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比較與分析 NA T 穿透技術 I C E 在 U D P 和 T C P 上的差異 

 

學生: 吳又賢                  指導教授: 林盈達 

國立交通大學網路工程研究所 

 

摘要 

Network Address Translation (NAT) 的出現破壞了以往 peer-to-peer (P2P) 的

連線模式，使得無論 UDP 還是 TCP 在 P2P 連線上出現了許多問題，因此如何穿

越 NAT 的方法逐漸被重視。再加上 NAT 處理 UDP 與 TCP 的 connection 行為不

同與 UDP 和 TCP 本身的差異(即 UDP 為非連接傳輸模式而 TCP 是非對稱的連

線)，因此在 UDP 及 TCP 上各自擁有不同的 solution 來解決穿越 NAT 的問題。

雖然目前有 STUN、STUNT、P2PNAT 和 TURN 等穿透 NAT 方法被提出來，但

因為這些技術是各別使用而無法一一針對不同的 NAT 行為來解決所有問題，因

此 Interactive Connectivity Establishment (ICE)提供一套機制將這些技術整合運

用，並透過路徑檢查的機制來探測所有整合技術可穿透 NAT 的路徑。在這裏我

們提一個實驗用來測量 ICE 在 UDP/TCP 上的直連率以及分析其實作在 socket  

layer 以及直連路徑測試程序上的不同以及他們的穿透能力。最後我們發現目前

ICE-UDP 和 ICE-TCP 穿透能力已經達到 DCR 目前所能達成的上限, 並且建議

NAT 廠商們如何改善 NAT 行為來增加目前軟體所及的 DCR 上限. 

 

關鍵字: 穿透 NAT, ICE, 點對點, UDP, TCP 
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for NAT Traversal 
Student: Yu-Hsien Wu         Advisor: Dr. Ying-Dar Lin 

Institutes of Network Engineering 

National Chiao Tung University 

Abstract 

The appearance of Network Address Translation (NAT) breaks the common 

peer-to-peer (P2P) communication model and causes difficulties for UDP/TCP P2P 

communications. For this reason, the NAT traversal problem is important. NAT has 

the distinct behavior to handle UDP and TCP connections. In addition, the UDP and 

TCP protocol have their own characteristics. For example, UDP is connectionless 

while TCP is connection-oriented. Therefore, various solutions on UDP and on TCP 

are proposed, respectively. Several traversal techniques such as STUN, STUNT, 

P2PNAT, and TURN are proposed and individually utilized but they cannot traverse 

all NATs because of various NAT behavior. Interactive Connectivity Establishment 

(ICE) provides a mechanism to integrate these techniques to traverse a NAT via 

connectivity check which tests and verifies all traversable paths. Here we design an 

experiment to measure the direct connection ratio (DCR) and analyze the main 

differences between ICE-UDP and ICE-TCP such as the implementation of socket 

layer and the procedure of connectivity check and NAT traversal ability. Finally, we 

find out the DCR of ICE-UDP and ICE-TCP has reached the upper-bound, and 

propose that the NAT venders should reform NAT to increase the room of DCR 

upper-bound for applications 

Keywords: NAT traversal, ICE, peer-to-peer, UDP, TCP 
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1. Introduction 

Recent years Internet tremendously growths and spreads, in position, it gains the 

complexity and evolves in ways that make life difficult for many applications. Now 

the Internet’s uniform address architecture bases on IPv4, hosts use a fixed 32-bit 

globally unique address to identify and contact directly with each other. However, 

limited IP addresses could not satisfy a large number devices on Internet nowadays. 

To solve the IP shortage problem, Network Address Translation (NAT) [1] technique 

appears. It is a process that translates packet IP address and transits packets between 

private and public domains, and allocates a temporary public address for outgoing 

UDP/TCP connections, enable multiple hosts on a private network to access the 

Internet using a single public IP address. Because the translation of addresses breaks 

the end-to-end connectivity model of the IP, newly developed services follow the 

peer-to-peer (P2P) paradigm such as file sharing, instant messaging, and voice over IP 

(VoIP) applications suffer from the existence of NAT. Thus, NAT traversal is an 

important problem today. 

