

國 立 交 通 大 學

網路工程研究所

碩 士 論 文

基於應用層群播之具回復性推拉式同儕式串流方法

Resilient Push-Pull Based P2P Streaming Using

Application Level Multicast

 研 究 生：劉佳宜

 指導教授：王國禎 博士

中 華 民 國 九 十 八 年 六 月

基於應用層群播之具回復性推拉式同儕式串流方法

Resilient Push-Pull Based P2P Streaming Using
Application Level Multicast

研 究 生：劉佳宜 Student：Chia-Yi Liu

指導教授：王國禎 Advisor：Kuochen Wang

國 立 交 通 大 學

資 訊 學 院

網 路 工 程 研 究 所

碩 士 論 文
A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年六月

 i

基於應用層群播之具回復性推拉式

同儕式串流方法

學生：劉佳宜 指導教授：王國禎 博士

國立交通大學 資訊學院 網路工程研究所

摘 要

近年來，同儕網路的影音串流系統已愈來愈風行。影音串流的架構可

以區分為基於樹狀架構與基於網狀架構。相對於網狀結構，樹狀架構

會有比較低的啟動延遲，但是有部分節點失效時，其恢復力卻是很差，

這是導致其傳輸率下降與接收端影音串流品質不穩定的重要因素。在

本論文中，我們提出一個基於應用層群播之同儕網路多串流傳送機制

稱為 HyStream，來改進以上的問題。首先，我們切割影音串流資料

並建立多棵群播樹來傳送這些串流資料。此外，我們結合一個前向糾

錯編碼演算法來回復遺失的資料。最後，我們結合拉式與推式方法，

一旦資料遺失時，我們使用資料重傳的方法，即以拉式的方法來取回

遺失的資料。模擬結果顯示，在不同的節點失效率下，我們的方法相

對於SplitStream的遞送率有11.7%的改進。而在一個節點高度不穩定

的環境下，我們的方法的遞送率比 CoolStreaming 高了2.2%。相對

 ii

於 CoolStreaming，HyStream 中百分之九十的節點的啟動時間減少

了35秒。相對於 CoolStreaming 與 SplitStream，我們的方法需6%

額外的封包。而對於 SplitStream 與 CoolStreaming，我們的方法

大約多了0.5%的控制訊息流量。

關鍵字: 應用層群播，同儕串流，前向糾錯編碼，推式方法，拉式方

法。

 iii

Resilient Push-Pull Based P2P
Streaming Using Application Level

Multicast

Student：Chia Yi Liu Advisor：Dr. Kuochen Wang

Department of Computer Science
National Chiao Tung University

Abstract

P2P streaming systems are getting more and more popular in recent years. The

streaming architectures can be classified into tree-based and mesh-based. The

tree-based architecture has low start-up delay, but has less resilient to node failures

compared to the mesh-based architecture, and it would result in a low delivery ratio

and instable quality of received multimedia. In this thesis, we propose a P2P

multi-streaming scheme called HyStream based on application level multicast to

improve these problems. First, we split video streaming data and build multiple trees

to transfer streaming data. Second, we integrate a forward error correction (FEC)

algorithm to recover lost data. Finally, we combine the pull method with the

tree-based architecture, which is based on a push method. When encountering data

loss, we use a pull-based data retransmission method to retrieve lost data. Simulation

results show that in average our approach has 11.7% improvement in delivery ratio

against SplitStream under various node failure rates. The delivery ratio of the

proposed HyStream is 2.2% higher than that of CoolStreaming in a peer churn

environment. The start-up delay of 90th percentile nodes of HyStream is 35 seconds

shorter than that of CoolStreaming. Our approach has low overhead of 6% extra

 iv

packets compared to SplitStream and CoolStreaming. And the extra control overhead

is not more than 0.5% even in a high peer churn environment compared to those of

SplitStream and CoolStreaming.

Keywords: Application level multicast, P2P streaming, forward error correction, push

method, pull method.

 v

Acknowledgements

Many people have helped me with this thesis. I deeply appreciate my thesis

advisor, Dr. Kuochen Wang, for his intensive advice and guidance. I would like to

thank all the classmates in the Mobile Computing and Broadband Networking

Laboratory (MBL) for their invaluable assistance and suggestions. The support by the

National Science Council under Grant NSC96-2628-E-009-140-MY3 is also grateful

acknowledged.

