
國 立 交 通 大 學

 電子工程學系 電子研究所碩士班

碩 士 論 文

應用於無線視訊傳輸之可變長度解碼器

Soft Variable Length Decoding for the Wireless Video Transmission

研究生:劉子明

 指導教授:李鎮宜 博士

中華民國九十三年六月

i

應用於無線視訊傳輸之可變長度解碼器

學生: 劉子明 指導教授: 李鎮宜 博士

國立交通大學
電子工程學系 電子研究所碩士班

摘要

可變長度編碼在近來的視訊及影像編碼當中一直被廣泛的應用。然而，傳

統的解碼方式可能會因為傳輸的錯誤而產生非同步的解碼，甚至產生錯誤

傳遞的情況。而為了改善其容錯的能力，越來越多的研究者投入心力在聯

合訊源與通道編碼的設計領域上。一種新型的可變長度解碼器已經慢慢的

浮現出來，他能夠在頻寬有限和廣播的系統當中抵抗傳輸的錯誤。而這樣

的解碼方式通常需要保留許多的狀態，尤其是當編碼表格很大的時候。因

此，這種新型的解碼方式在實作的時候，會產生很高的複雜度和需要很大

的記憶體容量。
 為了減少表格的大小和記憶體讀取的次數，我們提出了一種低複雜度

和低記憶體使用量的方式。甚者，我們更提出一種 ”Symbol-alias” 的量測

方法來提高對於解碼效能的猜測。利用我們所提出的 Black-Box 模型，我

們可以在效能以及複雜度上取得最佳的平衡點。
 最後，利用我們所提出的效能模型，一個高效能、低複雜度的可變長

度解碼器已被我們實現。在可允許的效能損失之下，它不只減低了記憶體

的使用量，更減少了表格的大小。而整個系統的模擬是在 MPEG-4/UDP-
Lite/UEP/AWGN 的平台上所實現。無論是跟傳統的解碼或者是擁有錯誤更

正能力的 RVLC 解碼的比較上，我們平均可以提昇畫面的品質 0.4~2.9dB
，並且提供更好的主觀品質。

ii

Soft Variable Length Decoding for the Wireless Video

Transmission

Student: Tsu-Ming Liu Advisor: Dr. Chen-Yi Lee

Department of Electronics Engineering& Institute of Electronics
National Chiao Tung University

Abstract

Variable Length Codes (VLCs) are extensively used in recent video and image coding

standard. However, traditional table look-up hard decoding may lose synchronization and

induce error propagation over a noisy channel. To improve the error resilience of VLC, more

and more researchers pay lots of attention about the joint source and channel design. The soft

VLC decoding method has emerged to resist the channel disturbances on the environment of

band-limited and broadcasting system. Such design generally needs to maintain many states

when the table size grows. Hence, soft VLC decoders have problems of high complexity and

high memory access.

 To reduce the table size and the number of memory access, we propose a soft VLC decoder

with low memory access and low complexity approach. Further, a novel measurement of

“symbol-alias” is presented to provide more accurate performance estimation. With the

proposed Black-Box model, we can achieve the optimal trade-off between performance and

complexity.

 Finally, a memory-efficient and low-complexity soft VLC decoder using performance

modeling is proposed. It exploits not only modified sorting scheme to reduce the memory

access, but also table redundancy to reduce the table size at the cost of minor performance

loss. The system evaluation is achieved in the model of MPEG-4/UDP-Lite/UEP/AWGN. We

averagely improve the PSNR by 0.4~2.9dB (i.e. 40~80% improvement) and offer better

subjective quality compared with the traditional VLC decoding and standard-support RVLC

decoding.

iii

Acknowledgements
I would like to express my deepest gratitude to my advisor Dr. Chen-Yi Lee for his sophomore

enthusiastic guidance and encouragement throughout the research, and give him and his family my

best wish faithfully.

Especially, I much appreciate my senior Mr. Wen-Hsiao Peng and junior Mr. Sheng-Zen Wang

for their fruitful discussion and comments during my research. Also, I would like to thanks my

senior Dr. Bai-Jue Shieh and my SI2 group mate Mr. Cheng-Hung Liu for their great help in the

period of my research. In addition, I want to thank all members of the SI2 group of NCTU for

plenty of worthwhile assistance in my graduated lives.

Finally, I give the greatest respect and love to my family and my girl-friend, Yu-Fen Chuang. I

much admire her thoughtfulness, and I want to express my highest appreciation and dedicate the

thesis to her for assisting me to achieve the most important stage in my life. I never let her down

and hope her and my family happy now and forever.

Contents

Chapter 1. Introduction 1
1.1 Motivation

1.2 Joint Source and Cha

1.3 Contributions of this

1.4 Thesis Organization

Chapter 2. Soft Decodin
2.1 Background

2.2 Soft Input Soft Outp

2.2.1 Algorithm Transl

2.2.2 Algorithm Modif

Chapter 3. Memory Eff
 3.1 Adaptive Selection A

3.1.1 Modified Sorting

3.1.2 Performance Com

 3.2 Complexity Analysis

 3.3 Summary

Chapter 4. Low Comple
4.1 Symbol Merging Alg

4.1.1 Metric Formulati

4.2 Table Merging Algor

4.2.1 Code-Word Merg

4.2.2 Prefix Merging

4.2.3 Merged Table

4.3 Performance Evaluat

4.4 Summary

…….……

…….……

…

……

……………
 …………….……………………………….

1
 ….………………………………………….………………….
nnel Design

 Thesis

g of Variable Length Codes

ut Algorithm

ation

ication

iv

icient Design Approach
lgorithm

 Scheme

parison

xity Design Approach
orithm

on of “Balance Degree”

ithm

ing

ion

…………………………..……………. 2

..……………………………….……………. 9

……………………………………….……………. 11

..…………….12
…………………………………………………… 12

….…….……………………………… 13

…….………………………………………… 13

…….………………………….…………… 15

…….….…………19
…….…………………………………….. 19

…….………………………….………….. 19

…….………………………….…………. 21

…….…………………………………….………… 22

…………………………………………..………… 24

…………………… 25
…….……………………………….……… 25

…….…………….……… 27

…….………………………………….……… 28

…..….………………………………………… 28

…………………………………………………… 29

…..……………………………………….……… 29

………………………………………………… 29

……………………………………...…………… 31

Chapter 5. Performance Modeling
5.1 Black-Box Model

5.1.1 Algorithm-Sensitive Parameters

5.1.2 Application-Sensitive Parameters

5.1.3 Table-Sensitive Parameters

 5.1.3.1 Intra Alias

 5.1.3.2 Inter Alias

5.3 Performance Estimation

5.4 Summary

v

Chapter 6. Performance Evaluation on MPEG-4
6.1 Environment setup

6.1.1 Source Model

6.1.2 Channel Model

6.2 Performance Evaluation on MPEG-4/UDP-Lite/UEP/AWGN

Chapter 7. Conclusions and Future Work

Bibliography
Appendix A Symbol-Merging Algorithm
Appendix B Table-Merging Algorithm

 About the Author

……………………..…………. 33
…….….…………………………...….……………… 33

…….……………………………… 34

…….…………….………………. 36

…….…………………………………… 36

…….………………………………………………… 36

…….………………………………………………… 37

…….………………..………….……………… 38

…….…………………………………………..……………… 41

……..……….... 42
…….…………………………………..………..…… 42

…….………………………………….……………… 43

…….………………………………….…………..… 45

…….…… 49

……………………….. 54

…………………………….……………………………. 56
…..……………………. 60

…….……………………. 78
…………………………………………………….. 84

List of Figures

Figure 1.1 The on-going tree of error handling

Figure 1.2 The categories of implementation and representation in JSC design

Figure 1.3 Symbol-constrained directed graph representation for VLC decoding

Figure 1.4 Bit-constrained directed graph representation for VLC decoding

Figure 2.1 High-level description of the decoding procedure with algorithm

translation

Figure 2.2 The algorithm trsnslation between symbol-constrained directed graph

and the SISO algorithm

Figure 2.3 The original (a) and real case (b) of VLC table

Figure 2.4 The algorithm modification due to the constraint change

Figure 2.5 High-level description of the decoding procedure with algorithm

modification

Figure 3.1 The graph representation in approximated decoding

Figure 3.2 The comparison between the AMAP-2 (a) and the proposed Adaptive

 AMAP-2 (b)

Figure 3.3 The comparison of performance (a) and memory access (b) vs. SNR

Figure 3.4 Complexity analysis in terms of each symbol state numbers

Figure 3.5 The comparison with complexity issue in terms of state numbers (a)

and total state numbers (b) using the VLC table of Figure 2.3

Figure 4.1 The tree-structured VLC (a) and scalable algorithm with hard and

soft decoding (b)

Figure 4.2 A simple VLC table with merge-0(a), merge-1(b) and merge-2(c)

Figure 4.3 The evaluation of execution time (a) and performance (b) with

different symbol-merging table in Figure 4.2

Figure 4.4 The formulation of “Improved Ratio”

Figure 5.1 The B-B model (a) and the evaluation of source table (b)

Figure 5.2 The relationship between performance and each parameter

…..…….…………………………. 3

.… 6

… 7

……. 8

..…………………………………………………………… 14

………………………………………………. 15

……………………… 16

…................. 17

………………………………………………………..… 18

………………… 20

…………………………………………………….…… 21

 22

………… 24

.……… 24

…………………………………………………….… 26

…… 27

………………………… 30

………………………………… 32

………….… 34

……….… 34

vi

Figure 5.3 The complexity (a) and performance (b) in different ‘z’

Figure 5.4 The performance with convergence and saturation point in AMAP-2

(a) and A-AMAP-2 (b) …

Figure 5.5 The optimization of performance in different ‘N*’ …

Figure 5.6 The symbol-alias of VLC table (a)(b) ..…………………………….… 37

Figure 5.7 The performance evaluation of ‘intra alias’ and ‘inter alias’ (b)

in different ‘T’ ………………………..………………………….…… 38

Figure 5.8 VLC tables (a) and measurements (b) for the same source .

Figure 5.9 Coding performance with different VLC coding table .

Figure 5.10 The simulated parameters (a) and PSNR comparison (b) within 50

frames …

Figure 5.11 The comparison on the 1st frames of video sequence …

Figure 6.1 The proposed overall simulation environment of soft VLC decoder .…

Figure 6.2 The data partition mode in the MPEG-2 (a) and MPEG-4 (b) .

Figure 6.3 The high-level description of ESCAPE code handler on MPEG-2 and

MPEG-4 .… …

Figure 6.4 The content (a) and ratio (b) of one video packet in MPEG0-4 …

Figure 6.5 The soft input of VLC decoder

Figure 6.6 The performance improvement (a)(b)with different quantization level 4

Figure 6.7 Overlooking bit errors in application layer …

Figure 6.8 Average PSNR of Y-component for proposed soft and TLU VLD …

Figure 6.9 PSNR vs. AWGN channel performance .…

Figure 6.10 PSNR vs. Burst error performance …

Figure 6.11 The comparison between the proposed soft VLD and the RVLD .

Figure 6.12 The comparison between the proposed soft VLC decoder and the

standardized VLC decoder for table-merging algorithm .

..…………… 35

………………………….………………..… 35

………………… 36

.……….… 39

…………….… 39

………………………………………………………….…… 40

……………… 41

 43

…….… 44

… ……………………………………………………… 45

…… 46

…………………………………….… 47

8

………………………… 48

… 49

…………………………… 51

………………………………… 51

…… 52

…………..… 53

vii

List of Tables

Table 4.1 The reduction of table size by symbol-merging scheme

Table 4.2 The comparison with existing design

Table 6.1 The trade-off between error correction and channel bandwidth

Table 6.2 The PSNR improvement within different video characteristics

……………… 28

………………………………… 32

…....... 52

……… 53

viii

1

Chapter 1

Introduction

1.1 Motivation
Variable Length Codes (VLCs), also called Huffman codes [1] are common used to

approach the entropy rate of a given data source. They are extensively used in recent

image and video coding standards including JPEG, MPEG-1/2/4 and the newly design

of H.264 [2]. However, most of the VLC designs are highly sensitive to error

disturbances. Table look-up decoding method may render extremely vulnerability and

lose synchronization over a noisy channel. Although many conventional methods like

automatic repeat request (ARQ) and forward error correction (FEC) reduce the effect of

channel errors, these solutions have been found to be expensive in band-limited

communications of delay sensitive video signals [3].

Particularly, ARQ-based designs are inadequate for the broadcast transmission due to

the necessary of backward channel. Besides, they may induce significant delay that

would potentially result in network congestion; While FEC designs may be

bandwidth-inefficient when the channel conditions are fairly mild, and fine-tune to a

particular error-rate when the channel condition differs. Therefore, it is strongly interest

to look for an alternative design to reduce the error sensitivity of variable length

encoded video source.

In recent years, more and more researchers pay lots of attention about the source and

channel design jointly. To improve the error resilience of VLC, joint source and channel

(JSC) design has emerged to resist the channel disturbances on the environment of

2

band-limited system and broadcasting transmission. Several JSC designers concentrated

on variable length encoded data since most of the video application exploited

VLC-based compression method. However, the main problems of JSC design are the

complicated computation and the greatly memory utilization in the decoding process of

the sequence estimation. The reduced complexity or sub-optimal JSC designs [24][25]

[26] are proposed to diminish the decoding complexity in the VLC-based source

transmission. However, these designs are still inadequate for the large source table and

the separate source tables. In this thesis, we focus on the implementation of JSC design.

Low complexity and memory efficient design approach have been proposed to resolve

the error propagation and outperformed the traditional designs on VLC decoding.

1.2 Joint Source and Channel Design
In the past, the designs of source and channel coder have been performed separately.

This often makes excellent senses and could be proved by the separation theorem of

Shannon [4]. However, Shannon’s theorem effectively assumes that source coder

removes all data redundancy, and the channel coder inserts additional redundancy to

protect the source data due to the impairment of physical channel. This separation does

not make as much practical senses. It has been shown that the separation theorem does

not hold for all channel conditions [5]. When it does hold, it needs to exploit an optimal

source and channel coder pair that may not be suitable for the practical system.

To improve the error robustness on VLCs, all the solutions can be classified into three

types (cf. Figure 1.1). They are error resilient, error concealment and error recovery

respectively. Error resilience methods are performed in the encoder side, and the

respective decoding procedures are defined by the video standard. To make the

compressed video data more robust to channel errors, the MPEG-4 standard

incorporated several error resilient tools, including data partition (DP), header extension

code (HEC) and re-synchronization marker (RM) [6]. On the other hand, decoder

provides the error concealment and recovery to improve the video quality. Particularly,

the error concealment methods are proposed to conceal the errors, but seem to have its

limitation [7]. They often assumed that video errors have been correctly located;

otherwise error concealment cannot be properly applied.

Error recovery can be partitioned into three levels that are source level, channel level

and joint source-channel level. In the consideration of source-level error recovery,

reversible variable length codes (RVLCs) [8] are realized in the MPEG-4 and the newly

design of H.264. Many source-level error recovery methods are suggested including

RVLC, error resilient entropy coding (EREC) [9] and self-synchronization VLC

(SSVLC) [10]. These methods use the syntax and codeword structure to reconstruct the

source data and do not consider any channel behavior. The improvement of source-level

error recovery is still insufficient. On the contrary, the improvement of channel-level

error recovery is significant like the well-known scheme of Viterbi decoder or turbo

decoder. However, the usage of channel-level error recovery is very expensive for the

band-limited system. The trade-off between source and channel level is proposed that

can be termed as JSC design on the soft VLC decoder. The idea of JSC design has been

gaining increasing attention in recent years. This is because that the significant growth

of multimedia wireless communication on the channels of noisy and band-limited.

Besides, the channel conditions about broadcasting on DVB system [11] faced the

channel behaviors without backward notification.

Error!!

Encoder

3

Error
Concealment

Decoder

Error
Recovery

Source
Level

Channel
Level

Joint Source and Channel
Level

RVLC,
SSVLC

Viterbi,
Turbo Code

Proposed
Soft VLC Decoder

Error
Resilient

Figure 1.1：The on-going tree of error handling.

Based on the different derivation or formulation of intermediate metric in JSC design,

it can be classified into three categories in [16] (e.g. [18] [21] [26]). We just omit the

4

complicated derivation of algorithmic metric. Instead, behaviors of these three

categories are discussed here and compared with each other. Performance and

complexity are the crucial cues for our final decision of implementation method.

Maximal Likelihood / Soft-Input Soft-Output Decoding Method

One category of coder is Maximum Likelihood (ML) decoding method. The ML

decoder is investigated in the joint area of source and channel design. Viterbi decoder

using ML decoding algorithm is famous for many decades, and be considered as the

decoding process of fixed length codes. Most applications exploit variable length codes

to compress the source data, but lead to loss of error resilience. A modified version of

the Viterbi algorithm [17] may now be used to perform maximum likelihood decoding

of VLCs and improve the error robustness [18]. The main problem in applying the

Viterbi algorithm directly is the fact that the state transition will result in a variable

number of bits. Therefore, it is necessary to keep track of the position of each transition

and lead to a great number of states to be survived.

In [19], the authors introduced the Soft-Input Soft-Output (SISO) approach to

improve the coding performance when the source data has been corrupted by additive

white Gaussian noise (AWGN). The SISO VLC decoder involves no modification to the

encoder side. It simply receives input as a packet of known length containing corrupted

VLC data, and produces or estimates the codeword sequence that is most likely to the

input of the VLC encoder. It behaves as a ML decoding process for VLCs, uses the

Hamming distance of hard input and cumulative square errors of soft input as the

derivation of intermediate metric. In addition, SISO decoding algorithm is similar with

soft output Viterbi algorithm (SOVA) [20] that provides the soft output information as a

confidential level or reliability in the back-end decoding process.

