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基於應用層群播之具回復性推拉式 

同儕式串流方法 

 

學生：劉佳宜     指導教授：王國禎 博士 

 
國立交通大學 資訊學院 網路工程研究所 

 

摘 要 

近年來，同儕網路的影音串流系統已愈來愈風行。影音串流的架構可

以區分為基於樹狀架構與基於網狀架構。相對於網狀結構，樹狀架構

會有比較低的啟動延遲，但是有部分節點失效時，其恢復力卻是很差，

這是導致其傳輸率下降與接收端影音串流品質不穩定的重要因素。在

本論文中，我們提出一個基於應用層群播之同儕網路多串流傳送機制

稱為 HyStream，來改進以上的問題。首先，我們切割影音串流資料

並建立多棵群播樹來傳送這些串流資料。此外，我們結合一個前向糾

錯編碼演算法來回復遺失的資料。最後，我們結合拉式與推式方法，

一旦資料遺失時，我們使用資料重傳的方法，即以拉式的方法來取回

遺失的資料。模擬結果顯示，在不同的節點失效率下，我們的方法相

對於SplitStream的遞送率有11.7%的改進。而在一個節點高度不穩定

的環境下，我們的方法的遞送率比 CoolStreaming 高了2.2%。相對
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於 CoolStreaming，HyStream 中百分之九十的節點的啟動時間減少

了35秒。相對於 CoolStreaming 與 SplitStream，我們的方法需6% 

額外的封包。而對於 SplitStream 與 CoolStreaming，我們的方法

大約多了0.5%的控制訊息流量。 

 

關鍵字: 應用層群播，同儕串流，前向糾錯編碼，推式方法，拉式方

法。 
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Resilient Push-Pull Based P2P 
Streaming Using Application Level 

Multicast 
 

Student：Chia Yi Liu Advisor：Dr. Kuochen Wang 

Department of Computer Science 
National Chiao Tung University 

Abstract 

P2P streaming systems are getting more and more popular in recent years. The 

streaming architectures can be classified into tree-based and mesh-based. The 

tree-based architecture has low start-up delay, but has less resilient to node failures 

compared to the mesh-based architecture, and it would result in a low delivery ratio 

and instable quality of received multimedia. In this thesis, we propose a P2P 

multi-streaming scheme called HyStream based on application level multicast to 

improve these problems. First, we split video streaming data and build multiple trees 

to transfer streaming data. Second, we integrate a forward error correction (FEC) 

algorithm to recover lost data. Finally, we combine the pull method with the 

tree-based architecture, which is based on a push method. When encountering data 

loss, we use a pull-based data retransmission method to retrieve lost data. Simulation 

results show that in average our approach has 11.7% improvement in delivery ratio 

against SplitStream under various node failure rates. The delivery ratio of the 

proposed HyStream is 2.2% higher than that of CoolStreaming in a peer churn 

environment. The start-up delay of 90th percentile nodes of HyStream is 35 seconds 

shorter than that of CoolStreaming. Our approach has low overhead of 6% extra 
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packets compared to SplitStream and CoolStreaming. And the extra control overhead 

is not more than 0.5% even in a high peer churn environment compared to those of 

SplitStream and CoolStreaming. 

 

Keywords: Application level multicast, P2P streaming, forward error correction, push 

method, pull method. 
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Chapter 1  

Introduction 

At the beginning, P2P systems were developed to support IP multicast and file 

sharing. These technologies have been greatly enhanced with the development of the 

Internet. As the increased bandwidth capacity provided by the Internet, the 

technologies of transmitting audio and streaming video data become more and more 

progressive. In recent years, industry and academia experience great success for the 

development of media streaming systems, such as PPLive, CoolStreaming, etc. It was 

estimated that P2P traffics accounts for more than 60 percent for the traffic on the 

Internet [1]. It indicates that P2P streaming on the Internet is very popular. 

