A sg g Z KAD F 54988 & 3 -F-45 77 %

A Load BalancingsScheme for Resilient Search
in, KAD Peer-to-Peer Networks

BOE A RBRE

HwEHR I EME WL

PEREBE A+NFKRA

A58 313 F 2 KAD R 5 4838 & 3% P47 7%

A Load Balancing Scheme for Resilient Search
in KAD Peer-to-Peer Networks

R OAE D RAVEE Student : Tai-Ting Wu
e TRAHA Advisor : Kuochen Wang

E A I

7R

4 T 2B R AT
B+ s

A Thesis
Submitted to Institute of Network Engineering
College of Computer Science
National Chiao Tung University
in Partial'Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science
June 2009

Hsinchu, Taiwan, Republic of China

T EREBE AT ANFNA

A7 e #3 F 2 KADR) 5 485 & 3P 87 &

24 ARE BERK ZEREE

Bl LR @R SR EE TR R

2

%

KAD) 15 4 2 A% FR 72 30 JE A A48 52 o0 F3RAE {213 4k) 4 48 38479 BE AR
R BEHAaRAARAE SRV ENFEREREN LT -3 & R
B 2h e A A M HREE o Bt fEAR X T 0 R — 18 % R
(KAD-V) A - 4 2 &80 Bh 69 AR B 7 N & — 1B by sk A2k & 44 BT R
RS CREBEHRRARE - — BT EE r ReYFEHK > TU
EA N —EAEHERG 28 M r BN 1 8 Ve - 5
R 0 RIVG T R G FEFT U R A ot 0 B T3 o b o SRy
BB > N =T (KAD-T) R A a93% € - HMFIAAREEZRFETRE 8
APk o RGBT 4 KAD-TT oM T4 b 23 u1100% > HAZ
% . tbKAD (BrKAD-1)20 744% - 38 &= R ik 6948 & 3 tbKAD £ P47 -
fag g3 Th EINRE - EAHIREEF » KFETH G WM FH
PRI F B o B 0 RFIETIRE 5 sbigietb £ 4 ADHT & K

B¢ 0 B 49 8% o

WSt a#Ta o KAD > REEs - mEHNE -

ii

A Load Balancing Scheme for Resilient Search
in KAD Peer-to-Peer Networks

Student: Tai-Ting Wu Adyvisor : Dr. Kuochen Wang

Department of Computer Science

National Chiao Tung University

Abstract

Kademlia (KAD) peer-to-peer (P2P) networks have been widely used in file sharing
applications. However, these P2P networks suffer from the unbalanced publishing load
problem. It causes a few peers handling largesnumbers of indexes. Those peers with high loads
may become the bottlenecks of.the network. Therefore, we propose a multiple hash method
(called KAD-N) to balance peer loads-in the KIAD network. Note that N is the maximum hash
times, determining by a cost-effectiveness factor. This method hashes the keyword of an object
r times to produce a key forpublishing objects, where ris a random number and 1 < r < N.
Simulation results show that the distribution of indexes is more balanced using the proposed
KAD-N method. We found out that N = 7 (KAD-7) is the optimal setting in our simulation
environment. We used a standard deviation to evaluate the proposed load balancing method.
Simulation results show that KAD-7 has the search hit rate close to 100% and the standard
deviation is 44% less than that of the KAD (i.e., KAD-1), which means the proposed method is
more load balanced than the KAD. However, KAD-7 has 7% extra traffic overhead. By
increasing the search hit rate, KAD-N improves the search resilience of KAD networks with
failed peers. Furthermore, the proposed KAD-N method can be easily extended to other

DHT-based P2P networks.

Index Terms — Load balancing, KAD, peer to peer network, resilient search.

iii

Acknowledgements

Many people have helped and encouraged me with this thesis. I appreciate my thesis advisor,
Dr. Kuochen Wang, for his intensive advice and guidance. I would like to thank all the
classmates in the Mobile Computing and Broadband Networking Laboratory (MBL) for their
friendship and assistance. This work was supported by the National Science Council under
Grants NSC96-2628-E-009-140-MY 3 and NSC96-2628-E-002-138-MY3.

Finally, I thank my father and my mother for their endless love and support.

v

Contents

ADSEract (in CRINESE)ooooiiiiiiiiiiiee e e e et e e e eareee e eeannes i
Abstract (in English) ... e iii
ACKNOWIEAZEIMENLSoouiiiiiiiiiiiiiieeee ettt ettt et e st e et e st e et e e s ateeabeesseesaseeseeenee iv
LASE OF FRGUIES ...ttt ettt et e st e bt e bt e saeesabeebee e vii
LISt Of TADIES ..ottt st viii
Chapter 1 INtroduCtionccooiiiiiiiiiiecie e e ere e e sabe e e saaeeeanee s 1
1.1 Types Of P2P NEIWOTKScocueiiiiiiiiiiiiiecteceeee ettt s 1
1.2 Comparison of search mechaniSms «...fis .. .cooveerieeriiiiiiieeeeeee e 2
1.3 MOtIVAtION ..c.uveeneee Bt TR L sl ettt et 3
1.4 Proposed KAD-N i i i b et st et esiteeteeseeesaneesteesaneenneeseneeneenane 4
Chapter 2 Preliminariesand Related Work0 ..., 5
2.1 Distributed hash table.... i s i e 5
2.2 Background of KAD ... o i i nesssiitine s s ettt ettt st aee s e e 7
2.3 Load balancing in KADcoiiiiiiiiiieeeeeeeece ettt 11
2.4 Other load balancing Methodscooviriiiriiiiiiirieeee e 11
Chapter 3 Design APProachccooiiiiiiiiii e 13
3.1 Concept Of KAD-Noiiiiiiiieee ettt ettt aeesane e 13
3.2 PubliShing ProCedUIEc.c.coiiiiiiiiiiie ettt 15
3.3 S€ArCh PrOCEAUIEeeiruiiiiiiiiiitie ettt ettt ettt et e st e e st e e sabeeeeanee 18
3.4 Qualitative comparison of KAD-N and KADccoooiiiiiiiiniiiiieneeeeeeeeees 19
Chapter 4 Simulation ReSults.................ccoooiiiiiiiii e e 21
4.1 STMUIALON SETUP ..eeeiiiiiiiieeitie ettt ettt et e e st e e st e e bt e sabeesabbeesabeeesneeenas 21
4.2 STMUIAtON TESULLSeiiiiiiieiiie ettt et ettt sbt e st e e sbee e 22