 Finally, my family deserves special mention. This thesis is dedicated to them for

their constant support.

 vi

Contents

Abstract (in Chinese)…………………………………………….…………………...i

Abstract (in English) .. iii

Contents ... vi

List of Figures ... viii

List of Tables ... ix

Chapter 1 Introduction.. 1

1.1 Classification of P2P Streaming Methods ... 1

1.2 Motivation ... 3

Chapter 2 Related Work ... 4

2.1 Existing P2P Streaming Systems .. 4

2.2 Qualitative Comparison of Existing P2P Streaming Systems 6

Chapter 3 Design Approach .. 8

3.1 Streaming Data Fragmentation and Building a Forest 9

3.2 Data Restoration .. 11

3.3 Data Retransmission .. 14

Chapter 4 Simulation Results ... 18

4.1 Simulation against SplitStream ... 18

4.2 Simulation against CoolStreaming .. 20

Chapter 5 Implementation Issues ... 23

5.1 Applying our Approach to SplitStream ... 23

5.1.1 Behavior of Source Nodes ... 23

5.1.2 Behavior of Subscriber Nodes ... 24

 vii

5.2 Integration of Search and Streaming ... 25

Chapter 6 Conclusions ... 26

6.1 Concluding Remarks ... 26

6.2 Future Work .. 26

Bibliography ... 27

 viii

List of Figures

Figure 1. An example forest construction. .. 10

Figure 2. An example of building two multicast trees for two stripes. 10

Figure 3. The encoding and decoding processes represented by matrix operations ... 12

Figure 4. An example FEC.. ... 13

Figure 5. Spare nodes selection algorithm. ... 13

Figure 6. The spare table (SpareTable) of node A .. 14

Figure 7. The flow char of the retransmission process: .. 16

Figure 8. The flow char of the retransmission process: .. 17

Figure 9. The retransmission processes of two multicast trees 17

Figure 10. Delivery ratios with various node failure rates .. 19

Figure 11. Control overhead with various node failure rates 19

Figure 12. Delivery ratio as a function of ON/OFF period T (sec) 21

Figure 13. CDF of start-up delay between HyStream and CoolStreaming. 22

Figure 14. The behavior of the subscriber node. ... 24

 ix

List of Tables

Table 1.Qualitative comparison of P2P streaming systems .. 7

 1

Chapter 1

Introduction

At the beginning, P2P systems were developed to support IP multicast and file

sharing. These technologies have been greatly enhanced with the development of the

Internet. As the increased bandwidth capacity provided by the Internet, the

technologies of transmitting audio and streaming video data become more and more

progressive. In recent years, industry and academia experience great success for the

development of media streaming systems, such as PPLive, CoolStreaming, etc. It was

estimated that P2P traffics accounts for more than 60 percent for the traffic on the

Internet [1]. It indicates that P2P streaming on the Internet is very popular.

1.1 Classification of P2P Streaming Methods

According to the P2P overlay topology, we classify P2P streaming methods into

two categories [2]: mesh-based, and tree-based, the tree-based method can be further

classified into two subcategories: single-tree-based method and multiple-tree-based

method.

(1) Mesh-based method

Mesh-based overlays implement a mesh distribution graph. Each node in the

system connects to partial nodes in the overlay. And each node has a buffer map

which represents its available data, and nodes exchange the buffer maps. Each node

must identify where the available chunks are, and pulls the chunks it requires.

Successful systems like PPLive [3], CoolStreaming [5], and SopCast [4] are

mesh-based methods. Mesh-based systems have long start-up delay and have the

 2

overhead of extra control messages exchange. But this kind of systems offers good

resilience to node failures.

(2) Single-tree-based method

The tree-based method constructs a tree-shaped graph. The source node transmits

media streaming data to interior nodes and the interior nodes forward the data to their

downstream nodes, which means every node receives data from its parent. The

architectures of Narada [6] and NICE [7] are both tree-based. This intuitional method

has less start-up delay, and no need to transmit extra messages to maintain the overlay.

But the tree-based method suffers some disadvantages: (1) It’s not load-balancing;

most nodes in tree-shaped topology are leaf nodes, but these nodes don’t have to

forward data to another node. On the other hand, interior nodes must contribute its

bandwidth. (2) It’s not robust and resilient. In this system, every node has a parent. If

the parent suddenly fails, the downstream nodes lose data instantly. For a system in a

high churn environment, the tree must be destroyed and rebuilt frequently, which will

cause much overhead.

(3) Multiple-tree based method

To resolve the problems of single-tree systems, it has been proposed to build

multiple trees for delivering data. This method can minimize the effect of churn and

effectively utilize available resources in the system. The source node of the

multiple-tree will split a video stream into more than two substreams and deliver the

substreams to the distinct multiple trees. This method distributes the forwarding load

among nodes and exploits the bandwidth of the links among the nodes. SplitStream [9]

and CoopNet [10] are multiple-tree based architecture.

 3

1.2 Motivation

The tree-based architecture has low start-up delay, but has less resilient to node

failures comparing to the mesh-based architecture, and it would result in a low

delivery ratio and instable quality of received multimedia. In this thesis we propose a

multi-streaming scheme based on the structure of SplitStream [9] and the application

level multicast [16]. We split video streaming data and build multiple trees to transfer

streaming data. We integrate a forward error correction (FEC) [17] data recovery

algorithm to recover the original data, and integrate the ideas of the pull method and

the tree-based method, which is push-based method. Our approach has good resilience

to node failures. The rest of this thesis is structured as follows. In Chapter 2, we will

review related work and make comparisons of different P2P streaming systems. We

will illustrate the design approach in Chapter 3. In Chapter 4, we will present

simulation results. Then, in Chapter 5, we will discuss implementation issues, and

finally, Chapter 6 is conclusions and future work.