Maximum A Posteriori Decoding Method

Maximum A Posteriori sequence estimation, termed MAP decoding for VLCs is

investigated. In the last paragraph, we classify the derivation of metric as ML decoding.

5

Otherwise, we classify the newly derivation of metric as a MAP decoding. The Viterbi

algorithm was re-derived with a priori or a posteriori information for MAP decoding

[21]. More detailed formulation about intermediate metric is published in several

literatures. It can be noted that the main difference between ML and MAP decoding

algorithm is the intermediate metric derivation. In practice, the MAP decoding method

outperforms the ML decoding method in terms of decoding performance, but offered a

complicated computation of metric for more accurate sequence estimation. Many

researchers focus on the complexity reduction in algorithmic level [23]-[25]. However,

it is still insufficient for the consideration on the long input-sequence and large

symbol-table. In the point of comparison between ML/SISO and MAP decoding process,

we can see that SISO decoding with ML algorithm approximates closely to MAP

decoding algorithm and provides the reliability output and less complexity [16] [22].

Sequential Decoding Method

Sequential decoding predates the Viterbi decoding. It is discovered by Wozencraft in

1960. The decoding process traverses a tree to find out the possible paths that could be

taken depend on the input data. The transition paths are followed or eliminated through

the likelihood comparison, threshold or other criteria. Though average decoding

complexity is reasonable, there is a great possibility of repeated computation and a wide

variation on complexity that depending on error occurrences. For the practical

communication system, the complexity is a big problem to fit any channel behavior.

Besides, the performance of sequential decoding strongly relies on the instantaneous

error events. To improve the coding complexity, fast sequential decoding algorithm

using a stack is proposed [26], but the improvements still have its limit compared with

ML or MAP decoding method.

Considering the large number of codeword in MPEG-4, the coding complexity of JSC

design will become a critical bottleneck. The performance and complexity of sequential

decoding will depend on the channel condition, and unsuitable for the practical VLSI

implementation. Further, MAP decoding algorithm provides more capability of error

correction slightly than ML/SISO [22], but high complexity is its penalty about the

computation of intermediate metric. Consequently, we use ML/SISO decoding

algorithm as our implementation of VLC decoder.

Joint Source and Channel
Design

ML/SISO
Decoding

MAP
Decoding

Sequential
Decoding

Bit-Constrained
Directed Graph

Symbol-Constrained
Directed Graph

Tree-Stack
Structure

Implementation
Method

Representation
Method

Figure 1.2：The categories of implementation and representation in JSC design.

For implementation and representation method in JSC design, Figure 1.2 shows the

relation between each other. Implementation method has been briefly discussed above,

and representation method is composed of tree or trellis structure. Trellis representation

can be used as a representation of fix length path label such as Viterbi decoder. The

Viterbi decoder kept only one of the paths entering a state as the survivor path and the

others are pruned. However, in the case of VLCs, different paths entering a state have

consumed a different number of bits from the received sequence and can be extended

differently. Therefore, the case of VLCs cannot use a traditional trellis representation

anymore and needs more complicated graph representations to be solved. The first

works in this area of graph decoding have been proposed by Demir & Sayood [13] and

Park & Miller [23]. These new graph representations have been proposed and

summarized in [28]. They are symbol-constrained and bit-constrained directed graph

respectively. In this thesis, we focus on soft VLC decoding by performing ML/SISO

algorithm on the symbol-based VLC trellis decoding [13]-[15].

Symbol-Constrained Directed Graph

The representation of Symbol-Constrained Directed Graph that we call it as SCDG

here is introduced in [13] [28]. The SCDG representation retains many survivors when

there are paths with different number of symbols coming at the considered state for a

6

given bit position. Example of SCDG decoding representation is described in Figure 1.3

for the VLCs of dimension T = 3 and codeword sets {0, 10, 11}.

There are three-axis that should be notified in Figure 1.3, they are symbol-step i,

codeword-step j and bit-step k. Each symbol step represents the number of decoded

symbols. In Figure 1.3, the total decoded number N is equal to 3. This information can

be retrieved through the syntax or the coding behavior of the JSC decoding process. In

addition, each codeword-step stands for the different code-symbol in the pre-defined

VLC table. Meanwhile, each codeword-step contains the different bit-step depending on

the symbol-step i. Each square is the bit-state, and the decoded bit-number is resided in

the center. Each dotted square or rectangle keeps the same codeword j for a given

symbol-step i. We can see that each transition path from one square to the other square

exploits the transition probability. The pruning operation will be performed when there

are two arrows pointing to the same bit-state. To obtain the final solution, decoder will

stop constructing this graph in symbol-step 3 due to the known information N. Further,

we choose the three bit-states with dotted circles as our candidates because they have

the known constraint (i.e. 3-symbol, 6-bit). After the comparison of intermediate metric,

we can choose the smallest one as our decision state, and trace-back to decode the left

symbols. More detailed decoding process will be recalled in chapter 2.

{0}

{10}

{11}

1

2

2

2
3

3
4

3
4
5

4
5
6

4
5
6

3

4

Trellis symbol step

1 2 3
N = 3-symbol, L = 4-bit

j

i

k

symbol-state

bit-state

symbol-step

codeword-step

bit-step

Decoded symbol-
number

Decoded
bit-number

B

B

B

....

....

....

....

....

....

S

………

………

………

………

Figure 1.3：Symbol-constrained directed graph representation for VLC decoding.

7

Bit-Constrained Directed Graph

In addition to the SCDG representation, Bit-Constrained Directed Graph that we call

it as BCDG here is introduced in [23] [28]. The BCDG representation retains many

survivors when there are paths with different number of bits coming at the considered

state for a given symbol position. Example of BCDG decoding representation is

described in Figure 1.4 for the VLCs of dimension T = 3 and codeword sets {0, 10, 11}.

As the discussion of SCDG, the decoding process of BCDG is similar to the SCDG

except that the roles of bit and symbol are exchanged. Similarly, we can perform JSC

decoding process of VLCs with BCDG representation.

However, the transition path in BCDG is more complicated than SCDG. For the

consideration of coding complexity, we need two-dimensional pointers to address where

the arrows point to. This complexity becomes more prominent on the implementation of

large VLC tables, such as the AC-coefficient table with 103 symbols in MPEG-4 [30].

Therefore, we choose the representation of SCDG as our implementation in this thesis.

Although the SCDG representation may lose a little performance when the sub-optimal

solution is imposed, it is of great worth when dealing with the large VLC tables.

{0}

{10}

{11}

0 3
2

Trellis bit step

0 1 2
N = 3-symbol, L = 4-bit

j

i

k

symbol-state

bit-state

symbol-step

codeword-step

bit-step

Decoded bit-
number

Decoded
symbol-number

S

S

S

....

....

....

....

....

....

B

………

………

………

………

1 2 4
3

1

1

2

2

3
2

3
2

3 4

Figure 1.4：Bit-constrained directed graph representation for VLC decoding.

8

9

These representation methods perform well for both hard and soft input, but show its

error correction capability for soft input in this thesis. In the ML/SISO decoding

algorithm, the improvement can be achieved when compared with classical table

look-up decoding method is significant, but the complexity is prohibitive.

In this thesis, we will focus on the implementation of practical application, such as

MPEG-4 and H.264. We use Soft-Input Soft-Output (SISO) decoding algorithm as our

basis of metric derivation. Compared to the Maximum A Posteriori (MAP) decoding

algorithm and sequential decoding algorithm, SISO algorithm performs the optimal

trade-off between performance and complexity. Further, it utilized a simpler metric (i.e.

absolute difference) to improve the error resilience on the decoding process of VLCs.

From the graph representation point of view, we choose the SCDG as our graph

representation of SISO decoding algorithm. Finally, we outline our contribution of this

thesis in the next section which including the algorithm simplification and complexity

reduction. Further, a memory efficient and performance modeling is proposed to achieve

the low memory utilization and optimal performance.

1.3 Contribution of this Thesis
From the previous statements, the JSC design algorithm chosen is the SCDG-based

ML/SISO VLC decoding method. This new decoding technique for variable length

codes considered here provides channel protection without the necessary of extra

bandwidth. The proposed VLC decoder can be considered as an add-on module on the

primitive structure. Therefore, it is compliant to the present video decoder.

To improve the error resilience, the soft VLC decoders with joint source and channel

design have been proposed [23]-[25]. Such algorithms generally need to maintain many

states when the table size grows. Hence, soft VLC decoders have problems of high

complexity. Reduced complexity algorithms with sub-optimal solution have been made

[24]. However, the improvement in [24] is not significant with larger VLC table. In this

thesis, we propose a scalable soft VLC decoder (Scalable Soft VLD) to reduce the

complexity. Firstly, our approach includes algorithm translation and table size reduction.

To simplify the algorithm, we translate the metric derivation in Soft-Input Soft-Output

algorithm [19] into the symbol-constrained directed graph (SCDG) for the soft VLC

10

decoding. Through the help of graph representation, we develop a modified sorting

scheme that can achieve the same decoding performance with fewer states. Further, it

can obtain the less number of memory accesses for the low-power demand. To reduce

the table size, we proposed a symbol-merging algorithm. We merge two symbols with

the same prefix into one symbol. By the symbol-merging algorithm, we can greatly

reduce the table size as well as complexity at the cost of minor performance loss.

However, to deal with the different tables (intra and non-intra table) with different

types of frame in MPEG standard, we propose a table merging method to integrate the

different tables into one table. The proposed soft VLC decoder can employ this single

merged-table and deal with the requirement of different VLC coding tables (i.e. intra or

non-intra table) instead of duplicated configuration for the different VLC table. In

summary, compared with [29][31], the proposed symbol-merging and table-merging

algorithms achieve high capability of integration and flexibility.

In [16], the authors used the minimal Hamming distance (dH) to quantify the relation

between table and performance. But, it is still inaccurate when the different tables reach

the same dH. We propose a novel measurement to improve the accuracy of performance

estimation. Further, we reduce the penalty of over-design and observe the tendency of

performance through the proposed Black-Box model. Thus, the proposed model reaches

the optimal trade-off between performance and complexity.

The proposed scalable soft VLC decoder using performance modeling is verified with

not only a simple table but also a practical MPEG-4 table. From the analysis of simple

VLC source data, our algorithm can averagely save 15% of memory access in

comparison with the state-of-the-art algorithms. Further, we can obtain the optimal

parameters for a given table and decoding algorithm through the Black-Box model.

Finally, our scheme shows more than 1dB PSNR improvement as compared with the

straightforward table look-up decoding in AWGN or bursty channel.

In addition, the proposed scheme is also compared with different coding

configuration such as the SSVLC [10] and RVLC [30]. Compared with the

standard-support RVLC decoding method, our algorithm achieved more than 0.5dB

improvement at the environment of SNR=10dB. Further, the VLC coding is more

efficient than RVLC in terms of coding efficiency. There is not any side information to

11

be transmitted and the proposed decoder is bandwidth efficient.

1.4 Thesis Organization
The rest of this thesis is organized as follows. Chapter 2 briefly introduces the SISO

algorithm [19] and presents our proposed adaptive AMAP-2 for reducing the number of

memory access in chapter 3. Chapter 4 shows our symbol-merging and table-merging

method for complexity reduction. Chapter 5 describes the proposed Black-Box model

for the optimal trade-off between performance and complexity. Chapter 6 presents the

complexity and performance evaluation on MPEG-4. Finally, chapter 7 summarizes our

work and discusses some topics for future research.

12

Chapter 2

Soft Decoding of Variable Length Code

2.1 Background

In the most image/video compression, VLCs decoding is considered as table look-up

method and performed bit by bit. The input of entropy decoder assumed to be a

sequence of “hard” bits that no soft information is available. However, soft information

can be associated with each information bit in a noisy environment. It can be realized

either on the channel observations in the case of un-coded transmission, or through

soft-output channel decoders (e.g. SOVA or turbo coder) when channel coding is

employed.

 Based on the soft input of VLC decoder, many publications [24][31] proved that the

performance improvement is noticeable than the traditional VLC decoders. Compared

with the FEC and ARQ method, soft VLC decoder is bandwidth-efficient and

channel-robust in the noisy environment. We choose the SISO/ML algorithm as the core

algorithm of soft VLC decoder because of the implementation cost and real-time

consideration. To apply the SISO/ML algorithm into the practical system (e.g. MPEG-4,

H.264), there are some modifications required. We address the translation between the

conventional SISO algorithm and the modified SISO on the following. Further, we

modify the traditional source VLC table by introducing some symbol-information. After

that, we can facilitate the system integration on the soft VLC decoder.

2.2 Soft-Input Soft-Output Algorithm

SISO decoding technique [19] is considered as an exhaustive decoding procedure to

resist the error disturbance in the noisy channel. It estimates and searches on the

tree-like path in the existence of additive white Gaussian noise (AWGN). The input

sequence is a packet-based transmission through packetization. We don’t exploit the soft

output for the iterative decoding because of the consideration of the real-time video

transmission. It uses L bits and equivalently N symbols to represent the priori

information in one packet. Specifically, the SISO algorithm chooses the estimated

sequence X as the one that maximizes the joint probability for the observed sequence Y.

The estimated sequence that maximizes the joint probability Pr(X,Y) is indicated as X*

= {x*(1), x*(2),…x*(N)}. The optimal codewords can be developed as Equation 2.1,

where the probability P* is the sequence of codewords which maximize Pr(X,Y). More

detailed derivation and description have been shown in [19]. Based on the similar

estimation, we perform the algorithm translation to simplify the SISO algorithm when

the table size or decoded symbol grows.

()
[]

(){ (){ } }
()

[]
(){ }{ }iLkii

iLlLlLikii

pixyyyLX

piNxyyylLNPNx
ii

⋅==

⋅=⋅−−=

∈

+−+−∈

1,,,Prmaxarg,1

,,,,Pr,1maxarg

21,1,

21
*

,1,

*

…

…
 (2.1)

2.2.1 Algorithm Translation

To help the understanding of our simplified algorithm, we utilize a symbol-constrained

directed graph representation [13][24] for the symbol-based VLC trellis decoding

[14][15]. Figure 2.1 depicts the high-level description of the decoding procedure. The

overall algorithm translation can be partitioned into two main parts. The one is the

state-trellis construction. Because the SISO algorithm is an exhaustive search, it will

result in the exponential growth of complexity with the increase of sequence length or

table size. This state-trellis construction require the adder, shifter and multiplexer to

perform the similar function of ACS unit in the Viterbi decoder. In addition, the other

one is the trace-back decoding procedure. Firstly, it searches the best candidates

13

conforming to the matching criterion. This criterion is feed-forward from the packet

header and provides the priori or soft information to the back-end VLC decoding

procedure.

14

SoftVLD_Procedure ()
{
 // Step1 : Initialization.
 for(j=0;j<LUT_size;j++)
 { for(L=0;L<VLC_CL;L++)
 // Step 1.1 : assign the intermediate metric of each state in the first symbol step.

}

 // Step2 : Generating state trellis.
 for(i=0;i<N;i++)
 {
 while(search the minimal metric from the previous state)
 {
 Step2.1 : [Add] – add the previous metric to form the present state metric.

Step2.2 : [Compare & Select] – compare with the other state metric to select
the minimal one as the final candidate in present state.
}

}

// Step3 : Trace back to decode symbols.
while(search the final states(i.e. i==N-1))
{ if(state pointer==input size)
 // Step3.1 : label the start point in the trace-back process.
}

for(i==N-1;i>=0;i--)
{
 // Step3.2 : Look-up the previous states of present state.
 // Step3.3 : decode each codeword and look-up the symbol-information.
}

}

Figure 2.1：High-level description of the decoding procedure with algorithm translation.

For the illustration of our algorithm translation, we use a simple example to address

this translation. Firstly, assume we have a simple VLC table with only 3 symbols

{0,10,11} and a packet that includes 3 bits (and equivalently 2 symbols) with content as

‘0 10’. After BPSK modulation, the modulated sequence is {-1,+1,-1}. When the packet

is transmitted over the AWGN channel, the received packet may become {-0.8, -0.05,

-0.2} (i.e. error occurred in the second bit).

Figure 2.2 depicts the graph representation for this example. The intermediate metric

D*(i,j) denotes the cumulative square error of i-th symbol and j-th bit in each

symbol-state. S(m,n) is the symbol state decoded with m-symbol and have the index of

n among the identical value of m. The number inside each square is just the same as the

‘j’ of D*(i,j). The operation of ‘minimum’ is exercised in the states S(2,1), which is

entered by more than 2 arrows for the same states. Furthermore, the minimal metric

after the comparison is survived and the others are pruned. There is no need to calculate

the state metric D* of S(2,3) and S(2,5), and return the null value (i.e. φ) because the

decoded bit pointer exceeds the priori bit information (i.e. 4>3 bits). Therefore, we can

decide the shaded squares as the final candidates. The S(2,2) is the minimum among

them, survives and traces back to the S(1,0) to decode the bitstream as {0,10} for the

correct decoding.