Chapter 5 Implementation ISSUES...............ccooiiiiiiiiiiiiii e 28

5.1 Applying KAD-N to existing KAD P2P networks.........cccccoeieriiiniiniiinicniciieeieeee, 28
5.2 Combining With SIrEAMINGc.eeruiiiiiiiiieiieeiiete ettt 30
Chapter 6 ConCIUSIONScoc.ooiiiiiiiiie ettt 32
6.1 Concluding remMArks..........coouiiiiiiiiiiieee et 32
6.2 FULUIE WOTK ..ooviiiiiiiiiiiiiite e 32
BibDLOZIaPRYcooiiiiiiiee et ettt e e et e e et e e b eeennreeenaeeenes 34

vi

List of Figures

Figure 1. An inverted index example of four objects [2].ccovviriiiinieniiiinienieeeeeeeeseeeeeeen 6
Figure 2. An example of a publishing PEer.c.ccooiiriiiiiiiiiiieee e 7
Figure 3. The index building procedure.coocuiiiiiriiiiiiiiiieeeeeeee e 8
Figure 4. An example of publishing an ObJECT.........cccueriiiiiiiiiiiiiienieeeeeee e 9
Figure 5. The diagram of where to publish [20]......cc.cociiiiiiiiiiiiiee e 9
Figure 6. Steps of the lookup procedure [20].cocceeriiiiiiniiiiieieeeeeeeeee e 10
Figure 7. The procedure of how to generate a key to publish.cocceeviiriiininiiiniiniiiecnee 14
Figure 8. The concept of multiple hash'for publishing and search.c.cccocciiiiniininnennn. 14
Figure 9. The concept of multiple hash for-balancing theindex distribution..........ccccccecueeveennnenn. 15
Figure 10. The publishing procedure of KAD=N i i i e 17
Figure 11. Multiple hash algorithm. ...l e 16
Figure 12. The search procedure of tKAD =N . i o e 18
Figure 13. The index distribution of each keyspace under different hash times.c..cc.... 23
Figure 14. The total number of network messages under different hash times............ccccocceenee. 23
Figure 15. The percentage of extra traffic under different hash times.ccccceoeeevieniinncnnenn. 24
Figure 16. The standard deviation of each keyspace under different hash times...............c.......... 25
Figure 17. The hit rate with respect to failed peers under different hash times.c.c.cccceee. 26
Figure 18. Cost-effectiveness factor under different hash times.ccoceeeveenieniiiniiniinneenes 27
Figure 19. The publishing procedure of KAD........ccccoiiiiiiiniiiicceeeeeeceeee e 29
Figure 20. The search procedure of KAD.cociiiiiiiiiiiiiiieeece e 30

vii

List of Tables

TABLE I. Comparison of search mechanisms in P2P networks...........ccccceveeiiininiiinicniecnenne. 3

TABLE II. Qualitative comparison of KAD-N and KADcccccooiiiiiniiiiiiniccececneceeee 20

viii

Chapter 1

Introduction

The power to access useful information in a cost-effective manner is very important in
today’s Internet. Models for information sharing between users are currently being investigated
for collaborative and cooperative media sharing applications. The most popular model to date is
based on the P2P communication network model. A P2P network consists of peers that can play
the roles of both clients and servers. Peers in a P2P network do not exploit an existing network
infrastructure for operations such as routing and information retrieval. They use other peers’

computing power and bandwidth to route and retrieve|1].

1.1 Types of P2P-networks

Based on the structure of a nétwork, P2P networks canbe divided into three types: structured,
unstructured, and hybrid. Most of the structured P2P networks are constructed by a distributed
hash table (DHT). A peer in a DHT-based network represents a small database that is to store
indexes of objects. When a peer intends to locate an object, it first needs to determine which
peer storing indexes of the object. This is usually done by hashing an object’s name to obtain a
key that maps to a unique peer in the network. The remaining step then is simply routing the
query message to the peer who storing indexes of the object [2]. Examples of DHT-based
networks include KAD [3], Chord [4], Content Addressable Network (CAN) [5], Pastry [6] ,
and Tapstry [7]. They differ basically in how peers maintain their routing tables to guarantee an
efficient route between peers. KAD has been widely used in file sharing applications. Famous

applications, such as eMule [8] and BitTorrent [9], are both built based on KAD.

As to the unstructured type, peers are loosely coupled in an unstructured P2P network. The
link between two peers is established in a more casual way. Peers only pay little cost to
maintain the network. Unstructured P2P networks rely on flooding or random walk for
searching, with query messages propagated to every peer. This results in increased network
traffic [1]. Although unstructured P2P networks have some drawbacks, such as unguaranteed
search and a large number of search messages; however, they are easy to implement and
maintain. Several successful unstructured P2P systems have been deployed over the Internet,
such as Gnutella [10], FastTrack [11], and iMesh [12].

