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摘 要       

 

前端錯誤更正在通訊系統是一個相當重要的功能，它主要包含攪拌器(scrambler)、 

里德所羅門編碼(Reed-Solomon coding)、交錯器(interleaver)和迴旋編碼(trellis coding)。 

對於效能和複雜度的考量，隨著不同的應用而會有不同的設計參數。本論文提出一個高

效率節省功率和面積架構的多標準前端錯誤更正解碼器以符合不同系統的要求，而所提

出的多標準前端錯誤解碼器可以完全相容於 ITU-T J.83 的纜線數據系統並且可相容於

數位視訊廣播和 ATSC 數位電視等系統。我們所提出的多標準前端錯誤更正解碼器主要

包含一以記憶體來儲存及更正資料的多模里德所羅門解碼器和一以記憶體為基礎及位

址產生器的泛用型卷積解交錯器(convolutional de-interleaver)，皆具有以最小晶片面積達

到最多功能的特色。以 0.18 微米 1P6M CMOS 製程實作的結果大約需要 5萬 4千個邏輯

閘以及 6千位元的嵌入式靜態隨機存取記憶體，最快可以達到 83MHz(600Mbps)的工作頻

率。平均消耗功率在最複雜的解碼模式及在 83MHz 之工作頻率下大約是 45mW；在滿足系

統規範之操作參數環境下，平均消耗功率大約 5.4mW。 
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ABSTRACT 

 

Forward Error Correction (FEC) which mostly contains scrambler, Reed-Solomon 

coding, interleaving, and trellis coding is a key component in communication system. For the 

performance and complexity issues, design parameters are different in various applications. In 

this thesis, a multi-standard FEC decoder is presented to meet different system requirements 

with a power and area efficient architecture. The proposed multi-standard FEC decoder is 

fully compliant to ITU-T J.83 cable modem system and is also compatible to DVB-T and 

ATSC Digital TV, etc. The proposed multi-standard FEC decoder, including a multi-mode 

Reed-Solomon decoder with memories to store and correct the received data and a 

memory-based universal convolutional interleaver with a simple address generator, has the 

advantage of lowest overhead. With 0.18µm 1P6M CMOS technology, the implemented chip 

shows the FEC decoder can work at 83MHz (600Mbps) while costs 54.5K gate counts and 

two 376x8 bits embedded duel-port SRAM. The average power consumption in full spec. 

mode is about 45mW at 83Mhz. While running at 7MHz that meets symbol rate of cable 

modem, the power dissipation is 5.4mW. 
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Chapter 1  
Introduction 
 

1.1 Motivation 

In communication system, channel coding which uses various types of error correcting 

algorithm and interleaving techniques is a key module to minimize the effect of channel noise 

during data transmission. They can be summarized as the following four parts in most systems: 

scrambler, Reed-Solomon (RS) coding, interleaving, and trellis coding. And different 

applications have specific parameters to achieve an optimum system. Due to the similarity in 

FEC sections, such as ITU-T J.83 [1], DVB-T [2], and Advanced Television Systems 

Committee (ATSC) Digital TV [3], etc, a multi-mode FEC design will cause a lower cost 

design and better system integrations. For the RS code, it is not easy to implement a decoder 

that meets different finite field definitions and generator polynomials. Thus, each application 

has its own dedicated hardware for RS decoding. Moreover, memory controller of interleaver 

is also difficult to generate proper addresses for multi-standard. Hence, an efficient algorithm 

and architecture for multi-mode design is an important issue and challenge to lower down the 

design cost. 

   

1.2 Introduction to the platform 
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In ITU-T J.83, DVB-T, and ATSC Digital TV, etc, there are some similarities in FEC 

sections. However, ITU-T J.83 has the most kinds of modes than the other standards. Besides, 

the FEC sections in DVB-T and ATSC Digital TV are also included in ITU-J.83. Hence, 

ITU-T J.83 is chosen as the simulation plat form. 

 

ITU-T J.83 is the digital multi-program systems for television, sound and data services 

for cable network. There are four annexes (A, B, C, and D), which provide the specification of 

J.83, including the frame structure, channel coding, and the method of modulation. A 

comparison of FEC section in different annexes of ITU-T J.83 is listed in table 1. The FEC is 

based on a concatenated coding approach that produces high coding gain at the moderate 

complexity and overhead. For main modules, there are three modes in RS codes, various 

parameters in convolutional interleaving, three kinds of scrambler and one trellis coding. 

 

The main purpose of each FEC module is summarized as follows: 

(1) Reed-Solomon coding-Provide block encoding and decoding to correct up t symbols 

within each RS block. It can slightly resist channel burst errors. 

(2) Interleaving-Evenly spread the symbols by disordering the data sequence. It can protect 

the transmitted data against channel burst errors from being sent to RS decoder. 

(3) Scrambler-Randomize the data to allow effective modulation and prevent high PAPR 

(Peak-to-Average Power Ratio) after IFFT (inverse fast Fourier transform for 

OFMD-based systems). High PAPR will lower down the system performance. Scrambler 

can prevent this situation from happening. 

(4) Trellis coding-It is also called convolutional coding. By using Viterbi decoding algorithm 

(maximum likelihood decoding on trellis), it has very good ability of error correction. 

However, it is sensitive to channel burst errors. Hence, convolutional codes usually 

collaborate with interleaver and RS codes. 
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The details of FEC algorithm, decoding architecture, and the result of chip 

implementation will be described in later chapters, respectively. 

 

Table 1: Comparison of different specification in FEC of ITU-T J.83 

Item Annex B Annex A & C Annex D 

Scrambler 
x3 + x +α3 over 

GF(27) 

1 + x14 + x15 for 

15-bits polynomial 

of the PRBS 

1 + x + x3 + x6 + x7 + x11 + 

x12 + x13 + x16 for 16-bits 

polynomial of the PRBS 

Reed-Solom

on coding 

(128,122) extended 

RS codes over 

GF(27), t = 3 

(204,188) RS codes

over GF(28), t = 8 

(207,187) RS codes 

over GF(28), t= 10 

Interleaving 

Convolutional 

interleaving depth: 

I=128,64,32,16,8 

J=1,2,3,4,5,6,7,8,16

Convolutional 

interleaving depth: 

I=12 

J=17 

Convolutional  

interleaving depth: 

I=52 

J=4 

Trellis 

coding 

Rate 4/5, 

G=(25,37octal) 

with punctured 

None 

 

1.3 Thesis Organization 

The organization of this thesis is as follows. In chapter 2, the algorithm of FEC will be 

described, including the algorithm of FEC encoder and decoder. It contains scrambler, 
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interleaver, Reed-Solomon codes and convolutional codes. And, the proposed algorithms and 

architectures of FEC for multi-standard will be addressed in chapter 3, which mainly contains 

a multi-mode RS decoder with memories to store and correct the received data and a 

memory-based universal convolutional interleaver and de-interleaver with a simple address 

generator. Chapter 4 will show the result of the chip implementation, the simulation result and 

will do some comparisons between other reference works and the proposed result. The last 

chapter is the conclusion and the future work. 
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Chapter 2  
Algorithm of FEC 
 

First of all, the encoder and decoder of FEC will be introduced. In ITU-T J.83, it can be 

divided into two main parts and composed of three or four processing layers. The first one is 

shown in figure 2.1(a), including ITU-T J.83 annex A, C, and D. The other is shown in figure 

2.1(b), including ITU - T J.83 annex B. The following sections will define and introduce the 

algorithm of each layer in FEC. 

 

in
Scrambler RS Encoder Interleaver

to modulation

(a) 

to modulationin
RS Encoder Interleaver Trellis

EncoderScrambler

(b) 

Figure 2.1: (a) FEC in ITU-T J.83 annexes A, C and D. (b) FEC in ITU-T J.83 annex B 

 

2.1 Scrambler 
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The basic idea of scrambler is to randomize the transmitted data to provide the even 

distribution of the symbols in the constellation and to ensure adequate binary transitions for 

clock recovery. 

 

1

Enable

Initialization
Sequence 0 0 1 0 1 0 1 0 0 0 0 0 0 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Data output

Data Input 10111000  XXXXXXXX
(B8)HEX

 

(a) 

Z-1  Z-1  Z-1

α3

Data in

7

7

7

Data out

 

(b) 

D0 D1 D2 D3 D4 D5 D6 D7

 

(c) 

Figure 2.2: Scrambler in (a) J.83A, C and DVB-T system. (b) J.83B. (c) J.83D 
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Figure 2.2(a) shows the scrambler in J.83 annexes A, C and DVB-T systems. The 

scrambler adds a Pseudorandom Noise (PN) sequence to input symbols. And, the polynomial 

for the Pseudo-Random Binary Sequence (PRBS) generator is: 

11415 ++ xx                               (2.1) 

At the start of every eight transport packets, the PRBS registers shall be initiated to the 

sequence “100101010000000”. 

