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Abstract

It has been widely accepted that neurons in the human brain collectively have
synchronous patterns of activities. The past findings have suggested that tempora
correlation may relate to the communications between the distributed areas. There are
some studies in magnetoencephalography and electroencephalography that analyze the
functional connectivity between cortical areas using the oscillatory features of neuronal
activity. However, temporal dynamics of neuronal activities is generally consisted of
cross-frequency components. Therefore, it is aso important to directly investigate the
functional connectivity aswell as general synchronization.

In this thesis, we have proposed a beamformer-based imaging method of correlated
brain activities that can reveal the neural network with similar tempora patterns for
information exchange. The method can identify the correlation distribution referred to a
specified position, called the reference region. In principle, we can apply our method on
all pairs of grid pointsto identify all possible neural networks of correlated activities.

Our method exploits a maximum-correlation criterion that maximizes the significant
level of correlation between the reference region and the entire brain volume. The
maximum correlation criterion helps to anaytically and accurately determine the dipole
orientation in a closed-form manner and thus determine the spatial filter very efficiently
for each position. The correlation map can be calculated to reveal cortical regions with
significant similarity to the reference position in the brain.

The experiments with simulation data demonstrated that our method can accurately
determine the correlated regions. Different from the conventional source localization
method, we focus on the areas which have the similar temporal patterns with the
reference signal. We demonstrated the applicability of the proposed method on rea data.
In the mirror neuron experiment, most of the regions we revealed are reported by the
previous findings of emotional processing, face perception and the mirror neuron system.
Moreover, we can provide the time information about when these regions are correlated
to the neural network.

In summary, the proposed method can be used to directly study dynamics of
correlation brain areas based on electromagnetic recordings of brain activities. Given the
reference region as one of the areas in the neural network, our method can estimate the
correlated regions at each time point and thus reveal the dynamic behavior of the neural
network.
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Chapter 1

Introduction



Introduction

1.1 Correlated Brain Activities

The brain is the most important component of human to coordinate the other parts
of human body, and it is the center of the human nervous system and is the most complex
organ in any creature on earth. The human brain has been estimated to contain 10'? neurons,
of which about 10! are cortical pyramidal cells. These cells pass signals to each other via
around 10'® synaptic connections [1]. Human brain is often analogized with the most
powerful computer, which is compared as ‘computer’ capable of processing 10'? Gigabits
of ‘information’ per second [2]. At the end of the 18th century, the electric brain signal
was found. When we perform a task, the neurons at corresponding cortex activate. The
entire excited neuron can be thought of as a battery, and the potential difference causes
a current flow, therefore the information interchange between the neurons. As neurons

become active, they induce changes in blood flow and oxygenation levels.

Frontal lobe

Reading
comprahension
area

Cecipital
Motor speech
area of Broca

Temporal lobe

Longitudinal
fissure

- _l"l.;h_ Frontal lobe
- Premaotor area

Precentral gyrus

Postecentral gyrus

Pariatal loba

Occipital lobe FADAM.

Figure 1.1: The major areas of the human brain - frontal lobe, partial lobe, occipital lobe

and temporal lobe.

Our brain can be separate to several parts according to their anatomical structure or the
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function which were suggested by past findings. It can be separated to four major area
which have one or more specific functions. The major separation is frontal lobe, partial
lobe, occipital lobe and temporal lobe as Figure 1.1. The function of the frontal lobe is
mainly about thinking, planning, and central executive function, motor execution. Then
the function about parietal lobe is known as a somatosensory perception, integration of
visual and somatospatial information. And the temporal lobe is charged about the language
function, auditory perception and is involved in long term memory and emotion. The last,

the occipital lobe work for visual perception and processing.

Frontal Lobe Parietal Lobe Occipital Lobe Temporal Cortex
Primary Motor Area Primary Somatosensory Area Primary Visual Area Primary Auditery Areas
Supplemental Motor Areas

Figure 1.2: The broadmann areas of the lateral and medial side of human brain.

Those major areas introduced above are separated in rough. One of the most common
separation is brodmann area as Figure 1.2. It was defined by Korbinian Brodmann. The
human brain is separated to 47 areas according to the organization of neurons. However
many studies analyze the function of each partition. For example, the broadmann area 45

is well-known broca area which is responsible for speech production.
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Even many studies have revealed the functions of the partitions of brain, and traditional
research has focused on how neurons represent and the mechanisms. However, human’s
activities can’t accomplish by only activate dependently at just one, two specific areas
with one or two times can accomplish the activities. It need the communication between
neurons, no matter local communication or long-rance communication, to accomplish a
task, even the simple task in our opinion like lifting our finger. The precise coordination
of many brain areas is one of the important reasons why our brain own such amazing

processing capabilities.

Figure 1.3: Different features are processed by deferent location of the brain, then the brain

combine the information to a perception.

For example, the past finding has suggested a so-called “binding problem” that is the
problem of combining different features of an object, which are represented in different
location in the brain as the Figure 1.3. For multiple objects, it is a particularly complex
problem for binding the right features of each object to a representation [3-5]. On the
other word, the binding problem is about feature integration, perceptual segmentation, at-
tention, memory, motor control, sensorimotor integration, language processing and logical
inference [6]. To handle a cognitive function or perception of and action in a complex
environment require the parallel processing of information related to different objects or
events. Therefore, neural communication is exiting and important [7].

