ZEREE S A G R AR R
C R

A Memory Based Multi-Standard FEC Decoder Design

B oy 4. 2R (Yi-Chen Tseng)
IRy 2487 K (Prof Chen-YiLee)

Hr & N e 4 = & A4

el s AR S BT B D R B

A Memory Based Multi-Standard FEC Decoder Design

Foyod i uiR Student : Yi-Chen Tseng
R 38y Advisor : Chen-Yi Lee
Bl Zo,il ~ F
TFIME T FREY AT LT
AR G ®
A Thesis

Submitted to Institute of Electronics
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in

Electronics Engineering
June 2004

Hsinchu, Taiwan, Republic of China

PEARAL, L ER

G AN S R D R E R

" FRRFY- SRR N AR

BT D AN AT - R e 0 v L R 2§ A4 E (scrambler) -
24847 R 4045 (Reed-Solomon=coding) » < 45% (interleaver)fr:® *& 545 (trellis coding) °
$H i o AR 0y B EE D RSB € 1 R ke A R B3
RFEEP Ffon FREEOIFERIREFLLMFBELFED R DR Fo 8 TR
Nen B BB ET MR 24P 5 3 [TU-T J. 83 en@ s ficdy 4 Sux ¥ ¥ 4p 3 3
Bl R HAe ATSC S TALSE h i e APk n s R B Sl a] 1 2B ELR
r- MERMAEEE (L PR LT R RS B Rl AR =
a A A B Al X ff f2 2 4 F(convolutional de-interleaver) » ' & 3 M| f 7 o

P F A angEd o (.18 ek IPEMCMOS ®| AR Fen b~ NF & 5§ 4 F BB4E
Rz 6+ et » V8 B 5 Boie it 5 -7 i 3] 83MHz(600Mbps) e iE4f
Fo T3o i K b A fe R B RN 2 A 83MHz 2 3 TEHE T < X E_45mW; Ak &k

P2 T LABRE T 0 TS F < 0.4l e

A Memory Based Multi-Standard FEC Decoder Design

Student: Yi-Chen Tseng Advisor: Chen-Yi Lee

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

ABSTRACT

Forward Error Correction (FEC) which ‘mostly contains scrambler, Reed-Solomon
coding, interleaving, and trellis coding is a key: component in communication system. For the
performance and complexity issues, design.parameters are different in various applications. In
this thesis, a multi-standard FEC décoder is presented to meet different system requirements
with a power and area efficient architecture. The proposed multi-standard FEC decoder is
fully compliant to ITU-T J.83 cable modem system and is also compatible to DVB-T and
ATSC Digital TV, etc. The proposed multi-standard FEC decoder, including a multi-mode
Reed-Solomon decoder with memories to store and correct the received data and a
memory-based universal convolutional interleaver with a simple address generator, has the
advantage of lowest overhead. With 0.18um 1P6M CMOS technology, the implemented chip
shows the FEC decoder can work at 83MHz (600Mbps) while costs 54.5K gate counts and
two 376x8 bits embedded duel-port SRAM. The average power consumption in full spec.
mode is about 45SmW at 83Mhz. While running at 7MHz that meets symbol rate of cable

modem, the power dissipation is 5.4mW.

* at

\z:u

o ESEEL - TR T LRMLD BV EES

LR 0 B PSR S A

o Fr Rl A E X2 T 2%

KL H o FFEEL

1m}

ARL e ipERRTE
oyél"—}\‘.

NN
¥

c“-!

TP EEHEE Y S e R I FEP
KBB4~ SI29 %3 0 e raeY A2 R E 7 R EHw-ICDesign {7
BBIE L FE R T sk nd - B R AET 0 A A R iRk g

FIEPR AL o L - M 4T e E{o Si2 & B f ol o

Contents

CHAPTER 1 INTRODUCTION. ...ttt e e e e e e ens 1
1.1 MOTIVATION ..ottt et e e e e e e et eeaee e e e e e e taea e aeeeeeee et aanenaaaseeeseeesnnnnaaaseeesane 1
1.2 INTRODUCTION TO THE PLATFORM ...ttt et e e e e e et eeeeeeeaeeeeeaaeeeeaaaeeeeaaeeeennns 1
1.3 THESIS ORGANIZATION ..ottt eeeeeeeeeeeeeeeeeeeeeaeeeeeeeeeseeeeaenaaeseeeeesaaennnaaeseeeseranennaaaens 3

CHAPTER 2 ALGORITHM OF FEC .. .o ettt e e 5
2.1 SCRAMBLER. ..ottt e e e oottt e e e e et e e e e et aeeaeeeeeeeeeaanaaaeseeeeeeeannnns 5
2.2 INTERLEAVING «.eveeee s i i e b ittt e s afe i e ettt e et e et e e e te e e e et e e eaesenneeennas 8
2.3 REED-SOLOMON CODESooi e e et e e e e e e e eeeeeeaaeeeeaeees 10

2.3.1 Reed-SOLOMON CUCOAETcc.oooeeeeeeeeeee ettt 10
2.3.2 Reed-S0lomOn deCOETccoveeeeeeeeeeeeeeeeeee et 12
24 TRELLIS CODES .ttt ettt e e e e e e e e e e e e e e e e eeaae e e ea e e e e eeaaeeeeneaeeeennaaaees 18
2.5 SUMMARY ettt ee e e e e e e e et e eeeeeeeeeeeaaaeaaaesseeeeeeaasnnaaasseeserearnnnaaaasseeaeans 20

CHAPTER 3 ALGORITHM AND ARCHITECTURE FOR MULTI - MODE FEC

[L OO] 5] TR 21
3.1 THE PROPOSED MULTI-MODE FEC DECODERcceuuiitieieeeeeeeeee e e eeeeeeeeeenaeaees 21
32 MEMORY-BASED UNIVERSAL CONVOLUTIONAL INTERLEAVER/ DE-INTERLEAVER 22

3.2.1 The algorithm and architecture of memory-based universal convolutional
IEEFLOAVITIGoeeee ettt ettt e ettt e et e et ee et eeentaeeensaeennneens 23

33 THE MULTI-MODE RS DECODER.......cetuueeeeeee ettt e e e e e eeeaeeeeeeaeeeeeenaeeeeeenaaaees 28

3.3.1 Multi-Mode Finite Field Multiplier.................c...cccocoovoiiiiiiiiiiiieiieeeiieeeieen, 29
3.3.2 Syndrome CalculQror.................cccccoociiviiiiiiiiiiiiiiiiieeee e 29
3.3.3 Key EQUALION SOIVEFcccceeeieiiieieeeee e 31
3.3.4 CRICT SOAVCH. ... ettt 32
3.3.5 Er107 VAlue EVQIUQIOF «......ccooeeeeeeeeeeeeeeeeeeeeee et 33
3.3.6 Memory structure to correct the RS codeword................cccccoccvveniinocnccncenne. 34

34 OTHER COMPONENTS ..ttt eeeeeeeeeeeeeeeeeeeeeaeneaaeeseeeseteaeenaaeseesesseannaaesseeeereennnnaaness 35
3.4.1 DO-SCHAMBLOE ..o ettt e et e e e e e 35
3.4.2 VIEOUDT DOCOUECT ...ttt 36

3.5 THE MEMORY CONSIDERATION FOR TEST CHIP ...euueeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeeaaeees 42
3.6 SUMMARY ettt e e i e et e e e e e e e e et aeeeeeeeereaeanaaaeseeeaeae 43
CHAPTER 4 SIMULATION AND IMPLEMENTATION RESULT ... 44
4.1 PLATFORM AND SY ST EM D E SN . . o i et e ettt e e e e e e et eeeeeeeeeeeeeanaeaaeeaeeeee 44
4.2 CHIP INTEGRATION AND THE RESULTS OF CHIP IMPLEMENTATIONcevvueeeeieeeeeeeenaeanes 48
4.3 SUMMARY ettt ee e e e e e e e et e eeeeeeeeeeeaaaeaaaesseeeeeeaasnnaaasseeserearnnnaaaasseeaeans 52
CHAPTER 5 CONCLUSION AND FUTURE WORK ...t 54
5.1 CONCLUSION ettt ettt e e e e et e e e e e e e e et e raaeeeeeeeeaa e aaeseeeeataaeaaaeseeeeereannnnannees 54
5.2 FUTURE WORK .ottt et e et e e te e et ee e e e s eae e et e et e s eaesennesennaas 55
BIBLIOGRAPHY ..ottt ettt ettt e st e e ettt e et et eeee et ee st st eeeeeseessrbnrereeeees 57
APPENDIX-A DECODING ALGORITHM OF LDPC CODES. ... 60

il

List of Figures

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:

Figure 3.7:

(a) FEC in ITU-T J.83 annexes A, C and D. (b) FEC in ITU-T J.83 annex B......... 5

Scrambler in (a) J.83A, C and DVB-T system. (b) J.83B. (c) J.83D.........cccueene.e. 6
Structure of (I, J) convolutional interleaving.............cccceeviieiieniienieniieieneeeee 9
The output symbols in convolutional interleaver with [=12, J =17cce....... 9
The circuit of the systematic‘feedback shift register RS encoder-.............ccc....... 11
RS decoding PrOCESS ... ivuetarad st ekt i aitheeveereeeeveereessneesaessseeseessseesaessseesseensns 13
Punctured binary convolutional'ecodes in ITU-T J.83Bcccccceeviniiniiiniienne. 19
The proposed multi-mode FEC decoder .«:..........ooovveviiiiiiiiieiieiecieeeeeee 22
The memory array by rebuilding the FIFO registers of deinterleaver 24
Behavior of the novel algorithm for (12, 17) convolutional deinterleaver............ 25
Pseudo codes of universal convolutional deinterleaver.............cccccoecirniiniienenne 27
The architecture of the address generator for convolutional interleaving 28
Multi-mode FEM 0vVer GF(2™).....c.cviviuiiiieeicieieeeceeeeeeeeeeeee et 29
Multi-mode syndrome calculator: (a) Basic cell SCi for GF(2%). (b) Basic cell

SC2i for dual mode purpose (GF(2% and GF(2")). (c) The overall structure of

multi-mode syndrome calculator............cveviieiiiiiiieiiecii et 30

Figure 3.8:

Figure 3.9:

Multi-mode key equation SOIVETc.c.eeiuieiiiiiieiiieiee e 32

Multi-mode chien search. (a) Basic cell Ci for GF(2%). (b) Basic cell C2i for dual

mode purpose (GF(2% and GF(2")). (¢) The overall structure of multi-mode chien search.

iii

Figure 3.10: Multi-mode error value evaluator............ccveeiieiiieriieniiecie e 34
Figure 3.11: The operation of accessing memory in multi-mode RS decoder 35
Figure 3.12: The transformed structure of scrambler in J.83A and Ccccoevveviveveenennen. 36
Figure 3.13: Register contents for register-exchange method...........cccccoeceeviiiiiiniiiiinennen. 37

