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Student: Chia-Wei Hsu Advisor: Dr. Shiuhpyng Shieh

Department of Network Engineering
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Abstract

Replaying of execution sequence and state transition of a system is very useful
for software testing, malware analysis and post-attack recovery. However, existing
system logging and replaying techniques-have restricted abilities and hence cannot be
applied widely. Most of them ‘are .unable to perform a general whole-system analysis
for the following reasons: 1) It can only replay a single process's running. 2)
Modification needs to be done in OS kernel 3) Non-deterministic events such as
interrupts and context switches cannot be replayed. 4) An intrusive analysis might
influence the replaying result. This paper proposed a general whole-system VM-based
logging and replaying mechanism. To record efficiently, our scheme only takes
non-deterministic information into account such as most hardware interrupts and
non-deterministic data from external I/0O devices. Based on the recorded data, the
accuracy of the replaying is assured. The state transition of the whole-system can be

perfectly replayed; even the execution sequence of all instructions is preserved.
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1. Introduction

Replaying of virtual machine (VM) execution[1-8] is very useful to be applied to software
testing[3, 4, 9, 10] and malware analysis. Many aspect of software testing make it become a
complicated work because following reasons. First, non-deterministic event always occur in
process execution such as hardware interrupts and software exceptions. Sometimes those
non-deterministic events would not be recorded in system logs or debug messages. What is
worse that it is hard to reproduce these events in a short time, such as race conditions and
deadlocks. In some cases, the event cannot be reproduced at all because it is timing-related.
To review the information, replaying the whole-system is the only option we have. Second,
intrusive analysis would affect its result. No matter how the analysis is performed, instruction
must be injected, which would. always affect timing, even scheduling. Virtual machines
could help us analyze the target process non-intrusively.

Malware analysis is another application of. replaying execution. For example, some
malwares would only be activated at a specific instant. After that, they may delete themselves
to erase evidence of existence. Mostly, people analyze the malware after attacks. With
replaying ability, programmer can analyze the attack process of malware on the fly. Some
powerful analyzers use emulation, which require a large amount of computation. The
overhead makes the analysis environment different from the real world. Consequently, we
need a transparent replaying tool for malware analysis.

Replaying has been drawing much attention due to its applicability. Numerous works has
been done already. However, we believed that a successful replaying tool should provide

following functionalities.

1.1. Whole-system recording & replaying

Conventional execution replaying techniques are defective on account of whole-system
1



replaying. Some works record system calls history for replaying and ignore hardware
interrupts. Thus they are heavily operating system dependent. It is a cumbersome work to
maintain different recorder for different versions of system calls. There were also works
which focus on replaying a single process by recording reads from IPC pipes, files, and all
system calls. However, in modern software design a process may interact with numerous
processes, libraries, or modules to accomplish its task. Without whole-system replaying
mechanism, we can only acquire limited information. It may perform whole-system replaying
by replaying all of them simultaneously; however the interaction and synchronization would
be cumbersome.

Another reason for taking hardware interrupts into consideration is correctness. Without
hardware interrupts recorded, the dependency ‘of threads would be impossible to be replayed
perfectly. Besides, some of instructions ' can return non-deterministic or timing-dependent
values directly without invoking system calls such as. rdtsc (Read timestamp counter).

Neither system call trapping nor single process replaying can replay such execution.

1.2. Non-intrusive recording

Recording of execution sequence causes reasonable time and space overhead. Hence,
intrusive system recording would impact on results of execution dramatically[11]. To avoid
unnecessary influence, we need to place recording component outside the system. VM-based
recording could achieve this goal with little performance overhead. Besides, a virtual machine
gives us full control over the whole-system; therefore, timing inaccuracy caused by recorder
can be eliminated. Another advantage of using a virtual machine is that we need only record

interrupts and external 1/0 of VM, since does not all internal events are deterministic.