NAT traversal problem makes adverse effects on many hosts work behind NATs. 

There are two directions of possible approaches to the problem. One direction is to 

cope with existing NAT implementations and establish standards for the detection of 

the NAT behavior for NAT traversal. On the other hand, the IETF also standardizes 

behavioral properties for NATs to work in conjunction with IETF protocols. However, 

making a change on the large scale deployment of residential NATs is huge work. 

Therefore, we focus on the discussion about the NAT traversal techniques for NAT 

behavior in this article. 

For application programmers to develop application to resist the NAT traversal 
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problem, it is very important to understand NAT behavior in order to design 

applications that can work in combination with current NATs. We can identify 

classifications of NAT behavior derived from simple traversal of User Datagram 

Protocol (UDP) through NAT(STUN)[2].The NAT behaviors include the mapping, 

binding , filtering behavior which are defined in RFC 4787[3], and TCP state tracking 

which is defined in RFC 5389[4]. Mapping, binding, and filtering react on both UDP 

and TCP connections, and TCP state tracking only influences on TCP. 

ICE: Optimal NAT Traversal Solution 

 Aiming at the above-mentioned NAT behavior, several behavior-based traversal 

methodologies are proposed to establish UDP [2, 5, 6, 7] and TCP [6, 8, 9, 10, 11] 

connections; among these, traversal techniques [5, 8] are proposed recently so that 

NAT traversal problem is still a current issue today. However, not all NATs in the wild 

react the same way. This will cause these approaches to fail in various cases. Among 

these traversal techniques, Interactive Connectivity Establishment (ICE) is the 

integrated and flexible UDP and TCP solution for both, because it makes use of many 

of the techniques, but uses them in a specific methodology which avoids many of the 

pitfalls of using any one alone.  

ICE provides a mechanism that learns possible connectivity when it performs 

traversing process on UDP and TCP, for applications applied on UDP and TCP 

protocol could use ICE-UDP first, and if failed, try ICE-TCP. Therefore, it could raise 

the chance to traverse the NAT. The big difference between ICE-UDP and ICE-TCP is 

the connectivity checks of peer-to-peer, since ICE-UDP and ICE-TCP use different 

traversal techniques based on UDP and TCP, respectively.  

Distinct Traversal Process on ICE-UDP and ICE-TCP 

 ICE performs distinct processes on connectivity checks based on different 
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protocols, and therefore, the implementation has differences that handle socket layer 

and ICE transport session. In order to understand details and analyze what factors 

differentiate the Direct Connect Ratio (DCR) of ICE on UDP and TCP, overall this 

paper makes three works. First, we implement the ICE library to use ICE-UDP and 

ICE-TCP separately and compare the characteristics of them. Second, we design an 

experiment, in order to analyze the NAT behavior emerges on UDP and TCP 

connections, could speculate the upper-bound of DCR of ICE-UDP and ICE-TCP 

according to behavioral test results, and measure the DCR of ICE in our experiment 

environment. Third, based on the measurement results, we observe the other factors 

affecting the DCR of ICE approach, and suggest the modification to the approach 

 The rest of this paper is organized as follows. Section 2 introduces NAT traversal 

techniques, comparisons of advantages and disadvantages, and the overview of ICE.  

Section 3 details the ICE implementation and discusses the differences of ICE on 

UDP and TCP, and Section 4 introduces the designed experiments and presents the 

measurement results. Section 5 summarizes and concludes this paper. 
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2. Background 

Since NAT traversal problems are caused by NAT behaviors, in this chapter, we 

not only describe how NAT behaviors operate: Mapping and Filtering, and their 

definitions but also classify the NATs by measuring and analyzing the traversal ability 

of ICE in our experiments. 

NAT behavior 

NAT Mapping 

 A NAT assigns an external mapping for each UDP and TCP connection based on 

the source and destination IP and port number. The NAT variation are defined in 

STUN [2], Cone behavior NAT reuses the mapping which means an address assigned 

on NAT , as long as the source address and port number of a new connection matches 

those of the preceding connection while Symmetric behavior NAT assigns the different 

mapping if the destination of new connection change.  