  

Figure 2.2(b) shows the scrambler in J.83B. The scrambler adds a PN sequence of 7-bit 

symbols over GF(128) to the input symbols to assure a random transmitted sequence. 

Initialization is defined as pre-loading to the “all one” state. The scrambler uses a linear 

feedback shift register specified by a GF(128) polynomial defined as follows: 

33)( α++= xxxf                           (2.2) 

Where: 

0137 =++ αα                            (2.3) 

 

The scrambler generator polynomial and initialization in J.83D are shown in figure 

2.2(c). The PRBS is generated in a 16-bit shift register that has nine feedback taps. Eight of 

the shift registers outputs are selected as the fixed randomizing byte (D7 D6 D5 D4 D3 D2 D1 

D0), where each bit from this byte is used to individually XOR the corresponding input data 

bit. The random generator polynomial is denoted as: 

136711121316 ++++++++ xxxxxxxx                 (2.4) 

Where initialization is defined as pre-load to F180h, indicating the registers of x16, x15, x14, x13, 

x9 and x8 will be loaded to 1 during the field sync interval. 

 

 The structure of de-scrambler is the same as scrambler since PRBS generator is 
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constructed by shift registers and all operations are XORS. 

 

2.2 Interleaving 

The main purpose of interleaving is to resist burst errors, which are induced in noisy 

channel. It rearranges the order of input data sequence. Generally, there are two kinds of 

techniques of interleaving. One is block interleaving, and the other is convolutional 

interleaving. However, convolutional interleaving has better ability to spread burst errors than 

block interleaving. 

 

The structure of (I, J) convolutional interleaver and deinterleaver based on Forney 

approach [8] and Ramsey type III approach [5] is shown in figure 2.3. The parameter I is the 

interleaving depth and is chosen to be larger than the maximum expected length of burst 

errors. It also represents that there are I branches in the structure of convolutional interleaving. 

The parameter J is usually chosen such that I x J should be larger than the decoding constraint 

length for convolutional codes. It also means that branch 0 has zero delays in convolutional 

interleaver. And, there are J shift registers in branch 1, 2J shift registers in branch 2, and son 

on, (I-1) x J shift registers in branch I-1. Convolutional de-interleaver has the inverse of this 

property. Hence, the memory requirement is J x I x (I-1) / 2 in both convolutional interleaver 

and deinterleaver. The total end-to-end delay is J x I x (I-1). This is half the required delay and 

memory in the block interleaving. 

 

The operation of convolutional interleaving is that at the start of the FEC frame, the input 

switch is initialized to the top-most branch. Then, the input switch is cyclically connected to 

the other branches as the valid symbols come in. So does the output switch. And, the input 

and output switches shall be synchronized. 
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Figure 2.3: Structure of (I, J) convolutional interleaving 

 

Taking (12, 17) convolutional interleaver for an example, this interleaver is adopted in 

J.83 annexes A, C and DVB-T systems. Assume the input sequence is 0, 1, 2, …, 204, 205, …, 

and so on. Where the number means the input timing index. And the output sequence will be 0, 

x, x, …, x, 12, x, x, …, x, 204, 1, x x, …, x, 2244, 2041, …, 11, and so on, as shown in figure 

2.4. Where x means “the don’t care symbols” at the beginning transmission. Hence, the burst 

errors will be spread out as the pseudo noise after deinterleaving. And, the data should be 

reordered to the original sequence after deinterleaving in receiver part. 
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.

 
 Figure 2.4: The output symbols in convolutional interleaver with I = 12, J = 17 

 

In J.83 annexes A, C, DVB-T and ATSC Digital TV system, the convolutional 

interleaving is with I = 12 and J = 17.  In J.83 annex D, the convolutional interleaving is with 

I = 52 and J = 4. The upper systems have only one dedicated parameters. However, the 

convolutional interleaving in J.83 annex B has lots of different modes to be operated. That is, 
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I can be 128, 64, 32, 16 and 8. J can be 1, 2, 3 ~ 7, 8 and 16. The most critical mode is with I 

= 128, J = 8. The detail information about specifications is in [1]. 

 

2.3 Reed-Solomon Codes 

Reed-Solomon codes have become the most important code of various types of 

error-control codes due to its superior capability for burst error correcting and the feasibility 

for digital implementation. Hence, RS codes are widely adopted in many data communication 

applications, such as digital TV system, compact disk (CD), and digital versatile disk (DVD). 

It is adopted in DVB-T, ITU-J.83 cable systems, too. A (N, K) RS codes over GF(2m) contain 

N coded symbols with K message symbols and can correct up to t = ⎣ N-K / 2 ⎦ errors. Note 

that each symbol over GF(2m) has m bits and all operations in RS codes are based on GF(2m) 

[11][12]. 

 

2.3.1 Reed-Solomon encoder 

Let (MK-1, MK-2, …, M1, M0) denote K message symbols that are to be transmitted. So 

the message polynomial: 

0121 KK −−
21)( MxMxMxMxM KK ++++= −− "                        (2.5)

And, there is a generator polynomial: 

)())(()( 121 −++ +++= thhh xxxxg ααα "                   (2.6) 

Where g(x) has the degree of 2t, h may be 0 or 1, and α is the primitive n-th root over 

GF(2m). Firstly, the message polynomial M(x) is multiplied by x2t and then divided by the 

generator polynomial g(x) to obtain a remainder polynomial R(x): 
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)()()()( 2 xRxgxqxxM t +=                        (2.7) 

01
22

22
12

12)( RxRxRxRxR t
t

t
t ++++= −

−
−

− "                 (2.8) 

Then, the codeword polynomial C(x) with the systematic form can be expressed as: 

)()()()()( 2 xRxxMxgxqxC t +==  

01
12

12
2

0
12

1 RxRxRxMxM t
t

tKt
K ++++++= −

−
−+

− …"      (2.9) 

 

The previous description of RS encoder can be implemented as the systematic feedback 

shift register encoder as shown in figure 2.5 [11][12], where G0, G1, …, Gr-1 is the coefficient 

of the generator polynomial. In first K cycles, it will output the message M(x). In last N-K 

cycles, it will output R(x). This forms the final codeword C(x). 

 

+ … ++

Input

Output
+

G0 G1 Gr-1G2

First K ticks closed
Last N - K ticks open

First K ticks down
Last N - K ticks up

 

Figure 2.5: The circuit of the systematic feedback shift register RS encoder 

 

For J.83 annex A and C, the (204, 188) RS codes over GF(28) are utilized for correcting 8 

errors. The code generator polynomial is denoted as: 

)())(()( 1510 ααα +++= xxxxg "                    (2.10) 

Where α represents the primitive element for the primitive polynomial: 

1)( 2348 ++++= xxxxxp                       (2.11) 
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For J.83 annex B, the RS encoder is utilized to implement a t = 3, (128, 122) extended 

RS codes over GF(27). The primitive polynomial used to form the filed over GF(27) is: 

1)( 37 ++= xxxp                           (2.12) 

And the generator polynomial is: 

)())(()( 521 ααα +++= xxxxg "                   (2.13) 

After C(x) is generated from equation (2.9), an extended parity symbol C_ is generated by 

evaluating the codeword at the sixth power of α and denoted as C_ = C(α6). This extended 

symbol is used to form the last symbol of a transmitted RS codeword. The extended codeword 

polynomial  is then as follows: )(ˆ xC

__)()(ˆ
0

5
4

6
0

127
121 CxRxRxMxMCxxCxC +++++=+= "      (2.14) 

 

(207, 187) RS codes with t = 10 over GF(28) are utilized for J.83 annex D. The generator 

polynomial g(x) is shown as follows: 

)())(()( 1910 ααα +++= xxxxg "                  (2.15) 

 

2.3.2 Reed-Solomon decoder 

Assume the received data polynomial is r(x), and error polynomial is e(x). That is: 

)()()( xexcxr +=                           (2.16) 

And, 

tvXeXeXexe vv ≤≤+++= 0,)( 2211 "                 (2.17) 

Where ei is the error value, Xi is the error location, and v is the error numbers. And, 

Reed-Solomon decoding process can be divided into four steps [4]: (1) syndrome calculator, 

(2) Key equation solver, (3) chien Search, and (4) error value evaluator, as shown in figure 

2.6. 
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The syndrome calculator calculates a set of syndromes from the received codewords. The 

key equation solver produces the error locator polynomial )(xσ  and the error value 

evaluator polynomial  from the syndromes. By the chien search and the error value 

evaluator, we can get the error locations and error values respectively. 