 4

Chapter 2

Related Work

2.1 Existing P2P Streaming Systems

In this chapter, we review some existing P2P streaming systems.

Scribe [16]: Scribe is a scalable application-level multicast system. Scribe builds

multicast trees and supports a large number of groups. Scribe is built on Pastry, a

peer-to-peer location and routing substrate. Nodes can create groups, join the groups,

and send messages to other nodes in the same group. Scribe uses Pastry to execute

these behaviors. Scribe provides best-effort reliability guarantees and has good

scalability of wide range of groups.

SplitStream [9]: In the tree-based system, the load balancing of nodes is not good.

So SplitStream constructs a forest of multicast trees that distributes the forwarding

load to participating nodes. Especially, a node is an internal node in only one tree and

is a leaf node in other trees. It relies on a structured peer-to-peer overlay to construct

and maintain these trees. In this thesis, we further enhance Splitstream to be more

robust and resilient to node failures with some data encoding technique.

PRIME [14]: PRIME is a mesh-based P2P streaming system for swarming content

delivery. First, PRIME uses proper peer connectivity to minimize bandwidth

bottleneck. Second, PRIME employs an efficient content delivery pattern to minimize

content bottleneck. PRIME classifies the delivery pattern into two phases, the

diffusion phase and swarming phase. Its recovery mechanism is Multiple Description

Coding (MDC).

 5

CoolStreaming [5]: There are three key modules in this system: 1) membership

manager, which maintains a partial view of the overlay; 2) partnership manager,

which establishes and maintains partnership with other peer nodes; 3) scheduler,

which is responsible for the schedule of stream transmissions. This system is a

mesh-based and receiver-driven design of a streaming overlay. Every node

periodically exchanges the Buffer Map which records the data availability information

with partner nodes. CoolStreaming uses the pull method to retrieve unavailable data

from partners.

HCPS [12]: This system proposes a hierarchically architecture. In HCPS, the nodes

are formed into clusters and retrieve data from the source server or the cluster head.

This system performs the perfect scheduling algorithm within each cluster, and fully

utilizes the bandwidth to achieve high streaming rate with short delay.

Trickle [11]: Trickle is a peer-to-peer real-time media streaming system built upon

SplitStream. This system constructs multiple multicast trees, combines erasure

correction code and the recruitment of many peer helpers. The system can transport

video streams with low link stresses and stable sub-second frame delays

Gridmedia [13]: CoolStreaming is a kind of receiver-driven system. But the delay

of CoolStreamig is long. To improve this drawback, Gridmedia proposed a push-pull

streaming method. In order to reduce the delay at nodes as well as to offer resilience

to the high churn rate in the overlay, the nodes in Gridmedia are organized into an

unstructured overlay. The pull method is the same as that of CoolStreaming. The

nodes first use the pull mode. When the partnership between nodes is stable, the

delivery mode changes to the push mode.

 6

2.2 Qualitative Comparison of Existing P2P

Streaming Systems

We compare existing P2P streaming systems qualitatively in Table 1. Systems like

CoolStreaming and PRIME are mesh-based architecture. These systems have longer

start-up delay, but have good resilience to node failures and good load balancing

between nodes, and have high bandwidth utilization. On the other hand, the systems

like Scribe, Trickle, and SplitStream are tree-based architecture. Scribe is single tree

architecture, so it has poor performance under node failures. And the load balancing is

poor in Scribe. SplitStream is a multi-stream scheme to improve the load balancing

and peer churn problems. But compared to the mesh-based architecture, SplitStream

performed worse in resilience to node failures. Trickle combined the IDA data

recovery algorithm with SplitStream, so it has better resilience to node failures. There

is another architecture that combined the mesh-pull and tree-push methods called

push-pull method like Gridmedia. This method has the advantages including short

start-up delay, good resilience to node failures, and good load balancing. But it also

has much more control overhead compared to other methods. Our approach is based

on the tree-push method, combined with the FEC recovery algorithm and the pull

method. So our approach has short start-up delay and good resilience to node failures

and good load balancing. In addition, our approach has less control messages

compared to Gridmedia because a node sends request messages only when it missed

data. Our pull method is performed when a node misses the data. It sends requests to

the spare nodes specified in the SpareTable. The pull method in Gridmedia is

performed when a node want to get the next sequence of data, and it sends requests to

multiple partners. Additionally, in the research of overlay multicast, some protocols

have also been proposed aimed at reliability and resilience [19] [20] [21].

 7

Table 1.Qualitative comparison of existing streaming systems

P2P system
Recovery

mechanism

Start-up

delay

Resilience

to node

failures

Load

balancing

Push/pull

method

Bandwidth

utilization
Architecture

CoolStreaming

[5]
None

30~50

sec.
Good Good Pull High Mesh

PRIME [14] MDC
30 sec.

