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Abstract

Since it is convenient for usersgto memorize a low-entropy password, the
password-based authentication key exchange (PAKE) protocols have been an
active research topic on the client/server-based communication. Especially,
the asymmetric protoeols which the server stores the password images are
resistant to the leak of passwords when the server becomes compromised.
Many elegant protocols are proposed in the-past. However, most of them
will first send the short-term information to the server from client.

In this paper, we propose a provable server-triggering password-based
authenticated key exchange protocol (ST-PAKE). We focus on the framework
that the server generates the short-term information first and then sends it to
the client. This idea has some advantage for communication. For example,
when there are a large number of clients connecting to the server, the server
can select which client to communicate according to the order of preference.

Also, we confront a kind of off-line dictionary attack. We call it active

dictionary attack. This attack can be successfully mounted if the protocol
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is not well-design. We modify our ST-PAKE protocol to the ST-PAKE-A,
which is designed to resist to the active dictionary attack.

Moreover, our scheme is provably forward secrecy and resilient to the
server compromise. We provide a formal security proof of our scheme under
the CDH assumption and the S-CDH assumption in the random oracle model.
Keywords: key exchange, authenticated key exchange protocol, password-

based authentication key exchange
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Chapter 1

Introduction

How to establish a secure channel between two communicating parties is
an important problem on the metworks. Generally speaking, a public key
exchange protocol (KE)*allows two parties who shéare no secret information
to compute a shared session key over a public channel,[DH76]. Due to lack of
identity authentications it’s vulnerable to the man insthe middle attack. The
authenticated key exchange (AKE) protocols not.only generate the session
key between two parties, but also ensure authenticity of the involved parties.
There are many efficient AKE protocols. Some of them require the users
to hold devices, mainly for holding secret keys of a public key system. It is
sometimes inconvenient. Therefore it is preferred to establish secure channels
on a short memorable secret.

Password-based authenticated key exchange (PAKE) protocols are at-
tractive, since each user needs to remember just one password. However, it
is hard to design such protocols since low-entropy passwords are vulnerable

to malicious dictionary attacks. A secure PAKE protocol should meet the



following requirements for the dictionary attacks.

o Resilient to on-line dictionary attacks: Even if the active adversary
deviates from the protocol arbitrarily, he cannot eliminate a significant

number of possible passwords.

e Resilient to off-line dictionary attacks: Any eavesdropper who records
the transcripts of one or more sessions cannot eliminate a significant

number of possible passwords by examining the recorded transcripts.

The on-line dictionary attacks can be easily avoided by the server. The
server can reject the conmection fromstheslient-after a few failure tries of
login. So we focus on zesilience to the off-line dictionary attacks.

PAKE protocols are also useful itnder the client=server architecture. In
this architecture, the server needs to' store the identities of the clients and
the corresponding verification values for passwords which are called verifiers.
The server can check the validity of incoming messages from the clients via
the verifiers. In addition to resilience to the dictionary attacks, the protocols

should meet the following security requirements.

e Forward secrecy: The compromise of the long-term keys of a set of prin-
cipals does not reveal the session keys established in previous protocol

runs involving those principals.

e Resilient to the server compromise: The compromise of the secret in-

formation of the server does not compromise the session key established



in the current session.

The forward secrecy models the case that even the long-term keys are
revealed some day, the session keys generated in the old sessions are still
safe. This is necessary since we cannot ensure the safety of the long-term
keys in a very long period of time. In a risky environment, it is possible that
the server is compromised. The adversary may obtain all the information
stored in the server. Even if all the information in the server is revealed, the
adversary can’t get more information about the current session key.

The security proof for a ‘protocol is essential. The protocols for security
purposes should have some sort of security guarantee. We usually give a
reduction proof for security of the given protocol. The security of the subject
protocol § is reduced to a well-known hard-problem P in the sense that if
there is an efficient algorithm that can break S sthen there is an efficient

algorithm to solve P.