1.1 Classification of P2P Streaming Methods 

According to the P2P overlay topology, we classify P2P streaming methods into 

two categories [2]: mesh-based, and tree-based, the tree-based method can be further 

classified into two subcategories: single-tree-based method and multiple-tree-based 

method. 

(1) Mesh-based method 

Mesh-based overlays implement a mesh distribution graph. Each node in the 

system connects to partial nodes in the overlay. And each node has a buffer map 

which represents its available data, and nodes exchange the buffer maps. Each node 

must identify where the available chunks are, and pulls the chunks it requires. 

Successful systems like PPLive [3], CoolStreaming [5], and SopCast [4] are 

mesh-based methods. Mesh-based systems have long start-up delay and have the 
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overhead of extra control messages exchange. But this kind of systems offers good 

resilience to node failures.  

(2) Single-tree-based method 

The tree-based method constructs a tree-shaped graph. The source node transmits 

media streaming data to interior nodes and the interior nodes forward the data to their 

downstream nodes, which means every node receives data from its parent. The 

architectures of Narada [6] and NICE [7] are both tree-based. This intuitional method 

has less start-up delay, and no need to transmit extra messages to maintain the overlay. 

But the tree-based method suffers some disadvantages: (1) It’s not load-balancing; 

most nodes in tree-shaped topology are leaf nodes, but these nodes don’t have to 

forward data to another node. On the other hand, interior nodes must contribute its 

bandwidth. (2) It’s not robust and resilient. In this system, every node has a parent. If 

the parent suddenly fails, the downstream nodes lose data instantly. For a system in a 

high churn environment, the tree must be destroyed and rebuilt frequently, which will 

cause much overhead.   

(3) Multiple-tree based method 

To resolve the problems of single-tree systems, it has been proposed to build 

multiple trees for delivering data. This method can minimize the effect of churn and 

effectively utilize available resources in the system. The source node of the 

multiple-tree will split a video stream into more than two substreams and deliver the 

substreams to the distinct multiple trees. This method distributes the forwarding load 

among nodes and exploits the bandwidth of the links among the nodes. SplitStream [9] 

and CoopNet [10] are multiple-tree based architecture. 
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1.2 Motivation 

The tree-based architecture has low start-up delay, but has less resilient to node 

failures comparing to the mesh-based architecture, and it would result in a low 

delivery ratio and instable quality of received multimedia. In this thesis we propose a 

multi-streaming scheme based on the structure of SplitStream [9] and the application 

level multicast [16]. We split video streaming data and build multiple trees to transfer 

streaming data. We integrate a forward error correction (FEC) [17] data recovery 

algorithm to recover the original data, and integrate the ideas of the pull method and 

the tree-based method, which is push-based method. Our approach has good resilience 

to node failures. The rest of this thesis is structured as follows. In Chapter 2, we will 

review related work and make comparisons of different P2P streaming systems. We 

will illustrate the design approach in Chapter 3. In Chapter 4, we will present 

simulation results. Then, in Chapter 5, we will discuss implementation issues, and 

finally, Chapter 6 is conclusions and future work. 
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Chapter 2  

Related Work 

2.1 Existing P2P Streaming Systems 

In this chapter, we review some existing P2P streaming systems. 

Scribe [16]: Scribe is a scalable application-level multicast system. Scribe builds 

multicast trees and supports a large number of groups. Scribe is built on Pastry, a 

peer-to-peer location and routing substrate. Nodes can create groups, join the groups, 

and send messages to other nodes in the same group. Scribe uses Pastry to execute 

these behaviors. Scribe provides best-effort reliability guarantees and has good 

scalability of wide range of groups. 

SplitStream [9]: In the tree-based system, the load balancing of nodes is not good. 

So SplitStream constructs a forest of multicast trees that distributes the forwarding 

load to participating nodes. Especially, a node is an internal node in only one tree and 

is a leaf node in other trees. It relies on a structured peer-to-peer overlay to construct 

and maintain these trees. In this thesis, we further enhance Splitstream to be more 

robust and resilient to node failures with some data encoding technique. 