~ 1 min
Good Good Pull High Mesh

Gridmedia [13] None
30 sec.

~ 1 min
Good Good

Push-

pull
High Mesh

Scribe [16] None
10~30

sec.
Poor Poor Push Medium Tree

SplitStream [9] None
10~30

sec.
Medium Good Push High

Multiple

Tree

Trickle [11] IDA
10~30

sec.
Medium Good Push High

Multiple

Tree

HyStream

(proposed)
FEC

10~30

sec.
Good Good

Push-

pull
High

Multiple

Tree

 8

Chapter 3

Design Approach

The architecture of the proposed P2P streaming system is based on DHT and application

level multicast. We used Pastry [15] as the DHT layer to implement the basic structure of our

streaming system. And the application level multicast is responsible to construct a multicast

overlay network, like Scribe [16]. Our approach focuses on the streaming layer. The

streaming layer is responsible to transfer streaming data. Traditionally, the tree-based

approaches use the push method, in which nodes transfer data to its child nodes. This

approach has low start-up delay. However, there are two main problems of this method. (1) If

the bandwidth of the interior node is low, child nodes may lose data. (2). When encountering

an interior node failure, the children can’t receive data until the recovery of the tree. Therefore,

we propose a hybrid method which combines the mesh-pull method and the tree-push method

to resolve the above two problems and still maintain the advantages of tree-based and

mesh-based approaches. Our approach is composed of three parts: (1) Streaming data

fragmentation and building a forest: we split streaming data and build a forest to transfer the

streaming data. (2) Data restoration: we integrate a forward error correction (FEC) algorithm

to recover lost data. (3) Data retransmission: when encountering data loss we use a data

retransmission method, which is a pull method, to retrieve lost data. We describe the details of

these three parts, as follows.

 9

3.1 Streaming Data Fragmentation and Building a Forest

The concept of multiple data transmissions using a forest was described in [9]. Video

data are divided into frames, and each frame is assigned a sequence number to represent its

playback order. We then split the frame into several stripes and transfer each stripe by using

an individual multicast tree that is formed by participating nodes. To distribute the forwarding

load among all participating nodes, all the nodes form interior-node-disjoint multicast trees

[9]. The basic architecture of our proposed approach is like SplitStream. We use Scrbie

multicast trees to form a forest. We exploit the properties of Pastry to construct

interior-node-disjoint trees. In our P2P network, every node has a nodeId, and every stripe has

a stripeId. Each stripe’s stripeId starts with a different digit. The nodeIds of interior nodes

share a prefix with the stripeId. Figure 1 shows an example forest construction [9]. Since nodeId

of node A starts with 1, node A is an interior node in the tree for stripeId starting with 1. And

node A is a leaf node in other trees. In the forest, one node is an interior node in one multicast

tree, and is a leaf node in other multicast trees. Figure 2 shows an example of building two

multicast trees for two stripes. Each interior node in Tree 1 is a leaf node in Tree 2.

 10

Figure 1. An example forest construction.

Stripe1 Stripe2

S

D

B

A

G

H

E

C

F

Tree 1

Tree 2

Figure 2. An example of building two multicast trees for two stripes.

 11

3.2 Data Restoration

We use multiple trees to transfer stripes. Nodes may lose some stripes, so we use an FEC

algorithm to recover a complete data frame. The forward error correction (FEC) algorithm is a

technique used in error correction. The sender adds redundant packets to the original data,

also known as an error correction code. The use of FEC begins with a proper selection of

parameters k and n (k < n). We split one frame into k packets. n is the number of encoded

packets. In our approach, the value n is equal to the number of stripes. The source node will

transfer n encoded packets to child nodes. Then even suffering from packet loss in some

stripes, we still can recover the original data with at least k encoded packets. By this technique,

the extra redundant packets are (n-k). The details of the decoder and encoder of FEC are

described in [17]. Here we show the process of decoder and encoder in Figure 3. Let xv be

the source data. The encoded data yv is generated by xGy vv = . G is an n × k matrix with rank k.

The matrix G is called the generator matrix [17]. yv is encoded data by linear combination of

G and xv . Assuming that only k components of yv are successfully received at the receiver,

we can still restore the source data by using the k components. The solution of decoding data

is yGx vv ′′= −1 from xGy vv ′=′ , where xv is the source data and y′v is a subset of k components

of yv . Matrix G' is the rows from G corresponding to the components of y′v . The matrix G' is

k × k and G' is invertible. We can decode the source data by multiplying 1−′G and y′ .