)(xΩ

 

error value
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Figure 2.6: RS decoding process 

 

In syndrome calculator, the syndromes are calculated as follows: 

h
vv

hhhh eeeerS Χ++Χ+Χ=== "22111 )()( αα  

11
22

1
11

11
2 )()( +++++ Χ++Χ+Χ=== h

vv
hhhh eeeerS "αα  

#  

1212
22

12
11

1212
2 )()( −+−+−+−+−+ Χ++Χ+Χ=== th

vv
thththth

t eeeerS "αα       (2.18) 

Since C(αh) = C(αh + 1) = … = C(αh + 2t - 1) = 0. Hence, the syndrome polynomial can be 

defined as: 
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2

2
222

1

2
111 "       (2.19) 

The equation (2.19) will be used later for calculating the error values ei, 0 ≤ I ≤ t. 

 

 For the extended RS codes in J.83B, the syndrome should be modified. Recall r(x) = 

; there are two cases discussed individually as follows: )(__)()()(ˆ xeCxxCxexC ++=+

(1) r0 is not an error, meaning r0 = C_.  

The decoding procedure is the same as the normal cases. 

(2) r0 is an error, meaning r0 = C_+e_. Then, 

_)()( 22111 eeeeerS h
vv

hhhh +Χ++Χ+Χ=== "αα  

_)()( 11
22

1
11

11
2 eeeeerS h

vv
hhhh +Χ++Χ+Χ=== +++++ "αα  

#  

_)()( 1212
22

12
11

1212
2 eeeeerS th

vv
thththth

t +Χ++Χ+Χ=== −+−+−+−+−+ "αα  (2.20) 

While , the error value e_ can be calculated to let the discrepancy  during 

solving key equation by Berlekamp-Massey algorithm that will be introduced later. 

tv ≤ 0)12( =∆ −t

 

The key equation is defined as follows: 

txxxSx 2mod)()()( σ=Ω                      (2.21) 

Where  is the error evaluator polynomial, and )(xΩ )(xσ  is the error locator polynomial. 
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The key equation can be solved by Euclidean algorithm or Berlekamp-Massey (BM) 

algorithm [11][12][19].  

 

An inversionless BM algorithm which is a 2t-step iterative algorithm is shown as follows 

[4]: 

Initial condition: 

1
)0()1()1()1( ;1)()(;1;0 SxxD =∆==== −−− τσδ                  (2.22) 

For (i = 0 to 2t-1) 

⎪⎩

⎪
⎨
⎧

+++⋅=∆
∆+⋅=

−+++
+

−−

)(
2

)(
11

)(
02

)1(

)1()()1()( )()()(
i

tti
i

i
i

i
i

iiii

SSS
xxxx

σσσ
τσδσ
"                (2.23) 

 If (  or )  0)( =∆ i 12 )1( +≥− iD i

   )                            (2.24) ,)1()( −= ii DD ()( )1()( xxx ii −= ττ

)(i∆=δ

 else 

  ,                  (2.25) ,1 )1()( −−+= ii DiD )()( )1()( xx ii −= στ

Where  is the i-th step error locator polynomial and  is the coefficient of 

.  is the i-th step discrepancy and 

)()( xiσ )(i
jσ

)()( xiσ )(i∆ δ  is the previous discrepancy.  is an 

assisting polynomial and  is an assisting degree variable in i-th step. 

)()( xiτ

)(iD

 

And the modified inversionless BM algorithm with some differences in initial conditions 

can be shown as follows [4]: 

⎪⎩

⎪
⎨
⎧

≤≤∆+⋅
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= −
−

−

−

t1for       ,
0for                       ,
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1
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0)(

j
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i
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i
i

j τσδ
σδ

σ               (2.26) 

⎩
⎨
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+
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+

t  1for      ,
0for                                ,0

)(
13

)1(
1

)1(

jS
j

i
jji

i
j

i
j σ               (2.27) 

Where  is the coefficient of  and  is the partial results in computing )(i
jτ )()( xiτ )(i

j∆ )(i∆ . 
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Besides, if σ(x) is first obtained, from the key equation and the Newton’s identity we could 

derive  as follows: )(xΩ

⎪⎩

⎪
⎨
⎧

≤≤⋅+Ω
=⋅

=Ω
+−−

+

i jS
jS

jji
i
j

ii
j   1for      ,

0  for                    ,

1
)(
1

01)(

σ
σ

               (2.28) 

These modified inversionless BM equation will be adopted in our proposed multi-mode key 

equation solver because of its regularity. 

 

The alternative algorithm of key equation solver is Euclidean algorithm. It can be 

summarized as follows: 

Initial condition: 

⎩
⎨
⎧

=Ω=Ω
==

−

−

)()(,)(
1)(,0)(

021

01

xSxxx
xx

t

σσ
                       (2.29) 

Do the following operation until deg{ )(xσ } > deg{ )(xΩ }: 

⎩
⎨
⎧

Ω+Ω=Ω
+=

−−−

−−−

)()()()(
)()()()(

112

112

xxqxx
xxqxx

iiii

iiii σσσ
                  (2.30) 

Where  is the i-th step error locator polynomial,  is the i-th step error evaluator 

polynomial, and q

)(xiσ )(xiΩ

i(x) is the i-th quotient polynomial generated in key equation. 

 

After solving the key equation, we find the roots of )(xσ  for error location X1, X2, …, 

Xv in chien search, where the roots of )(xσ  are . Hence, 11
2

1
1 ,,, −−−

vXXX " )(xσ  can be 

represented as: 

)1()1)(1()( 21 xXxXxXx v−−−= "σ                   (2.31) 

 

Then, using Forney algorithm to calculate error values in error value evaluator and 

together key equation and equation (2.19), we can get: 
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#  

)1()1)(1( 121 xxxe v
h
vv −Χ−Χ−Χ−Χ+ "                  (2.32) 

And, the former derivative of )(xσ  can be represented as: 

)1()1)(1(

)1()1)(1()(

312

321

xxx

xxx
dx

xd

v

v

Χ−Χ−Χ−Χ+

Χ−Χ−Χ−Χ=

"

"σ
 

#  

      )1()1)(1( 121 xxx vv −Χ−Χ−Χ−Χ+ "  

      
x

xodd )(σ
=                                          (2.33) 

Where )(xoddσ  is the odd parts of )(xσ . Hence, combine the equations (2.32) and (2.33), 

the error values can be calculated as follows: 

11

1

)(
)(

−−

−

′
Ω

= h
ii

i
i XX

Xe
σ

                            (2.34) 

Where )(xσ ′  is the formal derivative of )(xσ  over GF(2m). 

 

According to the error locations and error values solved from previous algorithm, we can 

correct the channel induced errors in received data and get the correct codeword. 

Unfortunately, if error numbers in one codeword are larger than t, we could not correct the 

received data. 

 

For more information about RS decoding process, please see [4] [11][12][19]. 
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2.4 Trellis Codes 

In a (n, k, m) Trellis code (or called convolutional code), the coded n-bit output block 

depends not only on the corresponding k-bit input message block, but also on the m previous 

message blocks. It can be implemented with an n-output, k-input linear sequential circuit with 

an input memory of m words. The advantage of the convolutional codes is that it allows the 

introduction of redundancy to improve the threshold Signal-to-Noise Ratio. 

 

Only J.83 annex B contains the trellis code. This trellis-coded modulator is a 16-state 

non-systematic rate 1/2 encoder with the generator: 

(G1, G2) = (25, 37octal) 

The punctured matrix proposed in [13] essentially converts the rate 1/2 encoder to rate 5/4. 

The punctured matrix is defined as: 

(P1, P2) = (0001, 1111) 

 

The internal structure of the punctured convolutional encoder is illustrated in figure 2.7. 
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Figure 2.7: Punctured binary convolutional codes in ITU-T J.83B 

 

The Viterbi algorithm proposed in 1967 is a straightforward implementation of the 

maximum likelihood (ML) decoder and is the most powerful and popular algorithm for 

decoding convolutional codes [14][15]. The following four steps are Viterbi algorithm, which 

can be applied to find the ML path: 

(1) According to the current received input datum, we calculate the transition metrics (TM) to 

the next transition states. 

(2) Sum the previous path metrics (PM) with the calculated TM and compare tow paths, 

which come from different states but merge at the same current state. Then, we select the 

path with the smallest distance. This operation is called ACS (Add-Compare-Select), and 

we use ACS unit for each state. 

(3) The output of the select branch in each state is stored into the memory, which is called 

“survivor path”. 

(4) Repeat (1), (2) and (3) until the memory of survivor path is full, then the output decision 

begins to trace-back the survivor path to find the output of the smallest path metrics (the 
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ML path). 

 

In practice, the register-exchange approach and trace-back approach are useful methods 

for survivor path storage management in Viterbi decoder architecture. The former one takes 

more area but less time than the latter one. We will use register-exchange method to 

implement the survivor path storage management in Viterbi decoder since the convolutional 

codes in J.83B has only 16 states and thus the number of registers required for this decoder is 

not quite large. The detail architecture of Viterbi decoder for J.83B will be introduced in 

chapter 3.4.2. 