Figure 3.14: Architecture of register-exchange approach applied in SM unit. (a) Trellis

diagram. (b) The connections of registers and multiplexers between each state. 37
Figure 3.15: The upper bound of PM difference...........ccceccveeviieriieiiieniieieeieeeeee e 38
Figure 3.16: Illustration of Modulo Normalizationccccceeiiiiiiiiiieiiinieeieecee e, 39
Figure 3.17: The ACS module used for Viterbi decoder..........cccceevieviieiiiniieiieeieeeeeeene, 40
Figure 3.18: Survivor memory and trace back unit...........c.ccoceviiiiniiniiiinininceccee 40
Figure 3.19: Architecture of trellis d@COdET.cuu ieiiiiiieiieieeeeeee e 41
Figure 3.20: The system platform with memory:-consideration.............ccceeveeverviereeneecuenenn 42
Figure 4.1: The design flOW........cc.... i vormmmrmmesss e sdasteseeenseeseesssessseesseesseessseesseessseessessssesnsees 45
Figure 4.2: FEC encoder in J.83 ... i i e sssiiie ittt ettt sttt 46
Figure 4.3: Simulation enVIrONMENT...........cceeriieiiierieeiieeereecreeeteeteeseeeseesaeesseessseeseessseensens 46
Figure 4.4: The chip connected with external memorycocceeviiiiieiiiniiienceee e, 49
Figure 4.5: The floor plan of the Chip.........cccoeviiiiiieiiiciicccce e 50
Figure 5.1: TUrbO @NCOAETooiiiiiiiiiieiie ettt ettt 55
Figure A.1: The message passing on bipartite graph of LDPC codes.........ccccoevvevvieriennnennnen. 60

Figure A.2: The performance of rate 1/2 (1008, 504) irregular LDPC codes by

reduced-complexity LLR-SPA over AWGN channelccooeieveiienieniiiinienieeeeee 65

v

List of Tables

Table 1: Comparison of different specification in FEC of ITU-T J.83ccccociviiiiniiniininnns 3
Table 2: Summary of CHIP Implementation for J.83 FECcccoeoviiviiiiiieiieieceeeeee 49
Table 3: Gate Count for each module............ccooiiiiiiiiiiiii e 51
Table 4: Comparisons between the proposed architecture and other people’s work................ 52

Chapter 1
Introduction

1.1 Motivation

In communication system, channel coding which uses various types of error correcting
algorithm and interleaving techniques is a key module to minimize the effect of channel noise
during data transmission. They can be summarized as the following four parts in most systems:
scrambler, Reed-Solomon (RS) coding; interleaving, and trellis coding. And different
applications have specific parameters to achieve an optimum system. Due to the similarity in
FEC sections, such as ITU-T J.83 [1], DVB-T [2], and Advanced Television Systems
Committee (ATSC) Digital TV [3], etc, a multi-mode FEC design will cause a lower cost
design and better system integrations. For the RS code, it is not easy to implement a decoder
that meets different finite field definitions and generator polynomials. Thus, each application
has its own dedicated hardware for RS decoding. Moreover, memory controller of interleaver
is also difficult to generate proper addresses for multi-standard. Hence, an efficient algorithm
and architecture for multi-mode design is an important issue and challenge to lower down the

design cost.

1.2 Introduction to the platform

In ITU-T J.83, DVB-T, and ATSC Digital TV, etc, there are some similarities in FEC
sections. However, ITU-T J.83 has the most kinds of modes than the other standards. Besides,
the FEC sections in DVB-T and ATSC Digital TV are also included in ITU-J.83. Hence,

ITU-T J.83 is chosen as the simulation plat form.

ITU-T J.83 is the digital multi-program systems for television, sound and data services
for cable network. There are four annexes (A, B, C, and D), which provide the specification of
J.83, including the frame structure, channel coding, and the method of modulation. A
comparison of FEC section in different annexes of ITU-T J.83 is listed in table 1. The FEC is
based on a concatenated coding approach that produces high coding gain at the moderate
complexity and overhead. For main modules, there are three modes in RS codes, various

parameters in convolutional interleayving, three kinds of scrambler and one trellis coding.

The main purpose of each FEC module.is.summarized as follows:

(1) Reed-Solomon coding-Provide ‘block enceding and decoding to correct up t symbols
within each RS block. It can slightly resist channel burst errors.

(2) Interleaving-Evenly spread the symbols by disordering the data sequence. It can protect
the transmitted data against channel burst errors from being sent to RS decoder.

(3) Scrambler-Randomize the data to allow effective modulation and prevent high PAPR
(Peak-to-Average Power Ratio) after IFFT (inverse fast Fourier transform for
OFMD-based systems). High PAPR will lower down the system performance. Scrambler
can prevent this situation from happening.

(4) Trellis coding-It is also called convolutional coding. By using Viterbi decoding algorithm
(maximum likelihood decoding on trellis), it has very good ability of error correction.
However, it is sensitive to channel burst errors. Hence, convolutional codes usually

collaborate with interleaver and RS codes.

The details of FEC algorithm, decoding architecture, and the result of chip

implementation will be described in later chapters, respectively.

Table 1: Comparison of different specification in FEC of ITU-T J.83

Item Annex B Annex A & C Annex D
T+x"+xPfor | 1+ x+X+x°+x"+x"+
x*+x+a®over
Scrambler 15-bits polynomial | x™+ x*®+ x™° for 16-bits
GF(2")
of the PRBS polynomial of the PRBS

(128,122) extended

Reed-Solom (204,188) RS codes (207,187) RS codes
RS codes over.
on coding oVer GF(28), t=28 over GE(2%), t= 10
GF(2"),t=3
Convolutional Conveolutional Convolutional

interleaving depth: | |-interleaving depth: | interleaving depth:

Interleaving
1=128,64,32,16,8 | I=12 =52
J=1,2,3,4,5,6,7,8,16 | J=17 J=4
Trellis Rate 4/5,
coding G=(25,370octal) None

with punctured

1.3 Thesis Organization

The organization of this thesis is as follows. In chapter 2, the algorithm of FEC will be

described, including the algorithm of FEC encoder and decoder. It contains scrambler,

3

interleaver, Reed-Solomon codes and convolutional codes. And, the proposed algorithms and
architectures of FEC for multi-standard will be addressed in chapter 3, which mainly contains
a multi-mode RS decoder with memories to store and correct the received data and a
memory-based universal convolutional interleaver and de-interleaver with a simple address
generator. Chapter 4 will show the result of the chip implementation, the simulation result and
will do some comparisons between other reference works and the proposed result. The last

chapter is the conclusion and the future work.

Chapter 2
Algorithm of FEC

First of all, the encoder and decoder of FEC will be introduced. In ITU-T J.83, it can be

divided into two main parts and composed of three or four processing layers. The first one is

shown in figure 2.1(a), including ITU-T J.83 annex A, C, and D. The other is shown in figure

2.1(b), including ITU - T J.83 annex B. The following sections will define and introduce the

algorithm of each layer in FEC.

in . o to modulation
—p| Scrambler _ RS Encoder > Interleaver >
(a)
n . ; I . o Trellis to modulation
) RS Encoder e | Interleaver =y SCrambler |__,) Encoder

(b)

Figure 2.1: (a) FEC in ITU-T J.83 annexes A, C and D. (b) FEC in ITU-T J.83 annex B

2.1 Scrambler

The basic idea of scrambler is to randomize the transmitted data to provide the even
distribution of the symbols in the constellation and to ensure adequate binary transitions for

clock recovery.

Iggztﬁtgn 1 001 01 0 1 0 0O0UO0UO0TUO0UO
1121341516 7]18]|9]10({11|12]|13|14(15
aca
— D—' Data output
Enable
Data Input 10111000 XXXXXXXX
(BS)HEX
(a)
-1 -1 -1 7, 7
/. 77— Z 7
Data out
7
T Data in
(b)
Do D! D? D3 D* D’ DO D’
(c)

Figure 2.2: Scrambler in (a) J.83A, C and DVB-T system. (b) J.83B. (c) J.83D

Figure 2.2(a) shows the scrambler in J.83 annexes A, C and DVB-T systems. The
scrambler adds a Pseudorandom Noise (PN) sequence to input symbols. And, the polynomial
for the Pseudo-Random Binary Sequence (PRBS) generator is:

x4+ x4 (2.1)
At the start of every eight transport packets, the PRBS registers shall be initiated to the

sequence “100101010000000™.

Figure 2.2(b) shows the scrambler in J.83B. The scrambler adds a PN sequence of 7-bit
symbols over GF(128) to the input symbols to assure a random transmitted sequence.
Initialization is defined as pre-loading to the “all one” state. The scrambler uses a linear
feedback shift register specified by a GF(128) polynomial defined as follows:

flx)=x ¥4 a’ (2.2)
Where:

a1 =0 (2.3)

The scrambler generator polynomial and initialization in J.83D are shown in figure
2.2(c). The PRBS is generated in a 16-bit shift register that has nine feedback taps. Eight of
the shift registers outputs are selected as the fixed randomizing byte (D’ D° D° D* D* D* D!
D), where each bit from this byte is used to individually XOR the corresponding input data
bit. The random generator polynomial is denoted as:

O X T Hx X x4l (2.4)
15 14 _13

Where initialization is defined as pre-load to F180y, indicating the registers of X16, X, X, X7,

x” and x* will be loaded to 1 during the field sync interval.

The structure of de-scrambler is the same as scrambler since PRBS generator is

constructed by shift registers and all operations are XORS.

2.2 Interleaving

The main purpose of interleaving is to resist burst errors, which are induced in noisy
channel. It rearranges the order of input data sequence. Generally, there are two kinds of
techniques of interleaving. One is block interleaving, and the other is convolutional
interleaving. However, convolutional interleaving has better ability to spread burst errors than

block interleaving.

The structure of (I, J) convolutional interleaver and deinterleaver based on Forney
approach [8] and Ramsey type III approach [5] 1s shown in figure 2.3. The parameter I is the
interleaving depth and is chosen to be larger than the maximum expected length of burst
errors. It also represents that there areil branches. in the structure of convolutional interleaving.
The parameter J is usually chosen such:that I xJ'should be larger than the decoding constraint
length for convolutional codes. It also means that branch 0 has zero delays in convolutional
interleaver. And, there are J shift registers in branch 1, 2J shift registers in branch 2, and son
on, (I-1) x J shift registers in branch I-1. Convolutional de-interleaver has the inverse of this
property. Hence, the memory requirement is J x I x (I-1) / 2 in both convolutional interleaver
and deinterleaver. The total end-to-end delay is J x I x (I-1). This is half the required delay and

memory in the block interleaving.

The operation of convolutional interleaving is that at the start of the FEC frame, the input
switch is initialized to the top-most branch. Then, the input switch is cyclically connected to
the other branches as the valid symbols come in. So does the output switch. And, the input

and output switches shall be synchronized.