Endpoint Filtering 

 NAT may filter the inbound packets according to the rule, which is created when 

an internal endpoint opens an outgoing session through NAT. In this section, we detail 

the criteria of the filtering rule.  

In RFC 4787 [3], authors describe three various filtering behaviors: 

Endpoint-Independent, Address-Dependent, and Address and Port-Dependent. The 

classifications of filtering behaviors are the same on UDP and TCP. If a NAT allows 

inbound UDP/TCP connections independent of the source address and port number as 
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long as the necessary state exists for routing the request, we classify such filtering 

behavior as Endpoint-Independent. If a NAT filters inbound packets whose source 

matches the destination address of the connection creating this mapping, the filtering 

behavior of such NAT is classified into Address-Dependent. Similarly, if both address 

and port number are required, this filtering behavior is called Address and 

Port-Dependent.  

TCP State Tracking 

NATs implement a state machine to track the connection-state of a TCP stream. 

Although NATs handle the TCP 3-way handshake to establish a connection, not every 

NAT handles all possible cases of packet sequences. This leads the NAT to close its 

mapping prematurely and breaks a TCP connection. 

Accordingly, we understand that distinct NAT behavior will break peer-to-peer 

connections and make NAT hard to traverse, and we induce that both Mapping and 

Filtering behaviors restrict seriously to TCP connections, causing the TCP NAT 

traversal problem more complicated. 

Various NAT combinations 

So far endpoints are located behind the four types of NAT, when two endpoints 

under four NAT types has 4 x 4 = 16 various combinations, we summarize the 16 

combinations into 4 combinations in Table 1 and discus which the scenario under 

combinations could traverse successful in Figure 1.  

We estimate which kind of NAT combinations could be traversed as Table 1 

shows if endpoints are behind the combinations and attempt to traverse NAT. The 

white fields of Table 3 mean the combinations that could be traversed successfully. If 

two peers are behind Cone NAT (Table 1. Combination 1), peer could traverse NAT 
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because the peers always send packets to the fixed and correct mapping; if one peer 

under Full Cone or Address Restricted NAT and another under Symmetric NAT 

(Table 1. Combination 2), the case SHOULD be success because the Filtering 

behavior of Full Cone and Address Restricted NAT is loose, so the packet 2 in Figure 

1(2), which source port has changed and sent out from Symmetric NAT, could 

traverse them; if one peer is under Port Restricted and another is under Symmetric 

NAT (Table 1. Combination 3), Port Restricted NAT will filter inbound packet 2 in 

Figure 1(3) from Symmetric NAT since the source port of packets from Symmetric 

NAT will be changed, and the Symmetric NAT also filters inbound packets 1 from 

Port Restricted NAT since the packets reach the previous mapping created by STUN, 

this combination could NOT be passed; if two peers are behind Symmetric NATs 

(Table 1. Combination 4), both peers will send packets 1 and 2 in Figure 1(4) to the 

other side NAT mapping, which is get by traversal technique, but not a correct 

mapping created by traversal connection, so the combination fails. 

Table 1. Classifications of NAT combinations 
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Figure 1. NAT traversal of combinations 

 

NAT Traversal Techniques 

 Several NAT behavior-based solutions aim at NAT behavior and are proposed to 

solve NAT traversal problem. The following lists few solutions required for 

peer-to-peer connections on UDP and TCP in common use. 