JXTA-based P2P networks are a representative of a hybrid type. JXTA [13] is a set of P2P
protocols which has been adopted by many applications, such as WiredReach [25] and Collanos
[26]. It uses loosely-consistent DHT (LC-DHT) as the underlying query routing mechanism.
The LC-DHT uses a hybridsapproach that merges structured and unstructured P2P networks
[14]. However, JXTA is lack of some functions; such as keyword search. Keyword search for

JXTA has been developed in'[15].

1.2 Comparison of search mechanisms

Structured P2P networks work more efficiently than unstructured P2P networks. Table I
compares search mechanisms in these two kinds of P2P networks. The main difference between
structured and unstructured P2P networks is where they store their indexes. Structured P2P
networks store indexes in foreign peers. And they use a unique hash function to address the
location of an index. Unlike structured P2P networks, unstructured P2P networks save indexes
in peers who publish them. While querying a target, structured P2P networks use a hash
function to find the unique location of the target. But unstructured P2P networks cannot know

the target location. They send query messages to the network and hope peers who received

query messages will propagate them to the target. And they use TTL (time to live) to restrict the
maximum number of hops that a query message can reach. The default value of TTL is usually
7. This is commonly referred to as blind search [1].

Because of the search mechanism, unstructured P2P networks cannot guarantee that every
object is searchable. They cannot find the object if it is in a peer who is more than 7 hops away.
Structured P2P networks can search every object in the network because they use a hash
function to locate. The overhead of searching an object in a structured P2P network is low
because it does not flood query messages to the network. The search time complexity is O(logN)
in structured P2P networks and O(N) in unstructured P2P networks (/V is the number of peers in

the network) [20].

TABLE I. Comparison of searchanechanisms in P2P networks

Architecture Structured Unstructured
Indexes stored in Foreign peer Local peer
Query target Unique Blind
Guaranteed search Yes No

Search time complexity O(logN) O(N)

1.3 Motivation

In structured P2P networks, if we publish an object by keywords, popular keywords will
produce a lot of identical keys. Each key has a specific target to publish. Target peers use these
keys to construct indexes of objects. So the indexes of these popular keywords may aggregate

in a few peers. Thus, it may cause unbalanced loads between peers. Peers who store the indexes

of popular keywords consume more resources than others. In unstructured P2P networks, peers

save their own indexes of published objects. They do not suffer from the above problem.

1.4 Proposed KAD-N

In this thesis, to resolve the unbalanced load problem in structured P2P networks, we
proposed a KAD-N scheme that hashes the keyword of an object random times to produce a key
for publishing the object. Other peers who want to publish the object with the same keyword
will do the same. Different peers may hash different times to produce different keys, which all
represent the same keyword. That is, our method will produce several different keys to
represent a same keyword. These keys will be published to different peers, not only to one peer.
And peers who received these publishing messages will. use these keys to build indexes. Our
method can spread indexes more even in the .network. Simulation results show that we can
balance the loads of peers and also increase the search hit rate in case that some peers failed or
left. The overhead of our methedis inereasing the network traffic slightly, but not more than 10
percent.

The thesis is organized in the following manner. Chapter 2 is the preliminary knowledge of
the KAD P2P network and related work. In Chapter 3, we describe our multiple hash method.
Simulation setup and results are shown in Chapter 4. Chapter 5 discusses the implementation
issues of the proposed KAD-N method. Chapter 6 gives some concluding remarks and future

work.

Chapter 2

Preliminaries and Related Work

Since the KAD P2P network is our main target to enhance, in this chapter, we review this
network and some existing load balancing methods. First, the distributed hash table (DHT), the
main component of the KAD P2P network is overviewed. Then we describe the principles of
how to lookup, publish, and search objects in the KAD P2P network. After that, we discuss the
original KAD load balancing mechanisms. Next, other load balancing methods, such as Gossip
Dissemination Strategy (GDS) [17], Rendezvous Directory Strategy (RDS) [18], and

Independent Searching Strategy (ISS) [19], etc., are overviewed.

2.1 Distributed hash table

A main characteristic of DHT-based networks is<that search is deterministic. It costs a
bounded effort to route and retrieve. These DHT-based P2P networks basically support only the
exact name match as each object is given a unique identifier obtained by hashing its name to
determine its location in the network. Keyword search must be built on top of the overlay to
enhance search functionality. Several mechanisms have been proposed for keyword search in
DHT, and all of them use the inverted index as the primary data structure. An inverted index is
a set of pairs (keyword, objects set). After an inverted index is built, we can use a keyword to
find all objects that contain this keyword.

To implement keyword search in a structured P2P network, a distributed inverted index can

be built. By using DHT-based networks, one can use a given keyword as a key to find out the

query (keyword set) to perform a keyword search operation [2].

peers who have objects that contain this keyword. Peers can retrieve objects with a given search

Object 1 Object 2 Object 3 Object 4
term 1 term 1 term 1 term 2
term 2 term 3 term 2 term 4
term 3 term 5 term 4 term 5

(a) Each object has three keywords.
Keyword Objects set
term 1 {Objectl, Object2, Object3}
term 2 {Object1, Object3, Objectd }
term 3 {Objectl, Object2}
term 4 {Object3, Objectd }
term 5 {Object2, Objectd }

(b) An inverted index.

Figure 1. An inverted index example of four objects [2].

In Figure 1(a), we show an inverted index example of four objects: objects 1, 2, 3, and 4. Each
object contains three keywords. For example, object 1 has keywords, termsl, 2 and 3, and
object 2 has terml, 3 and 5, etc. Figure 1(b) is the inverted index which is built by these
keywords and objects sets. By this way, we can link keywords to different objects. For
instance, if we use “term 17 as a keyword to search the network, objects 1, 2 and 3 will be

found.