De-Interleaver
. . HENE

— - \ / | \
1 symbol % -3
per position : 12
-1 EIEBE . o1

Figure 2.3: Structure of (I, J) convolutional interleaving

N B O

Taking (12, 17) convolutional interleaver for an example, this interleaver is adopted in
J.83 annexes A, C and DVB-T systems. Assume the input sequence is 0, 1, 2, ..., 204, 205, ...,
and so on. Where the number means the input timing index. And the output sequence will be 0,
XX, ..., X 12,X,X, ..., X,204, 1, x X, ..., X, 2244, 2041, ..., 11, and so on, as shown in figure
2.4. Where x means “the don’t care symbols’* at.the’beginning transmission. Hence, the burst
errors will be spread out as the:pseudo noise after deinterleaving. And, the data should be

reordered to the original sequencé.after deinterleaving in receiver part.

2244 2040 600 ...420 408 396 ...216 204 192... 12 O
2041 1837 , ., 397...217 205193 ... 13 1 [X ... X X
1838 1634 94...14 2 |xX...X X X...X X

X... X X X... X X
406 ... 226 214|202 ... 22 10
203...28 11|X ... X X

Figure 2.4: The output symbols in convolutional interleaver with [=12, J =17

In J.83 annexes A, C, DVB-T and ATSC Digital TV system, the convolutional
interleaving is with [= 12 and J = 17. In J.83 annex D, the convolutional interleaving is with
I = 52 and J = 4. The upper systems have only one dedicated parameters. However, the

convolutional interleaving in J.83 annex B has lots of different modes to be operated. That is,

9

I can be 128, 64,32, 16 and 8. J can be 1, 2, 3 ~ 7, 8 and 16. The most critical mode is with I

=128, J = 8. The detail information about specifications is in [1].

2.3 Reed-Solomon Codes

Reed-Solomon codes have become the most important code of various types of
error-control codes due to its superior capability for burst error correcting and the feasibility
for digital implementation. Hence, RS codes are widely adopted in many data communication
applications, such as digital TV system, compact disk (CD), and digital versatile disk (DVD).
It is adopted in DVB-T, ITU-J.83 cable systems, too. A (N, K) RS codes over GF(2™) contain
N coded symbols with K message symbols and can correct up to t = N-K / 2 | errors. Note
that each symbol over GF(2™) has m bits and all'‘operations in RS codes are based on GF(2™)

[11][12].

2.3.1 Reed-Solomon encoder

Let (Mk.1, Mk, ..., Mj, My) denote K message symbols that are to be transmitted. So

the message polynomial:
M(X)=M, x""+M x>+t Mx+M, (2.5)

And, there is a generator polynomial:

h+1

gx)=(x+a")(x+a"")(x+a") (2.6)
Where g(x) has the degree of 2t, h may be 0 or 1, and « is the primitive n-th root over
GF(2™). Firstly, the message polynomial M(x) is multiplied by x*" and then divided by the

generator polynomial g(x) to obtain a remainder polynomial R(x):

10

M (x)x™ = q(x)g(x)+R(x) 2.7)
R(x)=R,, x* " + R, , x>+ + Rx+R, (2.8)
Then, the codeword polynomial C(x) with the systematic form can be expressed as:
C(x) = g(x)g(x) = M (x)x* + R(x)

=M, X o M XY+ R, X + L+ Rx+ R, (2.9)

The previous description of RS encoder can be implemented as the systematic feedback
shift register encoder as shown in figure 2.5 [11][12], where Gy, Gy, ..., Gy is the coefficient
of the generator polynomial. In first K cycles, it will output the message M(x). In last N-K

cycles, it will output R(x). This forms the final codeword C(x).

T First K ticks closed
Last N - K ticks open

©h

Output
..} oo o a

First K ticks down
Last N - K ticks up
Input

Figure 2.5: The circuit of the systematic feedback shift register RS encoder

For J.83 annex A and C, the (204, 188) RS codes over GF(2®) are utilized for correcting 8
errors. The code generator polynomial is denoted as:
gX)=(x+a’)x+a')--(x+a®) (2.10)
Where a represents the primitive element for the primitive polynomial:

p(x)=x"+x*+x’ +x> +1 (2.11)

11

For J.83 annex B, the RS encoder is utilized to implement a t = 3, (128, 122) extended
RS codes over GF(2"). The primitive polynomial used to form the filed over GF(2) is:
p(x)=x"+x’ +1 (2.12)
And the generator polynomial is:
gX)=(x+a)Y x+a®) - (x+a) (2.13)
After C(x) is generated from equation (2.9), an extended parity symbol C_is generated by
evaluating the codeword at the sixth power of @ and denoted as C_ = C(« °®). This extended

symbol is used to form the last symbol of a transmitted RS codeword. The extended codeword

polynomial é(x) is then as follows:

C(x)=xC(x)+C_ =M, x"7 ++Mx*+Rx*+Rx+C_ (2.14)

(207, 187) RS codes with t =10 bver GF(2%).are-utilized for J.83 annex D. The generator
polynomial g(x) is shown as follows:

g@)=x+a”)xta") - (x+a") (2.15)

2.3.2 Reed-Solomon decoder

Assume the received data polynomial is r(x), and error polynomial is e(x). That is:
r(x)=c(x)+e(x) (2.16)
And,

e(x)=e X, +e, X, +-+e, X, ,0<v<t (2.17)

Where ¢€; is the error value, X; is the error location, and v is the error numbers. And,
Reed-Solomon decoding process can be divided into four steps [4]: (1) syndrome calculator,
(2) Key equation solver, (3) chien Search, and (4) error value evaluator, as shown in figure

2.6.

12

The syndrome calculator calculates a set of syndromes from the received codewords. The
key equation solver produces the error locator polynomial o(x) and the error value

evaluator polynomial Q(x) from the syndromes. By the chien search and the error value

evaluator, we can get the error locations and error values respectively.

S(x) Key

Syndrome /
Calculator ﬁ Equation
Solver

Q (x)

error value
Error Value '
a alO

error location

S, =r(@")=e(a")=e X +e,Xh +---+e X!

S, =r(@")=e(@") = X" +e, X"+ + e XM

S2t — r(ah+21—l) — e(ah+2t—1) — eleH—Zt—l + eZXg+2t—l Feeet evxiHZt—l (2.18)

Since C(a™ =C(a™ "y =...=C(a" ") = 0. Hence, the syndrome polynomial can be

defined as:

13

S(x) =S8, +S,x+-+8, x>

=e, X! (1+X,x+X7x> +--+ X7 'x*)

+e, XA+ X, x +Xox + -+ X7 7%

h 2.2 2t-1__2t-1
+e, X (I+X x+ X x"+--+ X" x77)

_eXI1-(X0)*) | eXi=(X0) | eXi1=(X,0")
I-X,x I-X,x 1-X x

(2.19)

The equation (2.19) will be used later for calculating the error values e;, 0 <1<t

For the extended RS codes in J.83B, the syndrome should be modified. Recall r(x) =
é(x) +e(x) =xC(x)+C __ +e(x); there are two cases discussed individually as follows:

(1) 1o is not an error, meaning ro =€ ,
The decoding procedure is the same as the normal Cases.

(2) 1o is an error, meaning ro = C “#+e. ~Then,

S =r(@"=e(@=eX"+e, X"+ +eX"+e
1 1 1 2 2 v v —

S, =r(@™)=e(@"M)=e, X" +e, X0+t e, X +e

S2t :r(athZl—l) :e(athZt—l) :eIX;‘HZt—l +62Xg+2t—1 +“.+evX:j+2t—l +e_ (2.20)

While v <t¢, the error value e can be calculated to let the discrepancy A”™" =0 during

solving key equation by Berlekamp-Massey algorithm that will be introduced later.

The key equation is defined as follows:
Q(x) = S(x)o(x)mod x* (2.21)

Where Q(x) is the error evaluator polynomial, and o(x) is the error locator polynomial.

14

The key equation can be solved by Euclidean algorithm or Berlekamp-Massey (BM)

algorithm [11][12][19].

An inversionless BM algorithm which is a 2t-step iterative algorithm is shown as follows
[4]:
Initial condition:
DV =0;6 =107 (x) =" (x) =;,AY = 5, (2.22)
For (1=0to 2t-1)

{O‘U) (x)=0- o (x)+ AV x 7 (x)

A = Sia- O'él) + S+1O-11) ++S8,,,0 t(l) (223
If(A” =0 or 2DV >i+1)
DV = DU gDy = x 780) (2.24)
else
DY =i+15D" N =AY (%) =" (x) (2.25)

Where o(x) is the i-th step error;locator polynomial and o’ is the coefficient of

o (x). A” is the i-th step discrepancy and & is the previous discrepancy. 7 (x) is an

assisting polynomial and D' is an assisting degree variable in i-th step.

And the modified inversionless BM algorithm with some differences in initial conditions

can be shown as follows [4]:

o _ {5 o), for j =0

O, . 2.26
/ §-o' T+ A, forl<j<t (2.26)
for j =0
A(lJrl) _
A(’“) +8, a0, forl<j<t 227)

Where 7\’ is the coefficient of 7'”(x) and A} is the partial results in computing A”.

15

Besides, if o(x) is first obtained, from the key equation and the Newton’s identity we could

derive Q(x) as follows:

Qv =

J

(2.28)

(i) .
QY +S, ,,-0;, forl<j<i

{Sm -0y, for j=0

These modified inversionless BM equation will be adopted in our proposed multi-mode key

equation solver because of its regularity.

The alternative algorithm of key equation solver is Euclidean algorithm. It can be
summarized as follows:

Initial condition:

{0_1 (x)=0,0°(x)=1

Q' (=X, Q%) = S(x) (229)
Do the following operation until.deg{ o (x) } > deg{ (x) }:

o'ly) 165G 1o () 30

Q(N)=Q " ()+q" (x)Q" (x)

Where o'(x) is the i-th step error locator polynomial, Q'(x) is the i-th step error evaluator

polynomial, and q'(x) is the i-th quotient polynomial generated in key equation.

After solving the key equation, we find the roots of o(x) for error location X;, Xo, ...,
Xy in chien search, where the roots of o(x) are X l_l,X 5 L X N '. Hence, o(x) can be

represented as:

o(x)=(1-X,x)(1- X,x)-(1-X,x) (2.31)

Then, using Forney algorithm to calculate error values in error value evaluator and

together key equation and equation (2.19), we can get:

16

Q(x) = S(x)o(x)mod x>
=, X} (1-X,x)(1-X3x)---(1- X x)
+e, X5 (1-X,x)(1-X;x)-+-(1-X,x)

+e, X" (1-X,x)(1-X,x) -+ (1-X,_,x) (2.32)

And, the former derivative of o(x) can be represented as:

do(x)
dx
+X,(1- X, x)(1 = X x) (1 - X x)

= X, (1= X,0)(1 - X;0)-+(1- X,)

+ X, 1-Xx)(1-X,x)---(1-X,_,x)

_ O (X) (2.33)
X

Where o,,,(x) is the odd parts of o(x)=Hence, combine the equations (2.32) and (2.33),

the error values can be calculated as follows:

QEX)

ei = W (234)

Where o'(x) is the formal derivative of o(x) over GF(2™).

According to the error locations and error values solved from previous algorithm, we can
correct the channel induced errors in received data and get the correct codeword.
Unfortunately, if error numbers in one codeword are larger than t, we could not correct the

received data.