UDP NAT traversal 

STUN 

STUN (Figure 2(a)) is the most commonly used technique to solve UDP NAT 

traversal problems. It lets NAT applications search for external NAT types [2] and test 

the public address and port number that NAT allocates before giving the information 

to the host for automatic connection. STUN evolved from RFC 3489(Simple 

Traversal of User Datagram Protocol) to RFC 5389(Session Traversal Utilities for 

NAT), it was redefined a tool that is utilized as part of NAT traversal techniques, and 

support TCP now. 
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TCP NAT traversal 

STUNT 

The approach is proposed in [10], the endpoint sends out a low-TTL SYN packet, 

then sender aborts the connection attempt and creates a passive TCP socket on the 

same address and port number. The other then initiates a TCP connection, as 

illustrated in Figure 2(b). The endpoint needs to select an appropriate TTL value that 

is large enough to cross NAT and the NAT must not close mapping if it receives ICMP 

error. It also requires that the NAT accepts an inbound SYN following an outbound 

SYN – a sequence of packets not normally seen. 

 

P2PNAT 

In [6], the authors take advantage of the simultaneous open defined in the TCP 

specifications [13]. Both endpoints initiate a connection by sending SYN packets. If 

the SYN packets cross in the network, both the endpoint stacks respond with 

SYNACK packets establishing the connection. If one end’s SYN arrives at the other 

end’s NAT and is dropped before that end’s SYN leaves that NAT, the first endpoint’s 

stack ends up following TCP simultaneous open while the other stack follows a 

regular open, Figure 2(c). In the latter case, the packets on the wire look like the 

STUNT approach without the low-TTL and associated ICMP.  

The STUNT approach requires that the NAT accept an inbound SYN after an 

outbound SYN. In addition, the approach requires the endpoint to retry failed 

connection attempts in a tight loop until a timeout occurs. If instead of dropping the 

SYN packet, a NAT responds to it with a TCP RST then this approach devolves into a 

packet flood until the timeout expires. 
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Figure 2. NAT traversal techniques for peer-to-peer connectivity, (a)STUN, (b) 

STUNT, (c) P2PNAT. 

 ICE-UDP and ICE-TCP 

Since several techniques are proposed, all advantage and disadvantage which 

make each one optimal in some network topologies, but a poor choice in others. 

Therefore, we need a single solution which is flexible to work well in all situations.  

 

Figure 3. ICE deployment scenario 

ICE is a technique for NAT traversal for UDP-based and TCP-based streams 

established by the offer/answer mechanism used by protocols such as the Session 

Initiation Protocol (SIP), combines STUN, STUNT, and P2PNAT techniques for 

peer-to-peer connectivity, and works by multiplicity of IP addresses and ports derived 

from STUN in SDP offers and answers, then tests connectivity checks and nominates 
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the valid connections. Figure 3.show the ICE deployment. In the following we 

introduce the above ICE procedure in three main parts. 

ICE-UDP vs. ICE-TCP 

Gathering Candidates 

 For executing ICE, endpoint needs to identify all of its address candidates. 

CANDIDATE is an address combines IP and port. ICE-UDP draft [5] defines few 

types of candidates derived via STUN [2] for peer-to-peer connection. In ICE-UDP, it 

defines three candidates for peer-to-peer connectivity: address obtained directly from 

a local interface (LOCAL CANDIDATE), translated address on the public side of a 

NAT (SERVER REFLEXIVE CANDIDATE) in Figure 4, besides, sometime discover 

a new mapping address assigned by Symmetric NAT (PEER REFLEXIVE 

CANDIDATE). In ICE-TCP defines address for STUNT unidirectional open 

(ACTIVE CANDIDATE, PASSIVE CANDIDATE), and address for TCP 

simultaneous open (SIMULTANEOUS CANDIDATE) in Figure 4. 

Connectivity Checks 

 In [5], after local endpoint gathers all candidates, it sends them to remote 

endpoint over the signaling channel. The candidates are carried in attributes in the 

SDP offer. When remote peer receives the offer, it performs the same gathering 

process and responds with its own list of candidates. At the end of this process, each 

agent has a complete list of both its candidates and remote peer’s candidates. It pairs 

local and remote candidates up, resulting in CANDIDATE PAIRS, which are possible 

path for establishing connection. To test which pairs could work, ICE schedules a 

series of CHECKS. Each check is a STUN request/response transaction that the peer 

will perform on every candidate pair by sending a STUN request from the local 
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candidate to the remote candidate on ICE-UDP or ICE-TCP.  