1

2

2

2
3

3
4

3
4

D*(1,1)=(-0.8-(-1))^2=0.04

D*(1,2) = (-0.8-(-1))^2 + (-
0.05-(-1))^2 = 4.1425

D*(1,2) = (-0.8-1)^2 + (-
0.05-1)^2 = 4.3425

S(1,0)

S(1,1)

S(1,2)

S(2,0)

S(2,1)

S(2,2)

S(2,3)

S(2,4)

S(2,5)

Priori-info.=3-bit, 2-symbol
D*(2,2)=D*(1,1)+(-0.05-(-
1))^2=0.9425

D*(2,3)=min{4.1425+(-0.2-(-1))^2,
4.3425+(-0.2-(-1))^2} = 4.7825

D*(2,3)=D*(1,1)+(-0.05-1)^2+(-0.2-
(-1))^2=1.7825

D*(2,4)=

D*(2,4)= φ

φ

D*(2,3)=D*(1,1)+(-0.05-
1)^2+(-0.2-1)^2=2.5825

1st symbol 2nd symbol

{0}

{10}

{11}

Figure 2.2：The algorithm translation between symbol-constrained directed graph and the

SISO algorithm.

2.2.2 Algorithm Modification

Source Table Modification
To apply our algorithm to the MPEG-4 standard, we introduce the ‘sign’ and ‘LAST’

15

field from the original Huffman table. The extra fields of ‘sign’ and ‘LAST’ are essential

for the decoding procedure of SISO in MPEG-4. In Figure 2.3(a), we modify the simple

VLC table as Figure 2.3(b). In our proposed approach, we exploit the number of ‘LAST’

in one packet to represent the modified priori information. The number of ‘LAST’ in

one packet is defined by MPEG-4 standard and extracted from the packet header.

To deal with the “s” parameter appended in each symbol, we use a simple hard

decoding with table-look-up method. The induced ‘sign’ field in Figure 2.3(b) represents

the number of “s” in each symbol. The ‘sign’ field is 1 when the “s” of each symbol is

appended by 1-bit. More discussion about the ‘sign’ field is provided in the scalable soft

VLC decoder of chapter 4.

1
011

0100

1
3
4

Code length Code word

01014

1s
011s

0100s

2
4
5

Code length Code word

0101s5

1
1
1

sign

1

1
0
0

LAST

0

Pr

Aft

inf

pro

fea

par

exp

the

tha

to t

T

(a) Simple VLC table
Figure 2.3：The original (a)

iori-Info. Modification

er the modification of VLC codin

ormation since the original informa

cedure for the practical application

sible to obtain the information on th

tition when decoding headers and m

loited by counting the number of occ

 knowledge of the number of blocks c

t can be used as the number of symbo

he user without requiring any side info

his modification induces a little perfo

1

(b) Simplified MPEG VLC table

and real case (b) of VLC table.

g tables, it is crucial to modify the priori

tion cannot be extracted within the coding

 such as MPEG-4 or H.264. However, it is

e number of blocks contained in the texture

otion partition. This information can easily be

urrences of LAST field being equal to 1. Thus,

an be considered as an “a priori-information”

ls to select a likely path. Further, it’s available

rmation to be transmitted.

rmance loss due to the additional candidates to

6

be selected in the Step3.1 of Figure 2.1. The difference with this modification can be

described in Figure 2.4. The traditional soft VLC decoder [13][19] used the constraint of

known symbol numbers as the algorithmic priori-information. However, this

information should be transformed into the numbers of specified symbols. We can use

the “EOB” symbol of MPEG-2 and “LAST” symbol of MPEG-4 (i.e. specified symbol)

as the algorithmic constraint within the trace-back procedure. But, this modification

induces the extra candidates from the start point to the end point with LAST number

constraint in Figure 2.4. To achieve the standard-compliant and bandwidth-efficient

design, this modification is essential and the induced performance loss is inevitable.

Trellis

Construction

Trellis
Construction

Trace-back
Procedure

another side info: symbol constraint

VLC
Table

Trace-back
Procedure

without side info: LAST number

VLC
Table

. . . .
VS.

Trellis

Construction

Trellis
Construction

Start Point End Point

Constrained
Range

Constrained
Range

Figure 2.4：The algorithm modification due to the constraint change.

In summary, based on the above algorithm modification, we show the modified

high-level description in Figure 2.5. The modifications are labeled with shaded region.

Firstly, we have to introduce the other term of “SIGN” to perform the metric calculation

in Step1.2 and Step 2.1.1. This term is calculated by absolute difference and decoded

with hard decoding scheme. Secondly, the constrained range (see Figure 2.4) has been

extended and re-calculated in Step 3.1. Therefore, we can easily apply this SISO/ML

soft VLC decoding algorithm into the practical VLC coding table such as the AC

TCOEF tables in MPEG-2 or MPEG-4. More simulation and discussion will be

17

addressed on the following chapters.

18

SoftVLD_Procedure ()
{
 // Step1 : Initialization.
 for(j=0;j<LUT_size;j++)
 { for(L=0;L<VLC_CL;L++)
 // Step 1.1 : assign the intermediate metric of each state in the first symbol step.

 // Step 1.2 : adding the extra sign bit into the formulation of metric.

}

 // Step2 : Generating state trellis.
 for(i=0;i<N;i++)
 {
 while(search the minimal metric from the previous state)
 {
 // Step2.1 : [Add] – add the previous metric to form the present state metric.

 // Step 2.1.1 : adding the extra sign bit into the formulation of metric.

// Step2.2 : [Compare & Select] – compare with the other state metric to
select the minimal one as the final candidate in present state.
}

}

// Step3 : Trace back to decode symbols.

while(search the final states (i.e. LAST start point <= I <= LAST end point))
{ if(state pointer==input size)
 // Step3.1 : label the start point in the trace-back process.
}

for(i==N-1;i>=0;i--)
{
 // Step3.2 : Look-up the previous states of present state.
 // Step3.3 : decode each codeword and look-up the symbol-information.
}

}

Figure 2.5：High-level description of the decoding procedure with algorithm modification.

19

Chapter 3

Memory Efficient Design Approach

3.1 Algorithm with Adaptive Selection

The SISO algorithm requires many states since practical MPEG-4 tables have many

entries. It becomes inadequate for the VLSI implementation when the number of

survival states grows. To reduce the number of states as well as memory access, we

propose an adaptive AMAP-2 (A-AMAP-2) to reduce the memory accesses.

3.1.1 Modified Sorting Scheme

In [24], the author introduced the approximated decoding method 2 (AMAP-2) to

improve the coding performance with low complexity. However, their approach is not

robust to the variation of channel condition. They induced more states to retrieve the

metric in the error-occurred region and increased the penalty to error-free region. They

tried to find the fixed ‘M’ state in the sense of smaller state metric D* and sorted among

them in each symbol step.

To against the variation of channel condition, we propose to adaptively select the

states and reduce the number of survival states. Our adaptive scheme is more robust to

the channel observance and provides the variable states in each symbol step to select the

best states. To address our improvement and differences as compared with the AMAP-2

[24], we use the simple VLC table in Figure 2.3(b) as an example. The corresponding

graph representation is developed in Figure 3.1 (a). To clearly show the metric variation

in each state, we just omit the arrows and the indication of ‘LAST’. In Figure 3.1 (b),

we show the sorting algorithm via the number of states in AMAP-2. By pruning the

square of the same bit-position in Figure 3.1(b), we obtain Figure 3.1(c) that can be used

in comparison with our proposed A-AMAP-2.

20

4

5

4
6

3.022

3.858

2.009

6
8
9

10
2

5
3.876

7

6
8
9

7
9

10

7
9

10

8
11.538

11
12

10
11
12
13
14

9
11
12
13
14
15

9
11
12
13
14
15

5
2
4

7
9
4

5 7
9
7
9
8
6
6

1011.004

10

9
11
11
9
9

1110.204
8
6

10
11
8

10

5.404

10

5
2
4

7
9
4
8
6

9
11
8
6

1011.538

1st
symbol

2nd
symbol

3rd
symbol

2.453
5.404
5.458
5.92
6.204
7.253
8.871
8.96
9.12
9.387
9.671

2.009
3.022
3.858
3.876

3.538
5.404
5.671
7.004
7.804

10.56
10.72
11.538
14.204
14.56

14.738
5.458
9.12
2.453

9.387
8.96
8.871

7.253
6.204
9.671

5.92

11.004

10.72
14.56
3.538

5.404

5.671

7.804

7.004

14.738

14.204

10.204

10.56

2.009
3.022
3.858

2.453
5.404
5.458
8.96
9.12
9.671

3.538
5.404
10.56
10.72

φ
φ
φ

φ
φ
φ
φ

φ
φ
φ
φ

1st
symbol 2nd

symbol
3rd

symbol

{1s}

{011s}

{0100s}

{0101s}

1st
symbol

2nd
symbol 3rd

symbol

φ

symbol
step

symbol
step

of states

of states

(b)

(a) (c)

Figure 3.1：The graph representation in approximated decoding 2 [24].

From Figure 3.2, we can see that the main difference of AMAP-2 and A-AMAP-2 is

the sorting scheme in the Y-axis. Figure 3.2(a) shows that AMAP-2 requires at least 3

(i.e. MAMAP-2) states for correct decoding given the specified threshold. The correct

states are labeled with the shaded region. In Figure 3.2(b), by employing the D* in the

sorting algorithm instead of the number of states, the state metric range above the

minimal metric for the correct decoding is 4 (i.e. MA-AMAP-2=6-2). As a result, we can

find that there are 9-state and 8-state survived in AMAP-2 and A-AMAP-2 respectively

for the correct decoding. Such improvement on the state number reduction increases

when the errors occur infrequently. More simulation results are provided in Figure 3.3.

This novel scheme adaptively selects the number of survived states in each symbol step,

and that’s why we call it as the Adaptive AMAP-2 (i.e. A-AMAP-2).

2 5
3
4
5
6
7
8
9

10
11
12

7
2 9

9 4

8
6 10

8 6

10

3.858

5.404 5.404

1st
symb

2nd 3rd
bol

symbol
step

D*

10

5
2

7
9
4
8
6

9

8
6

1011.538

2.009
3.022

threshold

3.858

2.453
5.404
5.458
8.96
9.12
9.671

3.538
5.404
10.56
10.72

2nd 3rd
ymbol

1st
sym

symbol
step

of states

4

11
4

11

MAMAP-2=3

MA-AMAP-2

= 6-2 = 4

 2

Figur

In Figu

occurred f

the less er

and provid

3.1.2

The propo

and reduc

Many stat

error-free

of memor

A-AMAP

the propos

simulated

AMAP-2

algorithm

our algori
symbol sbol

(a) AMAP-2
21

e 3.2：The comparison between the A

AMAP-2

re 3.2(b), the propose A-AMAP-2 s

requently, such as 1st symbol step. F

ror region, such as 3rd symbol step. It

es the variable states to be survived i

Performance Comparison

sed A-AMAP-2 adaptively selects t

es the number of memory access. The

es are survived when the error occur

region. In Figure 3.3, we assume tha

y element. In addition, we choose

-2 individually. This specified thresh

ed B-B model in chapter 5. After tha

parameter, and compare the performa

versus channel condition. Obviou

occupies less memory space and me

thm saves 15% of memory access as c
ol symbol sym

(b) A-AMAP-

MAP-2 (a) and the proposed Adaptive

(b).

urvives more states when the errors are

urthermore, fewer states are survived in

 is more robust to the channel observance

n each symbol step.

he number of states in each symbol step

 variable best state selection is presented.

red, and fewer states are survived in the

t one survived state will cost one access

a specified threshold for AMAP-2 and

old could be optimized and decided by

t, we choose an optimal threshold as the

nce of our proposed A-AMAP-2 and the

sly, given the same performance, our

mory accesses in high SNR. Averagely,

ompared with AMAP-2 [24].

1 2 3 4 5 6 7 8
0

20

40

60

80

100

120

140

160

180

200

SNR

of

 m
em

or
y

ac
ce

ss
AMAP-2
A-AMAP-2

(b)

1 2 3 4 5 6 7 8
10-2

10-1

100

SNR

Sy
m

bo
l-E

rr
or

-R
at

e

Hard VLD
AMAP-2
A-AMAP-2

N=50, M(convergence point)

Figure 3.3：The comparison of performance (a) and memory access (b) vs. SNR. (b)(a)

3.2 Complexity Analysis

With the soft decoding of variable length code, comparators, multiplexers and storage

elements are essential for the VLSI implementation. However, each storage elements

(i.e. each state) also require corresponding modules inclusive of adder, multiplexer and

shifter. Therefore, reducing number of storage element reduces not only the

implementation cost but also the memory access times for the power-saving demand.

To formulate the complexity issue on the soft VLC decoder, we introduce some

parameters to analyze the overall complexity in terms of the numbers of states. Since the

number of states will grow with the sequence length and the number of code-length-type

in the VLC coding tables. We introduce the total numbers of codeword T = {CW0,

CW1,…, CWT } and the number of code-length-type S={ CL0, CL1,…, CLS } in the

pre-defined VLC coding table. Moreover, the symbol number N is the received symbol

constraint. If this constraint N cannot be noted before the coding procedure, we can use

the decoded number of specified symbols (i.e. # of LASTs) instead for the practical

application. The “optimal” soft VLC decoding, which means no any states are reduced

has the best performance at the price the high complexity and high memory access. The

number of states in optimal soft VLC decoder is depicted in Equation 3.1.

() () () 1,1__: 0 >×−×−= NTNCLCLNStageperStatesOptimal S (3.1)

22

() () () 1,1__:1 0 >−×−=− NNCLCLNStageperStatesAMAP S (3.2)

() NbNStageperStatesAMAP ×=− max__:2 (3.3)

Due to the implementation of large VLC table, we will pay more attention on the

complexity formulation of sub-optimal solution in soft VLC decoder. In [24], authors

presented AMAP-1 to reduce the state numbers. The performance of AMAP-1 is almost

the same with the optimal soft decoding method, since the pruning algorithm won’t

affect the optimal sequence selection in the trace-back decoding procedure. However,

from the Equation 3.2, the number of states in AMAP-1 is still too large to implement in

large VLC table. Another sub-optimal solution in [24] is AMAP-2 that keeps the bmax

best states at each trellis symbol step, and the formulation is described in Equation 3.3.

The above equations are assumed that the code length of input source table are

continuous and then approximated by the proposed formation in Equation (3.1) ~ (3.3).

We show the example in Figure 3.4 to address the complexity of optimal decoding

algorithm.

After the analysis of state numbers in each symbol step, we address the total numbers

of states required in the soft decoding procedure. In Figure 3.5, the state numbers of

optimal decoding and AMAP-1 decoding method are dramatically increased with the

received symbol number (or received sequence length) N. However, the sequence length

decided by the system-level controller or the packet size for the realistic application.

From the algorithmic point of view, parameters T and S affect the increased degree of

algorithmic complexity. These parameters are decided by the pre-defined VLC coding

table. Therefore, reducing the number of entries in coding table or the number of tables

can greatly reduce the numbers of states as well as the overall complexity. AMAP-2 is a

sub-optimal and low-complexity solution for the realization of soft VLC decoder. But

the reduced-complexity is still not enough when the table size or sequence length grows.

We will focus on the reduction of table size in the next chapter.

23

1s

011s

0100s

0101s

2

4

5

5

Codwword CodeLength T = {1s, 011s, 0100s, 0101s}
S = {2, 4, 5}

Optimal => (5-2)x(N-1)x4, N>1

1 2 3 4 5

4 12 24 36 48

Symbol Step N

of state in
each symbol step

0s

10s

11s

2

3

3

Codwword CodeLength

T = {0s, 10s, 11s}
S = {2, 3}

Optimal => (3-2)x(N-1)x3

1 2 3 4 5

3 6 9 12 15

Symbol Step N

of state in
each symbol step

 (a) Example 1 (b) Example 2

Figure 3.4：Complexity analysis in terms of each symbol state numbers.

0 10 20 30 40 50
0

100

200

300

400

500

600

0 20 40 60
0

5000

10000

15000

Optimal
AMAP-1
AMAP-2

of States Total # of States

Each Symbol Step Each Symbol Step

(a) (b)

Figure 3.5：The comparison with complexity issue in terms of state numbers (a) and

total state numbers (b) using the VLC table of Figure 2.3.

3.3 Summary

In this chapter, the memory-efficient algorithm and complexity analysis of adaptive soft

VLC decoder has been presented. Based on the modified sorting scheme, the proposed

Adaptive AMAP-2 becomes more channel-robust than traditional AMAP-2. Our

proposed algorithm averagely saves 15% of memory access at the condition of identical

coding performance. Further, we introduce some parameters to analyze the overall

complexity in terms of state numbers. The advanced analysis and formulation of

performance are described in chapter 5.

24

25

Chapter 4

Low-Complexity Design Approach

4.1 Symbol-Merging Algorithm

The main problem of soft VLC decoding is the many states and the complicated metric

computation when the sequence length or table size grows. To apply the SISO algorithm

to the MPEG-4 system, it is essential to reduce the table size. Thus, we propose a

scalable scheme with symbol merging algorithm.

We utilize the redundancy exhibiting in different symbols to perform the merging

algorithm. We consider a simple VLC table as a tree-structure in Figure 4.1(a). The

proposed symbol-merging scheme searches the symbols with identical prefix and

merges them into single merged-symbol. In Figure 4.1(b), the original SISO decoding

algorithm is a special case that is when z is equal to 0 (i.e. Base T0). In other words,

there is no hard decoding performed except ‘sign’ bit. Such case achieves the highest

performance with the penalty of the largest complexity. However, the code-length of

prefix symbol with soft decoding will decrease when the index ‘z’ increases. Meanwhile,

the number of bits with hard decoding will increase. As a result, it can be considered as

a hybrid scheme that combines the hard decoding and the soft decoding.

root

0 1

1 10

110

1010 Merge-1

Merge-2

prefix 011 prefix 0111 0s s

Symbol 0111 s Symbol 0110 s

prefix ' s'1 prefix ' s'0
Soft

decoding
Hard

decoding

Soft
decoding

Hard
decoding

Base
T0

Scalable
T1

Scalable
T2

Scalable
Tz

.