For more information about RS decoding process, please see [4] [11][12][19].

17

2.4 Trellis Codes

In a (n, k, m) Trellis code (or called convolutional code), the coded n-bit output block
depends not only on the corresponding k-bit input message block, but also on the m previous
message blocks. It can be implemented with an n-output, k-input linear sequential circuit with
an input memory of m words. The advantage of the convolutional codes is that it allows the

introduction of redundancy to improve the threshold Signal-to-Noise Ratio.

Only J.83 annex B contains the trellis code. This trellis-coded modulator is a 16-state
non-systematic rate 1/2 encoder with the generator:
(G1, G2) = (25, 37octa)
The punctured matrix proposed in J13] essentially.converts the rate 1/2 encoder to rate 5/4.

The punctured matrix is defined as:

(Py, Po)= (0001, H11)

The internal structure of the punctured convolutional encoder is illustrated in figure 2.7.

18

u1
puncture
A matrix
0001
Gl= (25 [[1 0 1 0 PN to QAM
Uo mapper
¢ D—e>Dr—>D—>D——@ p
o)
G2=37) []1 1 1 1 1]
Y 1111
u2

Figure 2.7: Punctured binary convolutional codes in ITU-T J.83B

The Viterbi algorithm proposed inml967:is a, straightforward implementation of the
maximum likelihood (ML) decoder and is-the most powerful and popular algorithm for
decoding convolutional codes [14][15]. The-following four steps are Viterbi algorithm, which
can be applied to find the ML path:

(1) According to the current received input datum, we calculate the transition metrics (TM) to
the next transition states.

(2) Sum the previous path metrics (PM) with the calculated TM and compare tow paths,
which come from different states but merge at the same current state. Then, we select the
path with the smallest distance. This operation is called ACS (Add-Compare-Select), and
we use ACS unit for each state.

(3) The output of the select branch in each state is stored into the memory, which is called
“survivor path”.

(4) Repeat (1), (2) and (3) until the memory of survivor path is full, then the output decision

begins to trace-back the survivor path to find the output of the smallest path metrics (the

19

ML path).

In practice, the register-exchange approach and trace-back approach are useful methods
for survivor path storage management in Viterbi decoder architecture. The former one takes
more area but less time than the latter one. We will use register-exchange method to
implement the survivor path storage management in Viterbi decoder since the convolutional
codes in J.83B has only 16 states and thus the number of registers required for this decoder is
not quite large. The detail architecture of Viterbi decoder for J.83B will be introduced in

chapter 3.4.2.

2.5 Summary

In this chapter, we introduce the encoding and decoding algorithm of each FEC section.
It includes scrambler, interleaving, RS.-codes-and convolutional codes. In chapter 2.1, three
kinds of scrambler of J.83 are introduced. In chapter 2.2, both convolutional interleaver and
deinterleaver are introduced. It has more advantage than block interleaving. In chapter 2.3, the
encoding and decoding algorithm of RS codes is introduced. In RS decoding algorithm, two
kinds of key equation solver are presented. One is BM algorithm, and the other is Euclidean
algorithm. We also introduce three kinds of RS codes among J.83, one is over GF(2") with t =
3, the others are in GF(2%) with t = 8 and 10, respectively. In chapter 2.4, we introduce the
convolutional codes and Viterbi algorithm. Fortunately, it has only one mode in J.83, that is, a

16-state non-systematic rate 1/2 encoder with the generator: (G, Gz) = (25, 37octal)-

20

Chapter 3
Algorithm and Architecture for Multi -
Mode FEC Decoder

The algorithm and architecture of a multi-mode RS decoder with memories to store and
correct the received data and a memory-based universal convolutional interleaver/
de-interleaver will be proposed in this chapter. These two modules are compatible for ITU-T
J.83, DVB-T, ATSC Digital TV systems, etc. The.scrambler and Viterbi decoder will be only
mentioned briefly since the complexity of scrambler is so simple and there is only one kind of

convolutional codes.

3.1 The proposed multi-mode FEC decoder

Figure 3.1 shows the block diagram of the proposed multi-mode FEC decoder. It
integrates all systems from figure 2.1 into one system. The symbols A/B/C/D represent the
annex A/B/C/D in ITU-T J.83. The different data paths between J.83 annex B and annex

A/C/D are decided by multiplexer.

21

From De-mapper
P
M Deinterleaver RS Decoder
u > A/B/C/D > A/B/C/D
Trellis Decoder & Descrambler 2
Synchronization > B P
B
* mode
mode *
¢ | Descrambler <
M A/C/D
out U
< X
<

Figure 3.1: The proposed multi-mode FEC decoder

3.2 Memory-based universal convolutional interleaver/

de-interleaver

It is not efficient for implementing so many pieces of FIFO in convolutional interleaver
or deinterleaver since it consumes lots of power, area and induces routing difficulty in APR
(Auto Placement and Route). Hence, a better solution is to use SRAM to solve these problems.
The key issue becomes how to generate the correct address of SRAM for each input and
output data. As a result, a novel, low complexity, high flexibility and memory-based method
to implement the multi-mode convolutional interleaver and deinterleaver is proposed, which

is induced from [6][7].

22

3.2.1 The algorithm and architecture of memory-based universal convolutional

interleaving

The idea is that we rebuilt the FIFO registers of convolutional deinterleaver as a memory
array. Assume the FIFO registers in first branch are put in somewhere of the memory array,
and the FIFO registers in second branch are appended latter, and so on, until the last FIFO
registers are appended. Hence, the memory array is as shown in figure 3.2. For writing, we
realize that after writing first symbol into the head of the memory array, the next symbol
should be written into the head of the second branch, i.e., the address distance of memory
between first symbol and second symbol is (I-1) x J. The values are the same as the numbers
of the FIFO in first branch. Hence, we call this “branch address”. And the address for first
symbol is called intra-initial address.4For'the third symbol, the address distance of memory
between second symbol and third symbol is (I-2) x J. And so on, the address distance of
memory between (I-2)-th symbel and (I-1)-th symbol is 2J. In contrast to write, the first
readout symbol should be in the end of the first branch in memory array. The second readout
symbol should be in the end of the second branch, i.e., the address distance between first
symbol and second symbol is (I-2) x J. Similarly, the address distance between second symbol
and third symbol is (I-3) x J. And so on, the address distance between (I-2)-th symbol and
(I-1)-th symbol is J. For the coincidence of writing and reading direction, the initial address
pointer should be decreased by 1 for the next I symbols. Then, do the previous operation
again. In addition, the memory size should be defined. If the memory address is out of the

memory size, it should modulo the address by the memory size.

23

De-Interleaver

Write Read Write
vy

I-D*J 1T-2)%] 2] J

Figure 3.2: The memory array by rebuilding the FIFO registers of deinterleaver

A (12, 17) convolutional deinterleaver which is adopted in ITU-T J.83A, C and DVB-T
system will be taken for an example to show how it works. Assume the datum we received are
0,x,X,....,X, 12, X, X, ..., X, 204, Iy X, X, myx,2244, 2041, ..., 11, ..., as shown in figure 2.4.
Where the number means the “input indexes from finterleaver, and x means “don’t care
symbols” at the beginning. When: deinterleaving, after writing 0 to memory, the interval
between 0 and the next writing address is (I-1) x J = 187 as shown in figure 3.3(a). The
interval between previous address and the next address is (I-2) x J = 170, and so on, until to 2J
= 34. These numbers are the same as the numbers of FIFO on branches of convolutional
deinterleaver. When writing 12 to the memory, it needs go back to the address of “initial
writing address-1"" and does the previous operation again. After writing 202 into the memory,
the data stored in memory is like in figure 3.3(b). Then we can see that the distance between 0
and 1 is (I-2) x J = 170. The distance between 1 and 2 is (I-3) x J = 153, and so on. The
distance between 9 and 10 is J = 17. At this time, the memory size in figure 3.3(b) is J x I x
(I-1) / 2, just the same as the minimum memory requirement in figure 2.3. Because there is no
more space to write 2244 into memory, so it must increase more memory sizes. Or it will

violate the rules. By the observation, it needs more J memory size. As shown in figure 3.3(c),

24

when 0 is read out from memory, 2244 is written into memory. And, 1 is read out, 2041 is
written to the original position of 0. Then, do the previous operation again. In addition, when
the address is out of the memory size, it must modulo the address by the memory size. Hence,
the required memory size is J x I x (I-1) / 2 + J. The maximum size is 65032 bytes for (128, 8)
convolutional deinterleaver in J.83B. We realize that it just needs more 8 bytes than the

original structure and has the advantage of low cost and high flexibility for multi-mode

design.
(I-1)xJ (1-2)xJ
- 187 > 10 >
20| ... [24]12] 0 | BRI
- 187 >
(a)
(I-1)xJ (-2)xJ J
- 187 | 346 > -—i—>»>
(2230 |0220[0208] ‘36‘24‘12‘ 0 2029 |2017|200s| ., [25[18[1] - -@202‘ \22\10\
(b)
<+—187 > 170 > <+—3i—>»>
2244 |2232|2220| ., (12| 0 2029‘2017 L. 1131 ‘ I 9 [202] ... 22|10
©)

Figure 3.3: Behavior of the novel algorithm for (12, 17) convolutional deinterleaver

25

The detail operations of universal convolutional deinterleaver are described as pseudo
codes in figure 3.4, where there are 12 parameters that we used:
(1) I: Interleaver depth
(2) J: The difference delays between each neighboring branch
(3) in: data input.
(4) out: data output.
(5) w_addr: The writing address for memory input.
(6) r_addr: The reading address from memory to output
(7) w_ini_addr: The intra-initial address of w_addr.
(8) r_ini_addr: The intra-initial address of r _addr.
(9) branch_addr: This is the address between 2 neighboring data.
(10) counter: For determining when‘to output directly and reset w_addr and r _addr.
(11) mem_bound: Maximum size of memory

(12) mem[]: It represent the memory and the size is mem bound.

Convolutional interleaver which is the inverse of convolutional deinterleaver can be

easily formulated, too.

26

Initial condition:
w_addr=w_ini_addr = 0; branch_addr = (I-1)*J;
r addr=r_ini_addr = (I-1)*]J; counter = 1;
mem_bound = J*I*(I-1)/2 + J;
While (in != NULL)
{
if (counter ==1) /* In last branch, input will pass to output directly*/
{
out = in;
branch addr = (I-1)*J; /* branch _addr goes back to initial condition */
counter = 1; /* reset the counter */
w_ini_addr=w_ini_addr - 1; /* reset the writing and reading address */
r ini_addr=r ini_addr- I;
w_ini_addr =w_ini_addr mod mem_bound; /* mod the address */
r ini_adr=r _ini_addr mod mem_bound;
w_addr=w _ini_addr; /* set writing address to w_ini_addr */
r addr=r _ini_addr;
}
else
{
out = mem[r addr]; /* read out from memory */
mem[w_addr] = in; /* write data into memory */
w_addr=w_addr + branch addr;
branch addr = branch_addr - J;
r_addr =r_addr + branch addr;
w_addr =w_addr mod mem_bound; /* mod the address */
r_addr =r_addr mod mem_bound;
counter = counter + 1;
}
§

Figure 3.4: Pseudo codes of universal convolutional deinterleaver

The architecture of the proposed algorithm for convolutional interleaving is depicted in
figure 3.5. FSM controls the branch address generator and the intra-initial address generator.
Combining the branch address and intra-initial address together forms the final address for

memory.