However, what is the mechanism of the binding problem, or how neuron communi-

cate? Given that the activity evoked by the features comprising an object is distributed,
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some mechanism is necessary to identify the members of a representation as belonging to-
gether and to distinguish them from other representations that may be present at the same
time. what is the mechanism of the binding problem, or how neuron communicate would
distinguish it from all other neuronal activity present simultaneously in the cortical net-
work?

The past findings have suggested that temporal correlation may relate the communica-
tions and the information flow between the distributed areas [8]. The temporal correlation
hypothesis proposes that neural assemblies consist of active neural units that are grouped
together based on temporal correlation [9—11]. The temporal binding is that signals of neu-
rons that are to be grouped together are correlated in times. It has been suggested that the
binding problem may be solve by a mechanism which exploits the temporal aspects of neu-
ronal activity [9]. The synchronization phenomena predict by temporal binding hypothesis
have been documented for several years [6, 11]. In both cortical and subcortical centers,
neuron can synchronize their discharge with a precision in the millisecond range [6,11-13]
in sensory-motor system and perceptual and cognitive functions.

Synchronization includes oscillation, phase synchronization and general synchroniza-
tion where general synchronization is a broad synchronization. Oscillation is a common
approach toward modeling such temporal binding to group the neural assemblies. The dy-
namical linking of different neural structures via oscillatory coupling was demonstrated
first by animal experiments [13]. It has also been noticed that responses often exhibit an
oscillatory patterning which is best revealed by recording jointly the activity of several
adjacent cells [14].

Recording the activity of neurons, it require electrodes to be inserted through the skull
into the brain. Such electrodes can record extracellular single-neuron activity, multi-unit
activity and local field potential (LFP). Single- and multi-unit activity reflects the action
potentials. LFPs represent the aggregate activity of a population of neurons located close
to the electrode (spatial average across many neurons) as shown in Figure 1.4, consistent
effects across a local population of neurons are enhanced [7,15,16]. For several years, many
animal studies report the synchronization phenomena at single neural or LFP levels [6].

On the contrast to invasive modalities, there are several ways to study on brain, through

noninvasive imaging of the electrophysiological, hemodynamic, metabolic, and neuro-
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AP1

I
[ | |

Figure 1.4: Action potentials are AP1 and AP2, and local field potentials (LFPs) are LFP

which represent the spatial average of a populations of neurons (right panel) [15].

chemical processes, instead of anatomizing. ‘Noninvasive’ means without physical harm.
There are four major non-invasive modalities, which are Magnetoencephalography (MEQG),
Electroencephalography (EEG), functional Magnetic Resonance Imaging (fMRI) and Near-
Infrared Reflectance Spectroscopy (NIRS). These techniques record a spatial summation of
LFPs [15].

The functional magnetic resonance imaging (fMRI), measures blood oxygen level de-
pendent (BOLD) component of the hemodynamic response that is associated with local
neural activity with spatial resolution as high as 1-3 mm. Several studies shows some evi-
dence the correlation between LFP and BOLD, and this evidence indicates that the firing ac-
tivity of a neuronal population will, in general, be proportional to the BOLD response [16].
Therefore, functional magnetic resonance imaging (fMRI) measure the spatial summation
of LFPs. Even though it is a very promising approach to investigate the neural activity and
the cortico-cortical correlation. However, the temporal resolution is insufficient to observe
the details of the communications while the temporal resolution is limited by the relatively

slow hemodynamic response, approximately 1s [17].

Another popular non-invasive technique, the scalp MEG/EEG/event-related potential
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(ERP), is also thought to reflect the summed electrical effects of excitatory synaptic neu-
rotransmission in large populations of neurons. MEG and EEG are two complementary
technique that measure the magnetic induction outside the head and the scalp electric po-
tential those produced by the neuron activities inside the brain. Therefore, the character of
higher temporal resolution compared to fMRI allows the studies of the dynamics of neuron
network on the order of tens of millisecond. These techniques non-invasively record the
neural activity at high temporal resolution; Therefore, they are a proper modality to analyze
the neural communication at cortical level.

However, the analysis of neural communication at cortical level based on non-invaseve
MEG/EEG need some steps. We introduce the background knowledge in later sectionl.2

and then introduce how to estimate the cortical neural activity.

1.2 Magnetoencephalography

1.2.1 Background

At the end of the 18th century, the electric brain signal was found. When we perform a
task, the neurons at corresponding cortex activate. The entire excited neuron can be thought
of as a battery, and the potential difference causes a current flow, therefore the information
interchange between the neurons. As neurons become active, they induce changes in blood
flow and oxygenation levels, which is imaged by fMRI. fMRI can monitor the hemody-
namic changes with spatial resolution as high as 1-3 mm; however temporal resolution
is limited by slow hemodynamic changes. Therefore, fMRI has poor temporal resolution
compared with MEG and EEG.

MEG and EEG are two complementary technique that measure the magnetic induction
outside the head and the scalp electric potential those produced by the neuron activities
inside the brain. Therefore, the character of higher temporal resolution compared to fMRI
allows the studies of the dynamics of neuron network on the order of tens of millisecond.

