=
| 4
<
(=
Ju
E

& #* 3T AR @zﬁ;jzﬁ BEREEE

Soft Variable Length Decoding for the Wireless Video Transmission

e A S

;ha%;?fi)» Feaaw 4

PEARY Lz E

i
“3
By
;FE\‘
&
?m

v

5

£

J\u

Bk
7
o

~zy

By
#

R

CERN JEN B 24y #1

?% . B B pﬁ‘irﬂ%ﬁ_‘ A ’fg\gn,ﬁ%ga _ ﬁ?}t%/im}@ﬁ o R
-ﬁ*ﬂ@*f?ﬁ%ﬂ?@ﬁﬁﬁﬁagi#kﬁm@ﬁ AIALHF
HORAE O R AR S T] H s

&R L Sl AR TR R BT LR R B e
I K B A B R R R R U ¢ SRR s R - A R
% Ak i o AE R G ek R ig o T

SRV AR e B o AR - BRAERR
ez fBag e * §a 5t o o sﬁz » AP A - #& "Symbol-alias” & B
0 ORI B IR AR R o U A arde 0 e Black-Box #5730 St

FOF 0L Ak SR AT RRR P iF e i h T TR o

W

0

(S
-
)
L
2%
-:-;
T,
%
't
o3
ﬁ\
=
[l
Fi
o
|
:ﬁ;
<l
H
=
[l
/4
N T

AR
SHANPFF IR o AT L ﬁﬂéiﬁ‘éiﬁfiiT » T AR
RS ARl oM BB K AL A & MPEG-4/UDP-
Lite/UEP/AWGN ¢ 5+ ﬁﬁ»ﬁm{p@ L Ag & LT BT
L ? RVLC f2 et fin b > APISY UE B e -5 0.4~2.9dB
R REL Rl BT -

2

VR A
s bt

L&
P}
'r: \ﬂ

B % 7R

s ja i
\F‘\m %)E%

J
Pt

Soft Variable Length Decoding for the Wireless Video
Transmission

Student: Tsu-Ming Liu Advisor: Dr. Chen-Yi Lee

Department of Electronics Engineering& Institute of Electronics
National Chiao Tung University

Abstract

Variable Length Codes (VLCs) are extensively used in recent video and image coding
standard. However, traditional table look-up hard decoding may lose synchronization and
induce error propagation over a noisy channel:Fo improve the error resilience of VLC, more
and more researchers pay lots of attention about:the joint source and channel design. The soft
VLC decoding method has emerged ta resist the‘channel-disturbances on the environment of
band-limited and broadcasting system. Such-desigh generally needs to maintain many states
when the table size grows. Hence, soft' VVLC decoders have problems of high complexity and
high memory access.

To reduce the table size and the number of memory access, we propose a soft VLC decoder
with low memory access and low complexity approach. Further, a novel measurement of
“symbol-alias” is presented to provide more accurate performance estimation. With the
proposed Black-Box model, we can achieve the optimal trade-off between performance and
complexity.

Finally, a memory-efficient and low-complexity soft VLC decoder using performance
modeling is proposed. It exploits not only modified sorting scheme to reduce the memory
access, but also table redundancy to reduce the table size at the cost of minor performance
loss. The system evaluation is achieved in the model of MPEG-4/UDP-Lite/UEP/AWGN. We
averagely improve the PSNR by 0.4~2.9dB (i.e. 40~80% improvement) and offer better
subjective quality compared with the traditional VLC decoding and standard-support RVLC

decoding.

Acknowledgements

I would like to express my deepest gratitude-to-my-advisor Dr. Chen-Yi Lee for his sophomore
enthusiastic guidance and encouragement throughout the research, and give him and his family my

best wish faithfully.

Especially, I much appreciate my senior Mr. Wen-Hsiao Peng and junior Mr. Sheng-Zen Wang
for their fruitful discussion and comments during my research. Also, | would like to thanks my
senior Dr. Bai-Jue Shieh and my SI2 group mate Mr. Cheng-Hung Liu for their great help in the
period of my research. In addition, | want to thank all members of the SI2 group of NCTU for

plenty of worthwhile assistance in my graduated lives.

Finally, I give the greatest respect and love to my family and my girl-friend, Yu-Fen Chuang. |
much admire her thoughtfulness, and | want to express my highest appreciation and dedicate the
thesis to her for assisting me to achieve the most important stage in my life. | never let her down
and hope her and my family happy now and forever.

Contents

Chapter 1. Introductionccceevvennnnn.
1.1 MOtIVAtION ...t
1.2 Joint Source and Channel Design
1.3 Contributions of this Thesisc.coeennn

1.4 TheSiS Organizationooeuoeie ot e e e e e

Chapter 2. Soft Decoding of Variable Length Codes
2.1 Background..........couoiiriie i e
2.2 Soft Input Soft Output Algorithm

2.2.1 Algorithm Translationoooiinii e
2.2.2 Algorithm Modification .. itw.......ocooevneennnns

Chapter 3. Memory Efficient Design:Approach
3.1 Adaptive Selection Algorithm......oi.. .o

3.1.1 Modified Sorting Scheme

3.1.2 Performance Comparison

3.2 Complexity Analysis..........ccoveiiiiiiiiiiinnins

3.3 SUMIMI Y et s e e e e e e e e e e

Chapter 4. Low Complexity Design Approach
4.1 Symbol Merging Algorithm
4.1.1 Metric Formulation of “Balance Degree”

4.2 Table Merging Algorithm............................
421 Code-WOrd Mergingccuvueneneretee e e e e e e ee e ea e

422 PrefiX MErgingcuuie oo et e e e

423 MergedTable.......ooveiiiiiiiiii

4.3 Performance Evaluationcoooiiiii i

4.4 SUMMANY ..ot e e e e nnaes

Chapter 5. Performance Modeling..........ccoovoviiiiiiiiiin e, 33
51 BIack-BOX MOUEIvniiiie e 33
5.1.1 Algorithm-Sensitive Parametersccocviiiiiieiienienennen. ... 34
5.1.2 Application-Sensitive Parametersccovveiiiiiiiiiiiiiein e 36
5.1.3 Table-Sensitive Parametersccoovveiviiiiiiiiiiiiiiiiinieeenn .. 36
51.31 INraAlaScoveiiiiiiiiiiiii e 30
5132 INter AlASocoiiiiiii e 3T
5.3 Performance ESIMationcooooviii i 38

5.4 SUMMAIY . .vieini i e et e e e eeinnee e e ene e 41

Chapter 6. Performance Evaluation on MPEG-4 42
6.1 ENVIrONMENt SEIUP....ovvieitie i e 42
6.1.1 Source Modelc.ovninii 43

6.1.2 Channel Modelovoemeeee e 45

6.2 Performance Evaluation.on. MPEG-4/UDP-Lite/UEP/AWGN............. 49
Chapter 7. Conclusions.and Future WOorkc..cooeveenee 54
Bibliographyo 56
Appendix A Symbol-Merging Algorithm ..., 60
Appendix B Table-Merging Algorithmccooiiiiiiinnnnn. 78
ADOUL the AUTNOK ... e, 84

List of Figures

Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 2.1

Figure 2.2

Figure 2.3
Figure 2.4
Figure 2.5

Figure 3.1
Figure 3.2

Figure 3.3
Figure 3.4
Figure 3.5

Figure 4.1

Figure 4.2
Figure 4.3

Figure 4.4
Figure 5.1
Figure 5.2

The on-going tree of error handlingcoooiii i, 3
The categories of implementation and representation in JSC design 6

Symbol-constrained directed graph representation for VLC decoding... 7

Bit-constrained directed graph representation for VLC decoding 8
High-level description of the decoding procedure with algorithm
tranSIatioN ... 14
The algorithm trsnslation between symbol-constrained directed graph
and the SISO algorithm ..o 15
The original (a) and real case (b) of VLC tableoooeiils 16
The algorithm modification'due to the constraint change 17
High-level description-of the.decoding procedure with algorithm
MOdIfICatiON ... e i 18
The graph representation tn-approximated decoding 20
The comparison between the AMAP-2 (a) and the proposed Adaptive
AMAP-2 (D) v veeeeeeciiiee e ee e 21

The comparison of performance (a) and memory access (b) vs. SNR 22
Complexity analysis in terms of each symbol state numbers............ 24
The comparison with complexity issue in terms of state numbers (a)

and total state numbers (b) using the VLC table of Figure 2.3.......... 24
The tree-structured VLC (a) and scalable algorithm with hard and

soft decoding (D) ... vvvveine i e e 20
A simple VLC table with merge-0(a), merge-1(b) and merge-2(c)...... 27

The evaluation of execution time (a) and performance (b) with

different symbol-merging table in Figure 4.2..............ocooiiiia. 30
The formulation of “Improved Ratio”...............cooiiiii 32
The B-B model (a) and the evaluation of source table (b)................ 34
The relationship between performance and each parameter 34

Vi

Figure 5.3
Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7

Figure 5.8
Figure 5.9
Figure 5.10

Figure 5.11
Figure 6.1
Figure 6.2
Figure 6.3

Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12

The complexity (a) and performance (b) in different *z’

The performance with convergence and saturation point in AMAP-2

(@) and A-AMAP-2 (0). . cee e 35
The optimization of performance in different “N*"........................ 36
The symbol-alias of VLC table (a)(b)coovvvviiviiiiiiini i 37
The performance evaluation of ‘intra alias” and ‘inter alias’ (b)
INdifferent ‘T .o e 30
VLC tables (a) and measurements (b) for the same source............... 39
Coding performance with different VLC coding table.................... 39
The simulated parameters (a) and PSNR comparison (b) within 50
FrAMES. - e e e 40
The comparison on the 1% frames of video sequence..................... 41

The proposed overall simulation environment of soft VLC decoder.... 43

The data partition made in the MPEG-2 (a) and MPEG-4 (b) 44
The high-level'description of ESCAPE code handler on MPEG-2 and

MPEG-4... .58 st it i e 45
The content(a) and ratio (b)-of one video packet in MPEGO-4......... 46

The soft input@f VLC decoder «.........cooovviiiiiiiiii i,
The performance improvement (a)(b)with different quantization level 48
Overlooking bit errors in application layer...................... 48
Average PSNR of Y-component for proposed soft and TLU VLD...... 49
PSNR vs. AWGN channel performance...........ccooooviieiiiiiinninnns 51
PSNR vs. Burst error performanceocvevevviiiiiiiiiiieinncennnnn, 51
The comparison between the proposed soft VLD and the RVLD....... 52
The comparison between the proposed soft VLC decoder and the

standardized VLC decoder for table-merging algorithm.................. 53

vii

List of Tables

Table 4.1
Table 4.2
Table 6.1
Table 6.2

The reduction of table size by symbol-merging scheme.................. 28
The comparison with existing design.........ccccevvvvviiii i iiiienienn.. 32
The trade-off between error correction and channel bandwidth 52
The PSNR improvement within different video characteristics......... 53

viii

Chapter 1

Introduction

1.1 Motivation

Variable Length Codes (VLCs), also called Huffman codes [1] are common used to
approach the entropy rate of a given data source. They are extensively used in recent
image and video coding standards including JPEG;, MPEG-1/2/4 and the newly design
of H.264 [2]. However, most of the VLC designs are highly sensitive to error
disturbances. Table look-up decoding method may render extremely vulnerability and
lose synchronization over a noisy channel: " Although many conventional methods like
automatic repeat request (ARQ) and forward error correction (FEC) reduce the effect of
channel errors, these solutions have been found to be expensive in band-limited
communications of delay sensitive video signals [3].

Particularly, ARQ-based designs are inadequate for the broadcast transmission due to
the necessary of backward channel. Besides, they may induce significant delay that
would potentially result in network congestion; While FEC designs may be
bandwidth-inefficient when the channel conditions are fairly mild, and fine-tune to a
particular error-rate when the channel condition differs. Therefore, it is strongly interest
to look for an alternative design to reduce the error sensitivity of variable length
encoded video source.

In recent years, more and more researchers pay lots of attention about the source and
channel design jointly. To improve the error resilience of VLC, joint source and channel
(JSC) design has emerged to resist the channel disturbances on the environment of

1

band-limited system and broadcasting transmission. Several JSC designers concentrated
on variable length encoded data since most of the video application exploited
VLC-based compression method. However, the main problems of JSC design are the
complicated computation and the greatly memory utilization in the decoding process of
the sequence estimation. The reduced complexity or sub-optimal JSC designs [24][25]
[26] are proposed to diminish the decoding complexity in the VLC-based source
transmission. However, these designs are still inadequate for the large source table and
the separate source tables. In this thesis, we focus on the implementation of JSC design.
Low complexity and memory efficient design approach have been proposed to resolve

the error propagation and outperformed the traditional designs on VLC decoding.

1.2 Joint Source and Channel Design

In the past, the designs of source and channel coder have been performed separately.
This often makes excellent senses‘and could'be proved by the separation theorem of
Shannon [4]. However, Shannon’s theorem effectively assumes that source coder
removes all data redundancy;.and the channel coder inserts additional redundancy to
protect the source data due to the impairment of physical channel. This separation does
not make as much practical senses. It has-been shown that the separation theorem does
not hold for all channel conditions [5]. When it does hold, it needs to exploit an optimal
source and channel coder pair that may not be suitable for the practical system.

To improve the error robustness on VLCs, all the solutions can be classified into three
types (cf. Figure 1.1). They are error resilient, error concealment and error recovery
respectively. Error resilience methods are performed in the encoder side, and the
respective decoding procedures are defined by the video standard. To make the
compressed video data more robust to channel errors, the MPEG-4 standard
incorporated several error resilient tools, including data partition (DP), header extension
code (HEC) and re-synchronization marker (RM) [6]. On the other hand, decoder
provides the error concealment and recovery to improve the video quality. Particularly,
the error concealment methods are proposed to conceal the errors, but seem to have its
limitation [7]. They often assumed that video errors have been correctly located;

otherwise error concealment cannot be properly applied.

2

Error recovery can be partitioned into three levels that are source level, channel level
and joint source-channel level. In the consideration of source-level error recovery,
reversible variable length codes (RVLCs) [8] are realized in the MPEG-4 and the newly
design of H.264. Many source-level error recovery methods are suggested including
RVLC, error resilient entropy coding (EREC) [9] and self-synchronization VLC
(SSVLC) [10]. These methods use the syntax and codeword structure to reconstruct the
source data and do not consider any channel behavior. The improvement of source-level
error recovery is still insufficient. On the contrary, the improvement of channel-level
error recovery is significant like the well-known scheme of Viterbi decoder or turbo
decoder. However, the usage of channel-level error recovery is very expensive for the
band-limited system. The trade-off between source and channel level is proposed that
can be termed as JSC design on the soft VLC decoder. The idea of JSC design has been
gaining increasing attention in recent years. This is because that the significant growth
of multimedia wireless communication,on the channels of noisy and band-limited.
Besides, the channel conditions:about. broadcasting on DVB system [11] faced the

channel behaviors without backward notification.

Errori!

T

Encoder Decoder

~ N

Error Error Error
Resilient Concealment Recovery

— !

Source Joint Source and Channel Channel

Level Level Level
RVLC, Proposed Viterbi,
SSVLC Soft VLC Decoder Turbo Code

Figure 1.1 : The on-going tree of error handling.

Based on the different derivation or formulation of intermediate metric in JSC design,

it can be classified into three categories in [16] (e.g. [18] [21] [26]). We just omit the

complicated derivation of algorithmic metric. Instead, behaviors of these three
categories are discussed here and compared with each other. Performance and

complexity are the crucial cues for our final decision of implementation method.

Maximal Likelihood / Soft-1nput Soft-Output Decoding Method

One category of coder is Maximum Likelihood (ML) decoding method. The ML
decoder is investigated in the joint area of source and channel design. Viterbi decoder
using ML decoding algorithm is famous for many decades, and be considered as the
decoding process of fixed length codes. Most applications exploit variable length codes
to compress the source data, but lead to loss of error resilience. A modified version of
the Viterbi algorithm [17] may now be used to perform maximum likelihood decoding
of VLCs and improve the error robustness [18]. The main problem in applying the
Viterbi algorithm directly is the fact that the state transition will result in a variable
number of bits. Therefore, it is necessary, to keep'track of the position of each transition
and lead to a great number of states to be survived.

In [19], the authors introduced 'the"Soft-Input Soft-Output (SISO) approach to
improve the coding performance when the source data has been corrupted by additive
white Gaussian noise (AWGN). The SISO VLC decoder involves no modification to the
encoder side. It simply receives input as a packet of known length containing corrupted
VLC data, and produces or estimates the codeword sequence that is most likely to the
input of the VLC encoder. It behaves as a ML decoding process for VLCs, uses the
Hamming distance of hard input and cumulative square errors of soft input as the
derivation of intermediate metric. In addition, SISO decoding algorithm is similar with
soft output Viterbi algorithm (SOVA) [20] that provides the soft output information as a

confidential level or reliability in the back-end decoding process.

Maximum A Posteriori Decoding Method

Maximum A Posteriori sequence estimation, termed MAP decoding for VLCs is

investigated. In the last paragraph, we classify the derivation of metric as ML decoding.

Otherwise, we classify the newly derivation of metric as a MAP decoding. The Viterbi
algorithm was re-derived with a priori or a posteriori information for MAP decoding
[21]. More detailed formulation about intermediate metric is published in several
literatures. It can be noted that the main difference between ML and MAP decoding
algorithm is the intermediate metric derivation. In practice, the MAP decoding method
outperforms the ML decoding method in terms of decoding performance, but offered a
complicated computation of metric for more accurate sequence estimation. Many
researchers focus on the complexity reduction in algorithmic level [23]-[25]. However,
it is still insufficient for the consideration on the long input-sequence and large
symbol-table. In the point of comparison between ML/SISO and MAP decoding process,
we can see that SISO decoding with ML algorithm approximates closely to MAP

decoding algorithm and provides the reliability output and less complexity [16] [22].