27

Read
intra-initial
address
A

A 4

< C e

D FF

Y

A
Read
branch
address

) 4
A
\ 4

Final read address

FSM = SRAM

Write Final write address

branch

address
A

D €

Y
A
A 4

»
>

v
Write
intra-initial
address

DFF —

\4
P < O Z

Figure 3.5: The architecture of the address generator for convolutional interleaving

3.3 The multi-mode RS decoder

To design a multi-mode RS decoder, at first, a finite field multiplier (FFM) for different
finite field definition should be designed. Then, the four steps of RS decoding process [4] can
be proceeded. As a result, in the sub-section, the multi-mode FFM will be proposed in the first.
Then, the multi-mode syndrome calculator, key equation solver, chien search and error value
evaluator will be proposed, respectively. The multi-mode RS decoder can be used in many

applications, such as ITU-T J.83, DVB-T systems, etc.

28

3.3.1 Multi-Mode Finite Field Multiplier

For different RS codes, the different primitive polynomial will cause a challenge to
design a FFM. However, FFM can be split into multiply and modular operation respectively.
The primitive polynomial only has an impact on modular operation. Therefore, the
complexity of programmable design just lies in the modular operation. So, a multi-mode FFM
is proposed as shown in figure 3.6, where pi(x) and pj(x) are different primitive polynomial

over GF(2™) respectively.

mode
A—>\
—
QL
N -
> % X C
S g
B—»
L >

Figure 3.6: Multi-mode FFM over GF(2™)

3.3.2 Syndrome Calculator

To calculate the syndromes, we can use Horner’s Rule:

_ n n—1
u(x)=u,x"+u, x" +--+ux+u,

3.1)

= ((u,x+u,)x+u, ,)x+u, ;))x+u,

29

R; + >D > Si

(a) (b)
[| | | I >
SCo SC21 SC22 || SC23 SC24
Y T & T & T 1 T &
mode—> ' ' ' ' ' > I
SC2s SC26 SCz SCs SCo g
‘r A ‘r A A A A %
R, > &
SCio SCn SCr12 SCi3 SCu4 S
Y EUTRY f
| I | I | >
SCi1s SCie SC17 SCis SCi9
G N, S S,

(c)
Figure 3.7: Multi-mode syndrome calculator: (a) Basic cell SCi for GE(2%). (b) Basic cell

SC2i for dual mode purpose (GF(2*) and GF(2")). (¢) The overall structure of multi-mode

syndrome calculator

Hence, the basic cell to calculate the syndrome based on Horner’s Rule should be
proposed at first. In the simulation platform of J.83, there are two kinds of finite field, the one
is GF(2®), the other is GF(2"). Besides, the roots of the generator polynomial are from o to
o™ in I.83A, C and D. But in J.83B, the roots of the generator polynomial are from o' to
ol Hence, the two kinds of different basic cells SC; and SC2; are proposed as shown in

figure 3.7(a)and (b). SC; is for GF(2%); SC2; is for GF(2*) and GF(2") which are decided by

30

the current mode. The architecture of multi-mode syndrome calculator is shown in figure
3.7(c). For different specification, a specific group of cells will be chosen. For J.83 A and C,
SCy, SCy, ..., SC;5 will be chosen. SC2;, SC2,,..., SC2¢ will be chosen in J.83B. All basic

cells will be chosen for J.83D.

Based on [9], moreover, the first t syndromes are equal to zeros implies all syndromes
are zeros, which can simplify the error detection procedure. It not only improves the power

consumption, but also reduces the complexity.

3.3.3 Key Equation Solver

To solve the key equation, Berlekamp-Massey algorithm is used due to its regular
operation. For different t, it needs 2t iterations to.find error locator polynomial 6(x). Base on
the proposed multi-mode FFM=and modified decomposed algorithm [4][9] mentioned in
chapter 2.3.2, the architecture of ‘multi-mode key €quation solver is proposed as shown in
figure 3.8. The computation of Q(x) after o(x) results in fewer multiplications and additions
than the original BM algorithm. It includes only one key equation solver with three proposed
multi-mode FFMs to calculate 6(x) and Q(x) respectively. Hence, the hardware complexity is

reduced.

31

Figure 3.8: Multi-mode key equation solver

3.3.4 Chien Search

Similar to syndrome calculator, for the different finite field (GF(27) and GF(2%)) and the
capability of error correction t, ‘the two kinds of ‘basic cells C; and C2; are proposed for
multi-mode chien search as shown in figure 3:9(a) and (b). C; is designed only for GF(2%). C2;
is designed for GF(ZS) and GF(2’). And the architecture of multi-mode chien search is
depicted in figure 3.9(c). For different specifications, the sums of proper cells will be chosen.
The sums of C2y, C2;, C2, and C25 are chosen for J.83B. The sums of C2y, C2, C2,, C23, C4,
Cs, ..., Cg are chosen for J.83A and C. The sums of C2y, C2;, C2,, C23, C4, Cs, ..., Cyp are
chosen for J.83D. And the cell of C2;, calculates the current calculating location. If the sums

are equal to zero, the location will be stored in the registers.

32

o modej

- bi
j :@—» b;
O,
Ci C2:
(a) (b)

mode
F AT A T S A
C20 21 C2 C23

YT L
/ @j_»

N
\@

+ 1 > 2 =07

| 8
Sy
v
| 108
Ca Cs Ces C7 Cs C2L > Registers —
C4 G5 c6 o7 o] 1 Thode
(©)

Figure 3.9: Multi-mode chien search. (a) Basic cell Ci for GF(2°). (b) Basic cell C2i for dual

mode purpose (GE(2%) and GF(2")). (c) The overall structure of multi-mode chien search.

3.3.5 Error Value Evaluator

Based on Forney algorithm and assume f;is the j-th root of error locator polynomial. For

J.83A, C and D, the error value:

_ QB

= 3.2
“= B8 G2

33

For J.83B, the error value:

. = B (3.3)

©d'(B)

Based on the previous equations, the architecture of multi-mode error value evaluator is
proposed as shown in figure 3.10. It will calculate 6°(5;) and €(f;) at the same time while the
left multiplexer will choose ﬂf , the bottom multiplexer will choose ;. After calculating ¢’(5)),
c’(;) will multiply g; for J.83A,C and D. The block of ““(y'” is implemented by a table. In

order to calculate the final error value, the bottom multiplexer will choose the upper path.

IS
()
mux

O 2k+1

B

Figure 3.10: Multi-mode error value evaluator

3.3.6 Memory structure to correct the RS codeword

Based on the proposed architecture, the memory requirement is four times the codeword
length because of the output latency. And, because of the output latency, memory structure is
built as two interleaved structure to avoid accessing the same bank of memory in writing the
current RS codeword and correcting the previous RS codeword at the same time, as shown in
figure 3.11. The interleaved structure of memory is that packet 0 of RS codeword is written

into bank 0 of memory, packet 1 is written into bank 1, packet 2 is written into bank 0, and

34

packet 3 is written into bank 1. Due to the output latency, we will know the error location and
error value of RS codeword 0 until writing packet 3 into the memory. When correcting packet
1 in bank 1, the packet 4 is written into bank 0, and so on. Hence, it avoids accessing the same
memory bank at the same time. Based on this interleaved structure of memory, the memory

requirement for multi-mode RS decoder is 752 bytes (two 188x2 bytes) since the maximum K

is 188.
Begin to
Correcting read out
Time for packet 1
Packet 1
t f
Packet O Packet 4
Bank 0
Packet 2

—\
Bank 1 | Packetl |~ 7
Packet3 |

- 1896

Figure 3.11: The operation of accessing memory in multi-mode RS decoder

ar ¥ o \ Ay
“ICorrect i‘rSQ "
“Timefor: Beginto
Packet 0 read out
packet O

3.4 Other Components

3.4.1 De-scrambler

The circuit complexity of scrambler is so simple that it is suggested to use dedicated
hardware for different annexes. Because of the property of “serial in serial out” in J.83A and

C, we can transform the structure of scrambler into the one as shown in figure 3.12. The

35

transformed structure has the property of “symbol in symbol out”. Hence, the serial to parallel
converter or parallel to serial converter can be omitted. The other annexes can be

implemented as the original structure.

Every cycle, it shifts 8 bits
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

110[{0]1|(0]21]0]|2]0]0f[0]O0OJ0O0|J0O]O0
8 bits ; ; ; ; i % % i
Z

8 bits 8 bits

Initialization
Sequence

Data output
Enable
Data Input:. (B8) XXXXXXXX

HEX

Figure 3.12: The transformed structure of scrambler in J.83A and C

3.4.2 Viterbi Decoder

Trellis coding is only included in J.83B. Using hard-decision Viterbi decoder with 16

states can fit the requirement of ITU-T J.83B.

We take register-exchange method as the architecture of survivor path storage
management to realize the Trellis decoder since the convolutional codes in J.83B has only 16
states and thus the number of registers required for this decoder is not quite large. According
to this approach, we assign one register to each state. Each register records the decoded output
sequence along the survivor path for each state, as shown in figure 3.13 [16]. The decoded

output sequence stored in survival memory (SM) depends on the path of minimum sum of the

36

coming TM and the previous PM. At the last stage, we select the sequence content stored in

the register of the state with minimum PM.

S0 100 1000 10000 100000
! NS AN A
S2 010 \x, 1110 // 10110 {1 \, 010110
$3 m [“1 1011 1] ﬁmon A o
T=1 T=2 T=3 T=4 T=5 T=6
Figure 3.13: Register contents for register-exchange method
‘;> ..“: _f;’» “
»| MUX |—» REG 71 o MUX | REG —l»
..... ,'I\ = T
. MUX | REG —»
T T ’
S2 P ~
."/.
o MUX | REG
. {I: _....-----"""“" S 2
S3
(a) (b)

Figure 3.14: Architecture of register-exchange approach applied in SM unit. (a) Trellis

diagram. (b) The connections of registers and multiplexers between each state.

The implementation of register-exchange method is really simple. The connections of
registers and multiplexers between each state are decided by Trellis diagram. Using the
property of the structure of trellis diagram as shown in figure 3.14(a), it is shown that there

are always two states having the same previous two states. And, the current SM will select the

37

minimum path of sum of the coming TM and the previous PM as the new decoded output
sequence. Thus, decoding sequence of SO and S1 must come from SO and S2, and the

connections can be represented by figure 3.14(b) [17].

