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Abstract: The paper presents a new hardware 
decoder for double-error-correcting binary BCH 
codes of primitive length, based on a modified 
step-by-step decoding algorithm. This decoding 
algorithm can be easily implemented with VLSI 
circuits. As the clock rate of the decoder is inde- 
pendent of block length and is only twice the data 
rate, the decoder is suitable for long block codes 
working at high data rates. The decoder comprises 
a syndrome calculation circuit, a comparison 
circuit and a decision circuit, which can be real- 
ised by linear feedback shift registers, ROMs and 
logical gates. The decoding algorithm, circuit 
design and data processing sequence are described 
in detail. The circuit complexity, decoding speed 
and data rate of the new decoder are also dis- 
cussed and compared with other decoding 
methods. 

1 Introduction 

The Bose-Chaudhuri-Hocquenghem (BCH) codes are a 
class of extensively studied random-error-correcting 
cyclic codes [l-41. A double-error-correcting binary 
BCH code of primitive length is capable of correcting any 
combination of two or fewer errors. This code is defined 
as follows [2] : 

block length = n = 2" - I, 

number of information bits = k = n - 2m 
m 2 3 (integer) 

minimum distance = d,,, = 5 
The generator polynomial of this code is specified in 
terms of its roots from the Galois field GF(2'"). If a is a 
primitive element in the Galois field GF(2'"), the gener- 
ator polynomial g(x)  is the lowest degree polynomial over 
GF(2) which has a', E', . . . , a4 as its roots. Let M , ( x )  be 
the minimal polynomial of mi, then g(x) has been shown 
to be 

g(x) = M l ( 4 M 3 i X )  (1) 
and the degree of g(x) is just 2m. A summary of these 
BCH codes is given in Table 1 [2]. The popularly 
employed error-correcting procedure for double-error- 
correcting binary BCH codes consists of three major 
steps [ 1 4  : 

(a) Calculate the syndrome values Ski = 1, 2, 3) from 
the received word. 
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(b) Determine the error location polynomial u(x) = 1 
+ S ,  x + (S, + S3/S,)x2 from the syndrome values. 

(c) Find the roots of u(x), which are the error locators. 

Since the calculations in step (a) and step (b) in decoding 
the double-error-correcting binary BCH codes are quite 
simple, the work of step (c) becomes an important subjcct 
for decoding this kind of code. Chien's search algorithm 
is the most efficient. To determine the roots of u(x),  many 
methods can be used to implement Chien's search algo- 
rithm [S-SI. The most straightforward is the lookup 
table method, although it is unpractical for long block 
codes [8]. Another hardware circuit which can be used to 
implement Chien's search algorithm in a straightforward 
manner is called the Chien searcher [ l ,  51. This circuit 
needs two multipliers to compute u(x = a?. For long 
block codes, the circuit complexity increases and the cost 
of fast hradware circuits would be very expensive. 
Usually, a microprocessor-based software decoder can be 
used for long block codes [&SI. However, due to the 
limited speed of central processing units, if a higher data 
rate is specified, a microprocessor-based method can only 
be used for medium block lengths (e.g. m = 7). Another 
algebraic decoding method, known as the step-by-step 
decoding method, involves changing the received symbols 
one at a time and testing to determine whether the 
weight of the error pattern has been reduced [3, 9-11]. 
The difference between this algorithm and Chien's search 
algorithm is that the step-by-step algorithm checks every 
potential error-location directly instead of searching the 
error-location numbers. A completely described step-by- 
step decoding algorithm for general BCH codes has been 
proposed by Massey [SI, and also by Szwaja [lo]. This 
general decoding algorithm has not been widely 
employed for large multiple-error-correcting codes owing 
to its requirement for calculation of the determinant of 
the syndrome matrix. 

In this paper, a simple double-error-correcting decoder 
using a modification of the conventional step-by-step 
decoding method is proposed. It is suitable for high data 
rates and long block lengths of double-error-correcting 
binary BCH codes. Before introducing this modified step- 
by-step decoding algorithm, some properties of double- 
error-correcting binary BCH codes are briefly described 
in the following Section. 