.

.

 (a) (b)
Figure 4.1：The tree-structured VLC (a) and scalable scheme with hard and soft decoding (b).

The symbol-merging scheme can be operated only on a certain specified condition.

Two codeword symbols can be merged only on the same symbol information including

the identical “LAST” and “SIGN” field. In addition, these two codeword symbols have

to own the equivalent prefix code and only different on the one-bit suffix code. The

detailed high-level description has been shown in Appendix A. The AC TCOEF tables in

MPEG-2 and MPEG-4 have been reduced to a reasonable size after the symbol-merging

scheme. In addition, the merging conditions are also related to the symbol-information

of “SIGN” and “LAST”, that’s why there are different merging result on MPEG-4 intra

and non-intra table with all the same codeword (see Table 4.1).

We use a simple example to illustrate the proposed scheme in Figure 4.2 where ‘Ti’

represents the number of symbols after the operation of Merge-i. As shown, after the

operation of ‘Merge-1’, the table size is decreased by 2. Further, with the ‘Merge-2’

operation, the total number of symbols becomes 3. The introduced ‘sign’ field represents

the number of “s” appended in the corresponding symbol. The ‘sign’ field will increase

when both of symbols with the identical “SIGN” and “LAST” have been merged into

one.

26

(c) M

(b) M rge-1

T2 = 3

27

(a) 03

13

12

CCode Length

03

13

12

CCode Length

T1 = 4

0

0

0

1

LAST

03

010S’3

111S3

10S2

Code WordCode Length

2

2

1

1

Sign

2

2

1

1

Sign

0

0

0

1

LAST

03

010S’3

111S3

10S2

Code WordCode Length

1

1

1

1

1

1

Sign

0

0

0

0

0

1

LAST

0101S4

0110S4

0100S4

111S3

0111S4

10S2
Code WordCode Length

1

1

1

1

1

1

Sign

0

0

0

0

0

1

LAST

0101S4

0110S4

0100S4

111S3

0111S4

10S2
Code WordCode Length

T0 = 6

(a)

Figure 4.2：A VLC table with Merge-0 (a), Merge-1(b) and M

4.1.1 Metric Formulation of “Balance Degree”

It can be noted that the more the merged-symbol have been de

merging-efficiency can be achieved. Therefore, to quantify the nu

the symbol-merging scheme, we propose the metric of ‘Balan

Equation 4.1. The metric of B.D. is between 0 and 1. In Equation

represents the maximal value as well as a special table with com

leads to “z×0.5” after the z times of summation where the ratio of

0.5. Therefore, the branch degree of Figure 4.2 is 58% in the cond

To prove that B.D. is a meaningful number to our merging sch

B.D. using the AC TCOEF tables in MPEG-2 and MPEG-4. As s

find that the higher of the B.D., the more reduction of the table s

non-intra table is lager than that of intra one. It can be explained b

more redundancy exploited in terms of symbol-structure. That i

table is more efficient than intra table after performing the symbol

()
() 5.0

1

5.01

1
..

1

0

1

1

0

1

0

1

×

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=
−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

==
∑

∑

∑
−

=

+

−

=

−

=

+

z
T

T
T

T

reductioncomplete
reductionreal

zDB

z

i i

i

z

i

z

i i

i

e
11S’11S’

(b)
rge-2
3

1

1

Sign

0

0

1

LAST

11S

0S

ode Word

3

1

1

Sign

0

0

1

LAST

11S

0S

ode Word

)
e
1S”1S”

(c
erge-2(c) operation.

veloped, the great the

mber of symbols after

ce Degree’ (B.D.) in

 4.1, the denominator

plete tree-structure. It

Ti+1 over Ti is fixed at

ition of “z=2”.

eme, we measure the

hown in Table 4.1, we

ize. The B.D. value of

y the fact that there is

s to say the non-intra

-merging scheme.

 (4.1)

28

Table 4.1：The reduction of table size by symbol-merging algorithm.

Standard MPEG-2 MPEG-4

Table INTRA TB-15 NON-INTRA TB-14 INTRA TB-15 NON-INTRA TB-14

T0 113 114 103 103

Scalable T1 65 60 61 56

Scalable T2 45 34 48 38

B.D.(2) 73.2% 90.7% 62% 77.8%

4.2 Table-Merging Algorithm

It is essential for switching tables on the decoding process of soft VLC decoder, since

there are intra and non-intra AC coefficient in the AC partition of whole bit-stream.

Further, table-merging method is demanded on the fast switching capability of VLC

decoder, such as the context-adaptive VLC in H.264. Consequently, to share the same

soft VLC decoder on the different VLC table, we propose a novel soft VLC decoder

with table merging algorithm to reduce the implementation cost and memory accesses.

We propose codeword merging and prefix merging method to realize the Table

-Merging scheme. These merging methods are a lossless merging and harmless to the

performance of soft VLC decoder; while the symbol merging algorithm in section 4.1 is

a lossy merging scheme, since the performance of decoder will degrade with the number

of merging (see Figure 4.3). We show the more detailed high-level description in

Appendix B, and elaborate the merging algorithm in the following literature.

4.2.1 Code-Word Merging

Although most VLC coding tables are generated based on the Huffman procedure, one

codeword still has high probability to exist in many coding tables. If this case is

occurred, it is unnecessary to duplicate the codeword information in memories for every

29

table that uses this codeword. A codeword merging is applied to set this codeword as a

merged codeword and reuse the codeword information when the coding tables are

required. Therefore, the information redundancy among coding tables is exploited. The

stored data are reduced from many identical codewords to one merged codeword.

4.2.2 Prefix Merging

According to the Huffman property, one codeword cannot be the prefix of another

codeword in a table but this rule does not hold among different tables. Frequently, a

short codeword in one table will be the prefix of a long codeword in other tables. When

these codewords are found, a prefix merging is performed by storing the long codeword

as a merged VLC codeword and the lengths of the VLC codewords in each table. As a

result, the information redundancy among tables is further exploited.

4.2.3 Merged Table

A table merging process is accomplished by applying both codeword-merging and

prefix-merging to the codewords of all AC TCOEF tables. The required table

information, which is to recover VLC coding tables from merged table, has to be a

superset of the stored data of two merging methods since it is hard to distinguish which

method is used to generate a merged codeword. Hence, every VLC code-length of all

tables has to be stored individually and will not be reused even though codeword

merging is performed. To select the merged codewords of VLC table quickly, additional

information, a valid-bit, is utilized to indicate whether a merged codeword belongs to

the table. Thus, the table information of a coding table is the valid-bit and VLC

code-length of every merged codeword (see Appendix B). The overall memory

requirement is reduced because merged codewords are stored once and reused by all AC

TCOEF tables.

4.3 Performance Evaluation

We propose the symbol-merging method to reduce the complexity at the expense of

little performance loss. There are tradeoffs between the complexity reduction and

performance loss. In Figure 4.3, the complexity in terms of execution time reduces

greatly at the cost of little performance degradation. Figure 4.3(b) describes that the

performance loss will dominate the overall system performance (i.e. symbol error rate)

when ‘i’ is larger than 2 (i.e. Merge-i > Merge-2).

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

SNR

Ex
ec

ut
io

n
Ti

m
e

Scalable Soft VLD
Scalable Soft VLD w ith Merge-1
Scalable Soft VLD w ith Merge-2

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

100

SNR

Sy
m

bo
l-E

rr
or

-R
at

e

Hard VLD
Scalable Soft VLD
Scalable Soft VLD w ith Merge-1
Scalable Soft VLD w ith Merge-2

(s
ec

)

 (a) (b)
Figure 4.3：The evaluation of execution time (a) and performance (b) with different

symbol-merging table in Figure 4.2.

To improve the flexibility of soft VLC decoder with the different AC TCOEF coding

tables (i.e. intra and non-intra), we perform Table-Merging scheme to reduce the

implementation cost and computational complexity. In the table configuration of soft

VLC decoder (see Table 4.2), [31] uses two soft VLC decoders with MAP decoding

operating on intra and non-intra blocks respectively. It’s not intuitive for the hardware

implementation and system integration. It may require additional information to

partition the intra and non-intra blocks into different channels. The integration overhead

and implementation cost made it unreliable for the cost-effect design approach. In [29],

the authors implement a soft VLC decoder with sequential algorithm. It used single-like

soft VLC decoder to reach the different VLC table requirement. However, the entries of

AC TCOEF tables are extensive and induce unexpected memory access and

computational complexity. To resolve the problems of complexity, we propose a novel

merging scheme to reduce the table size and merge the different tables into one table.

30

Based on our proposed soft VLC decoder, a comparison with existing designs is given

in Table 4.2. We implement the soft VLC decoder with SISO/ML algorithm. However,

due to the different anchor configurations and source characteristics among them, we

additionally list “Improved Ratio” (Equation 4.2) to declare the performance relation of

upper bound (i.e. no error), soft VLC decoder, and anchors.

More discussion about “improved ratio” can be addressed in Figure 4.4. In general, it

can be noted that soft VLD has an improvements of x dB as compared with the anchor.

However, the value of x is an absolute-local metric since this metric may vary with

different source (e.g. bit rate) and channel (e.g. channel condition) environment. To

achieve a fair comparison, we propose a measurement of “improved ratio” to equalize

among them. We consider the performance not only the lower bound (i.e. anchor) but

also the upper bound (i.e. no error) to obtain the ratio among them. Based on the

induced “improvement ratio”, Table 4.2 depicts about 80% capability of error recovery

in our proposed design can be achieved. Finally, we propose a low complexity soft VLC

decoder to realize the large VLC table in the MPEG standard at the expense of minor

performance loss.

Improved Ratio
)()(

)()(
AnchorPerfErrorNoPerf

AnchorPerfDecoderVLCSoftPerf
−

−
= (4.2)

4.4 Summary

In this chapter, the algorithm and system implementation of scalable soft VLC decoder

with a novel symbol-merging and multi-table-merging approach have been presented.

Based on the symbol-merging algorithm, we can greatly reduce the table size with the

price of minor performance loss. Further, to improve the table configuration on the

decoding process of switching table, we present a table-merging scheme to improve the

efficiency of soft VLC decoder when operating on the multiple tables. For the practical

applications, an efficient and low-complexity soft VLC decoder is fulfilled on the joint

source and channel design.

31

SNR

PSNR

Anchor

No Error
Upper Bound

Soft VLD

x dB y dB

Improved Ratio = x/y

Figure 4.4：The formulation of “Improved Ratio”

Table 4.2：The comparison with existing design.

Soft VLC Decoder Proposed [29] [31]

Implementation Method MPEG-4+SISO/ML MPEG-4+Sequential MPEG-4+
MAP

Table Configuration Reduced-Single Single Separated

RM 1 Enable Enable Enable

DP 2 Enable N/A N/A

Anchor

EC 3 Disable Enable Disable

Source Characteristics Foreman, QCIF, 64kbps,
I-P-P, 300bits/packet

Foreman, CIF, 800kbps,
I-P-P, 4000bits/packet

Foreman,
0.164bits/pel,QCIF,
I-P-P

Testing Environment AWGN+BPSK AWGN+BPSK AMC 4

Improvement 1.2dB 8dB 6dB

Improved Ratio 79.28% 80% 52.72%

1 Resynchronization Markers. 2 Data Partition. 3 Error Concealment
4 Additive-Markov-Channel model for slow fading wireless channel.

32

33

Chapter 5

Performance Modeling

5.1 Black-Box Model

To optimize our proposed scalable soft VLC decoder in chapter 4, it is crucial to reach

the optimal trade-off between performance and complexity. We propose a Black-Box

model (i.e. B-B. Model) to formulate the performance and introduce some parameters to

describe the complexity. They are independent and composed of algorithm-sensitive,

application-sensitive and table-sensitive. In the table-sensitive, we propose a novel

measurement of “symbol-alias” to provide accurate performance estimation for the

different tables. Finally, the proposed Black-Box model can reach the optimal

parameters for a given table and decoding algorithm. Figure 5.1(a) depicts the proposed

Black-Box (i.e. B-B) for the performance modeling and uses Figure 5.1(b) as the source

VLC table for the following illustration.

In Figure 5.2, the proposed model can be viewed as a parameterized decoder, which is

formulated and configured by some significant parameters. From the previous

statements, the performance of proposed soft VLC decoder can be parameterized by

three factors and elaborated in the following description.

34

LAST

0

0

0

1

4

4

3

2

0100sC

011sB

0101sD

10sA

Code WordCode Length LAST

0

0

0

1

4

4

3

2

0100sC

011sB

0101sD

10sA

Code WordCode Length

Algorithm

Application
Table

Performance

Figure 5.1：The B-B model (a) and the evaluation of source table (b).

Parameterized
Soft VLC decoder

Proposed
Soft VLD2

Application -Sensitive

Table-Sensitive
3

1
Algorithm-Sensitive

Input
VLC bitstream

Input
VLC bitstream

SNR

Error Rate

VLC Table

Figure 5.2：The relationship between performance and each parameter.

5.1.1 Algorithm-Sensitive Parameters

The algorithm-sensitive parameters are sensitive to algorithms; that is to say, different

algorithms are characterized by different parameters. Using the proposed algorithm in

chapter 4 as an example, the parameter ‘z’ is considered as an essential factor to

approach the trade-off between performance and complexity. Figure 5.3 describes that

the optimal choice is achieved when z is equal to 1 (Merge-1). The parameter ‘N*’ (see

chapter 5.1.2) does not affect the final results. Thus, “Merge-1” obtains the maximal

reduction of complexity at the cost of minor performance loss.

(a) (b)

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

SNR

Ex
ec

ut
io

n
Ti

m
e

Scalable Soft VLD
Scalable Soft VLD w ith Merge-1
Scalable Soft VLD w ith Merge-2

1 2 3 4 5 6 7 8 9 10
10-3

10-2

10-1

100

SNR

Sy
m

bo
l-E

rr
or

-R
at

e

Table look-up Hard VLD
Scalable Soft VLD
Scalable Soft VLD w ith Merge-1
Scalable Soft VLD w ith Merge-2

N*=50
VLC Table = Figure 4.2

 (a) (b)
Figure 5.3：The complexity (a) and performance (b) in different ‘z’.

After the analysis of parameter ‘z’, we will focus on the A-AMAP-2. From the

analysis of performance and complexity in chapter 3, it’s more imperative to decide the

number of ‘M’ to be survived (see Figure 3.2). The larger M achieves the higher

performance at the price of high complexity. The problem occurs also in the smaller M.

Thus, inappropriate M will be harmful to the performance or complexity.

The empirical value of M is determined from experiments. We define the saturation

and convergence point to approach the optimal value. Given a simple table in Figure

4.2(a), Figure 5.4 depicts the measurement of ‘saturation M’ and ‘convergence M’. The

symbol error rate will decrease with the increasing ‘M’. Intuitively, we select the

convergence point as ‘M’ for the tradeoffs between performance and complexity. We

also use the convergence point in the verification of MPEG-4 standard.

0 20 40 60 80 100
10-2

10-1

100

M

Sy
m

bo
l E

rr
or

 R
at

e

Hard VLD
Scalable Soft VLD(AMAP-2)

0 5 10 15
10-2

10-1

100

M

Sy
m

bo
l E

rr
or

 R
at

e

Hard VLD
Scalable Soft VLD(A-AMAP-2)

Convergence Point

Saturation Point

SNR=7, N=100

 (a) (b)
Figure 5.4：The performance with convergence and saturation point in AMAP-2 (a)

and A-AMAP-2 (b).

35

5.1.2 Application-Sensitive Parameters

The application-sensitive parameters are unrelated to the algorithms and decided by the

extrinsic applications. The packet size ‘N’ is the most impressive factor to achieve the

optimal performance. In this section, we regard it as the decoded number of symbols

‘N*’ for the simplification. Figure 5.5(a) describes that the performance can be

expressed by the normalized symbol error rate (i.e. SER) and overhead. In the overhead

computation, we assume that the 15-bit resynchronization marker is inserted in the

period of N-symbol. From Figure 5.5(b), it achieves the minimal SER and overhead

when ‘N*’ is equal to 60. There is no need to consider the algorithmic complexity

because it has to be optimized from the algorithm-sensitive parameters.

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

N*

N
or

m
al

iz
ed

 M
et

ric

Symbol Error Rate
Overhead

20 40 60 80 100 120 140
0.1

0.15

0.2

0.25

N*

Symbol Error Rate x Overhead

Optimal
Performance

SNR=7, z=0
VLC Table = Figure 5.1(b)

 (a) (b)
Figure 5.5：The optimization of performance in different ‘N*’.

 5.1.3 Table-Sensitive Parameters

To estimate the performance with different tables, the authors in [16] used the minimal

Hamming distance (dH) to quantify the relation between VLC table and performance. It

is still inaccurate when the different tables reach the same dH. We propose a novel

measurement of ‘symbol alias’ to quantify their relation and provide more accurate

performance estimation when their Hamming distances are the same.

 5.1.3.1 Intra Alias
36

We introduce the table-sensitive parameters ‘T’ and the symbol alias to obtain more

accurate estimation. The parameter ‘T’ (i.e. Ti in Figure 4.2) denotes the number of

symbols for a given VLC table. Besides, the symbol alias comprises two components.

One is the distance of “Inter Alias” (i.e. Distinter) described by Equation 5.1. The other is

the distance of “Intra Alias” (i.e. Distintra) described by Equation 5.2. Figure 5.6 depicts

the results of the following equations. The 1/Distinter is the number of elements for the

specific set, which calculates that whether the code-length of one symbol is the

combination of the others. The Distintra is the summation of minimal Hamming distance

for each symbol.