PRIME [14]: PRIME is a mesh-based P2P streaming system for swarming content 

delivery.  First, PRIME uses proper peer connectivity to minimize bandwidth 

bottleneck. Second, PRIME employs an efficient content delivery pattern to minimize 

content bottleneck. PRIME classifies the delivery pattern into two phases, the 

diffusion phase and swarming phase. Its recovery mechanism is Multiple Description 

Coding (MDC). 
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CoolStreaming [5]: There are three key modules in this system: 1) membership 

manager, which maintains a partial view of the overlay; 2) partnership manager, 

which establishes and maintains partnership with other peer nodes; 3) scheduler, 

which is responsible for the schedule of stream transmissions. This system is a 

mesh-based and receiver-driven design of a streaming overlay. Every node 

periodically exchanges the Buffer Map which records the data availability information 

with partner nodes. CoolStreaming uses the pull method to retrieve unavailable data 

from partners. 

HCPS [12]: This system proposes a hierarchically architecture. In HCPS, the nodes 

are formed into clusters and retrieve data from the source server or the cluster head. 

This system performs the perfect scheduling algorithm within each cluster, and fully 

utilizes the bandwidth to achieve high streaming rate with short delay. 

Trickle [11]: Trickle is a peer-to-peer real-time media streaming system built upon 

SplitStream. This system constructs multiple multicast trees, combines erasure 

correction code and the recruitment of many peer helpers. The system can transport 

video streams with low link stresses and stable sub-second frame delays 

Gridmedia [13]: CoolStreaming is a kind of receiver-driven system. But the delay 

of CoolStreamig is long. To improve this drawback, Gridmedia proposed a push-pull 

streaming method. In order to reduce the delay at nodes as well as to offer resilience 

to the high churn rate in the overlay, the nodes in Gridmedia are organized into an 

unstructured overlay. The pull method is the same as that of  CoolStreaming. The 

nodes first use the pull mode. When the partnership between nodes is stable, the 

delivery mode changes to the push mode.  
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2.2 Qualitative Comparison of Existing P2P 

Streaming Systems 

We compare existing P2P streaming systems qualitatively in Table 1. Systems like 

CoolStreaming and PRIME are mesh-based architecture. These systems have longer 

start-up delay, but have good resilience to node failures and good load balancing 

between nodes, and have high bandwidth utilization. On the other hand, the systems 

like Scribe, Trickle, and SplitStream are tree-based architecture. Scribe is single tree 

architecture, so it has poor performance under node failures. And the load balancing is 

poor in Scribe. SplitStream is a multi-stream scheme to improve the load balancing 

and peer churn problems. But compared to the mesh-based architecture, SplitStream 

performed worse in resilience to node failures. Trickle combined the IDA data 

recovery algorithm with SplitStream, so it has better resilience to node failures. There 

is another architecture that combined the mesh-pull and tree-push methods called 

push-pull method like Gridmedia. This method has the advantages including short 

start-up delay, good resilience to node failures, and good load balancing. But it also 

has much more control overhead compared to other methods. Our approach is based 

on the tree-push method, combined with the FEC recovery algorithm and the pull 

method. So our approach has short start-up delay and good resilience to node failures 

and good load balancing. In addition, our approach has less control messages 

compared to Gridmedia because a node sends request messages only when it missed 

data. Our pull method is performed when a node misses the data. It sends requests to 

the spare nodes specified in the SpareTable. The pull method in Gridmedia is 

performed when a node want to get the next sequence of data, and it sends requests to 

multiple partners. Additionally, in the research of overlay multicast, some protocols 

have also been proposed aimed at reliability and resilience [19] [20] [21]. 
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Table 1.Qualitative comparison of existing streaming systems 

 

P2P system 
Recovery 

mechanism 

Start-up 

delay 

Resilience 

to node 

failures 

Load 

balancing 

Push/pull 

method 

Bandwidth 

utilization 
Architecture

CoolStreaming 

[5] 
None 

30~50 

sec. 
Good  Good  Pull  High  Mesh 

PRIME [14]  MDC 
30 sec. 