1.1 Related Works

Password-based authenticated key exchange (PAKE) has been extensively
studied in the last few years. The first PAKE scheme is introduced in 1989
[LGSN89]. The seminal work in this area is the encrypted key exchange
protocol (EKE) proposed by Bellovin and Merritt [BM92]. EKE proposes
a novel method that using a long-term symmetry key to protect a short-

term public key. This method can effectively resist to the off-line dictio-



nary attacks. The original EKE protocol requires that the server stores the
plaintext password in order to decrypt the message sent from the client.
Subsequently Bellovin and Merritt propose an augmented EKE protocol (A-
EKE) [BM93], which requires the server to store the verifier of the password.
Even the adversary compromises the server; he can’t extract the password
from the verifier easily. It’s also called the asymmetric protocol. Due to its
simplicity and convenience, many proposed protocols are based on A-EKE
[Wu98, Kwo01, Mac02, Jab97]. However, the above schemes or improved
schemes lack a formal security,préof. ""The.first security model for 2-party
authenticated key exchange protocols, is.introduced by Bellare and Rogaway
[BR93]. Since then, a number of provablé secure protocols and improvements
have been proposed [BCP03, Kwo04,,WZ06, PNKW07, SCWLO0T7].

The AMP (Authentication via Memorable Password) protocol of Kwon
[Kwo01] is a variant of A-EKE. It is also a.standard for IEEE P1363. Nev-
ertheless, the AMP protocol does not have a formal security proof. Kwon
later proposes TP-AMP [Kwo04] which reduced one-round from the original

four-round AMP and gives a formal security proof.

1.2 Owur Contribution

In this paper, we propose a practical server-triggering password-based au-
thenticated key exchange protocol (ST-PAKE). Different from the most of

previous protocols, our protocol is the scheme that the server generates the



short-term information first and is proved secure. In most network protocols,
the client and the server run the handshaking protocol before executing the
subsequent task. Our protocol is suitable for the following situation. When
there are a large number of clients connecting with the server, the server can
select which clients to communicate with and efficiently control the flows. It
prevents the server from the exhaustion of the computational resources. In
contrast, the traditional key exchange protocols are triggered by the client. It
may be that a large number of clients triggering the protocol simultaneously.
This cause heavy system load.

In addition to the passive dictionary. attack, sve confront a kind of off-
line dictionary attack.*“We call it active'dictionary attack. This attack can
be successfully mounted in our ST-PAKE protocols. We modify our ST-
PAKE protocol to the ST-PAKE<A, which is designed to resist to the active
dictionary attack.

Our protocol is based on the A-EKE protocol. We use the verifier as the
long-term secret key to protect the message from the client. The server can
use the verifier to decrypt the message and compute the session key. Our
scheme is provably secure with forward secrecy and resilience to the server
compromise attack under the CDH assumption and the S-CDH assumption

in the random oracle model.



1.3 Organization

The remainder of this thesis is organized as follows. The chapter 2 de-
scribes the security model and two security assumptions for our security
proof. Chapter 3 introduces our new ST-PAKE protocol for detail. Chapter
4 gives a formal security proof for our ST-PAKE protocol. Chapter 5 dis-
cusses the active dictionary and gives the comparison of our ST-PAK protocol
with other famous PAKE protocols. Finally, chapter 6 gives a conclusion for

this paper.




Chapter 2

Definition

2.1 Security Model

In this section, we recall the security model of*Bellare et al. [BPR00] and
Bresson et al. [BCP03|*or password=based key exchiange protocols.

Participants: We define a set PARTY “of users, and partition them into
two finite sets CLIENA and \SERVER. Each participant in the password-
based key exchange protogol.is either a client € € CLIENT or a server S €

SERVER.

Long-Term keys: Each client C' € CLIENT has a secret password 7. and
each server S € SERVER has a table which stores the verifiers V' (7,) for

passwords . The verifier can be used to verify the client’s password.

Protocol Execution: The capabilities of an adversary A are modeled in
the form of oracle queries. For all U € {C, S}, let U denote the instance i

of a party U and U’ is considered as an oracle. When the adversary wants



to invoke a party in the protocol, he must create an instance of a party via

oracle queries. The query types available to the adversary are as follow:

- Send(M, U"): This query models the active attack in which the adver-
sary may modify or inject the message on the public channel. The
output of this query is a message that the oracle U* would generate

upon receipt of message M.

- Execute(C", S7): This querysmodels the passive attack in which the ad-
versary eavesdrops,émn honest_execution bétween a client instance C°
and a server instance S1.~The otitput of this query consists of the mes-

sages that were éxchanged during the honest execution of the protocol.

