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Abstract: The paper presents a new hardware
decoder for double-error-correcting binary BCH
codes of primitive length, based on a modified
step-by-step decoding algorithm. This decoding
algorithm can be easily implemented with VLSI
circuits. As the clock rate of the decoder is inde-
pendent of block length and is only twice the data
rate, the decoder is suitable for long block codes
working at high data rates. The decoder comprises
a syndrome calculation circuit, a comparison
circuit and a decision circuit, which can be real-
ised by linear feedback shift registers, ROMs and
logical gates. The decoding algorithm, circuit
design and data processing sequence are described
in detail. The circuit complexity, decoding speed
and data rate of the new decoder are also dis-
cussed and compared with other decoding
methods.

1 Introduction

The Bose-Chaudhuri-~Hocquenghem (BCH) codes are a
class of extensively studied random-error-correcting
cyclic codes [1-4]. A double-error-correcting binary
BCH code of primitive length is capable of correcting any
combination of two or fewer errors. This code is defined
as follows [2]:

block length =n=2"—1,
m 2 3 (integer)
number of information bits = k =n — 2m
minimum distance = d,;, = 5

The generator polynomial of this code is specified in
terms of its roots from the Galois field GF2™). If o is a
primitive element in the Galois field GF(2”), the gener-
ator polynomial g(x) is the lowest degree polynomial over
GF(2) which has o', &2, ..., o* as its roots. Let M(x) be
the minimal polynomial of &, then g(x) has been shown
to be

g(x) = M (x)M 5(x) 1

and the degree of g(x) is just 2m. A summary of these
BCH codes is given in Table 1 [2]. The popularly
employed error-correcting procedure for double-error-
correcting binary BCH codes consists of three major
steps [1-4]:

(a) Calculate the syndrome values S{i = 1, 2, 3) from
the received word.
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(b) Determine the error location polynomial o(x) = 1
+ 8, x + (S, + §3/S,)x* from the syndrome values.
(¢) Find the roots of a(x), which are the error locators.

Since the calculations in step (@) and step (b) in decoding
the double-error-correcting binary BCH codes are quite
simple, the work of step (c) becomes an important subject
for decoding this kind of code. Chien’s search algorithm
is the most efficient. To determine the roots of o(x), many
methods can be used to implement Chien’s search algo-
rithm [5-8]. The most straightforward is the lookup
table method, although it is unpractical for long block
codes [8]. Another hardware circuit which can be used to
implement Chien’s search algorithm in a straightforward
manner is called the Chien searcher [1, 5]. This circuit
needs two multipliers to compute o(x = «/). For long
block codes, the circuit complexity increases and the cost
of fast hradware circuits would be very expensive.
Usually, a microprocessor-based software decoder can be
used for long block codes [6-8]. However, due to the
limited speed of central processing units, if a higher data
rate is specified, a microprocessor-based method can only
be used for medium block lengths (e.g. m = 7). Another
algebraic decoding method, known as the step-by-step
decoding method, involves changing the received symbols
one at a time and testing to determine whether the
weight of the error pattern has been reduced [3, 9-11].
The difference between this algorithm and Chien’s search
algorithm is that the step-by-step algorithm checks every
potential error-location directly instead of searching the
error-location numbers. A completely described step-by-
step decoding algorithm for general BCH codes has been
proposed by Massey [9], and also by Szwaja [10]. This
general decoding algorithm has not been widely
employed for large multiple-error-correcting codes owing
to its requirement for calculation of the determinant of
the syndrome matrix.

In this paper, a simple double-error-correcting decoder
using a modification of the conventional step-by-step
decoding method is proposed. It is suitable for high data
rates and long block lengths of double-error-correcting
binary BCH codes. Before introducing this modified step-
by-step decoding algorithm, some properties of double-
error-correcting binary BCH codes are briefly described
in the following Section.