Nevertheless, low signal to noise ratio (SNR), and inherent ill-posed problem are two
major difficult in the studies of brain functionality by using modality of MEG and EEG.

First, electrical brain signal is very tiny compared to the environmental noise. Typical EEG
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scalp voltages are on the order of tens of microvolts, and characteristic magnetic induction
produced by neural currents is extraordinarily weak, on the order of several tens of fem-
toTeslas. Therefore, MEG measure induced magnetic field via superconducting quantum
interference devices (SQUIDs), a highly sensitive amplifier, inside a magnetically shielded
room. So, compared to EEG, MEG has higher signal to noise ratio (SNR). Second, the
recording of MEG and EEG are induced by sources distributed the whole head. Even with
infinite MEG/EEG sensors, a non-ambiguous solution to source localization of the neu-
ronal activities inside the brain would be possible, let alone the number of electrodes of
MEG and EEG sensors usually ten or a few hundreds.

Given the recording of MEG/EEG, the inverse problem involves estimation of the prop-
erties of the current sources within the brain that produced these signals. We can acquire
the concept of inverse problem from the Bayesian statistic framework.

Plaly) = 2o p 2

P(z]y) denotes the conditional probability of x given y, also called the posterior proba-

(1.1)

bility because it is derived from or depends upon the specified value of y. P(y|x) is the
conditional probability of y given x. P(y) is the prior or marginal probability of y, and
acts as a normalizing constant. P(x) is the prior probability or marginal probability of x.
It is ‘prior’ in the sense that it does not take into account any information about y. Apply
to the MEG inverse problem and let x represent the distribution of the sources inside the
brain and y represent the recordings from the MEG/EEG sensors. P(z|y) can describe the
inverse problem that to get the distribution of the sources while given MEG recordings.
From the Bayesian equation, we can simplify the inverse problem as the form of the right
side of the equal sign if we want to know parameters of the source distribution from the
recordings. Therefore, P(y|z) is the key to the solution. P(y|x) describes the probability
of the recordings when given parameters of the source distribution and that is the forward
problem [18,19].
The inverse problem is to estimate the neuronal activities in the brain based on MEG/EEG

recordings [17]. As mention above, involving estimation of the properties of the signal in-
duced by the current source inside the brain help to solve inverse problem. Before we

can make such an estimate, we must first understand and solve the forward problem, in
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which we compute the scalp potentials and external fields for a specific set of neural cur-
rent sources.Therefore, the inverse problem can be transformed to the form Eq 1.1. But
the inverse problem is a inherent ill-pose problem which has infinite solutions. Lots of

algorithms with difference constraint had been proposed to solve the inverse problem.

1.2.2 Related work of the source activities at cortical level

Approximations such as the equivalent current dipole (ECD) model [17, 18, 20, 21],
assumptions such as a fixed number of dipoles within an epoch is obtained by the least
squares source estimation which is one of the most widely-used method. It finds out he best
solution by nonlinear search to minimizing error between the induced electromagnetic field
by ECDs and the MEG/EEG recordings. However, It is difficult to decide the prior number
of the sources and it may trap in local minimum. Multiple Signal Classification (MUSIC)
[22-24] is another kind of method which can avoid trapping in local minimum through
by scanning the region of interest and determining the locations with peak projections of
forward models in the signal subspace. Minimum Norm Estimation (MNE) [25-27] will
estimate the brain activities on the cortical surface, so it set dipole orientation either to be
on the tangential plane or normal to the local cortical surface. But the major problem is
that because of the minimum norm constraint, the result will tend to emphasize the cortical
regions closer to the MEG sensors [28].

Recently, beamformer is one of the most promising solutions to the inverse problem.
[29]. Beamformer performs a spatial filter on recordings of MEG/EEG to filter out the
signal at the targeted location, acting as a virtual sensor to measure the signal with a specific
orientation. Beamformer can obtain the activities of the targeted location and suppress the
influence contributed from other sources by imposing the unit-gain constraint and minimum
variance criterion. Given a unit dipole with specified position and orientation, we can
calculate a spatial filter from the data covariance matrix and the lead field of the dipole.
The neuronal activity of the dipole at the specified position can be obtained by applying this
spatial filer on the recordings of MEG/EEG. By repeating the procedure for each position
inside the brain, we can obtain the neuronal activities of the whole brain.

Two kinds of beamformer, vector-type beamformer [30] and scalar-type beamformer,
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have be studied. [31,32]. The vector-type beamformer decomposes the dipole orientation
into three orthogonal components, each one with a fixed orientation. Every component
has its own spatial filter calculated individually. Linearly constrained minimum variance
(LCMYV) [30] is one of the vector beamformer and it sums the results probed on three direc-
tions. Only one spatial filter is used for each specific position in scalar-type beamformer.
Scalar-type beamformer determines the direction by maximizing the pseudo Z value. Com-
pared to vector-type beamformer, the major advantage of scalar-type beamformer is that the
activity distribution is more focal and higher signal-to-noise ratio [32,33]. But using vector-
type beamformer is more efficient to calculate the spatial filter because all the procedures
involved are deterministic.