The obvious difference of ICE-UDP and ICE-TCP are different connectivity 

checks. In ICE-UDP, the peer-to-peer check list on endpoint will be “local candidate 

to server reflexive candidate”, ICE checks the path to remote endpoint behind NAT, 

and “local candidate to local candidate”, ICE checks weather both endpoints behind 

identical NATs; in ICE-TCP check list includes “local candidate to local candidate”, 

“local candidate to simultaneous candidate” and “local candidate to passive 

candidate”, which are similar with “local candidate to server reflexive candidate”, 

“active candidate to passive candidate” and “passive candidate to active candidate” 

are paired to avoid the un-sequence packets causing TCP state filtering. Figure 4, 

illustrates the different connectivity checks of ICE-UDP and ICE-TCP. 

 
Figure 4. Each candidate location and ICE connectivity check pair in check list 

Concluding ICE 

 ICE assigns one endpoint to be the role CONTROLLING, and another be 

CONTROLLED. The controlling role is responsible of nominating which candidate 

pairs will get used for media amongst the ones that are valid. It can do this in one of 
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two ways – using REGULAR NOMINATION or AGGRESSIVE NOMINATION, the 

former selects a path after all the checks finish, the later selects one immediately 

when the check is succeed. Once the nomination completes, the nominated valid pair 

could provide a path for applications to create peer-to-peer connectivity. 
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3. ICE Library Implementation for SIP Calls 

Architecture 

For analyzing the ICE-UDP and ICE-TCP, first thing is that implement ICE on 

applications to test. ICE cooperates with signaling protocol to exchange necessary 

transport candidates, we implement ICE-UDP/TCP on VoIP SIP application to carry 

out ICE process and communicate by SIP protocol to exchange candidate data, the 

application follows the architecture in Figure 5, includes ICE Library and utilize SIP 

module to transport ICE candidates. 

 ICE process start with STUN session and perform UDP/TCP check sessions with 

remote candidates, the implementation considerations of UDP and TCP are different 

since ICE-UDP and ICE-TCP are based on UDP and TCP socket layer. ICE-UDP 

opens one socket which is bound with a local IP and port, gets the candidates and 

check paths, but the ICE-TCP handles few sockets for different connections if it needs 

listen and initiate connections to remote peers. The draft [8] notes that the BSD TCP 

sockets of ICE use socket option SO_REUSEADDR to reuse the local IP port since 

ICE demands few sockets for different TCP sessions.  

 
Figure 5. VoIP SIP application with ICE architecture 
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ICE Library Modules 

 PJNATH (PJSIP NAT Helper), followed draft-ietf-mmusic-ice-19 [5], is an open 

source library providing ICE-UDP NAT traversal functionalities. For testing 

ICE-UDP and ICE-TCP NAT traversal utility, we wrap PJNATH up and modify it to 

support ICE-TCP [8], provide a ICE Library implementation for SIP calls, the 

following lists the ICE library and describes the action in Table 1.  

Here illustrates the functions related to ICE process in Figure 4, ICE_Init() 

function needs to input configuration to set the STUN server for discovering 

candidates, initialize the required data structure and memory allocation. 

ICE_Getcandidates() perform STUN process to send STUN request to server and 

collect candidates from STUN response; ICE_StartCheck() needs input the remote 

peer candidates that are exchanged by SIP, then paring the local candidates and 

remote candidates according pair list mentioned in chapter 2, and start to check each 

pair by sending STUN request periodically. For synchronizing the check results 

between caller and callee, ICE performs a 4-way handshake (caller and callee send 

and receive STUN request/response for the same pair) to sure that result is in chorus. 

After all the checks finished, caller sends a STUN request with a flag to callee for 

nominating pair. 

Table 2.ICE Library implementation for SIP calls. 

Function Description 

void ICE_Init(STUNConfig*) Allocate memory; initialize the STUN 
configuration and data structure. 