2.2 Background of KAD

KAD specifies the structure of a network and the exchange of information through peer
lookups. Peers communicate among themselves in KAD using UDP [3]. A virtual overlay
network is formed by the participating peers. Each peer is identified by a KAD ID. The KAD ID
serves not only as an identification, but peers use the KAD ID to locate objects. In Figure 2, the
KAD ID of the peer is “11111.” An object can produce two different keys, source keys and
keyword keys. Source keys identify the content and location of an object. Keyword keys are
computed by hashing a keyword from the name of the object [18]. In Figure 2, keywords of this

object are “project” and “KAD.” Thus, the source key is “00110” and the keyword keys are

“00010” and “11000.”

Object

I

/(FFQXIKAD D

Source

E—

Keyword

Keyword

——Keywords

— Source key

—Keyword keys

.

Figure 2. An example of a publishing peer.

Figure 3 andFigure 4 show an example of publishing an object. A peer wants to publish an
object named “‘project KAD.” This object name will result in two keywords, “project” and
“KAD.” All relevant references to the original object are generated, such as the source key and

the keyword key. Next, keyword keys “project 00010 and “KAD 11000 are published to

corresponding peers “00001” and “11001” to build indexes, which are all pointed to peer

“00111.” Finally, the source key is published, with an index pointing to the publishing peer.

index
keyword keyword key Keyword | project
“project” 00010
hash publish Source 00110
index
object source key Source 00110

0001001 :: > 00110 S >
01001%‘ hash publish Peer 11111

Figure 3. The index building procedure.

In KAD, each key is not published-just-on a'single peer that is numerically closest to that key,
but on 11 different peers whose KAD ID matches at least the first 8-bits of the key. This zone
around a key is called the tolerance zone or the kéyspace [16]. There are 28 = 256 keyspaces in

a KAD P2P network. In Figure 5, we can see 11 _peers to receive publishing messages in the

target keyspace.

////r Peer 11111 ‘\\\\

_->|File project KAD
"> Source 00110
’)«': Keyword project
L] 00010
% [Keyword KAD
| 11000
Peer 00001 : Peer 11001
Keyword | project ! Keyword | KAD
Source 00110 ' Source .--| 00110
s \ 4 ! -
\\ ” II/ m
\ Peer 00111 ;
. 5| | Source 00110 e
——Publish - —
Peer 11111 / Index table
- — — — pReference '

Figure 4. An example of publishing an object.

11 peers in the target keyspace
Publishing peer Z

o 1 R R
D LI

Target keyépace

Figure 5. The diagram of where to publish [20].
When searching for some objects, the peer needs to know the target location and explores the

network in several steps. Each step will find peers that are closer to the target. Figure 6 shows

the steps of the lookup procedure. First, a searching peer sends messages to two closest possible

peers. When the searching peer received responses, it obtains three more closer possible peers.
Then these new possible peers that are in the target keyspace will be stored to a list called the
candidate list. In this example, two peers are in the target keyspace. These two peers will be
saved to the candidate list. In the last step, the searching peer sends a request for more closer
peers to the three closest peers again, but only two peers are available and reply with closer
peers. The lookup procedure terminates when the lookup responses contain only peers that are
either already present in the candidate list or farther away from the target than the other top 3
candidate peers [16]. At this point, the candidate list is called stable. Like other DHT networks,
KAD travels only O(logN) peers during the execution of the lookup procedure when there are N

peers in the network. Therefore, the lookup procedure is very efficient.

Searching peer Target
P ? 1 1 4 —¢] >
] —) = ; ’
Possible peers keyspace
Requests

s
N

A
-
X
-

v

Responses
New possible peers
< ? 11 L4010 N 4 >
< P 1 B2 N | Vel ¥ >
Requests
/\

A
X
4

Responses

Figure 6. Steps of the lookup procedure [20].

10

2.3 Load balancing in KAD

KAD P2P networks do little to balance the load of each peer. They just limit the number of
indexes handled in each peer to prevent them from overloading. A peer can only be responsible
for maximum 60,000 indexes and can hold a maximum of 50,000 indexes of an individual
keyword. Once reaching the limit, a peer would send an overload response to the publishing
peer. After receiving an overload response, the publishing peer will publish this object to

another peer.

2.4 Other load balancing methods

In RDS [18], the load information of each peer is periodically published to a few fixed
rendezvous directories, which are responsible. for scheduling the load reassignment to achieve
load balance. Rendezvous directories are a fixed group of peers, which are known publicly to
all peers. If a rendezvous directory. is-occupiedrby malicious peers or overwhelmed by DoS
traffic, the service of load balancing failed.

In ISS [19], a peer doesn’t publish its load information anywhere else. To achieve load
balancing, peers should perform searching independently to find other peers with inverse load
characteristics, and move load from the heavy nodes to the light nodes. ISS is very inefficient
because searching peers with inverse load characteristics may incur huge traffic.

In [17], they proposed a GDS for load balancing in DHT based P2P networks, which
combines RDS and ISS. The whole network is formed into groups, and the gossip protocol is
used for load information dissemination. Each group member has the load information of its
own group and the utilization information of the network after load information dissemination.
They use these load information to achieve load balancing. GDS can only be built on top of

ring-like DHT based P2P networks, such as Pastry, Chord, etc.

11

In [27], they presented a dynamic feedback adaptive scheduling algorithm to adjust the ratio
peers distribution constantly according to the super peers’ cyclical feedback information, which
fully taking account the load capacity of each super peers, and solving the problem of super
peers load balance in hybrid P2P networks effectively [27]. The super peers in a system are
divided into several cluster networks according to their different locations in the network, and
each cluster network communicates with load balancing control peer through a cluster agent
peer. All the requests from peers should be first sent to the load balancing control peer, which
designates logging super peers for peers according to the immediate updated super peer
scheduling sequence. There may be a number of this kind of load balancing control peers in the

system [27].