An example FEC is shown in Figure 4 and the detailed calculation is described in [22]. We

set the three packets be P1 = [1001], P2 = [0101], and P3 = [1101]. And the generating matrix

G is given by

G =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

111
123
132
100
010
001

 12

After encoding by xGy vv = , we get the redundant packets, where P4 = 2P1 + 3P2 + P3 = [1001],

P5= 3P1 + 2P2 + P3 = [0101], P6 = P1 + P2 + P3 = [1101]. The source node transfers the encoded

packets. Assure the packets P1, P4, and P6 are received. We have G' =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

111
132
001 , and the inverse

of G' is 1−′G =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

233
332
001 . We can get the original packets by multiplying 1−′G and y′v = [P1,

P4, P6].

Figure 3. The encoding and decoding processes represented by matrix operations. y′v and G'

correspond to the grey areas of the yv and G [17].

 13

P3P2P1

Encoding

P6P5P4P3P2P1

P6P4P1

Decoding

Source datak

n Encoded data

Received data

Source data
recoveredk

k' ≥ k

P3P2P1

Transfer data

Receive a packet

Lose a packet

Figure 4. An example FEC. We can decode the original data

with any k blocks out of n blocks.

Figure 5. Spare nodes selection algorithm.

Spare Nodes Selection Algorithm

INPUT:
nodeId: SpareTable for this node;
degree[i]: degree of tree i;
num_stripe: number of stripes;
sub_tree[j]: set of nodeIds in sub-tree j of tree i;

OUTPUT SpareTable
Algorithm:

For i = 0 to num_stripe do
 For j = 0 to degree[i] do
 If nodeId ∉ sub-tree[j] Then

SpareTable[i]←SpareTable[i]∪{sub-tree[j]}
 End if;
 End for j;
End for i;

 14

3.3 Data Retransmission

Here we first explain how to construct a SpareTable, and then describe the proposed

retransmission mechanism. The SpareTable records spare nodes information. Nodes can find

the targets in the SpareTable when nodes want to send requests. We present a spare nodes

selection algorithm as shown in Figure 5, to construct a SpareTable. When a new node joins

the network, it will contact the source node. The source node will select spare nodes for this

new node. In a multicast tree, a node failure will cause its children not being able to receive

data, but nodes in other sub-trees won’t be affected. So, the nodes in other sub-trees are

suitable nodes to request for lost data. In our P2P network, there are several multicast trees.

Assume the number of stripes is N. There are N multicast trees. Assume the degree of a

multicast Tree 1 is M (M<N). We divide multicast Tree 1 into M’s sub-trees. The source node

chooses every node from the other M-1 sub-trees except the sub-tree the new node belonged

to and construct one entry in the SpareTable. So there are N entries in the SpareTable.

Following is an example in Figure 2. Since there are two multicast trees in Figure 2, there are

two entries in SpareTable of every node as shown in Figure 6. For node A in Figure 2. There

are two entries for stripe 1 and stripe 2 respectively in SpareTable. For stripe 1, we choose the

nodes B、E、H、F to be spare nodes because they are in other sub-tree. For stripe 2, we choose

D、E、G、C to be spare nodes.

Figure 6. The spare table (SpareTable) of node A

Next, we describe the retransmission mechanism. The flow charts of a node sending a

retransmission request and sending a reply are shown in Figure 7 and Figure 8, respectively.

 15

In the P2P network, nodes receive frames and store them in the buffer. When one node

receives one frame with a new sequence number, for example, sequence i, the node will check

whether the frame sequence number (i-1) has been decoded. If decoded, there is no need to

send any requests for this frame. If not, the node checks to which stripe number that frame

(i-1) belong, and sends a request messages for lost blocks to a randomly selected node from

the corresponding entry in the SpareTable. On the other hand, the node will check the

receiving buffer whether the block of specific <sequence, stripe> is available after receiving a

request message. If the requested block is available, the node will send back the block to the

requesting node. If the requested block is not available, the node will not send back a reply.

We see an example to illustrate the retransmission process as shown in Figure 9. In Figure 9,

node B failed. Nodes E and F may lose some blocks in stripe 1, so node E sends a request to

node G. If the specific <sequence, 1> block is available of node G, it will send back the block

to node E. Node F did the same. In tree 2, when node C lost blocks in stripe 2, it sends a

request to a node in entry 2 of the SpareTable. Node C send a retransmission request and get a

reply from spare node A in multicast tree 2.

 16

Receive frame i
in buffer

stripe# = 1

frame (i-1)
decoded?

Send A request
for <i-1, stripe#>
block to selected

nodes in entry
stripe# of

SpareTable and
stripe# ++

Wait for a reply

No

No need to
send a request

Yes

If stripe# < N

Is
<i-1,stripe#> block

available?

Yes

No

No need to
send a request

Yes

No

Figure 7. The flow char of the retransmission process:

the process of a node sending a retransmission request.

 17

Receive a
retransmission request
of the <seq#, stripe#>
block, check receiving

buffer

Is <seq#, stripe#>
block available?

Send back the
block

Yes

No need to
send reply

No

Figure 8. The flow char of the retransmission process:

the process of a node sending a reply.