 

2.5 Summary 

In this chapter, we introduce the encoding and decoding algorithm of each FEC section. 

It includes scrambler, interleaving, RS codes and convolutional codes. In chapter 2.1, three 

kinds of scrambler of J.83 are introduced. In chapter 2.2, both convolutional interleaver and 

deinterleaver are introduced. It has more advantage than block interleaving. In chapter 2.3, the 

encoding and decoding algorithm of RS codes is introduced. In RS decoding algorithm, two 

kinds of key equation solver are presented. One is BM algorithm, and the other is Euclidean 

algorithm. We also introduce three kinds of RS codes among J.83, one is over GF(27) with t = 

3, the others are in GF(28) with t = 8 and 10, respectively. In chapter 2.4, we introduce the 

convolutional codes and Viterbi algorithm. Fortunately, it has only one mode in J.83, that is, a 

16-state non-systematic rate 1/2 encoder with the generator: (G1, G2) = (25, 37octal). 
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Chapter 3  
Algorithm and Architecture for Multi - 
Mode FEC Decoder 

 
The algorithm and architecture of a multi-mode RS decoder with memories to store and 

correct the received data and a memory-based universal convolutional interleaver/ 

de-interleaver will be proposed in this chapter. These two modules are compatible for ITU-T 

J.83, DVB-T, ATSC Digital TV systems, etc. The scrambler and Viterbi decoder will be only 

mentioned briefly since the complexity of scrambler is so simple and there is only one kind of 

convolutional codes. 

 

3.1 The proposed multi-mode FEC decoder 

Figure 3.1 shows the block diagram of the proposed multi-mode FEC decoder. It 

integrates all systems from figure 2.1 into one system. The symbols A/B/C/D represent the 

annex A/B/C/D in ITU-T J.83. The different data paths between J.83 annex B and annex 

A/C/D are decided by multiplexer. 
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Figure 3.1: The proposed multi-mode FEC decoder 

 

3.2 Memory-based universal convolutional interleaver/ 

de-interleaver 

It is not efficient for implementing so many pieces of FIFO in convolutional interleaver 

or deinterleaver since it consumes lots of power, area and induces routing difficulty in APR 

(Auto Placement and Route). Hence, a better solution is to use SRAM to solve these problems. 

The key issue becomes how to generate the correct address of SRAM for each input and 

output data. As a result, a novel, low complexity, high flexibility and memory-based method 

to implement the multi-mode convolutional interleaver and deinterleaver is proposed, which 

is induced from [6][7]. 
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3.2.1 The algorithm and architecture of memory-based universal convolutional 

interleaving 

The idea is that we rebuilt the FIFO registers of convolutional deinterleaver as a memory 

array. Assume the FIFO registers in first branch are put in somewhere of the memory array, 

and the FIFO registers in second branch are appended latter, and so on, until the last FIFO 

registers are appended. Hence, the memory array is as shown in figure 3.2. For writing, we 

realize that after writing first symbol into the head of the memory array, the next symbol 

should be written into the head of the second branch, i.e., the address distance of memory 

between first symbol and second symbol is (I-1) x J. The values are the same as the numbers 

of the FIFO in first branch. Hence, we call this “branch address”. And the address for first 

symbol is called intra-initial address. For the third symbol, the address distance of memory 

between second symbol and third symbol is (I-2) x J. And so on, the address distance of 

memory between (I-2)-th symbol and (I-1)-th symbol is 2J. In contrast to write, the first 

readout symbol should be in the end of the first branch in memory array. The second readout 

symbol should be in the end of the second branch, i.e., the address distance between first 

symbol and second symbol is (I-2) x J. Similarly, the address distance between second symbol 

and third symbol is (I-3) x J. And so on, the address distance between (I-2)-th symbol and 

(I-1)-th symbol is J. For the coincidence of writing and reading direction, the initial address 

pointer should be decreased by 1 for the next I symbols. Then, do the previous operation 

again. In addition, the memory size should be defined. If the memory address is out of the 

memory size, it should modulo the address by the memory size. 
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Figure 3.2: The memory array by rebuilding the FIFO registers of deinterleaver 

 

A (12, 17) convolutional deinterleaver which is adopted in ITU-T J.83A, C and DVB-T 

system will be taken for an example to show how it works. Assume the datum we received are 

0, x, x, …, x, 12, x, x, …, x, 204, 1, x, x, …, x, 2244, 2041, …, 11, …, as shown in figure 2.4. 

Where the number means the input indexes from interleaver, and x means “don’t care 

symbols” at the beginning. When deinterleaving, after writing 0 to memory, the interval 

between 0 and the next writing address is (I-1) x J = 187 as shown in figure 3.3(a). The 

interval between previous address and the next address is (I-2) x J = 170, and so on, until to 2J 

= 34. These numbers are the same as the numbers of FIFO on branches of convolutional 

deinterleaver. When writing 12 to the memory, it needs go back to the address of “initial 

writing address-1” and does the previous operation again. After writing 202 into the memory, 

the data stored in memory is like in figure 3.3(b). Then we can see that the distance between 0 

and 1 is (I-2) x J = 170. The distance between 1 and 2 is (I-3) x J = 153, and so on. The 

distance between 9 and 10 is J = 17. At this time, the memory size in figure 3.3(b) is J x I x 

(I-1) / 2, just the same as the minimum memory requirement in figure 2.3. Because there is no 

more space to write 2244 into memory, so it must increase more memory sizes. Or it will 

violate the rules. By the observation, it needs more J memory size. As shown in figure 3.3(c), 
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when 0 is read out from memory, 2244 is written into memory. And, 1 is read out, 2041 is 

written to the original position of 0. Then, do the previous operation again. In addition, when 

the address is out of the memory size, it must modulo the address by the memory size. Hence, 

the required memory size is J x I x (I-1) / 2 + J. The maximum size is 65032 bytes for (128, 8) 

convolutional deinterleaver in J.83B. We realize that it just needs more 8 bytes than the 

original structure and has the advantage of low cost and high flexibility for multi-mode 

design. 

 

01224... . . . XX XX204 1

187

. . .
187

(I-1)xJ
170

(I-2)xJ

 
(a) 

187 170 17
0122436...220822202232 113...200520172029 2220225 . . . ...

(I-1)xJ (I-2)xJ J

109

 

(b) 

2244

187 170 17
012...22202232 113...20172029 22202. . . ...9 10

 

(c) 

Figure 3.3: Behavior of the novel algorithm for (12, 17) convolutional deinterleaver 
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The detail operations of universal convolutional deinterleaver are described as pseudo 

codes in figure 3.4, where there are 12 parameters that we used:  

(1) I: Interleaver depth 

(2) J: The difference delays between each neighboring branch 

(3) in: data input. 

(4) out: data output. 

(5) w_addr: The writing address for memory input. 

(6) r_addr: The reading address from memory to output 

(7) w_ini_addr: The intra-initial address of w_addr. 

(8) r_ini_addr: The intra-initial address of r_addr. 

(9) branch_addr: This is the address between 2 neighboring data. 

(10) counter: For determining when to output directly and reset w_addr and r_addr. 

(11) mem_bound: Maximum size of memory 

(12) mem[ ]: It represent the memory and the size is mem_bound. 

 

Convolutional interleaver which is the inverse of convolutional deinterleaver can be 

easily formulated, too. 
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Initial condition:
  w_addr = w_ini_addr = 0; branch_addr = (I-1)*J;
  r_addr = r_ini_addr = (I-1)*J; counter = 1;
  mem_bound = J*I*(I-1)/2 + J;

While ( in != NULL)
{
    if (counter == I )   /* In last branch, input will pass to output directly*/
    {
       out = in;
       branch_addr = (I-1)*J;        /* branch_addr goes back to initial condition */
       counter = 1; /* reset the counter */
       w_ini_addr = w_ini_addr - 1; /* reset the writing and reading address */
       r_ini_addr = r_ini_addr - 1;
       w_ini_addr = w_ini_addr mod mem_bound;            /* mod the address */
       r_ini_adr = r_ini_addr mod mem_bound;
       w_addr = w_ini_addr;       /* set writing address to w_ini_addr */
       r_addr = r_ini_addr;
    }
    else
    {
       out = mem[r_addr]; /* read out from memory */
       mem[w_addr] = in; /* write data into memory */
       w_addr = w_addr + branch_addr;
       branch_addr = branch_addr - J;
       r_addr = r_addr + branch_addr;
       w_addr = w_addr mod mem_bound; /* mod the address */
       r_addr = r_addr mod mem_bound;
       counter = counter + 1;
    }
}

 

Figure 3.4: Pseudo codes of universal convolutional deinterleaver 

 

The architecture of the proposed algorithm for convolutional interleaving is depicted in 

figure 3.5. FSM controls the branch address generator and the intra-initial address generator. 

