require 

sMi = sNi for all 1≦i≦n. However, we believed that sMn = sNn is sufficient to imply that in 

most cases. 

 Obviously, s0 is the only information required to replay a system M on N without any 

non-determinism. Unfortunately, it is not the common case. A useful computational system 

always interacts with external data and commands. To perfectly replay such a system with 

non-deterministic inputs, we need this information, too. Let us denote all non-deterministic 

inputs happened during M„s execution as IM.  

In this work, we tried to implement a system which can: 

(1) Record IM during M„s execution. 

(2) Replay M‟s execution SM on N by feeding N with sM0 and IM. 
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4. System Overview 

Our system captures non-deterministic events by using virtual machine to achieve 

whole-system replay. We can roughly divide the replay procedures into three works. Firstly, 

virtual machine plays an important role of intercepting all the information of system. 

Secondly, we extract the non-deterministic events which are necessary information from 

record. Finally, the system state can be correct replayed with our recorded data. We would 

describe them in following. 

4.1. Virtual machine 

Virtual machine emulates hardware activity faithfully by software programming. In 

generally, the execution would be very similar to the physical computer. Because all the 

information of execution can be tracked, it is powerful to be applied for whole-system 

debugging. For example, we can access any location of memory or monitor all the executed 

instruction by CPU. Thus we implement our replay system on virtual machine. 

QEMU is a full system emulator in which unmodified operating system by using dynamic 

translator. The dynamic translator performs a runtime conversion of the target CPU 

instruction into the host instruction. Because of dynamic translator can be modified to add 

user functionality, every instruction would be monitored and controlled. QEMU also emulates 

interrupts and exception for correct execution. Hardware interrupts can be trapped and 

recorded for replay. Besides, QEMU enable external inputs from users such as mouse and 

keyboard and network. In other words, all the necessary replay information is included in 

serial states of QEMU.  

4.2. Tracking Non-deterministic Value 

By monitoring virtual machine, replay of system is taken as matter of course. With ability 
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of hardware computation rising, it is impossible to record all the state of system execution. 

However, a practical replay system should be low overhead. In our system, we implement an 

efficient re-generated whole-system replay of execution. To find the factor of system state 

transition is significant for decreasing complexity of recording. The source of factors can be 

called non-deterministic events because they cannot be predicted the timing and the value. 

With recorded non-deterministic events, replaying system can be simplified by using them to 

re-generate serious execution. For example, when we type a character from keyboard, the 

hardware interrupt is send before load keyboard value from port I/O. There are two 

non-deterministic cannot be re-generated in next execution. One is timing of interrupt and 

interrupt number, another is timing of load instruction and return value. If we replay those 

non-deterministic events exactly, the result of execution must be completely replayed with the 

same result of execution.  

 

Figure 4.1 Replaying scope of virtual machine 
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4.3. Record & Replay 

Efficient recording and fine-grain replaying is a trade-off. In recording phase, we hope the 

less computation the better. By doing this, the recording overhead is decreased but it might 

cause the replay information ambiguous. For example, if the packets from the Internet do not 

be recorded, it is hard to make the execution result correctly because content of packets are 

difficult to be re-generated. Our system takes many factors which can impact the execution 

into account such as user and hardware activity. We considerate those factors as 

non-deterministic events for replying.   

 

 

Figure 4.2. Our system overview 
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5. Non-determinism 

A non-deterministic event is one of the reasons for transiting system states. In our system, 

we considerate all the deterministic event, or you can call them arithmetic, are in the black 

box instead of non-deterministic event. The states of external devices, such as hardware disk, 

network card, keyboard and mouse, can be ignore because they are too complicated to 

synchronize their states as previous execution. However, it is also impossible to re-generate a 

real hardware signal during replay. Thus we record the data in VM hardware simulator, and 

then reply the return data at exact time. Our system only cares about hardware interrupt, port 

I/O, memory-mapped I/O and DMA (direct memory access). We discuss in details following. 

5.1. Hardware Interrupt  

Computers need interrupts to communicate with each external device. Numerous tasks are 

accomplished by them. For example, context-switching, disk I/O, DMA data transfer, etc. 

Interrupting is a way to disturb CPU execution, and hence becomes a source which generates 

non-deterministic events. However, not all of them are non-deterministic. For example, 

exceptions and software interrupts could never be non-deterministic. Exceptions are generated 

by deterministic execution of instructions existing in memory which remains constant before 

any hardware interrupt. A software interrupt can only be generated by instructions existing in 

memory, which is internal data storage. In other words, we can ignore all the exceptions and 

software interrupts and reduce time and space usage when recording. 