Sequential Decoding Method

Sequential decoding predates the Viterbi decoding. It is discovered by Wozencraft in
1960. The decoding process traverses a-tree to find out the possible paths that could be
taken depend on the input data. The transition paths are followed or eliminated through
the likelihood comparison, threshold or other criteria. Though average decoding
complexity is reasonable, there is a great possibility of repeated computation and a wide
variation on complexity that depending on error occurrences. For the practical
communication system, the complexity is a big problem to fit any channel behavior.
Besides, the performance of sequential decoding strongly relies on the instantaneous
error events. To improve the coding complexity, fast sequential decoding algorithm
using a stack is proposed [26], but the improvements still have its limit compared with
ML or MAP decoding method.

Considering the large number of codeword in MPEG-4, the coding complexity of JSC
design will become a critical bottleneck. The performance and complexity of sequential
decoding will depend on the channel condition, and unsuitable for the practical VLSI
implementation. Further, MAP decoding algorithm provides more capability of error

correction slightly than ML/SISO [22], but high complexity is its penalty about the

computation of intermediate metric. Consequently, we use ML/SISO decoding

algorithm as our implementation of VLC decoder.

Joint Source and Channel

DA@W‘
Implementation ML/SI_SO MAP Sequen_tial
Method Decoding Decoding Decoding
Representation [Symbol-Constrained Bit-Constrained Tree-Stack
Method Directed Graph Directed Graph Structure

Figure 1.2 . The categories of implementation and representation in JSC design.

For implementation and representation method in JSC design, Figure 1.2 shows the
relation between each other. Implementation method has been briefly discussed above,
and representation method is compodsed of tree or trellis structure. Trellis representation
can be used as a representation of fix lengthpath label such as Viterbi decoder. The
Viterbi decoder kept only one-of the paths entering a state as the survivor path and the
others are pruned. However, in the-case of VLCs, different paths entering a state have
consumed a different number of bits from the received sequence and can be extended
differently. Therefore, the case of VLCs cannot use a traditional trellis representation
anymore and needs more complicated graph representations to be solved. The first
works in this area of graph decoding have been proposed by Demir & Sayood [13] and
Park & Miller [23]. These new graph representations have been proposed and
summarized in [28]. They are symbol-constrained and bit-constrained directed graph
respectively. In this thesis, we focus on soft VLC decoding by performing ML/SISO
algorithm on the symbol-based VLC trellis decoding [13]-[15].

Symbol-Constrained Directed Graph

The representation of Symbol-Constrained Directed Graph that we call it as SCDG
here is introduced in [13] [28]. The SCDG representation retains many survivors when
there are paths with different number of symbols coming at the considered state for a

6

given bit position. Example of SCDG decoding representation is described in Figure 1.3
for the VLCs of dimension T = 3 and codeword sets {0, 10, 11}.

There are three-axis that should be notified in Figure 1.3, they are symbol-step |,
codeword-step j and bit-step K. Each symbol step represents the number of decoded
symbols. In Figure 1.3, the total decoded number N is equal to 3. This information can
be retrieved through the syntax or the coding behavior of the JSC decoding process. In
addition, each codeword-step stands for the different code-symbol in the pre-defined
VLC table. Meanwhile, each codeword-step contains the different bit-step depending on
the symbol-step i. Each square is the bit-state, and the decoded bit-number is resided in
the center. Each dotted square or rectangle keeps the same codeword j for a given
symbol-step i. We can see that each transition path from one square to the other square
exploits the transition probability. The pruning operation will be performed when there
are two arrows pointing to the same bit-state. To obtain the final solution, decoder will
stop constructing this graph in symbol:step. 3 due to the known information N. Further,
we choose the three bit-states with dotted. circles. as our candidates because they have
the known constraint (i.e. 3-symbol, 6-bit). After.the comparison of intermediate metric,
we can choose the smallest one as our‘decision state, and trace-back to decode the left
symbols. More detailed decoding process will be recalled in chapter 2.

N = 3-symbol, L = 4-bit Decoded symbol-

- number

N
1 2 (\~3’/ S
> I symbol-step
R
-
|
OF 1 @ | | B |
o
!
___1
k bit-step
ecoded [——5—1
f-number : . :
{10} 4 2 F— A X AN H O eeeeeeeen ! B !
!
[|
BN
......... ! I
symbol-state B
{11} ' B
' I
Lt
R = .
' Trellis symbol step bit-state

codeword-step
Figure 1.3 : Symbol-constrained directed graph representation for VLC decoding.

7

Bit-Constrained Directed Graph

In addition to the SCDG representation, Bit-Constrained Directed Graph that we call
it as BCDG here is introduced in [23] [28]. The BCDG representation retains many
survivors when there are paths with different number of bits coming at the considered
state for a given symbol position. Example of BCDG decoding representation is
described in Figure 1.4 for the VLCs of dimension T = 3 and codeword sets {0, 10, 11}.
As the discussion of SCDG, the decoding process of BCDG is similar to the SCDG
except that the roles of bit and symbol are exchanged. Similarly, we can perform JSC
decoding process of VLCs with BCDG representation.

However, the transition path in BCDG is more complicated than SCDG. For the
consideration of coding complexity, we need two-dimensional pointers to address where
the arrows point to. This complexity becomes more prominent on the implementation of
large VLC tables, such as the A€-coefficient table with 103 symbols in MPEG-4 [30].
Therefore, we choose the representation of SCDG as our implementation in this thesis.
Although the SCDG representation, may-lose a little performance when the sub-optimal

solution is imposed, it is of great-worth when dealing with the large VLC tables.
N = 3-symbol, L = 4-bit Pecoded bit-
0 1 2 3 4

o !

I symbol-step

Trellis bit step

{10}

mbol-number ~ secseccess

' hl

]
=], Decoded |

i1 S|

| |

| |

- |

\

w
H -
s===¢g=

symbol-state

[}
=== |
I3 |
| /:/ !
L2 - -

{11}

<’\ .
- bit-state

A J

J codeword-step

Figure 1.4 : Bit-constrained directed graph representation for VLC decoding.

8

These representation methods perform well for both hard and soft input, but show its
error correction capability for soft input in this thesis. In the ML/SISO decoding
algorithm, the improvement can be achieved when compared with classical table
look-up decoding method is significant, but the complexity is prohibitive.

In this thesis, we will focus on the implementation of practical application, such as
MPEG-4 and H.264. We use Soft-Input Soft-Output (SISO) decoding algorithm as our
basis of metric derivation. Compared to the Maximum A Posteriori (MAP) decoding
algorithm and sequential decoding algorithm, SISO algorithm performs the optimal
trade-off between performance and complexity. Further, it utilized a simpler metric (i.e.
absolute difference) to improve the error resilience on the decoding process of VLCs.
From the graph representation point of view, we choose the SCDG as our graph
representation of SISO decoding algorithm. Finally, we outline our contribution of this
thesis in the next section which including the algorithm simplification and complexity
reduction. Further, a memory efficient and.performance modeling is proposed to achieve

the low memory utilization and gptimal performance.

1.3 Contribution of this-Thesis

From the previous statements, the'JSC-design algorithm chosen is the SCDG-based
ML/SISO VLC decoding method. This new decoding technique for variable length
codes considered here provides channel protection without the necessary of extra
bandwidth. The proposed VLC decoder can be considered as an add-on module on the
primitive structure. Therefore, it is compliant to the present video decoder.

To improve the error resilience, the soft VLC decoders with joint source and channel
design have been proposed [23]-[25]. Such algorithms generally need to maintain many
states when the table size grows. Hence, soft VLC decoders have problems of high
complexity. Reduced complexity algorithms with sub-optimal solution have been made
[24]. However, the improvement in [24] is not significant with larger VLC table. In this
thesis, we propose a scalable soft VLC decoder (Scalable Soft VLD) to reduce the
complexity. Firstly, our approach includes algorithm translation and table size reduction.
To simplify the algorithm, we translate the metric derivation in Soft-Input Soft-Output
algorithm [19] into the symbol-constrained directed graph (SCDG) for the soft VLC

9

decoding. Through the help of graph representation, we develop a modified sorting
scheme that can achieve the same decoding performance with fewer states. Further, it
can obtain the less number of memory accesses for the low-power demand. To reduce
the table size, we proposed a symbol-merging algorithm. We merge two symbols with
the same prefix into one symbol. By the symbol-merging algorithm, we can greatly
reduce the table size as well as complexity at the cost of minor performance loss.

However, to deal with the different tables (intra and non-intra table) with different
types of frame in MPEG standard, we propose a table merging method to integrate the
different tables into one table. The proposed soft VLC decoder can employ this single
merged-table and deal with the requirement of different VLC coding tables (i.e. intra or
non-intra table) instead of duplicated configuration for the different VLC table. In
summary, compared with [29][31], the proposed symbol-merging and table-merging
algorithms achieve high capability of integration and flexibility.

In [16], the authors used the minimal Hamming distance (dg) to quantify the relation
between table and performance..But, it is still inaccurate when the different tables reach
the same dy. We propose a novel.measurement to improve the accuracy of performance
estimation. Further, we reduce the penalty of over=design and observe the tendency of
performance through the proposed Black-Box miodel. Thus, the proposed model reaches
the optimal trade-off between performance and complexity.

The proposed scalable soft VLC decoder using performance modeling is verified with
not only a simple table but also a practical MPEG-4 table. From the analysis of simple
VLC source data, our algorithm can averagely save 15% of memory access in
comparison with the state-of-the-art algorithms. Further, we can obtain the optimal
parameters for a given table and decoding algorithm through the Black-Box model.
Finally, our scheme shows more than 1dB PSNR improvement as compared with the
straightforward table look-up decoding in AWGN or bursty channel.

In addition, the proposed scheme is also compared with different coding
configuration such as the SSVLC [10] and RVLC [30]. Compared with the
standard-support RVLC decoding method, our algorithm achieved more than 0.5dB
improvement at the environment of SNR=10dB. Further, the VLC coding is more

efficient than RVLC in terms of coding efficiency. There is not any side information to

10

be transmitted and the proposed decoder is bandwidth efficient.

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 briefly introduces the SISO
algorithm [19] and presents our proposed adaptive AMAP-2 for reducing the number of
memory access in chapter 3. Chapter 4 shows our symbol-merging and table-merging
method for complexity reduction. Chapter 5 describes the proposed Black-Box model
for the optimal trade-off between performance and complexity. Chapter 6 presents the
complexity and performance evaluation on MPEG-4. Finally, chapter 7 summarizes our

work and discusses some topics for future research.

11

Chapter 2

Soft Decoding of Variable Length Code

2.1 Background

In the most image/video compression, VLCs decoding is considered as table look-up
method and performed bit by- bit. The input of entropy decoder assumed to be a
sequence of “hard” bits that no soft information is available. However, soft information
can be associated with each informationybit-in a noisy environment. It can be realized
either on the channel observations in the case of un-coded transmission, or through
soft-output channel decoders (e.g. SOVA or turbo coder) when channel coding is
employed.

Based on the soft input of VLC decoder, many publications [24][31] proved that the
performance improvement is noticeable than the traditional VLC decoders. Compared
with the FEC and ARQ method, soft VLC decoder is bandwidth-efficient and
channel-robust in the noisy environment. We choose the SISO/ML algorithm as the core
algorithm of soft VLC decoder because of the implementation cost and real-time
consideration. To apply the SISO/ML algorithm into the practical system (e.g. MPEG-4,
H.264), there are some modifications required. We address the translation between the
conventional SISO algorithm and the modified SISO on the following. Further, we
modify the traditional source VLC table by introducing some symbol-information. After

that, we can facilitate the system integration on the soft VLC decoder.

12

2.2 Soft-Input Soft-Output Algorithm

SISO decoding technique [19] is considered as an exhaustive decoding procedure to
resist the error disturbance in the noisy channel. It estimates and searches on the
tree-like path in the existence of additive white Gaussian noise (AWGN). The input
sequence is a packet-based transmission through packetization. We don’t exploit the soft
output for the iterative decoding because of the consideration of the real-time video
transmission. It uses L bits and equivalently N symbols to represent the priori
information in one packet. Specifically, the SISO algorithm chooses the estimated
sequence X as the one that maximizes the joint probability for the observed sequence Y.
The estimated sequence that maximizes the joint probability Pr(X,Y) is indicated as X*
= {x*(1), x*(2),...x*(N)}. The optimal codewords can be developed as Equation 2.1,
where the probability P* is the sequence of codewords which maximize Pr(X,Y). More
detailed derivation and description have been shown in [19]. Based on the similar
estimation, we perform the algorithm translation-to simplify the SISO algorithm when

the table size or decoded symbol grows.

X*(N)zarg m[ax]{P*(N -1, L_Ii)'Pr{yL—liH’ny|i+2""’yL‘X(N):i}' pi})

iie[lk

2.1
X(l, L): argigrel[all?k(]{Pr{yl, Yooeens yL|X(l): i}- P, }

2.2.1 Algorithm Translation

To help the understanding of our simplified algorithm, we utilize a symbol-constrained
directed graph representation [13][24] for the symbol-based VLC trellis decoding
[14][15]. Figure 2.1 depicts the high-level description of the decoding procedure. The
overall algorithm translation can be partitioned into two main parts. The one is the
state-trellis construction. Because the SISO algorithm is an exhaustive search, it will
result in the exponential growth of complexity with the increase of sequence length or
table size. This state-trellis construction require the adder, shifter and multiplexer to
perform the similar function of ACS unit in the Viterbi decoder. In addition, the other

one is the trace-back decoding procedure. Firstly, it searches the best candidates

13

conforming to the matching criterion. This criterion is feed-forward from the packet

header and provides the priori or soft information to the back-end VLC decoding

procedure.
SoftVLD_Procedure ()
{
/l Stepl : Initialization.
for(j=0;j<LUT _size;j++)
{ for(L=0;L<VLC_CL;L++)
/I Step 1.1 : assign the intermediate metric of each state in the first symbol step.
}
/] Step2 : Generating state trellis.
for(i=0;i<N;i++)
{
while(search the minimal metric from the previous state)
{
Step2.1 : [Add] — add the previous metric to form the present state metric.
Step2.2 : [Compare & Select] — compare with the other state metric to select
the minimal one as the final candidate in present state.
}
}
/l Step3 : Trace back to decode symbols.
while(search the final states(i.e. i==N-1))
{ if(state pointer==input size)
/l Step3.1 : label the start point in the trace-back process.
}
for(i==N-1,i>=0;i--)
{
/Il Step3.2 : Look-up the previous states of present state.
I/l Step3.3 : decode each codeword and look-up the symbol-information.
}
}

Figure 2.1 : High-level description of the decoding procedure with algorithm translation.

For the illustration of our algorithm translation, we use a simple example to address
this translation. Firstly, assume we have a simple VLC table with only 3 symbols
{0,10,11} and a packet that includes 3 bits (and equivalently 2 symbols) with content as
‘0 10°. After BPSK modulation, the modulated sequence is {-1,+1,-1}. When the packet
is transmitted over the AWGN channel, the received packet may become {-0.8, -0.05,
-0.2} (i.e. error occurred in the second bit).

Figure 2.2 depicts the graph representation for this example. The intermediate metric
D*(i,j) denotes the cumulative square error of i-th symbol and j-th bit in each
symbol-state. S(m,n) is the symbol state decoded with m-symbol and have the index of

14

n among the identical value of m. The number inside each square is just the same as the
‘7> of D*(i,j). The operation of ‘minimum’ is exercised in the states S(2,1), which is
entered by more than 2 arrows for the same states. Furthermore, the minimal metric
after the comparison is survived and the others are pruned. There is no need to calculate
the state metric D* of S(2,3) and S(2,5), and return the null value (i.e. @) because the
decoded bit pointer exceeds the priori bit information (i.e. 4>3 bits). Therefore, we can
decide the shaded squares as the final candidates. The S(2,2) is the minimum among
them, survives and traces back to the S(1,0) to decode the bitstream as {0,10} for the

correct decoding.

Priori-info.=3-bit, 2-symbol
D*(2,2)=D*(1,1)+(-0.05-(-
D*(1,1)=(-0.8-(-1))"2=0.04 1))"2=0.9425

2[S2,0)
10} 31521
_,.kD*(2,3):min{4.1425+(-0.2-(-1))A2,

S(1,0)

4.3425+(-0.2-(-1))"2} = 4.7825

D(2,3)=D*(1,1)+(-0.05-1)" 2+(-0.2-

D*(1,2) = (-0.8-(-1))"2 + (- (-1))"2=1.7825

0.05-(-1))"2=4.1425 S(2,2)
{10} S(? KNGA 52.3)
A) ™~ 7 o AN
“y D*2,4)= ¢
/
/ D*(2,3)=D*(1,1)+(-0.05-
g’;)(é,%:z (-0483—1)2"52 + (- // P 7 y 1)72+(-0.2-1)"2=2.5825
L)e =4 / S(2,4)
{11} 2k~ __ $(2,5)

S(1,2)

D*2,4)= ¢

Ist symbol 2nd symbol

Figure 2.2 : The algorithm translation between symbol-constrained directed graph and the

SISO algorithm.
2.2.2 Algorithm Modification

Source Table Modification
To apply our algorithm to the MPEG-4 standard, we introduce the ‘sign’ and ‘LAST’

15

field from the original Huffman table. The extra fields of ‘sign” and ‘LAST’ are essential
for the decoding procedure of SISO in MPEG-4. In Figure 2.3(a), we modify the simple
VLC table as Figure 2.3(b). In our proposed approach, we exploit the number of ‘LAST’
in one packet to represent the modified priori information. The number of ‘LAST’ in

one packet is defined by MPEG-4 standard and extracted from the packet header.