{ }
{ }

()inter
inter

max,1
321inter

1

max,,,,

SetntNumOfEleme
Dist

xxxxxxSet ii

T

xxi
iT

i
i

i

=

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

== ∑
≠=

…
 (5.1)

()
{ }jiHij

T

i
iTiTijijiii

symbolsymboldDwhere

DDDDDDDist

,

,,,,,,,min
1

1,321intra

=

= ∑
=

−≠…
 (5.2)

 5.1.3.2 Inter Alias

The inter alias is more sensitive to ‘T’ than intra alias and induces more performance

loss. In Figure 5.7(a), the intra alias of TB-I results from the bit alias with the symbols

of identical code-length. The increase of ‘T’ provides the increase of SER in the soft

decoding. However, the SER of table look-up decoding decreases when the ‘T’ grows.

The reason is that the extra symbols prevent the decoded-symbol loss and error

propagation. Further, the inter alias of TB-II results from the code-length alias with the

symbols of different code-length. In Figure 5.7(b), both of SER increase and provide

more performance loss than intra alias.

x4

x3

x2

x1

sym bol4
D

sym bol3
C

sym bol2
B

sym bol1
A

Code W ordCode Length

x4

x3

x2

x1

sym bol4
D

sym bol3
C

sym bol2
B

sym bol1
A

Code W ordCode Length

4

4

3

2

0101D

0100C

011B

10A

Code WordCode Length

4

4

3

2

0101D

0100C

011B

10A

Code WordCode Length

1/Distinter = 2
 {D,A,A} or {C,A,A} (i.e. 4=2+2)

Distintra = 5
 2 + 1 + 1 + 1

(a) (b) Source table in Eq.(5.1)-(5.2)Simple table in Figure 5.1(b)
Figure 5.6：The symbol alias of VLC table (a)(b).

37

38

4 5 6 7 8 9 10 11 12
10

-2

10
-1

10
0 TB-I

4 5 6 7 8 9 10 11 12
10

-3

10
-2

10
-1

10
0 TB-II

T

Sy
m

bo
l E

rr
or

 R
at

e

Table look-up Hard VLD
Scalable Soft VLD

Table look-up Hard VLD
Scalable Soft VLD

T
Sy

m
bo

l E
rr

or
 R

at
e

000015

0000016

00014

0013

....

012

Code WordCode Length

000015

0000016

00014

0013

....

012

Code WordCode Length

TB-II

00114

01004

00104

00014

....

00004

Code WordCode Length

00114

01004

00104

00014

....

00004

Code WordCode Length

TB-I

Intra Alias

Inte
r Al

ias

SNR=8, N=45, z=0*

Figure 5.7：The performance evaluation of ‘intra alias’ (a) and ‘inter alias’ (b) in different ‘T’.

5.3 Performance Estimation

To prove that the proposed symbol alias is a meaningful number, we use the VLC table

in [16] to recognize the difference of performance. In Figure 5.8(a), we inverse the

underlined bits in C2c and C2d for the correct VLC decoding. For our proposed

measurement of Figure 5.8(b), the Codes C2a achieves the worst performance because

of the lowest Distinter that induces more performance loss than Distintra. Further, there is

no inter alias exist in C2c and C2d. The Distinter is fixed at infinite (∞) by default. The

C2c obtains higher performance than C2d because of the higher Distintra of C2c. The

relation of performance with different tables is identical to [16] (see Figure 5.9). In

Figure 5.8(b), the higher distance of coding table will lead to the less occurrence of

symbol-alias (i.e. higher performance). The performance of C2c and C2d cannot be

recognized in [16] when each symbol probability is unknown. We provide more

accurate estimation than [16] and reduce the design time for the performance evaluation

among different tables.

(a)

(b)

Performance(C2c) > Performance(C2d) > Performance(C2a)

[3]Proposed
Min(dH)DistintraDistinterTable

2131C2d

2221C2c

1231/7C2a

[3]Proposed
Min(dH)DistintraDistinterTable

2131C2d

2221C2c

1231/7C2a

(a)

39

(b)

6

6

5

4

4

4

2

1

1110E

11110F

111110G

1101D

111111H

1100C

10B

0A

Code WordCode Length

6

6

5

4

4

4

2

1

1110E

11110F

111110G

1101D

111111H

1100C

10B

0A

Code WordCode Length

Codes C2a Codes C2c Codes C2d

5

5

5

5

4

4

3

3

01001E

01111F

10010G

1100D

11100H

0011C

101B

010A

Code WordCode Length

5

5

5

5

4

4

3

3

01001E

01111F

10010G

1100D

11100H

0011C

101B

010A

Code WordCode Length

5

5

5

5

5

5

2

2

10000E

01111F

11000G

10101D

00110H

01010C

11B

00A

Code WordCode Length

5

5

5

5

5

5

2

2

10000E

01111F

11000G

10101D

00110H

01010C

11B

00A

Code WordCode Length

T=8

[16]

(a)

Figure 5.8：VLC tables (a) and measurements (b) for the same source.
(b)

Figure 5.9：Coding performance with different VLC coding table [16]

Based on the proposed B-B model, the soft VLC decoder is parameterized. To

optimize the performance and the complexity, we include the B-B model in our

evaluation of scalable soft VLD. We use foreman (QCIF) as our test sequence and

encode the sequence at 64kbits/s and 15fps (No P-frame). In Figure 5.10(a), our

proposed scalable soft VLD shows that more than 1dB PSNR can be gained compared

with the table look-up decoding at BER=10-3 (SNR=10dB). Further, the parameters

determined by the B-B model are listed in Figure 5.10(b). The ‘T’ is determined from

Table 4.1 with the given MPEG-4 table and the others are determined through our

proposed B-B model. We choose ‘z’ as 2 for the complexity reduction. Then, we choose

‘N’ as 300 bits for the performance optimization. The performance improvement of our

proposed scheme will become more prominent when the upper bound of ‘No error’ is

increased. In the subjective quality comparison of Figure 5.11, our scheme shows better

quality.

B-B Model
Algorithm Parameter (z) 2

Application Parameter (N) ~300bits/packet
Table Parameter (T) 48 (see Table 4.1)

 (a)

0 10 20 30 40 50 60
23

24

25

26

27

28

29

30

31
foreman qcif.yuv (SNR=10dB)

PS
N

R

frame number

No Error
Scalable Soft VLD
Table look-up Hard VLD

 (b)
Figure 5.10： The simulated parameters (a) and PSNR comparison (b) within 50 frames.

40

Figure 5.11：The comparison on the 1st frame of video sequence.

(a) Table Look-up Hard Decoding (b) Scalable Soft VLC Decoding

5.4 Summary

In this chapter, the parameterized soft VLC decoder using a new performance

modeling approach has been proposed. We present a novel measurement of

“symbol-alias” to improve the accuracy of performance estimation. Simulation results

show that our proposed measurement provides more accurate performance than [16] for

the different tables. With the proposed B-B model, we can achieve the optimal trade-off

between performance and complexity. For the proposed soft VLC decoder using

performance modeling, we can averagely improve the PSNR by 1dB and offer better

subjective quality as compared with the table-look-up hard decoding.

41

42

Chapter 6

Performance Evaluation on MPEG-4

6.1 Environment Setup

Until now, we have introduced and established this new design. We propose to study the

feasibility and interest of soft VLC decoding for the existing video standards such as

MPEG-4. Thus, we verify our proposed scalable soft VLC decoder (i.e. scalable soft

VLD) over the AWGN channel using BPSK modulation. The input sequence is MPEG-4

encoded with the re-synchronization marker and the data partition. In data partition

mode, we have assumed that the texture part, composed of a sequence of VLC

code-words, be corrupted by AWGN. The other parts are of error free. This assumption

can be achieved by exploiting the UEP or RCPC Codes [32]. To the ESCAPE code, we

simply use hard decoding. Further, we use the soft output of quantizer as our input

bit-stream of soft VLC decoder. The soft VLD can overlook the bit-errors (i.e. Figure

6.7) from the quantizer of physical layer since we assumed that an UDP-Lite protocol

[33] is applied to our simulation model.

The overall simulation chain is depicted in Figure 6.1, and the major function blocks

are addressed on the following sections. We partition all of them into two main parts.

One is the function block of source coder, and the other is the function block of channel

coder. The proposed soft VLC can be considered as an error-correcting function block.

It’s a joint source and channel design evaluating on the practical MPEG-4 system.

YUV Test Sequence

MPEG-4
Encoder

QCIF/64kbps/15fps/300bpp

Mod-RCPC
Encoder

BPSK

AWGN

De-BPSK

Mod-RCPC
Decoder

Proposed
Soft VLD

MPEG-4
Decoder

YUV Test Sequence

PSNR

Quantizer

Figure 6.1：The proposed overall simulation environment of soft VLC decoder.

6.1.1 Source Model

Resynchronization Marker

Resynchronization marker (i.e. RM) is one of the error resilient tools in MPEG-4. it

attempts to enable resynchronization between the decoder and the encoded bit-stream.

This is especially helpful in the case of bursty errors as it provides the decoder with the

capability of “refresh start”. Further, to apply the data partition illustrated in the next

paragraph, the RM tools have to be enabled on our simulation chain. The number of

inserted RM will affect the coding efficiency. The more the number of RM leads to the

less the coding efficiency. The trade-off has been optimized by the proposed B-B model

in chapter 5, and the RM is inserted with a period of 300bits in Figure 6.1. (i.e.

300bits/packet)

Data Partition

To achieve better error isolation in the video packet and fixed interval synchronization

approached, MPEG introduced data partition. When the data partition syntax is

exploited, the video bit-stream is divided into two bit-streams by inserting a unique
43

44

marker among them. Each of them has a different sensitivity to channel errors. As

shown in Figure 6.2(a), I-frame partitions consist of a header, DC DCT coefficients and

AC DCT coefficients separated by a DC marker. As far as P frames are concerned,

partitions consist of a header, a motion partition and a texture partition, separated by a

motion marker. In addition, the data partition in MPEG-2 performs roughly the same

with the one in MPEG-4 (i.e. Figure 6.2(b)).

 Error resilient tools produce a further improvement of the received video quality if

exploited at channel coding level. Because soft VLC decoder only applied to the AC

transform coefficients of the bit-stream, it’s essential to use the data partition tool with

the purpose of performing unequal error protection (i.e. UEP), discussed more detailed

on RCPC Codes. (see chapter 6.1.2)

Packet
Header DC DC

Marker AC

I-frame

Packet
Header motion motion

Marker texture

P-frame

Quant
Scale

DC
coeff

DCT
coeff 1

DCT
coeff 2

DCT
coeff 3 EOB DC

coeff
DCT

coeff 1 EOB

Quant
Scale

DC
coeff

DCT
coeff 1

DCT
coeff 2

DCT
coeff 3 EOB

DC
coeff

DCT
coeff 1

EOB

1

2

3

4

Partition 0

Partition 1

Figure 6.2：The data partition mode in MPEG-4 (a) and MPEG-2 (b).

ESCAPE code Handler

The existence of an ESCAPE mode in the MPEG syntax for texture encoding prevents

the direct application of soft decoding algorithms to the extracted texture partition. In

the MPEG-2 video standard, the ESCAPE code is encoded with “000001” followed by a

fixed length code of 6-bit ‘run’ and 12-bit ‘signed_level’. We easily use table look-up

hard decoding with fixed length codes when encountering this specific codeword.

However, it becomes more complicated for the ESCAPE code in MPEG-4 video

standard. They utilize multiple tables to look-up the ‘Run’ or ‘Level’ of symbol

information because of the improvement of coding efficiency. To deal with this

complicated coding behavior, we just artificially include ESCAPE mode codeword and

adapt the algorithm to automatically treat this fixed length code extension [29].

(a) (b)

45

Figure 6.3：The high-level description of ESCAPE code handler on MPEG-2 and MPEG-4.

6.1.2 Channel Model

UDP-Lite Protocol

UDP is a simple best effort transport protocol. Unlike TCP, UDP does not provide

reliability, in-order delivery or congestion control, which made it especially popular

among delay-sensitive real-time applications. Further, audio/video applications often

prefer damaged packets over lost packets. One way for an application to allow delivery

of damaged packets is to disable the UDP check sum. These applications could be

benefit from using UDP Lite instead of UDP.

UDP-Lite [33] is a lightweight version of UDP with increased flexibility in the form

of a partial checksum. UDP-Lite provides a check sum with an optional partial coverage.

When enabling this option, a packet is partitioned into a sensitive and an insensitive part.

Errors in the insensitive part will not cause the packet to be discarded by the transport

layer at the receiving end-user. When the check sum covers the entire packet, which

should be the default and UDP-Lite is semantically identical to UDP.

Based on the UDP-Lite protocol, we can easily apply our algorithm to the delay-

sensitive real-time transmission on the MPEG-4/UDP-Lite. However, to perform the

UDP-Lite effectively, the MPEG-4 has to enable on the “Resynchronization Marker”

and “Data Partition” mode. Besides, the RCPC codes are exploited to cooperate with the

ESCAPE_Code_Handler () // for MPEG-2 ESCAPE code
{
 // Step1.1 : Find ESCAPE code.

 // Step1.2 : Look-up TB-16 for 6-bit RUN and 12-bit Signed_Level.

 // Step1.3 : Fixed length decoding is performed easily.
}

ESCAPE_Code_Handler () // for MPEG-4 ESCAPE code
{
 // Step2.1 : Find ESCAPE code.

 // Step2.2 : Look-up different table in different types of ESCAPE code.

 // Step2.3 : much more difficult to handle, just artificially included.
}

46

MPEG-4/UDP-Lite to construct our simulation model.

Rate Compatible Punctured Convolutional Codes (RCPC Codes)

RCPC Codes is used to implement the unequal error protection (i.e. UEP) and

connected with the UDP-Lite and data partition of MPEG-2/4. The overall simulation

model is performed packet by packet. In our channel model, we assumed that the

modified RCPC has been employed on our simulation chain. This modified RCPC can

be described in Figure 6.4(a). Particularly, the first three data partition (i.e. header, DC

coefficient and DC marker for I frames; header, motion data and motion marker for P

frames) play an important role in the decoding procedure of source decoder. The loss of

these parts will introduce the loss of synchronization and corrupt the whole frames.

Therefore, we paid lots of efforts to protect this part (i.e. R1~0). However, about 72% of

video packet is less important (i.e. Figure 6.4(b)), there is no reason to protect them as

the small coding rate (i.e. R2~1). We assume that there is no any channel coding

performed on this part, and recovered by the source decoder (e.g. RVLC decoder) or

joint source and channel decoder (e.g. Soft VLC Decoder).

The Ratio of Video Packet

25%

3%

72%

AC Coeff or Texture
DC Coeff or Motion data

Packet Header

Packet
Header DC Coeff DC

Marker AC Coeff

R1 ~ 0 R2 ~ 1

Packet
Header

Motion
Data

Motion
Marker Texture

I-frame

P-frame

Figure 6.4：The content (a) and ratio (b) of one video packet in MPEG-4.

Foreman Sequence: 64kbps

(a)

(b)

47

Quantizer

The quantizer is used to provide the soft bit-stream or soft information on the certain

channel condition and application. In the BPSK modulation, the modulated symbol is

either +1 or -1. After the channel corruption, the demodulated signal will become 0 or 1

in the hard decision scheme. But, if we exploit the quantizer to implement the soft

decision method, the demodulated symbol will range from 0 to 2q-1 [34]. The bit

number q is used to quantize the symbol and determined by channel and application.

For example of q=3, Figure 6.5 shows the uniform quantization after the BPSK

demodulation. ∆ is the step size and the quantized symbol can be formulated as

Equation 6.1. To optimize the system performance using the quantization step, we

simulate the relation between different q value and the system performance. Thus, in

Figure 6.6, we can achieve the optimal trade-off between system cost and performance

when q is equal to 4. In Figure 6.6(b), it shows that 16-level quantizer is a good choice

because it obtains the complexity reduction with the price of minor performance loss.

Therefore, based on the above statements, we use the 4-bit (i.e. 16-level) quantizer to

construct the overall simulation on MPEG-4/UDP-Lite/UEP/AWGN.

 (6.1)

+1-1

0 1 2 3 4 5 6 7

I

Q

∆

quantized
symbol

Figure 6.5：The soft input of VLC decoder.

⎣ ⎦5.4)/1(+∆×= ISq

10
-1

10
0

ol
-E

rr
or

-R
at

e

Quantization Level vs. Performance

Fig

 I

cod

Sys

tran

pro

ove

abo

MP

(a)
1 2 3 4 5 6 7 8 9 10
10

-3

10
-2

SNR

Sy
m

b

Hard Decision VLD
Soft VLD with 5bits
Soft VLD with 3bits
Soft VLD with 4bits

1.284dB1.72dB1.765dBBPSK

8-level16-level32-level

1.284dB1.72dB1.765dBBPSK

8-level16-level32-level

Improvement of the Soft VLD in the SER of 10Improvement of the Soft VLD in the SER of 10--11

)
(b

ure 6.6：The performance improvement (a)(b)with different quantization level.

n summary, we have addressed the detailed function block of source and channel

er. In addition, we can also partition all of them into the 5 layers of OSI (Open

tem Interconnection) model in Figure 6.7. In the wireless network or mobile

smission, we assume that UDP-Lite of transport layer and UEP of link layer are

vided. Further, we exploit the soft bit-stream after the 16-level quantizer and

rlook the soft bit-error of physical layer into the application layer. Based on the

ve statements, we are going to evaluate the proposed design on the

EG-4/UDP-Lite/UEP/AWGN in next section.