Candidates* ICE_GetCandiates(void) Collect the candidates for ICE-UDP/TCP 

CandidatePair* 

ICE_StartConnectCheck(Candidates*) 

Start ICE connectivity check of 
ICE-UDP/ICE-TCP and return nominated 
path 



 15

 

 
Figure 6. The relations between ICE API and process in time sequence (left to right) 

Flow of VoIP SIP application with ICE-UDP and ICE-TCP 

 This section details the execution sequence of application layer shown in Figure 

7.When VoIP SIP application set up, application calls ICE_Init() to initialize the ICE 

configuration. As caller (controlling) ready to make a call to callee, caller executes the 

ICE_GetCandidates() to collect candidates, encode candidates to SDP embedded in 

SIP message and send out SIP INVITE message to SIP server forwarding to callee 

(controlled). After callee receives and decodes candidates from SDP, callee also 

executes the ICE_GetCandidate() to get the candidates of itself. After that, callee 

collected local candidates and remote candidates obtained from caller, encode local 

candidates to SDP in 200 O.K SIP message and response to caller, finally callee 

executes ICE_StartConnectCheck() to start period check, and caller do the same 

action after it receives the SIP response from callee. After connectivity all checks 

finish, caller sends a STUN request to calle to nominate which candidates pairs will 

get used, at the end, both caller and callee both they can send (and receive) date 
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packets peer-to-peer bidirectional through nominated path. 

 The ICE process in the figure includes ICE-UDP and ICE-TCP. The 

implementation wraps ICE-UDP and ICE-TCP so we could execute ICE-UDP and 

ICE-TCP process together. If some applications apply on UDP and TCP protocol, we 

recommend that the ICE-UDP process should fist since the UDP NAT traversal is 

easier. 

 
Figure 7. VoIP SIP application applied ICE library to perform NAT traversal. 
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4. Experiments and Results 

Experiments Design  

Here we design experiments to analyze the DCR of ICE technique under NATs 

and observe the characteristics of ICE-UDP/TCP. Because traversal techniques suffer 

from NAT behavior, we analyze the UDP/TCP behaviors of 15 NATs and classify 

them into four types according to previous work [2]. For each experiment, the results 

of different combination of NAT types are different. We infer the upper-bound of 

DCR under various combinations of NAT types, observe the DCR of ICE in a real 

NAT environment, and understand whether the DCR of ICE can reach the 

upper-bound or not.  

In our experiment environments as Figure 8 shows, we set two peers, caller and 

callee, and execute VoIP application for testing ICE DCR under 15 NATs. Also, we set 

STUN server to get NAT mapping and SIP server to exchange necessary candidates 

under ICE process. 

 
Figure 8. ICE DCR test environment. 

 
 

 In the experiment, we test application under various NAT combinations to 
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establish peer-to-peer connectivity. There are 210 cases (15*15-15) for ICE-UDP and 

ICE-TCP respectively. The experiment starts by making a call from caller to callee to 

establish connection, and performs ICE process to traverse NAT. If both caller and 

callee establish bidirectional data transmission, the result of test case is success. 

Otherwise the result is failure. The following is the test case procedure. 

 Step 1: Caller and callee set up application configuration and execute. 

Step 2: Caller and callee register with SIP server and caller make a call to callee. 

Step 3: Caller and callee perform ICE-UDP first and then ICE-TCP process. If 

the traversal is successful, they start to transmit data. 

 Step 4: Application will start or fail to transmit data. 

NAT Classification and Analysis 

 Before measuring the ICE-UDP/TCP DCR, we have to understand the NAT 

behavior and further classify NAT types and realize which combination of types ICE 

could traverse so that we can figure out the DCR upper-bound in advance. Each peer 

runs the test program NATCheck [6] and Stunt [12] to test the UDP/TCP behavior of 

NAT and classify NATs. Table 3 shows the results, and we could reference the Table 1 

and Figure 1 to estimate the upper-bound of DCR under UDP and TCP in experiment 

environment. 