1.3. Replaying correctness

To perform a deterministic replay with correct sequence of execution, all inputs from
external devices and unpredictable hardware interrupts must be recorded since they are
non-deterministic factors. All non-deterministic events and their timing should be carefully
logged, so we can replay them at the exact instant as in previous execution. By doing this,
there is no non-deterministic factor in the replaying process, so that replaying correctness

could be assured.

1.4. Transparent replaying

Most replay system claim they. are. fine-grain replay for analysis. Generally, the
transparency depends on their analysis. For example, a database debugger tool always only
care about the data dependency, a single process analyzer usually do not take the thread
scheduling into account, a system developer just depends on log of system calls to imagine
what taken place at system crash. But there are.still many hidden information can make
software analysis more clear such as content switch and hardware activity. That hidden
information cannot be captured directly by software, so we need to use virtual machine to
emulate above hardware activity. Our goal is that ensuring the instruction dependency is
identical with previous execution, even the multi-thread process. In other words, we replay
total order of instruction by our replay system.

In this paper, we proposed a whole-system, transparent and deterministic replaying system,
which satisfy requirements listed above. It can replay the whole-system states
instruction-by-instruction. Besides, we have a deterministic replay because of recording
non-deterministic event in our logs. We implemented our system in QEMU, a faster

dynamically binary translator, and can be used to integrate analysis tool for many purposes.



We can replay the transition of whole-system states with low space and compute overhead.
Simultaneously, it is a transparent replay without any non-deterministic events.

The rest of paper is organized as follow. Section 2 gives introduction to related works. In
section 3 we formalize the replaying problem definition. Architecture of our system and
implementation is given in Section 4. Some possible future works are shown in section 5.

Finally, we conclude our work in section 6.



2. Related Work

Rollback system recovery and VM-based log analyzer are very popular in recent years.
With zero day attack raise, computer security faces an unprecedented challenge. Virtual
machine can provide an isolated environment for analyzing malware. It is also used for
standalone system debugging as honeypot. Following are related works on replay system

state:

2.1. Jockey

Jockey[12] is a record and replay tool for single process debugging in Linux. It do not
need to change the target binary and-any -programming language or API. It can record the
non-deterministic data by pre-loading as module. Jockey segregates resource of target
program for avoiding being .compromised. -But it cannot record hardware level
non-deterministic event such as"imemory._aceess races, thread scheduling interrupt and
interrupts. Jockey only focus on one simply process debugging but cumbersome

whole-system debugging.

2.2. Flashback

Flashback[13] provides rollback and replay ability for software debugging. It forks a new
process as shadow processes for checkpoint. Then it captures the memory state at specific
execution point and interaction between processes. Nevertheless, Flashback cannot replay
thread dependency correctly because it is hard to trap the interrupt of thread scheduling.
Without the correctly context switching, the dependency of thread would be change at
re-execution. Thus, even Flashback is a lightweight replay for software debugging; it cannot

5



debug some problems with hardware interrupts.

2.3. Revirt

Revirt[7] logs enough information for replay even in long-term system. Because of based
on virtual-machine monitor (VMM), it needs to modify the kernels of guest OS. Revirt consist
of two parties to monitor, one is guest user, and another is guest kernel. Both of them are
building on host system as processes. By delivering signal SIGUSR1, the guest kernel can
trap the system called by guest user. Additionally, it records non-deterministic events to
follow a set pattern by using SIGIO and SIGSEGV. Revirt also replace some instruction can
return non-deterministic results. Specifically, the rdtsc (read timestamp counter) and rdpmc
(read performance monitoring counter) get CPU's information directly. It replaces that
functionality by using other time-related system call. Thus the environment of whole-system
would be some differences fromreal. Moreover, Revirt only replays specified guest system
and have some restricts for guest OS. This feature makes Revirt losing generality for many
applications. A useful replay system must achieve a transparent and general replaying for

general purpose.