In the scalar-type beamformer, only when the dipole orientation is accurate, the ef-
fective spatial filter can be calculated. Therefore, it is essential to accurately determine the
dipole orientation [33,34]. One way to determine the dipole orientation is to use the normal
of cortical surface [34]. But the surface reconstructed very difficultly and the reconstruc-
tion deviation will decrease the accuracy of dipole orientation. Only when the estimation
error is smaller than ten degrees, the spatial filter determined by the cortical surface normal
is feasible [34]. Another way to determine the dipole orientation is to maximize the pseudo
Z in the synthetic aperture magnetometery (SAM) method [31] by exhaustively evaluating
all the possible candidates. Nonlinear optimization method is more efficient but only can
guarantee the suboptimal solution.

Recently, a novel spatial filtering technique, called the maximum contrast beamformer
(MCB), was proposed by Chen et al [35]. This MCB method has the advantages of good
output SNR and focal activity distribution as in scalar beamformers, while the dipole ori-
entation is determined accurately and efficiently in a close-form solution. The method
exploits a maximum-contrast criterion that maximizes the ratio of the reconstructed neu-
ronal activities in the active state to those in the control state and helps to analytically and
accurately determine the dipole orientation in a closed-form manner.

The below is the result of MCB algorithm. There are three simulated sources and their
strength and frequency are shown as Figure 1.5 (b), three different sinusoidal signals. Their
locations in the cortical area are shown as Figure 1.5 (a). The electromagnetic mapping of

brain activities calculated by MCB is shown as Figure 1.5 (¢). It can be demonstrated that
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the three sources are correctly displayed by comparing Figure 1.5 (a) to Figure 1.5 (c).

bephe dr
6]

Figure 1.5: This figure shows the MCB result of the simulated data. (a) is the ground truth

of this simulated data. (b) is their waveforms. And (c) is the solution to inverse problem

calculated by MCB algorithm. [35]

1.3 The synchronization phenomena in MEG

As mention in sectionl.1, MEG and EEG are non-invasively record a spatial summation
of local field potentials with a temporal resolution of millisecond. For several years, most
MEG/EEG studies about oscillation for the binding problem analyze at sensor level [36—
44]. For example, sleep is conventionally divided into several distinct phases on the basis
of the EEG. During slow-wave sleep (SWS), dreaming typically does not occur and the
scalp EEG is dominated by high-amplitude, low-frequency oscillations. Most vivid visual
dreams take place during the rapid eye movement (REM) phase of sleep, when the scalp
EEG shows similar patterns of activity to the waking state, being characterized by high-
frequency, low-amplitude signals [45].

Some studies in Magnetoencephalography (MEG) and electroencephalography (EEG)

have analyzed the functional connectivity between cortical areas with the oscillatory feature
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of neuronal activity using the analysis tool, DICS [15]. In 2001 Gross et al. proposed “dy-
namic imaging of coherent sources (DICS)” method [46] which image the coherent brain
areas using a frequency domain implementation of beamformer inverse algorithm. It can
be used for imaging the spatial distribution of power and coherence to a reference signal in
a narrow and chosen frequency bands. And the method determines the source orientation
by the eigenvector of cross spectral density. The reference signal can be electroencephalo-
graphic recording of muscle activities or the activities at a reference area in the brain. And

through the phase synchronization analysis can provide the latency information.

Time-frequency Spectrum Map of Reference Signal

i
o]

16

Frequency (Hz)

o
N

Time (sec.)

Figure 1.6: The time-frequency map of the estimated sources by maximum contrast beam-

former in the experiment of lifting left index finger [35]

However, the method DICS calculate the coherent map in a narrow frequency band.
Some tasks may activate on specific frequency band like slow-wave sleep stage, but still
some tasks would activate on different frequency band as Figure 1.6. The Figure 1.6 is the
time-frequency map of the signal at the significant position calculated by maximum con-

trast beamformer [35]. Naturally, the neural communication might include multi-frequency
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information. It is necessary to develop a new analysis tool to investigate the general syn-
chronization between the cortices directly.

Besides, the dipole orientation estimation is a crucial issue in scalar-type beamformer
method [32,33,35]. The spatial filter with a inaccurate orientation fails to correctly estimate
the neuronal activities (see the [35] for the theory and the experiment). Therefore, the
accurate dipole orientation of the spatial filter to image the cortico-cortical interaction in
the brain is necessary. In summary, to study the functional conductivities network which

communicate with temporal dynamics needs a new, accurate and effective tool.

1.4 Thesis scope

In this thesis, we propose a beamformer-based imaging method of correlated brain ac-
tivities that can study the studies of the temporal interaction between different brain cortices
by imaging correlation and can reveal the similarity signal pattern. The method can identify
the correlation regions to a specific brain region, called reference region. In principle, we
can obtain the neural network to apply the method on all pairs of grid points for significant
correlation for identifying the neural network of correlated brain region.

Our method exploits a maximum-correlation criterion that maximizes the significant
level of correlation between the reference region and other regions inside the brain. Then,
the output is the imaging of the brain activities correlated to the reference region. Our
method can analytically and accurately determine the dipole orientation in a close-from
manner and thus determine the spatial filter efficiently for each position. The correlation
map can be calculated to reveal cortical regions with significant similarity to the reference

position in the brain.