- Reveal(U?): This query tedels the compromise of session keys by the
adversary. The output of thissquery is the session key held by the in-

stance U*.

- Corrupt(U): This query models the compromise of the password (client)
or the transformed-password (server) by the adversary, in order to deal
with forward secrecy. The output of this query is the password or its

verifier.

- Test(U"): This query models the semantic security of session keys. It

is answered by flipping a coin b. If b = 1, then return the real session



key. Otherwise, a random value is returned.

Partnering: Two instance C* and S’ are said to be partners if all of the

following condition hold:

(1) Both of C* and S7 accept.

(2) C? and S7 share the same session.

(3) The partner identification for € is.S7, and vice versa.

(4) No instances othemthan C*-and S7 accept a partner identification that

is equal to C* and S

Freshness: The notion“of freshness is defined to avoid the trivial attacks
mounted by the adversary. The adversary can test a fresh session only. We
now define two freshness notions fresh and semi-fresh. Note that the fresh is
defined only for the case that the server is not compromised and the semi-
fresh is defined in order to consider the resistance to server compromise.
Furthermore, we add the requirement of the forward secrecy into the above

two cases. So we describe all the four combinations respectively.

-An instance U’ is nfs-fresh (fresh with no requirement for forward secrecy)

unless all of the following events do not occur:



(1) a Reveal(U") query occurs

(2) a Reveal(U”) query occurs where U is the partner of U*

(3) a Corrupt(U) query occurs

-An instance U’ is fs-fresh (fresh with forward secrecy) unless all of the fol-

lowing events do not occur:

(1) a Reveal(U") query occurs

(2) a Reveal(U”) query‘occurs where U8 the partner of U*

(3) a Corrupt(U) query occurs beforethe Test query and the Send(U*, M)

query

-An instance U® is semi-nfs-fresh (semi-fresh with no requirement for forward

secrecy) unless all of the following events do not occur:

(1) a Reveal(U") query occurs

(2) a Reveal(U”) query occurs where U is the partner of U*

(3) a Corrupt(C) query occurs

(4) a U € CLIENT and Corrupt(S) query occurs

10



-An instance U’ is semi-fs-fresh (semi-fresh with forward secrecy) unless all

of the following events do not occur:

(1) a Reveal(U?) query occurs
(2) a Reveal(U”?) query occurs where U’ is the partner of U*

(3) a Corrupt(C) query occurs before the Test query and the Send(U?, M)

query

(4) aU € CLIENT and Corrupt(i9) ‘quéery occurs before the Test query and

the Send(U*, M) quéty

Semantic Security: Consider an’execution of the key exchange protocol
P by the adversary A,*who éansgiven-aceess to the Reveal, Execute, Send
oracles and ask a single Test query to-a nfs-fresh instance. Then, outputs
a guess bit ¢/. If ¥ = b, we say that A wins the game. The advantage of
the adversary A in the security game of the AKE protocol is defined as by

def

Adviake(A) = |2Pr[b = ] — 1|. Similarly, we also define Advis 2*¢(A),

Advs™ 2 (A) and Advs®?*¢(A) for the different secure proposes.

11



2.2 Security Assumptions

The security proof of our protocol is based on the CDH and S-CDH assump-

tions.

Computational Diffie-Hellman Assumption: The CDH assumption states
that given g* and ¢, where u and v are drawn from Z, randomly, it is hard
to compute g“*.

The CDH assumption is defined formally by considering an Experiment
ExpSP*(A), in which we select two values @ and v in Z,,, compute U = g",
and V = ¢", and then give U and-V to the adversary A. Let Z be the output
of A. Then, the Experimaént Exps>H (A) outputs 1if Z = ¢* and 0 other-
wise. Then, we define the advantagé.of A in violating'the CDH assumption as
AdvEPH(A) = Pr[ExpSPH(A) ="1] and the advantage function AdvPH (1),

as the maximum value of AdvE>*(A) over all A with time-complexity at

most t.

Strong-CDH Assumption: The strong-CDH assumption (S-CDH) states

that given ¢g* and g”, where u and v are drawn randomly from Z,, it is hard

to compute the pair (Q,T) with @ = (gfv )* Jand T is an arbitrary value.