Contents OSI Layers
Application – MPEG Application Layer

Transport – UDP or UDP-Lite Transport Layer

48

Network – IP Network Layer
UEP – RCPC Codes Link Layer

Soft Information Physical Layer

Figure 6.7：Overlooking bit errors in application layer.

6.2 Performance Evaluation on the MPEG-4/UDP-Lite/

UEP/AWGN

The proposed soft VLC decoder can be evaluated on any VLC-based video compression.

We use MPEG-4 as the test model in the source coding part. It is also suitable for any

MPEG-x and the H.26x series of video coding standard. The only difference among

them is the source VLC symbol tables. The proposed soft VLC decoder has been

parameterized in chapter 5, justified and proved the practicability in our simulation

chain.

In our simulation of Figure 6.8, we use foreman (QCIF resolution, 50frames) as our

test sequence and encode the sequence at 64kbps and 15fps for the wireless or mobile

communication. Each video packet contains 300bits and the intra interval is 1 (i.e. no P-

frame, only intra-coded). Further, there is no any side information to be transmitted, thus,

the proposed soft VLC decoder is bandwidth-efficient. In this comparison, we assume

that the anchor (i.e. TLU VLD) has no any error concealment scheme performed.

Therefore, we can obtain a fair and neat comparison in the objective quality.

Test Sequence Foreman
Resolution 176x144(QCIF)
Bit Rate

Frame Rate
Packet Size

64kbps

15fps
Intra Interval 0

300bits/packet
ER Tools RM, DP

(a)

(b)

(c)

(d)

(e)

(f)

Figure 6.8：Average PSNR of Y component for proposed soft VLD and TLU VLD.

49

50

To apply the proposed soft VLC decoder, we enable the error resilient tools in

MPEG-4 (i.e. RM and DP). In addition, we also enable the mechanism of rate control to

achieve the given bit-rate. Therefore, there are several frames at the beginning have

more higher PSNR quality in Figure 6.8. To summarize the above simulation, Figure 6.9

shows the PSNR versus the different channel condition. Our proposed scalable soft VLC

decoder is standard compliant and provides more than 1dB PSNR gains as compared

with the straightforward table look-up decoding (i.e. TLU VLD) when the SNR=10 (i.e.

BER=10-3). Further, we also show that the improvement on the burst errors of channel

environment versus the different burst length ranging from 3 to 20 bits. In Figure 6.10,

the simulation result shows that the improvements of 1dB are gained as compared with

the traditional TLU decoding method in terms of Y-component or average PSNR. At the

same condition of channel model, we apply the standard-support RVLD to our

simulation chain. Figure 6.11 depicts that the improvement of 0.5dB has been found

between RVLD and traditional VLD.

Finally, the proposed design is also compared with the existing methods with error

recovery capability (see Table 6.1) such as the RVLD, SSVLD of source recovery or the

Viterbi, Turbo decoder of channel recovery. Based on the advantage of joint design

(joint source and channel), the proposed scalable soft VLD can achieve a compromise

between the coding performance (i.e. capability of error recovery) and the channel

bandwidth. In the source coding side, MPEG-4 supports the Reversible VLC table

method to improve the error resilient video transmission, but it may induced the coding

overhead of 2.2% than the traditional VLC table [35]. In addition, [10] proposed a

self-synchronization VLC decoding algorithm to improve the coding overhead at the

same performance compared with RVLD. In the other way, forward error correction

codes provides the high capability of error recovery, but it has to pay the great penalty

of coding overhead (e.g. code rate=1/2, a.k.a. coding overhead=200%). As shown in

Table 6.1, the proposed scalable soft VLD is standard compliant and there is no any side

information to be required. It is highly advantageous to the band-limited video

transmission (e.g. wireless or mobile communication). Further, it provides high

performance in terms of PSNR with objective measurement.

8 8.5 9 9.5 10 10.5 11 11.5 12
21

22

23

24

25

26

27

SNR (dB)

PS
N

R

 SNR vs. PSNR

TLU VLD
Soft VLD

Figure 6.9：PSNR vs. AWGN channel performance

100 101 102
23

24

25

26

27

28

29

Burst Length (bits)

PS
N

R

SNR=10dB

TLU VLD (Y-comp.)
Soft VLD (Y-comp.)
TLU VLD (Avg.)
Soft VLD (Avg.)

Figure 6.10：PSNR vs. Burst error performance
51

8 8.5 9 9.5 10 10.5 11 11.5 12
21

22

23

24

25

26

27

SNR (dB)

PS
N

R

 SNR vs. PSNR

TLU VLD
Soft VLD
RVLD

Figure 6.11：The comparison between the proposed soft VLD and the RVLD.

Table 6.1：The trade-off between error correction and channel bandwidth.

 Coding Method Performance Channel Bandwidth/
Coding Efficiency

1 Table Look-Up VLD [DP+RM] Anchor Anchor
2 Reversible VLD [30] ~ 0.5dB 2.2%
3 Self-Sync. VLD [10] ~ 0.5dB 1.6% (0.6% overhead reduction)

4 Scalable Soft VLD [proposed] ~ 1.2dB 0%
5 Viterbi,

Turbo Decoder
~ Shannon Bound 200% for Viterbi

300%~500% for Turbo

The above simulation is based on all I-frame assumption. We address the results in

I-P-P structure of encoded bit-stream below. If the P frame is involved in our encoded

sequence, the VLC decoder has to switch the table to deal with the different frame

configuration. It means that not only intra but also non-intra VLC coding table should

be exploited on the decoding procedure of the proposed soft VLD. Based on the

proposed table-merging algorithm, we merge two tables into one super-set VLC coding

52

table. Therefore, the proposed VLC decoder can easily switch table on the decoding

procedure instead of the duplicated structure [31]. Figure 6.12 shows that the

improvement of 1.5dB has been found at the SNR=10dB. Further, at the different source

characteristics (i.e. Foreman, Suzie and Silent), we show that a PSNR improvement

ratio of 40~60% can be achieved at the condition of 64kbps, 15fps, 300bits/packet and

12frames/intra interval.

8 8.5 9 9.5 10 10.5 11 11.5 12
20

21

22

23

24

25

26

27

28

29

SNR

PS
N

R

SNR vs. PSNR for I-P-P

TLU VLD
Soft VLD

Figure 6.12：The comparison between the proposed soft VLC decoder and the

standardized VLC decoder for Multi-Table-Merging.

Table 6.2：The PSNR improvement within different video characteristics.

53

Video
pattern

QCIF resolution, 64kbps, 15fps, 300bit/packet,
12frames/intra interval, 10dB/channel condition

Total frame
number

Foreman, 400 frames Suzie, 150 frames Silent, 300 frames

PSNR
improvement

0.417dB 2.896dB 0.7752dB

Improved
ratio

41.90% 85.377% 52.22%

54

Chapter 7

Conclusions and Future Work

In this dissertation, we propose an efficient and scalable soft VLC decoder to

significantly reduce the memory utilization and decoding complexity. The proposed

performance modeling reaches the optimal trade-off between performance and

complexity for the multimedia communication.

 Generally, the soft VLC decoder needs to maintain many states for the correct

decoding when the sequence length or table size grows. Our approach reduces the

complexity by simplifying the algorithm and reducing the table size. Specifically, we

simplify the algorithm by adaptively selecting the survival states to reduce the number

of memory access. Further, we reduce the table size by using a symbol-merging scheme.

We merge two symbols with the same prefix into one. To share the same soft VLC

decoder on the different VLC table, we propose a novel soft VLC decoder with table

merging algorithm to reduce the implementation cost. Particularly, we utilize the

codeword merging and prefix merging method to realize the table merging scheme. In

order to obtain optimal performance and complexity, we propose a Black-Box model. In

this proposed model, we present a novel measurement of “symbol-alias” to improve the

accuracy of performance estimation.

 Experimental results show that our proposed adaptive scheme can averagely save

15% of memory access as compared to the state-of-the-art algorithms. Furthermore, our

proposed scalable soft VLC decoder has more than 0.4~2.9dB PSNR gain and offers

better subjective quality compared with the table look-up decoding method and the

standard-support RVLD.

55

 There are still several improvements can be done in this research in the near future.

First, only software implementation and complexity analysis have been completed in

this work. It is essential to pay more attentions on the real-time implementation and

low-latency transmission. In addition, the proposed soft VLC decoder is performed only

on the AC transform coefficients. It’s an in-significant and partial part of the whole

MPEG video bit-stream. Therefore, designing a soft VLC decoder that can cope with the

whole VLC symbol bit-stream becomes a great challenge in the near future. In this

thesis, the proposed soft VLC decoder can be applied not only MPEG-4 but also

MPEG-2 AC transform coefficients. However, the newly video standard (i.e.

H.264/AVC) is created and very different from the former standards. It is an interesting

research to extend the proposed design to this novel video standard.

56

Bibliography

[1] D. A. Huffman, “A method for the construction of minimum-redundancy codes”, in Proc.

IRE, vol. 40, pp. 1098-1101, Sept. 1952.

[2] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, Final Draft International

Standard (FDIS), Mar. 2003.

[3] S. Shirani, F. Kossentini, and R. Ward, "An adaptive markov random field based error

concealment method for video communication in an error prone environment", in

Proceedings of the International Conference on Acoustics, Speech, and Signal Processing,

(ICASSP’99) March 1999.

[4] C. E. Shannon, “A mathematical theory of communication”, Bell Syst. Tech. J., vol. 27,

pp. 379-423-623-656, 1948.

[5] S. Vembu, S. Verdu, and Y. Steinberg, “The source channel theorem revisited”, IEEE

Trans. Inform. Theory, vol. 41, pp. 44–54, Jan. 1995.

[6] Y. Wang, S. Wenger, J. Wen, and A. K. Katsaggelos, “Error resilient video coding

techniques”, IEEE Signal Processing Magazine, vol. 17, pp. 61-82, July 2000.

[7] S. Shirani, F. Kossentini, and R. Ward. “Error Concealment Methods, A Comparative

Study.” IEEE Canadian Conference on Electrical and Computer Engineering, vol. 2,

pp. 835-840, 1999.

[8] Y. Takishima, M. Wada, H. Murakami, “Reversible Variable Length Codes," IEEE Trans.

Comm., vol. 43, No. 2/3/4, pp158-162, 1995.

[9] David W. Redmill and Nick G. Kingsbury, "The EREC: An error-resilient technique for

57

coding variable-length blocks of data", IEEE Trans. on Image Processing, vol. 5, no. 4,

pp. 565-574, April 1996.

[10] G. Y. Hong, B. Fong, and A. C. M. Fong, “Error Localization for Robust Video

Transmission”, IEEE Trans. on Consumer Elec., Vol. 48, Issue: 3, pp. 463-469, Aug.

2002.

[11] European Telecommunications Standards Inst. (ETSI), ETS 300 744 (1997): Digital

Broadcasting Systems for Television, Sound and Data Services; Framing Structure,

Channel Coding and Modulation for Digital Terrestrial Television, 1997.

[12] Jeanne, M.; Carlach, J.C.; Siohan, P.; Guivarch, L.; “Source and Joint Source-Channel

Decoding of Variable Length Codes” IEEE International Conference on Communications,

vol. 2, pp.768-772, May 2002.

[13] Demir, N.; Sayood, K., “Joint source/channel coding for variable length codes”, Data

Compression Conference’98, Proceedings, pp. 139-148, April 1998.

[14] V. B. Balakirsky, “Joint source-channel coding with variable length codes” in

Proceedings of IEEE ISIT, Ulm, Germany, 1997.

[15] R. Bauer and J. Hagenauer, “On variable length codes for iterative souce/channel-

decoding”, in Proc. IEEE Data Compression Conf., pp. 273-282, 2001.

[16] Bystrom, M.; Kaiser, S.; Kopansky, A., “Soft source decoding with applications”, IEEE

Transactions on Circuits and Systems for Video Technology, vol. 11, Issue. 10, pp. 1108 -

1120, Oct. 2001.

[17] Viterbi A. J., “Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm”, IEEE Trans. on Information Theory, Vol. IT-13, pp. 260-269, 1967.

[18] Buttigieg V. & Farrell P.G., "A maximum likelihood decoding algorithm for

variable-length error-correcting codes", Proc. 5th Bangor Symposium on

Communications, Bangor, Wales, pp. 56-59, 2-3 Jun. 1993.

[19] Jiangtao Wen; Villasenor, J., “Soft-input soft-output decoding of variable length codes”,

IEEE Transactions on Communications, Vol. 50, Issue: 5, pp. 689-692, May 2002

[20] J. Hagenauer and P. Poeher, “A Viterbi algorithm with soft-decision outputs and its

58

applications”, Proc. IEEE GLOBECOM, Dallas, TX, Nov. 1989.

[21] J. Hagenauer, “Source-controlled channel decoding”, IEEE Trans. on Communication,

Vol. 43, pp. 2449-2457, Sept. 1995.

[22] Buttigieg V. & Farrell P.G., "A maximum a-posteriori (MAP) decoding algorithm for

variable-length error-correcting codes", Codes and cyphers: Cryptography and coding IV,

Essex, England, The Institute of Mathematics and its Applications, pp. 103-119, 1995.

[23] M. Park and D. J. Miller, “Joint source-channel decoding for variable length encoded

data by exact and approximated MAP sequence estimation”, ICASSP’99, Phoenix,

Arizona, USA, pp. 2451-2454, March 15-19, 1999.

[24] Lamy, C.; Pothier O., “Reduced complexity Maximum A Posteriori decoding of

variable-length codes”, GLOBECOM ‘01, vol.2, pp.25-29, Nov. 2001.

[25] M. Park and D. J. Miller, “Joint source-channel decoding for variable length encoded

data by exact and approximate MAP sequence estimation”, IEEE Transactions on

Communications, pp. 1-6, vol. 48, no. 1, Jan. 2000.

[26] F. Jelinek, “A fast sequential decoding algorithm using a stack”, IBM J. Res. and DEv.,

pp. 675-685, Nov. 1969.

[27] Buttigieg V. & Farrell P.G., "Sequential decoding of variable-length error-correcting

codes", Eurocode 94, Côte d'Or, France, 24-28 Oct. 1994.

[28] R. Bauer and J. Hagenauer, Turbo-FEC/VLC-decoding and its application to text

compression“, Proceedings of the Conference on Information Sciences and System

(CISS’00), Princeton University, USA, pp. WA6-6－WA-11, Mar. 15-17, 2000.

[29] L. Perros-Meilhac and C. Lamy, “Huffman tree based metric derivation for a

low-complexity sequential soft VLC decoding”, in Proc. of ICC’02, pp. 783-787, vol. 2,

New York, USA, Apr. 2002.

[30] ISO/IEC 14496-2. Information technology – Coding of audio-visual objects – Part 2:

Visual, December 1999.

[31] Q. Chen and K. P. Subbalakshmi, “Joint Source-Channel Decoding for MPEG-4 Video

59

Transmission over Wireless Channels”, IEEE Journal on Selected Areas in

Communications, vol. 21, pp. 1780-1789, Dec. 2003.

[32] J. Hagenauer, “Rate-Compatible Puncture Convolutional Codes (RCPC Codes) and their

applications”, IEEE Trans. on Communications, vol. 36, no. 4, pp. 389-400, April 1988.

[33] Larzon, et al., “The UDP Lite Protocal”, Internet Draft (work in progress),

draft-ietf-tsvwg-udp-lite-02.txt, Lulea University of Technology, Aug. 2003.

[34] Onyszchuk, I.M.; Cheung, K.-M.; Collins, O. “Quantization Loss in Convolutional

Decoding”, IEEE Trans. on Communications, Vol. 41, Issue. 2, Feb. 1993.

[35] Chien-Wu Tsai, To-Ju Huang, Kuo-Lin Fang, and Ja-Ling Wu, “A Hybrid and Flexible

H.263-based Error Resilient and Testing System”, IEEE-TENCON, vol. 1, pp. 19- 22,

Aug. 2001.

[36] ISO/IEC 7498-1. Information Processing Systems – OSI Reference Model – The Basic

Model 1994.

[37] Tsu-Ming Liu, Chen-Yi Lee, “A Low-Complexity Soft VLC Decoder Using

Performance Modeling”, accepted by IEEE ICIP’04.

 60

Appendix A

Symbol Merging Algorithm

The symbol merging algorithm is used to reduce the table size. We

merge two symbols with the same “LAST” and “SIGN” field into single

merged-symbol. We show the pseudo-code and a simple example on

the following description. Further, we use the INTRA and NON-INTRA

table of MPEG-2 and MPEG-4 as the source table. After the proposed

merging scheme, detailed results of each merging process are also

depicted on the following pages.

High Level Description of Symbol-Merging Algorithm

Symbol Merging Algorithm (merge-i)

{ inc = 1;

 Merging_Condition(x,y) = ((x XOR y)==CL’b1) && (LASTx==LASTy) &&

(SIGNx==SIGNy);

 While (inc==i)

 For (whole symbol combinations in one coding table)

{ Find(CodeLength(symbolm) == CodeLength(symboln))

 { If(Merging_Condition(symbolm, symboln))

 { Merged_Symbol = symbolm(CodeLegnthm-2:0) >> 1;

 Merged_SIGN = SIGNm;

 61

 Merged_LAST = LASTm;

}

}

 }

 inc = inc + 1;

end while

}

NOTE1 : This code shall be used for the first (DC) coefficient in the block.