2 Properties of double-error-correcting binary 
BCH codes 

If K ( x )  is the k - 1 degree information polynomial, then 
the encoded codeword c(x) can be expressed in a system- 
atic form as 

c(x) = K ( x )  + mod {K(x)x"- ' /g(x) }  

= CO + clx + " '  + C , _ I x " - l  (2) 
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where, mod { K(x)x"- ' /g(x)} indicates the remainder 
polynomial of K(x)x"-' divided by g(x). Hereinafter, all 
codewords are assumed to be in systematic form. Let the 
error polynomial be e(x), then the received-word poly- 
nomial is given by 

r(x) = c(x) + 4x1 
= ro + rlx + . . .  + r,-,x"-l (3) 

If the syndrome values S1 and S ,  are expressed in poly- 
nomial form as 

then, by defining a remainder polynomial b(x) = 
mod {r(x)/MXx)}, the syndrome values can be also 
obtained from 

( 5 )  SXx)l = b(x)l x = d  , i = 1, 3 
x = n  

Therefore, the calculation of syndrome values can easily 
be implemented by employing two m-stage shift registers 
with feedback connections [12], which are denoted as 
rn-stage remainder shift register dividers. To correct all 
patterns of two or fewer random errors, the following 
relations between syndrome values can be applied [ 11 : if 
there is no error, then 

s1 = s ,  = 0 ( 6 4  

SI # 0 and S ,  = ( 6 4  

SI # O  and S ,  #(SJ3 (64 

If there is one error only, then 

If there are two errors, then 

If there are three errors, the syndrome values could be 

S ,  = 0 and S ,  #(SI),, 

or SI f O  and S 3  # ( S $  ( 6 4  

This is because the dmin of the codeword is equal to 5 ;  the 
syndrome values could be the same as another codeword 
with two errors. 

The cyclic structure of BCH codes was proved by 
Peterson in 1960 [12]. If r")(x) is obtained by cyclically 
shifting j bits of I(x) to the right, then it can be expressed 
as 

r")(x) = mod {-} 
= + rn- j+lx + ... + rn-lxj-l 

+ r o x J +  ... + rn-j-lxn-l (7) 
Similarly, the shifted remainder polynomials by'(x) and 
b$"(x) can be obtained as 

br(x) = mod {r"'(x)/Mi(x)} 

= mod {x'bXx)/Mdx)}, i = 1, 3 (8) 
Hence bp)(x) can be obtained by cyclically shifting bdx) 
by j bits and dividing by M,(x) (that is, bp)(x) can be 
obtained by shifting j bits in the remainder shift-register 
dividers). The corresponding syndrome values are then 
given by 

$(a) = by)(ai), i = 1, 3 (9) 
Suppose that it is known that one error occurs at loca- 
tion x"-j. Let e,(x) = x"-' and r(x) = rl(x) + el(x). After 
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shifting the polynomial r(x) j bits to the right, the new 
error pattern becomes ey'(x) = 1, and the shifted remain- 
der polynomials b?(x) are found to be 

bl')(x) = mod {r"'(x)/Mi(x)} 

= mod {ry)(x)/Mi(x)} + 1 - 
(10) 

b"x) = by'(x) + 1, i = 1, 3 (11) 

= by)(x) + 1, i = 1, 3 
For binary BCH codes, eqn. 10 can be rewritten as 
- 

Here, rl(x) implies the received-word polynomial after 
correcting the x"-j location's error, and the polynomial m) is the new remainder polynomial. Consequently, 
the corresponding new syndrome values are given by 
- -  
$(a) = by'(ai), i = 1, 3 (12) 

3 Modified step-by-step decoding algorithm 

The principle of the conventional step-by-step decoding 
algorithm can be summarised as three steps [9-lo]. First, 
it determines the original order of the syndrome matrix 
(i.e. the number of errors that occur in the received word) 
by using an iteration method. The syndrome matrix is 
defined in property 4' of Reference 9. Secondly, it tempo- 
rarily changes the syndrome values and then corrects the 
error if the changed syndrome matrix is singular. Finally, 
it decreases the order of the syndrome matrix by one if an 
error is found, and shifts one bit to repeat the second 
step. A new method, based on the properties described 
above, is presented here. In this method the syndrome 
values are first changed and then the error in terms of the 
difference between the initial syndrome values and new 
syndrome values is corrected. This idea is based on the 
fact that the number of errors can be determined in terms 
of the patterns of syndrome values as shown in eqns. 6. 
This modified algorithm has two advantages: 

(U) it avoids the iteration loop in step 1 of the conven- 
tional algorithm 

(b) it can be easily implemented by hardware circuits. 

The flowchart of this modified decoding algorithm is 
illustrated in Fig. 1. 