The S-CDH assumption is defined formally by considering an Experiment

Expg™(A), in which we select two values v and v in Z,, compute U = ¢*,

and V = ¢¥, and then give U and V to the adversary A. Let (Q,T) be the

12



output of A. Then, the Experiment ExpgP"(A) outputs 1 if Q = (gfv)"

and 0 otherwise. Then, we define the advantage of A in violating the S-CDH

assumption as AdvgP"(A) = Pr[ExpZ®"(A) = 1] and the advantage
S-CDH

function AdvgPH(t), as the maximum value of AdvgPH(A) over all A

with time-complexity at most t.

13



Chapter 3

The Server-triggering
Password-based Authenticated
Key Exchange Protocol

Our protocol uses a cyclie group G =(g) of order-a &-bit prime number g and
four hash functions, /g : {0,1} — {04} and H; & {0,1} — {0,1}¥ i €
{0,1,2}, where k and k' are security parameters.

As shown in Figure 31, the protocol runs bétween a client C' and a server
S. The client C' holds the password o and the server S holds the correspond-
ing verifier 7. We assume that the password is a low-entropy string that is
chosen uniformly from the password space A with size |[A] = N. The public
information, such as the group G, the generator g and the hash functions are
known to all participants. Note that all computations are in G except for

stating otherwise.

14



The protocol consists of three flows and is initiated by the server.

1. The server S chooses a random value y, sets Y = ¢¥, and then sends

(Y, C) to the client C.

2. After receiving (V,C) from S, C' chooses a random value x and sets
X* = (YX)* with X = ¢”. To obtain the DH value, C' computes o =
Y and sets Vo = Ho(C, S, X*,Ya,~) as the authenticator. We can
see that X* depends on the previous flow from S. Finally, ((X*,V¢),.S)

is sent to S.

3. On receiving ((X*#Ve),.S), Steomputes the DH value § = (X* /Y)Y
and checks whether V¢ = Ho(C, S, X5 Y, 5,9) If they are not equal,
S aborts the session. Otherwise, S computes Vei= H,(C, S, X*,Y, 3,7)
as its authenticator.. Finally, (Vg, €).is sent.-to C. After this step, S

computes the session'key iSKg = Ho(€, S, X", Y, 3,7).

4. On receiving the S’s authenticator, C' checks whether Vs = H1(C, S, X*) Y, «, 7).
If they are not equal, C aborts the session. Otherwise, C' computes the

session key SKg = Hy(C, S, X*)Y, a, 7).

15



Client(C) Server(S)

T ~v,where v = g* = gho(c’“)
Y €r Ly
Y =¢Y
Y,C
b
T ER Z;
X =g
U= hO(C7 71-)77 = gu
X*=(YX)
a=Y""

VEETH(C, 8, X" Y, B,7)
_verity Vo = V(7
Vs = Hy(C,S, X*)Y,3,7)

VSI’ = H1(07 S? X*,Y,a,q/)

verify Vg = V4
SKC:H2(0757X*>Y7Q77) SKS:HQ(C7S7X*,Y7/B,’7)

Figure 3.1: The ST-PAKE protocol.
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Chapter 4

Security Proof

In this section, we prove that our protocol is secure in the random oracle
model by using the CDH asswmnption and the SsCDH assumption. We use the
security model mentioned before amd accomplish our proof with the semantic

security goal.

Theorem 1. Let P be the ST=PAdst-protocol iy Figure 3.1. with a uni-
formly distributed dictionary-of size |A| = N. A s the adversary who makes
(sena queries to Send oracle, q... queries to Execute oracle, and qpqs, queries
to Hash oracles. Denote t' the running time of the CDH-solver and t” the
running time of the S-CDH-solver. Then the advantage of the adversary A

1s bounded by:

AdV;Dke(A) S 2QT0(QSend + QExe) : (Adv((C}?H (tla Qr‘o) + Adv%fDH (t” 5 qTO))

2 Sen Sen + exre 2 TOo + Sen 2
1 Gsend 4 (C] dTq ) 4 (C] C.l/ d)
N qg—1 2k

17



Proof. We incrementally define a sequence of games starting at the real at-
tack game G and ending up at game G7. In the final stage, we give a bound
for Adv;’pke(A) by using the triangle inequality to sum up the probability in

each pair of neighboring games.

