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以光源對物體可見度為導向之重要性取樣法 

 

研究生：吳昱霆    指導教授：施仁忠 教授 

 

國立交通大學多媒體工程研究所 

 

 

摘       要 

 

本論文在產生取樣點時考量光源與物體之間的可見度，提出一個新的重要性

取樣方法。本演算法將之前使用球面輻射基底函數(SRBF)考量 BRDF 與環境光

源的重要性取樣法做了延伸，藉由使用先前可見度測試的結果來調整每個球面輻

射基底的權重而將可見度的影響結合於重要性取樣函式(Importance Sampling 

Function)中。與先前許多在二維空間考量可見度關連性的重要性取樣法不同，本

演算法在三維空間中考量可見度的影響，避免重複地在先前可見度測試失敗的方

向上放置取樣點。因此較多的取樣點能通過可見度的測試而對最後繪製的結果產

生貢獻。在三維空間中考量可見度關連性將使我們的演算法更適用於一些大部分

光源為不可視的特殊場景。由結果可以看出來，本演算法大量的減少了整張畫面

的誤差與雜訊，而並不只是針對陰影邊緣而已。在花費相同時間下，本演算法所

產生的結果也遠優於先前未考慮可見度的方法。雖然我們的演算法是架構在以球

面輻射基底函數(SRBF)上，但是本論文的想法亦可被延伸至其它基底，像是小

波函數(Wavelet)或是球面調和函數(Spherical harmonics)。
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Visibility-Guided Importance Sampling 

 

Student：Yu-Ting Wu  Advisor：Prof. Zen-Chung Shih 

 

Institute of Multimedia Engineering 

National Chiao Tung University 

 

ABSTRACT 

 

We propose a novel sampling algorithm by considering the importance of 

visibility in the sampling process. This algorithm extends the bidirectional importance 

sampling techniques based on SRBF representation by adjusting the weight of each 

SRBF basis according to the previous history in visibility tests, thus combing the 

visibility term into importance function. Unlike previous visibility-related researches 

in importance sampling exploit image-space visibility coherence, we consider 

visibility in object space by avoiding redrawing samples in invisible directions. 

Consequently more samples pass the visibility test and contribute to the final rendered 

result. Considering visibility in object space would make our algorithm more flexible, 

even for scenes which have heavy occlusion. Our approach successfully reduces the 

variance over the entire image, not only along the shadow boundaries. Under the same 

computing performance, we can obtain higher quality than previous bidirectional 

importance approaches. Although our proposed algorithm is based on the SRBF 

representation, it can also be applied to other basis such as wavelet or spherical 

harmonics.
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Chapter 1 Introduction 
 

1.1 Motivation 
 

Monte Carlo ray tracing [10] is widely used in global illumination. This kind of 

algorithms has several advantages over finite element method (radiosity), such as no 

additional tessellation is necessary and any type of materials can be handled. Besides, 

current hardwares also have better support to this method. However, brute force 

Monte Carlo ray tracing based on random sampling often takes too much time to get 

satisfying results and produces undesired noise along shadow boundaries. 

 

To improve the efficiency of brute force Monte Carlo ray tracing and reduce the 

variance, the concept of importance sampling was first proposed by Ward [31] in 

1992 and becomes a popular variance-reduction method. Instead of distributing 

samples randomly, importance sampling concentrates the samples in regions which 

have large integral values in the rendering equation, namely, the important regions. By 

using importance sampling, we can obtain better result with fewer samples. 

 

Although the topic of importance sampling has been studied for twenty years, 

estimating the integral of the triple product, illumination, BRDF, and the visibility 

function in the rendering equation, is still an elusive goal. The major difficulty is that 

the visibility function can only be determined in run time. Most importance sampling 

algorithms ignore visibility and only draw samples based on the product of 

illumination and BRDF terms, such as Tsai et al. [27] and Clarberg et al. [4]. Their 
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algorithms work well in general scenes; however, in some particular scenes in which 

the visibility term dominates the importance function, these approaches still produce 

large variance. Recently some researches [5][7] use image-space coherence or control 

variate to reduce the variance. Nevertheless, consider Figure 1.1, a room with the only 

light source coming from windows, the image-space coherence is hard to be 

exploited. 

 
Figure 1.1: A special scene. The light source from environment map (orange ring) 

can only come from the window on the wall, and the visibility term will 

dominate the integral in rendering equation 

 

The goal of our research is to propose a visibility-guided importance sampling 

algorithm which considers the visibility between surfaces and light source in the 

progress of sampling. In the run-time process, we avoid distributing samples along the 

directions which the previous visibility tests failed, thus increasing the possibility of 

sampling along visible directions. Our algorithm considers visibility in object space in 

the run-time sampling process. It still works very well in both general scenes and the 
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scenes like Figure 1.1. In the following paragraphs, we summarize our major 

contribution: 

1. Instead of exploiting visibility coherence in the image-space, we combine the 

visibility function into importance function in the run-time sampling process. 