~ 1 min 
Good  Good  Pull  High  Mesh 

Gridmedia [13]  None 
30 sec. 

~ 1 min 
Good  Good 

Push- 

pull 
High  Mesh 

Scribe [16]  None 
10~30 

sec. 
Poor  Poor  Push  Medium  Tree 

SplitStream [9]  None 
10~30 

sec. 
Medium Good  Push  High 

Multiple 

Tree 

Trickle [11]  IDA 
10~30 

sec. 
Medium Good  Push  High 

Multiple 

Tree 

HyStream 

( proposed) 
FEC 

10~30 

sec. 
Good  Good 

Push- 

pull 
High 

Multiple 

Tree 
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Chapter 3  

Design Approach  

The architecture of the proposed P2P streaming system is based on DHT and application 

level multicast. We used Pastry [15] as the DHT layer to implement the basic structure of our 

streaming system.  And the application level multicast is responsible to construct a multicast 

overlay network, like Scribe [16]. Our approach focuses on the streaming layer. The 

streaming layer is responsible to transfer streaming data. Traditionally, the tree-based 

approaches use the push method, in which nodes transfer data to its child nodes. This 

approach has low start-up delay. However, there are two main problems of this method. (1) If 

the bandwidth of the interior node is low, child nodes may lose data. (2). When encountering 

an interior node failure, the children can’t receive data until the recovery of the tree. Therefore, 

we propose a hybrid method which combines the mesh-pull method and the tree-push method 

to resolve the above two problems and still maintain the advantages of tree-based and 

mesh-based approaches. Our approach is composed of three parts: (1) Streaming data 

fragmentation and building a forest: we split streaming data and build a forest to transfer the 

streaming data. (2) Data restoration: we integrate a forward error correction (FEC) algorithm 

to recover lost data. (3) Data retransmission: when encountering data loss we use a data 

retransmission method, which is a pull method, to retrieve lost data. We describe the details of 

these three parts, as follows. 
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3.1 Streaming Data Fragmentation and Building a Forest 

The concept of multiple data transmissions using a forest was described in [9]. Video 

data are divided into frames, and each frame is assigned a sequence number to represent its 

playback order. We then split the frame into several stripes and transfer each stripe by using 

an individual multicast tree that is formed by participating nodes. To distribute the forwarding 

load among all participating nodes, all the nodes form interior-node-disjoint multicast trees 

[9]. The basic architecture of our proposed approach is like SplitStream. We use Scrbie 

multicast trees to form a forest. We exploit the properties of Pastry to construct  

interior-node-disjoint trees. In our P2P network, every node has a nodeId, and every stripe has 

a stripeId. Each stripe’s stripeId starts with a different digit. The nodeIds of interior nodes 

share a prefix with the stripeId. Figure 1 shows an example forest construction [9]. Since nodeId 

of node A starts with 1, node A is an interior node in the tree for stripeId starting with 1. And 

node A is a leaf node in other trees. In the forest, one node is an interior node in one multicast 

tree, and is a leaf node in other multicast trees. Figure 2 shows an example of building two 

multicast trees for two stripes. Each interior node in Tree 1 is a leaf node in Tree 2. 
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Figure 1. An example forest construction. 