12

Chapter 3
Design Approach

In general, each keyword of an object will be hashed one time to get a key to publish. To
enhance the search hit rate, we propose a KAD-N method to publish keywords by multiple hash
in the KAD P2P network, where N is the maximum hash times. By hashing the key of a
keyword, we can get the second key that can represent the same keyword. We can still hash the
second key to get the third key. By hashing it random times, we get a final key to publish. Peers
may produce different keys to represent the same keyword. And different keys are published to
different peers. This multiple hash method will publishra keyword from peers to different peers

to balance their loads.

3.1 Concept of KAD-N

Figure 7 shows the procedure of how to generate a key to publish. If we want to publish
object 1, we will use terms 1, 2, and 3 as keywords. We use term 1 as an example to describe our
multiple hash operation. First, we generate a random number r and 1 =r=N. Next, we hash
term 1 to get key 1 and hash key 1 to get key 2, etc. After r times of hashing, we get key r, which

is the final key to publish. Then we publish key r to the network.

13

Hash r times

Object 1 — — —
term 1 > Key 1 N Key r
term 2 hash hash hash :
term 3 i

;\} .z?wran.dom numbef, 1=r=N Targ:t peer
: Maximum hash times

Figure 7. The procedure of how to generate a key to publish.

However, the multiple hash will increase the number of search messages. If we publish a
keyword by hashing the key twice then we must query two keys in average to get the whole
indexes of a keyword. Figure 8 shows the conecept of multiple hash for publishing and search. In
this figure, keyword A may be published to peers 1to N=If peer M want to search keyword 4, it
must send N search messages (queries) to-these peers whe may store indexes of keyword A.
Then peer M will receive N-search responses. It can then build the indexes of keyword A from
these responses. Therefore, the proposed KAD-N method will result in more traffic in searching
keywords. However, the number of search messages 1s usually ten times less than publishing

messages [16]. Hence, KAD-N requires just a small overhead to balance the publishing load.

One keyword may be

Peer M must send N search

published to N peers by to th
different peers Peer 2 messages (0 these peers to
P search keyword A
Keyword A E Poer M
Peer N-1 o
: Publishing message

4

Peer N }/ : Search message

Figure 8. The concept of multiple hash for publishing and search.

14

<] 1 1]] (V4]]
l | I | | 1 7> I I

keys;;ace 1

(a) The original KAD index distribution

@pply KAD-3 method

v

A
X
X

(b) The KAD-3 index distribution

: Indexes of keyword Q X:: Publishing target

Figure 9. The concept 'of multiple hash for balancing the index distribution.

Figure 9 is an example of multiple hash for balancing the index distribution. Figure 9(a) is the
index distribution of the original KAD, All'indexes of an individual keyword will be handled by
a keyspace, e.g. keyspace 1 handleing all indexes of keyword Q. After applying the proposed
KAD-N method to the network, the index distribution will spread more even. In this example,
we apply KAD-3 to the network. KAD-3 will distribute indexes of keyword Q into 3 keyspaces
as shown in Figure 9(b). One is handled by the original keyspace 1 and the other two will be

spread to other two keyspaces.

3.2 Publishing procedure

The detailed publishing procedure of KAD-N is shown in Figure 11. Remind that N is the

maximum hash times. A KAD-N network will work as the original KAD P2P network if N is

15

v

set to 1. In Chapter 4, the optimal hash times will be derived. Note that, we will discuss block
Al of Figure 11 in Chapter 5.

To publish a file, first, we get publishing keywords from the object name. Then a random
number r will be generated for each keyword (for example, keyword A) and 1 <r <N. After that,
we hash keyword A r times to produce the final target key: key a. Figure 10 shows the proposed
multiple hash algorithm. Key a will be the target while running the lookup procedure. The
details of the lookup procedure were mentioned in Chapter 2. After starting the lookup
procedure, we will receive several responses which contain some possible peers who are closer
to the target. We use these peers to update the candidate list. If the candidate list becomes stable,
then advance to the next step. The candidate list will be sorted by the distance to the target in the
ascending order. The closest node is the first one in the list. In Chapter 2, we mentioned that
KAD will publish a key to 1 ledifferent peers in-the target keyspace. That is, top 11 nodes will be
selected from the list for publishing. After sending publishing messages to these nodes, we

successfully publish a keyword to the KAD P2P network.

Multiple Hash Algorithm

IUPUT
keyword A: /* keyword to be hashed;
N: /* maximum hash times;

OouTPUT
key a: /* key to be published;

ALGORITHM

r =random(1, N)

i=1

tmp = keyword A

While i <=r Do
tmp = hash(tmp)
=i+l

end While

key a = tmp

Return key a

Figure 10. Multiple hash algorithm.

16

A 4
Obtain keyword A from an object name

Generate a random number: r, | =r=<N
i=1
input = keyword A

A 4

Hash input to get key tmp
i =i+l

input = key tmp
/ Yes

Block A1l

Use key tmp as a target and then run the lookup procedure

.

Use the responses of lookup messages to update the
candidate list

Is the candidate list
stable?

Select 11 closer nodes from the candidate list:
nodes 1~11

A 4
Send publishing messages to nodes 1~11

v
End

N: Maximum hash times

Figure 11. The publishing procedure of KAD-N.

17

3.3 Search procedure

Start

A

Obtain keyword A from a query

input = keyword A

\ 4

Hash input to get key tmp

A 4

v
Use key tmp as a target and then send a
input = key tmp search message to the network
A i=i+l

Yes

Block A2

A 4

Save answers from search responses

Number of answers > TOTAL
or timeout

End

N: Maximum hash times
TOTAL: Maximum number of answers

Figure 12. The search procedure of KAD-N.