Using eqn. 5 one obtains the initial syndrome values 
Sy and S: corresponding to the received word poly- 
nomial p ( ~ )  before any correction. The number of error 
bits existing in the received word r(x) can be determined 
from eqns. 6. If three or more error bits are detected 
[SI = 0 and S ,  # (SJ3], then the next operation is 
unnecessary and an alarm or ARQ signal is sent back to 
end the decoding procedure; otherwise, the next decoding 
steps are implemented. 

The decoder begins to implement its checking algo- 
rithm after the initial syndrome values have been 
obtained. First, assume that the x"-l position of the 
received polynomial r(x) corresponds to an error bit. 
Then, shifting r(x) one bit to the right will make the error 
bit occur at position xo. Meanwhile, the contents of the 
two remainder shift-register dividers are also shifted. To 
correct the x"- I  location error [i.e. xo position of r"'(x)] 
in the syndrome values, the remainder shift-register 
dividers are incremented by '1' using eqn. 11. Hence the 
corresponding error-corrected remainder polynomials 
b m  and syndrome values sf, sf can be determined. 
Finally, eqn. 6 is used to check the syndrome values 
obtained. If the assumption is true, then the first error bit 
has been found and the number of error bits will decre- 
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ment by one. If the assumption is false, then an extra 
error is added to the remainder polynomial and syn- 
drome values, so that the number of error bits will 

read the receivedword r ( x )  

values ond number of 
original errors 

assume on error occurs at 

remove Ihe error effect 
in the syndrome values 

I x"-l location 

cnrrect rn., dlgit 
i n  r(x) 

Fig. 1 Mod$ed step-by-step decoding algorithm 

increment by one. Thus, in terms of the change in error 
bit number one can determine whether x"-' position of 
r(x) is an error bit or not. When the error bit is detected, 
the decoder adds correcting bit E, = 1 at the x"-l  loca- 
tion of r(x); otherwise, an erasure bit EC = l is added to 
the remainder shift-register dividers to erase the effect of 
the error-bit assumption. After decoding the x"- loca- 
tion of r(x), the decoder proceeds to decode the x " - ~  
position of r(x) by repeating the above procedure. When 
k information bits have been checked and corrected, the 
received word is decoded completely. Here, the period for 
decoding one information bit is defined as a 'cycle'. 

4 Hardware decoder 

The modified step-by-step decoding algorithm can be 
implemented by a simple structure and with simple hard- 
ware circuits. Fig. 2 shows the functional block diagram 
of this decoder. It is partitioned into three parts: syn- 
drome calculation circuit, comparison circuit and deci- 
sion circuit. The syndrome calculatjon circuit is used to 
obtain the new syndrome values S ,  and &. The com- 
parison circuit is used to determine whether or not S ,  = 
0 and S ,  = (SI),. The decision circuit is used to check 
whether the error-bit assumption is true or false. After 
checking, if the error-bit assumption is true, the correct- 
ing bit E, should be added to- the readout information 
bit; otherwise, an erasure bit E, is fed back to the syn- 
drome calculation circuit to erase the effect of the error 
assumption. The detailed design of these three circuits is 
described in the following. 
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(a) Syndrome calculation circuit: The remainder poly- 
nomials by)(x) and b r ( x )  should add '1' if the error-bit 
assumption is true; an erasure bit E, is added if the error- 

gate , recelved-word buffer 

E, 
svndrome 

4 caIculaiion circuit I 

declsion circuit 

gate 2 
a larm 

B o u t  

gate 3 

Fig. 2 Functional block diagram of the new decoder 

bit assumption is false. Thus, this circuit can be designed 
by slightly modifying the conventional syndrome calcu- 
lation circuit [2 ] ,  that is a '1' is added to the inputs of 
first stages of the remainder shift-register dividers in the 
decoding procedure and an erasure bit E,  is added to the 
outputs of first stages of the remainder shift-register 
dividers. 

(b)  Comparison circuit: To determine the number of 
error bits in eqn. 6, two comparisons must be performed: 

(i) Is S ,  equal to zero? 
(ii) Is S3 equal to (S,)'? 

The results of these two comparisons can be represented 
by two bits. These two new variables h, and h, are called 
'checking bits' : 

If Si(.) = 0, then M, = 1 ( 1 3 4  

If Si(.) = { S { ( C C ) } ~ ,  then h{ = 1 ( 1 3 4  
The corresponding circuit is shown in Fig. 3. Since (Sl)' 
should be modulo M,(x)  to a polynomial of degree m - 1 

S1,OSl.l S1,rn.l s3,0 s3,1 53,m-I 

Fig. 3 Comparison circuit 

or less, the cubic operation on S{(a) in eqn. 136 can be 
implemented by a ROM of size 2" x rn bits using the 
lookup table method. 