2. Our algorithm does not need any additional passes; it considers visibility in 

the original sampling process. Moreover, all the additional resource we need 

is a small-size buffer. 

3. Our proposed idea can be easily combined with previous product sampling 

algorithms and improve the sampling efficiency. 

 

 

1.2 System Overview 
 

Figure 1.2 gives an overview of our system. Our system is similar to the one 

proposed by Tsai et al. [27], which is a product importance sampling algorithm using 

SRBF representation. We develop our visibility-guided importance sampling 

algorithm based on Tsai’s system by adding a step to consider the visibility (The 

yellow step in Figure 1.2).  

 

In Tsai’s system, they first fit BRDF data and environment map into SRBFs in 

preprocess. Then, in the run-time process, the products of SRBFs are evaluated to 

determine how many samples each SRBF should take. To take visibility into 

consideration, we use previous history of visibility test to evaluate a visibility weight. 

The weight is then used to adjust the probability of choosing which SRBF for 

sampling. To avoid invisible directions, the SRBFs with their centers close to previous 
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invisible directions will have less possibility to be chosen. After the visibility-guided 

adjustment, we use Tsai’s method to generate samples from each SRBF and render the 

final image. 

 
Figure 1.2: System Overview 

 

 

1.3 Thesis Organization 
 

The rests of this thesis are organized in the following manner. Chapter 2 reviews 

some of the related works in importance sampling and visibility sampling. In Chapter 

3, we briefly introduce the background knowledge of SRBFs. In Chapter 4, we 
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present the main concept of our visibility-guided importance algorithm. The 

implementation details will be demonstrated in Chapter 5. Chapter 6 shows the result 

of our algorithm. We also make comparisons toward previous works and give some 

discussion in this chapter. Finally, we conclude our work and propose some future 

works in the Chapter 7.
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Chapter 2 Related Work 
 

In this chapter, we review previous works on importance sampling and visibility 

sampling. As mentioned before, importance sampling is a popular approach to 

improve the performance of Monte-Carlo methods. The major concept of importance 

sampling is to concentrate the sampling efforts on important regions. If important 

samples are generated more frequently, the variance can be greatly reduced even with 

fewer samples. Ideally, the number of samples should be proportional to the rendering 

equation: 

( ) ( )
( ) ( ) ( )( ) iiiiioi

oeo

dnxVxLxB

xLxL

ωωωωωω

ωω

⋅

+=

∫Ω ,,,,

,,

    (1)
 

where ),( oxL ω  denotes the outgoing radiance from a surface point x  in viewing 

direction oω , iL  is the incident radiance, B is the BRDF, V is the visibility relation 

between the incident light and surface, and finally n  is the surface normal at x . 

Combing with Monte-Carlo estimator and considering the importance 

function ( )oni x ωω ,|Pr , , the equation becomes: 

 

( ) ( )
( )( )
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+=
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ωωωωω
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The major difficulty in importance sampling is to estimate the integral of the 

triple product of iL , B , and V as soon as possible in run time. For performance reason, 

previous importance sampling algorithms usually transform the BRDF data and 

environment maps into different basis such as spherical harmonics, wavelets, or 
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spherical radial basis functions. The bases are then used to evaluate the value of 

importance function ( )oni x ωω ,|Pr ,  in run time. BRDF importance sampling methods 

distribute samples according to the BRDF distribution; Environment map importance 

sampling techniques concentrate samples at regions having large value in incident 

radiance function; Product importance sampling approaches evaluate the product of 

BRDF and illumination in run time and determine sampling density according to the 

value of product. However, considering visibility during sampling would encounter 

problems discussed in the next paragraph. 

 

The simplest idea is to combine the visibility estimation V~  into the importance 