2.4. XenLR

XenLR[8] is achieved on a lightweight VM (Mini OS) replay. It causes a little time and
space overhead to log the keystroke and time updating on Mini OS. XenLR do not think about
file system and process interaction because of Xen, a vitalization VM so that many
non-deterministic events cannot be capture. But in real system, the file system and threads are

usually an essential part of the system.



2.5. BugNet

BugNet[14] focuses on replaying application’s execution and sequence of memory access,
not a whole-system replay. It collects the execution information of program before crash. It
uses the First-Load Log (FLL) to record the load instruction return value. They also record
synchronization information by Memory Race Logs (MRL) so that it can replay race
condition of memory.

Even BugNet can replay at least tens of millions of instructions with low overhead, but it
only cares about memory access. There are still many events it cannot replay such as
hardware interrupts and 1/O from device. Replay interval of BugNet can be terminated by
interrupts and system calls, so it is_still not énough for analysis if we wonder know what

happened before several minutes:

2.6. FDR

FDR[15] can replay multi-processor with low.overhead by using hardware recorder. To
achieve faithful replay, all of external inputs in cache need to be recorded on each processor.
It can provide approximately 1 second replay because of the size limitation of record buffer.
However, FDR is hard to be applied widely because its short replay interval of system and
hardware support. In our system, we use VM to make replay system more flexible to have

long period replay.

2.7. ExecRecorder

Based on Bochs, ExecRecorder[5] perform hardware interrupts and whole-system replay.

It can replay the executions of entire system by checkpoints and logs of non-deterministic



events. A checkpoint is a duplicate of Bochs VM process via the fork system call. When
replaying the system, ExecRecorder invokes the suspended child process by SIGUSR1. Same
as our system, the implementation of ExecRecorder does not address DMA and
multiprocessors. But Bochs has heavy computation overhead in emulation so that it is hard to

be applied in large-scale analysis.

2.8. Summary

All of above replay system cannot guarantee that the instruction order is absolutely
identical with previous run. Ignoring the instruction dependency does not impact the analysis
result of execution because they only care about race condition between multi-threads. Mostly,
there are many system issues in virtue of instruction dependency such as cause of program
crash and activity of malware, ‘By only Synchronizing.resource of processes, which erases
much information for instruction level analysis. In-our system, we focus on instruction

dependency and reproduce the same execution order to ensure the faithful analysis result.
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3. Problem Definition

A machine state s is a set of states of register bank r, memory region m, and hardware disk
content hd. Let us denote s = {r, m, hd}. We state that s = s’ if and only if s and s’ have same
values in their register bank, memory and hard disk. Using the above definition of s, the state
of a virtual machine M at the time i could be denoted as sui. A special state sy stands for the

initial system state. After executing n serious instructions, the trace of the state transition can

be symbolized as Sy = {Smo, Sm1, ..., Smn}. Now, we can formally define the replaying
problem:
Given M’s trace of the state transition Sy = {Swvio, Sm1, ..., Smn}, We say that machine N

replays M’s execution Sy if and only if syin= Snn. Note that above definition does not require
swi = Sni for all 1=i=n. However, we believed that smn = Snn is sufficient to imply that in
most cases.

Obviously, s is the only-information required to replay a system M on N without any
non-determinism. Unfortunately, it.is'not the common-case. A useful computational system
always interacts with external data and ‘commands. To perfectly replay such a system with
non-deterministic inputs, we need this information, too. Let us denote all non-deterministic
inputs happened during M*s execution as I.

In this work, we tried to implement a system which can:
(1) Record Iy during M‘s execution.

(2) Replay M’s execution Sy on N by feeding N with syoand ly.

10



4. System Overview

Our system captures non-deterministic events by using virtual machine to achieve
whole-system replay. We can roughly divide the replay procedures into three works. Firstly,
virtual machine plays an important role of intercepting all the information of system.
Secondly, we extract the non-deterministic events which are necessary information from
record. Finally, the system state can be correct replayed with our recorded data. We would

describe them in following.