2 Properties of double-error-correcting binary
BCH codes

If K(x) is the k — 1 degree information polynomial, then
the encoded codeword ¢(x) can be expressed in a system-
atic form as

(x) = K(x) + mod {K(x)x"*/g(x)}
=coteyx+ e, xt ! )
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where, mod {K(x)x" */g(x)} indicates the remainder
polynomial of K(x)x" * divided by g(x). Hereinafter, all
codewords are assumed to be in systematic form. Let the
error polynomial be e(x), then the received-word poly-
nomial is given by

(x) = c(x) + elx)
=ro+rx+ o x"! 3

If the syndrome values §; and S, are expressed in poly-
nomial form as

S{x)=S;0+ S, x+ -+ Si‘m—lxm_l7 i=13 4

then, by defining a remainder polynomial b(x)=
mod {r(x)/M{x)}, the syndrome values can be also
obtained from

= by)

Therefore, the calculation of syndrome values can easily
be implemented by employing two m-stage shift registers
with feedback connections [12], which are denoted as
m-stage remainder shift register dividers. To correct all
patterns of two or fewer random errors, the following
relations between syndrome values can be applied [1]: if
there is no error, then

Si(x) , i=1,3 (5)

x= x=af

S5, =5;=0 (6a)
If there is one error only, then

S, #0 and S,=(S,)° (6b)
If there are two errors, then

S, #0 and S, # (S, (60)

If there are three errors, the syndrome values could be
S, =0 and S§;#(S,)>
or §;#0 and S;#(S,)°® (6d)

This is because the d,,;, of the codeword is equal to §; the
syndrome values could be the same as another codeword
with two errors.

The cyclic structure of BCH codes was proved by
Peterson in 1960 [12]. If rYXx) is obtained by cyclically
shifting j bits of r{x) to the right, then it can be expressed
as

; xIr(x)
rY(x) = mod {——=
) x"+ 1
= rn*j + rnAj+lx + 4+ rrx—l'xj_l
+r0xj+...+rn7j_1xn—l (7)

Similarly, the shifted remainder polynomials b{(x) and
b{(x) can be obtained as

b(x) = mod {rx)/M{x)}
=mod {x/b{x)/M{x)}, i=1,3 t))

Hence b¥x) can be obtained by cyclically shifting b{x)
by j bits and dividing by M(x) (that is, b¥(x) can be
obtained by shifting j bits in the remainder shift-register
dividers). The corresponding syndrome values are then
given by

Sie) = b)), i=1,3 )

Suppose that it is known that one error occurs at loca-
tion x"7J. Let e,(x) = x"~7 and r(x) = ry(x) + e,(x). After
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shifting the polynomial r(x) j bits to the right, the new
error pattern becomes e5’(x) = 1, and the shifted remain-
der polynomials b¥(x) are found to be

bix) = mod {r¥(x)/M (x)}
=mod {rf{(x)/M{x)} + 1
=X +1, i=1,3 (10)
For binary BCH codes, eqn. 10 can be rewritten as

Bx) = b(x) +1, i=1,3 (11)

Here, r,(x) implies the received-word polynomial after
correcting the x"~/ location’s error, and the polynomial
bP(x) is the new remainder polynomial. Consequently,
the corresponding new syndrome values are given by

Si) = b, i=1,3 (12)

3 Modified step-by-step decoding algorithm

The principle of the conventional step-by-step decoding
algorithm can be summarised as three steps [9-10]. First,
it determines the original order of the syndrome matrix
(i.e. the number of errors that occur in the received word)
by using an iteration method. The syndrome matrix is
defined in property 4’ of Reference 9. Secondly, it tempo-
rarily changes the syndrome values and then corrects the
error if the changed syndrome matrix is singular. Finally,
it decreases the order of the syndrome matrix by one if an
error is found, and shifts one bit to repeat the second
step. A new method, based on the properties described
above, is presented here. In this method the syndrome
values are first changed and then the error in terms of the
difference between the initial syndrome values and new
syndrome values is corrected. This idea is based on the
fact that the number of errors can be determined in terms
of the patterns of syndrome values as shown in eqns. 6.
This modified algorithm has two advantages:

(@) it avoids the iteration loop in step 1 of the conven-
tional algorithm

(b) it can be easily implemented by hardware circuits.

The flowchart of this modified decoding algorithm is
illustrated in Fig. 1.