Game Gg: This game represents the real attack game in the random oracle
model. The oracles are definéd previously that including four hash oracles
(ho, Hy, Hy, Hy) and allanstances;C% and'S% can be available to adversary.
We define the success event-in the game G:

-Succ,,: This event-occurs if b+="b', where b is.the bit involved in the
Test query, and V' is the, outputrof the adversary “after the Test game. In
other word, this event means that the adversary wins the semantic game.
By definition,

Advake(A) 2 Pr[Succy) — 1.

Game Gi: In this game, we simulate all the hash oracles for each query. We
maintain three hash lists £;,, Lz and L 4 in order to the reason of consistency.
The former two lists are used for random queries to hash oracles and the latter
is used for hash queries asked by the adversary. Another list Lp is used to
record the sending message between the instance C* and S7. We also simulate

all the queries to any instance, including Send, Execute, Reveal, Corrupt and

18



Test queries. The rules for the simulation are described in Figure 4.2. Note
that we omit descriptions of recording for oracle answers in the figure.

From this simulation, we can easily see that the transcript distribution
of the game is identical to that of the real attack game in the random oracle
model. Thus we have:

Pr[Succ;] = Pr[Succy.

Game G,: This is the game to avoid the collision occurring in Y or X* and
in the hash queries asked by the adversary: »In other words, if Y or X* is
randomly generated by henest parties and-appeared in the old session of the
protocol, the execution is aborted. Since either Y or X* was simulated by
choosing them randomly, according fothe birthday paradox, the probability

QSend‘quwe)Q

of collisions is bounded by ( B Also we modify the simulation of the

hash oracle queries so that"if {ig#,r) € Ly forsa random value r € {0, 1}*,

QT02
ok/+1*

then we abort the game with probability bounded by
The two games Gy and Gy are identical except for the above-mentioned

collisions case. Thus the distance between Gy and G is:

(qSend + Qea:e)Q Qm2
‘ Pr[SUCCQ] — PI'[SUCC1]| < 2(61 _ 1) + k41"

Game Gj: In this game, we exclude the case that the adversary has been

lucky in guessing the authenticator Vi or Vg without querying the corre-

19



FH,(q) with i € {0,1,2} “Execute(C?, 57)

(i, q,7) & Lp, (Y, C") «<Send(Start, S7)
r {0, 1" (X", Vi), 57) —Send(Y,C*)
Add (i, q,r) to Ly, (Vs,C") « Send((X*, V), S7)

If the query was asked by A Send(Vs,C") ' '
Add (i,q,7) to L4 Return((Y, C"), (X*, V), 57), (Vs, C"))

Return r

-Send(Start, S7) -Send((X™, Vi), S7)

(Y = Ly B — (X*/qv)

YHgy ) VC/'HH1<C7S7X*7677>

Return(Y, C") If Vo =V,

VS = HQ(Ca Sp X*7Y7577)
Return(Vs, C*)
SKS — H3(Oa Sa X*a}/aﬁ”)/)

Terminate
-Send(Y, C") =Send(Vs,€")
l’ﬁzq* Vé:HQ(Ov‘S’?X*?Ka77)
X — g* If Vo=V
u<—H0(C,7T) SKC<_H2(0757X*7Y70577)
X* — (YX)" Terminate
D
VC — Hl(cu 87 X*,Y,Oé,’)/)
Return((X*, Vi), S7)
-Test(U") -Corrupt(U)
SKy —Reveal(U) ftuv==C
b & {0,1} Return 7
SKy & {0, 1} Else if U = §
Return SKy u«— Hy(C,m)
V= g*
Return ~
-Reveal(U")
Return SKy

Figure 4.2: Simulation of the oracle queries.
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sponding random oracles. For this reason, we slightly modify the rule of the
Send queries.

When invoking the Send((X*, Vi), S7) query, the server first checks whether
(1,C, S, X*)Y, 3,7, Vo) € Lyor (Y,C),((X*, V), S),*) € Lp. If both tests
fail, the server terminates without accepting.

Similarly, when invoking the Send((Vs, C") query, the client first checks
whether if (1,C, S, X*)Y,«a,v,Vs) € L4 or ((YV,C), ((X*,Ve),9),(Vs,C)) €
Lp. If both tests fail, the client terminates without accepting. This modifi-
cation ensures that the authentiéator V& and Vs must be generated by the
simulator via correct random oracle.queries.