NOTE2 : ESCAPE code

Example:
index symbol LAST SIGN Merged_Symbol Merged_SIGN Merged_LAST
1(=m) 0010 0 1
2(=n) 0011 0 1

001 0 1

 62

MPEG-2 Table B-14 MPEG-2 Table B-14 [Merge-1] MPEG-2 Table B-14 [Merge-2]
0 VLC CODE SIGN LAST 0 VLC CODE SIGN LAST 0 VLC CODE SIGN LAST
1 10 0 1 1 10 0 1 1 10 0 1
2 1 (NOTE1) 1 0 2 1(NOTE1) 1 0 2 1(NOTE1) 1 0
3 11 1 0 3 11 1 0 3 11 1 0
4 011 1 0 4 011 1 0 4 011 1 0
5 0100 1 0
6 0101 1 0

5 010 2 0 5 010 2 0

7 00101 1 0 6 00101 1 0 6 00101 1 0
8 00110 1 0
9 00111 1 0

7 0011 2 0 7 0011 2 0

10 000100 1 0
11 000101 1 0

8 00010 2 0

12 000110 1 0
13 000111 1 0

9 00011 2 0

8 0001 3 0

14 0000100 1 0
15 0000101 1 0

10 000010 2 0

16 0000110 1 0
17 0000111 1 0

11 000011 2 0

9 00001 3 0

18 000001(NOTE2) 0 0 12 000001(NOTE2) 0 0 10 000001(NOTE2) 0 0
19 00100000 1 0
20 00100001 1 0

13 0010000 2 0

21 00100010 1 0
22 00100011 1 0

14 0010001 2 0

11 001000 3 0

23 00100100 1 0
24 00100101 1 0

15 0010010 2 0

25 00100110 1 0
26 00100111 1 0

16 0010011 2 0

12 001001 3 0

27 0000001000 1 0 17 000000100 2 0 13 00000010 3 0

 63

28 0000001001 1 0
29 0000001010 1 0
30 0000001011 1 0

18 000000101 2 0

31 0000001100 1 0
32 0000001101 1 0

19 000000110 2 0

33 0000001110 1 0
34 0000001111 1 0

20 000000111 2 0

14 00000011 3 0

35 000000010000 1 0
36 000000010001 1 0

21 00000001000 2 0

37 000000010010 1 0
38 000000010011 1 0

22 00000001001 2 0

15 0000000100 3 0

39 000000010100 1 0
40 000000010101 1 0

23 00000001010 2 0

41 000000010110 1 0
42 000000010111 1 0

24 00000001011 2 0

16 0000000101 3 0

43 000000011000 1 0
44 000000011001 1 0

25 00000001100 2 0

45 000000011010 1 0
46 000000011011 1 0

26 00000001101 2 0

17 0000000110 3 0

47 000000011100 1 0
48 000000011101 1 0

27 00000001110 2 0

49 000000011110 1 0
50 000000011111 1 0

28 00000001111 2 0

18 0000000111 3 0

51 0000000010000 1 0
52 0000000010001 1 0

29 000000001000 2 0

53 0000000010010 1 0
54 0000000010011 1 0

30 000000001001 2 0

19 00000000100 3 0

55 0000000010100 1 0
56 0000000010101 1 0

31 000000001010 2 0 20 00000000101 3 0

 64

57 0000000010110 1 0
58 0000000010111 1 0

32 000000001011 2 0

59 0000000011000 1 0
60 0000000011001 1 0

33 000000001100 2 0

61 0000000011010 1 0
62 0000000011011 1 0

34 000000001101 2 0

21 00000000110 3 0

63 0000000011100 1 0
64 0000000011101 1 0

35 000000001110 2 0

65 0000000011110 1 0
66 0000000011111 1 0

36 000000001111 2 0

22 00000000111 3 0

67 00000000010000 1 0
68 00000000010001 1 0

37 0000000001000 2 0

69 00000000010010 1 0
70 00000000010011 1 0

38 0000000001001 2 0

23 000000000100 3 0

71 00000000010100 1 0
72 00000000010101 1 0

39 0000000001010 2 0

73 00000000010110 1 0
74 00000000010111 1 0

40 0000000001011 2 0

24 000000000101 3 0

75 00000000011000 1 0
76 00000000011001 1 0

41 0000000001100 2 0

77 00000000011010 1 0
78 00000000011011 1 0

42 0000000001101 2 0

25 000000000110 3 0

79 00000000011100 1 0
80 00000000011101 1 0

43 0000000001110 2 0

81 00000000011110 1 0
82 00000000011111 1 0

44 0000000001111 2 0

26 000000000111 3 0

83 000000000010000 1 0
84 000000000010001 1 0

45 00000000001000 2 0

85 000000000010010 1 0 46 00000000001001 2 0

27 0000000000100 3 0

 65

86 000000000010011 1 0
87 000000000010100 1 0
88 000000000010101 1 0

47 00000000001010 2 0

89 000000000010110 1 0
90 000000000010111 1 0

48 00000000001011 2 0

28 0000000000101 3 0

91 000000000011000 1 0
92 000000000011001 1 0

49 00000000001100 2 0

93 000000000011010 1 0
94 000000000011011 1 0

50 00000000001101 2 0

29 0000000000110 3 0

95 000000000011100 1 0
96 000000000011101 1 0

51 00000000001110 2 0

97 000000000011110 1 0
98 000000000011111 1 0

52 00000000001111 2 0

30 0000000000111 3 0

99 0000000000010000 1 0
100 0000000000010001 1 0

53 000000000001000 2 0

101 0000000000010010 1 0
102 0000000000010011 1 0

54 000000000001001 2 0

31 00000000000100 3 0

103 0000000000010100 1 0
104 0000000000010101 1 0

55 000000000001010 2 0

105 0000000000010110 1 0
106 0000000000010111 1 0

56 000000000001011 2 0

32 00000000000101 3 0

107 0000000000011000 1 0
108 0000000000011001 1 0

57 000000000001100 2 0

109 0000000000011010 1 0
110 0000000000011011 1 0

58 000000000001101 2 0

33 00000000000110 3 0

111 0000000000011100 1 0
112 0000000000011101 1 0

59 000000000001110 2 0

113 0000000000011110 1 0
114 0000000000011111 1 0

60 000000000001111 2 0

34 00000000000111 3 0

 66

MPEG-2 Table B-15 MPEG-2 Table B-15 [Merge-1] MPEG-2 Table B-15 [Merge-2]
0 VLC CODE SIGN LAST 0 VLC CODE SIGN LAST 0 VLC CODE SIGN LAST
1 0110 0 1 1 0110 1 1 1 0110 1 1
2 10 1 0 2 10 1 0 2 10 1 0
3 010 1 0 3 010 1 0 3 010 1 0
4 110 1 0 4 110 1 0 4 110 1 0
5 0111 1 0 5 0111 1 0 5 0111 1 0
6 00101 1 0 6 00101 1 0 6 00101 1 0
7 00111 1 0
8 00110 1 0

7 0011 2 0 7 0011 2 0

9 11100 1 0
10 11101 1 0

8 1110 2 0 8 1110 2 0

11 000001(NOTE2) 0 0 9 000001(NOTE2) 0 0 9 000001(NOTE2) 0 0
12 000110 1 0
13 000111 1 0

10 00011 2 0

14 000100 1 0
15 000101 1 0

11 00010 2 0

10 0001 3 0

16 0000110 1 0
17 0000111 1 0

12 000011 2 0

18 0000100 1 0
19 0000101 1 0

13 000010 2 0

11 00001 3 0

20 1111000 1 0
21 1111001 1 0

14 111100 2 0

22 1111010 1 0
23 1111011 1 0

15 111101 2 0

12 11110 3 0

24 00100000 1 0
25 00100001 1 0

16 0010000 2 0

26 00100010 1 0
27 00100011 1 0

17 0010001 2 0

13 001000 3 0

 67

28 00100100 1 0
29 00100101 1 0

18 0010010 2 0

30 00100110 1 0
31 00100111 1 0

19 0010011 2 0

14 001001 3 0

32 11111010 1 0
33 11111011 1 0

20 1111101 2 0 15 1111101 2 0

34 11111100 1 0
35 11111101 1 0

21 1111110 2 0

36 11111110 1 0
37 11111111 1 0

22 1111111 2 0

16 111111 3 0

38 000000100 1 0
39 000000101 1 0

23 00000010 2 0 17 00000010 2 0

40 000000111 1 0 24 000000111 1 0 18 000000111 1 0
41 0000001100 1 0
42 0000001101 1 0

25 000000110 2 0 19 000000110 2 0

43 000000010001 1 0 26 000000010001 1 0 20 000000010001 1 0
44 000000010010 1 0 27 000000010010 1 0 21 000000010010 1 0
45 000000010101 1 0 28 000000010101 1 0 22 000000010101 1 0
46 000000011100 1 0 29 000000011100 1 0 23 000000011100 1 0
47 000000011010 1 0 30 000000011010 1 0 24 000000011010 1 0
48 000000011001 1 0 31 000000011001 1 0 25 000000011001 1 0
49 000000010110 1 0
50 000000010111 1 0

32 00000001011 2 0 26 00000001011 2 0

51 000000011110 1 0
52 000000011111 1 0

33 00000001111 2 0 27 00000001111 2 0

53 0000000010000 1 0
54 0000000010001 1 0

34 000000001000 2 0

55 0000000010010 1 0
56 0000000010011 1 0

35 000000001001 2 0

28 00000000100 3 0

 68

57 0000000010100 1 0
58 0000000010101 1 0

36 000000001010 2 0 29 000000001010 2 0

59 0000000010110 1 0 37 0000000010110 1 0 30 0000000010110 1 0
60 0000000011100 1 0
61 0000000011101 1 0

38 000000001110 2 0

62 0000000011110 1 0
63 0000000011111 1 0

39 000000001111 2 0

31 00000000111 3 0

64 0000000011011 1 0 40 0000000011011 1 0 32 0000000011011 1 0
65 00000000010000 1 0
66 00000000010001 1 0

41 0000000001000 2 0

67 00000000010010 1 0
68 00000000010011 1 0

42 0000000001001 2 0

33 000000000100 3 0

69 00000000010100 1 0
70 00000000010101 1 0

43 0000000001010 2 0

71 00000000010110 1 0
72 00000000010111 1 0

44 0000000001011 2 0

34 000000000101 3 0

73 00000000011000 1 0
74 00000000011001 1 0

45 0000000001100 2 0

75 00000000011010 1 0
76 00000000011011 1 0

46 0000000001101 2 0

35 000000000110 3 0

77 00000000011100 1 0
78 00000000011101 1 0

47 0000000001110 2 0

79 00000000011110 1 0
80 00000000011111 1 0

48 0000000001111 2 0

36 000000000111 3 0

81 000000000010000 1 0
82 000000000010001 1 0

49 00000000001000 2 0

83 000000000010010 1 0
84 000000000010011 1 0

50 00000000001001 2 0

37 0000000000100 3 0

85 1111100 1 0 51 1111100 1 0 38 1111100 1 0

 69

86 000000000010100 1 0
87 000000000010101 1 0

52 00000000001010 2 0

88 000000000010110 1 0
89 000000000010111 1 0

53 00000000001011 2 0

39 0000000000101 3 0

90 000000000011000 1 0
91 000000000011001 1 0

54 00000000001100 2 0

92 000000000011010 1 0
93 000000000011011 1 0

55 00000000001101 2 0

40 0000000000110 3 0

94 000000000011100 1 0
95 000000000011101 1 0

56 00000000001110 2 0

96 000000000011110 1 0
97 000000000011111 1 0

57 00000000001111 2 0

41 0000000000111 3 0

98 0000000000010000 1 0
99 0000000000010001 1 0

58 000000000001000 2 0

100 0000000000010010 1 0
101 0000000000010011 1 0

59 000000000001001 2 0

42 00000000000100 3 0

102 0000000000010100 1 0
103 0000000000010101 1 0

60 000000000001010 2 0

104 0000000000010110 1 0
105 0000000000010111 1 0

61 000000000001011 2 0

43 00000000000101 3 0

106 0000000000011000 1 0
107 0000000000011001 1 0

62 000000000001100 2 0

108 0000000000011010 1 0
109 0000000000011011 1 0

63 000000000001101 2 0

44 00000000000110 3 0

110 0000000000011100 1 0
111 0000000000011101 1 0

64 000000000001110 2 0

112 0000000000011110 1 0
113 0000000000011111 1 0

65 000000000001111 2 0

45 00000000000111 3 0

 70

MPEG-4 Table B-16 MPEG-4 Table B-16 [Merge-1] MPEG-4 Table B-16 [Merge-2]
0 VLC CODE SIGN LAST 0 VLC CODE SIGN LAST 0 VLC CODE SIGN LAST
1 10 1 0 1 10 1 0 1 10 1 0
2 110 1 0 2 110 1 0 2 110 1 0
3 1110 1 0
4 1111 1 0

3 111 2 0 3 111 2 0

5 01100 1 0
6 01101 1 0

4 0110 2 0 4 0110 2 0

7 01011 1 0 5 01011 1 0 5 01011 1 0
8 010000 1 0
9 010001 1 0

6 01000 2 0

10 010010 1 0
11 010011 1 0

7 01001 2 0

6 0100 3 0

12 010100 1 0
13 010101 1 0

8 01010 2 0 7 01010 2 0

14 0010100 1 0
15 0010101 1 0

9 001010 2 0

16 0010110 1 0
17 0010111 1 0

10 001011 2 0

8 00101 3 0

18 00011011 1 0 11 00011011 1 0 9 00011011 1 0
19 00011100 1 0
20 00011101 1 0

12 0001110 2 0

21 00011110 1 0
22 00011111 1 0

13 0001111 2 0

10 000111 3 0

23 000011010 1 0
24 000011011 1 0

14 00001101 2 0 11 00001101 2 0

25 000011100 1 0
26 000011101 1 0

15 00001110 2 0

27 000011110 1 0 16 00001111 2 0

12 0000111 3 0

 71

28 000011111 1 0
29 000100000 1 0
30 000100001 1 0

17 00010000 2 0

31 000100010 1 0
32 000100011 1 0

18 00010001 2 0

13 0001000 3 0

33 000100100 1 0
34 000100101 1 0

19 00010010 2 0 14 00010010 2 0

35 0000001000 1 0
36 0000001001 1 0

20 000000100 2 0

37 0000001010 1 0
38 0000001011 1 0

21 000000101 2 0

15 00000010 3 0

39 0000001100 1 0
40 0000001101 1 0

22 000000110 2 0

41 0000001110 1 0
42 0000001111 1 0

23 000000111 2 0

16 00000011 3 0

43 0000100000 1 0
44 0000100001 1 0

24 000010000 2 0 17 000010000 2 0

45 00000000110 1 0
46 00000000111 1 0

25 0000000011 2 0 18 0000000011 2 0

47 00000100000 1 0
48 00000100001 1 0

26 0000010000 2 0

49 00000100010 1 0
50 00000100011 1 0

27 0000010001 2 0

19 000001000 3 0

51 000001010000 1 0
52 000001010001 1 0

28 00000101000 2 0

53 000001010010 1 0
54 000001010011 1 0

29 00000101001 2 0

20 0000010100 3 0

55 000001010100 1 0
56 000001010101 1 0

30 00000101010 2 0 21 0000010101 3 0

 72

57 000001010110 1 0
58 000001010111 1 0

31 00000101011 2 0

59 001110 1 1
60 001111 1 1

32 00111 2 1 22 00111 2 1

61 0111 1 1 33 0111 1 1 23 0111 1 1
62 001100 1 1 34 001100 1 1 24 001100 1 1
63 001101 1 0 35 001101 1 0 25 001101 1 0
64 0010010 1 0 36 0010010 1 0 26 0010010 1 0
65 0010011 1 1 37 0010011 1 1 27 0010011 1 1
66 0010000 1 1
67 0010001 1 1

38 001000 2 1 28 001000 2 1

68 00011010 1 1 39 00011010 1 1 29 00011010 1 1
69 00011000 1 0
70 00011001 1 0

40 0001100 2 0 30 0001100 2 0

71 00010110 1 1 41 00010110 1 1 31 00010110 1 1
72 00010111 1 0 42 00010111 1 0 32 00010111 1 0
73 00010100 1 1
74 00010101 1 1

43 0001010 1 1 33 0001010 1 1

75 00010011 1 1 44 00010011 1 1 34 00010011 1 1
76 000010010 1 1
77 000010011 1 1

45 00001001 2 1 35 00001001 2 1

78 000010100 1 1
79 000010101 1 1

46 00001010 2 1

80 000010110 1 1
81 000010111 1 1

47 00001011 2 1

36 0000101 3 1

82 000011000 1 0
83 000011001 1 0

48 00001100 2 0 37 00001100 2 0

84 000010001 1 1 49 000010001 1 1 38 000010001 1 1
85 0000000110 1 1 50 0000000110 1 1 39 0000000110 1 1

 73

86 0000000111 1 0 51 0000000111 1 0 40 0000000111 1 0
87 0000000100 1 1
88 0000000101 1 1

52 000000010 2 1 41 000000010 2 1

89 00000000100 1 1
90 00000000101 1 1

53 0000000010 2 1 42 0000000010 2 1

91 00000100100 1 0
92 00000100101 1 0

54 0000010010 2 1

93 00000100110 1 0
94 00000100111 1 0

55 0000010011 2 1

43 000001001 3 1

95 000001011000 1 1 56 000001011000 1 1 44 000001011000 1 1
96 000001011001 1 0 57 000001011001 1 0 45 000001011001 1 0
97 000001011010 1 1
98 000001011011 1 1

58 00000101101 2 1 46 00000101101 2 1

99 000001011100 1 1
100 000001011101 1 1

59 00000101110 2 1

101 000001011110 1 1
102 000001011111 1 1

60 00000101111 2 1

47 0000010111 3 1

103 0000011(NOTE2) 0 0 61 0000011(NOTE2) 0 0 48 0000011(NOTE2) 0 0

()

() %09.62
5.02

61
481

103
611

2..