1.5 Thesis organization

In Chapter 1, we introduced the neural communication phenomena in our brain, the
background knowledge of MEG/EEG, the source localization method and the coherence

source localization. In later chapter, the method detail would be describe including the
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algorithm of beamformer method and the output of our method and the optimal solution of
the dipole orientation. In Chapter 3 we showed the experiment setting, preprocessing, and
results. In Chapter 3.1, the experiment material, the method of generating simulation data,
the paradigm of mirror neuron experiment would be describe. In Chapter 3.2, the process
of data preprocessing would be depicted. Then, the experiment results of the simulation
data and real data from the mirror neuron experiment are in Chapter 3.3. In Chatper 4, we
discussed the results in previous chapter. In Chapter 4.1, we discussed the results of the
simulation data and the merit of proposed method. Then the results of the real data from
mirror neuron experiment would be discussed in Chapter 4.2. In the last Chapter 5, we

concludes our method and the advantage.



Chapter 2

Method
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2.1 Scalar beamformer

The Sarvas forward model estimate the recordings when given some dipoles in the
brain. If there are & dipoles in the brain, at a certain instance, the estimated recordings
m at time point ¢ equals the summation of the productions of each gain matrix and its

corresponding dipole moment at time point ¢:

m = Z L.d, (2.1

where d, locating at r is the dipole moment and L, is the corresponding gain matrix which
can be derived from the forward model. Then, m is the summation of the effects by every
source dipoles in the brain. Without of losing generality, we represent the source dipole in
the Cartesian coordinate system such that d,. is a 3 x 1 vector and its elements represent z,

Y, z components of d, respectively:

and therefore, L, is a N X 3 matrix.
Then, we separate the dipole moment d, into orientation q = d,./||d,|| and magnitude

parts s = ||d, || The Equation 2.1 derive to

k
m = Z L.d, (2.2)
= ZG v/ de]])]|dr] (2.3)
= Z L.qs. (2.4)
=1

Therefore, we define a unit dipole with parameter § = {r,q}, where r is the dipole
location and q is the dipole orientation, and 1y is the lead field vector of the unit dipole.
The lead field vector is the predicted measurement of N MEG sensor with the unit dipole

with q orientation. ly is calculated by

ly = L.q (2.5)
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Figure 2.1: With unit-gain constraint, the spatial filter at the location of the target
source(r, q) will preserve the most strength and impress the contribution form other sources

by minimum variance constraint.

The MEG recordings m(t) is decomposed into three components

— my(t) + m,(t) (2.6)

where m(t) = lysy(t) denotes the magnetic field originated from the source with parameter
0, m(t) denotes the magnetic field originated from all other sources, n(t) is the noise, and
m,, () denotes the combination of the noise and the magnetic recordings originated from
all other sources.

Scalar MEG beamformer performs spatial filtering on recordings to set apart the signals
of the location of interest and the others. For a dipole source with parameter 6, the output

signal of the beamformer y(t) is acquired by
y(t) = wo'm(t) 2.7)

which approximates the source signal sy(¢) of the dipole. To achieve this goal, the
spatial filter wy, a N x 1 column vector, can be decided by the unit-gain constraint and
minimum variance. With these constraints, the strength of output signal y(¢) can be iden-
tical with the source strength sy(¢) while nulling the contribution of the other sources. We

can get the concept about unit-gain and minimum variance constraints from Figure 2.1.
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As the following equation,

y(t) = wo'm(t)
= wylmy(t) + wy'm,, (1)
= sg(t)WQtlg + Wetmn(t)

= s9(t) + wy'm,, (¢) (2.8)

the source signal sy(t) can retrieve by applying unit-gain constrain, wy‘ly = 1, and we still
have to reduce the leakage of all other sources, wy'm,, (). This is equivalent to minimize

the variance of y(¢). Therefore, the optimal spatial filter wy can be calculated by
wy = argmin E{|y(t) — B{y(t)}]*} + a|wy||* subject to wy'ly=1 (2.9)
Wo

where E represents the expectation value and « represents the parameter of Tikhonov reg-
ularization. Here « is a parameter to restrict the norm of Wy, corresponding to the shape of
beamformer spatial filter. Substituting the Equation (2.8) into Equation (2.9), we can solve

the equation by Lagrange multipliers and obtain the optimal solution of wy

wy = argmin wy'(C + al)wy subject to wy'ly=1
A7)

B (C + aI)_llg
N l@t(c i CY:[)_ll@

(2.10)

where C is the N x N covariance matrix of the MEG recordings m(¢) and I is the N x N

identity matrix.