function and calculate importance by evaluating the triple product VBLi
~~~ . However, 

this approach requires 0~ ≠V  wherever 0≠V  because 0~ ≠V  will stop the 

exploration directly and lead to bias. Moreover, visibility could only be determined in 

run time. This means that the estimation is hard to be generated. For these reasons, the 

visibility term is usually ignored in the importance sampling algorithms. To solve this 

problem, we present a novel approach to consider visibility during drawing samples. 

 

 

2.1 Importance Sampling 
Pioneered by Ward [31], the research of importance sampling starts from 

considering one of the term B  or iL . In the research of BRDF importance sampling, 

Lafortune [15] used multiple cosine-lobes for representing the BRDF. Lalonde [16] 

used wavelets to represent the measured BRDF. Matusik [18] also used wavelets to 

represent BRDF and presented a numerical sampling method based on 

reparameterizing the BRDF by using half-angle. Weng and Shih [32] fit the measured 
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SRBF data into scattered SRBFs and estimated the probability distribution for 

importance sampling. In the research of environment map importance sampling [22] 

[23], the environment maps were transformed into finite basis function such as 

wavelets or spherical harmonics. 

 

Recently several researches have worked on drawing samples from the product 

distribution of the incident radiance function and the BRDF. For general scenes, these 

approaches produce high-quality images with small number of samples. Burke et al. 

[2] introduced a bidirectional sampling technique based on sampling-importance 

re-sampling (SIR). Clarberg et al. [3] used a hierarchical wavelet representation to 

estimate the product distribution of BRDF and illumination, later they [4] modified 

their algorithm by fast quad-tree product in run-time. Tsai et al. [27] proposed a 

product importance sampling algorithm using SRBF representation. Although these 

researches work well in general scenes, the lack of considering visibility makes them 

produces large variance in the scenes like Figure 1.1. Rosusselle et al. [24] proposed a 

visibility approximation method in their product importance sampling algorithm. 

However, their approximation needed the simplification of meshes and a hierarchical 

structure of each function. Huang et al. [9] considered visibility by using more 

samples for partial-occluded regions. They do not take visibility into importance 

function.  

 

 

2.2 Visibility Coherence 
 

Recently more and more research tries to consider the visibility in importance 
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sampling. Ghosh et al. [7] presented a two-stage importance sampling algorithm to 

reduce the noise along the shadowed regions. They first used product importance 

sampling to create a visibility mask for marking the partially occluded pixels, then 

they use metropolis sampling to exploit the visibility coherence in image space. Their 

work successfully reduced the variance along the shadowed regions for general scenes. 

However, if most directions are invisible, the image-space coherence is hard to exploit 

and unreliable. 

 

Donikian et al. [6] used an adaptive importance sampling approach to iteratively 

refine the importance function, the image is divided into 8 x 8 blocks and refined 

iteratively. Hart et al. [8] used a lazy visibility evaluation to compute direct 

illumination, spatial visibility coherence was exploited by a flood-fill algorithm. 

Clarberg et al [5] analyzed the visibility coherence and used control variate to 

reformulate the rendering equation. They placed visibility records in the scene, and 

then used linear interpolation of records to estimate the visibility based on normal 

difference and distance. Compared to two-stage importance sampling, their work 

reduced the noise of the entire image. Although they used control variate to exploit 

the visibility coherence in three-dimensional space, they did not combine the visibility 

into importance function during sampling. Moreover, their approach needs lots of 

visibility records in complex scene, becoming memory-consuming and 

time-consuming for the computation of records. 

 

2.3 Visibility Sampling 
 

Wonka et al. [30] proposed a visibility sampling for ray tracing. Although it is 
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not an importance sampling algorithm, their algorithm has many ideas similar to our 

work. Their strategy was to cast rays which are likely to sample new triangles in the 

ray-space and thus improving the sampling efficiency. Our algorithm also uses this 

concept in importance sampling. We avoid redrawing samples which are likely to be 

invisible.
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Chapter 3 Background of SRBFs 
 

In this chapter, we introduce the backgrounds of Spherical Radial Basis Function 

(SRBF). It has been shown in data analysis by Weng and Shih [32] that SRBF is more 

appropriate for modeling spherical data, such as BRDF or incident radiance function 

than other basis. Spherical data can be represented by SRBFs without any artificial 

boundaries or distortions. It also has many useful properties, such as rotational 

invariance and positive definiteness. For these reasons, we develop our proposed 

visibility-guided importance sampling algorithm based on the SRBF representation.  

 

The spherical radial basis functions (SRBFs) are special radial basis functions 

defined on the unit sphere. It is recognized as a circularly axis-symmetric reproducing 

kernel function defined on mS  (unit sphere in 1+mR ). The kernel functions only 

depend on the spherical distance between two unit vectors. Figure 3.1 shows the 3D 

plot of a Gaussian SRBF example. 

 

Figure 3.1: 3D plot of a Gaussian SRBF 

 

Bandwidth 

Center 

Coefficient 