4.1. Virtual machine

Virtual machine emulates hardware ractivity faithfully by software programming. In
generally, the execution would.be very similar to the physical computer. Because all the
information of execution can. be tracked, it is° powerful to be applied for whole-system
debugging. For example, we can access-any location of memory or monitor all the executed
instruction by CPU. Thus we implement our replay system on virtual machine.

QEMU is a full system emulator in‘which unmodified operating system by using dynamic
translator. The dynamic translator performs a runtime conversion of the target CPU
instruction into the host instruction. Because of dynamic translator can be modified to add
user functionality, every instruction would be monitored and controlled. QEMU also emulates
interrupts and exception for correct execution. Hardware interrupts can be trapped and
recorded for replay. Besides, QEMU enable external inputs from users such as mouse and
keyboard and network. In other words, all the necessary replay information is included in

serial states of QEMU.

4.2. Tracking Non-deterministic Value

By monitoring virtual machine, replay of system is taken as matter of course. With ability
11



of hardware computation rising, it is impossible to record all the state of system execution.
However, a practical replay system should be low overhead. In our system, we implement an
efficient re-generated whole-system replay of execution. To find the factor of system state
transition is significant for decreasing complexity of recording. The source of factors can be
called non-deterministic events because they cannot be predicted the timing and the value.
With recorded non-deterministic events, replaying system can be simplified by using them to
re-generate serious execution. For example, when we type a character from keyboard, the
hardware interrupt is send before load keyboard value from port 1/O. There are two
non-deterministic cannot be re-generated in next execution. One is timing of interrupt and
interrupt number, another is timing of load instruction and return value. If we replay those
non-deterministic events exactly, the result of éxecution must be completely replayed with the

same result of execution.

ALU registers \/
Memory
Processor Disk
Control unit

Data Bus
Bus

nterface | |do 1 ] ||

Control Bus

- Interrupt
controller

Figure 4.1 Replaying scope of virtual machine
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4.3. Record & Replay

Efficient recording and fine-grain replaying is a trade-off. In recording phase, we hope the
less computation the better. By doing this, the recording overhead is decreased but it might
cause the replay information ambiguous. For example, if the packets from the Internet do not
be recorded, it is hard to make the execution result correctly because content of packets are
difficult to be re-generated. Our system takes many factors which can impact the execution
into account such as user and hardware activity. We considerate those factors as

non-deterministic events for replying.

Non- Guest System
deterministic R==1S1E \ Non-

events Al deterministic
events

Virtual Machine Monitor
Recorder FVMM) Replayer

Non-
deterministic
events

HOST System

Figure 4.2. Our system overview
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5. Non-determinism

A non-deterministic event is one of the reasons for transiting system states. In our system,
we considerate all the deterministic event, or you can call them arithmetic, are in the black
box instead of non-deterministic event. The states of external devices, such as hardware disk,
network card, keyboard and mouse, can be ignore because they are too complicated to
synchronize their states as previous execution. However, it is also impossible to re-generate a
real hardware signal during replay. Thus we record the data in VM hardware simulator, and
then reply the return data at exact time. Our system only cares about hardware interrupt, port

1/0, memory-mapped 1/0 and DMA (direct memory access). We discuss in details following.

5.1. Hardware Interrupt

Computers need interrupts-to communicate with each-external device. Numerous tasks are
accomplished by them. For example, context-switching, disk 1/0, DMA data transfer, etc.
Interrupting is a way to disturb CPU execution, and-hence becomes a source which generates
non-deterministic events. However, not ‘all. of them are non-deterministic. For example,
exceptions and software interrupts could never be non-deterministic. Exceptions are generated
by deterministic execution of instructions existing in memory which remains constant before
any hardware interrupt. A software interrupt can only be generated by instructions existing in
memory, which is internal data storage. In other words, we can ignore all the exceptions and
software interrupts and reduce time and space usage when recording.