Games G3 and G- ‘are identical unléss the server (client) aborts without
accepting the authenticator Ve (V). This event happens only if the adversary
has been lucky in guessing the correct value V(Ve) without querying the
corresponding random oracle. So the distance between G and G is bounded

by:

Gsend
2K

| Pr[Succs] — Pr[Succy]| <

Game Gy4: In this game, we exclude the case that the adversary has been
lucky in guessing the verifier v without querying the corresponding random
oracle. We slightly modify the process of the hash oracle by adding an extra

test before returning the random value.
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When the H;(C, S, X*, Y, *,v)(i € {0,1,2}) query is asked by the adver-
sary and (0,C,m,u) € Ly, it must be checked whether (0,C,m,u) ¢ L4. In
this case, the game will abort. This game ensures that the value u must be
derived from 7 by the random oracle. Games G4 and Gg are identical unless
the adversary has correctly guessed the value v without asking the oracle.

So we have:

4r

| Pr[Succy] — Pr[Succs]| < 2];.

Game Gj: This game gimulates the case that a correct password guess is
made by the adversary without using a Corrupt. query and he furthermore
asks Execute queries, then he succeeds in solving thé session key by asking
the hash query. We use a reduction from-the CDH assumption to prove that
the probability of this case i8 negligible.

Given a random CDH input (A, B) with A « ¢% and B « g¢° the
CDH-solver uses A as a subroutine to solve the CDH problem and outputs
CDH(A, B) = ¢g®. We archive this goal by modifying the oracle answers, as
shown in Figure 4.3. Note that the list Lcpp is used to record the candidates

of the CDH output.

Under the random oracle model, the adversary must query the hash oracle

to win the game. We except that the element of the hash oracle input € is
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-Execute(C", S7) H;(C,S, X*,Y,Q,~) with ¢ € {0, 1,2}

Y« A If ((Y,0),(X*Ve),S),(Vs,C)) € Lp
and

© & Ly (0,C,m,uy € L4 without asking Cor-
rupt(C)

X* — (AB)* Adding Z = Q% to the Lcpn

Ve, Vs & {0, 1}¥ Else

Return ( (Y, C), ((X*, Vo), S), (Vs,C)) The game aborts

Figure 4.3: Simulation of th game Gs.

equal to CDH(A, B)?. The corregty CDH joutput Z is picked up from the list
Lcpn with the probabilitytat least q%o. We denote. ¢’ the running time of the
CDH-solver. Games Gs.and Gy are indistinguishable unless the game aborts.

So we have:

| Pr[Succs] = Pr[Suceq]|* <45 - Advé?“(t’, Qro)-

Game Gg: In this game, we exclude the case that if the adversary has
been lucky in guessing the password 7 without using a Corrupt query and
he furthermore asks the Send queries. Since the password is the only secret
information in the PAKE protocol, we disallow this case to happen. For this
reason, we slightly modify the process of the Send query by adding an extra
test.

When invoking the Send((X*, Vi), S7) query, the server first checks that if
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(1,C, S, X*)Y, 3,7, Vo) € Lyor (Y,C),((X*, V), S),*) € Lp. If both tests
fail, the server terminates without accepting. Otherwise, check if (0, C, m,u) €
L 4 and the Corrupt query has not been asked. If this is the case, we abort
the game.

Similarly, when invoking the Send((Vs, C") query, the client first checks
that if (1,C,S, X*, Y, a,~,Vs) € Lo or (Y,C), ((X*,Ve),S), (Vs,C)) € Lp.
If both tests fail, the client terminates without accepting. Otherwise, check
if (0,C,m,u) € L4 and the Corrupt query has not been asked. If this is the
case, we abort the game. This modificatiénrensures that the correct password
must be obtained via Corrupt query.. The two games G4 and Gs are perfectly
indistinguishable unless the adversary ‘has correctly guessed the password

without asking a Corrupt query and made the Send gquery. Hence,

| Pr[Suceg] — Pr[Succs}j'< que\?d.

Now we partition the game Gy into two independent sub-games foe the

two secure requirements, forward secrecy and server compromise.