To deal with the “s” parameter appended in each symbol, we use a simple hard
decoding with table-look-up method. The induced ‘sign’ field in Figure 2.3(b) represents

[P
S

the number of “s” in each symbol. The ‘sign’ field is 1 when the of each symbol is

appended by 1-bit. More discussion about the ‘sign’ field is provided in the scalable soft

VLC decoder of chapter 4.
Code length Code word Code length Code word sign LAST
1 1 2 1s 1 1
3 011 4 011s 1 0
4 0100 5 0100s 1 0
4 0101 5 0101s 1 0
(a) Simple VLC table (b) Simplified MPEG VLC table

Figure 2.3 : The original (a) and'real case (b) of VLC table.

Priori-Info. Modification

After the modification of VLC coding tables, it is crucial to modify the priori
information since the original information cannot be extracted within the coding
procedure for the practical application such as MPEG-4 or H.264. However, it is
feasible to obtain the information on the number of blocks contained in the texture
partition when decoding headers and motion partition. This information can easily be
exploited by counting the number of occurrences of LAST field being equal to 1. Thus,
the knowledge of the number of blocks can be considered as an “a priori-information™
that can be used as the number of symbols to select a likely path. Further, it’s available

to the user without requiring any side information to be transmitted.

This modification induces a little performance loss due to the additional candidates to

16

be selected in the Step3.1 of Figure 2.1. The difference with this modification can be
described in Figure 2.4. The traditional soft VLC decoder [13][19] used the constraint of
known symbol numbers as the algorithmic priori-information. However, this
information should be transformed into the numbers of specified symbols. We can use
the “EOB” symbol of MPEG-2 and “LAST” symbol of MPEG-4 (i.e. specified symbol)
as the algorithmic constraint within the trace-back procedure. But, this modification
induces the extra candidates from the start point to the end point with LAST number

constraint in Figure 2.4. To achieve the standard-compliant and bandwidth-efficient

design, this modification is essential and the induced performance loss is inevitable.

another side info: symbol constraint without side info: LAST number

iConstrained Y Constrained
[l Range e Range
\© "f ”w
<Y %\> \')'(\0(\ «\"3,\\ '0\\0(
"'2\6\" .'og\%\‘
VLC Trace-back VS. VLC Trace-back
Table Procedure Table Procedure
7 &,
0 ,78[’ s ,78 / G
Typs .\ ’(/‘
C’/OA\ Cty7. 0/7&
a i y Y !
End Point

Figure 2.4 . The algorithm modification due to the constraint change.

In summary, based on the above algorithm modification, we show the modified
high-level description in Figure 2.5. The modifications are labeled with shaded region.
Firstly, we have to introduce the other term of “SIGN” to perform the metric calculation
in Stepl.2 and Step 2.1.1. This term is calculated by absolute difference and decoded
with hard decoding scheme. Secondly, the constrained range (see Figure 2.4) has been
extended and re-calculated in Step 3.1. Therefore, we can easily apply this SISO/ML
soft VLC decoding algorithm into the practical VLC coding table such as the AC
TCOEF tables in MPEG-2 or MPEG-4. More simulation and discussion will be

17

addressed on the following chapters.

SoftVLD_Procedure ()
{
/I Stepl : Initialization.
for(j=0;j<LUT _size;j++)
{ for(L=0;L<VLC_CL;L++)
/I Step 1.1 : assign the intermediate metric of each state in the first symbol step.
//|Step 1.2 : adding the extra sign bit into the formulation of metric.|
}
/] Step2 : Generating state trellis.
for(i=0;i<N;i++)
{
while(search the minimal metric from the previous state)
{
/] Step2.1 : [Add] — add the previous metric to form the present state metric.
//|Step 2.1.1 : adding the extra sign bit into the formulation of metric)
/] Step2.2 : [Compare & Select] — compare with the other state metric to
select the minimal one as the final candidate in present state.
}
}
/I Step3 : Trace back to decode symbols.
while(search the final states |(i.e. LAST start point <= | <= LAST end point) |)
{ if(state pointer==input size)
/I Step3.1 : label the start point in the trace-back process.
}
for(i==N-1;i>=0;i--)
{
/] Step3.2 : Look-up the previous states of present state.
/I Step3.3 : decode each codeword and look-up the symbol-information.
}
}

Figure 2.5 : High-level description of the decoding procedure with algorithm modification.

18

Chapter 3

Memory Efficient Design Approach

3.1 Algorithm with Adaptive Selection

The SISO algorithm requires many states since practical MPEG-4 tables have many
entries. It becomes inadequate for the VLSI implementation when the number of
survival states grows. To reduce the number of states as well as memory access, we

propose an adaptive AMAP-2 (AsAMAP-2) toreduce the memory accesses.

3.1.1 Modified Sorting-Scheme

In [24], the author introduced the approximated decoding method 2 (AMAP-2) to
improve the coding performance with low complexity. However, their approach is not
robust to the variation of channel condition. They induced more states to retrieve the
metric in the error-occurred region and increased the penalty to error-free region. They
tried to find the fixed ‘M’ state in the sense of smaller state metric D* and sorted among

them in each symbol step.

To against the variation of channel condition, we propose to adaptively select the
states and reduce the number of survival states. Our adaptive scheme is more robust to
the channel observance and provides the variable states in each symbol step to select the
best states. To address our improvement and differences as compared with the AMAP-2
[24], we use the simple VLC table in Figure 2.3(b) as an example. The corresponding
graph representation is developed in Figure 3.1 (a). To clearly show the metric variation
in each state, we just omit the arrows and the indication of ‘LAST’. In Figure 3.1 (b),

we show the sorting algorithm via the number of states in AMAP-2. By pruning the
19

square of the same bit-position in Figure 3.1(b), we obtain Figure 3.1(c) that can be used

in comparison with our proposed A-AMAP-2.

— o # of states
% 456 A 11.004[10] 14.738[10)
3.022 5458 |8 9.671 [10] 14.56 [8
4 3.538 iy (O |
{1s} E o012 9] oo 9.387 [6] 14.204]L1]
2453 L0170, 9.12 |6] 11.538[10]
1_1¢— 896 |8 10.72 6]
12] 8.871 |9 | 1056 (8
51056 7.253 [7] 10204
T 11.538 6.204 (9| 7.804 (9
3.858 [6] 7% |LO 3.876 7] 9]
896 [1| 567! : 592 (7] 7.004(9]
{011s}[4] I8‘871 2l ¢ 3858 (4] 5458[4] s5.671 L1
13| ¢ 3.022 5.404 (9| 5.404 |L1]
4] ¢ 2009[5] 2453[7] 3.538]9
[9]7.804 Ist | 2nd | 3rd | symbol
5000 [7]7253 1114204 symbo symbol symbo step
{0100s}5] [9]%2™ |2 ¢ (b)
9.671 13| ¢
14 ¢ # of states
15| ¢ 9.671 T
g 7-004 9.12 11.538[10
592 %10.204 8.96 m 10.72 E
3.876 ' =
12 ¢ 3185814 |7-#5.458 10.56 [8 |
{0101s}s5] % 13| & 5.022 5404 [9] 5.404
1st Rk 20095 |» 2453[7] 3.538[9 >
symbol 154 st 2nd 3rd symbol
symbol 3rq s bol bol
ymbol/symbol symbo step
symbol

(@) (©)

Figure 3.1 : The graph representation in approximated decoding 2 [24].

From Figure 3.2, we can see that the main difference of AMAP-2 and A-AMAP-2 is
the sorting scheme in the Y-axis. Figure 3.2(a) shows that AMAP-2 requires at least 3
(i.e. Mamar-2) states for correct decoding given the specified threshold. The correct
states are labeled with the shaded region. In Figure 3.2(b), by employing the D* in the
sorting algorithm instead of the number of states, the state metric range above the
minimal metric for the correct decoding is 4 (i.e. Ma.amap2=0-2). As a result, we can
find that there are 9-state and 8-state survived in AMAP-2 and A-AMAP-2 respectively
for the correct decoding. Such improvement on the state number reduction increases
when the errors occur infrequently. More simulation results are provided in Figure 3.3.

This novel scheme adaptively selects the number of survived states in each symbol step,

20

and that’s why we call it as the Adaptive AMAP-2 (i.e. A-AMAP-2).

A A

12
threshold 1)
10
9 [610]
of states 3 [8] [8]6] M a-amar2
9.671 [10] -
M amar-4=3 9.12 [6] 11.538[10) =6-2=4
896 8] 107216 5 54041914 | [11]5.404
_I 3.858[4 | 5458 [4] 10.56 |8 2
3.02212| 540419| 540411 2 [4[3:858 9
2.009[5] 24537 3.538[9 > g | |5| || 7] [9] symbol
Ist 2nd 3rd symbol lst 2nd 3rd step
symbol Symbol symbol step symbol symbol symbol
(a) AMAP-2 (b) A-AMAP-2

Figure 3.2 : The comparison between the AMAP-2 (a) and the proposed Adaptive
AMAP-2 (b).

In Figure 3.2(b), the propose A“AMAP-2 survives more states when the errors are
occurred frequently, such as 1% symbol step. Furthermore, fewer states are survived in
the less error region, such as 3 symbol step. It is more robust to the channel observance

and provides the variable states:to be survived in each symbol step.
3.1.2 Performance Comparison

The proposed A-AMAP-2 adaptively selects the number of states in each symbol step
and reduces the number of memory access. The variable best state selection is presented.
Many states are survived when the error occurred, and fewer states are survived in the
error-free region. In Figure 3.3, we assume that one survived state will cost one access
of memory element. In addition, we choose a specified threshold for AMAP-2 and
A-AMAP-2 individually. This specified threshold could be optimized and decided by
the proposed B-B model in chapter 5. After that, we choose an optimal threshold as the
simulated parameter, and compare the performance of our proposed A-AMAP-2 and the
AMAP-2 versus channel condition. Obviously, given the same performance, our
algorithm occupies less memory space and memory accesses in high SNR. Averagely,

our algorithm saves 15% of memory access as compared with AMAP-2 [24].

21

of memory access

N=50, M(convergence point)
200 ‘ ‘ ‘ ‘ 00— : :

Hl AVAP-2 - —-d-—-—--F-—--4----1---1 == Hard VLD |
———————————————————— B A-AMAP-2 e

[N R
[N

Figure 3.3 : 'l(ﬁ'g comparison of performance (a) and meng))r} access (b) vs. SNR.

3.2 Complexity Analysis

With the soft decoding of variable length code, comparators, multiplexers and storage
elements are essential for the VLSI implementation. However, each storage elements
(i.e. each state) also require corresponding modules®inclusive of adder, multiplexer and
shifter. Therefore, reducing Snumber—of-rstoragé element reduces not only the

implementation cost but also the memory access-times for the power-saving demand.

To formulate the complexity issue on the soft VLC decoder, we introduce some
parameters to analyze the overall complexity in terms of the numbers of states. Since the
number of states will grow with the sequence length and the number of code-length-type
in the VLC coding tables. We introduce the total numbers of codeword T = {CWi,,
CW;,..., CWr} and the number of code-length-type S={ CLo, CLy,..., CLs} in the
pre-defined VLC coding table. Moreover, the symbol number N is the received symbol
constraint. If this constraint N cannot be noted before the coding procedure, we can use
the decoded number of specified symbols (i.e. # of LASTs) instead for the practical
application. The “optimal” soft VLC decoding, which means no any states are reduced
has the best performance at the price the high complexity and high memory access. The

number of states in optimal soft VLC decoder is depicted in Equation 3.1.
Optimal : States _ per _Stage(N)=(CLs —CL,)x(N =1)xT, N >1 (3.1)

22

AMAP —1:States per _Stage(N)=(CL; —CL,)x(N —1),N >1 (3.2)

AMAP —2:States per Stage(N)=b__xN (3.3)

max

Due to the implementation of large VLC table, we will pay more attention on the
complexity formulation of sub-optimal solution in soft VLC decoder. In [24], authors
presented AMAP-1 to reduce the state numbers. The performance of AMAP-1 is almost
the same with the optimal soft decoding method, since the pruning algorithm won’t
affect the optimal sequence selection in the trace-back decoding procedure. However,
from the Equation 3.2, the number of states in AMAP-1 is still too large to implement in
large VLC table. Another sub-optimal solution in [24] is AMAP-2 that keeps the bmax
best states at each trellis symbol step, and the formulation is described in Equation 3.3.
The above equations are assumed that the code length of input source table are
continuous and then approximated by the proposed formation in Equation (3.1) ~ (3.3).
We show the example in Figure 3.4 to,address the complexity of optimal decoding

algorithm.

After the analysis of state numbers in each symbel step, we address the total numbers
of states required in the soft decoding procedure.'In Figure 3.5, the state numbers of
optimal decoding and AMAP-1 decoding method are dramatically increased with the
received symbol number (or received sequence length) N. However, the sequence length
decided by the system-level controller or the packet size for the realistic application.
From the algorithmic point of view, parameters T and S affect the increased degree of
algorithmic complexity. These parameters are decided by the pre-defined VLC coding
table. Therefore, reducing the number of entries in coding table or the number of tables
can greatly reduce the numbers of states as well as the overall complexity. AMAP-2 is a
sub-optimal and low-complexity solution for the realization of soft VLC decoder. But
the reduced-complexity is still not enough when the table size or sequence length grows.

We will focus on the reduction of table size in the next chapter.

23

Codwword

CodeLength

1s

T ={1s, 011s, 0100s, 0101s}

S={2,4,5

Codwword

CodeLength

T ={0s, 10s, 11s}
S={2,3}

0l1s

Optimal => (5-2)x(N-1)x4, N>1

Os

2

Optimal => (3-2)x(N-1)x3

0100s 5 Symbol Step N 1 2 3 4 5 10s 3 Symbol Step N 1 2 3 4 5
0101s 5 o e | 4 12 | 24 | 36 | 48 11s 3 corn ool ven| 3 6 9 12 | 15
(a) Example 1 (b) Example 2

Figure 3.4 : Complexity analysis in terms of each symbol state numbers.

600

500

400

300

200

100

of States

Total # of States

== Optimal

—— AMAP-1
—— AMAP-2

10000 - -

5000 -~ -~~~ -~ g~ -7 -1

Each Symbol Step

20 40 60

Each Symbol Step

Figure 3.5 : The comparison with complexity issue in terms of state numbers (a) and

3.3

total state numbers (b) using the VLC table of Figure 2.3.

Summary

In this chapter, the memory-efficient algorithm and complexity analysis of adaptive soft

VLC decoder has been presented. Based on the modified sorting scheme, the proposed

Adaptive AMAP-2 becomes more channel-robust than traditional AMAP-2. Our

proposed algorithm averagely saves 15% of memory access at the condition of identical

coding performance. Further, we introduce some parameters to analyze the overall

complexity in terms of state numbers. The advanced analysis and formulation of

performance are described in chapter 5.

24

Chapter 4

Low-Complexity Design Approach

4.1 Symbol-Merging Algorithm

The main problem of soft VLC decoding i$ the many states and the complicated metric
computation when the sequence.length.or table size grows. To apply the SISO algorithm
to the MPEG-4 system, it is=essential to‘reduce the table size. Thus, we propose a

scalable scheme with symbol merging algerithm.

We utilize the redundancy exhibiting in different symbols to perform the merging
algorithm. We consider a simple VLC table as a tree-structure in Figure 4.1(a). The
proposed symbol-merging scheme searches the symbols with identical prefix and
merges them into single merged-symbol. In Figure 4.1(b), the original SISO decoding
algorithm is a special case that is when z is equal to 0 (i.e. Base Ty). In other words,
there is no hard decoding performed except ‘sign’ bit. Such case achieves the highest
performance with the penalty of the largest complexity. However, the code-length of
prefix symbol with soft decoding will decrease when the index ‘z’ increases. Meanwhile,
the number of bits with hard decoding will increase. As a result, it can be considered as

a hybrid scheme that combines the hard decoding and the soft decoding.

25

| Symbol o | s | | Symbol o |s | Base

To
| prefix ou | 1 | s | | prefix ou |0 | S | Scil_?ble
|prefix' 1 | s | |preﬁx' Ol s Sceill_able
Soft Soft 2
decoding decoding
Hard ‘7? d
ar

decoding

@@ @@ Merge-1 decoding Scza}irzjble
@ (©)

Figure 4.1 : The tree-structured VLC (a) and scalable scheme with hard and soft decoding (b).

The symbol-merging scheme can be operated only on a certain specified condition.
Two codeword symbols can be merged only on the same symbol information including
the identical “LAST” and “SIGN’ field..In.addition, these two codeword symbols have
to own the equivalent prefix .code and only different on the one-bit suffix code. The
detailed high-level descriptionthas been-shown in Appendix A. The AC TCOEEF tables in
MPEG-2 and MPEG-4 have been reduced to a réasonable size after the symbol-merging
scheme. In addition, the merging conditions are also related to the symbol-information
of “SIGN” and “LAST”, that’s why there are different merging result on MPEG-4 intra

and non-intra table with all the same codeword (see Table 4.1).

We use a simple example to illustrate the proposed scheme in Figure 4.2 where ‘T;’
represents the number of symbols after the operation of Merge-i. As shown, after the
operation of ‘Merge-1°, the table size is decreased by 2. Further, with the ‘Merge-2’
operation, the total number of symbols becomes 3. The introduced ‘sign’ field represents

(Y]
S

the number of “s” appended in the corresponding symbol. The ‘sign’ field will increase
when both of symbols with the identical “SIGN” and “LAST” have been merged into

one.