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Let η and ξ be two points on mS  and θ(η, ξ) be the geodesic distance between η 

and ξ on mS , i.e. the arc length of the great circle joining the η and ξ. The kernel 

functions of SRBFs will depend on θ and can be expressed in the expansions of 

Legendre polynomials: 

 ( ) ( ) ( )∑
∞

=

⋅=⋅=
0

cos
l

ll PGGG ξηξηθ
         (3) 

where ( )ξη ⋅lP  is the Legendre polynomials of degree l , and lG  is the Legendre 

coefficients satisfying the following two conditions: 








∞<

≥

∑
∞

=0

0

l
l

l

G

G

 
 

When all lG  are positive, a spherical function ( )ηF  can be represented in 

SRBF expansions as Eq. 4. { 1ξ ,… nξ } is a set of disjoint points called centers, 

{ 1λ ,… nλ } is the set of bandwidths, and { 1F ,… nF } is the set of coefficients. 

( ) ( )∑
=

⋅=
N

k
kkkGFF

1
;λξηη

           (4) 

 

Thus, the SRBFs behave as reproducing kernels for interpolating ( )ηF  on mS . 

Figure 3.2 shows an example of SRBF representation for a spherical function ( )ηF . 

 

Figure 3.2 SRBF representation for a spherical function (k = 3) 
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Since SRBF can be expressed in terms of expansions in Legendre polynomials, it 

facilitates the evaluation of convoluting two SRBFs. We can easily calculate the 

spherical singular integral based on the orthogonal property of Legendre polynomials 

in [-1, 1]: 

( )( ) ( ) ( ) ( )

( ) ,
0

21
,

21

212121

∑

∫
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=

⋅=

⋅⋅=⋅∗

l
l

lm

m
ll

Sm

P
d

GG

dHGGG
m

ξξ
ω

ηωξηξηξξ

      (5) 

where mω  is the total surface area of mS , lmd ,  is the dimension of the space of 

order-l spherical harmonics on mS , and ωd  denotes the differential surface element 

on mS . Please refer to [19] for more details about spherical radial basis functions. 

 

The Gaussian SRBF kernel is an example of SRBFs. Its kernel is defined as 

follows: 

 ( ) ( ) ,0,; >=⋅ ⋅− λλξη ξηλλeeGGau
         (6) 

 

We adopt Gaussian SRBF kernel as the kernel function based on the following 

reasons. First, Tsai and Shih [22] have proved that the convolution of two Gaussian 

SRBFs has a mathematically simple form for small m. It can be written as: 

( ) ( )
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    (7) 

where 2211 ξλξλ +=r . Second, the product of two Gaussian SRBFs is easy to 

evaluate. For more details about the proof of the Eq. 7, please refer to [25]. 
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We use SRBFs to represent the BRDF data and the environment maps. As 

introduced above, the product of BRDF and illumination represented in SRBFs can be 

fast evaluated in run time. Our algorithm then computes a visibility weight to 

adjusting the weight of the product, thus combing the visibility function into 

importance function. We will demonstrate our major concept in next chapter.
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Chapter 4 Algorithm 
 

We develop our visibility-guided importance sampling algorithm based on the 

product importance sampling algorithm proposed by Tsai et al. [27]. In their original 

system, BRDF data and environment maps are fit into SRBF representation in the 

pre-process and the product of the SRBFs are evaluated to determine how many 

samples that each SRBF should take in run time. As usual product importance 

sampling approaches, they do not consider the visibility function during sampling. We 

enhance their system by introducing a visibility term into the importance function.  

 

The major idea of our approach is to generate new samples based on old ones. In 

the sampling process, we keep the history of visibility test in a cache for each hit point 

on the surface by Monte Carlo ray tracing. The cache stores all the previous invisible 

directions for the point. When taking the next sample, we can use this information to 

avoid redrawing samples along the invisible directions. As a result, the number of 

samples which pass the visibility test increases and the sampling efficiency is 

improved. 

 

Figure 4.1 illustrates the off-line fitting process. We use Tsai’s off-line fitting 

algorithm to fit the BRDF data and environment map into SRBFs. For the BRDF data, 

each viewing direction is fit into SRBFs respectively. For the environment map, the 

total environment map is represented as a multiple kernel SRBF. These SRBFs are 

then used in run time to evaluate the importance function. 
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Figure 4.1: Off-line fitting process 

 

Figure 4.2 illustrates the flowchart of our run-time sampling algorithm. The 

visibility cache is empty initially and updated if necessary during the sampling 

process. When a view ray hits an object in the scene, the product of the BRDF data 

and environment map represented in SRBFs are evaluated and a multiple kernel 

SRBF is generated. Instead of determining the number of samples on each SRBF 

directly according to the value of coefficient, we fetch the previous sampling history 

from cache for obtaining which directions failed in the previous visibility tests. If the 

cache is not empty, the history is used to adjust the probability of SRBFs. A SRBF 

with its center close to the invisible direction will have lower probability to be chosen. 

After this adjustment, we determine the number of samples taking from each SRBF 

and generate samples according to each SRBF. Finally the sampling results are 

combined for determining the outgoing radiance along the camera ray. 
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Figure 4.2: Run-time rendering process 

 

The following sections are organized as follows. In section 4.1, we explain how 

the product of BRDF and illumination is evaluated. In section 4.2, we describe how 

we maintain the visibility information and adjust the weight for choosing SRBF. We 