18

Figure 12 describes the search procedure of KAD-N. At the beginning, we obtain a keyword
from a query (for example, keyword A). After that, this keyword will be hashed to produce a
temp key. We use this temp key as a target to generate a search message and send it to the
network. The above procedure will be repeated N times. That is, it will send N different search
messages to the network. Then we will receive several search responses which may contain
search answers. The search will stop when we receive enough answers or timeout is triggered.
The default TOTAL value is 300 and the default timeout is set to 20 seconds. In other words, we
will stop the search process after 20 seconds or if we receive more than 300 answers [18]. We

will discuss block A2 of Figure 12 in Chapter 5.

3.4 Qualitative comparison of KAD-N and KAD

Table II shows the comparison between the-original KAD and our KAD-N. If we hash a
keyword at most N times, the publishingload will be more balanced and the search hit rate will
also increase. Indexes of a keyword are published to:at most N targets. Furthermore, KAD-N
does not increase the total number of indexes. It just distributes indexes more even, as shown in
Figure 9. In other words, in KAD-N the total publishing load of the network is same as that of
KAD but the number of search messages will increase N times compared to KAD. Because
KAD-N will spread the indexes, there will be more peers who have the same indexes. KAD-N
will improve the search hit rate in case that some peers failed. However, the network traffic will
increase slightly because of the increased number of search messages. The keyword of an
object may be hashed at most N times and the computation overhead is thus O(N). In the
original KAD, since each keyword is hashed only once, the computation overhead is O(1).
KAD-N would cause extra computation overhead. We will discuss an optimal value of N in the

following chapter.

19

TABLE II. Qualitative comparison of KAD and KAD-N

Approach KAD KAD-N (proposed)
Publishing load Imbalance Balance
Search hit rate Normal Better
Computation overhead 0O(l) O(N)

Query messages per search 1 N
Network traffic Normal More

20

Chapter 4

Simulation Results

4.1 Simulation setup

First, we analyze the overhead of publishing messages and search messages in KAD. In [21],
they spied on 20 different keyspaces of the KAD network for 24 hours. During this time, on
average, 4.3 million publishing messages and 350,000 search messages were recorded. Based
on the measurements of [21], it showed that there are ten times more publishing messages than
search messages. Moreover, a publishing message is ten times bigger than a search message
since it contains not only a Keyword-but also.metadata describing a published object. In [23],
they also spied on a keyspaee in the KAD P2P-network for 12 hours. They got 561,542 search
messages and 5,549,183 publishing messagesySearch messages produced 10.8 MB traffic and
publishing messages produced 966-MB traffic. Based on these data, traffic produced by a
search message is 0.019 KB and 0.18 KB for a publishing message on average. We used these
data to calculate total network traffic in our simulation environment. Total network traffic
contains search traffic and publishing traffic.

We rank keywords according to their appearance times. Rank 1 is the most popular keyword.
The publishing messages, which were collected by [21], contain 26,500 different keywords per
keyspace and 315,000 distinct files. The appearances of each keyword were also counted.
Based on these data, [21] used Matlab to estimates the number of indexes for the i’th popular

keyword which is proportional to 1/i%3

and the number of indexes for the most popular
keyword is about 107. For example, the number of indexes of the most popular keyword is ten

times more than the tenth popular keyword in the KAD P2P network. That is to say, the peer

21

who handles indexes of the most popular keyword will get ten times network load than the peer
who handles indexes of the tenth popular keyword. Based on the above analysis, we evaluate
the performance of our approach.

We used JAVA to construct our simulation environment. Based on [20] and the above
analysis, we simulated the behaviors of how KAD P2P networks publish objects and distribute
indexes. The indexes handled by each peer were also recorded. Then we applied our method to
this simulation environment. We gathered the indexes handled by each peer and used them to

show the effectiveness of the proposed KAD-N method.

4.2 Simulation results

Figure 13 shows the index distributions of each keyspace under different hash times. We rank
keyspaces according to the number of indexes handled,.i.e. keyspace popularity. Rank 1
keyspace handles the mostandexes. Wefound that the index distribution of the original KAD
(KAD-1) is very uneven. A large number of indexes were handled by a few keyspaces. If we
hash more times, some indexes would be moved from front rank keyspaces to others. From this
figure, the index distribution curve will be smoother if we hash the key more times. In other

words, if we hash the key more times, publishing load will be more balanced.

22

Hash times
——1 (KAD)

1E+7 ¢
A 3
1E+6 —7
\\)N —=—13
1E+5 w
1E+3 Y\N\N

1E+2

Number of indexes

1 16 32 48 64 80 96 112128 144 160 176 192208 224 240 256
Rank of keyspace popularity

Figure 13. The index distribution. of each keyspace under different hash times.

However, the number of séé,réh fnesséléési v?jll 'iﬁbreaée after applying the proposed KAD-N
= 1 o 7'.‘-‘. B
method. We found that the'total network messages will increase linearly with more hash times

in Figure 14. Total network'-n_lessagqs SQ-CTC‘C_alG}-,II.ath based on [23], which was introduced in

the simulation setup. They inciﬁdcj search messages'arrd-"[)ublishing messages.

(x 10000000)
6
= §°
2% 4
EE
2
=Rre o=
—_
£2 2 a0
ﬁgl
0 T T T T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10 11 12
Hash times

Figure 14. The total number of network messages under different hash times.

23

Figure 15 plots the percentage of extra traffic under different hash times. The growth of the
curve is linear just like Figure 14. As we mentioned in the simulation setup, number of search
messages multiplied 0.019 KB is search traffic and number of publishing messages multiplied
0.18 KB is publishing traffic. We add search traffic to publishing traffic to get total network

traffic. We calculate extra traffic percentage p according to the following equation:

B increased search traf fic
~ total network traffic of original KAD

p

The extra traffic is very small because the number of search messages is much fewer than the
number of publishing messages, and traffic produced by a search message is much smaller than

a publishing message.