Combining the branch address and intra-initial address together forms the final address for 

memory. 
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Figure 3.5: The architecture of the address generator for convolutional interleaving 

 

3.3 The multi-mode RS decoder 

To design a multi-mode RS decoder, at first, a finite field multiplier (FFM) for different 

finite field definition should be designed. Then, the four steps of RS decoding process [4] can 

be proceeded. As a result, in the sub-section, the multi-mode FFM will be proposed in the first. 

Then, the multi-mode syndrome calculator, key equation solver, chien search and error value 

evaluator will be proposed, respectively. The multi-mode RS decoder can be used in many 

applications, such as ITU-T J.83, DVB-T systems, etc. 
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3.3.1 Multi-Mode Finite Field Multiplier 

For different RS codes, the different primitive polynomial will cause a challenge to 

design a FFM. However, FFM can be split into multiply and modular operation respectively. 

The primitive polynomial only has an impact on modular operation. Therefore, the 

complexity of programmable design just lies in the modular operation. So, a multi-mode FFM 

is proposed as shown in figure 3.6, where pi(x) and pj(x) are different primitive polynomial 

over GF(2m) respectively.  
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Figure 3.6: Multi-mode FFM over GF(2m) 

 

3.3.2 Syndrome Calculator 

To calculate the syndromes, we can use Horner’s Rule: 

0321

01
1

1

))))((((
)(

uxuxuxuxu
uxuxuxuxu

nnnn

n
n

n
n

++++=
++++=

−−−

−
−

""
"

                (3.1) 

29 



+Rj Si

SCi

i
8α×

(a) 

+

m
u
x

mode

Rj Si

SC2i

i
8α×
i
7α×

 

(b) 

SC0 SC21 SC22 SC23 SC24

SC25 SC26 SC7 SC8 SC9

SC10 SC11 SC12 SC13 SC14

SC15 SC16 SC17 SC18 SC19
20

×8
 R

eg
ist

er
s

i

Si
Rj

mode

 
(c) 

Figure 3.7: Multi-mode syndrome calculator: (a) Basic cell SCi for GF(28). (b) Basic cell 

SC2i for dual mode purpose (GF(28) and GF(27)). (c) The overall structure of multi-mode 

syndrome calculator 

 

Hence, the basic cell to calculate the syndrome based on Horner’s Rule should be 

proposed at first. In the simulation platform of J.83, there are two kinds of finite field, the one 

is GF(28), the other is GF(27). Besides, the roots of the generator polynomial are from α0 to 

α2t-1 in J.83A, C and D. But in J.83B, the roots of the generator polynomial are from α1 to 

α2t-1. Hence, the two kinds of different basic cells SCi and SC2i are proposed as shown in 

figure 3.7(a)and (b). SCi is for GF(28); SC2i is for GF(28) and GF(27) which are decided by 
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the current mode. The architecture of multi-mode syndrome calculator is shown in figure 

3.7(c). For different specification, a specific group of cells will be chosen. For J.83 A and C, 

SC0, SC1, …, SC15 will be chosen. SC21, SC22,…, SC26 will be chosen in J.83B. All basic 

cells will be chosen for J.83D. 

 

Based on [9], moreover, the first t syndromes are equal to zeros implies all syndromes 

are zeros, which can simplify the error detection procedure. It not only improves the power 

consumption, but also reduces the complexity. 

 

3.3.3 Key Equation Solver 

To solve the key equation, Berlekamp-Massey algorithm is used due to its regular 

operation. For different t, it needs 2t iterations to find error locator polynomial σ(x). Base on 

the proposed multi-mode FFM and modified decomposed algorithm [4][9] mentioned in 

chapter 2.3.2, the architecture of multi-mode key equation solver is proposed as shown in 

figure 3.8. The computation of Ω(x) after σ(x) results in fewer multiplications and additions 

than the original BM algorithm. It includes only one key equation solver with three proposed 

multi-mode FFMs to calculate σ(x) and Ω(x) respectively. Hence, the hardware complexity is 

reduced. 
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Figure 3.8: Multi-mode key equation solver 

 

3.3.4 Chien Search 

Similar to syndrome calculator, for the different finite field (GF(27) and GF(28)) and the 

capability of error correction t, the two kinds of basic cells Ci and C2i are proposed for 

multi-mode chien search as shown in figure 3.9(a) and (b). Ci is designed only for GF(28). C2i 

is designed for GF(28) and GF(27). And the architecture of multi-mode chien search is 

depicted in figure 3.9(c). For different specifications, the sums of proper cells will be chosen. 

The sums of C20, C21, C22 and C23 are chosen for J.83B. The sums of C20, C21, C22, C23, C4 , 

C5, …, C8 are chosen for J.83A and C. The sums of C20, C21, C22, C23, C4 , C5, …, C10 are 

chosen for J.83D. And the cell of C2L calculates the current calculating location. If the sums 

are equal to zero, the location will be stored in the registers. 
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Figure 3.9: Multi-mode chien search. (a) Basic cell Ci for GF(28). (b) Basic cell C2i for dual 

mode purpose (GF(28) and GF(27)). (c) The overall structure of multi-mode chien search. 

 

3.3.5 Error Value Evaluator 

Based on Forney algorithm and assume βj is the j-th root of error locator polynomial. For 

J.83A, C and D, the error value: 
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j
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′

Ω
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For J.83B, the error value: 

)(
)(

j

j
ie

βσ
β

′
Ω

=                              (3.3) 

Based on the previous equations, the architecture of multi-mode error value evaluator is 

proposed as shown in figure 3.10. It will calculate σ’(βj) and Ω(βj) at the same time while the 

left multiplexer will choose βj
2 , the bottom multiplexer will choose βj. After calculating σ’(βj), 

σ’(βj) will multiply βj for J.83A,C and D. The block of “( )-1” is implemented by a table. In 

order to calculate the final error value, the bottom multiplexer will choose the upper path. 
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Figure 3.10: Multi-mode error value evaluator 

 

3.3.6 Memory structure to correct the RS codeword 

Based on the proposed architecture, the memory requirement is four times the codeword 

length because of the output latency. And, because of the output latency, memory structure is 

built as two interleaved structure to avoid accessing the same bank of memory in writing the 

current RS codeword and correcting the previous RS codeword at the same time, as shown in 

figure 3.11. The interleaved structure of memory is that packet 0 of RS codeword is written 

into bank 0 of memory, packet 1 is written into bank 1, packet 2 is written into bank 0, and 

34 



packet 3 is written into bank 1. Due to the output latency, we will know the error location and 

error value of RS codeword 0 until writing packet 3 into the memory. When correcting packet 

1 in bank 1, the packet 4 is written into bank 0, and so on. Hence, it avoids accessing the same 

memory bank at the same time. Based on this interleaved structure of memory, the memory 

requirement for multi-mode RS decoder is 752 bytes (two 188x2 bytes) since the maximum K 

is 188. 
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Figure 3.11: The operation of accessing memory in multi-mode RS decoder 

 

3.4 Other Components 

3.4.1 De-scrambler 

The circuit complexity of scrambler is so simple that it is suggested to use dedicated 

hardware for different annexes. Because of the property of “serial in serial out” in J.83A and 

C, we can transform the structure of scrambler into the one as shown in figure 3.12. The 
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transformed structure has the property of “symbol in symbol out”. Hence, the serial to parallel 

converter or parallel to serial converter can be omitted. The other annexes can be 

implemented as the original structure. 
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Figure 3.12: The transformed structure of scrambler in J.83A and C 

 

3.4.2 Viterbi Decoder 

Trellis coding is only included in J.83B. Using hard-decision Viterbi decoder with 16 

states can fit the requirement of ITU-T J.83B.  

 

We take register-exchange method as the architecture of survivor path storage 

management to realize the Trellis decoder since the convolutional codes in J.83B has only 16 

states and thus the number of registers required for this decoder is not quite large. According 

to this approach, we assign one register to each state. Each register records the decoded output 

sequence along the survivor path for each state, as shown in figure 3.13 [16]. The decoded 

output sequence stored in survival memory (SM) depends on the path of minimum sum of the 
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coming TM and the previous PM. At the last stage, we select the sequence content stored in 

the register of the state with minimum PM. 
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Figure 3.13: Register contents for register-exchange method 
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Figure 3.14: Architecture of register-exchange approach applied in SM unit. (a) Trellis 

diagram. (b) The connections of registers and multiplexers between each state. 

 

The implementation of register-exchange method is really simple. The connections of 

registers and multiplexers between each state are decided by Trellis diagram. Using the 

property of the structure of trellis diagram as shown in figure 3.14(a), it is shown that there 

are always two states having the same previous two states. And, the current SM will select the 
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minimum path of sum of the coming TM and the previous PM as the new decoded output 

sequence. Thus, decoding sequence of S0 and S1 must come from S0 and S2, and the 

connections can be represented by figure 3.14(b) [17].  