QEMU translates the binary to translate blocks for execution. It will not be interrupted
at anytime, so it checks whether interrupts are peddling or not before execution function. We
modify this function for recording our interrupt, including instruction counter, which
represents how many instructions are executed, interrupt number, the number indicate what

should the PIC (programmable interrupt controller) handled.
14



5.2. External Input

A non-deterministic event is one of the reasons for system state transitions. In our system,
we only take account of the difference of execution between runs and record factors of change.
However, system transition is arithmetic event so that it cannot change result with identical
inputs. Thus we do not considerate all the outputs of every device. Also, we only care about
the state of VM but other external device. The states of devices outside VM, such as hardware
disk, network card, keyboard and mouse, can be ignore because they are too complicated to
synchronize when replaying. For example, we can simply generate a keyboard interrupt in
VM without synchronizing the state of real keyboard. It has no influence if we do not
synchronize their states. Therefore, we ‘record-all non-deterministic events during original
execution, and then reply them at exact time. Our system only takes hardware interrupts, port
1/0, memory-mapped 1/0O and DMA (direct memory access) into account to record and replay
efficiently.

Port 1/0 and memory-mapped 1O are the same concept of the system inputs. Almost
non-deterministic inputs of the system are from user or other computer. For example, a user
types commands as input or receives a packet from other computer. Programs cannot decide

when those data coming, this is a reason that external inputs are non-deterministic.

5.3. Time Related Instruction & Clock

Some instruction, rdtsc (Read Timestamp Counter) and rdpmc (read performance counter),
can access data of CPU directly. It is possible to return different value in re-execution time as
non-deterministic events. Because they cannot be trapped by hooking system calls or
monitoring hardware interrupts, those instructions need to be handled to achieve record and

replay ability. However, we want to ensure the time of replay system is identical with

15



original run, so the return value must be replayed correctly with same value and same related
time.

All of hardware devices need clocks to work correctly. QEMU emulates clock interrupt
which is used for context-switch by host system timer. When host timer sends a signal to
QEMU, it will check which task is expired and selects next task from waiting queue.
Replaying clocks becomes a difficult mission that we need to trigger the clock interrupts with
correct value and correct timing. There are tens of millions instructions per seconds are
computed on VM, and we need to decide which instruction should be corresponding to clock
interrupts for context-switch. Without the same timing of content-switch, the order of

instructions cannot be replayed because of different task dependency.

5.4. DMA and Multi-processor

DMA is another non-deterministic event in-our system. DMA allows devices within the
computer to access system memory independently of the CPU. We have to handle with this,
because it would affect the integrity.of data for read-and write. This event is very difficult to
synchronize between original executions and replay of recorded. When DMA happening,
QEMU would read host disk for simulating the guest system's disk. In the real world, it is
unlikely for accessing disk in the same time. However, we plan to propose a transparent
replay system, and ensure all the sequence of execution is the same as previous.
Synchronizing the state of memory and device transition is tricky, so we do not address this
problem into our implementation. Therefore, all of DMA events are blocked during recording.
By doing this, there are no any factors that can impact the correctness of replay system.

Multi-processor is current trend of operating system. To synchronize the recourse of
processor makes system debugging more complicate than before. In our system, we let the

instruction order of re-execution is completely the same as recorded. Therefore, replaying

16



transparent multi-processor execution is so tricky that we do not solve this problem in our

system. We disable the multi-processor ability on QEMU for correctness of replay.

17



6. Implementation

In our system design, there are three components compose system replay ability record
and replay. Firstly, we need an initial checkpoint, which contains all the machine states.
Secondly, non-deterministic events must be recorded by recorder. Finally, replayer uses the

record to recover system execution. Following are our descriptions in detail.