also use an example to illustrate how our algorithm works. Finally in section 4.3 we 

describe how we generate samples according to a SRBF. 
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4.1 Product of the Illumination and BRDF 
 

We use Tsai’s method to estimate the product of the illumination and BRDF 

represented in SRBFs. As mentioned before, the product of two Gaussian SRBFs can 

be easily computed as follows: 

( ) ( ) ( )

3
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22113
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332211
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FFF
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where 3F  is the coefficient of product result, 3λ  is the bandwidth of product result, 

and 3ξ  is the center of the product result. The product of N SRBFs from BRDF data 

and M SRBFs from illumination is shown as follows: 

( ) ( ) ( ) ( )∑∑
==

⋅⋅≈
N

n
nni

brdf
n

M

m
mmi

onilluminati
mii GFGFBL

o
11

;; λξωλξωωω ω
 (8) 

where ( )iL ω  is the incident radiance and ( )io
B ωω  is the BRDF with a fixed 

outgoing direction oω . 

 

After calculating the product, the total number of SRBFs becomes M x N. For 

performance issue, we only keep n SRBFs with larger coefficient and prune the rests. 

Because most energy is distributed in SRBFs with large coefficient, we can get a good 

approximation by keeping these n functions. For more details, please refer to Tsai’s 

paper [27]. 
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4.2 Exploiting Visibility Coherence 
 

After calculating the product of the SRBFs, we will have multiple SRBF kernel 

functions. Now we must decide how many samples should be taken from each SRBF 

kernel. We employ the mixture model for taking samples from the SRBFs. To 

generate a new sampling direction, we first select a SRBF l  with probability )(lP . 

Then we generate a sampling direction for shadow ray against the center of SRBF. In 

the original Tsai’s paper, )(lP  is determined by 

∑=

= n

i i

l

I
I

lP
1

)(  

where iI  is the integral of SRBF i. The integral represents the total energy gathered 

from all directions. Therefore, the meaning of Eq. 9 is to allocate samples according 

to the energy of each SRBF with respect to the total energy of all SRBFs. 

 

To consider the visibility, we introduce a visibility term iV  into Eq. 9. The 

probability of choosing the SRBF l  from the multiple SRBF kernel functions 

becomes: 

∑=

= n

i ii

ll

IV
IV

lP
1

)(
 

the visibility term iV  stands for the visibility weight of the SRBF i . It is determined 

according to the previous sampling history. In the following, we will demonstrate how 

to keep the history and derive the visibility weight. 

 

To build the history, we create a visibility cache to keep a list of invisible 

directions for shadow rays. In the original Monte Carlo ray tracing algorithm, several 
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shadow rays are generated sequentially to sample the lighting contribution from the 

environment map when a view ray hits the scene object. Then the average is 

calculated as the outgoing radiance along the camera ray. Our algorithm takes 

advantage of this sequential property. If the sampling direction fails in the visibility 

test, we record its direction in the cache. When taking next sample, the content in the 

cache is used to adjust the probability )(lP  of each SRBF. By keeping the results of 

visibility tests in visibility cache, we can avoid redrawing samples in invisible 

directions with respect to this ray-tracing point. We define the visibility term as 

follows: 

k

l dirNum
V 








∝

)(
1

 

where Num(dir) represents the number of directions which are close to the center of 

the SRBF l , and k  is a constant to control the decreasing slope. 

 

For each SRBF l , we determine whether the invisible directions in the visibility 

cache and the center of SRBF are close or not. If the angle between these two 

directions is smaller than a threshold, we increase Num(dir). This will lower the 

visibility term lV , meaning the SRBFs with their centers close to the invisible 

directions will have smaller probability to be chosen. Now the problem is how to 

determine the threshold? Instead of using a fixed threshold, we construct a bandwidth 

function to determine the threshold. We assume the angle between the center of a 

SRBF and an invisible direction in the visibility cache is a normal distribution, we can 

evaluate the standard deviation of angle with some appropriate simplification as 

follows: 

2/12

0

2 




= ∫ − dxexLns Bxσ

           (9) 
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where x  is cosine value of the angle between two directions, B  is the bandwidth of 

the SRBF, and Lns  is a normalization term which can be calculated as: 

12

0

−
− 





= ∫ dxeLns Bx

           (10) 

 

The bandwidth represents the influence of the SRBF. We can use the standard 

deviation to cut a fixed percentage of directions from different SRBF by evaluating 

the bandwidth function. 

 

Now consider Figures 4.3 ~ 4.8, we show an example to explain how our 

algorithm works. Figure 4.3 shows a scene with a bunny in a room. Light sources 

coming from environment map can only illuminate the scene through the window on 

the wall. The visibility cache is empty initially and updated through the progress of 

sampling. As shown in Figure 4.4, when a view ray hits the surface, we first evaluate 

the product of BRDF and illumination to generate a multiple kernel SRBF. As shown 

in Figure 4.5, since at beginning the visibility cache is empty, the SRBF with larger 

coefficient among the multiple kernel functions has higher probability to be chosen 

(SRBF1 in Figure 4.5). A sampling direction is then generated from SRBF1. In Figure 

4.6, the direction fails in visibility test. We record its direction (Direction1 in Figure 