(c)  Decision circuit: To check whether or not the infor- 
mation bit in a current cycle is an error bit, four param- 
eters hg, h!, h i ,  h'; are employed. Here h: and h: are the 
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initial values which represent the original number of 
error bits in the received word before decoding, while h: 
and hi represent the number of error bits in the current 
decoding cycle. If the number of error bits in the current 
cycle is less than the initial value (is. the original number 
of error bits), then the corresponding bit must be an error 
bit and the decoder sends a correcting bit E ,  = 1 to the 
output of the received word buffer. Therefore, the deci- 
sion circuit can be implemented by a ROM of size Z4 x 2 
bits or by a logic circuit as shown in Fig. 4. 

1 
E, 

I 
alarm 

Fig. 4 Decision circuit 

The proper operation of this decoder can be sum- 
marised in the following steps: 

(1) For .j = 0, gate 1 and gate 3 switch on while gate 2 
switches off; the received word vector is read into the 
buffer with the high-order bits first. If we use the same 
cycle time to do the shifting operations, then this step 
needs n cycles. After the nth cycle, initial values (b:, b:), 
(S:, Si) and (hy, h!) are obtained. If hy = 1 and h i  = 0, 
then three or more error bits are detected and the 
decoder returns an alarm or ARQ signal; otherwise, the 
decodcr proceeds to step 2. 

(2) For j = 1, gate 2 switches on and gate 1 switches 
Off. 

(3) Cyclically shift one bit right for the Emainder shift 
register dividers to get (h':?(.,, m, (q. Si) and (h{, h i ) .  
After the decision operation, the corresponding correct- 
ing bit E ,  and erasure bit E, can be obtained. Now, the 
error-correcting bit E,  obtained will be added to bit r , - j  
when it leaves the receivcd word buffer. The erasure bit 
E, is ready to be added in the remainder shift-register 
dividers during the next cycle. 

(4) If all errrors are corrected ( i t  hi = 1 and h', = I), 
then gate 3 switches off at the beginning of the next cycle. 

( 5 )  If j = k,  then the procedure is stopped (two LFSRs 
are cleared ready for decoding the next received word); 
otherwise, j is increased by one and the operation pro- 
ceeds to step 3. 

In step 1 of a complete decoding period, the first n - 1 
clock cycles are simple shifting operations. In the last 
cycle of step 1 and in k cycles in step 3, more complicated 
operations should be completed. Therefore, the decoding 
time for the last k + 1 clock cycles will be longer than for 
the first n - 1 cycles. The data processing sequence in 
one complete decoding cycle is illustrated in Fig. 5. Also, 
it should be noted that the operation for 'error-bit 
assumption' of the ,jth cycle and the erasure of the effect 
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of false 'error-bit assumption' of the ( j  ~ l)th cycle can be 
processed at the same instant. 

5 

The regular structure of this decoder reduces the hard- 
ware complexity and makes it easy to design. For a given 

Hardware complexity and data rate 

Cn- ,  

+ 
h;,h; rv 

E? 
register 
divider 

61 
- 
Ec 

j-1'- ) c y c l e  -1 
Fig. 5 Data processing sequence i n  one cycle 

desired block length (i.e. given m), the length of the 
received word buffer and the stage number of the remain- 
der shift register dividers can bc determined first. Then 
the syndrome calculation circuit can be designed using 
M , ( x )  and M3(x) .  Next, the 2" x m-bit ROM in the com- 
parison circuit is implemented using polynomial M , ( x ) .  
Finally, since the decision circuit is independent of block 
length, it is fixed for any given m. In general, the new 
decoder can easily be implemented for block lengths up 
to 2" - 1 .  The information required to design this 
decoder is given in Table 1. That this decoder is easier to 

Table 1 : Double-error-correcting binary BCH codes of 
primitive length 

rn Code rate Minimal polynomials 
kln 

M7.o . . 'M i ,m. *  W , o " ' M , , m . ,  

3 0 . 1 4  110 101 
4 0.47 1100 1111 
5 0.68 10100 10111 
6 0.81 1 10000 111010 
7 0.89 1001000 11 11000 
8 0.94 10111000 111011 10 
9 0.96 100010000 1001 10100 
10 0.98 1001000000 11 1 1000000 