 

 

 

Stripe1 Stripe2

S

D

B

A

G

H

E

C

F

Tree 1

Tree 2  

Figure 2. An example of building two multicast trees for two stripes. 
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3.2 Data Restoration 

We use multiple trees to transfer stripes. Nodes may lose some stripes, so we use an FEC 

algorithm to recover a complete data frame. The forward error correction (FEC) algorithm is a 

technique used in error correction. The sender adds redundant packets to the original data, 

also known as an error correction code. The use of FEC begins with a proper selection of 

parameters k and n (k < n). We split one frame into k packets. n is the number of encoded 

packets. In our approach, the value n is equal to the number of stripes. The source node will 

transfer n encoded packets to child nodes. Then even suffering from packet loss in some 

stripes, we still can recover the original data with at least k encoded packets. By this technique, 

the extra redundant packets are (n-k). The details of the decoder and encoder of FEC are 

described in [17]. Here we show the process of decoder and encoder in Figure 3. Let xv  be 

the source data. The encoded data yv is generated by xGy vv = . G is an n × k matrix with rank k. 

The matrix G is called the generator matrix [17]. yv  is encoded data by linear combination of 

G and xv . Assuming that only k components of yv  are successfully received at the receiver, 

we can still restore the source data by using the k components. The solution of decoding data 

is  yGx vv ′′= −1  from xGy vv ′=′ , where xv is the source data and y′v  is a subset of k components 

of yv . Matrix G' is the rows from G corresponding to the components of y′v . The matrix G' is 

k × k and G' is invertible. We can decode the source data by multiplying 1−′G  and y′ .  

An example FEC is shown in Figure 4 and the detailed calculation is described in [22]. We 

set the three packets be P1 = [1001], P2 = [0101], and P3 = [1101]. And the generating matrix 

G is given by 

G =

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

111
123
132
100
010
001
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After encoding by xGy vv = , we get the redundant packets, where P4 = 2P1 + 3P2 + P3 = [1001], 

P5= 3P1 + 2P2 + P3 = [0101], P6 = P1 + P2 + P3 = [1101]. The source node transfers the encoded 

packets. Assure the packets P1, P4, and P6 are received. We have G' =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

111
132
001 , and the inverse 

of G' is 1−′G =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

233
332
001 . We can get the original packets by multiplying 1−′G  and y′v   = [P1, 

P4, P6].  

 

 

 

Figure 3. The encoding and decoding processes represented by matrix operations. y′v and G' 

correspond to the grey areas of the yv and G [17]. 

 

 



 

 13

P3P2P1

Encoding

P6P5P4P3P2P1

P6P4P1

Decoding

Source datak

n Encoded data

Received data

Source data
recoveredk

k' ≥ k

P3P2P1

Transfer data

Receive a packet

Lose a packet

 

Figure 4. An example FEC. We can decode the original data  

with any k blocks out of n blocks. 

 

 

Figure 5. Spare nodes selection algorithm. 

 

Spare Nodes Selection Algorithm 

INPUT: 
nodeId:  SpareTable for this node; 
degree[i]:  degree of tree i; 
num_stripe:  number of stripes; 
sub_tree[j]:  set of nodeIds in sub-tree j of tree i; 

OUTPUT SpareTable 
Algorithm: 

For i = 0 to num_stripe do 
 For j = 0 to degree[i] do 
  If nodeId ∉  sub-tree[j] Then 

SpareTable[i]←SpareTable[i]∪{sub-tree[j]} 
  End if; 
 End for j; 
End for i; 
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3.3 Data Retransmission 

Here we first explain how to construct a SpareTable, and then describe the proposed 

retransmission mechanism. The SpareTable records spare nodes information. Nodes can find 

the targets in the SpareTable when nodes want to send requests. We present a spare nodes 

selection algorithm as shown in Figure 5, to construct a SpareTable. When a new node joins 

the network, it will contact the source node. The source node will select spare nodes for this 

new node. In a multicast tree, a node failure will cause its children not being able to receive 

data, but nodes in other sub-trees won’t be affected. So, the nodes in other sub-trees are 

suitable nodes to request for lost data. In our P2P network, there are several multicast trees. 