The other issue in Viterbi decoder is metric rescaling. In Viterbi algorithm, the path
metric is unboundedly increasing as time goes by. To implement a trellis decoder, we have to
limit the path metric within a finite numerical range so that it can be expressed with finite bits.
There are several approaches to do rescaling, such as “Reset”, “Rescaling Subtraction”,
“Shift”, and “Modulo Normalization”. Among these approaches, “Modulo Normalization”,
witch is also called “Two’s Complement Arithmetic Approach” [18], is much more efficient

than the other approaches and can be implemented by two’s complement arithmetic.

Figure 3.15: The upper bound of PM difference

Before describing how two’s complement arithmetic approach works, we should know
the upper bound of PM difference at first. Assume all survivor paths selected at time unit k
come from the same state at time unit “k-L” as shown in figure 3.15. Then, the difference
between any two PM must less than B x L, where B and L are maximum value of TM and

truncation length respectively.

38

The key idea of the “Modulo Normalization” approach is not to avoid overflow, but to
accommodate overflow. Even the overflow occurs; the PM differences are also preserved.

This concept can be represented by figure 3.16. Suppose both M; and M, are positive real

number and |M —M 2| < 2", where c is the bit number of PM value, then m; = M; mod 2°

and my = M, mod 2°. Thus, m; and m, can be presented on half cycle without confusing their
difference relationship. If m, —m, >0, then M, > M, and we can select the suitable survivor
path. Note that both the add operation “PM,e, = (PM+TM) mod 2 and subtract operation
“m, —m,” can be realized with 2’s complement components. In principle, we achieve metric

rescaling at the cost of one-bit penalty. However, such a method can avoid redundant

rescaling operations or performance degradation due to metric overflow.

ma .
mi ‘\xncrease
Q
2¢1-1 1
_20-1

0

-1
A/decrease

Figure 3.16: Illustration of Modulo Normalization

After summarizing the architecture of register-exchange and the “Modulo
Normalization” approaches, we can implement the trellis decoder by combining the following
components:

(1) TM: Compute all branch metrics from the received symbols.
(2) ACS: Perform the “add-compare-select” operation for each state to update their path

metrics, respectively. The block diagram is shown in figure 3.17.

39

(3) Metric Rescaling Unit: Confine all PM values to a finite range without losing their
difference relationship.

(4) SM: Record all decision result according to the choice of ACS unit and trace back the
survivor path to find the oldest data as decoded bits. The block diagram is shown in figure

3.18.

ACS (Add-Compare-Select)

TM :Transition Metric
ACS:Add-Compare-Select
PM :Path Metric

SM :Survivor Memory

Figure 3.17: The ACS module used for Viterbi decoder

output bit

MUX MUX

T SMO j SM® J SME9)

SMO@, SM®, SME9,

16 states

l S|\/|(0)15 S|\/|(1)15 S|V|(39)15

H 40 decoding stages H

Figure 3.18: Survivor memory and trace back unit

The overall implementation architecture of Viterbi decoding algorithm is shown in figure

40

3.19. Note that although the hard decision-making method is applied here, the soft
demodulator decisions can result in a performance advantage over hard decision decoding, so
the TM units and Metric Rescaling units could be re-designed according to what kind of
demodulator used in this system. In parallel Viterbi decoder there are 2™ ACS units and PM
units for each state. The truncation length is an important issue to obtain a small probability of
error. Typically, the required truncation length is approximately 10xm for 4/5 coding rate. In
our case, 40 stages are required. The work of this part is referred to our lab’s IP which is

implemented by Chia-Cho Wu.

Yyvy

CMP

\

YV AAA A A A

,T

B Acs > > > A

- o M, Output

PM, h

— |

Bl Acs, > > >

\ sMm,

PM, -

— J—

Bl Acs, > > B

> SM,

PM, .,

ACS,

Y
\

n-1

by

SM

n-1

Figure 3.19: Architecture of trellis decoder.
41

3.5 The memory consideration for test chip

As mentioned above, the memory requirement of universal convolutional interleaving for
ITU-T J.83B is about 64K bytes. And, the memory requirement for multi-mode RS decoder is
752 bytes. Although 64K bytes memory is not so large, we still cannot embed the 64K bytes
SRAM in the test chip due to the constraint of test chip area for academic research purpose.
Hence, the 64K bytes memory will be taken as the external memory and only 752 bytes
SRAM for RS decoder are embedded in the test chip. So, the system platform is modified as

figure 3.20.

____II

| . 64K bytes
' I . external memory I

N Y

il
= =
== 3

752 bytes
embedded memory

From De -mapper obil I

Deinterleaver RS Decoder
A/B/C/D A/B/C/D

Trellis Decoder &
Synchronization
B

Descrambler
B

Descrambler
A/C/D

Test Chip

Figure 3.20: The system platform with memory consideration

42

3.6 Summary

In this chapter, a multi-mode RS decoder with memories to store and correct received
data and a memory-based universal convolutional interleaver and deinterleaver are proposed.
Both of them have the advantage of low overhead, high flexibility to achieve multi-mode
design and can be compatible with the standard of J.83, DVB-T and ATSC Digital TV, etc.
The proposed multi-mode RS decoder can support the error correction capability with t =3, 8
and 10 over GF(2’) and GF(2®) respectively. BM algorithm is adopted for key equation due to
its regularity instead of Euclidean algorithm. And, the proposed multi-mode RS decoder can
be easily modified to meet the different requirement of different applications. In addition, the
proposed universal convolutional interleaver and deinterleaver can support all kinds of
parameters of convolutional interleaving. The parameter design in convolutional interleaving
has the advantage for time-to-market. We also mentien the implementing method for single
mode scrambler and Viterbi decoder.:Viterbi-decoder takes register-exchange method as the
architecture of survivor path storagé:management since the convolutional codes in J.83B has
only 16 states and thus the number of registers required for this decoder is not quite large. For
the memory consideration, due to the constraint of test chip area for academic research
purpose, the 64K bytes memory for universal convolutional interleaving are taken as the

external memory.

43

Chapter 4
Simulation and Implementation Result

The environment of simulation platform and the result of chip implementation will be
shown in this chapter. And, the result of our proposed architecture and chip implementation
will do some comparisons with other reference works. By the comparisons, it shows that our
proposed architecture and chip has the advantages of low overhead, low power, and high

flexibility to achieve multi-mode FEC decoder design.

4.1 Platform and System design

The design flow is illustrated in figure4.1. Each block is defined as follows:
(1) System platform simulation:

At first, the system platform based on high-level language will do the simulation to
verify the proposed algorithm. High-level simulation is very important to guarantee the
functionality of the whole system before the hardware design. And, Matlab is chosen as the
simulation environment since it has the advantages of simple usage and powerful functionality.
In addition to the functional block of multi-mode FEC decoder for J.83 as shown in figure 3.1,
the functional block of multi-mode FEC encoder for J.83 is included in the Matlab platform as
shown in figure 4.2. The relationship between the multi-mode FEC encoder and decoder is
depicted in figure 4.3. After encoding the test pattern, the noises will be added to the encoded

data, where the noises should be within the capability of error correction. Furthermore, the

44

noisy encoded pattern should be recorded to a file for RTL simulation later. Then, the noisy
encoded data are going to be fed to the multi-mode FEC decoder. The output data from the
FEC decoder will compare to the original uncoded pattern. After verification of the proposed
algorithm and, we can design the architecture and write the RTL code to do the RTL behavior

simulation.

System platform
simulation

Jor

Architecture and
RTL simulation

Jor
Timing
Synthesis and gate constraint
level simulation Timing fail

constraint
l OK fail

Auto Place & Route

lOK

—»| Postlayout simulaiton

Test pattern —»—

OK | To fab
Y

1 Chip verification

Figure 4.1: The design flow

45

Scrambler
> “acp [

> RS Encoder) Interleaver
A/B/C/D A/B/C/D

xc<Z

To QAM Mapper
—

xc<Z

<_TreII|sBEncoder' Scragbler ¢

Figure 4.2:' FEC encoder in J.83

Test Compare Decoded
Pattern if equal? Pattern
l lnoise T

Dump
FEC tofile | Encoded , FEC
Encoder Pattern Decoder

Figure 4.3: Simulation environment

(2) Architecture and RTL simulation:

The RTL code describes the system in hardware level. The architecture and circuit

46

should be defined according to the timing constraint at first before writing the RTL code. The
architecture is mentioned in chapter 4. Here, Verilog is chosen as the hardware description
language (HDL). The test bench stored from the Matlab platform should be used to check if
the functionality of RTL coding is correct or not. We should note that the RTL simulation
takes logic circuit as the ideal behavior. Hence, the gate level simulation is required after

synthesis.

(3) Synthesis and gate level simulation:

After checking the RTL behavior simulation, we can do the synthesis and do the gate
level simulation. By the aid of synthesis and gate level simulation, we can know the almost
real logic gate delay and area of chip. Thus, the chip performance and area complexity can be
estimated. If the timing or chip area:cannot meet the specification requirement, we should go
back to redesign the architecture. In addition,-Synopsys® Design Analyzer is our synthesis

CAD tool. And, the standard celldibrary is UMC® 0.18um 1P6M CMOS technology.

(5) Auto place and route (APR):

After succeeding the gate level simulation, we should place and route the logic gate to
layout. Because there are more problems in deep-submicron process, such as signal integrity,
IR drop, wire delay, and so on, we should use the new CAD tool “Cadence® SOC Encounter”
to handle the deep-submicron problem. After APR, we should use “Calibre® DRC/LVS”
CAD tools to verify DRC (design rule check) and LVS (layout versus schematic) errors. Then,
the postlayout-gate level simulation can be taken to simulate the prototype of the chip. If
timing cannot meet the requirement of specification, we should go back to (2) to redesign the

architecture.

(6) Postlayout simulation:

47

Use “Calibre® LPE (Layout parameter extraction)” CAD tool to extract the parameters
from layout, such as transistors, capacitances, resistors, and so on. After extraction, we can
use “Nanosim” CAD tool to do postlayout simulation. The target of Nanosim is between
SPICE and Verilog. It is a transistor-level timing simulator and power dissipation analysis tool
for digital circuit design. Thus, it handles current, voltages simulations and timing checks.

After verification of postlayout simulation, we can tape out the chip to fab.

(7) Chip verification:
Using IMS100 to verify the chip in CIC®. The test pattern is generated from the system
platform and gate level or postlayout simulation. In addition to verification, the power

consumption of the chip will be measured at the same time.

4.2 Chip integration and the results of chip implementation

As mentioned in chapter 3,"the memeory" requirement for universal convolutional
deinterleaver is 65032 bytes. The chip area is limited due to academic research purpose.
Hence, using it as the external-memory is a good solution. So, the simulation environment in
gate level simulation and postlayout simulation will become the one as shown in figure 4.4.
The 65032 bytes memory is used as the behavior model and does the simulation with the chip.
Only 752 bytes memory for RS decoder are embedded in the test chip. As a result, for the chip
verification, we will feed the data from the simulated external memory to chip instead of real

external memory for convenience.