2.2 Imaging of the brain activities correlated to the refer-

ence signals

For each dipole source in location r with fixed orientation q, we can use equation
Equation 2.10 to obtain the spatial filter, and further compute the dipole activities by using
equation Equation 2.7. Once we apply the procedure mentioned above individually to each

position of head region, we can acquire the activities of whole head.
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Although there are many kinds of activities in brain, we are only interested in the brain
activities which correlating to the source signals at reference region. But through the spatial
filter calculated from Equation 2.10 we may obtain strong non-interested activities in the
filtered outputs. What we focus on is the correlation level to the reference signal. There-
fore, we proposed a method to calculate the imaging of the brain activities correlated to
the targeted signals. In contrast to the conventional Beamforming methods which provide
statistical maps to reveal the regions having significant neuronal activities, we calculated

the correlation between source signal and reference signal.
Ef|wo'm,(t)a(t)[}
B{wo'm. ()2} E{Ja(0) "}
_ w0 Blmana®) o}
W Cuw} LB {a() )
{WGtCamCamtwé‘}%

—{(wi'Cwo}} B{ja(t)’}

Ry =

(2.11)

a(t) is the reference signal at the reference region which is chosen by users. Appropriate
strategies for the selection of the reference region are introduces and illustrated in Chap-
ter 2.4. The C,,, is the N X 1 cross-covariance matrix between MEG recording m(#) and
reference signal a(t). And C,,, is the N x N covariance matrix. Therefore, the value of Ry
indicates the significant level of similarity between the dipole activities with parameter 6
and the reference region at the targeted position r with dipole orientation q.

There are three covariance matrix involved in the beamformer-based process, that is C,
Cum and C,,. The matrix C is used to calculate the spatial filter and the time interval of
m(t) should be large enough to obtain a reliable result. The matrix C,,,, is used to calculate

the correlation value between the interval of m.(¢) and the interval of the reference signal

a(t).

2.3 Maximum correlation beamformer

The solution of wy is derived with parameter # = {r,q}. Because we calculate the

activities of whole head by scanning all of the position in the brain, the position parameter
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r is set to be each position. Then we can obtain the correlation level to the reference region

in the entire brain.

However, the orientation parameter q is difficult to determine. As Chapter 1.3 describe,
the accurate dipole orientation q of the spatial filter extremely influence the accuracy of the
spatial filter. Therefore, instead of exhaustive search, we propose a optimal closed-form
solution to decide the dipole orientation. By substituting Equation 2.5 to Equation 2.10, we

can separate parameter q.

. (C+al) 'L.q

V0T QLL(C + ol)'Lyq
_ Aq
qa'B.q
where Ay = (C+al)'L, and B, =LA, (2.12)

A, and B, are depend only on the parameter position r, We determine the optimal dipole
orientation ¢ which can maximize the correlation between the source signal sy and the ref-
erence signal. By substitute Equation 2.12 into Equation 2.11 and maximin the correlation

value, we obtain the optimal q:

~

q = arg max (

q

1 2
(Wﬁtcamcamtwe) 2 )
1 1
(wo'Crwo)? E{|a(t)]’}?
thi-CamCamtArq

= arg max
q
= argmax ——,
a q'Q.q
(2.13)

in which the term E{\a(t)|2}% is a scalar so it can eliminated. P, = A,'C,,,Con A,
and Q, = A,'C,,A, are 3 x 3 matrix. The solution of Equation 2.13 is the eigenvector
corresponding to the maximum eigenvalue of the matrix eigenvalue of the matrix Q. 'P,.
Because these two matrices, Q, and Q' P, are both 3 x 3 matrix, we can solve the matrix

inverse problem and the eigne problem in a closed-form manner.
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2.4 Reference region

In principle, applying the method as above on all pairs of grid points for significant
correlation can identity the neural network of correlated brain region; However, it requires
large amount of computation. The work can be reduced if we can pick at least one mem-
ber of the neural network. Picking a suitable reference region is a important issue in our

method. Four strategy for selecting the reference regions were listed.

I. The prior information of physiological

A reference region is defined by prior knowledge from the results of others func-

tional imaging studies or anatomical structures or neural pathways.
I1. The region of significant activities

A reference region is defined from the source area of strongest activities. For

example, the peak in the F-value map of maximum contrast beamformer.
ITI. The specific signal pattern - independent component

A reference region is defined from the mixing matrix of independent component
analysis (ICA). ICA is proposed to solve the problem of blind source separation. It
can decompose the input into several independent components, as X = MS. Given
input X, it can calculate S, which contains independent components, under the as-
sumption that the estimated sources S are as statistically independent as possible. M

is the mixing matrix.

Applying ICA on MEG recordings, it will decompose some independent com-
ponent. Each column of the mixing matrix is the topography of the respective inde-
pendent component. We can choose the independent component as reference signal

according to the topography, and calculate the cortico-sensor correlation.
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2.5 Studying the interactions

We can calculate for significant correlation between other brain areas and the refer-
ence region through the introduced analyze method which derive the spatial filter as Equa-
tion 2.12, calculate the correlation map through Equation 2.11, and obtain the optimal
dipole orientation through the maximum criterion as Equation 2.13.

If we want to analyze the dynamic correlation map of the neural network, we can just
choose a short time interval of the reference signal for calculating because the reference re-
gion may involve in the neural network just a short time. Besides, the reference signal a()
and part of the MEG measurement m.(¢) can choose different time interval to calculate.
For example, we choose 100 to 200 ms of the source signal as the reference signal and then
choose 0 to 100 ms of the MEG measurement m(¢) as the m.(t) to calculate the correla-
tion map. Therefore, we can calculate the significant correlation between a time interval
of the reference region and different time intervals of the other brain areas. Furthermore,
we can obtain the sequential correlation map to the reference region through the successive
measurement segment which are overlapping by the user define length.