4.6) in the visibility cache. When we continue to generate the next sample, the 

visibility cache is used to adjust the coefficient of SRBFs. As shown in Figure 4.7, the 

coefficient of SRBF1 is reduced so that we have higher probability to select SRBF2 

for sampling. Finally, as shown in Figure 4.8, since Direction2 passes the visibility 

test, we do not need to update the cache. From this example, we can conclude that 

more samples are concentrated in the visible directions like Direction2. 
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Figure 4.3: Run-time example 1: The scene objects and light source. The 

visibility cache is empty at the beginning. 

 

 

Figure 4.4: Run-time example 2: Multiple SRBF kernel functions are generated 

for a ray-tracing hit. 
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Figure 4.5: Run-time example 3: The visibility cache is empty and the SRBF 

with larger coefficient has higher probability to be chosen. An illumination 

sampling ray is then generated according to the SRBF. 

 

Figure 4.6: Run-time example 4: The ray generated from SRBF1 fails in the 

visibility test. Its direction is then recorded in the cache. 
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Figure 4.7: Run-time example 5: When taking next sample, the content in the 

visibility cache is used to lower the probability of SRBF1. As a result, SRBF2 

has higher probability to be chosen. 

 

Figure 4.8: Run-time example 6: The ray generated from SRBF2 (Direction2) 

passes the visibility test. Therefore, there is no need to update the cache. 
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4.3 Taking Samples from SRBF 
 

After having chosen which SRBF for sampling, we generate the sampling 

direction from the SRBF kernel by sequentially selecting the elevation angle θ and 

azimuth angle φ (Figure 4.9). 

 

Figure 4.9: The elevation angle and the azimuth angle defined against SRBF 

 

We use metropolis random walk algorithm to determine the elevation angle θ 

with a desired density. For the azimuth angle φ, we simply generate a random number 

in [0. 2π] since SRBF is symmetric with respect to its center. After deciding these two 

angles, we can generate a sampling direction according to the SRBF. 

 

The entire sampling process matches the concept of mixture model. To sample an 

illumination direction, we first select a SRBF l  with probability )(lP , and then 

generate an illumination direction d  from the SRBF by the above approach.
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Chapter 5 Implementation Details 
 

We use the PBRT [21] system and path-tracing algorithm [12] to implement the 

Monte Carlo ray-tracing. While sampling, multiple rays are generated for each pixel 

from the camera. The outgoing radiance along these camera rays are gathered and 

combined by the Monte Carlo estimator. Once a camera ray intersects with objects in 

the scene, several directions are generated to sample the lighting contribution from the 

environment map. Our algorithm exploits the three-dimension visibility coherence in 

this stage: For n sampling directions at a hit point, we create a visibility cache to store 

the invisible directions. Compared with previous approaches, the size of the cache is 

all the additional memory space we need, which is negligible. Since the cache can be 

cleared and reused for each intersection, our approach does not need lots number of 

caches as Clarberg et al. [5]. Algorithm 5.1 shows the pseudo code of our algorithm, 

the major part to exploit visibility coherence is marked in the green rectangle. In the 

following paragraphs, we will give the implementation details of each step. 

 

In preprocess, we fit the BRDF and environment data into SRBFs using Tsai’s 

approach [27]. In the run-time rendering process, for each camera ray shot from pixel, 

we use haar evaluation to get the closest BRDF data fit in preprocess. Then we 

compute the product of the SRBFs from BRDF and illumination to generate a 

multiple kernel SRBF. Now we have to determine how many samples each SRBF 

should take. As mentioned in the previous paragraph, we consider visibility by using 

the visibility cache. We use the content in the visibility cache and the formula shown 

in Chapter 4 to adjust the coefficient of each SRBF. 
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After finishing the adjustment, we calculate a one-dimensional cumulative 

density function (CDF) over the probabilities of the SRBFs. Then a random number 

between [0, 1] is used to traverse the CDF to determine which SRBF being chosen for 

taking sample. We then evaluate the rendering equation with the sampling direction 

and update the visibility cache if necessary: if the direction failed in the visibility test. 

This procedure will repeat until the computation of n sampling directions for shadow 

rays completes. The lighting contributions of n sampling directions are then averaged 

to determine the outgoing radiance along the camera ray. Finally, the results of m 

camera rays are combined by Monte Carlo estimator. 

 

 It is noted that the CDF should only be reconstructed when the visibility cache is 

updated. If previous sampling direction passed the visibility test, the coefficient of 

each SRBF does not need to be updated. We use a flag to control whether the CDF 

needs reconstruction. If the size of visibility cache gets large compared with previous 

run, we set the flag to be true to reconstruct the CDF. This approach will reduce the 

number of CDF reconstructions and improve the performance. 
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 Preprocess 

 Fit BRDF and Environment map into SRBFs 

 

 Run-time 

 For each pixel, generate m camera rays 

For camera rays 1 to m, if it has intersection with the scene object: 

 Use Haar Evaluation to get the closest BRDF data 