Assume the number of stripes is N. There are N multicast trees. Assume the degree of a 

multicast Tree 1 is M (M<N). We divide multicast Tree 1 into M’s sub-trees. The source node 

chooses every node from the other M-1 sub-trees except the sub-tree the new node belonged 

to and construct one entry in the SpareTable. So there are N entries in the SpareTable. 

Following is an example in Figure 2. Since there are two multicast trees in Figure 2, there are 

two entries in SpareTable of every node as shown in Figure 6. For node A in Figure 2. There 

are two entries for stripe 1 and stripe 2 respectively in SpareTable. For stripe 1, we choose the 

nodes B、E、H、F to be spare nodes because they are in other sub-tree. For stripe 2, we choose 

D、E、G、C to be spare nodes.  

 

Figure 6. The spare table (SpareTable) of node A 

 

Next, we describe the retransmission mechanism. The flow charts of a node sending a 

retransmission request and sending a reply are shown in Figure 7 and Figure 8, respectively. 
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In the P2P network, nodes receive frames and store them in the buffer. When one node 

receives one frame with a new sequence number, for example, sequence i, the node will check 

whether the frame sequence number (i-1) has been decoded. If decoded, there is no need to 

send any requests for this frame. If not, the node checks to which stripe number that frame 

(i-1) belong, and sends a request messages for lost blocks to a randomly selected node from 

the corresponding entry in the SpareTable. On the other hand, the node will check the 

receiving buffer whether the block of specific <sequence, stripe> is available after receiving a 

request message. If the requested block is available, the node will send back the block to the 

requesting node. If the requested block is not available, the node will not send back a reply. 

We see an example to illustrate the retransmission process as shown in Figure 9. In Figure 9, 

node B failed. Nodes E and F may lose some blocks in stripe 1, so node E sends a request to 

node G. If the specific <sequence, 1> block is available of node G, it will send back the block 

to node E. Node F did the same. In tree 2, when node C lost blocks in stripe 2, it sends a 

request to a node in entry 2 of the SpareTable. Node C send a retransmission request and get a 

reply from spare node A in multicast tree 2. 
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Receive frame i 
in buffer

stripe# = 1

frame (i-1) 
decoded?

Send A request 
for <i-1, stripe#> 
block to selected 

nodes in entry 
stripe# of 

SpareTable and 
stripe# ++

Wait for a reply

No

No need to 
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Figure 7. The flow char of the retransmission process:  

the process of a node sending a retransmission request. 
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Receive a 
retransmission request 
of the <seq#, stripe#> 
block, check receiving 

buffer

Is <seq#, stripe#>
block available?

Send back the 
block 

Yes

No need to 
send reply

No

 

Figure 8. The flow char of the retransmission process:  

the process of a node sending a reply. 

 

 

Figure 9. The retransmission processes of two multicast trees. (a) Nodes E and F send 
retransmission requests and get replies from spare nodes G and D in multicast tree 1. (b) 
Node C send a retransmission request and get a reply from spare node A in multicast tree 
2. 
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Chapter 4  

Simulation Results 
We first used FreePastry (version 2.0_04) [18] to implement the DHT layer (Pastry) [15], 

application layer multicast (Scribe), and streaming layer (SplitStream). Then we implemented 

our proposed HyStream scheme on this structure. We compare the proposed HyStream with 

SplitStream in Section 4.1 and with CoolStreaming in Section 4.2 

4.1 Simulation against SplitStream 

We implemented our simulation environment on Pastry overlay with 800 nodes and built 

a forest structure with these nodes. Repair time is determined primarily by SplitStream’s 

failure detection period, which triggers a tree repair when no heartbeats or data packets have 

been received for 30 seconds. The delivery ratio is defined as the number of packets that 

arrive at each node before the playback deadline over the total number of delivered packets. 

Mean time to failure (MTTF) [19] is defined as the time interval to kill a portion of nodes. 