Using eqn. 5 one obtains the initial syndrome values
§? and S corresponding to the received word poly-
nomial r(x) before any correction. The number of error
bits existing in the received word r(x) can be determined
from eqns. 6. If three or more error bits are detected
[S, =0 and S§; #(S,)®], then the next operation is
unnecessary and an alarm or ARQ signal is sent back to
end the decoding procedure; otherwise, the next decoding
steps are implemented.

The decoder begins to implement its checking algo-
rithm after the initial syndrome values have been
obtained. First, assume that the x"~' position of the
received polynomial r(x) corresponds to an error bit.
Then, shifting (x) one bit to the right will make the error
bit occur at position x°. Meanwhile, the contents of the
two remainder shift-register dividers are also shifted. To
correct the x"~ ! location error [i.e. x° position of r'¥)(x)]
in the syndrome values, the remainder shift-register
dividers are incremented by ‘1’ using eqn. 11. Hence the
corresponding error-corrected remainder polynomials
bT(x) and syndrome values S 81 can be determined.
Finally, eqn. 6 is used to check the syndrome values
obtained. If the assumption is true, then the first error bit
has been found and the number of error bits will decre-
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ment by one. If the assumption is false, then an extra
error is added to the remainder polynomial and syn-
drome values, so that the number of error bits will

teud the received word r(m

!

obtain the initial syndrome
values and number of
original errors

assume an error occurs at
x"") location

I
correct this error in the syndrome
values and obtain the new syndrome
values
L
’ check the new syndrome values E’

obtain the number of errors

1S current number
of errors less than original
pumber of errors ?

yes

correct ry_; digit

[remove the error etfect
in r{x)

in the syndrome values

L

Fig.1  Modified step-by-step decoding algorithm

increment by one. Thus, in terms of the change in error
bit number one can determine whether x"~! position of
r(x) is an error bit or not. When the error bit is detected,
the decoder adds correcting bit E, = 1 at the x"~ ! loca-
tion of r(x); otherwise, an erasure bit E, = 1 is added to
the remainder shift-register dividers to erase the effect of
the error-bit assumption. After decoding the x" ! loca-
tion of r(x), the decoder proceeds to decode the x"~2
position of r(x) by repeating the above procedure, When
k information bits have been checked and corrected, the
received word is decoded completely. Here, the period for
decoding one information bit is defined as a ‘cycle’.

4 Hardware decoder

The modified step-by-step decoding algorithm can be
implemented by a simple structure and with simple hard-
ware circuits. Fig. 2 shows the functional block diagram
of this decoder. It is partitioned into three parts: syn-
drome calculation circuit, comparison circuit and deci-
sion circuit. The syndrome calculation circuit is used to
obtain the new syndrome values S; and S;. The com-
parison circuit is used to determine whether or not §; =
0 and S, = (S,)>. The decision circuit is used to check
whether the error-bit assumption is true or false. After
checking, if the error-bit assumption is true, the correct-
ing bit E, should be added to the readout information
bit; otherwise, an erasure bit E, is fed back to the syn-
drome calculation circuit to erase the effect of the error
assumption. The detailed design of these three circuits is
described in the following.
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(a) Syndrome calculation circuit: The remainder poly-
nomials b¥’(x) and b§(x) should add ‘1’ if the error-bit
assumption is true; an erasure bit E, is added if the error-
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Fig. 2  Functional block diagram of the new decoder

bit assumption is false. Thus, this circuit can be designed
by slightly modifying the conventional syndrome calcu-
lation circuit [2], that is a ‘1’ is added to the inputs of
first stages of the remainder shift-register dividers in the
decoding procedure and an erasure bit E, is added to the
outputs of first stages of the remainder shift-register
dividers.
(b) Comparison circuit: To determine the number of

error bits in eqn. 6, two comparisons must be performed:

(i) Is S, equal to zero?