   QEMU translates the binary to translate blocks for execution. It will not be interrupted 

at anytime, so it checks whether interrupts are peddling or not before execution function. We 

modify this function for recording our interrupt, including instruction counter, which 

represents how many instructions are executed, interrupt number, the number indicate what 

should the PIC (programmable interrupt controller) handled. 
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5.2. External Input  

A non-deterministic event is one of the reasons for system state transitions. In our system, 

we only take account of the difference of execution between runs and record factors of change. 

However, system transition is arithmetic event so that it cannot change result with identical 

inputs. Thus we do not considerate all the outputs of every device. Also, we only care about 

the state of VM but other external device. The states of devices outside VM, such as hardware 

disk, network card, keyboard and mouse, can be ignore because they are too complicated to 

synchronize when replaying. For example, we can simply generate a keyboard interrupt in 

VM without synchronizing the state of real keyboard. It has no influence if we do not 

synchronize their states. Therefore, we record all non-deterministic events during original 

execution, and then reply them at exact time. Our system only takes hardware interrupts, port 

I/O, memory-mapped I/O and DMA (direct memory access) into account to record and replay 

efficiently. 

    Port I/O and memory-mapped IO are the same concept of the system inputs. Almost 

non-deterministic inputs of the system are from user or other computer. For example, a user 

types commands as input or receives a packet from other computer. Programs cannot decide 

when those data coming, this is a reason that external inputs are non-deterministic. 

5.3. Time Related Instruction & Clock 

Some instruction, rdtsc (Read Timestamp Counter) and rdpmc (read performance counter), 

can access data of CPU directly. It is possible to return different value in re-execution time as 

non-deterministic events. Because they cannot be trapped by hooking system calls or 

monitoring hardware interrupts, those instructions need to be handled to achieve record and 

replay ability.  However, we want to ensure the time of replay system is identical with 
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original run, so the return value must be replayed correctly with same value and same related 

time.  

All of hardware devices need clocks to work correctly. QEMU emulates clock interrupt 

which is used for context-switch by host system timer. When host timer sends a signal to 

QEMU, it will check which task is expired and selects next task from waiting queue. 

Replaying clocks becomes a difficult mission that we need to trigger the clock interrupts with 

correct value and correct timing. There are tens of millions instructions per seconds are 

computed on VM, and we need to decide which instruction should be corresponding to clock 

interrupts for context-switch. Without the same timing of content-switch, the order of 

instructions cannot be replayed because of different task dependency.     

5.4. DMA and Multi-processor 

DMA is another non-deterministic event in our system. DMA allows devices within the 

computer to access system memory independently of the CPU. We have to handle with this, 

because it would affect the integrity of data for read and write. This event is very difficult to 

synchronize between original executions and replay of recorded. When DMA happening, 

QEMU would read host disk for simulating the guest system's disk. In the real world, it is 

unlikely for accessing disk in the same time. However, we plan to propose a transparent 

replay system, and ensure all the sequence of execution is the same as previous. 

Synchronizing the state of memory and device transition is tricky, so we do not address this 

problem into our implementation. Therefore, all of DMA events are blocked during recording. 

By doing this, there are no any factors that can impact the correctness of replay system. 

Multi-processor is current trend of operating system. To synchronize the recourse of 

processor makes system debugging more complicate than before. In our system, we let the 

instruction order of re-execution is completely the same as recorded. Therefore, replaying 
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transparent multi-processor execution is so tricky that we do not solve this problem in our 

system. We disable the multi-processor ability on QEMU for correctness of replay. 
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6. Implementation 

In our system design, there are three components compose system replay ability record 

and replay.  Firstly, we need an initial checkpoint, which contains all the machine states. 

Secondly, non-deterministic events must be recorded by recorder. Finally, replayer uses the 

record to recover system execution. Following are our descriptions in detail. 

6.1. Checkpoint 

Checkpoint saves the virtual machine states, including states of device, memory, CPU 

register and the content of all the writable disks. The program execution is divided into 

multiple checkpoints. We can replay the system by using interval of checkpoints. Mostly, the 

early checkpoint is used to be the beginning of replay, and the later one is used to check the 

correctness of replay.  

We combine QEMU‟s snapshot with following information into our checkpoint header: 

Checkpoint Identifier (CID): Checkpoint identifier is used to decide the interval of 

replay.  There would be many checkpoints on virtual machine. For flexible replaying, we can 

choose two of all the checkpoints to be replay interval. 