Table 3. Test results of NAT type 
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Testing Results 

DCR of ICE-UDP and ICE-TCP 

 Table 4 shows the results and Table 5 summarized them. Table 5 displays the 

DCR in above four combinations and normalized DCR which means the DCR of 

entire cases of experiment. ICE-UDP and ICE-TCP techniques almost solve all cases 

SHOULD pass in combination 1 and 2 so that their DCR approach to the DCR 

upper-bound, this proves the conjecture of upper-bound is correct. The DCR 

upper-bound of ICE-UDP is 71.4% which is higher than ICE-TCP because handling 

TCP connection is complicated. We consider that NAT takes care of reliable and 

secure TCP connection so there are more Port Restricted NATs and Symmetric NATs 

for traversing TCP connections, increases the portion of combination 3 and 

combination 4 and decrease the DCR upper-bound. Because the Combination 3 and 

Combination 4 are the bottleneck of DCR upper-bound, port predict [13] traversal 

technique which guess the binding of Symmetric NAT, could be utilized in ICE and 
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raise the ICE-UDP and ICE-TCP DCR when the port mapping assignment of 

Symmetric NAT is sequential. 

According the ICE-UDP test results, we observe a situation that caller behind 

NAT 6 and NAT 14, the UDP connection fail to traverse NAT, but it could pass when 

the role of caller and callee are changed. This situation is called Conntrack Bind 

problem [17] described in section 4.3.2. 

Table 4. Total test cases of (a) ICE-UDP and (b) ICE-TCP, “O” means success case, 

“▲” means success if we fix Conntrack Bind problem, space means fail case. 

 

 

 

 

 

 

 

Table 5. (a) ICE-UDP and (b) ICE-TCP DCR testing analysis 
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Conntrack Bind Problem 

 From Table 5(a), we observe that caller under NAT 6 and 14 (Port Restricted 

NAT) could not traverse Port Restricted NATs, but this case should pass under the 

NAT combination because they are Corn NATs. This problem is proposed in [17] 

when one of peer is under Linux-based NAT (Port Restricted NAT); Figure 9 illustrate 

the packet flows when the problem occurs. When an unsolicited packet attempts to 

traverse a Linux-based NAT, the NAT will block the old mapping (a) created by 

STUN session and assign a new mapping (b) in Figure 9 for new outbound packets, 

such mapping behavior is similar to Symmetric NAT. In Figure 7, we know callee 

always start connectivity check earlier than caller. After a Linux-based NAT creates 

the mapping a by STUN server for the caller, it drops an unsolicited STUN check 

packets from callee. That’s why the Conntrack Bind problem occurs. 
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Figure 9. Conntrack Bind problem occurs when peers under Linux-based NAT. 

 Here we propose a solution: Forestalling Low-TTL, solve the conntrack bind 

problem even if caller and callee under Linux-based NATs. In our solution, we 

consider that caller should send out a Low-TTL packet applying NAT to create a 

correct mapping before other side check packets arrive. 

 We demand the two sets of candidate for twice ICE process. If the fist ICE 

process fails, we presume that the Conntrack Bind problem occurs and then trigger the 

ICE process of second candidate set. We collect the extract (second) candidates and 

encode into SDP with original (first) candidates, after callee receives the SIP message 

with SDP, callee also collects the extract candidate and original candidates, and pairs 

two lists for checking. Before callee responses the SDP with candidates to caller, it 

send out the Low-TTL packet to caller’s second server reflexive candidate binding b 

on NAT in Figure 9, to create a mapping on NAT, and send SIP message to caller and 

starts the original ICE process. The caller receives callee’s candidates from SIP 

message and immediately sends a Low-TTL packet to callee’s second server reflexive 

candidate b’, at this time, two sides NAT have created mapping by outgoing Low-TTL 

packets. If the fist ICE process fails, we will start the extra ICE process; begin the 

extra ICE connectivity check after we have sent Low-TTL packet to created correct 

mapping on NAT. Therefore, even both peers are under Linux-based NATs, Conntrack 
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Bind problem cases could be solved in Table 4(a), and we improve the ICE-UDP 

DCR from 63.76% to 67%.  