represented in SRBFs according to the camera ray 

 Compute the product of SRBFs from BRDF data and 

environment map 

Repeat n times (n sampling direction) 

 Use the content in visibility cache to adjust the weight of 

each SRBF 

 Construct a CDF over the SRBFs and traverse a random 

number to select a SRBF for sampling 

 Generate a sampling direction according to the selected 

SRBF 

 Update the visibility cache if necessary 

Average the n sampling results to evaluate the outgoing radiance along 

the camera ray 

 Combine the results of m camera rays by the Monte-Carlo estimator 

 Combine the results of each pixel and get the rendered result 

Algorithm 5.1: Pseudo code of our algorithm



 

29 
 

 

Chapter 6 Results and Discussion 
 

This chapter first demonstrates the results of our algorithm. We implement our 

algorithm on a desktop PC with Intel Core2 Extreme CPU X9650, 8G RAM, and 

NVIDIA GeForce 8800 GTS 512 video card. We use several measured BRDF data 

from MERL and Cornell libraries and complex HDR environment maps for rendering. 

Each viewing direction of the materials is fit into 20 SRBFs and the environment 

maps are represented by 100 SRBFs. 

 

In the following, we will compare our results with SRBFs-based product 

importance sampling presented by Tsai et al. [27]. These results are compared in 

equal-sample or equal-time manners. We use the Uffizi Gallery environment map 

(Figure 6.1) as light source and four different testing scenes (Figures 6.2 ~ 6.5). All 

the scenes are rendered with 5 shadow rays. 

 
Figure 6.1: The Uffizi Gallery environment map 
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Figure 6.2: “Buddh and Car” Scene: “Mystique” Buddha, “GarnetRed” Car, and 

Cayman Walls 

 

Figure 6.3: “Bathroom” Scene: “OrangePaint” Basket, “Teflon” Bathtub, and 

“WhitePaint” Walls 
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Figure 6.4: “Meeting Room” Scene: All the objects in the scene use 

“Fruitwood241” from MERL library as material 

 

Figure 6.5: “Restroom” Scene: “Cayman” Bed, “GarnetRed” Closet, and “Teflon” 

Walls 
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We first compare the rendered results of “Buddha and Car” Scene. Figures 6.6 ~ 6.7 

show the comparison of equal-samples results. We can find that our results are much 

brighter than the ones rendered with previous method. The reason is that shadow rays 

are concentrated along the visible directions. More of them pass the visibility test and 

contribute to the outgoing radiance. 

 

Figure 6.6: Rendered results of “Buddha and Car” Scene using 200 samples/pixel 
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Figure 6.7: Rendered results of “Buddha and Car” Scene using 400 samples/pixel 

 

Figures 6.8 ~ 6.10 show the closer-look of the results. We can obviously find the 

reduction of noise in the two regions by comparing the images with the referenced 

image. 
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Figure 6.8: Referenced image of the two zoom-in regions (“Buddha And Car” 

Scene) 

 

 

Figure 6.9: Comparison of the first zoom-in region (“Buddha And Car” Scene) 
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Figure 6.10: Comparison of the second zoom-in region (“Buddha And Car” 

Scene) 

 

 

Then we compute the root mean square (RMS) error and variance with the 

referenced image. The results are displayed in Figure 6.11 and Table 6.1. In Figure 

6.11, we use different colors to represent the error. Red means high error and blue 

means low. We can obviously find the decrease of red and yellow regions. Another 

important point we can find is that although we increase the number of samples per 

pixel from 200 to 400, the overall error does not decrease as expected in the Tsai’s 

results. The reason is most of the samples failed in the visibility tests and do not 

contribute to the final image. Our algorithm does not suffer this bottleneck and 

successfully reduces the error as the number of samples increases. 
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Figure 6.11: RMS Error of the “Buddha And Car” Scene. Red represents high 

error and blue represents low error. The higher-error regions (red and yellow) are 

reduced by using our approach 

 

 Tsai et al.[2008] Our method 

200 samples/pixel 0.149487 0.081025 

400 samples/pixel 0.139078 0.058851 

Table 6.1: Variance comparison of “Buddha And Car” Scene 

 

Then we compare the rendered results of the “Bathroom” Scene. In this scene, 

we use the measured BRDF data from MERL library for rendering. The scene is 

composed of an “OrangePaint” basket, a “Teflon” basetub, and “WhitePaint” Walls. 

Figure 6.12 shows the rendered results using different number of samples per pixel 

and 5 shadow rays per camera ray. 
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Figure 6.12: Rendered results of “Bathroom” Scene 

 

Figure 6.13 and Table 6.2 shows the RMS error and variance of the “Bathroom” 

Scene. We can find the error near the bathtub and the entire variance is reduced. 
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Figure 6.13: RMS Error of the “Bathroom” Scene 

 

 Tsai et al.[2008] Our method 

200 samples/pixel 0.155543 0.139747 

400 samples/pixel 0.124805 0.103070 

            Table 6.2: Variance comparison of “Bathroom” Scene 

 

 

 

 

Figure 6.14 shows the rendered results of “Meeting Room Scene” using Tsai’s 

and ours approach with 200 ~ 800 samples per pixel. The number of shadow rays 

generated for each camera ray is fixed to 5. 
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Figure 6.14: Rendered results of “Meeting Room” Scene 

 

As shown in Figure 6.14, the results rendered with our algorithm are much brighter 

across the entire image. Moreover, Figures 6.15 ~ 6.17 show that our approach keeps 

more high-frequency details than previous method. Figure 6.15 shows the referenced 