26

Code Length | Code Word Sign LAST
2 10s 1 1
Code Length | Code Word Sign LAST T, =4 3 111s 1 0
4 2 10s 1 1 3 010s’ 2 0
3 111s 1 0 3 0lls 2 0
< 4 0100s 1 0 (b)
To=6
4 0101s 1 0 Code Length | Code Word Sign LAST
4 0110s 1 0 2 10s 1 1
\ 4 0111s 1 0 Tz -3 3 111s 1 0
3 Ols” 3 o
(a)
(c)

Figure 4.2 © A VLC table with Merge-0 (a), Merge-1(b) and Merge-2(c) operation.
4.1.1 Metric Formulation of “Balance Degree”

It can be noted that the more the merged-symbol have been developed, the great the
merging-efficiency can be achieved. Therefore, to quantify the number of symbols after
the symbol-merging scheme, we. propose the metric of ‘Balance Degree’ (B.D.) in
Equation 4.1. The metric of B:D. is between 0 and-1. In Equation 4.1, the denominator
represents the maximal value:as well as a special table with complete tree-structure. It
leads to “zx0.5” after the z times of summation where the ratio of Ti;; over T; is fixed at

0.5. Therefore, the branch degree of Figure 4.2 is 58% in the condition of “z=2".

To prove that B.D. is a meaningful number to our merging scheme, we measure the
B.D. using the AC TCOEF tables in MPEG-2 and MPEG-4. As shown in Table 4.1, we
find that the higher of the B.D., the more reduction of the table size. The B.D. value of
non-intra table is lager than that of intra one. It can be explained by the fact that there is
more redundancy exploited in terms of symbol-structure. That is to say the non-intra

table is more efficient than intra table after performing the symbol-merging scheme.

& 1_Ti+l ZEI: l_Ti+l
real reduction = T, n T,
B.D(z)= = = (4.1)
complete reduction ZZ (1-0.5) zx0.5

i=0

27

Table 4.1 : The reduction of table size by symbol-merging algorithm.

Standard MPEG-2 MPEG-4
Table INTRA 1515 | NON-INTRA 1514 | INTRA 1515 | NON-INTRA 15.14
T, 113 114 103 103
Scalable T, |65 60 61 56
Scalable T, |45 34 48 38
B.D.(2) 73.2% 90.7% 62% 77.8%

4.2

Table-Merging Algorithm

It is essential for switching tables onsthe decoding process of soft VLC decoder, since

there are intra and non-intra AC coefficient in the AC partition of whole bit-stream.

Further, table-merging method i1s demanded on the fast switching capability of VLC

decoder, such as the context-adaptive VEC-in; H.264. Consequently, to share the same

soft VLC decoder on the different VLC table, . we propose a novel soft VLC decoder

with table merging algorithm to reduce the implementation cost and memory accesses.

We propose codeword merging and prefix merging method to realize the Table

-Merging scheme. These merging methods are a lossless merging and harmless to the

performance of soft VLC decoder; while the symbol merging algorithm in section 4.1 is

a lossy merging scheme, since the performance of decoder will degrade with the number

of merging (see Figure 4.3). We show the more detailed high-level description in

Appendix B, and elaborate the merging algorithm in the following literature.

4.2.1

Code-Word Merging

Although most VLC coding tables are generated based on the Huffman procedure, one

codeword still has high probability to exist in many coding tables. If this case is

occurred, it is unnecessary to duplicate the codeword information in memories for every

28

table that uses this codeword. A codeword merging is applied to set this codeword as a
merged codeword and reuse the codeword information when the coding tables are
required. Therefore, the information redundancy among coding tables is exploited. The

stored data are reduced from many identical codewords to one merged codeword.

4.2.2 Prefix Merging

According to the Huffman property, one codeword cannot be the prefix of another
codeword in a table but this rule does not hold among different tables. Frequently, a
short codeword in one table will be the prefix of a long codeword in other tables. When
these codewords are found, a prefix merging is performed by storing the long codeword
as a merged VLC codeword and the lengths of the VLC codewords in each table. As a

result, the information redundancy among tables is further exploited.

423 Merged Table

A table merging process is accomplished by applying both codeword-merging and
prefix-merging to the codewords. of-all _AC TCOEF tables. The required table
information, which is to recover. VLC coding tables from merged table, has to be a
superset of the stored data of two merging methods since it is hard to distinguish which
method is used to generate a merged codeword. Hence, every VLC code-length of all
tables has to be stored individually and will not be reused even though codeword
merging is performed. To select the merged codewords of VLC table quickly, additional
information, a valid-bit, is utilized to indicate whether a merged codeword belongs to
the table. Thus, the table information of a coding table is the valid-bit and VLC
code-length of every merged codeword (see Appendix B). The overall memory
requirement is reduced because merged codewords are stored once and reused by all AC

TCOEEF tables.

4.3 Performance Evaluation

We propose the symbol-merging method to reduce the complexity at the expense of

29

Execution Time (sec)

little performance loss. There are tradeoffs between the complexity reduction and
performance loss. In Figure 4.3, the complexity in terms of execution time reduces
greatly at the cost of little performance degradation. Figure 4.3(b) describes that the
performance loss will dominate the overall system performance (i.e. symbol error rate)

when ‘i’ is larger than 2 (i.e. Merge-i > Merge-2).

Il Scalable Soft VLD 0

3 M scalable Soft VLD with Merge-1 Lo 10 @ - g --C---3-SIEIZ3SSZEZ=]
Scalable Soft VLD with Merge-2 | | Bt L1 YS@_ __—__1---i—-—-1
]]]]]]]] | | —— S e) R |
N [_- = = R — - = B L N S . N N R L | & S |
e R I R S R . o T
| | | | | | | | | | @ [T T T T NN [A UL
| | | | | | | | | | !
oo
] e il (i ek el e e e S L e
| | | | | | | | | o - ZZIZZZIZZZIZT
| | | | | | | I = i B it A e e |
| | | | | | | | el i B e N o e
15 - d--+-=-1——+4--+ -~ - -4 1 u.J i el e e e A it el
— | | |
ol - N S HRR .\
| | | | | O 2 | | |
R B AR | _ [R] 4L 1 1 1
) e [§°g+HardVLD
| | |) [= Scalable Soft VLD I3
osk- - @ - B Ty [| =6~ Scalable Soft VLD with Merge-1 |~ ~ 7~ ~~1~
: | -8~ Scalable Soft VLD with Merge-2 |~~~ |
T S R S E S B
10' 1 1 1 1 1 1 1 1
1 2 3 4 6 7 8 9 10

SR

(b)
Figure 4.3 : The evaluation of execution time (a) and performance (b) with different

symbol-merging-table in Figure 4.2.

To improve the flexibility of soft VLC decoder with the different AC TCOEF coding
tables (i.e. intra and non-intra), we perform Table-Merging scheme to reduce the
implementation cost and computational complexity. In the table configuration of soft
VLC decoder (see Table 4.2), [31] uses two soft VLC decoders with MAP decoding
operating on intra and non-intra blocks respectively. It’s not intuitive for the hardware
implementation and system integration. It may require additional information to
partition the intra and non-intra blocks into different channels. The integration overhead
and implementation cost made it unreliable for the cost-effect design approach. In [29],
the authors implement a soft VLC decoder with sequential algorithm. It used single-like
soft VLC decoder to reach the different VLC table requirement. However, the entries of
AC TCOEF tables are extensive and induce unexpected memory access and
computational complexity. To resolve the problems of complexity, we propose a novel

merging scheme to reduce the table size and merge the different tables into one table.

30

Based on our proposed soft VLC decoder, a comparison with existing designs is given
in Table 4.2. We implement the soft VLC decoder with SISO/ML algorithm. However,
due to the different anchor configurations and source characteristics among them, we
additionally list “Improved Ratio” (Equation 4.2) to declare the performance relation of

upper bound (i.e. no error), soft VLC decoder, and anchors.

More discussion about “improved ratio” can be addressed in Figure 4.4. In general, it
can be noted that soft VLD has an improvements of x dB as compared with the anchor.
However, the value of x is an absolute-local metric since this metric may vary with
different source (e.g. bit rate) and channel (e.g. channel condition) environment. To
achieve a fair comparison, we propose a measurement of “improved ratio” to equalize
among them. We consider the performance not only the lower bound (i.e. anchor) but
also the upper bound (i.e. no error) to obtain the ratio among them. Based on the
induced “improvement ratio”, Table 4.2 depicts about 80% capability of error recovery
in our proposed design can be achieved. Finally; we propose a low complexity soft VLC
decoder to realize the large VEC tabl¢ in the MPEG standard at the expense of minor

performance loss.

Perf (Soft VIEC .Decoder) —Perf (Anchor)
Perf (No Error)=Perf (Anchor)

Improved Ratio= (4.2)

4.4 Summary

In this chapter, the algorithm and system implementation of scalable soft VLC decoder
with a novel symbol-merging and multi-table-merging approach have been presented.
Based on the symbol-merging algorithm, we can greatly reduce the table size with the
price of minor performance loss. Further, to improve the table configuration on the
decoding process of switching table, we present a table-merging scheme to improve the
efficiency of soft VLC decoder when operating on the multiple tables. For the practical
applications, an efficient and low-complexity soft VLC decoder is fulfilled on the joint

source and channel design.

31

Improved Ratio = x/y

© © © ©
No Error
Upper Bound ° 4 ©
|
Soft VLD & ®
1 i
:x dB :y dB
Anchor B*—*—B

PSNR

Figure 4.4 : The formulation of “Improved Ratio”

Table 4.2 : The comparison with existing design.

Soft VLC Decoder

Proposed

[29]

SNR

[31]

Implementation Method

MPEG-4+SISO/ML

MPEG-4+Sequential

MPEG-4+
MAP

Table Configuration

Reduced-Single

Single

Separated

Anchor

RM !

Enable

Enable

Enable

DP?

Enable

N/A

N/A

EC?®

Disable

Enable

Disable

Source Characteristics

Foreman, QCIF, 64kbps,
I-P-P, 300bits/packet

Foreman, CIF, 800kbps,
I-P-P, 4000bits/packet

Foreman,

0.164bits/pel,QCIF,

I-P-P

Testing Environment

AWGN+BPSK

AWGN+BPSK

AMC *

Improvement

1.2dB

8dB

6dB

Improved Ratio

! Resynchronization Markers.

79.28%

80%

* Additive-Markov-Channel model for slow fading wireless channel.

32

52.72%

2 Data Partition. ° Error Concealment

Chapter 5

Performance Modeling

5.1 Black-Box Model

To optimize our proposed scalable soft VLC decoder in chapter 4, it is crucial to reach
the optimal trade-off between performance ‘and complexity. We propose a Black-Box
model (i.e. B-B. Model) to formulate the petformance and introduce some parameters to
describe the complexity. They. are'independent and composed of algorithm-sensitive,
application-sensitive and table-sensitive. In-the table-sensitive, we propose a novel
measurement of “symbol-alias” to provide accurate performance estimation for the
different tables. Finally, the proposed Black-Box model can reach the optimal
parameters for a given table and decoding algorithm. Figure 5.1(a) depicts the proposed
Black-Box (i.e. B-B) for the performance modeling and uses Figure 5.1(b) as the source

VLC table for the following illustration.

In Figure 5.2, the proposed model can be viewed as a parameterized decoder, which is
formulated and configured by some significant parameters. From the previous
statements, the performance of proposed soft VLC decoder can be parameterized by

three factors and elaborated in the following description.

33

Performance Code Length Code Word LAST
A 2 10s 1
Table o
-, < Application B 3 | 011s 0
. ’ C 4 | 0100s 0
Algorithm
D 4 | 0101s 0

(a) (b)

Figure 5.1 : The B-B model (a) and the evaluation of source table (b).

_ VLC Table
Parameterized

Soft VLC decoder Table-Sensitive

Error Rate

Input Input
VLC bitstream Proposed VLC bitstream
.

2 Soft VLD

Application -Sensitive

Algorithm -Sensitive

Figure 5.2 : The relationship between-performance and each parameter.

51.1 Algorithm-Sensitive Parameters

The algorithm-sensitive parameters are sensitive to algorithms; that is to say, different
algorithms are characterized by different parameters. Using the proposed algorithm in
chapter 4 as an example, the parameter ‘z’ is considered as an essential factor to
approach the trade-off between performance and complexity. Figure 5.3 describes that
the optimal choice is achieved when z is equal to 1 (Merge-1). The parameter ‘N*’ (see
chapter 5.1.2) does not affect the final results. Thus, “Merge-1" obtains the maximal

reduction of complexity at the cost of minor performance loss.

34

Execution Time

Symbol Error Rate

Hll Scalable Soft VLD

3 [Scalable Soft VLD with Merge-1 | | 10 —S———g - _----=
Scalable Soft VLD with Merge-2 I I : LI - =g - - T- - _--
T T T T T T T T | |
25 d | .
I I L SN T
| | ©
I I x .
2 | I L 10°E
! ! (I s Bl s Bl e S e el
| | = Fe - - - —d = — - - =
| | i el i Bl i Bl . Sl Sl Al
15 | LlIJ s Eeltll it Bl s B NG
| ° T [T L -
: o i | | | | | | '
1 2| ! ! ! ! ! !
;10 F| =&= Table look-up Hard VLD
n [| = Scalable Soft VLD
05 | == Scalable Soft VLD with Merge-1 -
: [| =B8= Scalable Soft VLD with Merge-2 T
T ™ Bl ™ T - 1 - - I ==
I I I I I I I
0 107 | | | | | | |
1 2 3 4 6 7 8 9 10

Figure 5.3 : The complexity (a) and performance (b) in different ‘z’.

After the analysis of parameter ‘z’, we will focus on the A-AMAP-2. From the
analysis of performance and complexity in chapter 3, it’s more imperative to decide the
number of ‘M’ to be survived (see Figure 3.2). The larger M achieves the higher
performance at the price of high complexity. The problem occurs also in the smaller M.

Thus, inappropriate M will be harmful to the pérformance or complexity.

The empirical value of M is determined’ from experiments. We define the saturation
and convergence point to approach the‘optimal value. Given a simple table in Figure
4.2(a), Figure 5.4 depicts the measurement of ‘saturation M’ and ‘convergence M’. The
symbol error rate will decrease with ‘the increasing ‘M’. Intuitively, we select the
convergence point as ‘M’ for the tradeoffs between performance and complexity. We

also use the convergence point in the verification of MPEG-4 standard.

SNR=7, N=100
10° 10°
d | | ! % \ ! !
N\ | | | & A\ | |
\ | B 5 N |
10™ . anveroenegfomt ! g 10" G !
X i | i 5 ‘ I
| \ ! L.\ ! o
I) | \ I E
| \ | | ‘ | =
l . N
—e~ Hard VLD S~ T \{ -6~ Hard VLD
B -4~ Scalable Soft VLD(AMAP-2) l 5 -4~ Scalable Soft VLD(A-AMAP-2) “
105 20 40 60 80 100 \ 105 5 10 15
M Saturation Point M
(a) (b)

Figure 5.4 : The performance with convergence and saturation point in AMAP-2 (a)

and A-AMAP-2 (b).

35

5.1.2 Application-Sensitive Parameters

The application-sensitive parameters are unrelated to the algorithms and decided by the
extrinsic applications. The packet size ‘N’ is the most impressive factor to achieve the
optimal performance. In this section, we regard it as the decoded number of symbols
‘N*’ for the simplification. Figure 5.5(a) describes that the performance can be
expressed by the normalized symbol error rate (i.e. SER) and overhead. In the overhead
computation, we assume that the 15-bit resynchronization marker is inserted in the
period of N-symbol. From Figure 5.5(b), it achieves the minimal SER and overhead
when ‘N*’ is equal to 60. There is no need to consider the algorithmic complexity

because it has to be optimized from the algorithm-sensitive parameters.

SNR=7, z=0

- S‘ymboIErr‘orRate 02 t | ‘ LC T‘ ble = F' ur 51 b)_

=-©- Overhead !
j ‘ - Symbol Error Rate x Overhead ‘
| | |

1.4

02F-\--r----

|
|
i
. Optimal
| |
:Perforl‘mance
|
|
N
|
|
|

|
|
|
|
|
|
~
|
|
|
|
|
|
|
4

0.15F - - - \r - - - -

Normalized Metric

)
|
|
|
|
|
I
120 140

Figure 5.5 : The optimization of performance in different ‘N*’.

5.1.3 Table-Sensitive Parameters

To estimate the performance with different tables, the authors in [16] used the minimal
Hamming distance (dy) to quantify the relation between VLC table and performance. It
is still inaccurate when the different tables reach the same dy. We propose a novel
measurement of ‘symbol alias’ to quantify their relation and provide more accurate

performance estimation when their Hamming distances are the same.

5.13.1 Intra Alias
36

We introduce the table-sensitive parameters ‘T’ and the symbol alias to obtain more
accurate estimation. The parameter ‘T’ (i.e. Ti in Figure 4.2) denotes the number of
symbols for a given VLC table. Besides, the symbol alias comprises two components.
One is the distance of “Inter Alias” (i.e. Distiyer) described by Equation 5.1. The other is
the distance of “Intra Alias” (i.e. Distinra) described by Equation 5.2. Figure 5.6 depicts
the results of the following equations. The 1/Distjy., is the number of elements for the
specific set, which calculates that whether the code-length of one symbol is the
combination of the others. The Distiny, 1s the summation of minimal Hamming distance

for each symbol.

.
Set. = {xl,xz,x3,...,xT}‘ % =maxx,
izl,xi¢miax{xi} (51)
1

Dist, . =
inter NumOfElement (Setinter)

.
Dist,,,, = z min(D“, Diys Diss - o Dij,j¢i5”'7 D DiT) (5.2)
i=1 .

where D; =d, {symboli,symbolj}

5.1.3.2 Inter Alias

The inter alias is more sensitive to ‘T’ than intra alias and induces more performance
loss. In Figure 5.7(a), the intra alias of TB-I results from the bit alias with the symbols
of identical code-length. The increase of ‘T’ provides the increase of SER in the soft
decoding. However, the SER of table look-up decoding decreases when the ‘T’ grows.
The reason is that the extra symbols prevent the decoded-symbol loss and error
propagation. Further, the inter alias of TB-II results from the code-length alias with the
symbols of different code-length. In Figure 5.7(b), both of SER increase and provide

more performance loss than intra alias.