  

Figure 10. Solution: Forestalling Low-TTL for Conntrack Bind problem. 

 Although we have solved the Conntrack Bind problem, but the ICE-UDP DCR 

combination 1 (Table 3.) does not reach 100%. We consider this caused of particular 

NAT behavior since the DCR test result of NAT7 are similar Symmetric NAT, but 

NAT 7 doest not match the NAT behavior testing result according to Table 3, this may 

be a point for a further research. 

The results show that the media protocol that runs over UDP and TCP, for 

example: RTP protocol, it prefer to use UDP protocol first on P2P application for NAT 

traversal cause of the higher DCR and upper-bound. If endpoint could not traverse 

NAT on UDP protocol, it attempted to change into TCP protocol to TCP NAT 

traversal, solve some special cases on UDP protocol such as Conntrack Bind problem. 

Bottleneck of the upper-bound of NAT TCP DCR 



 24

 In Table 2, the types of NAT TCP behavior are almost Port Restricted, this is an 

issue of implementation. When NAT handles TCP outbound connections, it binds a 

socket to establish connection to external endpoint, this TCP socket does not accept 

other SYN packets since TCP are unidirectional establishment, causing filtering 

behavior are strict. The NAT type of D-Link NAT on TCP is Full Cone NAT, we 

consider it handles outbound connections and accept inbound connections at the same 

time by open few sockets, but it has the resource issue that we do not discus here. 
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5. Conclusions and Future Works  

Main Differences on Connectivity Checks and Implementation 

In the thesis, we implement the ICE Library, which is used by VoIP application 

to realize ICE-UDP/ICE-TCP process for UDP/TCP NAT traversal, and analyze and 

compare their differences. Also, we design experiments to observe the characteristics 

and measure the ICE-UDP and ICE-TCP NAT traversal abilities with various 

combinations of NAT types. 

 The implementation of ICE-UDP and ICE-TCP are different on ICE session 

layer and socket layer. On socket layer, the implementation of UDP is simpler than 

TCP because ICE-UDP use the same socket handles few UDP connections while 

ICE-TCP must handle few TCP sockets, reuse them to establish TCP connections to 

STUN server, check connectivity, and accept inbound connections. On ICE session 

layer, ICE-UDP has “local to server reflexive” path for NAT traversal expect “local to 

local” path, and ICE-TCP has TCP simultaneous and active – passive path to perform 

TCP NAT traversal. 

ICE  

 According to the experiment results we summarize: (1) It is complicate for NAT 

to handle TCP connections so that it limits the TCP traversal upper-bound; besides, 

TCP connection should be by modifying the implementation. (2) So far ICE could 

traverse the NAT types of combination 1 and combination 2 and almost reach 100% 

of upper-bound of UDP and TCP. However, the Conntrack Bind problem may occur 

in the scenario of figure 8. Therefore, this thesis proposes the solution which is 

Forestalling Low-TTL to solve problems in combination 1 that ICE could not traverse. 
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As a result, it helps to raise the ICE-UDP DCR. (3) The utilization on media protocol 

run over on both of UDP and TCP recommends that always use UDP protocol to 

traverse NAT first and change to TCP protocol if it fail on UDP. (4) The TCP NAT 

behavior should be reformed by implementation to handling the inbound TCP 

connections, the TCP DCR upper-bound will be improved. 

DCR Upper-bound Bottleneck on NAT implementation 

 So far the ICE traversal technique almost has reached the upper-bound on UDP 

and TCP. If we attempt to improve the DCR, combining the port predict technique in 

ICE could better DCR of combination 3 and combination 4. Furthermore, attacking 

upon the NAT infrastructure is a good way to enhance DCR. If the proportion of Full 

Cone and Address Restricted Cone NAT is higher, it could raise the upper-bound in 

combination 1 since Port Restricted NAT limits the DCR upper-bound when it meets 

Symmetric NATs. In addition, it needs NAT vendors to follow the RFC 4787 [3] and 

RFC 5382 [4] to reform the particular behavior like the behavior of NATs NAT 7 and 

Linux-based NAT. 
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