18%
16% A
14%
12%
10%

8%
6% //
4%

O%_'—« T T T T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

Hash times

Percentage of extra traffic

Figure 15. The percentage of extra traffic under different hash times.

We use a standard deviation o to show the divergence under different hash times. A standard

deviation is a measure of the dispersion of a data set. A low standard deviation indicates that the

24

data points tend to be very close to the mean, while a high standard deviation indicates that the
data are “spread out” over a large range of values. We calculate standard deviation using the
number of indexes handled by each keyspace. In other words, the higher the value, the more

unbalanced publishing load of each keyspace. g is computed as follows:

o= ?:I(Xi — p)?
n

where n is the number of keyspaces (n = 256 in KAD); X; is the number of indexes handled in
the ith keyspace and u is the average number Qf indexes handled in each keyspace.

From Figure 16, we observed that when hash timés > 7, o will not decrease too much. That is,
if we hash more than 7 times; ‘the standard 'devie‘ltions are almost the same. In other words, when

hash times > 7, it doesn’t heip much on load béllzincing.

800000
750000 [o} ap
700000 —

650000 \
600000 \

550000 L\
500000
450000
400000

Standard deviation (o)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Hash times

Figure 16. The standard deviation of each keyspace under different hash times.

25

We also simulated the hit rate variation under different hash times in case that some peers
failed. We cannot retrieval indexes from failed peers. We call these indexes as missing indexes.
Objects referenced by missing indexes would be unsearchable. Note that the hit rate is
calculated by the number of missing indexes dividing number of total indexes. In Figure 17, by
hashing more times it increases the hit rates while peers failed. From [22], we know the number
of peers vary according to a diurnal. And the minimal number of peers is about 78% of the

maximum. So the percentage of failed peers in a day is about 27%.

100 ———3

99 .\\.\ f 3 Hash times

08 T~ -

97 \ \'\ ——1
§ 926 -
E 95 \ \' —4—3
=
= 94 7 ——4
= 93 -

9 \ —%—5

KAD

91 -6

90 R 3 7

89 T T T 1

0 10 20 30 40
Failed peers (%)

Figure 17. The hit rate with respect to failed peers under different hash times.

Figure 17 shows that the hit rate is close to 100% if we hash more than 5 times with 27% of
peers failed. The proposed KAD-N will increase the search resilience in the situation of a large
number of peers failed. Because more hash times do not always bring more efficiency, we used

a cost-effectiveness factor k to determine the maximum hash times.

26

hit rate

~ total network traffic * o

To have a larger k, one has to increase the hit rate, and reduce the total network traffic and the

standard deviation. From Figure 18, k of 6, 7 and 8 hash times are very close, and k of 7 hash

times is the highest. That is, hashing 7 times is the optimal choice for the trace we simulated.

Cost-effectiveness factor (k)
N
(91
S
S

5.705

2 3 4 5 6 7 8 9 10 11 12
Hash times

Figure 18. Cost-effectiveness factor under different hash times.

27

Chapter 5

Implementation Issues

5.1 Applying KAD-N to existing KAD P2P networks

In this chapter, we describe how to implement the proposed KAD-N method. Our method is
an improvement of the original KAD. We can implement it based on an existing KAD P2P
network, such as eMule [8] or aMule [24]. They are both open source projects so we can get
their source codes easily. By modifying their source codes, the proposed KAD-N method can
be implemented. In the following; ‘we describe how to adapt a KAD method to the proposed
KAD-N method.

Figure 19 shows the publishing procedure ofthe original, KAD P2P network and Figure 20
shows its search procedureWe can implement the proposed KAD-N method based on a KAD
P2P network by modifying the hash operation for publishing and searching objects. To apply
our method to the KAD P2P network; we replace block B1 in Figure 19 with block A1 in Figure

11 and also replace block B2 in Figure 20 with block A2 in Figure 12.

28

Start

\ 4
Obtain keyword A from object name

Block B1

Hash keyword A to get key tmp i

Use key tmp as a target and run the lookup procedure

A

Use the responses of lookup messages to update the
candidate list

\ 4

Is the candidate list
stable?

Select 11 closer nodes from the candidate
list: nodes 1~11

\ 4

Send publishing messages to nodes 1~11

End

Figure 19. The publishing procedure of KAD.

29

Start

A

Obtain keyword A from a query

Hash keyword A to get key tmp

Use key tmp as a target and then send a
search message to the network

1
1
1
1
1
1
1
:
' A
1
1
1
1
1
1
1
1
1

Block B2 |

> Save answers from search responses

Number of answers > TOTAL
or timeout

End

TOTAL: Maximum number of answers

Figure 20. The search procedure of KAD.

5.2 Combining with streaming

The KAD P2P network can be extended to support streaming applications. Most of existing
P2P networks based on KAD are only capable of file sharing. We can enhance the ability of
KAD P2P networks by adding some functions, such as P2P streaming. For example, if a video
file has been published by several peers in the KAD network, we can use a P2P streaming tool
to view this file while downloading. In the original KAD P2P network, we must wait until the

whole file is downloaded. It is not efficient.

30

To combine a KAD P2P networks with streaming, we can modify its download function. A
peer can search a video file to get a list of peers who have this file in the KAD P2P network. We
can use this peer list to form a P2P streaming network. Peers who have the requested video file
will be the sources in the P2P streaming network. Other peers who want to watch this video file
can join the P2P streaming network. The KAD-N method we proposed can improve the search
hit rate. It may increase the probability of finding more peers who have the requested video file.
By applying our method, the P2P streaming network can achieve resilience in case that some

peer failed.