 Interval Instruction Number: The interval instruction number help replay system to 

know when should stop replay. If the checkpoint is not last one, the interval instruction 

number would be the number of executed instructions to next one.   

Virtual Machine Snapshot Identifier: To record the states of virtual machine have been 

implemented by QEMU‟s snapshot. We integrate the snapshot into our checkpoint 

information. The ID of snapshot is associated with the recorded VM state.  

Log File Offset: When the VM is replaying, file offset can let replay system to know 

where the data begin. Because all the recorded data are in the same file, we can seek the 

record by using log file offset.  
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6.2. Recorder 

The record component logs the entire non-deterministic event into files. The component is 

made up many modification of QEMU. This part would record every non-deterministic event 

with ordering of instruction execution. Recorder is composed of many modifications to record 

emulated I/O and interrupts. We check the state of VM is recording or not when I/O operation 

or interrupts are taking place. If the state of VM is recording, we will record current data from 

I/O port or number of interrupt by our record function. We separate our implementation into 

several parts and describe them in detail as following. 

6.2.1. Instruction Counter 

To replay instruction dependency correctly, instruction counter plays an important role for 

instruction-related sequence. It counts how many instructions is virtual CPU computed. Each 

recorded event will be corresponding with one instruction counter. Instruction counter reveals 

not only the order of recorded events but also exact timing of replay. Additionally, it can help 

us to debug replay system when the sequence of re-execution events do not matched with 

recorded data. 

6.2.2. External Inputs 

Inputs can change execution result and influence execution state of process. For an 

operating system, transition of execution state can be varied by many kinds of external inputs, 

e. g. network packets, keyboard typing and mouse clicking. We consider user behavior and 

peripheral activity which are mentioned above to be non-deterministic events because of their 

unpredictability. Consequently, recording non-deterministic events into files makes them to 

be predictable during re-execution run. Besides, we also record additional information with 
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data type for decreasing log size. For example, the IA-32 allows transmission of data type can 

be a byte, word or a double word between peripheral. We compress additional information 

into simply integers to reduce the space overhead. 

6.2.3. Interrupts 

Interrupts are used to accomplish communication not only hardware but also software. 

System execution always accompanies interrupts when I/O request is issued or context-switch 

in multiprocessing system. QEMU invokes interrupts during executing instructions of guest 

system and handles them periodically. We record the interrupts in QEMU‟s handler function 

with corresponding instruction counter.   

6.2.4. Clock 

All of real world devices need clock to synchronize their operation, and QEMU, a 

machine emulator has no exception. QEMU emulates clock interrupts by using signal 

(SIGALARM, SIGIO), and those virtual interrupts are triggered when the specified signal are 

arriving. However, VM cannot predict host system activity, so it always emulates interrupts 

handling after emulating amount of code execution. To faithfully replay thread scheduling, 

the timing and the value of clocks must be recorded with corresponding instruction counter.  

Otherwise, it stands for the related timestamp. It is very significant for some of time 

dependent event such as rdtsc, rdpmc. We combine all above information for recording, a 

very simple format for decreasing record space. 
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6.3. Replayer 

We implemented transparency and deterministic replay in our system. All of the recorded 

data are corresponding to instruction counter for ensuring time dependency. Transition of the 

system state will be the same as previous recorded, including thread scheduling, interactions 

of process, hardware interrupts from external device and even data of packets from network. 

However, we do not take the fine-grain replaying of external devices states into account. One 

of the reasons, synchronizing state of external devices is more complicated than only 

replaying their output. For example, you can regenerate a packet from a website, but change 

the website status to send the packet like previously. In other words, states of external devices 

are not in our concern so that their states would not be transparent. 

Non-deterministic events are the determinants for achieving deterministic replay. A 

non-deterministic event causes a state transition without corresponding to previous states. By 

checking instruction counter, system states can be replayed predictably because of removing 

the entire non-deterministic factor. However, we let all the events be deterministic; in addition 

to we cannot handle such as DMA. During replay of system, all system events are 

deterministic.  

 

Figure 6.1 Implementation of recording and replaying 
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7. Evaluation 

Our replay system can be evaluated by two aspects; one is correctness, another is 

performance. First of all, we describe our experiment environment and design in detail. 

Secondly, correctness of system replaying can be verified by multi-threads scheduling. Finally, 

we evaluate the space overhead of recorded data. 

7.1. Evaluation Method 

To evaluate our system, we load a VM image of Ubuntu 9.04 which is one of popular 

Linux distributions for our experiment environment. It provides completely functionality for 

normal users, so our experiment result can be very close to real world system replaying. 