image of the two zoom-in regions, and Figures 6.16 ~ 6.17 compares the rendered 
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results. 

 
Figure 6.15: Referenced image of the two zoom-in regions (“Meeting Room” 

Scene). 

 

 

Figure 6.16: Comparison of the first zoom-in region (“Meeting Room” Scene) 
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Figure 6.17: Comparison of the second zoom-in region (“Meeting Room” Scene) 

 

The RMS and variance of these two approaches are displayed in Figure 6.18 and 

Table 6.3. We can find the great reduction of variance from Table 6.3. Even with 

one-fourth samples, our proposed algorithm still produces less variance than the 

previous method. In the next scene, we will compare the equal-time rendered results 

of our approach and the one proposed by Tsai et al. [24]. 

 

 Tsai et al.[2008] Our method 

200 samples/pixel 0.127465 0.091346 

400 samples/pixel 0.118740 0.068415 

800 samples/pixel 0.106096 0.045513 

Table 6.3: Variance Comparison of “Meeting Room” Scene 
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Figure 6.18: Root Mean Square (RMS) Error Comparison of “Meeting Room” 

Scene 

 

 

Finally consider the “Restroom” Scene. We first compare the equal-samples 

results as above. The rendered images are illustrated in Figure 6.19 and the zoom-in 

details are shown in Figures 6.20 ~ 6.22. The RMS error and variance are shown in 

Figure 6.23 and Table 6.4. 
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Figure 6.19: Equal-samples rendered results of “Restroom” Scene 

 

Figure 6.20: Referenced image of the two zoom-in regions (“Restroom” Scene) 
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Figure 6.21: Equal-samples Comparison: The first zoom-in region (“Restroom” 

Scene) 

 

 
Figure 6.22: Equal-samples Comparison: The second zoom-in region 

(“Restroom” Scene) 

 



 

45 
 

 

Figure 6.23: Equal-samples Comparison: Root Mean Square (RMS) Error of 

“Restroom Scene” 

 

 Tsai et al.[2008] Our method 

200 samples/pixel 0.125262 0.062662 

400 samples/pixel 0.118084 0.047234 

Table 6.4: Equal-samples Comparison: Variance Comparison of “Restroom” Scene 

 

 

Then we use Figures 6.24 ~ 6.27 to show the equal-time results. Although our 

algorithm spends more time on each sample, we can obtain higher-quality images by 

using much fewer samples. The enhancement of performance is obvious as follows. 
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Figure 6.24: Equal-time rendered results of “Restroom” Scene 

 
Figure 6.25: Equal-time Comparison: The first zoom-in region (“Restroom” 

Scene) 
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Figure 6.26: Equal-time Comparison: The second zoom-in region (“Restroom” 

Scene) 

 
Figure 6.27: Equal-time Comparison: Root Mean Square (RMS) Error of 

“Restroom” Scene 
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The major overhead of our algorithm is the increase of frequency to reconstruct 

the CDF. However, it is interesting that the enhancement of quality is also positively 

proportional to the number of reconstruction. Since we only reconstruct the CDF 

when there is a new invisible direction recorded in the visibility cache, it seems that 

we can avoid the invisible directions more accurately if we have more contents in the 

cache. For general scenes which have little occlusion, our algorithm is as fast as Tsai 

et al. [27]. Because most of the time the visibility cache is empty, our algorithm works 

similarly as Tsai’s algorithm. We will have a little enhancement along the shadowed 

regions by spending a little more time (2% overhead). For the scenes like Figures 6.2 

~ 6.5, our algorithm increase 40% ~ 50% computation time compared with Tsai’s 

approach. However, as seen from Figures 6.24 ~ 6.27, we can obtain much better 

results by using the same time. Therefore, our proposed algorithm greatly improves 

the sampling efficiency.
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Chapter 7 Conclusion and Future Work 
 

We propose a novel algorithm to consider visibility in importance sampling 

based on the SRBF representation. Our algorithm considers visibility in object space 

by avoiding redrawing samples along the invisible directions. Compared with 

previous importance sampling techniques, our approach reduces the variance across 

the entire image, not only along the shadow boundaries. Furthermore, our approach 

does not need any other additional rendering pass and pre-computation of mesh. The 

only additional resource needed is a cache whose cost is negligible. As shown in the 

results, our approach greatly reduces the variance in the equal-time comparison. 

 

Although we implement our visibility-guided importance algorithm based on 

SRBF representation, this concept can be easily applied and implemented on other 

basis such as wavelet or spherical harmonics. No matter what basis we use, we just 

need to use the visibility cache to adjust the weight of each basis function in the 

run-time sampling process. Because the major concept of our algorithm is to avoid 

invisible directions while sampling and all the additional resource we need is a cache, 

it does not matter how the BRDF and illumination are represented. 

 

In the future, we would use better data structures for our visibility cache to 

improve the performance. We also can combine the two-stage approach proposed by 

Ghosh et al. [7] into our approach. We can only apply our algorithm for the regions 

which failed in the visibility test for number of times and use product importance 

sampling for the other regions. Moreover, we may exploit the temporal coherence to 
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improve the efficiency for rendering successive frames. The content in the cache 

generated in previous frames can be used as initial guesses in the current frame. 
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