 

The other issue in Viterbi decoder is metric rescaling. In Viterbi algorithm, the path 

metric is unboundedly increasing as time goes by. To implement a trellis decoder, we have to 

limit the path metric within a finite numerical range so that it can be expressed with finite bits. 

There are several approaches to do rescaling, such as “Reset”, “Rescaling Subtraction”, 

“Shift”, and “Modulo Normalization”. Among these approaches, “Modulo Normalization”, 

witch is also called “Two’s Complement Arithmetic Approach” [18], is much more efficient 

than the other approaches and can be implemented by two’s complement arithmetic. 
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Figure 3.15: The upper bound of PM difference 

 

Before describing how two’s complement arithmetic approach works, we should know 

the upper bound of PM difference at first. Assume all survivor paths selected at time unit k 

come from the same state at time unit “k-L” as shown in figure 3.15. Then, the difference 

between any two PM must less than B x L, where B and L are maximum value of TM and 

truncation length respectively. 
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The key idea of the “Modulo Normalization” approach is not to avoid overflow, but to 

accommodate overflow. Even the overflow occurs; the PM differences are also preserved. 

This concept can be represented by figure 3.16. Suppose both M1 and M2 are positive real 

number and 1
21 2 −<− cMM , where c is the bit number of PM value, then m1 = M1 mod 2c 

and m2 = M2 mod 2c. Thus, m1 and m2 can be presented on half cycle without confusing their 

difference relationship. If , then M021 ≥− mm 1 > M2 and we can select the suitable survivor 

path. Note that both the add operation “PMnew = (PM+TM) mod 2c” and subtract operation 

“ ” can be realized with 2’s complement components. In principle, we achieve metric 

rescaling at the cost of one-bit penalty. However, such a method can avoid redundant 

rescaling operations or performance degradation due to metric overflow. 

21 mm −
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Figure 3.16: Illustration of Modulo Normalization 

 

After summarizing the architecture of register-exchange and the “Modulo 

Normalization” approaches, we can implement the trellis decoder by combining the following 

components: 

(1) TM: Compute all branch metrics from the received symbols. 

(2) ACS: Perform the “add-compare-select” operation for each state to update their path 

metrics, respectively. The block diagram is shown in figure 3.17. 
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(3) Metric Rescaling Unit: Confine all PM values to a finite range without losing their 

difference relationship. 

(4) SM: Record all decision result according to the choice of ACS unit and trace back the 

survivor path to find the oldest data as decoded bits. The block diagram is shown in figure 

3.18. 
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Figure 3.17: The ACS module used for Viterbi decoder 
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Figure 3.18: Survivor memory and trace back unit 

 

The overall implementation architecture of Viterbi decoding algorithm is shown in figure 
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3.19. Note that although the hard decision-making method is applied here, the soft 

demodulator decisions can result in a performance advantage over hard decision decoding, so 

the TM units and Metric Rescaling units could be re-designed according to what kind of 

demodulator used in this system. In parallel Viterbi decoder there are 2m ACS units and PM 

units for each state. The truncation length is an important issue to obtain a small probability of 

error. Typically, the required truncation length is approximately 10xm for 4/5 coding rate. In 

our case, 40 stages are required. The work of this part is referred to our lab’s IP which is 

implemented by Chia-Cho Wu. 
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Figure 3.19: Architecture of trellis decoder. 
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3.5 The memory consideration for test chip 

As mentioned above, the memory requirement of universal convolutional interleaving for 

ITU-T J.83B is about 64K bytes. And, the memory requirement for multi-mode RS decoder is 

752 bytes. Although 64K bytes memory is not so large, we still cannot embed the 64K bytes 

SRAM in the test chip due to the constraint of test chip area for academic research purpose. 

Hence, the 64K bytes memory will be taken as the external memory and only 752 bytes 

SRAM for RS decoder are embedded in the test chip. So, the system platform is modified as 

figure 3.20. 
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Figure 3.20: The system platform with memory consideration 
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3.6 Summary 

In this chapter, a multi-mode RS decoder with memories to store and correct received 

data and a memory-based universal convolutional interleaver and deinterleaver are proposed. 

Both of them have the advantage of low overhead, high flexibility to achieve multi-mode 

design and can be compatible with the standard of J.83, DVB-T and ATSC Digital TV, etc. 

The proposed multi-mode RS decoder can support the error correction capability with t = 3, 8 

and 10 over GF(27) and GF(28) respectively. BM algorithm is adopted for key equation due to 

its regularity instead of Euclidean algorithm. And, the proposed multi-mode RS decoder can 

be easily modified to meet the different requirement of different applications. In addition, the 

proposed universal convolutional interleaver and deinterleaver can support all kinds of 

parameters of convolutional interleaving. The parameter design in convolutional interleaving 

has the advantage for time-to-market. We also mention the implementing method for single 

mode scrambler and Viterbi decoder. Viterbi decoder takes register-exchange method as the 

architecture of survivor path storage management since the convolutional codes in J.83B has 

only 16 states and thus the number of registers required for this decoder is not quite large. For 

the memory consideration, due to the constraint of test chip area for academic research 

purpose, the 64K bytes memory for universal convolutional interleaving are taken as the 

external memory. 
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Chapter 4  
Simulation and Implementation Result 

 

The environment of simulation platform and the result of chip implementation will be 

shown in this chapter. And, the result of our proposed architecture and chip implementation 

will do some comparisons with other reference works. By the comparisons, it shows that our 

proposed architecture and chip has the advantages of low overhead, low power, and high 

flexibility to achieve multi-mode FEC decoder design. 

 

4.1 Platform and System design 

The design flow is illustrated in figure 4.1. Each block is defined as follows: 

(1) System platform simulation: 

At first, the system platform based on high-level language will do the simulation to 

verify the proposed algorithm. High-level simulation is very important to guarantee the 

functionality of the whole system before the hardware design. And, Matlab is chosen as the 

simulation environment since it has the advantages of simple usage and powerful functionality. 

In addition to the functional block of multi-mode FEC decoder for J.83 as shown in figure 3.1, 

the functional block of multi-mode FEC encoder for J.83 is included in the Matlab platform as 

shown in figure 4.2. The relationship between the multi-mode FEC encoder and decoder is 

depicted in figure 4.3. After encoding the test pattern, the noises will be added to the encoded 

data, where the noises should be within the capability of error correction. Furthermore, the 
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noisy encoded pattern should be recorded to a file for RTL simulation later. Then, the noisy 

encoded data are going to be fed to the multi-mode FEC decoder. The output data from the 

FEC decoder will compare to the original uncoded pattern. After verification of the proposed 

algorithm and, we can design the architecture and write the RTL code to do the RTL behavior 

simulation. 
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Figure 4.1: The design flow 

 

45 



mode

in

To QAM Mapper

Scrambler
A/C/D

RS Encoder
A/B/C/D

Interleaver
A/B/C/D

Scrambler
B

Trellis Encoder
B

M
U
X

M
U
X

 

Figure 4.2: FEC encoder in J.83 
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Figure 4.3: Simulation environment 

 

(2) Architecture and RTL simulation: 

The RTL code describes the system in hardware level. The architecture and circuit 
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should be defined according to the timing constraint at first before writing the RTL code. The 

architecture is mentioned in chapter 4. Here, Verilog is chosen as the hardware description 

language (HDL). The test bench stored from the Matlab platform should be used to check if 

the functionality of RTL coding is correct or not. We should note that the RTL simulation 

takes logic circuit as the ideal behavior. Hence, the gate level simulation is required after 

synthesis. 

 

(3) Synthesis and gate level simulation: 

After checking the RTL behavior simulation, we can do the synthesis and do the gate 

level simulation. By the aid of synthesis and gate level simulation, we can know the almost 

real logic gate delay and area of chip. Thus, the chip performance and area complexity can be 

estimated. If the timing or chip area cannot meet the specification requirement, we should go 

back to redesign the architecture. In addition, Synopsys® Design Analyzer is our synthesis 

CAD tool. And, the standard cell library is UMC® 0.18µm 1P6M CMOS technology. 

 

(5) Auto place and route (APR): 

After succeeding the gate level simulation, we should place and route the logic gate to 

layout. Because there are more problems in deep-submicron process, such as signal integrity, 

IR drop, wire delay, and so on, we should use the new CAD tool “Cadence® SOC Encounter” 

to handle the deep-submicron problem. After APR, we should use “Calibre® DRC/LVS” 

CAD tools to verify DRC (design rule check) and LVS (layout versus schematic) errors. Then, 

the postlayout-gate level simulation can be taken to simulate the prototype of the chip. If 

timing cannot meet the requirement of specification, we should go back to (2) to redesign the 

architecture. 