Besides, Ubuntu is convenient to evaluate replaying correctness, and replaying common 

operating system is more convinced than only replaying specified or small linux system. Our 

replay system only connects keyboard and mouse. The host system runs on Intel 2.5 GHz 

Dual core and 8GB of RAM. 

   To evaluate computation correctness, we design experiment to confirm that instruction 

dependency can be replayed. We write a testing program and the outputs will be delivered to 

host system. After replaying, guest system will create another copy in host system. By doing 

this, we can compare the content of two logs to ensure correctness of replaying. 

Simultaneously, we monitor the increase of log size and set host timer to calculate how much 

time does the experiment take. We evaluate correctness, space-overhead and 

computation –overhead in detail following. 
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7.2. Correctness Evaluation 

For general purpose, our replay system can replay many Linux command such as ps (lists 

all the active processes state), ls (lists directory content) and date (shows the system time). To 

replaying the foregoing commands, we must replay correct interrupts, user behavior, external 

inputs and time-related event (rdtsc). However, those events are instruction-dependency 

senseless that cannot highlight the accuracy of our replay system. Thus we design further 

complicated evaluation for instruction-level replaying. 

Instruction dependency can be reduced into multi-threads dependency. Because of thread 

is the smallest computing unit in most of operating system. Our system faithfully replays the 

timing of context-switch, and feeds recorded input value for correct condition branch. 

Therefore, we will have the same instruction dependency as recording runs. 

We implemented two experiment of multi-thread competition. Firstly, printing thread 

identity is a simply way to show the multi-threads ordering. Here is the sample code that 

prints the thread number. Every created thread is locked until the variable go is set. Because it 

is hard to predict which thread will be selected, the sequence of thread number is 

non-deterministic in real system. The possibility of re-generating the sequence is 1/n!, in 

other words, it is impossible to create two identical sequence when n is a large number. In our 

system, all of non-deterministic events are recorded including context-switch, thus we can 

replay the scheduling problem even with 100 threads.  
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Figure 7.1 Example of printing thread number (exp1) 

Another experiment is thread race-condition. The different instruction dependency will cause different result of access 

competition. Figure 4 is producer-consumer problem example code. Producers increase the share instance, and 

consumers decrease it. All of created threads modify the same variable item. Because it 

cannot be guaranteed that access variable item is atomic, some modification failures are due 

to other threads overriding. This experiment is repeated many times with 40 threads and save 

those output into log. Then we confirm whether the output is matched during replaying.    

 

Figure 7.2 Example of producer-consumer problem (exp2) 
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7.3. Performance & Storage 

Our replay system takes a few space-overhead and reasonable computation-overhead. 

Space-overhead of log are very small because of selective recording. Our replay system does 

not record all the executed instruction and all the I/O. We only take non-deterministic events 

into account for efficient recording. The log size average 350KB per minute; on the other 

hand, the recorded data increases 5.3 bytes per thousand of instructions. 

 

Figure 7.3 Increase of log size per minute with random number of threads printing 

The computation-overhead depends on the complexity of guest OS. We randomly execute 

linux command on small linux guest system, and execution time will cost about double times 

than native VM. Additionally, we also replay user behavior on Windows XP guest system, 

but the performance is not as good as small linux. The reason of computation slow down is 

that our replay system executes many condition branch and instructions. To count computed 

instructions, every instruction on guest system need to append an addition to instruction 

counter. However, the overhead of replaying is more than recording, because the recorded 

non-deterministic events must decide whether replays them or not each instruction.  

Otherwise, the number of non-deterministic events will affect the replaying performance. The 

more data is recorded, the slower replaying is. 
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Table 7.1 Computation-overhead of replaying 

 

Figure 7.4 Execution time of thread printing (exp1) 
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8. Future Work 

Our system is extendable for replay of DMA and malware analysis. Even replay of DMA 

is a difficult problem; because of DMA is asynchronous IO operation. When guest system 

launches a DMA transmission, the virtual CPU will wait for virtual DMA interrupts for 

ensuring job finished. The arriving time of virtual DMA interrupts depend on host system IO 

operation. Unfortunately, we cannot predict the time consumption of host system that it is 

hard to replay the virtual DMA interrupts correctly. But it still has a solution for replaying. 

We can halt the VM for waiting the host system data access finish. By doing this, guest 

system can access the data with correctly timing and keeps system states in a good shape. 