6.1. Checkpoint

Checkpoint saves the virtual machine states, including states of device, memory, CPU
register and the content of all the writable disks. The program execution is divided into
multiple checkpoints. We can replay the system. by using interval of checkpoints. Mostly, the
early checkpoint is used to be the beginning.of replay,-and the later one is used to check the
correctness of replay.

We combine QEMU’s snapshot with following information into our checkpoint header:

Checkpoint Identifier (CID):. Checkpoint identifier is used to decide the interval of
replay. There would be many checkpoints onvirtual machine. For flexible replaying, we can
choose two of all the checkpoints to be replay interval.

Interval Instruction Number: The interval instruction number help replay system to
know when should stop replay. If the checkpoint is not last one, the interval instruction
number would be the number of executed instructions to next one.

Virtual Machine Snapshot Identifier: To record the states of virtual machine have been
implemented by QEMU’s snapshot. We integrate the snapshot into our checkpoint
information. The ID of snapshot is associated with the recorded VM state.

Log File Offset: When the VM s replaying, file offset can let replay system to know
where the data begin. Because all the recorded data are in the same file, we can seek the

record by using log file offset.
18



6.2. Recorder

The record component logs the entire non-deterministic event into files. The component is
made up many modification of QEMU. This part would record every non-deterministic event
with ordering of instruction execution. Recorder is composed of many modifications to record
emulated I/O and interrupts. We check the state of VM is recording or not when 1/O operation
or interrupts are taking place. If the state of VM is recording, we will record current data from
I/0 port or number of interrupt by our record function. We separate our implementation into

several parts and describe them in detail as following.

6.2.1. Instruction Counter

To replay instruction dependency correctly, instruction counter plays an important role for
instruction-related sequence. It counts how many instructions is virtual CPU computed. Each
recorded event will be corresponding with-one instruction counter. Instruction counter reveals
not only the order of recorded events. but also exact-timing of replay. Additionally, it can help
us to debug replay system when the sequence of re-execution events do not matched with

recorded data.

6.2.2. External Inputs

Inputs can change execution result and influence execution state of process. For an
operating system, transition of execution state can be varied by many kinds of external inputs,
e. g. network packets, keyboard typing and mouse clicking. We consider user behavior and
peripheral activity which are mentioned above to be non-deterministic events because of their
unpredictability. Consequently, recording non-deterministic events into files makes them to

be predictable during re-execution run. Besides, we also record additional information with
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data type for decreasing log size. For example, the 1A-32 allows transmission of data type can
be a byte, word or a double word between peripheral. We compress additional information

into simply integers to reduce the space overhead.

6.2.3. Interrupts

Interrupts are used to accomplish communication not only hardware but also software.
System execution always accompanies interrupts when 1/O request is issued or context-switch
in multiprocessing system. QEMU invokes interrupts during executing instructions of guest
system and handles them periodically. We record the interrupts in QEMU’s handler function

with corresponding instruction counter.

6.2.4. Clock

All of real world devices need clock to Synchronize their operation, and QEMU, a
machine emulator has no exception. QEMU emulates clock interrupts by using signal
(SIGALARM, SIGIO), and those virtual interrupts.are triggered when the specified signal are
arriving. However, VM cannot predict host system activity, so it always emulates interrupts
handling after emulating amount of code execution. To faithfully replay thread scheduling,
the timing and the value of clocks must be recorded with corresponding instruction counter.

Otherwise, it stands for the related timestamp. It is very significant for some of time
dependent event such as rdtsc, rdpmc. We combine all above information for recording, a

very simple format for decreasing record space.
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6.3. Replayer

We implemented transparency and deterministic replay in our system. All of the recorded
data are corresponding to instruction counter for ensuring time dependency. Transition of the
system state will be the same as previous recorded, including thread scheduling, interactions
of process, hardware interrupts from external device and even data of packets from network.
However, we do not take the fine-grain replaying of external devices states into account. One
of the reasons, synchronizing state of external devices is more complicated than only
replaying their output. For example, you can regenerate a packet from a website, but change
the website status to send the packet like previously. In other words, states of external devices
are not in our concern so that their states would not be transparent.