 

(6) Postlayout simulation: 
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Use “Calibre® LPE (Layout parameter extraction)” CAD tool to extract the parameters 

from layout, such as transistors, capacitances, resistors, and so on. After extraction, we can 

use “Nanosim” CAD tool to do postlayout simulation. The target of Nanosim is between 

SPICE and Verilog. It is a transistor-level timing simulator and power dissipation analysis tool 

for digital circuit design. Thus, it handles current, voltages simulations and timing checks. 

After verification of postlayout simulation, we can tape out the chip to fab. 

 

(7) Chip verification: 

Using IMS100 to verify the chip in CIC®. The test pattern is generated from the system 

platform and gate level or postlayout simulation. In addition to verification, the power 

consumption of the chip will be measured at the same time. 

 

4.2 Chip integration and the results of chip implementation 

As mentioned in chapter 3, the memory requirement for universal convolutional 

deinterleaver is 65032 bytes. The chip area is limited due to academic research purpose. 

Hence, using it as the external-memory is a good solution. So, the simulation environment in 

gate level simulation and postlayout simulation will become the one as shown in figure 4.4. 

The 65032 bytes memory is used as the behavior model and does the simulation with the chip. 

Only 752 bytes memory for RS decoder are embedded in the test chip. As a result, for the chip 

verification, we will feed the data from the simulated external memory to chip instead of real 

external memory for convenience. 
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Figure 4.4: The chip connected with external memory 

 

Table 2: Summary of CHIP Implementation for J.83 FEC 

Technology UMC® 0.18 µm 1P6M CMOS process 

Chip size 1.89mm x 1.89mm 

Core size 1.28mm x 1.28mm 

Gate count 54.5K 

Embedded SRAM 752Bytes 

Supply voltage 1.8V 

Max operating frequency 83MHz (600Mbps) 

Average Power 

J.83 Annex A&C 
25.2mW @83MHz

3.6mW @7MHz 

J.83 Annex B in 

64QAM 

43.2mW @83MHz

5.4mW @7MHz 

J.83 Annex B in 

256QAM 

45mW @83MHz 

5.4mW @7MHz 

J.83 Annex D 
30.6mW @83MHz

4.5mW @7MHz 
 

49 



Table 2 shows the result and the measurement of the chip implementation. By 

implementing with UMC® 0.18µm 1P6M CMOS technology, the chip shows that the 

proposed multi-mode FEC decoder can work at 83MHz (600Mbps) while costs 54.5K logic 

gate counts, two 376x8 bits embedded dual-port SRAM and 65032 bytes external memory for 

de-interleaver with only 8 bytes overhead. In fact, 7 MHz has met the requirement of 

specification. And, the chip size is 1892 x 1892 µm2. The floor plan of chip is shown in figure 

4.5. The maximum power consumption is 45mW at 83MHz (5.4mW at 7MHz) with the 

supply voltage 1.8 volts for J.83B in 256QAM. For more detail about power consumption, 

please see table 2. It shows that our chip has the advantage of low power requirement. 
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Figure 4.5: The floor plan of the chip 
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The detailed gate counts of each module are listed in table 3, where trellis decoder 

contains two Viterbi decoders and the circuit of synchronization for FEC frame[1]. Table 3 

also shows the logic gate counts of RS Decoder in ITU-T J.83D which is the most complex 

RS code in ITU-T J.83. It shows that the proposed multi-mode RS decoder is only larger 

about 1.1K gate counts than that specified in J.83D. In other words, the proposed multi-mode 

RS decoder has only the overhead of 6% compare to the most critical mode. 

 

Table 3: Gate Count for each module 

Module Logic gate count 

Multi-Modes RS Decoder 19051 

Universal deinterleaver 8306 

Viterbi Decoder 9883 

Trellis decoder (contains 2 Viterbi Decoder) 24632 

Scrambler 1190 

Overall FEC Decoder 54542 

J.83D RS Decoder 17963 

 

Compare the proposed architecture for multi-mode RS decoder with other reference 

works as shown in table 4, although [10], [21] and [29] support only one mode, their gate 

counts or throughput rate are not better than the proposed work. Besides, compare the 

proposed memory-based universal convolutional deinterleaver with other people’s works, (12, 

17) convolutional deinterleaver in [10] requires memory size of 1280 bytes with two 128-byte 

RAM and four 256-byte RAM, that is, overhead is 158 bytes. In [21], (15, 17) convolutional 

deinterleaver needs 1829 bytes with 44 bytes overhead. For the proposed algorithm and 

architecture in the same convolutional deinterleaver, we only have the overhead of 17 bytes 

memory and a low complexity controller. Furthermore, in [21], and [10], they can only meet 
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for suitable standard using the same component, but the proposed multi-mode FEC decoder 

can be used in many standards, such as ITU-T J.83, DVB-T, ATSC Digital TV, etc. Hence, the 

proposed architecture has the advantage of low-overhead, high throughput rate and high 

flexibility to achieve multi-mode design. 

 

Table 4: Comparisons between the proposed architecture and other reference works 

 Proposed [21] [10] [29] 

Technology 0.18µm 0.6µm FPGA 0.25µm 

Mode Multi-mode Single-mode Single-mode Single-mode

m 7, 8 8 8 8 

t 3, 8, 10 16 8 8 
RS decoder 

Gate counts 19K   55K 

Mode Universal 
Single-mode

(15, 17) 

Single-mode 

(12, 17) 
 

Convolutional 

deinterleaving Memory 

overhead 
J, 1 ≤ J ≤ 17 44 bytes 158 bytes  

Throughput 600Mbps 73Mbps  600Mbps 

 

4.3 Summary 

The chip implementation of the proposed multi-mode FEC decoder is introduced in this 

chapter. With 0.18µm 1P6M CMOS technology, the implemented chip shows that the FEC 

decoder can work at 83MHz (600Mbps) while costs 54.5K gate counts and two 376x8 bits 

embedded duel-port SRAM. The chip size is 1.89mm x 1.89mm. And the average power 

consumption in full spec. mode is about 45mW at 83MHz. While running at 7MHz that meets 
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symbol rate of cable modem, the power dissipation is 5.4mW. Compare to other people’s 

work, the proposed architecture shows that it has the advantage of low-overhead, high 

throughput rate requirement and high flexibility to achieve multi-mode design.
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Chapter 5  
Conclusion and Future Work 
 
5.1 Conclusion 

In this thesis, a solution to design a multi-mode FEC decoder is proposed. It mainly 

contains a multi-mode RS decoder for different finite field and different capability of error 

correction with memories to store and correct received data and a memory-based universal 

convolutional interleaver/deinterleaver. Both of them have the advantage of low-overhead, 

and high flexibility to achieve multi-mode FEC design. And, this multi-mode FEC decoder 

can be adopted in J.83 cable modem system, DVB-T system, and so on. 

 

To design the multi-mode FEC decoder systematically, we began from the system view 

and built a high-level simulation platform by Matlab to verify the proposed algorithm and 

architecture at first. J.83 cable system is chosen as the simulated platform since it is the most 

complex system among those communication systems with the similar modules, such as 

DVB-T, J.83, ATSC Digital TV, and so on. Then, we construct the hardware architecture in 

RTL-level by Verilog. By implementing with UMC® 0.18µm 1P6M CMOS technology, the 

chip shows that the proposed multi-mode FEC decoder can work at 83MHz (600Mbps) while 

costs 54.5K logic gate counts, two 376x8 bits embedded dual-port SRAM and 65032 bytes 

external memory for de-interleaver with only 8 bytes overhead. And, chip size is 1.89mm x 

1.89mm. Compare to other related works, our proposed architecture has the advantage of high 

throughput rate, low-overhead and high flexibility to achieve multi-mode design to reduce the 

design cost. 
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5.2 Future Work 

As mentioned in chapter one, channel coding is a key module to minimize the effect of 

channel noise during data transmission, especially in wireless communications. For wireless 

communications in the future, designing an error control code to achieve Shannon bounds is 

more and more important. Those concatenated codes, such as FEC in J.83, will not meet the 

requirement of future wireless communications. 

 

Thus, the iterative decoding algorithm[22] is used to achieve Shannon limits more close. 

Both turbo codes[26] and LDPC (Low Density Parity Check) codes[23] adopt this idea of 

iterative decoding. Turbo codes were proposed in 1993. Turbo encoder usually comprises the 

parallel concatenation of two RSC (recursive systematic convolutional codes) and one 

interleaver to encode the information as shown in figure 5.1, where π means interleaver and x0, 

x1 and x2 are encoded datum. As the block length of interleaving increases, the performance of 

turbo codes is more close to Shannon bounds. Turbo codes has been adopted in third 

generation mobile systems, such as 3gpp and 3gpp2 systems since CDMA system needs a 

powerful error correction codes to increase the channel capacity. 