In summary, to analyze the functional connectivity between the cortices, we can follow
the progress as shown in Figure 2.2. At first, user has to choose a reference region which
can refer our advise in Chapter 2.4. Second, user can use source localization tool to cal-
culate the source signal of the reference region or use the ICA component, and define a
time interval as the reference signal. Third, user apply our method to a segment of MEG
measurers calculate the correlation distribution to the reference signal in the entire brain.
Then user repeat the third step until all the segments of data have calculated so that user

can have the dynamic correlation map to the reference region.
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Choose the reference region

Choose an interval from source signal at the
reference region as reference signal

Apply to the entire brain

Calculate a optimal spatial filter
Calculate the correlation between the
filtered source signal and reference signal

Next time point?

'

Finish

Figure 2.2: First step, user has to choose a reference region. Second step, user can use
source localization tool to calculate the source signal of the reference region or use the ICA
component, and define a time interval as the reference signal. Third step, user apply our
method to a segment of MEG measurers calculate the correlation distribution to the refer-
ence signal. Then user repeat the third step until all the segments of data have calculated

so that user can have the dynamic correlation map to the reference region.
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Chapter 3

Experiment Results
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3.1 Material

To verify the proposed method in Chapter 2, we need the information of the Anatomical
Data and the MEG recordings of the magnitude field. There are two kinds of MEG data,
including simulation and the real MEG measurement from the experiment of the happy

mirror neuron. We will describe some information of these data in the below statements.

3.1.1 Anatomical Data

The Magnetic Resonance Imaging (MRI) images were from the 1.5T GE scanner at the
Taipei Veterans General Hospital with TR = 8.672 ms, TE=1.86 ms, FOV = 26x26x10cm?,

matrix size = 256x256, slices = 128, voxel size = 1.02x1.02x1.5mm3.

3.1.2 MEG Data

Simulations

We simulate the MEG recordings by the forward model in Equation.2.6with given
sources as ground truth and add some dipoles acting as noises. There are two kind of
noises, background sources and sensor noises. We simulate background sources as ran-
dom dipoles with zero-mean Gaussian strength and uniformly distributed in the putative
sphere of head model. The variances of sensor noises are estimated from the empty room
recordings of the MEG system. We also use 1 kHz sampling rate as sampling frequency
of the simulated recordings. Before data analysis, we do preprocessing depicted later in

Section 3.2

Real MEG measurement

A whole head MEG system at the Taipei Veterans General Hospital (Neuromag Vec-
torview 306 , Neuromag Ltd., Helsinki, Finland) is used for recording of the minute mag-
netic field generated by electrical activities within the living human brain. The MEG system

is placed in a magnetically shielded room and has capability of 306 channels simultaneous
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recording at 102 distinct sites, 24 bits analog to digital conversion, and up-to-8 kHz sam-

pling rate which is sufficient to probe the fast dynamic changes inside human brains.

Experiment paradigm of happy mirror neuron The study focused on the the roles of
mirror neuron system for position emotion. Three condition, observation, imitation and ex-
ecution, were studied. The stimuli were randomized grayscale photographs of faces, depict-
ing neutral and smile, from Taiwanese facial expression image database (http://bml.ym.edu.tw/ down-
load/html/news.htm). The experiment paradigm was shown in Figure3.1. In observation
condition stimuli had presented for 700 ms with an inter-stimulus interval (IST) 1300 ms;
Imitation and execution condition with ISI 1500 ms, the stimuli had presented for 2000 ms
after a rest block consisting of a fixed cross at the center of the screen. However the stimuli
in execution condition were neutral face and neutral face with a fixed cross upon the nose.
Twenty four subjects with no neurological and psychiatric disorder participated in the
study. The subjects were introduced to obverse the face in observation condition. In imita-
tion condition they were asked to follow the facial motion of the stimuli. In execution con-
dition, they had to smile when the stimuli with the fixed cross upon the nose wad showed.
The experiment was performed by Hung-Che in brain mapping laboratory of institute

of brain science in national yang-ming university.

3.2 Data Preprocessing

The brain signal is comparatively small than the environmental noises. Preprocessing
for the recordings to enhance the signal to noise ratio (SNR) is necessary so that further
processing would be more smooth going [47]. Generally the experiment will be repeated
several times to obtain sufficient amount of recordings. we call the recordings at each time
as “trial”’. The preprocessing steps we use for MEG recording are stated as below. The
first step is to find out the abnormal scale recordings and cut them. Because artifacts, body
action and eye blinking produce significant noises, compared to the measurement induced
by the electric brain signal while experiment. Hence, we can find out the unusual scale
recording to reduce artifact noise on MEG/EEG sensor and electric ocular graph (EOG)

channels. The second step is to eliminate the sensor norse. By using signal space projection
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Figure 3.1: The figure was shown the paradigm of happy mirror neuron experiment. The
stimuli were face image with random emotion, neutral and happy, on observation and imi-
tation conditions; However, on execution condition, the stimuli were neutral face image as

observation and imitation condition and neutral face image with fixed cross upon the nose.