The node failure rate [20] is defined as the percent of nodes that failed simultaneously. In 

Figure 10, we evaluate the delivery ratios under different node failure rate between 1% and 

20% (which implies 8 to 160 simultaneous failures in the overlay with 800 nodes) with a 

fixed MTTF of 100 seconds. The result shows that the delivery ratio decreases as the node 

failure rate increases in our HyStream and SplitStream. We set the parameters with FEC (16, 

15), and thus the encoded data has about 6% extra redundant packets. We can see that adding 

an FEC recovery method can improve the delivery ratio. However, when the node failure rate 

increases, the improvement of FEC decreases. By combining the retransmission mechanism, 

we can achieve a high delivery ratio even with a high node failure rate. With the node failure 

rate of 10%, the delivery ratio of HyStream is 14% higher than that of SplitStream. And the 
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average improvement is 11.7%. We can see that when the node failure rate increases, the 

improvement of HyStream increases. 

 

 
Figure 10. Delivery ratios with various node failure rates 

under a fixed MTTF (100 seconds). 
 

 
Figure 11. Extra control overhead with various node failure rates 

under a fixed MTTF (100 seconds). 
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In Figure 11, we show the extra control overhead with various node failure rates. We 

define the extra control overhead as the control traffic volume / video traffic volume at each 

node. The extra control traffic of HyStream is the retransmission requests. We observed that 

the extra control overhead increases as the node failure ratio increases. The maximum extra 

control overhead is lower than 0.5%. When the node failure rate is under 3%, we can recover 

most of data with a small number of retransmission requests and low extra control overhead. 

 

4.2 Simulation against CoolStreaming 

Here we evalue two metrics: delivery ratio and delivery latency. We compare the proposed 

HyStream with CoolStreaming in terms of delivery ratio and start-up delay, with 

CoolStreaming’s simulation results obtained from [5]. 

(1) Delivery ratio:  

We first compare the delivery ratio between HyStream and CoolStreaming. The delivery 

ratio is defined as the number of packets that arrive at each node before the playback deadline 

over the total of number of delivered packets. We implemented a simulation environment 

according to [5]. We set the streaming rate as 500 Kbps. And the overlay size is 200 nodes. 

We set each node to change its status according to the ON/OFF period. The node actively 

participates the overlay during the ON period and leaves (or fails) during the OFF period. 

Both ON and OFF periods are exponentially distributed with an average of time T. Simulation 

results are shown in Figure 12. We found that the shorter ON/OFF period leads to a lower 

delivery ratio. We also found that the delivery ratio of SplitStream is lower with a lower 

ON/OFF period beacause SplitStream is a push-based method. Our approach uses a data 

recovery and push-pull hybrid method to increase the delivery ratio. The delivery ratio of 

HyStream is also higher than that of CoolStreaming. This is beacause CoolStreaming used a 

receiver-driven approach, and sometimes it has longer delays. 
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Figure 12. Delivery ratio as a function of ON/OFF period T (sec). 

 

(2) Delivery latency:  

We define the start-up delay as the waiting time that a node receives enough data to start 

playing after it joins the overlay. We implemented 1000 nodes in the overlay and recorded the 

start-up delay in cumulative distribution function (CDF), as shown in Figure 13. HyStream 

had the same start-up delay with SplitStream. We observed that 90th percentile nodes had the 

start-up delay of 15 in our HyStream. The 90th percentile nodes had the start-up delay of 50 

seconds in CoolStreaming. Our HyStream is 35 seconds shorter in the start-up delay of the 

90th percentile nodes. Since our approach is a push-based method, its start-up delay is very 

short.  
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Figure 13. CDF of start-up delays between HyStream and CoolStreaming. 