Code Length Code Word Code Length Code Word
A 1/D|Stimer = 2
A 2 10 Xy symbol,
2> {D,AA} or {C,AA} (ie 4=2+2)
B 3 011 B Xy symbol,
¢ 4 0100 c Xg symbol, Distinva = 5
D 4 | o101 D x, | symbol, 22+1+1+1

(a) simple table in Figure 5.1(b) () Source table in Eq.(5.1)-(5.2)

Figure 5.6 : The symbol alias of VLC table (a)(b).
37

1B-1 0 TB-I
Code Length | Code Word FZ=--Z=-Z=-5Z=---7i-----; 7 =©= Table look-up Hard VLD

1

0000

-+

0001

0010

ol Error Rate

0011

E IR I B

Symb

0100

TB-11

Code Length | Code Word %
o
2 o1 =
o
3 001 5
1 0001) =6—- Table look-up Hard VLD
S IV~
ES
. 50001 EF_pefiiiiiiiiic £=---| -4~ Scalable Soft VLD
n L A
6 000001 T L } } i 1
7 8 9 10 11 12
T

Figure 5.7 : The performance evaluation of “intra alias’ (a) and “inter alias’ (b) in different ‘T".

5.3 Performance Estimation

To prove that the proposed symbal alias is-a meaningful number, we use the VLC table
in [16] to recognize the difference.of-perfermance. In Figure 5.8(a), we inverse the
underlined bits in C2c and C2d. fer the correct VLC decoding. For our proposed
measurement of Figure 5.8(b), the Codes C2a achieves the worst performance because
of the lowest Distiner that induces more performance loss than Distiny,. Further, there is
no inter alias exist in C2c and C2d. The Distinr is fixed at infinite (o) by default. The
C2c obtains higher performance than C2d because of the higher Distiyy, of C2c. The
relation of performance with different tables is identical to [16] (see Figure 5.9). In
Figure 5.8(b), the higher distance of coding table will lead to the less occurrence of
symbol-alias (i.e. higher performance). The performance of C2c and C2d cannot be
recognized in [16] when each symbol probability is unknown. We provide more
accurate estimation than [16] and reduce the design time for the performance evaluation

among different tables.

38

Performance(C2c) > Performance(C2d) > Performance(C2a)

Codes C2a Codes C2c Codes C2d
Code Length Code Word Code Length Code Word Code Length Code Word

r A 1 0] A 3 010 A 2 00

B 2 10 B 3 101 B 2 11

C 4 1100 C 4 0011 Cc 5 01010

D 4 1101 D 4 1100 D 5 10101

E 4 1110 E 5 01001 E 5 10000

F 5 11110 F 5 01111 F 5 01111

G 6 111110 G 5 10010 G 5 11000

H 6 111111 H 5 11100 H 5 00110

~
Qo
~

Proposed [16]
Table | Dist, | Dist, | MiN(d,)

C2a /7 23 1
C2c 1 2 2
C2d 1 13 2

(b)

Figure 5.8 : VLC tables (a) and measurements (b) for the same source.

Symbol-Error-Rate

SR

Figure 5.9 : Coding performance with different VLC coding table [16]

39

Based on the proposed B-B model, the soft VLC decoder is parameterized. To
optimize the performance and the complexity, we include the B-B model in our
evaluation of scalable soft VLD. We use foreman (QCIF) as our test sequence and
encode the sequence at 64kbits/s and 15fps (No P-frame). In Figure 5.10(a), our
proposed scalable soft VLD shows that more than 1dB PSNR can be gained compared
with the table look-up decoding at BER=10" (SNR=10dB). Further, the parameters
determined by the B-B model are listed in Figure 5.10(b). The ‘T’ is determined from
Table 4.1 with the given MPEG-4 table and the others are determined through our
proposed B-B model. We choose ‘z’ as 2 for the complexity reduction. Then, we choose
‘N’ as 300 bits for the performance optimization. The performance improvement of our
proposed scheme will become more prominent when the upper bound of ‘No error’ is

increased. In the subjective quality comparison of Figure 5.11, our scheme shows better

quality.
B-B Model
Algorithm Parameter (z)- |2 '~
Application Parameter (N)* | ~300bits/packet
Table Parameter (T) 48 (see Table 4.1)
31 for'eman qcif.y'uv (SNR:l'OdB)
| —— No Error i

30 — Scalable Soft VLD
29 —e— Table look-up Hard VLD

PSNR

60

frame number
(b)

Figure 5.10 :© The simulated parameters (a) and PSNR comparison (b) within 50 frames.

40

S
(a) Table Look-up Hard Decoding (b) Scalable Soft VLC Decoding

Figure 5.11 : The comparison on the 1* frame of video sequence.

54 Summary

In this chapter, the paramﬂ 260,10t E Iif'?;&(jecoder using a new performance

1. We %esent a novel measurement of
i

the different tables. With the proposed B-B model, we can achieve the optimal trade-off
between performance and complexity. For the proposed soft VLC decoder using
performance modeling, we can averagely improve the PSNR by 1dB and offer better

subjective quality as compared with the table-look-up hard decoding.

41

Chapter 6
Performance Evaluation on MPEG-4

6.1 Environment Setup

Until now, we have introduced and established this new design. We propose to study the
feasibility and interest of soft VLCdécoding, for the existing video standards such as
MPEG-4. Thus, we verify our:proposed scalable-soft VLC decoder (i.e. scalable soft
VLD) over the AWGN channel using BPSK modulation. The input sequence is MPEG-4
encoded with the re-synchronization marker-and the data partition. In data partition
mode, we have assumed that the texture part, composed of a sequence of VLC
code-words, be corrupted by AWGN. The other parts are of error free. This assumption
can be achieved by exploiting the UEP or RCPC Codes [32]. To the ESCAPE code, we
simply use hard decoding. Further, we use the soft output of quantizer as our input
bit-stream of soft VLC decoder. The soft VLD can overlook the bit-errors (i.e. Figure
6.7) from the quantizer of physical layer since we assumed that an UDP-Lite protocol
[33] is applied to our simulation model.

The overall simulation chain is depicted in Figure 6.1, and the major function blocks
are addressed on the following sections. We partition all of them into two main parts.
One is the function block of source coder, and the other is the function block of channel
coder. The proposed soft VLC can be considered as an error-correcting function block.

It’s a joint source and channel design evaluating on the practical MPEG-4 system.

42

! MPEG-4 Mod-RCPC
| —_— -
21 Encoder Encoder —
YUVTest.Sequencé BPSK
PSNR AWGN
Proposed De-BPSK
' Soft VLD ¢
MPEG-4 | M\ .
e B
4 i Mod-RCPC |
YL)V Tlest Seque\n(‘:e‘ Decoder

Figure 6.1 : The proposed overall simulation environment of soft VLC decoder.

6.1.1 Source Model

Resynchronization Marker E(S

Resynchronization marker (i.e“.‘ RM)"is one of, the error resilient tools in MPEG-4. it
attempts to enable resynchronization ‘between fhe decoder and the encoded bit-stream.
This is especially helpful in the case of bursty errors as it provides the decoder with the
capability of “refresh start”. Further, to apply the data partition illustrated in the next
paragraph, the RM tools have to be enabled on our simulation chain. The number of
inserted RM will affect the coding efficiency. The more the number of RM leads to the
less the coding efficiency. The trade-off has been optimized by the proposed B-B model
in chapter 5, and the RM is inserted with a period of 300bits in Figure 6.1. (i.e.
300bits/packet)

Data Partition

To achieve better error isolation in the video packet and fixed interval synchronization
approached, MPEG introduced data partition. When the data partition syntax is

exploited, the video bit-stream is divided into two bit-streams by inserting a unique
43

marker among them. Each of them has a different sensitivity to channel errors. As
shown in Figure 6.2(a), I-frame partitions consist of a header, DC DCT coefficients and
AC DCT coefficients separated by a DC marker. As far as P frames are concerned,
partitions consist of a header, a motion partition and a texture partition, separated by a
motion marker. In addition, the data partition in MPEG-2 performs roughly the same
with the one in MPEG-4 (i.e. Figure 6.2(b)).

Error resilient tools produce a further improvement of the received video quality if
exploited at channel coding level. Because soft VLC decoder only applied to the AC
transform coefficients of the bit-stream, it’s essential to use the data partition tool with
the purpose of performing unequal error protection (i.e. UEP), discussed more detailed

on RCPC Codes. (see chapter 6.1.2)

Quant | DC | DCT _ | DC | bcT
Scale | coeff [coeffl [:coe coeff | coeff 1
I-frame
Packet DC
D AC
Header c Marker
(O—» Quant| DC | DCT | DC | DCT -
Scale | coeff |coeff 1] coeff | coeffl Partition O
P-frame
Packet . motion
Header motion Marker texture
ot 1M

Partition 1

() (b)

Figure 6.2 : The data partition mode in MPEG-4 (a) and MPEG-2 (b).

ESCAPE code Handler

The existence of an ESCAPE mode in the MPEG syntax for texture encoding prevents
the direct application of soft decoding algorithms to the extracted texture partition. In
the MPEG-2 video standard, the ESCAPE code is encoded with “000001” followed by a
fixed length code of 6-bit ‘run” and 12-bit ‘signed_level’. We easily use table look-up
hard decoding with fixed length codes when encountering this specific codeword.
However, it becomes more complicated for the ESCAPE code in MPEG-4 video
standard. They utilize multiple tables to look-up the ‘Run’ or ‘Level’ of symbol
information because of the improvement of coding efficiency. To deal with this
complicated coding behavior, we just artificially include ESCAPE mode codeword and

adapt the algorithm to automatically treat this fixed length code extension [29].

44

{

}

{

ESCAPE_Code Handler () // for MPEG-2 ESCAPE code

ESCAPE_Code Handler () // for MPEG-4 ESCAPE code

/I Stepl.1 : Find ESCAPE code.
/I Stepl.2 : Look-up TB-16 for 6-bit RUN and 12-bit Signed_Level.

/I Stepl.3 : Fixed length decoding is performed easily.

/I Step2.1 : Find ESCAPE code.
/] Step2.2 : Look-up different table in different types of ESCAPE code.

/I Step2.3 : much more difficult to handle, just artificially included.

Figure 6.3 : The high-level description of ESCAPE code handler on MPEG-2 and MPEG-4.

6.1.2 Channel Model

UDP-L.ite Protocol

UDP is a simple best effort transport protocol. Unlike TCP, UDP does not provide
reliability, in-order delivery or congestion-¢control, which made it especially popular
among delay-sensitive real-time “applications: Further, audio/video applications often
prefer damaged packets over lost packets. One way for an application to allow delivery
of damaged packets is to disable the UDP check sum. These applications could be
benefit from using UDP Lite instead of UDP.

UDP-L.ite [33] is a lightweight version of UDP with increased flexibility in the form
of a partial checksum. UDP-L.ite provides a check sum with an optional partial coverage.
When enabling this option, a packet is partitioned into a sensitive and an insensitive part.
Errors in the insensitive part will not cause the packet to be discarded by the transport
layer at the receiving end-user. When the check sum covers the entire packet, which
should be the default and UDP-L.ite is semantically identical to UDP.

Based on the UDP-Lite protocol, we can easily apply our algorithm to the delay-
sensitive real-time transmission on the MPEG-4/UDP-Lite. However, to perform the
UDP-Lite effectively, the MPEG-4 has to enable on the “Resynchronization Marker”

and “Data Partition” mode. Besides, the RCPC codes are exploited to cooperate with the

45

MPEG-4/UDP-L.ite to construct our simulation model.

Rate Compatible Punctured Convolutional Codes (RCPC Codes)

RCPC Codes is used to implement the unequal error protection (i.e. UEP) and
connected with the UDP-Lite and data partition of MPEG-2/4. The overall simulation
model is performed packet by packet. In our channel model, we assumed that the
modified RCPC has been employed on our simulation chain. This modified RCPC can
be described in Figure 6.4(a). Particularly, the first three data partition (i.e. header, DC
coefficient and DC marker for | frames; header, motion data and motion marker for P
frames) play an important role in the decoding procedure of source decoder. The loss of
these parts will introduce the loss of synchronization and corrupt the whole frames.
Therefore, we paid lots of efforts to protect this part (i.e. R1~0). However, about 72% of
video packet is less important (i.e. Figure.6.4(b)), there is no reason to protect them as
the small coding rate (i.e. Rox1). We_assume ‘that there is no any channel coding
performed on this part, and recovered by the source decoder (e.g. RVLC decoder) or

joint source and channel decoder (e.g. Soft VL.C Decoder).

Packet D

I_f rame Header DS st Marker P el
OCEl Motion Motion

P-frame Header Data Marker Texture

— R1~0A Re~1 ———
(a)

The Ratio of Video Packet

3%

Foreman Sequence: 64kbps
DC Coeff or Motion data
0O Packet Header

72%

(b)

Figure 6.4 : The content (a) and ratio (p) ot one video packet in MPEG-4.

46

Quantizer

The quantizer is used to provide the soft bit-stream or soft information on the certain
channel condition and application. In the BPSK modulation, the modulated symbol is
either +1 or -1. After the channel corruption, the demodulated signal will become 0 or 1
in the hard decision scheme. But, if we exploit the quantizer to implement the soft
decision method, the demodulated symbol will range from 0 to 29-1 [34]. The bit
number q is used to quantize the symbol and determined by channel and application.

For example of q=3, Figure 6.5 shows the uniform quantization after the BPSK
demodulation. A is the step size and the quantized symbol can be formulated as
Equation 6.1. To optimize the system performance using the quantization step, we
simulate the relation between different g value and the system performance. Thus, in
Figure 6.6, we can achieve the optimal trade-off between system cost and performance
when g is equal to 4. In Figure 6.6(b),.it.shows that 16-level quantizer is a good choice
because it obtains the complexity reduction.with.the price of minor performance loss.
Therefore, based on the above statements, we use-the 4-bit (i.e. 16-level) quantizer to

construct the overall simulation.on MPEG-4/UDP-Lite/UEP/AWGN.

S, =LIx(@1/A)+45] (6.1)
Q
A quantized
symbol

Figure 6.5 : The soft input of VLC decoder.

47

F--C-ZZC-z--olczc-c-d--C-c-d-c-C-C-fC-C-CCotC-CCoC-EC-C-C-CeEZZoo
77777 e | A
f e I— — — — - e
P i - ey T S
,,,,,,, J— L
| |
,,,,,,,,,,,,,,,,,,,, S I I
| |
-1 | |
) 10 e e [~ - N S e —
T C--ZC-C--o---o----3-ZZZ2 NC I ----C-Z-
X ---- -———— - === e e I S et Gttt
O —-=--- == == I~ T T AT T T T T T ONCA T T TN T
o - === = e
= L ____ - — — — _ I — — — e
LI_IJ | | | | | | |
a [= R - — - — = l— — — — - — — - - — — — 1 - - — L =N — - — — - — = D
Q | | | | | | |
; | | | | | | |
2 1072:****‘ ***** o ‘**::q‘:::::‘r::::‘;::::; . N
[|—e— HardDecisionVLD [233722220 I2NSCCNUC]
[| =6 SoftVLDwith 5bits — - 77 - - 7- - "TT7 77T TN\ C -\
|| =& Soft VLD with 3bits [-2 - TP T TR DR
L | —— SoftVLD with 4bits | _ _ , _ _ _ _ ., _ _ _ __ ___ ______ __
| | | | | | | |
F--=- === == == === e R e e e e N
| | | | | | | | v
| | | | | | | |
1073 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10
SNR

(b)

o Quantization Level vs. Performance
‘ ‘ ‘ ‘ ‘

Improvement of the Soft VLD in the SER of 10!

32-level

16-level

8-level

BPSK

1.72dB

1.284dB

1.765dB

Figure 6.6 : The performance imﬁrovem&;nt (a)(b)with different quantization level.

=] ,.,

In summary, we have addressed the}ﬁ‘@aileﬂdr fun;ction block of source and channel
coder. In addition, we can als?i pa?t'iﬁt.io‘n‘ﬂanlul- o_f‘lnthem into the 5 layers of OSI (Open
System Interconnection) model 1n Figure 67 In the wireless network or mobile
transmission, we assume that UDP-Lite of transport layer and UEP of link layer are
provided. Further, we exploit the soft bit-stream after the 16-level quantizer and
overlook the soft bit-error of physical layer into the application layer. Based on the
above

statements, we are going to evaluate the proposed design on the

MPEG-4/UDP-Lite/UEP/AWGN in next section.

Contents OSI Layers
A

Application — MPEG Application Layer
Transport — UDP or UDP-Lite Transport Layer

o Network — IP Network Layer
ﬁ? * UEP — RCPC Codes Link Layer
I Soft Information Physical Layer

Figure 6.7 : Overlooking bit errors in application layer.

48

6.2 Performance Evaluation on the MPEG-4/UDP-Lite/
UEP/AWGN

The proposed soft VLC decoder can be evaluated on any VLC-based video compression.
We use MPEG-4 as the test model in the source coding part. It is also suitable for any
MPEG-x and the H.26x series of video coding standard. The only difference among
them is the source VLC symbol tables. The proposed soft VLC decoder has been
parameterized in chapter 5, justified and proved the practicability in our simulation
chain.