Game Gy (forward secrecy): In this game, we consider the forward secrecy.
We need to ensure that old session keys still security after the LL-key is

compromised. By the definition of freshness, the Corrupt(C') query was made
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by an adversary after the Test query but in the old game. We modify the
current game to another corrupted game in a way to reply with old transcripts
when an Execute query is asked. This situation is similar to Gs. The only
different thing is that how does the adversary obtain the password. In this
game, the adversary obtains the password by means of making a Corrupt(C')
query, instead of lucky guessing in Gj. Since the simulator needs to consider
the overhead of choosing the transcripts from the old sessions, the success
probability of the adversary is bounded by (gsend + Gewe)Gro - Advng(t’  ro)-

So we have:

| PI‘[SUCC7.1] - PT[SUCCGH S (QSend + Qexe>qro = AdV([C}SH (tla q7‘0)'

Game Gy (server compromase):. In thisgame, we consider the case that
server is compromised. In order to resist to server compromise, we allow the
adversary to make a Corrupt(S) query before the Test query (Test(S?) only)
in our proof by the definition of semi-freshness. We modify the current game
to another semi-corrupted game in the following ways. We discuss two cases
that the adversary invokes the Execute queries or the Send queries. Note that

the adversary obtains the value v in the semi-corrupted game.

e [f the adversary invokes the Execute query, then he succeeds in solving

the session key by asking the hash query. We use a reduction from
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the CDH problem to prove that the probability of this case occurs is

negligible.

Given a random CDH input (A, B) with A « g% and B « ¢°, the CDH-
solver uses A as a subroutine to solve CDH and outputs CDH(A, B) =
g®. We achieve this goal by modifying the oracle answers, as shown in

Figure 4.4.

Under the random oracle model, the adversary must query the hash
oracle to win the game. We except that the element of the hash ora-
cle input 2 is equal tosCDH(A, B)*. "It is similar to the game Gs, we
could observe thattthis eventumay happen with probability bounded by

Gro * Adv(%}?H (tla qro)-

-Execute(C", S7) Hi(C, S, X*Y,Q,~) with i € {0,1,2}
Y — A If ( (Y, 0), (X, V), S), Vs, C)) € Lp and
X* — (AB)" Corrupt(S) has been queried
Ve, Vs & {0, 1} Adding Z = Qu to the Lcpy

Return < (Y> 0)7 ((X*v VC>7 S)a (V57 C)) Else
Same as the previous rules.

Figure 4.4: Simulation of the case 1 of the game Gr.

e [f the adversary invokes the Send query, we use a reduction from the

S-CDH problem.

Given a random S-CDH input (U,V) with A « (¢*) and B « (g"),
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the S-CDH-solver uses A as a subroutine to solve S-CDH and out-

puts S-COH(U,V) = (Q,T) with Q = (-5)* and T is a arbitrary

uv
g

value. We achieve this goal by modifying the oracle answers, as shown
in Figure 4.5. We denote t” the running time of the S-CDH-solver.
It is clear that this event may happen with probability bounded by

Qro * Adv(%;_qCDH (t” ) Q'ro)'

-Corrupt(U) H;,(C,S,T,Y,Q,~) with i € {0,1,2}
U =C I5.( (V,C), (T, Q),8), ) ¢ Lp
abort Adding Z = @ to the Ls.cpn
Elseif U = S Else
v—U Same as the previous rules.
Return ~

-Send(Start, S7)

Y~V A
Return(Y, C")

Figure 4.5: Simulation of the case 2 of the game G7».

Combine these two cases, we have :

| Pr[Succys] — Pr[Succs]| < qm(Adv((C;'qDH(t’, Gro) + AdvquDH(t”,qm)).
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Summary: By the triangle inequality, we have Adva®(A) < 2377 | Pr[Succ ] —

Pr[Succ;]| and, thus:

AdVE(A) < 2Gr0(Gsend + Geae) - (ADVEE () Gro) + AdvE M (17, g1o))

2 sen sen + exre 2 T‘O_I_ Sen 2
+Qd+(QdQ)+(q Qd)

N qg—1 2K

This is the complete proof.
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Chapter 5

Discussion

5.1 Other security issues

The traditional off-line dictionary attacks are mounted by a passive adver-
sary who eavesdrops protocol messages and then goes off-line to perform the
password search. In this section we consider another kind of off-line dictio-
nary attacks. We call it the active dictionary attacks. This attack happens
when the adversary impétsonates the client (server) and communicates with
the server (client). Then the adversaryican obtain the messages from the
server (client) and try to mount the off-line dictionary attacks by using the
received information.