 Additionally, we plan to integrate a security analyzer in our system for security analysis 

tool such as dynamically taint analysis or intrusion detection system. It would be helpful for 

any kind of expensive compute consumption analysis. 
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9. Conclusion 

Replaying execution sequence and recording the state transition of a system are very 

useful for software testing, malware analysis and post-attack recovery. Unfortunately, current 

approaches cannot provide complete replaying functionalities therefore they cannot be applied 

widely. Whole-system replay can recover the complete situation of previous execution time. 

Non-intrusive recording can prevent the result from being interfered. Replaying correctly can 

guarantee that the sequence of executions is identical with that of the previous execution. 

We implement a system based on QEMU for transparent and deterministic whole-system 

replay. Moreover, we can save the space of logs by only caring about the impacts of 

non-deterministic. The sequence of system replay must be deterministic if every factor of 

states transition is predictable. Our system is extendable by integrating other security analysis 

tool, thus enables its wide application in the future.  

  



29 

 

10. Reference 

[1] P. Montesinos, L. Ceze, and J. Torrellas, “DeLorean: Recording and Deterministically 

Replaying Shared-Memory Multiprocessor Execution Ef?ciently,” in Proceedings of 

the 35th International Symposium on Computer Architecture, 2008. 

[2] P. Montesinos, M. Hicks, S. T. King et al., “Capo: a software-hardware interface for 

practical deterministic multiprocessor replay,” in Proceeding of the 14th international 

conference on Architectural support for programming languages and operating 

systems, Washington, DC, USA, 2009. 

[3] S. T. King, G. W. Dunlap, and P. M. Chen, “Debugging operating systems with 

time-traveling virtual machines,” in Proceedings of the annual conference on USENIX 

Annual Technical Conference, Anaheim, CA, 2005. 

[4] J. Chow, T. Garfinkel, and P. M. Chen, “Decoupling dynamic program analysis from 

execution in virtual environments,” in USENIX 2008 Annual Technical Conference 

on Annual Technical Conference, Boston, Massachusetts, 2008. 

[5] D. A. S. d. Oliveira, J. R. Crandall, G. Wassermann et al., “ExecRecorder: VM-based 

full-system replay for attack analysis and system recovery,” in Proceedings of the 1st 

workshop on Architectural and system support for improving software dependability, 

San Jose, California, 2006. 

[6] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman et al., “Execution replay of 

multiprocessor virtual machines,” in Proceedings of the fourth ACM 

SIGPLAN/SIGOPS international conference on Virtual execution environments, 

Seattle, WA, USA, 2008. 

[7] G. W. Dunlap, S. T. King, S. Cinar et al., “ReVirt: enabling intrusion analysis through 

virtual-machine logging and replay,” SIGOPS Oper. Syst. Rev., vol. 36, no. SI, pp. 

211--224, 2002. 

[8] H. Liu, H. Jin, X. Liao et al., “XenLR: Xen-based Logging for Deterministic Replay,” 

in Proceedings of the 2008 Japan-China Joint Workshop on Frontier of Computer 

Science and Technology, 2008. 

[9] F. Qin, J. Tucek, Y. Zhou et al., “Rx: Treating bugs as allergies---a safe method to 

survive software failures,” ACM Trans. Comput. Syst., vol. 25, no. 3, pp. 7, 2007. 

[10] J. Tucek, S. Lu, C. Huang et al., “Triage: diagnosing production run failures at the 

user's site,” in Proceedings of twenty-first ACM SIGOPS symposium on Operating 

systems principles, Stevenson, Washington, USA, 2007. 

[11] K. Nance, M. Bishop, and B. Hay, “Virtual Machine Introspection: Observation or 

Interference?,” IEEE Security and Privacy, vol. 6, no. 5, pp. 32--37, 2008. 

[12] S. Yasushi, “Jockey: a user-space library for record-replay debugging,” in Proceedings 



30 

 

of the sixth international symposium on Automated analysis-driven debugging, 

Monterey, California, USA, 2005. 

[13] S. M. Srinivasan, S. Kandula, C. R. Andrews et al., “Flashback: a lightweight 

extension for rollback and deterministic replay for software debugging,” in 

Proceedings of the annual conference on USENIX Annual Technical Conference, 

Boston, MA, 2004. 

[14] S. Narayanasamy, G. Pokam, and B. Calder, “BugNet: Continuously Recording 

Program Execution for Deterministic Replay Debugging,” in Proceedings of the 32nd 

annual international symposium on Computer Architecture, 2005. 

[15] M. Xu, R. Bodik, and M. D. Hill, “A "flight data recorder" for enabling full-system 

multiprocessor deterministic replay,” in Proceedings of the 30th annual international 

symposium on Computer architecture, San Diego, California, 2003. 

 

 