%53.81
5.01

103
611

1..

=
×

⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −

=

=
×

−
=

DB

DB

 74

MPEG-4 Table B-17 MPEG-4 Table B-17 [Merge-1] MPEG-4 Table B-17 [Merge-2]
0 VLC CODE SIGN LAST 0 VLC CODE SIGN LAST 0 VLC CODE SIGN LAST
1 10 1 0 1 10 1 0 1 10 1 0
2 110 1 0 2 110 1 0 2 110 1 0
3 1110 1 0
4 1111 1 0

3 111 2 0 3 111 2 0

5 01100 1 0
6 01101 1 0

4 0110 2 0 4 0110 2 0

7 01011 1 0 5 01011 1 0 5 01011 1 0
8 010000 1 0
9 010001 1 0

6 01000 2 0

10 010010 1 0
11 010011 1 0

7 01001 2 0

6 0100 3 0

12 010100 1 0
13 010101 1 0

8 01010 2 0 7 01010 2 0

14 0010100 1 0
15 0010101 1 0

9 2 0

16 0010110 1 0
17 0010111 1 0

10 001011 2 0

8 00101 3 0

18 00011011 1 0 11 00011011 1 0 9 00011011 1 0
19 00011100 1 0
20 00011101 1 0

12 0001110 2 0

21 00011110 1 0
22 00011111 1 0

13 0001111 2 0

10 000111 3 0

23 000011010 1 0
24 000011011 1 0

14 00001101 2 0 11 00001101 2 0

25 000011100 1 0
26 000011101 1 0

15 00001110 2 0

27 000011110 1 0 16 00001111 2 0

12 0000111 3 0

 75

28 000011111 1 0
29 000100000 1 0
30 000100001 1 0

17 00010000 2 0

31 000100010 1 0
32 000100011 1 0

18 00010001 2 0

13 0001000 3 0

33 000100100 1 0
34 000100101 1 0

19 00010010 2 0 14 00010010 2 0

35 0000001000 1 0
36 0000001001 1 0

20 000000100 2 0

37 0000001010 1 0
38 0000001011 1 0

21 000000101 2 0

15 00000010 3 0

39 0000001100 1 0
40 0000001101 1 0

22 000000110 2 0

41 0000001110 1 0
42 0000001111 1 0

23 000000111 2 0

16 00000011 3 0

43 0000100000 1 0
44 0000100001 1 0

24 000010000 2 0 17 000010000 2 0

45 00000000110 1 0
46 00000000111 1 0

25 0000000011 2 0 18 0000000011 2 0

47 00000100000 1 0
48 00000100001 1 0

26 0000010000 2 0

49 00000100010 1 0
50 00000100011 1 0

27 0000010001 2 0

19 000001000 3 0

51 000001010000 1 0
52 000001010001 1 0

28 00000101000 2 0

53 000001010010 1 0
54 000001010011 1 0

29 00000101001 2 0

20 0000010100 3 0

55 000001010100 1 0
56 000001010101 1 0

30 00000101010 2 0 21 0000010101 3 0

 76

57 000001010110 1 0
58 000001010111 1 0

31 00000101011 2 0

59 0111 1 1 32 0111 1 1 22 0111 1 1
60 001100 1 1
61 001101 1 1

33 00110 2 1

62 001110 1 1
63 001111 1 1

34 00111 2 1

23 0011 3 1

64 0010000 1 1
65 0010001 1 1

35 001000 2 1

66 0010010 1 1
67 0010011 1 1

36 001001 2 1

24 00100 3 1

68 00011010 1 1 37 00011010 1 1 25 00011010 1 1
69 00010100 1 1
70 00010101 1 1

38 0001010 2 1

71 00010110 1 1
72 00010111 1 1

39 0001011 2 1

26 000101 3 1

73 00011000 1 1
74 00011001 1 1

40 0001100 2 1 27 0001100 2 1

75 00010011 1 1 41 00010011 1 1 28 00010011 1 1
76 000010010 1 1
77 000010011 1 1

42 00001001 2 1 29 00001001 2 1

78 000010100 1 1
79 000010101 1 1

43 00001010 2 1

80 000010110 1 1
81 000010110 1 1

44 00001011 2 1

30 0000101 3 1

82 000011000 1 1
83 000011001 1 1

45 00001100 2 1 31 00001100 2 1

84 000010001 1 1 46 000010001 1 1 32 000010001 1 1
85 0000000100 1 1 47 000000010 2 1 33 00000001 3 1

 77

86 0000000101 1 1
87 0000000110 1 1
88 0000000111 1 1

48 000000011 2 1

89 00000000100 1 1
90 00000000101 1 1

49 0000000010 2 1 34 0000000010 2 1

91 00000100100 1 1
92 00000100101 1 1

50 0000010010 2 1

93 00000100110 1 1
94 00000100111 1 1

51 0000010011 2 1

35 000001001 3 1

95 000001011000 1 1
96 000001011001 1 1

52 00000101100 2 1

97 000001011010 1 1
98 000001011011 1 1

53 00000101101 2 1

36 0000010110 3 1

99 000001011100 1 1
100 000001011101 1 1

54 00000101110 2 1

101 000001011110 1 1
102 000001011111 1 1

55 00000101111 2 1

37 0000010111 3 1

103 0000011(NOTE2) 0 0 56 0000011(NOTE2) 0 0 38 0000011(NOTE2) 0 0

()

() %77.77
5.02

56
381

103
561

2..

%26.91
5.01

103
561

1..

=
×

⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
⎞

⎜
⎝
⎛ −

=

=
×

−
=

DB

DB

 78

Appendix B

Table Merging Algorithm

Table switching is essential for the VLC decoding in the practical

system. To share the decoder, we use the table-merging algorithm to

reduce the implementation cost and the memory access. We show a

high-level description on the following. Further, we use the practical

tables on MPEG-4 as the evaluated source table. We list the detailed

merging process and label each merging method (i.e. code-word

merging or prefix merging).

High Level Description of Table Merging Algorithm

Table Merging Algorithm (Tablei, Tablej)

{

 For (whole symbol combinations in different coding table)

{

If(Tablei(codex) == Tablej(codey))

 MTM_Merging_Condition = CodeWord_Merging;

 Elseif(Tablei(codex) == prefixe of “Tablej(codey)”)

: stands for the “code-word merging” is performed.
: stands for the “prefix merging” is performed.
: stands for the overhead after table-merging algorithm.

 79

 MTM_Merging_Condition = Prefix_Merging;

 Else

 MTM_Merging_Condition = zero_pending

 Case (MTM_Merging_Condition)

 CodeWord_Merging: Code-Word merging is performed;

 Prefix_Merging: Prefix merging is performed;

 Default: table overhead due this MTM process;

 Endcase

 }

}

 80

MPEG-2 Table B-14 T2 MPEG-2 Table B-15 T2 MTM MPEG-2 Table (B-14-15)
TB-14 TB-15 0 VLC CODE SIGN LAST 0 VLC CODE SIG

N
LAST 0 VLC CODE

VALID CL VALID CL
1 10 0 1 1 0110 1 1 1 0110 1 3 1 4
2 1(NOTE1) 1 0 2 10 1 0 2 10 1 2 1 2
3 11 1 0 3 010 1 0 3 010 1 3 1 3
4 011 1 0 4 110 1 0 4 110 1 2 1 3
5 010 2 0 5 0111 1 0 5 0111 0 - 1 4
6 00101 1 0 6 00101 1 0 6 00101 1 5 1 5
7 0011 2 0 7 0011 2 0 7 0011 1 4 1 4
8 0001 3 0 8 1110 2 0 8 1110 0 - 1 4
9 00001 3 0 9 000001(NOTE2) 0 0 9 000001(NOTE2) 1 6 1 6

10 000001(NOTE2) 0 0 10 0001 3 0 10 0001 1 4 1 4
11 001000 3 0 11 00001 3 0 11 00001 1 5 1 5
12 001001 3 0 12 11110 3 0 12 11110 0 - 1 5
13 00000010 3 0 13 001000 3 0 13 001000 1 6 1 6
14 00000011 3 0 14 001001 3 0 14 001001 1 6 1 6
15 0000000100 3 0 15 1111101 2 0 15 1111101 0 - 1 7
16 0000000101 3 0 16 111111 3 0 16 111111 0 - 1 6
17 0000000110 3 0 17 00000010 2 0 17 00000010 1 8 1 8
18 0000000111 3 0 18 000000111 1 0 18 000000111 1 8 1 9
19 00000000100 3 0 19 000000110 2 0 19 000000110 0 - 1 9
20 00000000101 3 0 20 000000010001 1 0 20 000000010001 1 10 1 12
21 00000000110 3 0 21 000000010010 1 0 21 000000010010 0 - 1 12
23 00000000111 3 0 22 000000010101 1 0 22 000000010101 1 10 1 12
22 000000000100 3 0 23 000000011100 1 0 23 000000011100 1 10 1 12
24 000000000101 3 0 24 000000011010 1 0 24 000000011010 1 10 1 12
25 000000000110 3 0 25 000000011001 1 0 25 000000011001 0 - 1 12
26 000000000111 3 0 26 00000001011 2 0 26 00000001011 0 - 1 11

 81

27 0000000000100 3 0 27 00000001111 2 0 27 00000001111 0 - 1 11
28 0000000000101 3 0 28 00000000100 3 0 28 00000000100 1 11 1 11
29 0000000000110 3 0 29 000000001010 2 0 29 000000001010 1 11 1 12
30 0000000000111 3 0 30 0000000010110 1 0 30 0000000010110 0 - 1 13
31 00000000000100 3 0 31 00000000111 3 0 31 00000000111 1 11 1 11
32 00000000000101 3 0 32 0000000011011 1 0 32 0000000011011 1 11 1 13
33 00000000000110 3 0 33 000000000100 3 0 33 000000000100 1 12 1 12
34 00000000000111 3 0 34 000000000101 3 0 34 000000000101 1 12 1 12
35 35 000000000110 3 0 35 000000000110 1 12 1 12
36 36 000000000111 3 0 36 000000000111 1 12 1 12
37 37 0000000000100 3 0 37 0000000000100 1 13 1 13
38 38 1111100 1 0 38 1111100 0 - 1 7
39 39 0000000000101 3 0 39 0000000000101 1 13 1 13
40 40 0000000000110 3 0 40 0000000000110 1 13 1 13
41 41 0000000000111 3 0 41 0000000000111 1 13 1 13
42 42 00000000000100 3 0 42 00000000000100 1 14 1 14
43 43 00000000000101 3 0 43 00000000000101 1 14 1 14
44 44 00000000000110 3 0 44 00000000000110 1 14 1 14
45 45 00000000000111 3 0 45 00000000000111 1 14 1 14

 82

MPEG-4 Table B-16 T2 MPEG-4 Table B-17 T2 MTM MPEG-4 Table (B-16-17)
TB-16 TB-17 0 VLC CODE SIGN LAST 0 VLC CODE SIGN LAST 0 VLC CODE

VALID CL VALID CL
1 10 1 0 1 10 1 0 1 10 1 2 1 2
2 110 1 0 2 110 1 0 2 110 1 3 1 3
3 111 2 0 3 111 2 0 3 111 1 3 1 3
4 0110 2 0 4 0110 2 0 4 0110 1 4 1 4
5 01011 1 0 5 01011 1 0 5 01011 1 5 1 5
6 0100 3 0 6 0100 3 0 6 0100 1 4 1 4
7 01010 2 0 7 01010 2 0 7 01010 1 5 1 5
8 00101 3 0 8 00101 3 0 8 00101 1 5 1 5
9 00011011 1 0 9 00011011 1 0 9 00011011 1 8 1 8

10 000111 3 0 10 000111 3 0 10 000111 1 6 1 6
11 00001101 2 0 11 00001101 2 0 11 00001101 1 8 1 8
12 0000111 3 0 12 0000111 3 0 12 0000111 1 7 1 7
13 0001000 3 0 13 0001000 3 0 13 0001000 1 7 1 7
14 00010010 2 0 14 00010010 2 0 14 00010010 1 8 1 8
15 00000010 3 0 15 00000010 3 0 15 00000010 1 8 1 8
16 00000011 3 0 16 00000011 3 0 16 00000011 1 8 1 8
17 000010000 2 0 17 000010000 2 0 17 000010000 1 9 1 9
18 0000000011 2 0 18 0000000011 2 0 18 0000000011 1 10 1 10
19 000001000 3 0 19 000001000 3 0 19 000001000 1 9 1 9
20 0000010100 3 0 20 0000010100 3 0 20 0000010100 1 10 1 10
21 0000010101 3 0 21 0000010101 3 0 21 0000010101 1 10 1 10
23 0111 1 1 22 0111 1 1 22 0111 1 4 1 4
22 00111 2 1 23 0011 3 1 23 00111 1 5 1 4
24 001100 1 1 24 00100 3 1 24 001100 1 6 0 -
25 001101 1 0 25 00011010 1 1 25 001101 1 6 0 -
26 0010010 1 0 26 000101 3 1 26 0010010 1 7 1 5

 83

27 0010011 1 1 27 0001100 2 1 27 0010011 1 7 0 -
28 001000 2 1 28 00010011 1 1 28 001000 1 6 0 -
29 00011010 1 1 29 00001001 2 1 29 00011010 1 8 1 8
30 0001100 2 0 30 0000101 3 1 30 0001100 1 7 1 7
31 00010110 1 1 31 00001100 2 1 31 00010110 1 8 1 6
32 00010111 1 0 32 000010001 1 1 32 00010111 1 8 0 -
33 0001010 1 1 33 00000001 3 1 33 0001010 1 7 0 -
34 00010011 1 1 34 0000000010 2 1 34 00010011 1 8 1 8
35 00001001 2 1 35 000001001 3 1 35 00001001 1 8 1 8
36 0000101 3 1 36 0000010110 3 1 36 0000101 1 7 1 7
37 00001100 2 0 37 0000010111 3 1 37 00001100 1 8 1 8
38 000010001 1 1 38 0 0 38 000010001 1 9 1 9
39 0000000110 1 1

0000011
(NOTE2) 39 0000000110 1 10 1 8

40 0000000111 1 0 40 0000000111 1 10 0 -
41 000000010 2 1 41 000000010 1 9 0 -
42 0000000010 2 1 42 0000000010 1 10 1 10
43 000001001 3 1 43 000001001 1 9 1 9
44 000001011000 1 0 44 000001011000 1 12 1 10
45 000001011001 1 1 45 000001011001 1 12 0 -
46 00000101101 2 1 46 00000101101 1 11 0 -
47 0000010111 3 1 47 0000010111 1 10 1 10
48 0000011

(NOTE2)
0 0 48 0000011

(NOTE2)
1 7 1 7

84

自傳簡歷

姓名 : 劉子明

性別 : 男

國籍 : 中華民國

籍貫 : 陝西省府谷縣

出生日期 : 民國 69 年 8 月 24 日

地址 : 新竹市 新莊街 148 巷 6 號 6 樓

電話 : (03)5712121-54238, 0933977393

學歷:

 民國 87 年 9 月至民國 91 年 6 月 國立交通大學電子工程系 學士

 民國 91 年 9 月迄今 國立交通大學電子研究所 碩士

經歷:

1998 就讀國立交通大學電子物理系
1999 參加電子物理研習營，擔任器材組組員

 申請校內轉系，進入交大電子系
2000 參加北區大專盃團體組國樂比賽，榮獲優等第二名

 擔任 2000 千禧國樂營總召
2001 參加北區大專盃團體組國樂比賽，榮獲優等第四名

 免口試直升交大電子所系統組碩士班
2002 以大學部的專題，投上 ISCAS’02 會議論文

 此大學專題榮獲殷之同講學金
2003 碩一期間榮獲上下學期兩次電子所書卷

 擔任國科會微電子學門的網頁管理者
 榮獲九十二年度黎明文化基金會研究生獎學金及獎狀乙幀
 獲頒九十三年度斐陶斐榮譽會員

85

著作目錄

1. 會議論文

 Tzu-Ming Liu, Bai-Jue Shieh, Chen-Yi Lee, “An Efficient Modeling
Codec Architecture for Binary Shape Coding”, in Proceedings of the
2002 IEEE International Symposium on Circuit and System, vol. 2, pp.
II 316- II 319, May 2002.

 Tsu-Ming Liu, Chen-Yi Lee, “A Low-Complexity Soft VLC Decoder
Using Performance Modeling”, accepted by IEEE ICIP’2004.

 Tsu-Ming Liu, Sheng-Zen Wang, Weng-Hsiao Peng, Chen-Yi Lee,
“Memory-Efficient and Low-Complexity Scalable Soft VLC Decoding
for the Video Transmission“, Submitting to IEEE APCCAS’2004.

	03_Abstract.pdf
	國立交通大學
	Department of Electronics Engineering& Institute of Electron

	05_Contents.pdf
	Chapter 1. Introduction
	Chapter 2. Soft Decoding of Variable Length Codes
	Chapter 3. Memory Efficient Design Approach
	Chapter 4. Low Complexity Design Approach
	Chapter 5. Performance Modeling
	Chapter 6. Performance Evaluation on MPEG-4
	Chapter 7. Conclusions and Future Work
	Bibliography
	Appendix A Symbol-Merging Algorithm
	Appendix B Table-Merging Algorithm