In our simulation of Figure 6.8, we use foreman (QCIF resolution, 50frames) as our
test sequence and encode the sequence at 64kbps and 15fps for the wireless or mobile
communication. Each video packet contains 300bits and the intra interval is 1 (i.e. no P-
frame, only intra-coded). Further, there is no any side information to be transmitted, thus,
the proposed soft VLC decoder is, bandwidth-efficient. In this comparison, we assume
that the anchor (i.e. TLU VLD) has no. any ertor concealment scheme performed.

Therefore, we can obtain a fair and neat comparison-in the objective quality.

€ . - . . . *z : : ‘ ‘ T E
— H —=~ Mo Error H ' ! ' —=— Mo Error
(a) SNR=4dB ; — TLUWD 5 (d) SNR=11dB.._. — TLWWLD
nle. HI— e [) e M g : LR e — Soft YLD

PSNR

‘ 2 . ; ‘ .
—=~ Mo Error . : ‘ —=~ Mo Error
— TLUWLD : (€) sNr=12dB — TLUWVLD
— Soft VLD L i S REatat SR — Soft LD

& ot SRRy

PSNR
i

- i P PR i ” i i i i i
0 10 20 30 40 50 60 0 10 20 fame Wimber 40 50 60

32 T T T T T

Q) ~SHRAodE] = i ®
* — © . SNR=1?MB ’ — Soft vLD Test Sequence Foreman
ELIEA SR S S S N g Resolution 176x144(QCIF)
I o e T e an o i Bit Rate 64kbps

: | ; ‘ Intra Interval 0
2L S I R - S P A 4 Frame Rate 15fps

: : : : : Packet Size 300bits/packet
2 m B o 0 & & ER Tools RM, DP

Figure 6.8 : Average PSNR of Y component for proposed soft VLD and TLU VLD.

49

To apply the proposed soft VLC decoder, we enable the error resilient tools in
MPEG-4 (i.e. RM and DP). In addition, we also enable the mechanism of rate control to
achieve the given bit-rate. Therefore, there are several frames at the beginning have
more higher PSNR quality in Figure 6.8. To summarize the above simulation, Figure 6.9
shows the PSNR versus the different channel condition. Our proposed scalable soft VLC
decoder is standard compliant and provides more than 1dB PSNR gains as compared
with the straightforward table look-up decoding (i.e. TLU VLD) when the SNR=10 (i.e.
BER=10"). Further, we also show that the improvement on the burst errors of channel
environment versus the different burst length ranging from 3 to 20 bits. In Figure 6.10,
the simulation result shows that the improvements of 1dB are gained as compared with
the traditional TLU decoding method in terms of Y-component or average PSNR. At the
same condition of channel model, we apply the standard-support RVLD to our
simulation chain. Figure 6.11 depicts that the improvement of 0.5dB has been found
between RVLD and traditional VLD.

Finally, the proposed design .is also compared.with the existing methods with error
recovery capability (see Table:6.1).such as the RVLD, SSVLD of source recovery or the
Viterbi, Turbo decoder of channel. recovery.- Based on the advantage of joint design
(joint source and channel), the proposed scalable soft VLD can achieve a compromise
between the coding performance (i.e. capability of error recovery) and the channel
bandwidth. In the source coding side, MPEG-4 supports the Reversible VLC table
method to improve the error resilient video transmission, but it may induced the coding
overhead of 2.2% than the traditional VLC table [35]. In addition, [10] proposed a
self-synchronization VLC decoding algorithm to improve the coding overhead at the
same performance compared with RVLD. In the other way, forward error correction
codes provides the high capability of error recovery, but it has to pay the great penalty
of coding overhead (e.g. code rate=1/2, a.k.a. coding overhead=200%). As shown in
Table 6.1, the proposed scalable soft VLD is standard compliant and there is no any side
information to be required. It is highly advantageous to the band-limited video
transmission (e.g. wireless or mobile communication). Further, it provides high

performance in terms of PSNR with objective measurement.

50

SNR vs. PSNR

== TLU VLD
=¢= Soft VLD

12

11

SNR (dB)

performance

AWGN channel

Figure 6.9 © PSNR 'ys.

Sa

EE~~
C329
zx3Z
aNaNaNa)
— _1 d _1
>>>>
oOxErOx
-1 O 4 O
FOEFEW

urst Length (bits)

B

Figure 6.10 : PSNR vs. Burst error performance
51

SNR vs. PSNR

27
] e e R D il < e
] T R

[

% 247777777 Y Ay 7777:7777777777777777777777777777:7 7777777

0. | | |

| | |
l | =@= TLU VLD |
oYY A ANy A FO— aa] =& SoftVLD | ______ b]
| | == RVLD ;
	l ‘		
22 e e R SRR e			
21 L L L L L L L
8 85 9 95 10 105 11 115 12
SNR (dB)

Figure 6.11 : The comparisen between the proposed soft VLD and the RVLD.

Table 6.1 : The trade-off bétween error correction and channel bandwidth.

Coding Method Performance Channel Bandwidth/
Coding Efficiency
1 | Table Look-Up VLD [pp+rum; Anchor Anchor
2 | Reversible VLD (3 ~0.5dB 2.2%
3 | Self-Sync. VLD [10] ~0.5dB 1.6% (0.6% overhead reduction)
4 | Scalable Soft VLD [proposed] ~1.2dB 0%
5 | Viterbi, ~ Shannon Bound 200% for Viterbi
Turbo Decoder 300%~500% for Turbo

The above simulation is based on all I-frame assumption. We address the results in
I-P-P structure of encoded bit-stream below. If the P frame is involved in our encoded
sequence, the VLC decoder has to switch the table to deal with the different frame
configuration. It means that not only intra but also non-intra VLC coding table should
be exploited on the decoding procedure of the proposed soft VLD. Based on the

proposed table-merging algorithm, we merge two tables into one super-set VLC coding

52

table. Therefore, the proposed VLC decoder can easily switch table on the decoding
procedure instead of the duplicated structure [31]. Figure 6.12 shows that the
improvement of 1.5dB has been found at the SNR=10dB. Further, at the different source
characteristics (i.e. Foreman, Suzie and Silent), we show that a PSNR improvement
ratio of 40~60% can be achieved at the condition of 64kbps, 15fps, 300bits/packet and

12frames/intra interval.

SNR vs. PSNR for I-P-P

29

PSNR

== TLUVLD
=¢ SoftVLD
1

I [

| |

l l

1 1
85 9 95 10 105 11 115 12
SNR

20
8

Figure 6.12 : The comparison between the proposed soft VLC decoder and the
standardized VLC decoder for Multi-Table-Merging.

Table 6.2 : The PSNR improvement within different video characteristics.

QCIF resolution, 64kbps, 15fps, 300bit/packet,
12frames/intra interval, 10dB/channel condition

Total frame | Foreman, 400 frames Suzie, 150 frames Silent, 300 frames
number

PSNR 0.417dB 2.896dB 0.7752dB
improvement

Improved 41.90% 85.377% 52.22%

ratio

53

Chapter 7

Conclusions and Future Work

In this dissertation, we propose an efficient and scalable soft VLC decoder to
significantly reduce the memory utilization and decoding complexity. The proposed
performance modeling reaches the optimal trade-off between performance and
complexity for the multimedia communication.

Generally, the soft VLC decoder needs.to maintain many states for the correct
decoding when the sequence=length or table size- grows. Our approach reduces the
complexity by simplifying the algorithm and redueing the table size. Specifically, we
simplify the algorithm by adaptively selecting the survival states to reduce the number
of memory access. Further, we reduce the table size by using a symbol-merging scheme.
We merge two symbols with the same prefix into one. To share the same soft VLC
decoder on the different VLC table, we propose a novel soft VLC decoder with table
merging algorithm to reduce the implementation cost. Particularly, we utilize the
codeword merging and prefix merging method to realize the table merging scheme. In
order to obtain optimal performance and complexity, we propose a Black-Box model. In
this proposed model, we present a novel measurement of “symbol-alias” to improve the
accuracy of performance estimation.

Experimental results show that our proposed adaptive scheme can averagely save
15% of memory access as compared to the state-of-the-art algorithms. Furthermore, our
proposed scalable soft VLC decoder has more than 0.4~2.9dB PSNR gain and offers
better subjective quality compared with the table look-up decoding method and the
standard-support RVLD.

54

There are still several improvements can be done in this research in the near future.
First, only software implementation and complexity analysis have been completed in
this work. It is essential to pay more attentions on the real-time implementation and
low-latency transmission. In addition, the proposed soft VLC decoder is performed only
on the AC transform coefficients. It’s an in-significant and partial part of the whole
MPEG video bit-stream. Therefore, designing a soft VLC decoder that can cope with the
whole VLC symbol bit-stream becomes a great challenge in the near future. In this
thesis, the proposed soft VLC decoder can be applied not only MPEG-4 but also
MPEG-2 AC transform coefficients. However, the newly video standard (i.e.
H.264/AVC) is created and very different from the former standards. It is an interesting

research to extend the proposed design to this novel video standard.

55

Bibliography

[1] D. A. Huffman, “A method for the construction of minimum-redundancy codes”, in Proc.

IRE, vol. 40, pp. 1098-1101, Sept. 1952.

[2] Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, Final Draft International
Standard (FDIS), Mar. 2003.

[3] S. Shirani, F. Kossentini, and R. Ward, "An adaptive markov random field based error
concealment method for video cemmunication.in an error prone environment", in
Proceedings of the International- Conference ‘on-Acoustics, Speech, and Signal Processing,

(ICASSP’99) March 1999.

[4] C. E. Shannon, “A mathematical theory of communication”, Bell Syst. Tech. J., vol. 27,
pp. 379-423-623-656, 19438.

[5] S. Vembu, S. Verdu, and Y. Steinberg, “The source channel theorem revisited”, IEEE
Trans. Inform. Theory, vol. 41, pp. 44-54, Jan. 1995.

[6] Y. Wang, S. Wenger, J. Wen, and A. K. Katsaggelos, “Error resilient video coding
techniques”, IEEE Signal Processing Magazine, vol. 17, pp. 61-82, July 2000.

[7] S. Shirani, F. Kossentini, and R. Ward. “Error Concealment Methods, A Comparative
Study.” IEEE Canadian Conference on Electrical and Computer Engineering, vol. 2,

pp. 835-840, 1999.

[8] Y. Takishima, M. Wada, H. Murakami, “Reversible Variable Length Codes," IEEE Trans.
Comm., vol. 43, No. 2/3/4, pp158-162, 1995.

[9] David W. Redmill and Nick G. Kingsbury, "The EREC: An error-resilient technique for
56

coding variable-length blocks of data", IEEE Trans. on Image Processing, vol. 5, no. 4,

pp. 565-574, April 1996.

[10] G Y. Hong, B. Fong, and A. C. M. Fong, “Error Localization for Robust Video
Transmission”, IEEE Trans. on Consumer Elec., Vol. 48, Issue: 3, pp. 463-469, Aug.
2002.

[11] European Telecommunications Standards Inst. (ETSI), ETS 300 744 (1997): Digital
Broadcasting Systems for Television, Sound and Data Services; Framing Structure,

Channel Coding and Modulation for Digital Terrestrial Television, 1997.

[12] Jeanne, M.; Carlach, J.C.; Siohan, P.; Guivarch, L.; “Source and Joint Source-Channel
Decoding of Variable Length Codes” IEEE International Conference on Communications,

vol. 2, pp.768-772, May 2002.

[13] Demir, N.; Sayood, K., “Joint source/channel coding for variable length codes”, Data

Compression Conference’98, Proceedings, pp: 1.39-148, April 1998.

[14] V. B. Balakirsky, “Joint source-channel ceding with variable length codes” in

Proceedings of IEEE ISIT, Ulm; Germany,1997.

[15] R. Bauer and J. Hagenauer, “On variable length codes for iterative souce/channel-

decoding”, in Proc. IEEE Data Compression Conf., pp. 273-282, 2001.

[16] Bystrom, M.; Kaiser, S.; Kopansky, A., “Soft source decoding with applications”, |IEEE
Transactions on Circuits and Systems for Video Technology, vol. 11, Issue. 10, pp. 1108 -

1120, Oct. 2001.

[17] Viterbi A. J., “Error bounds for convolutional codes and an asymptotically optimum

decoding algorithm”, IEEE Trans. on Information Theory, Vol. IT-13, pp. 260-269, 1967.

[18] Buttigieg V. & Farrell PG, "A maximum likelihood decoding algorithm for
variable-length error-correcting codes", Proc. 5th Bangor Symposium on

Communications, Bangor, Wales, pp. 56-59, 2-3 Jun. 1993.

[19] Jiangtao Wen; Villasenor, J., “Soft-input soft-output decoding of variable length codes”,
IEEE Transactions on Communications, Vol. 50, Issue: 5, pp. 689-692, May 2002

[20] J. Hagenauer and P. Poeher, “A Viterbi algorithm with soft-decision outputs and its
57

applications”, Proc. IEEE GLOBECOM, Dallas, TX, Nov. 1989.

[21] J. Hagenauer, “Source-controlled channel decoding”, IEEE Trans. on Communication,

Vol. 43, pp. 2449-2457, Sept. 1995.

[22] Buttigieg V. & Farrell P.G,, "A maximum a-posteriori (MAP) decoding algorithm for
variable-length error-correcting codes", Codes and cyphers: Cryptography and coding 1V,

Essex, England, The Institute of Mathematics and its Applications, pp. 103-119, 1995.

[23] M. Park and D. J. Miller, “Joint source-channel decoding for variable length encoded
data by exact and approximated MAP sequence estimation”, ICASSP’99, Phoenix,
Arizona, USA, pp. 2451-2454, March 15-19, 1999.

[24] Lamy, C.; Pothier O., “Reduced complexity Maximum A Posteriori decoding of
variable-length codes”, GLOBECOM ‘01, vol.2, pp.25-29, Nov. 2001.

[25] M. Park and D. J. Miller, “Joint source-channel decoding for variable length encoded
data by exact and approximate MAP sequenice estimation”, IEEE Transactions on

Communications, pp. 1-6, vol. 48, no. 1, Jan., 2000.

[26] F. Jelinek, “A fast sequential decoding algorithm using a stack”, IBM J. Res. and DEv.,
pp. 675-685, Nov. 1969.

[27] Buttigieg V. & Farrell P.G.,, "Sequential decoding of variable-length error-correcting
codes", Eurocode 94, Cote d'Or, France, 24-28 Oct. 1994.

[28] R. Bauer and J. Hagenauer, Turbo-FEC/VLC-decoding and its application to text
compression®, Proceedings of the Conference on Information Sciences and System

(CISS°00), Princeton University, USA, pp. WA6-6 —WA-11, Mar. 15-17, 2000.

[29] L. Perros-Meilhac and C. Lamy, “Huffman tree based metric derivation for a
low-complexity sequential soft VLC decoding”, in Proc. of ICC’02, pp. 783-787, vol. 2,
New York, USA, Apr. 2002.

[30] ISO/IEC 14496-2. Information technology — Coding of audio-visual objects — Part 2:
Visual, December 1999.

[31] Q. Chen and K. P. Subbalakshmi, “Joint Source-Channel Decoding for MPEG-4 Video
58

Transmission over Wireless Channels”, |IEEE Journal on Selected Areas in

Communications, vol. 21, pp. 1780-1789, Dec. 2003.

[32] J. Hagenauer, “Rate-Compatible Puncture Convolutional Codes (RCPC Codes) and their
applications”, IEEE Trans. on Communications, vol. 36, no. 4, pp. 389-400, April 1988.

[33] Larzon, et al., “The UDP Lite Protocal”, Internet Draft (work in progress),

draft-ietf-tsvwg-udp-lite-02.txt, Lulea University of Technology, Aug. 2003.

[34] Onyszchuk, I.M.; Cheung, K.-M.; Collins, O. “Quantization Loss in Convolutional
Decoding”, IEEE Trans. on Communications, Vol. 41, Issue. 2, Feb. 1993.

[35] Chien-Wu Tsai, To-Ju Huang, Kuo-Lin Fang, and Ja-Ling Wu, “A Hybrid and Flexible
H.263-based Error Resilient and Testing System”, IEEE-TENCON, vol. 1, pp. 19- 22,
Aug. 2001.

[36] ISO/IEC 7498-1. Information Processing Systems — OSI Reference Model — The Basic
Model 1994.

[37] Tsu-Ming Liu, Chen-Yi Lee, “A’ Low-Complexity Soft VLC Decoder Using
Performance Modeling”, accepted by IEEE ICIP*04.

59

Appendix A

Symbol Merging Algorithm

The symbol merging algorithm is used to reduce the table size. We
merge two symbols with the same “LAST” and “SIGN” field into single
merged-symbol. We show the pseudo-code and a simple example on
the following description. Further, we use the INTRA and NON-INTRA
table of MPEG-2 and MPEG-4 as the source table. After the proposed
merging scheme, detailed. results of each merging process are also

depicted on the following pages.