Non-deterministic events are the determinants. for achieving deterministic replay. A
non-deterministic event causes a state transition without corresponding to previous states. By
checking instruction counter, 'System states can be replayed predictably because of removing
the entire non-deterministic factor. However, we let-all.the events be deterministic; in addition
to we cannot handle such as DMA. During replay of system, all system events are

deterministic.

VM (QEMU)

/ Interrupts \ ( Memory mapped I/O\ / Port I/O \

VM Interrupt

L == EWMM,J EWJ

Replayer Recorder Replayer l Recorder ‘ Replayer ‘ ‘ Recorder

A N4
v

‘ logs

Figure 6.1 Implementation of recording and replaying
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7. Evaluation

Our replay system can be evaluated by two aspects; one is correctness, another is
performance. First of all, we describe our experiment environment and design in detail.
Secondly, correctness of system replaying can be verified by multi-threads scheduling. Finally,

we evaluate the space overhead of recorded data.

7.1. Evaluation Method

To evaluate our system, we load a VM image of Ubuntu 9.04 which is one of popular
Linux distributions for our experiment environment. It provides completely functionality for
normal users, so our experiment result.can-be very close to real world system replaying.
Besides, Ubuntu is convenient. to evaluate. replaying: correctness, and replaying common
operating system is more convinced than only: replaying specified or small linux system. Our
replay system only connects keyboard and mouse. The-host system runs on Intel 2.5 GHz
Dual core and 8GB of RAM.

To evaluate computation correctness, we design experiment to confirm that instruction
dependency can be replayed. We write a testing program and the outputs will be delivered to
host system. After replaying, guest system will create another copy in host system. By doing
this, we can compare the content of two logs to ensure correctness of replaying.
Simultaneously, we monitor the increase of log size and set host timer to calculate how much
time does the experiment take. We evaluate correctness, space-overhead and

computation —overhead in detail following.
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7.2. Correctness Evaluation

For general purpose, our replay system can replay many Linux command such as ps (lists
all the active processes state), Is (lists directory content) and date (shows the system time). To
replaying the foregoing commands, we must replay correct interrupts, user behavior, external
inputs and time-related event (rdtsc). However, those events are instruction-dependency
senseless that cannot highlight the accuracy of our replay system. Thus we design further
complicated evaluation for instruction-level replaying.

Instruction dependency can be reduced into multi-threads dependency. Because of thread
is the smallest computing unit in most of operating system. Our system faithfully replays the
timing of context-switch, and feeds. recorded .input value for correct condition branch.
Therefore, we will have the same instruction dependency as recording runs.

We implemented two experiment of multi-thread competition. Firstly, printing thread
identity is a simply way to show the multi-threads ordering. Here is the sample code that
prints the thread number. Every created thread is locked until the variable go is set. Because it
is hard to predict which thread will" be “selected, the sequence of thread number is
non-deterministic in real system. The possibility of re-generating the sequence is 1/n!, in
other words, it is impossible to create two identical sequence when n is a large number. In our
system, all of non-deterministic events are recorded including context-switch, thus we can

replay the scheduling problem even with 100 threads.
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void *hello(void *arg)

{
while(go==0);
parm *p=(parm *)arg;
printf("[%2d] \n", p->id);

}

int main{int argc, char* argv[]) {
Initialize();
for (i=0; i<n; i++)

my_thread_create( hello, i});

go=1;
OtherCode{);

BN AWM R

[
wNPEeo
—

Figure 7.1 Example of printing thread number (expl)

Another experiment is thread race-condition. The different instruction dependency will cause different result of access
competition. Figure 4 is producer-consumer problem example.code. Producers increase the share instance, and
consumers decrease it. All of created threads modify the same variable item. Because it
cannot be guaranteed that access variable item is atomic, some modification failures are due
to other threads overriding. This experiment is repeated many times with 40 threads and save

those output into log. Then we confirm whether the output is matched during replaying.