(ii) Is S equal to (§,)?
The results of these two comparisons can be represented

by two bits. These two new variables h; and h, are called
‘checking bits’:

If $j() = 0, then bl =1 (13q)
If Sife) = {Si(@)}®, then k) =1 (13b)
The corresponding circuit is shown in Fig. 3. Since (§4)?
should be modulo M (x) to a polynomial of degree m — 1

S10511 S1,m-1 S30 531 53 m-t

(51)3

ROM

Fig. 3  Comparison circuit
or less, the cubic operation on §i(x) in eqn. 13b can be
implemented by a ROM of size 2™ x m bits using the
lookup table method.

(c) Decision circuit: To check whether or not the infor-
mation bit in a current cycle is an error bit, four param-
eters h3, hS, hi, hi are employed. Here h? and hS are the
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initial values which represent the original number of
error bits in the received word before decoding, while hj
and h} represent the number of error bits in the current
decoding cycle. If the number of error bits in the current
cycle is less than the initial value (i.e. the original number
of error bits), then the corresponding bit must be an error
bit and the decoder sends a correcting bit E, = 1 to the
output of the received word buffer. Therefore, the deci-
sion circuit can be implemented by a ROM of size 2% x 2
bits or by a logic circuit as shown in Fig. 4.

0 0
N h by
)
l [ )t
AND AND AND

i 1

alarm Ec

Fig. 4  Decision circuit

The proper operation of this decoder can be sum-
marised in the following steps:

(1) For j =0, gate 1 and gate 3 switch on while gate 2
switches off; the received word vector is read into the
buffer with the high-order bits first. If we use the same
cycle time to do the shifting operations, then this step
needs n cycles. After the nth cycle, initial values (b%, b3),
(89, 89 and (hY, hY) are obtained. If kY = | and h3 =0,
then three or more error bits are detected and the
decoder returns an alarm or ARQ signal; otherwise, the
decoder proceeds to step 2.

(2) For j =1, gate 2 switches on and gate 1 switches
off.

(3) Cyclically shift one bit right for the remainder shift
register dividers to get (PP(x), bP(x)), (57, S3) and (h], h%).
After the decision operation, the corresponding correct-
ing bit E_ and erasure bit E, can be obtained. Now, the
error-correcting bit E, obtained will be added to bit r,_;
when it leaves the received word buffer. The erasure bit
E, is ready to be added in the remainder shift-register
dividers during the next cycle.

(4) If all errrors are corrected (ie b =1 and A} = 1),
then gate 3 switches off at the beginning of the next cycle.

(5) If j = k, then the procedure is stopped (two LFSRs
are cleared ready for decoding the next received word);
otherwise, j is increased by one and the operation pro-
ceeds to step 3.

In step 1 of a complete decoding period, the first n — 1
clock cycles are simple shifting operations. In the last
cycle of step 1 and in k cycles in step 3, more complicated

operations should be completed. Therefore, the decoding -

time for the last k + 1 clock cycles will be longer than for
the first n — 1 cycles. The data processing sequence in
one complete decoding cycle is illustrated in Fig. 5. Also,
it should be noted that the operation for ‘error-bit
assumption’ of the jth cycle and the erasure of the effect
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of false ‘error-bit assumption’ of the (j — 1)th cycle can be
processed at the same instant.

5 Hardware complexity and data rate

The regular structure of this decoder reduces the hard-
ware complexity and makes it easy to design. For a given

Cny
0.0 -
h3.hy
n |
comparison decision
circuit circuit

1
|
h3

Ec

register
divider

3 o

Ec
J*‘% ) cycle ———\ i

Fig. 5

Data processing sequence in one cycle

desired block length (ie. given m), the length of the
received word buffer and the stage number of the remain-
der shift register dividers can be determined first. Then
the syndrome calculation circuit can be designed using
M (x) and M ;(x). Next, the 2™ x m-bit ROM in the com-
parison circuit is implemented using polynomial M,(x).
Finally, since the decision circuit is independent of block
length, it is fixed for any given m. In general, the new
decoder can easily be implemented for block lengths up
to 2'® — 1. The information required to design this
decoder is given in Table 1. That this decoder is easier to

Table 1: Double-error-correcting binary BCH codes of
primitive length

m  Code rate

Minimal polynomials

kin
Mo M my My o M mii

3 014 110 101
4 047 1100 1111
5 068 10100 10111
6 081 110000 111010
7 089 1001000 1111000
8 094 10111000 11101110
9 096 100010000 100110100
10 0.98 1001000000 1111000000