High Level Description of Symbol-Merging Algorithm

Symbol Merging Algorithm (merge-i)
{ inc =1;
Merging_Condition(x,y) = ((x XOR y)==CL'b1l) && (LAST,==LASTy) &&
(SIGN,==SIGN,);
While (inc==i)
For (whole symbol combinations in one coding table)
{ Find(CodeLength(symbol,) == CodeLength(symbol,))
{ If(Merging_Condition(symbol,, symbol,))
{ Merged_Symbol = symbol,(CodeLegnth,-2:0) >> 1;
Merged_SIGN = SIGNy;

60

Merged LAST = LAST;

}
}
}
inc =inc + 1;
end while
}
Example:
index | symbol | LAST | SIGN jf Merged Symbol | Merged SIGN | Merged LAST
1(=m) | 0010 0 1 001 0 1
2(=n) | 0011 0 1

NOTEL : This code shall be used for the first (DC) coefficient in the block.
NOTE2 : ESCAPE code

MPEG-2 Table B-14

MPEG-2 Table B-14 [Merge-1

MPEG-2 Table B-14 [Merge-2

0 VLC CODE 0 VLC CODE 0 VLC CODE

1]10 0 1 1] 10 0 1 1] 10 0 1
2|1 (NOTEL) 1 0 2| 1(NOTEL) 1 0 2| 1(NOTEL) 1 0
3] 11 1 0 3] 11 1 0 3] 11 1 0
4] o011 1 0 4] o11 1 0 4] o011 1 0
50100 1 0 5010 2 0 5010 2 0
6| 0101 1 0

7| 00101 1 0 6 | 00101 1 0 6 | 00101 1 0
8| 00110 1 0 7| 0011 2 0 7] 0011 2 0
9| 00111 1 0

10 | 000100 1 0 8| 00010 2 0 8 | 0001 3 0
11 | 000101 1 0

12 | 000110 1 0 9| 00011 2 0

13 | 000111 1 0

14 | 0000100 1 0 10 | 000010 2 0 9| 00001 3 0
15 | 0000101 1 0

16 | 0000110 1 0 11| 000011 2 0

17 | 0000111 1 0

18 | 000001(NOTE2) 0 0 12 | 000001(NOTE2) 0 0 10 | 000001(NOTE2) 0 0
19 | 00100000 1 0 13 | 0010000 2 0 11 | 001000 3 0
20 | 00100001 1 0

21 | 00100010 1 0 14 | 0010001 2 0

22 | 00100011 1 0

23 | 00100100 1 0 15 | 0010010 2 0 12 | 001001 3 0
24 | 00100101 1 0

25 | 00100110 1 0 16 | 0010011 2 0

26 | 00100111 1 0

27 | 0000001000 1 0 17 | 000000100 2 0 13 | 00000010 3 0

62

28

0000001001

1 0
29 | 0000001010 1 0 18 | 000000101
30 | 0000001011 1 0
3110000001100 1 0 19 | 000000110 14 1 00000011
32 | 0000001101 1 0
33 1 0000001110 1 0 20 | 000000111
341 0000001111 1 0
35 | 000000010000 1 0 21| 00000001000 151 0000000100
36 | 000000010001 1 0
37 | 000000010010 1 0 22 |1 00000001001
38 | 000000010011 1 0
39 | 000000010100 1 0 23 | 00000001010 16 | 0000000101
40 | 000000010101 1 0
41 | 000000010110 1 0 241 00000001011
42 |1 000000010111 1 0
43 | 000000011000 1 0 25| 00000001100 171 0000000110
44 |1 000000011001 1 0
45 | 000000011010 1 0 26 | 00000001101
46 | 000000011011 1 0
47 1000000011100 1 0 27 | 00000001110 18 | 0000000111
48 | 000000011101 1 0
49 | 000000011110 1 0 28 | 00000001111
50 | 000000011111 1 0
51 | 0000000010000 1 0 29 | 000000001000 19 | 00000000100
52 | 0000000010001 1 0
53 | 0000000010010 1 0 30 | 000000001001
54 | 0000000010011 1 0
55 | 0000000010100 1 0 31| 000000001010 20 | 00000000101
1 0

56

0000000010101

63

57 1 0000000010110 1 0 32 | 000000001011

58 | 0000000010111 1 0

59 | 0000000011000 1 0 33 | 000000001100 21| 00000000110

60 | 0000000011001 1 0

61 | 0000000011010 1 0 34 1 000000001101

62 | 0000000011011 1 0

63 | 0000000011100 1 0 35| 000000001110 22| 00000000111

64 | 0000000011101 1 0

65| 0000000011110 1 0 36 | 000000001111

66 | 0000000011111 1 0

67 | 00000000010000 1 0 37 | 0000000001000 23 | 000000000100
68 | 00000000010001 1 0

69 | 00000000010010 1 0 38 | 0000000001001

70 1 00000000010011 1 0

711 00000000010100 1 0 39 | 0000000001010 24| 000000000101
721 00000000010101 1 0

73 1 00000000010110 1 0 40 | 0000000001011

74 1 00000000010111 1 0

751 .00000000011000 1 0 41 | 0000000001100 25| 000000000110
76 | 00000000011001 1 0

771 .00000000011010 1 0 42 | 0000000001101

78 | 00000000011011 1 0

79 | 00000000011100 1 0 43 | 0000000001110 26 | 000000000111
80 | 00000000011101 1 0

81 | 00000000011110 1 0 44 | 0000000001111

82 | 00000000011111 1 0

83 | 000000000010000 1 0 45 | 00000000001000 27 | 0000000000100
84 | 000000000010001 1 0

85 | 000000000010010 1 0 46 | 00000000001001

64

86

000000000010011

1 0
871 000000000010100 1 0 47 | 00000000001010 28 | 0000000000101
88 | 000000000010101 1 0
89 | 000000000010110 1 0 48 | 00000000001011
90 | 000000000010111 1 0
91 | 000000000011000 1 0 49 | 00000000001100 29 | 0000000000110
92 | 000000000011001 1 0
93 | 000000000011010 1 0 50 | 00000000001101
94 | 000000000011011 1 0
95 | 000000000011100 1 0 51| 00000000001110 30 | 0000000000111
96 | 000000000011101 1 0
97 1 000000000011110 1 0 52 | 0000000000%211:
98 | 000000000011111 1 0
99 | 0000000000010000 1 0 53 | 000000000001000 31| 00000000000100
100 | 0000000000010001 1 0
101 |1 0000000000010010 1 0 54 | 000000000001.001
102 | 0000000000010011 1 0
103 | 0000000000010100 1 0 55| 000000000001010 32 | 0000000000101
104 |1 0000000000010101 1 0
105 | 0000000000010110 1 0 56 | 000000000001011
106 | 0000000000010111 1 0
107] 0000000000011000 1 0 57| 000000000001100 33 | 00000000000110
108 | 0000000000011001 1 0
109] 0000000000011010 1 0 58 | 000000000001101
110 | 0000000000011011 1 0
111 1 0000000000011100 1 0 59 | 000000000001110 34 | 00000000000111
112 | 0000000000011101 1 0
113] 0000000000011110 1 0 60 | 000000000001111
1 0

114

0000000000011111

65

MPEG-2 Table B-15

MPEG-2 Table B-15 [Merge-1

MPEG-2 Table B-15 [Merge-2

N
~

00100011

0 VLC CODE SIGN | LAST 0 VLC CODE SIGN | LAST 0 VLC CODE SIGN | LAST
110110 0 1 1)0110 1 1 1)0110 1 1
2110 1 0 2110 1 0 2110 1 0
3]010 1 0 3] 010 1 0 3] 010 1 0
41110 1 0 41110 1 0 41110 1 0
5]0111 1 0 510111 1 0 510111 1 0
6100101 1 0 6] 00101 1 0 6] 00101 1 0
7100111 1 0 710011 2 0 710011 2 0
800110 1 0
911100 1 0 81110 2 0 811110 2 0
10} 11101 1 0
11 | 000001 (NOTEZ2) 0 0 9 | 000001(NOTE2) 0 0 9 | 000001(NOTE2) 0 0
121 000110 1 0 10} 00011 2 0 10| 0001 3 0
13] 000111 1 0
14 1 000100 1 0 11} 00010 2 0
15] 000101 1 0
16 | 0000110 1 0 12} 000011 2 0 11| 00001 3 0
17] 0000111 1 0
18 | 0000100 1 0 13} 000010 2 0
19] 0000101 1 0
2011111000 1 0 141111100 2 0 12111110 3 0
2111111001 1 0
2211111010 1 0 15} 111101 2 0
2311111011 1 0
24 1 00100000 1 0 16 | 0010000 2 0 13} 001000 3 0
25| 00100001 1 0
26 | 00100010 1 0 171 0010001 2 0

1 0

66

28 | 00100100 1 0 18 | 0010010 2 0 141 001001 3 0
29 | 00100101 1 0
30| 00100110 1 0 19} 0010011 2 0
31100100111 1 0
32111111010 1 0 201 1111101 2 0 15} 1111101 2 0
33111111011 1 0
34111111100 1 0 2111111110 2 0 16} 111111 3 0
3511111101 1 0
36111111110 1 0 221111111 2 0
37111111111 1 0
38 | 000000100 1 0 23 | 00000010 2 0 171 00000010 2 0
39 | 000000101 1 0
40 | 000000111 1 0 241 000000111 1 0 18 | 000000111 1 0
41 | 0000001100 1 0 25| 000000110 2 0 19| 000000110 2 0
42 | 0000001101 1 0
43 | 000000010001 1 0 26 | 000000010001 1 0 20 | 000000010001 1 0
44 | 000000010010 1 0 27 1 000000010010 1 0 211 000000010010 1 0
45 | 000000010101 1 0 28 | 000000010101 1 0 22 | 000000010101 1 0
46 | 000000011100 1 0 29 | 000000011100 1 0 23 | 000000011100 1 0
471 000000011010 1 0 30 | 000000011010 1 0 24 1 000000011010 1 0
48 | 000000011001 1 0 31| 000000011001 1 0 25| 000000011001 1 0
49 | 000000010110 1 0 32 | 00000001011 2 0 26 | 00000001011 2 0
50 | 000000010111 1 0
51| 000000011110 1 0 33 | 00000001111 2 0 271 00000001111 2 0
52 |1 000000011111 1 0
53 | 0000000010000 1 0 34 | 000000001000 2 0 28 | 00000000100 3 0
54 | 0000000010001 1 0
55 | 0000000010010 1 0 35| 000000001001 2 0

1 0

56

0000000010011

67

57 |1 0000000010100 1 0 36 | 000000001010 0 29 | 000000001010 2 0
58 | 0000000010101 1 0

59 | 0000000010110 1 0 371 0000000010110 0 30 | 0000000010110 1 0
60 | 0000000011100 1 0 38 | 000000001110 0 31| 00000000111 3 0
61 | 0000000011101 1 0

62 | 0000000011110 1 0 39 | 000000001111 0

63 | 0000000011111 1 0

64 | 0000000011011 1 0 40 | 0000000011011 0 32 | 0000000011011 1 0
65 | 00000000010000 1 0 41 | 0000000001000 0 33 | 000000000100 3 0
66 | 00000000010001 1 0

67 | 00000000010010 1 0 42 | 0000000001001 0

68 | 00000000010011 1 0

69 | 00000000010100 1 0 43 | 0000000001010 0 34 1 000000000101 3 0
70 1 00000000010101 1 0

71100000000010110 1 0 44 | 0000000001011 0

721 00000000010111 1 0

73 1 00000000011000 1 0 45 | 0000000001100 0 35| 000000000110 3 0
74 1 00000000011001 1 0

751 00000000011010 1 0 46 | 0000000001101 0

76 | 00000000011011 1 0

77 1.00000000011100 1 0 47 | 0000000001110 0 36 | 000000000111 3 0
78 | 00000000011101 1 0

79 | 00000000011110 1 0 48 | 0000000001111 0

80 | 00000000011111 1 0

81 | 000000000010000 1 0 49 | 00000000001000 0 37 | 0000000000100 3 0
82 | 000000000010001 1 0

83 | 000000000010010 1 0 50 | 00000000001001 0

84 | 000000000010011 1 0

8511111100 1 0 511111100 0 381111100 1 0

68

113

86 | 000000000010100 1 0 52 | 00000000001010 39 | 0000000000101
871 000000000010101 1 0
88 | 000000000010110 1 0 53 | 00000000001011
89 | 000000000010111 1 0
90 | 000000000011000 1 0 54 | 00000000001100 40 | 0000000000110
91 | 000000000011001 1 0
92 | 000000000011010 1 0 55| 00000000001101
93 | 000000000011011 1 0
94 | 000000000011100 1 0 56 | 00000000001110 41 | 0000000000111
95 | 000000000011101 1 0
96 | 000000000011110 1 0 57 | 00000000001111
97 1 000000000011111 1 0
98 | 0000000000010000 1 0 58 | 000000000001000 42 | 00000000000100
99 | 0000000000010001 1 0
100 | 0000000000010010 1 0 59 | 000000000001001
101 | 0000000000010011 1 0
102 | 0000000000010100 1 0 60 | 000000000001010 43 | 00000000000101
103 | 0000000000010101 1 0
104 |1 0000000000010110 1 0 61 | 000000000001011
105 | 0000000000010111 1 0
106 | 0000000000011000 1 0 62 | 000000000001100 44 | 00000000000110
107 '] 0000000000011001 1 0
108 | 0000000000011010 1 0 63 | 000000000001101
109 | 0000000000011011 1 0
110 | 0000000000011100 1 0 64 | 000000000001110 45 | 00000000000111
111] 0000000000011101 1 0
112] 0000000000011110 1 0 65 | 000000000001111
1 0

0000000000011111

69

VLC CODE

MPEG-4 Table B-16

MPEG-4 Table B-16 [Merge-1

VLC CODE

VLC CODE

MPEG-4 Table B-16 [Merge-2

0 0
1110 1 0 1110 1110 1 0
21110 1 0 21110 21110 1 0
311110 1 0 31111 31111 2 0
411111 1 0
501100 1 0 410110 410110 2 0
601101 1 0
7101011 1 0 501011 5101011 1 0
8 | 010000 1 0 6 | 01000 61 0100 3 0
9 | 010001 1 0
10} 010010 1 0 7101001
11] 010011 1 0
121 010100 1 0 8 | 01010 7101010 2 0
13] 010101 1 0
141 0010100 1 0 9 | 001010 8 | 00101 3 0
15] 0010101 1 0
16 | 0010110 1 0 10} 001011
17] 0010111 1 0
18 | 00011011 1 0 11] 00011011 9] 00011011 1 0
19] 00011100 1 0 12} 0001110 10} 000111 3 0
20 | 00011101 1 0
21100011110 1 0 13} 0001111
22100011111 1 0
23| 000011010 1 0 141 00001101 11} 00001101 2 0
241000011011 1 0
25000011100 1 0 15} 00001110 12/} 0000111 3 0
26 | 000011101 1 0

1 0

N
~

000011110

16

00001111

70

28

000011111

1 0
29 | 000100000 1 0 171 00010000 13 | 0001000
30 | 000100001 1 0
311000100010 1 0 18 | 00010001
32 | 000100011 1 0
33 1 000100100 1 0 191 00010010 141 00010010
34 1 000100101 1 0
35 | 0000001000 1 0 20 | 000000100 151 00000010
36 | 0000001001 1 0
37 | 0000001010 1 0 21| 000000101
38 | 0000001011 1 0
39 | 0000001100 1 0 221 000000110 16 | 00000011
40 | 0000001101 1 0
41 | 0000001110 1 0 23 | 000000111
42 |1 0000001111 1 0
43 | 0000100000 1 0 241 000010000 171 000010000
44 1 0000100001 1 0
45 | 00000000110 1 0 25 | 0000000011 18 | 0000000011
46 | 00000000111 1 0
47 |1 00000100000 1 0 26 | 0000010000 19 | 000001000
48 | 00000100001 1 0
49 | 00000100010 1 0 271 0000010001
50 | 00000100011 1 0
51| 000001010000 1 0 28 | 00000101000 20 | 0000010100
52 | 000001010001 1 0
53 | 000001010010 1 0 29 | 00000101001
54 | 000001010011 1 0
55 | 000001010100 1 0 30 | 00000101010 210000010101
1 0

56

000001010101

71

571 000001010110 1 0 31| 00000101011 2 0

58 | 000001010111 1 0

59 | 001110 1 1 32| 00111 2 1 22| 00111 2 1
60 | 001111 1 1

61] 0111 1 1 33| 0111 1 1 23| 0111 1 1
62 1 001100 1 1 341001100 1 1 241001100 1 1
63 | 001101 1 0 35| 001101 1 0 25001101 1 0
64 | 0010010 1 0 36 | 0010010 1 0 26 | 0010010 1 0
65| 0010011 1 1 3710010011 1 1 2710010011 1 1
66 | 0010000 1 1 38 | 001000 2 1 28 | 001000 2 1
67 |1 0010001 1 1

68 | 00011010 1 1 39 1 00011010 1 1 29 1 00011010 1 1
69 | 00011000 1 0 40 | 0001100 2 0 30 | 0001100 2 0
701 00011001 1 0

71100010110 1 1 41 | 00010110 1 1 3100010110 1 1
72100010111 1 0 42 | 00010111 1 0 32100010111 1 0
73100010100 1 1 43 | 0001010 1 1 33 | 0001010 1 1
74 1 00010101 1 1

75100010011 1 1 44 1 00010011 1 1 34100010011 1 1
76 | 000010010 1 1 451 00001001 2 1 35| 00001001 2 1
771000010011 1 1

78 1 000010100 1 1 46 | 00001010 2 1 36 | 0000101 3 1
79 1 000010101 1 1

80 | 000010110 1 1 47 1 00001011 2 1

81| 000010111 1 1

82 | 000011000 1 0 48 | 00001100 2 0 371 00001100 2 0
83 | 000011001 1 0

84 | 000010001 1 1 49 | 000010001 1 1 38 | 000010001 1 1
85 | 0000000110 1 1 50 | 0000000110 1 1 39 | 0000000110 1 1