Figure 9. The retransmission processes of two multicast trees. (a) Nodes E and F send
retransmission requests and get replies from spare nodes G and D in multicast tree 1. (b)
Node C send a retransmission request and get a reply from spare node A in multicast tree
2.

 18

Chapter 4

Simulation Results
We first used FreePastry (version 2.0_04) [18] to implement the DHT layer (Pastry) [15],

application layer multicast (Scribe), and streaming layer (SplitStream). Then we implemented

our proposed HyStream scheme on this structure. We compare the proposed HyStream with

SplitStream in Section 4.1 and with CoolStreaming in Section 4.2

4.1 Simulation against SplitStream

We implemented our simulation environment on Pastry overlay with 800 nodes and built

a forest structure with these nodes. Repair time is determined primarily by SplitStream’s

failure detection period, which triggers a tree repair when no heartbeats or data packets have

been received for 30 seconds. The delivery ratio is defined as the number of packets that

arrive at each node before the playback deadline over the total number of delivered packets.

Mean time to failure (MTTF) [19] is defined as the time interval to kill a portion of nodes.

The node failure rate [20] is defined as the percent of nodes that failed simultaneously. In

Figure 10, we evaluate the delivery ratios under different node failure rate between 1% and

20% (which implies 8 to 160 simultaneous failures in the overlay with 800 nodes) with a

fixed MTTF of 100 seconds. The result shows that the delivery ratio decreases as the node

failure rate increases in our HyStream and SplitStream. We set the parameters with FEC (16,

15), and thus the encoded data has about 6% extra redundant packets. We can see that adding

an FEC recovery method can improve the delivery ratio. However, when the node failure rate

increases, the improvement of FEC decreases. By combining the retransmission mechanism,

we can achieve a high delivery ratio even with a high node failure rate. With the node failure

rate of 10%, the delivery ratio of HyStream is 14% higher than that of SplitStream. And the

 19

average improvement is 11.7%. We can see that when the node failure rate increases, the

improvement of HyStream increases.

Figure 10. Delivery ratios with various node failure rates

under a fixed MTTF (100 seconds).

Figure 11. Extra control overhead with various node failure rates

under a fixed MTTF (100 seconds).

0.5
0.55
0.6

0.65
0.7

0.75
0.8

0.85
0.9

0.95
1

0% 1% 2% 3% 5% 10% 15% 20%

D
el

iv
er

y
ra

tio

Node failure rate

SplitStream
Add FEC
Add Retreans.
HyStream (proposed)

0
0.0005
0.001

0.0015
0.002

0.0025
0.003

0.0035
0.004

0.0045

0% 1% 2% 3% 5% 10% 15% 20%

E
xt

ra
 c

on
tr

ol
 o

ve
rh

ea
d

Node failure rate

 20

In Figure 11, we show the extra control overhead with various node failure rates. We

define the extra control overhead as the control traffic volume / video traffic volume at each

node. The extra control traffic of HyStream is the retransmission requests. We observed that

the extra control overhead increases as the node failure ratio increases. The maximum extra

control overhead is lower than 0.5%. When the node failure rate is under 3%, we can recover

most of data with a small number of retransmission requests and low extra control overhead.

4.2 Simulation against CoolStreaming

Here we evalue two metrics: delivery ratio and delivery latency. We compare the proposed

HyStream with CoolStreaming in terms of delivery ratio and start-up delay, with

CoolStreaming’s simulation results obtained from [5].

(1) Delivery ratio:

We first compare the delivery ratio between HyStream and CoolStreaming. The delivery

ratio is defined as the number of packets that arrive at each node before the playback deadline

over the total of number of delivered packets. We implemented a simulation environment

according to [5]. We set the streaming rate as 500 Kbps. And the overlay size is 200 nodes.

We set each node to change its status according to the ON/OFF period. The node actively

participates the overlay during the ON period and leaves (or fails) during the OFF period.

Both ON and OFF periods are exponentially distributed with an average of time T. Simulation

results are shown in Figure 12. We found that the shorter ON/OFF period leads to a lower

delivery ratio. We also found that the delivery ratio of SplitStream is lower with a lower

ON/OFF period beacause SplitStream is a push-based method. Our approach uses a data

recovery and push-pull hybrid method to increase the delivery ratio. The delivery ratio of

HyStream is also higher than that of CoolStreaming. This is beacause CoolStreaming used a

receiver-driven approach, and sometimes it has longer delays.

 21

Figure 12. Delivery ratio as a function of ON/OFF period T (sec).

(2) Delivery latency:

We define the start-up delay as the waiting time that a node receives enough data to start

playing after it joins the overlay. We implemented 1000 nodes in the overlay and recorded the

start-up delay in cumulative distribution function (CDF), as shown in Figure 13. HyStream

had the same start-up delay with SplitStream. We observed that 90th percentile nodes had the

start-up delay of 15 in our HyStream. The 90th percentile nodes had the start-up delay of 50

seconds in CoolStreaming. Our HyStream is 35 seconds shorter in the start-up delay of the

90th percentile nodes. Since our approach is a push-based method, its start-up delay is very

short.