 

 

 

  

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

0 5 10 15 20 25 30 35 40 45 50 55

C
D

F 
of

 st
ar

t-
up

 d
el

ay

Start-up delay (seconds)

CoolStreaming

HyStream(proposed) 
(same as SpliStream)



 

 23

Chapter 5  
Implementation Issues 
5.1 Applying our Approach to SplitStream 

In this section, we introduce how to implement our HyStream method. Our HyStream 

method is an enhanced improvement of SplitStream’s streaming multicast. We can implement 

our approach based on the FreePastry project [18]. FreePastry is an open source project. We 

can modify its source code to implement our method. The original SplitStream method 

provides the functions of creating DHT networks, building multicast trees, and transferring 

streaming data. We may implement our approach by modifying the source code of the node 

behavior. We discuss how to modify the node behaviors of source and subscriber nodes as 

follows. 

 

5.1.1 Behavior of Source Nodes 

Video data are available in the source node. The source node divides the video data into 

frames, and each frame is assigned a sequence number to represent its playback order. We 

then separate the frame into several stripes and transfer them by different multicast trees. The 

source node encodes each frame with FEC. The source node stores the SpareTable of each 

multicast tree. The source node will transfer the SpareTable to a newly joined node.   
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Figure 14. The behavior of the subscriber node (a) the behavior of a subscriber node when 

receiving streaming data (b) the behavior of a subscriber node when receiving a 

retransmission request. 

 

5.1.2 Behavior of Subscriber Nodes 

When a node joins a P2P streaming system, it can subscribe to the multicast trees and 

becomes a subscriber node. The subscribe node will contact the source node and retrieve the 

SpareTable. The subscriber node receives data from its parent node. In Figure 14, we 

implemented four handlers in our HyStream: (1) The data handler processes the receiving data 

and detects whether suffering from data loss. If the number of received blocks is equal to or 

greater than the FEC parameter k, the recovery handler will react. On the other hand, if the 

node receives a new frame with seq#, the retransmission handler will react. (2) The recovery 
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handler performs an FEC algorithm to recover data and saves data to the receiving buffer. (3) 

The retransmission handler requests spare nodes to retrieve lost data and saves data to the 

receiving buffer; the detail is shown in Figure 7. (4) The request handler receives 

retransmission requests from other nodes and transfers the data to them. In addition, there is a 

receiving buffer maintained by each node. Three handlers save data to this buffer. The 

subscriber node plays the video from the data in the buffer. 

5.2 Integration of Search and Streaming 

Most P2P streaming systems provide live streaming or video on-demand. In live streaming, 

each user must watch the same streaming from a live channel, such as a live sport channel. In 

video on-demand, users can select a channel provided by the server. We can integrate our 

streaming system with the P2P search technique. When a user joins the P2P network, it can 

search the video file name and get a list of nodes that have this file. Nodes that have the video 

file will be the source node in the P2P streaming network. And other nodes that want to watch 

the video can join the streaming network. We can apply our streaming method to the 

streaming network to achieve the P2P streaming resilience. 
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Chapter 6  

Conclusions 

6.1 Concluding Remarks 

In the proposed HyStream, we have integrated the ideas of the pull method with the 

tree-based architecture. We fragment the stream and build multiple trees to transfer data, and 

add an FEC data recovery mechanism to restore lost data. We have also used the pull-method 

to retransmit the data that we could not be recovered. Our approach has the advantages of the 

tree-push and mesh-pull methods. Simulation results have shown that our HyStream has a 

high delivery ratio in a peer churn environment and good resilience to node failures. 

Simulation results have also shown that in average our approach has 11.7% improvement in 

delivery ratio against SplitStream under various node failure rates. The delivery ratio of the 

proposed HyStream is 2.2% higher than that of CoolStreaming in a peer churn environment. 

The start-up delay of 90th percentile nodes of HyStream is 35 seconds shorter than that of 

CoolStreaming. Our approach has low overhead with 6% extra packets compared to 

SplitStream and CoolStreaming. And the extra control overhead is not more than 0.5% even 

in a high peer churn environment compared to that of SplitStream and CoolStreaming. 

6.2 Future Work 

We will implement the proposed HyStream in an actual internet environment, and 

experimental results will be evaluated to justify our simulation results. 
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