31

Chapter 6

Conclusions

6.1 Concluding remarks

The proposed KAD-N method does balance load of each keyspace and also improve the
search hit rate. It is a simple and effective method. By hashing random times when publishing a
keyword, indexes can be distributed more even and the publishing load of each peer would be
more balanced. Although KAD-N may slightly increase the number of total messages in the
KAD network, the extra traffic is very small. Based on the simulation results, the optimal hash
times is 7, which improves the hit rate-to close.to 100% and cause about 7% of extra traffic. Our
method can not only improve the search resilience but also balance the publishing load between
peers in KAD networks. In addition, the'proposed”’KAD-N, method can be extended to support

other DHT based P2P networks.

6.2 Future work

Our KAD-N method is a simple and effective way to achieve load balancing and search
resilience. There are some issues that deserve to be further studied. (1) Adapt our method to let
it be applicable to other DHT based P2P networks. In this thesis, our method is based on KAD
P2P networks. Because of the differences of search and publishing mechanisms between KAD
and other DHT based P2P networks, our method needs to be adapted for applying to other
networks. (2) Support KAD P2P networks with P2P streaming applications. Most of existing

networks built by KAD are only capable of file sharing. In Chapter 5, we discussed how to

32

combine a KAD P2P network and our method for P2P streaming. This issue deserves to be

further studied as well.

33

Bibliography

[1]

D. Kundur, Z. Liu, M. Merabti, and H. Yu, “Advances in peer-to-peer con tent search,” in
Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 404-407,
July 2007.

Y.J. Joung, L.W. Yang, and C.T. Fang, "Keyword search in DHT-based peer-to-peer
networks," IEEE Journal on Selected Areas in Communications, vol. 25, pp. 46-61,
January 2007.

P. Maymounkov and D. Mazieres, ‘“Kademlia: A peer-to-peer informatiion system based
on the XOR metric”, in Proceedings of the Ist International Workshop on Peer-to-Peer
Systems (IPTPS), pp. 53-65; March 2002.

Stoica, R. Morris, D. R Karger, M. E-Kaashoek, and H. Balakrishnan, “Chord: A scalable
peer-to-peer lookup service for Internet applications,” in Proceedings of the Conference
on Applications, Technologies, Architectures;-and Protocols for Computer
Communications, pp. 1494160, August 2001.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A scalable
content-addressable network,” in Proceedings of the Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications, pp. 161-172,
August 2001.

Rowstron and P. Druschel, “Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems,” in Proceedings of the 2001 IFIP/ACM International
Conference on Distributed Systems Platforms, vol. 2218, pp. 329-350, November 2001.
Y. Zhao, J. Kubiatowicz, and A. D. Joseph, “Tapestry: An infrastructure for fault-tolerant
wide-area location and routing,” University of California, Berkeley, Tech. Rep.

UCB/CSD-01-1141, April 2001.

34

[8] “eMula Project,” [Online]. Available: http://www.emule.com/.

[9] “BitTorrent,” [Online]. Available: http://www.bittorrent.com/.

[10] “Gnutella website,” [Online]. Available: http://www.gnutella.com.

[11] “Fasttrack peer-to-peer technology,” [Online]. Available: http://www.fasttrack.nu/.

[12] “iMesh website,” [Online]. Available: http://www.imesh.com.

[13] “JXTA community projects,” [Online]. Available: https://jxta.dev.java.net.

[14] M. Abdelaziz, B. Traversat, and E. Pouyoul, "Project JXTA: A loosely-consistent DHT
rendezvous walker," March 2003. [Online]. Available:
http://www.jxta.org/docs/jxta-dht.pdf.

[15] T. H. Chang, “Keyword search for enhancing JXTA discovery service in peer to peer
networks,” Master’s Thesisy National Chiao Tung University, June 2008.

[16] M. Steiner, D. Carra, and E. W. Biersack;“Faster content access in KAD,” in Proceedings
of the Eighth International Conference on Peer-to-Peer Computing, pp. 195-204,
September 2008.

[17] D.Wu, Y. Tian, and K.W..Ng, “Achieving resilient:and efficient load balancing in
DHT-based P2P networks,” in Proceedings of the 31" IEEE Conference on Local
Computer Networks, pp. 115-122, November, 2006.

[18] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica, “Load balancing in
dynamic structured p2p systems,” in Proceedings of the IEEE INFOCOM 04, pp.
2253-2262, March 2004.

[19] J. Byers, J. Considine, and M. Mitzenmacher, “Simple load balancing for distributed hash
tables,” In Proceedings of the IPTPS’03, pp. 80-87, October 2003.

[20] R. Brunner, “A performance evaluation of the KAD-protocol,” Master’s Thesis,

University of Mannheim and Institut Eurecom, November 2006.

35

[21] M. Steiner, W. Effelsberg, T. En-Najjary, and E. W. Biersack, “Load reduction in the
KAD peer-to-peer system,” in Proceedings of the 5th International Workshop on
Databases, Information Systems and Peer-to-Peer Computing, October 2007.

[22] M. Steiner, T. En-Najjary, and E. W. Biersack, “A global view of KAD” in Proceedings of
the 7th ACM SIGCOMM Conference on Internet Measurement, pp. 117-122, October
2007.

[23] E. W. Biersack, “Everything you want to know on KAD,” June 2008. [Online]. Available:
http://www.thlab.net/old/rescom2008/talks/E-Biersack_ KAD-tut.pdf.

[24] “aMule Project,” [Online]. Available: http://www.amule.org/.

[25] “WiredReach,” [Online]. Available: http://www.wiredreach.com/.

[26] “Collanons Workplace,” [Online]. Available: http://www.collanos.com/.

[27] X. L. Fuand Y. Xu, “Asload balance algerithm for hybrid P2P network model,” in
Proceedings of the ISECS International Colloguium on Computing, Communication,

Control, and Management, pp-236-239,.August 2008.

36