0.74
0.76
0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

50 100 200 400 800

CoolStreaming

SplitStream

HyStream
(proposed)

ON/OFF period T (second)

D
el

iv
er

y
ra

tio

 22

Figure 13. CDF of start-up delays between HyStream and CoolStreaming.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 5 10 15 20 25 30 35 40 45 50 55

C
D

F
of

 st
ar

t-
up

 d
el

ay

Start-up delay (seconds)

CoolStreaming

HyStream(proposed)
(same as SpliStream)

 23

Chapter 5
Implementation Issues
5.1 Applying our Approach to SplitStream

In this section, we introduce how to implement our HyStream method. Our HyStream

method is an enhanced improvement of SplitStream’s streaming multicast. We can implement

our approach based on the FreePastry project [18]. FreePastry is an open source project. We

can modify its source code to implement our method. The original SplitStream method

provides the functions of creating DHT networks, building multicast trees, and transferring

streaming data. We may implement our approach by modifying the source code of the node

behavior. We discuss how to modify the node behaviors of source and subscriber nodes as

follows.

5.1.1 Behavior of Source Nodes

Video data are available in the source node. The source node divides the video data into

frames, and each frame is assigned a sequence number to represent its playback order. We

then separate the frame into several stripes and transfer them by different multicast trees. The

source node encodes each frame with FEC. The source node stores the SpareTable of each

multicast tree. The source node will transfer the SpareTable to a newly joined node.

 24

Figure 14. The behavior of the subscriber node (a) the behavior of a subscriber node when

receiving streaming data (b) the behavior of a subscriber node when receiving a

retransmission request.

5.1.2 Behavior of Subscriber Nodes

When a node joins a P2P streaming system, it can subscribe to the multicast trees and

becomes a subscriber node. The subscribe node will contact the source node and retrieve the

SpareTable. The subscriber node receives data from its parent node. In Figure 14, we

implemented four handlers in our HyStream: (1) The data handler processes the receiving data

and detects whether suffering from data loss. If the number of received blocks is equal to or

greater than the FEC parameter k, the recovery handler will react. On the other hand, if the

node receives a new frame with seq#, the retransmission handler will react. (2) The recovery

 25

handler performs an FEC algorithm to recover data and saves data to the receiving buffer. (3)

The retransmission handler requests spare nodes to retrieve lost data and saves data to the

receiving buffer; the detail is shown in Figure 7. (4) The request handler receives

retransmission requests from other nodes and transfers the data to them. In addition, there is a

receiving buffer maintained by each node. Three handlers save data to this buffer. The

subscriber node plays the video from the data in the buffer.

5.2 Integration of Search and Streaming

Most P2P streaming systems provide live streaming or video on-demand. In live streaming,

each user must watch the same streaming from a live channel, such as a live sport channel. In

video on-demand, users can select a channel provided by the server. We can integrate our

streaming system with the P2P search technique. When a user joins the P2P network, it can

search the video file name and get a list of nodes that have this file. Nodes that have the video

file will be the source node in the P2P streaming network. And other nodes that want to watch

the video can join the streaming network. We can apply our streaming method to the

streaming network to achieve the P2P streaming resilience.

 26

Chapter 6

Conclusions

6.1 Concluding Remarks

In the proposed HyStream, we have integrated the ideas of the pull method with the

tree-based architecture. We fragment the stream and build multiple trees to transfer data, and

add an FEC data recovery mechanism to restore lost data. We have also used the pull-method

to retransmit the data that we could not be recovered. Our approach has the advantages of the

tree-push and mesh-pull methods. Simulation results have shown that our HyStream has a

high delivery ratio in a peer churn environment and good resilience to node failures.

Simulation results have also shown that in average our approach has 11.7% improvement in

delivery ratio against SplitStream under various node failure rates. The delivery ratio of the

proposed HyStream is 2.2% higher than that of CoolStreaming in a peer churn environment.

The start-up delay of 90th percentile nodes of HyStream is 35 seconds shorter than that of

CoolStreaming. Our approach has low overhead with 6% extra packets compared to

SplitStream and CoolStreaming. And the extra control overhead is not more than 0.5% even

in a high peer churn environment compared to that of SplitStream and CoolStreaming.

6.2 Future Work

We will implement the proposed HyStream in an actual internet environment, and

experimental results will be evaluated to justify our simulation results.

 27

Bibliography

[1] B. Li and H. Yin, “Peer-to-peer live video streaming on the internet: issues, existing

approaches, and challenges,” IEEE Commun. Mag, vol.45, pp. 94-99, Jul. 2007

[2] A. Sentinelli, G. Marfia, M. Gerla, L. Kleinrock, and S. Tewari, “Will IPTV ride the

peer-to-peer stream?” IEEE Commun. Mag, vol.45, pp.86-92, Jul. 2007.