48

65032 bytes
Memory

Control

Test pattern

|

Data Chip

I

Output

Figure 4.4: The chip connected with external memory

Table 2: Summary of CHIP Implementation for J.83 FEC

Technology UMC® 0.18 um 1P6M CMOS process
Chip size 1.89mm x 1.89mm
Core size 1.28mm x 1.28mm
Gate count 54.5K
Embedded SRAM 752Bytes
Supply voltage 1.8V
Max operating frequency 83MHz (600Mbps)

Average Power

J.83 Annex A&C

25.2mW @83MHz

3.6mW @7MHz

J.83 Annex B in

43.2mW @83MHz

64QAM 5.4mW @7MHz
J.83 Annex B in 45mW @83MHz
256QAM 5.4mW @7MHz
30.6mW @83MHz
J.83 Annex D

4.5mW @7MHz

49

Table 2 shows the result and the measurement of the chip implementation. By
implementing with UMC® 0.18um 1P6M CMOS technology, the chip shows that the
proposed multi-mode FEC decoder can work at 83MHz (600Mbps) while costs 54.5K logic
gate counts, two 376x8 bits embedded dual-port SRAM and 65032 bytes external memory for
de-interleaver with only 8 bytes overhead. In fact, 7 MHz has met the requirement of
specification. And, the chip size is 1892 x 1892 um®. The floor plan of chip is shown in figure
4.5. The maximum power consumption is 45mW at 83MHz (5.4mW at 7MHz) with the
supply voltage 1.8 volts for J.83B in 256QAM. For more detail about power consumption,

please see table 2. It shows that our chip has the advantage of low power requirement.

bttt i e Bk WL LT |

R R b el el e B

Universal
Convolutional

Deinterleaver

Scrambler

RS Decoder Trellis
Decoder

T T ke mie oo Somee ot e

AT AT

Figure 4.5: The floor plan of the chip

50

The detailed gate counts of each module are listed in table 3, where trellis decoder
contains two Viterbi decoders and the circuit of synchronization for FEC frame[1]. Table 3
also shows the logic gate counts of RS Decoder in ITU-T J.83D which is the most complex
RS code in ITU-T J.83. It shows that the proposed multi-mode RS decoder is only larger
about 1.1K gate counts than that specified in J.83D. In other words, the proposed multi-mode

RS decoder has only the overhead of 6% compare to the most critical mode.

Table 3: Gate Count for each module

Module Logic gate count
Multi-Modes RS Decoder 19051
Universal deinterleaver 8306
Viterbi Decoder 9883
Trellis decoder (contains 2 Viterbi Decoder) 24632
Scrambler 1190
Overall FEC Decoder 54542
J.83D RS Decoder 17963

Compare the proposed architecture for multi-mode RS decoder with other reference
works as shown in table 4, although [10], [21] and [29] support only one mode, their gate
counts or throughput rate are not better than the proposed work. Besides, compare the
proposed memory-based universal convolutional deinterleaver with other people’s works, (12,
17) convolutional deinterleaver in [10] requires memory size of 1280 bytes with two 128-byte
RAM and four 256-byte RAM, that is, overhead is 158 bytes. In [21], (15, 17) convolutional
deinterleaver needs 1829 bytes with 44 bytes overhead. For the proposed algorithm and
architecture in the same convolutional deinterleaver, we only have the overhead of 17 bytes

memory and a low complexity controller. Furthermore, in [21], and [10], they can only meet
51

for suitable standard using the same component, but the proposed multi-mode FEC decoder

can be used in many standards, such as ITU-T J.83, DVB-T, ATSC Digital TV, etc. Hence, the

proposed architecture has the advantage of low-overhead, high throughput rate and high

flexibility to achieve multi-mode design.

Table 4: Comparisons between the proposed architecture and other reference works

Proposed [21] [10] [29]
Technology 0.18um 0.6um FPGA 0.25pum
Mode Multi-mode Single-mode | Single-mode | Single-mode
m 7,8 8 8 8
RS decoder
t 3,8,10 16 8 8
Gate counts 19K 55K
Single-mode | Single-mode
Mode Universal
Convolutional (15,17) (12, 17)
deinterleaving Memory
J,1<1<17 44 bytes 158 bytes
overhead
Throughput 600Mbps 73Mbps 600Mbps
4.3 Summary

The chip implementation of the proposed multi-mode FEC decoder is introduced in this

chapter. With 0.18um 1P6M CMOS technology, the implemented chip shows that the FEC

decoder can work at 83MHz (600Mbps) while costs 54.5K gate counts and two 376x8 bits

embedded duel-port SRAM. The chip size is 1.89mm x 1.89mm. And the average power

consumption in full spec. mode is about 45SmW at 83MHz. While running at 7MHz that meets

52

symbol rate of cable modem, the power dissipation is 5.4mW. Compare to other people’s
work, the proposed architecture shows that it has the advantage of low-overhead, high

throughput rate requirement and high flexibility to achieve multi-mode design.

53

Chapter 5
Conclusion and Future Work

5.1 Conclusion

In this thesis, a solution to design a multi-mode FEC decoder is proposed. It mainly
contains a multi-mode RS decoder for different finite field and different capability of error
correction with memories to store and correct received data and a memory-based universal
convolutional interleaver/deinterleaver. Both of them have the advantage of low-overhead,
and high flexibility to achieve multi-mode FEC design. And, this multi-mode FEC decoder

can be adopted in J.83 cable modem system, DVB-T system, and so on.

To design the multi-mode FEC‘decoder systematically, we began from the system view
and built a high-level simulation platform by Matlab to verify the proposed algorithm and
architecture at first. J.83 cable system is chosen as the simulated platform since it is the most
complex system among those communication systems with the similar modules, such as
DVB-T, J.83, ATSC Digital TV, and so on. Then, we construct the hardware architecture in
RTL-level by Verilog. By implementing with UMC® 0.18um 1P6M CMOS technology, the
chip shows that the proposed multi-mode FEC decoder can work at 83MHz (600Mbps) while
costs 54.5K logic gate counts, two 376x8 bits embedded dual-port SRAM and 65032 bytes
external memory for de-interleaver with only 8 bytes overhead. And, chip size is 1.89mm x
1.89mm. Compare to other related works, our proposed architecture has the advantage of high
throughput rate, low-overhead and high flexibility to achieve multi-mode design to reduce the

design cost.
54

5.2 Future Work

As mentioned in chapter one, channel coding is a key module to minimize the effect of
channel noise during data transmission, especially in wireless communications. For wireless
communications in the future, designing an error control code to achieve Shannon bounds is
more and more important. Those concatenated codes, such as FEC in J.83, will not meet the

requirement of future wireless communications.

Thus, the iterative decoding algorithm[22] is used to achieve Shannon limits more close.
Both turbo codes[26] and LDPC (Low Density Parity Check) codes[23] adopt this idea of
iterative decoding. Turbo codes were proposed in 1993. Turbo encoder usually comprises the
parallel concatenation of two RSC (recursive systematic convolutional codes) and one
interleaver to encode the information as shown.in figure 5.1, where © means interleaver and xo,
x; and x; are encoded datum. As'the blocklength of interleaving increases, the performance of
turbo codes is more close to Shanmon bounds: Turbo codes has been adopted in third
generation mobile systems, such as 3gpp and 3gpp2 systems since CDMA system needs a

powerful error correction codes to increase the channel capacity.

»RSC - » X,

»RSC—» X,

Figure 5.1: Turbo encoder

55

On the other hand, LDPC codes were created in 1962 by Gallager, but were
rediscovered in 1995, 1996[24][25]. LDPC codes are one kind of block codes but the parity
check matrix is sparse compared to the traditional block codes. Same as the turbo codes, as
the block length increases, the iterative decoding algorithm can achieve more near Shannon
limits. And, the advantage of LDPC codes over turbo codes contains:

(1) They do not require a long interleaver.

(2) They have better block error performance.

(3) Their error floor occurs at a much lower BER (Bit Error Rate).

(4) Their decoding is not trellis based, so they are suitable for high throughput rate

requirement due to its parallel characteristic.

Due to the above advantage, the next generation wireless communications are
considering using LDPC codes -as their ‘error .control codes instead of turbo codes, such as
UWB (ultra wide band) system-and :DVB-S2 for high reliability and high throughput rate
requirement. The decoding algorithm and the-performance of LDPC codes can be seen in

Appendix-A.

56

Bibliography

2]

[4]

[5]

[8]

ITU-T, Telecommunication Standardization Sector of ITU, “Digital multi-programme
systems for television sound and data services for cable distribution”-Digital

transmission of television signals, ITU-T Recommendation J.83, Apr. 1997.

ETSI, “Digital Video Broadcasting (DVB); Framing structure, channel coding and
modulation for digital terrestrial television”-EN 300 744 V1.1.2, Nov. 1998.

ATSC Digital Television Standard, Sep. 1995.

H. C. Chang, C. B. Shung, and C. Y. Lee, “ A Reed-Solomon Product-Code (RS-PC)
Decoder Chip for DVD Applications}” IEEE J. Solid-State Circuits, Vol. 36, No. 2, pp.
229-238, Feb. 2001.

J. L. Ramsey, “Realizationzof Optimum Interleavers, “ IEEE Trans. on Inform. Theory,
vol. IT-16, no. 3, May 1970.

Y. X. You, J. X. Wang, and X. R. Piao, “Design and Implementation of Concatenated
Encoder,” in Int. Conf. ASIC, Oct. 2001.

H. Yang, Y. Zhong, and L. Yang, “An FPGA Prototype of A Forward Error Correction
(FEC) Decoder For ATSC Digital TV,” IEEE Trans. on Consumer Electron, vol. 45, no.
2, pp. 387-395, May 1999.

G. D. Forney, Jr., “Burst-Correcting Codes for the Classic Bursty Channel”, IEEE Trans.
on Communications, vol. 19, no. 5, pp. 772-781, Oct. 1971.

H. C. Chang, C. C. Lin, and C. Y. Lee, “ A Low-Power Reed-Solomon Decoder For
STM-16 Optical Communications,” in /[EEE Asia-Pacific Conf. ASIC, Aug. 2002.

[10] J. B. Kim, Y. J. Lim, and M. H. Lee, “A Low Complexity FEC Design for DAB,” in

ISCAS, May 2001.

57

[11] R. J. McEliece, The Theory of Information and Coding, 2nd ed. Cambridge, UK:
Cambridge University Press, 2002.

[12] S. Lin and D. J. Costello, Jr., Error Control Coding, Fundamentals and Applications.
Englewood Cliffs, NJ: Prentice-Hall, 1983.

[13] J. B. Cain, G. C. Clark, and J. M. Geist, “Punctured convolutional codes of rate (n-1)/n
and simplified maximum likelihood decoding,” IEEE Trans. on Inform. Theory, vol.
IT-25, No. 1, pp. 97-101, Jan. 1979.

[14] A. J. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm,” IEEE Trans. on Inform. Theory, vol. IT-13, pp. 260-269, April.
1967.

[15] G. D. Forney, Jr., “Convolutional Code II: Maximum likelihood decoding,” Information
and Control, 25, pp. 222-266, July 1974.