72

86 | 0000000111 1 0 51 | 0000000111 1 0 40 | 0000000111 1 0
87 | 0000000100 1 1 52 | 000000010 2 1 41| 000000010 2 1
88 | 0000000101 1 1
89 | 00000000100 1 1 53 | 0000000010 2 1 42 | 0000000010 2 1
90 | 00000000101 1 1
91 | 00000100100 1 0 54| 0000010010 2 1 43| 000001001 3 1
92 | 00000100101 1 0
93 | 00000100110 1 0 55 | 0000010011 2 1
94| 00000100111 1 0
95 | 000001011000 1 1 56 | 000001011000 1 1 44 | 000001011000 1 1
96 | 000001011001 1 0 57 | 000001011001 1 0 45 | 000001011001 1 0
97 | 000001011010 1 1 58 | 0000010110 2 1 46 | 00000101101 2 1
98 | 000001011011 1 1
99 | 000001011100 1 1 59 | 00000101110 2 1 47 | 0000010111 3 1
100 | 000001011101 1 1
101 | 000001011110 1 1 60 | 00000201114 2 1
102 | 000001011111 1 1
103 | 0000011(NOTE2) 0 0 61 | 0000011(NOTE2) 0 0 48 | 0000011(NOTE2) 0 0
61
B.D.(1)=—103 _81.53%
1x0.5
i
B.D.(2)= 103 oL _ 62.00%

2x0.5

73

VLC CODE

MPEG-4 Table B-17

MPEG-4 Table B-17 [Merge-1

VLC CODE

VLC CODE

MPEG-4 Table B-17 [Merge-2

0 0
1110 1 0 1110 1110 1 0
21110 1 0 21110 21110 1 0
311110 1 0 31111 31111 2 0
411111 1 0
501100 1 0 410110 410110 2 0
601101 1 0
7101011 1 0 501011 5101011 1 0
8 | 010000 1 0 6 | 01000 61 0100 3 0
9 | 010001 1 0
10} 010010 1 0 7101001
11] 010011 1 0
121 010100 1 0 8 | 01010 7101010 2 0
13] 010101 1 0
141 0010100 1 0 8 | 00101 3 0
15] 0010101 1 0
16 | 0010110 1 0 10} 001011
17] 0010111 1 0
18 | 00011011 1 0 11] 00011011 9] 00011011 1 0
19] 00011100 1 0 12} 0001110 10} 000111 3 0
20 | 00011101 1 0
21100011110 1 0 13} 0001111
22100011111 1 0
23| 000011010 1 0 141 00001101 11} 00001101 2 0
241000011011 1 0
25000011100 1 0 15} 00001110 12/} 0000111 3 0
26 | 000011101 1 0

1 0

N
~

000011110

16

00001111

74

28

000011111

1 0
29 | 000100000 1 0 171 00010000 13 | 0001000
30 | 000100001 1 0
311000100010 1 0 18 | 00010001
32 | 000100011 1 0
33 1 000100100 1 0 191 00010010 141 00010010
34 1 000100101 1 0
35 | 0000001000 1 0 20 | 000000100 151 00000010
36 | 0000001001 1 0
37 | 0000001010 1 0 21| 000000101
38 | 0000001011 1 0
39 | 0000001100 1 0 221 000000110 16 | 00000011
40 | 0000001101 1 0
41 | 0000001110 1 0 23 | 000000111
42 |1 0000001111 1 0
43 | 0000100000 1 0 241 000010000 171 000010000
44 1 0000100001 1 0
45 | 00000000110 1 0 25 | 0000000011 18 | 0000000011
46 | 00000000111 1 0
47 |1 00000100000 1 0 26 | 0000010000 19 | 000001000
48 | 00000100001 1 0
49 | 00000100010 1 0 271 0000010001
50 | 00000100011 1 0
51| 000001010000 1 0 28 | 00000101000 20 | 0000010100
52 | 000001010001 1 0
53 | 000001010010 1 0 29 | 00000101001
54 | 000001010011 1 0
55 | 000001010100 1 0 30 | 00000101010 210000010101
1 0

56

000001010101

75

571 000001010110 1 0 31| 00000101011

58 | 000001010111 1 0

59| 0111 1 1 320111 22| 0111 1
60 | 001100 1 1 33| 00110 23| 0011 3
61| 001101 1 1

621001110 1 1 34100111

63| 001111 1 1

64 | 0010000 1 1 35| 001000 241 00100 3
65| 0010001 1 1

66 | 0010010 1 1 36 | 001001

671 0010011 1 1

68 | 00011010 1 1 37100011010 25100011010 1
69 | 00010100 1 1 38 | 0001010 26 | 000101 3
701 00010101 1 1

71100010110 1 1 39 | 0001011

72100010111 1 1

73100011000 1 1 40 | 0001100 271 0001100 2
74 1 00011001 1 1

75100010011 1 1 41] 00010011 28 | 00010011 1
76 | 000010010 1 1 42 | 00001001 29 | 00001001 2
771000010011 1 1

78 1 000010100 1 1 43 | 00001010 30 | 0000101 3
79 1 000010101 1 1

80 | 000010110 1 1 44 1 00001011

81| 000010110 1 1

82 | 000011000 1 1 45 | 00001100 3100001100 2
83 | 000011001 1 1

84 | 000010001 1 1 46 | 000010001 32 1 000010001 1
85 | 0000000100 1 1 47 | 000000010 33 | 00000001 3

76

86 | 0000000101 1 1
87 | 0000000110 1 1 48 | 000000011 2 1
88 | 0000000111 1 1
89 | 00000000100 1 1 49 | 0000000010 2 1 34 | 0000000010
90 | 00000000101 1 1
91 | 00000100100 1 1 50 | 0000010010 2 1 35 | 000001001
92 | 00000100101 1 1
93 | 00000100110 1 1 51 | 0000010011 2 1
94 | 00000100111 1 1
95 | 000001011000 1 1 52 | 00000101100 2 1 36 | 0000010110
96 | 000001011001 1 1
97 | 000001011010 1 1 53 | 00000101103 2 1
98 | 000001011011 1 1
99 | 000001011100 1 1 54 | 00000101110 2 1 37 | 0000010111
100 | 000001011101 1 1
101 | 000001011110 1 1 55 | 00000101111 2 1
102 | 000001011111 1 1
103 | 0000011(NOTE2) 0 0 56 | 0000011(NOTE2) 0 0 38 | 0000011(NOTE2)
56
B.D.(1)=—193 _91.26%
1x0.5
)
B.D.(2)= 103) _77.77%

2x0.5

77

Appendix B

Table Merging Algorithm

Table switching is essential for the VLC decoding in the practical
system. To share the decoder, we use the table-merging algorithm to
reduce the implementation cost and the memory access. We show a
high-level description on the following. Further, we use the practical
tables on MPEG-4 as the evaluated.source table. We list the detailed
merging process and label each .merging method (i.e. code-word

merging or prefix merging).

High Level Description of Table Merging Algorithm

Table Merging Algorithm (Table;, Tablej)

{

: stands for the “code-word merging” is performed.
: stands for the “prefix merging” is performed.
: stands for the overhead after table-merging algorithm.

.

For (whole symbol combinations in different coding table)

{
If(Tablej(codex) == Tablej(codey))
MTM_Merging_Condition = CodeWord_Merging;
Elseif(Tablej(code,) == prefixe of “Tablej(codey)”)

78

MTM_Merging_Condition = Prefix_Merging;
Else

MTM_Merging_Condition = zero_pending

Case (MTM_Merging_Condition)

CodeWord_Merging: Code-Word merging is performed,;
Prefix_Merging: Prefix merging is performed;

Default: table overhead due this MTM process;

Endcase

79

VLC CODE

MPEG-2 Table B-14 T2

MPEG-2 Table B-15 T2

VLC CODE

VLC CODE

MTM MPEG-2 Table (B-14-15

(@)
=

1]10 0 1 1] 0110 1 1 1] 0110 1 3 1 4
2| 1(NOTEL) 1 0 2] 10 1 0 2] 10 1 2 1 2
3]11 1 0 3] 010 1 0 3] 010 1 3 1 3
4]o11 1 0 4] 110 1 0 4] 110 1 2 1 3
5] 010 2 0 5] 0111 1 0 5] 0111 0 - 1 4
6 | 00101 1 0 6 | 00101 1 0 6| 00101 1 5 1 5
7| 0011 2 0 7] 0011 2 0 7] 0011 1 4 1 4
8 | 0001 3 0 8| 1110 2 0 8] 1110 0 - 1 4
9 | 00001 3 0 9 | 000001(NOTE2)'| 0 0 9] 000001(NOTE2) |1l 1 6 1 6
10 | 000001(NOTE2) | 0 0o | 10] o001 3 0} 10] o001 1 4 1 4
11 | 001000 3 o | 11| o0001 3 0 I 11| 00001 1 5 1 5
12 | 001001 3 o | 12]11110 3 0o I 12]11110 0 : 1 5
13 | 00000010 3 o | 23] o0o1000 3 0.} 13] 001000 1 6 1 6
14 | 00000011 3 0o | 14]oo1001 3 0. | 14]oo1001 1 6 1 6
15 | 0000000100 3 o | 15] 1111101 2 0 | 15] 1111101 0 - 1 7
16 | 0000000101 3 o | 16]111111 3 o | 16]111111 0 - 1 6
17 | 0000000110 3 0 | 17] 00000010 2 o | 27] oooooo10 1 8 1 8
18 | 0000000111 3 o | 18] oo0000111 1 o | 18] oo0000111 1 8 1 9
19 | 00000000100 3 0 | 19] 000000110 2 0o | 9] oooooo110 0 - 1 9
20 | 00000000101 3 0 | 20] 000000010001 1 0 | 20] 000000010001 1 | 10 1 12
21 | 00000000110 3 0 | 21] 000000010010 1 0 | 21] 000000010010 0 - 1 12
23 | 00000000111 3 0 | 22] 000000010101 1 0 | 22] 000000010101 1 | 10 1 12
22 | 000000000100 3 0 | 23] 000000011100 1 0 | 23] 000000011100 1 | 10 1 12
24 | 000000000101 3 0 | 24] 000000011010 1 0 | 24] 000000011010 1] 10 1 12
25 | 000000000110 3 0 | 25] 000000011001 1 0 | 25] 000000011001 0 - 1 12
26 | 000000000111 3 0 | 26] 00000001011 2 0 | 26] 00000001011 0 : 1 11

80

27 | 0000000000100 3 0 27 1 00000001111 2 0 27 1 00000001111 0 - 1 11
28 | 0000000000101 3 0 28 | 00000000100 3 0 28 | 00000000100 1 11 1 11
29 | 0000000000110 3 0 29 | 000000001010 2 0 29 | 000000001010 1 11 1 12
30 | 0000000000111 3 0 30 | 0000000010110 1 0 30 | 0000000010110 0 - 1 13
31 | 00000000000100 3 0 31| 00000000111 3 0 31| 00000000111 1 11 1 11
32 | 00000000000101 3 0 32 1 0000000011011 1 0 32 | 0000000011011 1 11 1 13
33 | 00000000000110 3 0 33 | 000000000100 3 0 33 | 000000000100 1 12 1 12
34 | 00000000000111 3 0 34 1 000000000101 3 0 34 | 000000000101 1 12 1 12
35 35 | 000000000110 3 0 35| 000000000110 1 12 1 12
36 36 | 000000000111 3 0 36 | 000000000111 1 12 1 12
37 37 | 0000000000100 3 0 37 | 0000000000100 1 13 1 13
38 3811111100 1 0 3811111100 0 - 1 7

39 39 | 0000000000101 3 0 39 | 0000000000101 1 13 1 13
40 40 | 0000000000110 d 0 40 | 0000000000110 1 13 1 13
41 41 | 0000000000111 3 0 41 | 0000000000111 1 13 1 13
42 42 | 00000000000100 S 0 42 | 00000000000100 1 14 1 14
43 43 | 00000000000101 2 0 43 | 00000000000101 1 14 1 14
44 44 1 00000000000110 3 0 44 1 00000000000110 1 14 1 14
45 45 | 00000000000111 3 0 45 | 00000000000111 1 14 1 14

81

VLC CODE

MPEG-4 Table B-16 T2

MPEG-4 Table B-17 T2

VLC CODE

VLC CODE

MTM MPEG-4 Table (B-16-17

CL
1]10 1 0 1]10 1 0 1]10 1 1 2
21110 1 0 21110 1 0 21110 1 1 3
31111 2 0 31111 2 0 31111 1 1 3
410110 2 0 4] 0110 2 0 410110 1 1 4
5101011 1 0 5101011 1 0 5101011 1 1 5
6 | 0100 3 0 6] 0100 3 0 6] 0100 1 1 4
7101010 2 0 7101010 2 0 7101010 1 1 5
8 | 00101 3 0 8 | 00101 3 0 8 | 00101 1 1 5
9100011011 1 0 9100011011 1 0 9 1 00011011 1 1 8
10| 000111 3 0 10} 000111 3 0 10} 000111 1 1 6
11100001101 2 0 1100001101 2 0 1100001101 1 1 8
12] 0000111 3 0 121 0000111 9 0 121 0000111 1 1 7
13 | 0001000 3 0 13] 0001000 S 0 13| 0001000 1 1 7
14 | 00010010 2 0 141 00010010 2 0 14 1 00010010 1 1 8
15 | 00000010 3 0 15] 00000010 3 0 15| 00000010 1 1 8
16 | 00000011 3 0 16 | 00000011 3 0 16 | 00000011 1 1 8
171 000010000 2 0 171 000010000 2 0 171 000010000 1 1 9
18 | 0000000011 2 0 18 | 0000000011 2 0 18 | 0000000011 1 1 10
19 | 000001000 3 0 19] 000001000 3 0 19 | 000001000 1 1 9
20 | 0000010100 3 0 20 | 0000010100 3 0 20 | 0000010100 1 1 10
2110000010101 3 0 210000010101 3 0 21| 0000010101 1 1 10
2310111 1 1 2210111 1 1 22| 0111 1 1 4
22100111 2 1 23| 0011 3 1 23| 00111 1 1 4
24 1 001100 1 1 241 00100 3 1 241001100 1 0 -
251001101 1 0 2500011010 1 1 25001101 1 0 .
26 | 0010010 1 0 26 | 000101 3 1 26 | 0010010 1 1 5

82

2710010011 1 1 270001100 2 1 27] 0010011 1 7 0 -
28 | 001000 2 1 28 | 00010011 1 1 28 | 001000 1 6 0 -
29 | 00011010 1 1 29 | 00001001 2 1 29 | 00011010 1 8 1 8
30 | 0001100 2 0 30 | 0000101 3 1 30 | 0001100 1 7 1 7
3100010110 1 1 31| 00001100 2 1 31| 00010110 1 8 1 6
32 | 00010111 1 0 32 | 000010001 1 1 32 | 00010111 1 8 0 -
33 | 0001010 1 1 33 | 00000001 3 1 33 | 0001010 1 7 0 -
34| 00010011 1 1 34 | 0000000010 | 2 1 34 | 00010011 1 8 1 8
35 | 00001001 2 1 35 | 000001001 3 1 35 | 00001001 1 8 1 8
36 | 0000101 3 1 36 | 0000010110 | 3 1 36 | 0000101 1 7 1 7
37 | 00001100 2 0 3710000010111 | 3 1 37 | 00001100 1 8 1 8
38 | 000010001 1 1 38 | 0000011 0 0 38 | 000010001 1 9 1 9
39 | 0000000110 1 1 (NOTE2) 39 | 0000000110 1 10 1 8
40 | 0000000111 1 0 40 | 0000000111 1 10 0 -
41 | 000000010 2 1 41 | 000000010 1 9 0 -
42 | 0000000010 2 1 42 | 0000000010 1 10 1 10
43 | 000001001 3 1 43 | 000001001 1 9 1 9
44 1000001011000 | 1 0 44 | 000001011000 1 12 1 10
45 [000001011001 | 1 1 45 | 000001011001 1 12 0 -
46 | 00000101101 2 1 46 | 00000101101 1 11 0 -
47 | 0000010111 3 1 47 | 0000010111 1 10 1 10
48 | 0000011 0 0 48 | 0000011 1 7 1 7
(NOTE2) (NOTE2)

83

L

ot L FlS P

| 7

B 2 D P EAR
AT LT Y S B

A pdp o ARWEIE BT 24 p

Bk D ATH T ATHetE 1485 65U06 1
T : (03)5712121-54238, 0933977393
Fh:

\F87# 97 3Ol &6
LRl E QY g

l(c

G-

“’”‘5\1 %Eﬁﬁ]

ix 2000 + @;@;} 4k M%

LU E AR AR I AR LT

A BEIRE 38 > 3+ ISCAS'02 € i&ih <
PABEERRENES FHEE £

F-REEY TR T FE X
HERPgHRTFIEMp] gy
LL3%{4—ﬁ}§%p9Q,L%4;§£H 4R L2 AL
EARL 2 ERLRLEEEER

AN N N NN AN NN A NENEN

84

¥ t0 &

1§k

B Tzu-Ming Liu, Bai-Jue Shieh, Chen-Yi Lee, “An Efficient Modeling
Codec Architecture for Binary Shape Coding”, in Proceedings of the
2002 IEEE International Symposium on Circuit and System, vol. 2, pp.
11 316- 11 319, May 2002.

B Tsu-Ming Liu, Chen-Yi Lee, “A Low-Complexity Soft VLC Decoder
Using Performance Modeling”, accepted by IEEE ICIP’2004.

B Tsu-Ming Liu, Sheng-Zen Wang, Weng-Hsiao Peng, Chen-Yi Lee,
“Memory-Efficient and Low-Complexity Scalable Soft VLC Decoding
for the Video Transmission®, Submitting to IEEE APCCAS’2004.

85

	03_Abstract.pdf
	國立交通大學
	Department of Electronics Engineering& Institute of Electron

	05_Contents.pdf
	Chapter 1. Introduction
	Chapter 2. Soft Decoding of Variable Length Codes
	Chapter 3. Memory Efficient Design Approach
	Chapter 4. Low Complexity Design Approach
	Chapter 5. Performance Modeling
	Chapter 6. Performance Evaluation on MPEG-4
	Chapter 7. Conclusions and Future Work
	Bibliography
	Appendix A Symbol-Merging Algorithm
	Appendix B Table-Merging Algorithm