1. void *producer{ void *arg){

2. while( go==0);

3. item++;

4, }

5. void* consumer(void * argy{

6. while{ go==0});

7. item--;

8. }

9. int main()

10.

11. Initialize();

12. for (i=0; i<n; i++){

13, my_thread_create( producer, i);
14, my_thread_create( consumer, i);
15. }

16. OtherCode();

17. }

Figure 7.2 Example of producer-consumer problem (exp2)
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7.3. Performance & Storage

Our replay system takes a few space-overhead and reasonable computation-overhead.
Space-overhead of log are very small because of selective recording. Our replay system does
not record all the executed instruction and all the 1/0. We only take non-deterministic events
into account for efficient recording. The log size average 350KB per minute; on the other

hand, the recorded data increases 5.3 bytes per thousand of instructions.

KB An increase per minute
500

400

{1

0-1min 1-2min. 2-3min_3-4min 4-5min  5-6min6-7min 7-8min 8-9min 9-10min

30

o

20

o

10

o

Figure 7.3 Increase of log size per-minute with random number of threads printing

The computation-overhead depends.on.the-complexity of guest OS. We randomly execute
linux command on small linux guest system, and execution time will cost about double times
than native VM. Additionally, we also replay user behavior on Windows XP guest system,
but the performance is not as good as small linux. The reason of computation slow down is
that our replay system executes many condition branch and instructions. To count computed
instructions, every instruction on guest system need to append an addition to instruction
counter. However, the overhead of replaying is more than recording, because the recorded
non-deterministic events must decide whether replays them or not each instruction.
Otherwise, the number of non-deterministic events will affect the replaying performance. The

more data is recorded, the slower replaying is.
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Computation overhead
related to native emulated VM

Small Linux 2.2x ~ 2.5x
Windows keystroke 2.5x ~ 3.5x
Ubuntu 2.5x ~ 3.5x

Table 7.1 Computation-overhead of replaying
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—+—Native execution
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-=-Recording
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30
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10

2 10 20 30 40 50 60 70 80 90 100
(Number of threads)

0
(Seconds)

Figure 7.4'Execution time.of thread printing (expl)
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8. Future Work

Our system is extendable for replay of DMA and malware analysis. Even replay of DMA
is a difficult problem; because of DMA is asynchronous 10 operation. When guest system
launches a DMA transmission, the virtual CPU will wait for virtual DMA interrupts for
ensuring job finished. The arriving time of virtual DMA interrupts depend on host system 10
operation. Unfortunately, we cannot predict the time consumption of host system that it is
hard to replay the virtual DMA interrupts correctly. But it still has a solution for replaying.
We can halt the VM for waiting the host system data access finish. By doing this, guest
system can access the data with correctly timing and keeps system states in a good shape.

Additionally, we plan to integrate a.security analyzer in our system for security analysis
tool such as dynamically taint analysis or.intrusion detection system. It would be helpful for

any kind of expensive compute consumption analysis.
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9. Conclusion

Replaying execution sequence and recording the state transition of a system are very
useful for software testing, malware analysis and post-attack recovery. Unfortunately, current
approaches cannot provide complete replaying functionalities therefore they cannot be applied
widely. Whole-system replay can recover the complete situation of previous execution time.
Non-intrusive recording can prevent the result from being interfered. Replaying correctly can
guarantee that the sequence of executions is identical with that of the previous execution.

We implement a system based on QEMU for transparent and deterministic whole-system
replay. Moreover, we can save the space of logs by only caring about the impacts of
non-deterministic. The sequence of system replay must be deterministic if every factor of
states transition is predictable. Our system.is.extendable by integrating other security analysis

tool, thus enables its wide application in the future.
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