M,(x )  = 1 + M , ,  ! x +  M , ,  2xZ  + .  ' .  + M,,m., .P- '  +Xm 
M,(x) = 1 + M3, l x +  M3,2,? + . . .  + M,,,_,x"-'  +xm 

implement than the conventional step-by-step decoder is 
clearly seen by comparing Fig. 2 and Fig. 1 of Reference 
9. Also, this decoder is faster and has lower circuit com- 
plexity than the hardware decoder of the Chien searcher 
[l, pp. 132-136; 5, Fig. 21. This is because the Chien 
searcher requires two multipliers to compute a(x = E'), 
and the cost of building wired net to multiply by E' in 
GF(2'") in one clock period becomes substantial for larger 
m. Usually, it is more economical to allow two shift oper- 
ations or m clock periods for the multiplication of a'; 
thus, the decoding speed is degraded. 

The new decoder is also faster and easier to implement 
than one using the microprocessor-based method [&SI. 
Comparing this new decoder with the fast Chien's search 
method with respect to hardware complexity [8], we find 
that: 

(a) a fast Chien's search algorithm needs a ROM of 
size 2'" x 1 bit as the segment identifier table, which is 
16384 bits for m = 7. The new decoder, however, contains 
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a ROM of size 2“ x rn bits in the comparison circuit, 
which is only 896 bits for m = 7 

(b)  the syndrome calculation circuits for these two 
algorithms are comparable 

(c) the fast Chien’s search algorithm needs a 16-bit 
processor whereas the new decoder needs only rn + 6 
logic gates. 

Decoding speed (or data rate) is another important 
factor, which is usually used to estimate decoder efli- 
ciency. When the fast Chien’s search algorithm is 
employed with the microprocessor-based method, the 
data rate is 383 kbit/s for m = 7 if the clock rate of the 
processor is 10 MHz. In the new decoder, iff, is the clock 
rate, then the data rate is (n/n + k),f, bit/s, which is 
1066 kbit/s for a 2 MHz clock rate and rn = 7. Even 
when the word length is very long, the decoder can keep 
the data rate to at least half of the clock ratc. The clock 
rate and decoding speed depend mainly on the access 
time of the ROM. At the time of writing most com- 
mercial ROMs have an access time in the range 150- 
250 ns. Specially designed high-speed ROMs with access 
times under 35 ns and using Rash EEPROM technology 
are available also (e.g. the XL46HC64 SpeedPROM). 

6 Conclusions 

A new decoder based on a modified step-by-step decod- 
ing algorithm for double-error-correcting binary BCH 
codcs has been presented, which requires only n clock 
cycles for reading the received word and k clock cycles 
for finding the error bits. Since the checking operation of 
this modified algorithm only needs to compare the 
number of current errors with the original errors, the 
comparison circuit and decision circuit are simplified. 
Also, the properties of BCH codes described in Section 2 
make the error-bit assumption very easy to implement. 
The working data rate of the decoder depends only on 
the clock rate, which is determined mainly by the access 
time of the ROM in the comparison circuit and is inde- 
pendent of the block length. Therefore, this new decoder 
may work at a high data rate for high rate codes. Because 
of its simplicity in structure and circuit realisation, this 
decoder may easily be implemented using VLSI circuits. 
If the data rate is specified, the clock generator can be 
integrated with the decoder and encoder in one chip. 

The decoding algorithm and circuit structure can be 
extended for complete decoding of double-error-correct- 
ing binary BCH codes. In Reference 1 (Section 16.48), it is 
shown that if 

Ti-[-] = 1 

where 
... - 

T r [ x ]  = 1 x2’ 
i=o  

then three or more errors are detected. Thus, the decoder 
is a complete decoder for double-error-correcting binary 
BCH codes if provision is made in the comparison circuit 
and decision circuit: 

(a) to create a new check bit, say h, ,  to indicate the 
value of trace. Here, the calculation of the trace can be 
straightforwardly implemented by a ROM of size 2’“ x 1 
bits 

(b)  to refresh the fixed initial values h: in the bounded- 
distance decoder by hi (for i = 0, 1, 3) when an error bit is 
found (i.e. hy = h! if E ,  = 1). 

Similarly, the decoding algorithm and circuit structure 
can also be extended for other binary BCH codes. 
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