We consider the adversary impersonates the server and communicate with
an honest client in our ST-PAKE protocol. The adversary can mount the

active dictionary attacks by the following steps.

1. The adversary guesses a password 7’ and computes 7/ = g% = ¢"o(&).

2. In the first flow, the adversary chooses a random 3’ and sends Y’ = ¢¥
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to the client.
3. In the second flow, the client responds the X* and Vi to the adversary.

4. The adversary computes the Vo' = Hy(C, S, X*,Y’,(%)y',y’) and

compares it with V.

5. The adversary repeats the step 1 and 4 until he finds a password 7 such

that VC/ = Vc.

We can see that the adversary mounts an active attack and obtains the
password information fromtan honest client. Fhen he can try all possible
passwords and verify them in private by using thewreceived password infor-
mation. This is a successful off-line dictionary attack.

The active dictionary attacks.¢an be partitioned into two cases, the adver-
sary impersonates the client or the server. It depend on the first authentica-
tion value is sent by the client or the server."If the first authentication value
is sent by the client, then the adversary can try to impersonate the server.
The ST-PAKE is in this case. Because the first authentication value V¢ is
sent by the client. The adversary can obtain this information and mount the
dictionary attacks.

We modify our ST-PAKE to the ST-PAKE-A which can resist to the ac-
tive dictionary attacks. In the first flow, the server sends Y* =Y &~ instead
of Y. And the client computes Y = Y* & v after receiving Y*. This mod-

ification can ensure that the server must know 7 otherwise he can’t mount
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the active dictionary attacks successfully. He only can probably eliminate
at most one candidate password from consideration per Send query. The

complete ST-PAKE-A is shown in Figure 5.1.

Client(C') Server(S)
™ v, where v = g = gho(©m)
Y €r L,
Y =¢Y
Y*=Y &y
Y*.C
%
T ER Z;
X =g
U= hO(C77T)7,y =g
Y=Y"®~y
X* = (VX)
a=Y""

VC = HO(Ca Sa X*a

VS/' = Hl(C’ S? X*7Y7 O‘a’)/)
verify Vg = V4
SKe = Ho(C, S, X*,Y, 0, 7) SKg = Hy(C, S, X*,Y,,7)

Figure 5.1: The ST-PAKE-A protocol.
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5.2 Comparison

The comparison with other protocols is given in Figure 5.2. Only the asym-
metric protocols are compared. We consider three factors: the number of
flows, the number of exponentiations executed by the client and the server.

The mentioned protocols are all completed in three rounds or four rounds.
We can see that AMP [Wu98] is the most efficient protocol because it has
the minimum computational overhead mostly. But it doesn’t have a formal
security proof. TP-AMP [Kwo04] reduces one-round from the original four-
round AMP and gave a formal security proof: Our protocol is a little bit
inefficient than the TP-AMP protocol and same as‘the SRP [Wu98]. PAK-Y
[Mac02] using the Schnorr'signature for the-authentieation. So it needs more
exponential operations‘for the Isighature. SCWLO7 [SCWL07] is a PAKE
protocol without public infermation. The all public information such as the
prime, the group and the generatorwill'be chosen by the client and sent to
the server on the first flow. So this protocol is inefficient than other PAKE
protocols.

The above protocols are all triggered by the client. However, our protocol

is triggered by the server. This is the most different feature from others.
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Numbe Number | Security | Triggering
of kxp™ Xp. proof side
s ' ¥ r)
AMP [Wu9s| gl = b K, No client
SRP [Kwo01] — . { No client
PAK-Y [Mac02] - =3 No client
TP-AMP [Kwo04] -3 3 Yes client
SCWLO07 [SCWLO0T] 4 & Yes client
ST-PAKE . o Yes server
Figure 5.2: on of PAKESs.
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Chapter 6

Conclusion

In this paper, we propose a practical server-triggering password-based au-
thenticated key exchange protocol. Different from most previous protocols,
our protocol is the new scheme-inpwhich the server‘generates the short-term
information first. This idea has a special featurethat is useful for the client-
server communication=architecture’.“We also consider the active dictionary
attack and given an iniproved wersion. Furthermore, we provide a formal
security proof of our scheme' under-the CDH assumption and the S-CDH

assumption in the random oracle model.
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