[3] S. Xie, G.Y. Kung, and B. Li, “A measurement of a large-scale peer-to-peer live video

streaming system,” in Proc. International Conference on Parallel Processing Workshops,

pp. 57-57, Sept. 2007.

[4] J. Harju, A. Jantunen, M. Saukko, L. Vaatamoinen, I. Curcio, I. Bouazizi, and M.

Hannuksela, “Peer-to-peer streaming technology survey,” in Proc. International

Conference on Networking, pp. 342 – 350, Apr. 2008.

[5] X. Zhang, J. Liu, B. Li, and Y.-S.P. Yum,” CoolStreaming/DONet: a data-driven overlay

network for peer-to-peer live media streaming,” in Proc. 24th Annual Joint Conference of

the IEEE Computer and Communications Societies, pp. 2102-2111, Mar. 2005.

[6] Y. H. Chu, S. G. Rao, and H. Zhang, “A case for end system multicast,” IEEE J. Sel.

Areas Commun., vol.20, pp. 1-12, Oct. 2002.

[7] Z. Liu, H. Yu, D. Kundur, M. Merabti, “On peer-to-peer multimedia content access and

distribution” in Proc. International Conference on Multimedia and Expo, pp.557-560.

July. 2006.

[8] W. P. Yiu, X. Jin, S.H. Chan, “Challenges and approaches in large-scale p2p media

streaming,” IEEE Multimedia, vol. 14, pp. 50-59, June. 2007.

[9] M. Castro, P. Druschel, A.M. Kermarrec, A. Nandi, A. Rowstron, A. Singh, “Splitstream:

high-bandwidth content distribution in a cooperative environment,” in Proc. Nineteenth

ACM Symposium on Operating Systems Principles, pp. 292-303. Oct. 2003.

 28

[10] V. N. Padmanabhan, H. J. Wang, P. A. Chou, and K. Sripanidkulchai, “Distributing

streaming media content using cooperative networking,” in Proc. 12th International

Workshop on Network and Operating Systems Support for Digital Audio and Video, pp.

177-186. Apr. 2002.

[11] K. Zao, Y.H. Guo, J.K. Zao, W.H. Peng, L.S. Huang, and F.P. Kuo, “Trickle: resilient

real-time video multicasting for dynamic peers with limited or asymmetric network

connectivity,” in Proc. International Symposium on Multimedia, pp.391-398, Dec. 2006.

[12] C. Liang, Y. Guo, and Y Liu, “Hierarchically clustered p2p streaming system,” in Proc.

Global Telecommunications Conference, pp. 236-241, Nov. 2007.

[13] L. Zhao, J. G. Luo, M. Zhang, W. J. Fu, J. Luo, Y. F. Zhang, S. Q. Yang, “Gridmedia: A

practical peer-to-peer based live video streaming system,” in Proc. 7th Workshop on

Multimedia Signal Processing, pp. 1-4, Nov. 2005.

[14] N. Magharei, R. Rejaie, “PRIME:peer-to-peer receiver-driven mesh-based streaming,” in

Proc. 26th IEEE International Conference on Computer Communications, pp. 1415-1423,

May.2007.

[15] A. Rowstron and P. Druschel, “Pastry: scalable, distributed object location and routing

for large-scale peer-to-peer systems,” in Proc. IFIP/ACM International Conference on

Distributed Systems Platforms (Middleware), pp. 329–350, 2001.

[16] M. Castro, P. Druschel, A.M. Kermarrec, and A. Rowstron., “Scribe: a large-scale and

decentralized application level multicast infrastructure,” IEEE J. Sel. Areas Commun., vol.

20, pp. 1489-1499, Oct. 2002.

[17] L. Rizzo, “Effective erasure codes for reliable computer communication protocols,”

ACM SIGCOMM, vol. 27, pp. 24-36. Apr. 1997.

[18] “Freepastry,” [Online]. Available: http://freepastry.org/FreePastry/.

 29

[19] S. Birrer and F.E. Bustamante, “The feasibility of DHT-based streaming multicast,” in

Proc. International Symposium on Modeling, Analysis, and Simulation of Computer and

Telecommunication Systems, pp. 288-298. Mar. 2005.

[20] S. Banerjee, S. Lee, B. Bhattacharjee, and A. Srinivassan, “Resilient multicast using

overlays,” IEEE/ACM Trans. Network., vol. 14, pp. 237-248, Apr. 2006.

[21] H. W. Cheng, “Dependable peer-to-peer multi-streaming using DHT-based application

level multicast,” in Proc. IASTED International Conference on Wireless and Optical

Communications, July, 2009.

[22] W. L. Miller, R. M. Ollerton, A. Shum, C. J. Warner, “Proactive FEC-based forwarding

for the collaborative reliable multicast protocol,” in Proc. Information Systems for

Enhanced Public Safety and Security. IEEE/AFCEA, pp. 269-273. May. 2000.