 

π

RSC

RSC

u x0

x1

x2
 

Figure 5.1: Turbo encoder 
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 On the other hand, LDPC codes were created in 1962 by Gallager, but were 

rediscovered in 1995, 1996[24][25]. LDPC codes are one kind of block codes but the parity 

check matrix is sparse compared to the traditional block codes. Same as the turbo codes, as 

the block length increases, the iterative decoding algorithm can achieve more near Shannon 

limits. And, the advantage of LDPC codes over turbo codes contains: 

(1) They do not require a long interleaver. 

(2) They have better block error performance. 

(3) Their error floor occurs at a much lower BER (Bit Error Rate). 

(4) Their decoding is not trellis based, so they are suitable for high throughput rate 

requirement due to its parallel characteristic. 

 

Due to the above advantage, the next generation wireless communications are 

considering using LDPC codes as their error control codes instead of turbo codes, such as 

UWB (ultra wide band) system and DVB-S2 for high reliability and high throughput rate 

requirement. The decoding algorithm and the performance of LDPC codes can be seen in 

Appendix-A. 
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Appendix-A 
Decoding algorithm of LDPC codes 
 

The decoding algorithm of LDPC codes is called iterative Sum-Product Algorithm (SPA), 

or message passing (MP) algorithm, belief propagation (BP) algorithm. The behavior of MP 

algorithm for LDPC codes can be expressed a bipartite graph for parity check matrix H as 

shown in figure A.1. The message of variable node and function node pass to each other 

iteratively.  

 

X 1 X 3X 2 X 5X 4 X 6 X 7

f B
f A f C

Variable
node

Function 
node

X1X2 X3 X4X5 X6 X7X1X2 X3 X4X5 X6 X7
fA

fB

fC

 1 1 1 0 1 0 0
 1 1 0 1 0 1 0
 1 0 1 1 0 0 1

H =
 

Figure A.1: The message passing on bipartite graph of LDPC codes 

 

To explain SPA to decode LDPC codes, we have some notations defined for parity check 

matrix H at first. We denote the set of bits n that participate in check m by N(m)≣{n : Hmn = 

1}. Similarly, we define the set of checks m in which bit n participates, M(n)≣{m : Hmn = 1}. 

We denote a set N (m) with bit n excluded by N (m) \ n. And, the algorithm has two parts, in 

which quantities qn→ m and rm→ n associated with each nonzero element in the H matrix are 

iteratively updated. The quantity  is meant to be the probability that bit n has the value 

x, given the information obtained via checks other than check m. The quantity  is meant 

x
mnq →

x
nmr →
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to be the probability of check m being satisfied if bit n is considered fixed at x and other bits 

have a separable distribution given by the probabilities {qn’→ m: n’∈ N (m)\ n}. SPA is 

summarized as follows. 

Initialization: 

)|0(0
nnn rxPp == ,           (A.1) 01 1)|1( nnnn prxPp −===

0
mnq →  and  are initialized to the values  and , respectively, such that H1

mnq →
0
np 1

np mn=1 

0
nmr →  and  are initialized to zeros. 1

nmr →

 

Horizontal step (check-node update): 

We run through the checks m and compute for each n ∈ N (m) probability . It is the 

probability of the observed value of z

x
nmr →

m arising when xn = x, given that the other bits {xn’: n’ ≠ 

n} have a separable distribution given by the probabilities . x
mnq →

∏∑
∈

→
∈

→ ×∈==
nmNn

x
mn

nmNnx
nnmnm

n

n

qnmNnxxzPr
\)('

'
}\)(':{
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})\)(':{,0|(     (A.2) 

∏∑
∈

→
∈

→ ×∈==
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\)('

'
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1 '

'

})\)(':{,1|(         (A.3) 

A particularly convenient implementation of (A.2) and (A.3) is described in [27]. 

 

Vertical step (variable-node update): 

 The vertical step takes the computed values of  and updates the values of the 

probabilities . 

x
nmr →

x
mnq →

∏
∈

→→ =
mnMm

nmnmnmn rpq
\)('

0
'

00 α               (A.4) 

∏
∈

→→ =
mnMm

nmnmnmn rpq
\)('

1
'

11 α             (A.5) 

where αmn is chosen such that , we also compute the “pseudo-posterior 110 =+ →→ mnmn qq
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probabilities”, given by 

∏
∈

→=
)(

000

nMm
nmnnn rpq α                       (A.6) 

∏
∈

→=
)(

111

nMm
nmnnn rpq α              (A.7) 

where αn is chosen such that . These quantities are used to create a tentative 

decoding . 

110 =+ nn qq

∧

x

 

Decision: 

If , , else . Then, check: if , terminate the decoder and 

 is the decoding result. Otherwise, go to the horizontal step and do decoding iteratively. A 

failure is declared if some maximum number of iteration occurs. 

5.01 >nq 1
^

=nx 0
^

=nx 0
^

=×
T

xH

^
x

Thus, we can realize that decoded message have errors when maximum number of 

iteration is reached and syndrome check is still failed. Convolutional codes and turbo codes 

do not have this characteristic. 

 

In SPA described above, there are so many multiplier operations. To reduce the 

complexity, we can use log domain to represent the received information. By doing this, the 

operation of multiplier after log domain transformation will become addition. Hence, define 

our message as posteriori log-likelihood-ratio (LLR): 

)|1(
)|0(ln)(

nn

nn
n rxP

rxPxL
=
=

=             (A.8) 

For AWGN channel, the value of L (xn) is equal to -2 rn /σ2 when 0 mapping to –1 and 1 

mapping to +1, where σ2 is the noise variance. Furthermore, define the LLRs: 

 1

0

ln)(
mn

mn
nmn q

qx
→

→
→ =λ ,   1

0

ln)(
nm

nm
nnm r

rx
→

→
→ =Λ      (A.9) 

We call “SPA in the LLR domain” as LLR-SPA, and it is summarized as follows. 
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Initialization: 

 For every position (m, n) such that Hmn = 1,  

 )()( nnmn xLx =→λ  

  0)( =Λ → nnm x

 

Horizontal step (check-node update): 

 From [22] and [28], we can translate equations (A.2), (A.3) and (A.9) together into the 

following equation, 

]}2/)(tanh[{tanh2)( ''\)('

1
nmnnmNnnnm xx →∈

−
→ Π=Λ λ        (A.10) 

Obviously, the complexity of equation (A.10) is too high. Hence, we can use the following 

approximation to reduce the complexity. 

Use the parity-check node constraint 0)...( 21 =⊕⊕⊕
dcnnn xxx , where N (m)=(n1, n2, …, 

ndc). And we obtain the simplified expression of equation (A.10),  

    )()( 11 "" ⊕⊕⊕=Λ +−→ ninininim xxLx , i = 1, 2, 3, …, dc    (A.11) 

Now, the core operation becomes L(U♁V). It can be simplified by using the following 

equation [22]: 

  |])(||,)(min[|)]([)]([1ln)( )()(

)()(

VLULVLsignULsign
ee

eVUL VLUL

VLUL

⋅=
+

+
=⊕

+

 

           (A.12) ]1ln[]1ln[ )|()(|)|()(| VLULVLUL ee −−+− +−++

where  is the dominant factor. We can discard 

the remaining part with the penalty of the performance degradation or do some approximation 

to lower the loss of performance. The details in different kinds of approximation can be seen 

in [28]. 

|])(||,)(min[|)]([)]([ VLULVLsignULsign ⋅

 

Vertical step (variable-node update): 

 Equations (A.4) and (A.5) can be translated into the following equation in LLR domain, 
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∈
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Besides, compute the LLR of the “pseudo-posterior probabilities”: 

∑
∈

→Λ+=
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)()()(
nMm

nnmnnn xxLxλ           (A.14) 

(A.13) can be rewritten as  

 )()()( nnmnnnmn xxx →>− Λ−= λλ           (A.15) 

 

Decision: 

 If , else . Then, check: if , terminate the decoder 

and  is the decoding result. Otherwise, go to the horizontal step and do decoding iteratively. 

A failure is declared if some maximum number of iteration occurs. 

0,0)(
^

=≥ nnn xxλ 1
^

=nx 0
^

=×
T
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^
x

 

We simulate a rate 1/2 (1008, 504) irregular LDPC codes with the reduced complexity 

LLR-SPA over AWGN channel and BPSK modulation, where “irregular” means all rows and 

columns are not of uniform weight and the parity check matrix is referenced from [28]. The 

performance is shown in figure A.2 with different iterations. We can see that the performance 

is saturated at about 16 iterations. The larger the block length is, the more iteration numbers 

for performance saturation is required. 
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Figure A.2: The performance of rate 1/2 (1008, 504) irregular LDPC codes by 

reduced-complexity LLR-SPA over AWGN channel 
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