Myx)=1+M,  x+M, x2+- -+ M, X" +x7
M) =1+My x+M; X0+ -+ Mg, (X" +x7

implement than the conventional step-by-step decoder is
clearly seen by comparing Fig. 2 and Fig. 1 of Reference
9. Also, this decoder is faster and has lower circuit com-
plexity than the hardware decoder of the Chien searcher
[1, pp. 132-136; 5, Fig. 2]. This is because the Chien
searcher requires two multipliers to compute o(x = o),

- and the cost of building wired net to multiply by «? in

GF(2™ in one clock period becomes substantial for larger
m. Usually, it is more economical to allow two shift oper-
ations or m clock periods for the multiplication of o%;
thus, the decoding speed is degraded.

The new decoder is also faster and easier to implement
than one using the microprocessor-based method [6-8].
Comparing this new decoder with the fast Chien’s search
method with respect to hardware complexity [8], we find
that:

(@) a fast Chien’s search algorithm needs a ROM of
size 2°™ x 1 bit as the segment identifier table, which is
16384 bits for m = 7. The new decoder, however, contains
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a ROM of size 2™ x m bits in the comparison circuit,
which is only 896 bits for m = 7

(b) the syndrome calculation circuits for these two
algorithms are comparable

(c) the fast Chien’s search algorithm needs a 16-bit
processor whereas the new decoder needs only m + 6
logic gates.

Decoding speed (or data rate) is another important
factor, which is usually used to estimate decoder effi-
ciency. When the fast Chien’s search algorithm is
employed with the microprocessor-based method, the
data rate is 383 kbit/s for m = 7 if the clock rate of the
processor is 10 MHz. In the new decoder, if £, is the clock
rate, then the data rate is (n/n + k)f. bit/s, which is
1066 kbit/s for a 2 MHz clock rate and m = 7. Even
when the word length is very long, the decoder can keep
the data rate to at least half of the clock rate. The clock
rate and decoding speed depend mainly on the access
time of the ROM. At the time of writing most com-
mercial ROMs have an access time in the range 150-
250 ns. Specially designed high-speed ROMs with access
times under 35 ns and using flash EEPROM technology
are available also (e.g. the XL46HC64 Speed PROM).

6 Conclusions

A new decoder based on a modified step-by-step decod-
ing algorithm for double-error-correcting binary BCH
codes has been presented, which requires only n clock
cycles for reading the received word and k clock cycles
for finding the error bits. Since the checking operation of
this modified algorithm only needs to compare the
number of current errors with the original errors, the
comparison circuit and decision circuit are simplified.
Also, the properties of BCH codes described in Section 2
make the error-bit assumption very easy to implement.
The working data rate of the decoder depends only on
the clock rate, which is determined mainly by the access
time of the ROM in the comparison circuit and is inde-
pendent of the block length. Therefore, this new decoder
may work at a high data rate for high rate codes. Because
of its simplicity in structure and circuit realisation, this
decoder may easily be implemented using VLSI circuits.
If the data rate is specified, the clock generator can be
integrated with the decoder and encoder in one chip.

The decoding algorithm and circuit structure can be
extended for complete decoding of double-error-correct-
ing binary BCH codes. In Reference 1 (Section 16.48), it is
shown that if

S+ 07| _
T’[ 5, ]’1
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where
m—1
Trix]= Y x¥
i=a

then three or more errors are detected. Thus, the decoder
is a complete decoder for double-error-correcting binary
BCH codes if provision is made in the comparison circuit
and decision circuit:

(@) to create a new check bit, say Ay, to indicate the
value of trace. Here, the calculation of the trace can be
straightforwardly implemented by a ROM of size 2°™ x 1
bits

(b) to refresh the fixed initial values k2 in the bounded-
distance decoder by #! (for i = 0, 1, 3) when an error bit is
found (i.e. b = Wi if E, = 1).

Similarly, the decoding algorithm and circuit structure
can also be extended for other binary BCH codes.
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