[16] Dalia A. F. El-Dib and Mohamed I._Elmasry;. “Low-Power Register-Exchange Viterbi
Decoder For High-Speed Wireless Communications,” IEEE International Symposium on
Circuits and Systems, vol. 5, pp. 737-740, 2002

[17] S. R. Meier, M. Steinert, S. Buch, “Testability of Path History Memories with
Register-Exchange Architecture Used" in Viterbi-Decoders,” [EEE International
Symposium on Circuits and Systems, vol. 3, pp. 165-168, 2002

[18] Andries P. Hekstra, “An Alternative to Metric Rescaling in Viterbi Decoders,” IEEE
Trans. on Communications, vol. 37, NO. 11, pp 1220-1222, Nov. 1989.

[19] Richard E. Blahut, Theory and Practice of Error Control Codes, Addison-Wesley
Publishing Company, 1983

[20] Gennady Feygin, and P. G. Gulak, “Architectural Tradeoffs for Survivor Sequence
Memory Management in Viterbi Decoders,” IEEE Trans. on Communications, vol. 41,
NO. 3, pp. 425-429, March 1993.

[21] Daniel A. Luthi, Advait Mogre, Nadav Ben-Efraim, Alok Gupta, “A single-chip
concatenated FEC decoder,” IEEE custom integrated circuits conference, pp. 285-288,
May 1995.

58

[22] Joachim Hagenauer, Elke Offer, and Lutz Papke, “Iterative Decoding of Binary Block
and Convolutional Codes,” IEEE Trans. Inform. Theory, vol. 42, No. 2, pp. 429-445,
March 1996.

[23] R. G. Gallager, “Low Density Parity Check Codes,” IRE Trans. Inform. Theory, vol.
IT-8, pp. 21-28, Jan. 1062.

[24] Niclas Wiberg, Hans-Andrea Loeliger, and Ralph Kotter, “Codes and Iterative Decoding
on General Graphs,” IEEE International Symposium on Information Theory, pp. 468,
Sept. 1995.

[25] D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance of low density parity
check codes,” IEE Electronics Letters, vol. 32, Issue: 18, pp. 1645, Aug. 1996.

[26] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-Correcting
Coding and Decoding: turbo-codes,” IEEE Int. conf. Communications (ICC), pp.
1064-1070, May 1993.

[27] D. J. C. MacKay, “Good error-correcting ‘codes based on very sparse matrices,” /[EEE
Trans. Inform. Theory, vol. 45, pp. 399-431, Mar.;1999.

[28] Xiao-Yu Hu, Evangelos Eleftheriou, Dieter-Michael Arnold, and Ajay Dholakia,
“Efficient Implementations of the Sum-Product Algorithm for Decoding LDPC Codes,”
IEEE Global Telecommunications Conference, vol. 2,25-29, pp. 1036 - 1041, Nov.
2001.

[29] H. Lee, M. L. Yu, and L. Song, “VLSI Design of Reed-Solomon Decoder Architecture,”
IEEE ISCAS, May 2000.

59

Appendix-A
Decoding algorithm of LDPC codes

The decoding algorithm of LDPC codes is called iterative Sum-Product Algorithm (SPA),
or message passing (MP) algorithm, belief propagation (BP) algorithm. The behavior of MP
algorithm for LDPC codes can be expressed a bipartite graph for parity check matrix H as
shown in figure A.1. The message of variable node and function node pass to each other

iteratively.

X1 Xz X3 X4 Xs XGX

X X, X, X, X X Xs
1110100)%

H=110101 0% Functon
1011001+ foof S0

Figure A.1: The message passing on bipartite graph of LDPC codes

7 .
Variable
node

To explain SPA to decode LDPC codes, we have some notations defined for parity check
matrix H at first. We denote the set of bits » that participate in check m by N(m)={n : H,,, =
1}. Similarly, we define the set of checks m in which bit n participates, M(n)= {m : H,,, = 1}.
We denote a set N (m) with bit n excluded by N (m) \ n. And, the algorithm has two parts, in

which quantities ¢,-,,, and r,_,, associated with each nonzero element in the H matrix are

iteratively updated. The quantity ¢, ,, 1s meant to be the probability that bit » has the value

X, given the information obtained via checks other than check m. The quantity r , 1is meant

—n

60

to be the probability of check m being satisfied if bit n is considered fixed at x and other bits
have a separable distribution given by the probabilities {g,— »: n’e N (m)\ n}. SPA is
summarized as follows.

Initialization:

p,=P(x,=0[r,), p,=P(x,=1|r,)=1-p, (A1)

g’ and ¢ = areinitialized to the values p’ and p., respectively, such that Hy,=1

r’ and r' _ areinitialized to zeros.

Horizontal step (check-node update):

We run through the checks m and compute for each n € N (m) probability r . It is the

m—n
probability of the observed value of z,, arising when' x, = x, given that the other bits {x,. n’ #

n} have a separable distribution given by the probabilities ¢, ., .

rn?ﬁn = ZP(ZW |xn :0’{xn' n'e N(m)\n})x qugm (Az)
{x,:n'eN (m)\n} n'eN(m)\n

Fosn = 2 Pz, |x, =Lix, :n'e Nom)\n})x []ar,. (A.3)
{x,:n'eN(m)\n} n'e N(m)\n

A particularly convenient implementation of (A.2) and (A.3) is described in [27].

Vertical step (variable-node update):

The vertical step takes the computed values of » ' and updates the values of the

m—n

probabilities ¢, ,, .

0o _ 0 0
Qpsm = Xpn Py H P (A4)
m'eM (n)\m
I 1 1
Qpsm = Xy Py H P (AS)
m'eM (n)\m

where oy, is chosen such that ¢' . +¢. . =1, we also compute the “pseudo-posterior

61

probabilities”, given by

9, =a,p, [T (A.6)
meM (n)

g =a,p, [(A.7)
meM (n)

where o, is chosen such that ¢' +¢, =1. These quantities are used to create a tentative

decoding ;c .

Decision:

A A /\T
If g0 >05, x,=1,else x,=0. Then, check: if Hxx =0, terminate the decoder and

A

x 1s the decoding result. Otherwise, go to the horizontal step and do decoding iteratively. A
failure is declared if some maximum number of iteration occurs.

Thus, we can realize that-decoded message. have errors when maximum number of
iteration is reached and syndrome check is_still_failed. Convolutional codes and turbo codes

do not have this characteristic.

In SPA described above, there are so many multiplier operations. To reduce the
complexity, we can use log domain to represent the received information. By doing this, the
operation of multiplier after log domain transformation will become addition. Hence, define

our message as posteriori log-likelihood-ratio (LLR):

P(x,=0]|r)

B =t)

(A.8)

For AWGN channel, the value of L (x,) is equal to -2 r,/c> when 0 mapping to —1 and 1

mapping to +1, where o is the noise variance. Furthermore, define the LLRs:

0 0
Ay (x,) = InLo=m A, (x,)=In"m2n (A.9)

We call “SPA in the LLR domain” as LLR-SPA, and it is summarized as follows.

62

Initialization:
For every position (m, n) such that Hy,, = 1,
Z’n—)m (‘xn) = L(‘xn)

Am—m (xn) = 0

Horizontal step (check-node update):
From [22] and [28], we can translate equations (A.2), (A.3) and (A.9) together into the
following equation,

A, (x)=2tanh™{ I tanh[A., (x,)/2]} (A.10)

n'eN(m)\n
Obviously, the complexity of equation (A.10) is too high. Hence, we can use the following

approximation to reduce the complexity.

Use the parity-check node constraint (@ x,, ®...®x,)=0, where N (m)=(n;, ny, ...,

nqc). And we obtain the simplified expression of equation (A.10),

A)=L(-®xis®% ©--)5i=1,2,3,..., dc (A.11)

Now, the core operation becomes L(UDV). It can be simplified by using the following
equation [22]:

1 + eL(U)+L(V)

= sign[L(U)]sign[L(V')]- min[| L) |,| L(V)]

+In[l + e OO [l 4 e HOHON (A.12)
where sign[L(U)]sign[L(V)]-min[| L(U) |,| L(V)|] is the dominant factor. We can discard
the remaining part with the penalty of the performance degradation or do some approximation

to lower the loss of performance. The details in different kinds of approximation can be seen

in [28].

Vertical step (variable-node update):

Equations (A.4) and (A.5) can be translated into the following equation in LLR domain,
63

Ao =L(x)+ DA, (x,) (A.13)

m'eM (n)\m

Besides, compute the LLR of the “pseudo-posterior probabilities™:

,(x)=Lx)+ YA, .(x,) (A.14)

meM (n)

(A.13) can be rewritten as

Apom (%)= 4,(x,) = A, (x,) (A.15)

Decision:

AT

If 4,(x,)20,x,=0, else x, =1. Then, check: if Hxx =0, terminate the decoder

A

and x is the decoding result. Otherwise, go to the horizontal step and do decoding iteratively.

A failure is declared if some maximummumber of iteration occurs.

We simulate a rate 1/2 (1008, 504) irtegular' LDPC codes with the reduced complexity
LLR-SPA over AWGN channel and BPSK modulation, where “irregular” means all rows and
columns are not of uniform weight and the parity check matrix is referenced from [28]. The
performance is shown in figure A.2 with different iterations. We can see that the performance
is saturated at about 16 iterations. The larger the block length is, the more iteration numbers

for performance saturation is required.

64

BER

The performance of rate 1/2 (1008, 504) irregular LDPC codes by reduced-complexity LLR-SPA

-1
10 T T T T T T T T T
—5— 6 iterations
—— 8 iterations
4 10 iterations
12 iterations
2 16 iterations
10+ —— 20 iteratinos
10°F
10*)
10°F
10'6 | | | L | L L | L
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure A.2: The performance of rate 1/2:(1008, 504) irregular LDPC codes by

reduced-complexity LLR-SPA over AWGN channel

65

i * i ia
A L
RIS YT R
dr4 p # o 1980. 2. 19.
HR . 2002.9~2004.6 B2 AH TIFG e sl FAL (Si2 Lab)
1998.9~2002.6 MW 2@ ~8 $314s &L
1995.9~1998.6 B =% % &7 &
1992.9~1995.6 = @iz AR ? &
1986.9~1992.6 # iz s X R | &
- S K

{L-HER A S BRRFPGA f 5%

B Xilinx & § i B %

Yi-Chen Tseng, Chien-Ching Lin, Hsie-Chia Chang, Chen-Yi Lee, “A Power and Area

Efficient Multi-Mode FEC Processor,” in IEEE ISCAS, May 2004.

Keng-Khai Ong, Wei-Hsin Chang, Yi-Cheng Tseng, Yew-San Lee, Chen-Yi Lee, “A

High-Throughput Low Cost Context-based Adaptive Arithmetic Codec for Multiple

Standards,” in /EEE ICIP, Sep. 2002.

Keng-Khai Ong, Wei-Hsin Chang, Yi-Cheng Tseng, Yew-San Lee, Chen-Yi Lee, “A

High-Throughput Context-based Adaptive Arithmetic Codec for JPEG2000,” in

IEEE ISCAS, May. 2002.

66

	A Memory Based Multi-Standard FEC Decoder Design