(SSP) [48] we remove the recording those were projected to the individual basis vector of
the noise subspace and eliminate from the MEG/EEG measurement. We can obtain the
signal space through the noise space which is calculated from emptyroom. By this method,
we can transform the measurement to the signal space and reserve them [49]. The third
step is to remove unavoidable artifacts such as heartbeat, breath and power line noises. We
use bandpass filter to cut them because the artifact of heartbeat and breath is 1 Hz signal,
and power line is 60 Hz and its harmonic. The fourth step is to cut down the drift of
recordings along with time on each sensor because of the device. By conducting baseline
correction, we subtract a baseline estimated by the mean of the recordings at the period
which is unaffected by the stimulus, in order to decrease the influence of the noise in the

baseline. The preprocessing steps are shown in Figure 3.2
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Figure 3.2: This graph shows the all preprocessing steps for MEG recordings. For strength-

ening SNR, preprocessing for the recordings is necessary. The first step is removing arti-
facts by finding out the abnormal scale of MEG/EEG recording and EOG channels called
artifact rejection. The second step is to eliminate the sensor noise by applying SSP. The
next step is applying bandpass filter to cut out the other artifacts which are in specific band
like heartbeat and breath and some environmental noises like power line noises. The fi-
nal step is to conduct the baseline correction to eliminate the drift of recordings. After

preprocessing, we can obtain the MEG/EEG recording with higher SNR..

3.3 Experiments

We conduct the simulation to validate our method. Each simulation is added back-
ground sources with 3000 random dipoles with the standard deviation of 10 nAm. The

variance of sensor noises are estimated form the emptyroom recording of the MEG system.

3.3.1 Simulation data 1

In this simulation, we put a 15 Hz sine wave on the ground truth position (as Figure 3.5).
Applying the 15 Hz signal sine wave as the targeted signal, the result of our method is
shown in Figure 3.4. The correlation map of the estimated source is focal and significant.

The peak exactly locate on the location as the ground truth.

3.3.2 Simulation data 2

Four dipole sources with temporal profiles of sinusoidal were located in three position

inside the brain, as shown in Figure 3.5. Strengths of the red, green, and blue profiles
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Figure 3.3: (a) the ground truth location in anatomical image of the simulated recordings
by coronal view (b) the ground truth location in anatomical image of the simulated record-
ings by sagittal view (c) the ground truth location in anatomical image of the simulated

recordings by transverse view (d) the 15 Hz sine wave temporal profiles

Figure 3.4: Correlation map of the estimated source by out method with the recordings of

simulation 1. The significant source are viewed by sagittal, coronal and transverse view.
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are all 40 nAm. The profile in the green position is as the red profile at yellow position
with 350 ms delay. The orientation of each of the four dipoles was arbitrarily set on the
plane tangential to the head sphere. We used (2.6) to compute the simulated MEG signals
induced from the four dipole sources, as well as additive background noises from 3000

random dipoles with the standard deviation of 25 nAm.

Figure 3.5: Dipole sources of simulation data contain (a) the first two sources at yellow
location with different temporal activities (in red and green), (b) another source at green
location with the same temporal activities as the green one at (a), and (c) the last source at

the blue location with the temporal activities in blue.

We applied independent component analysis on the simulated measurements to extract
components (Figure 3.6) and manually selected four components C1, C2, C3, and C4.
Then we calculated and imaged the correlation distribution between each of the selected
component and brain activities by (2.11) as shown in Figure 3.7. The correlation map of
the estimated source is focal and significant, and the source localization error is 0 mm for
all chosen components.

We applied MCB on the simulated recordings to calculate the F-statistic maps which
reveal cortical regions with significant difference of activities between the active and con-
trol states. Then we chose the filtered signal at the highest F value position from 350 to
550 ms interval as the reference signal. Then we calculated the correlation map between
the reference signal and brain activities at different time interval. Figure 3.8(a) shows the
correlation map from 0 to 200 ms, and Figure 3.8(b) shows the map from 350 to 550 ms. It

is obviously that both maps match the dipole locations at the corresponding time interval.
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Figure 3.6: The simulated data was decomposed by ICA into 114 components.
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() (d)

Figure 3.7: The correlation map calculated with the reference signal (a) C1, (b) C2, (c) C3,
and (d) C4.
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Figure 3.8: The correlation maps calculated with the reference signal filtered by MCB at
different time intervals within (a) [0, 200] ms and (b) [350, 550] ms.

3.3.3 Real data - happy mirror neuron

In this experiment, we applied our method on the measurement of two subject with
three conditions. We chose seven reference brain regions as reference to find out the highly
correlated brain regions and the time between the reference. The seven reference regions
were right insula, left inferior frontal gyrus, right inferior frontal gyrus, left amygdala,
right amygdala, inferior occipital gyrus and the vl. Those region were suggested highly
correlated with mirror neuron system, emotion processing and face perception. That is why

we chose them as our reference region. The source signal of those regions were calculated
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Table 3.1: The parameters of maximum contrast beamformer on the happy mirror neuron

experiment.

the parameter information of MCB

artifact threshold 6000 {T
electrooculography rejection 0.0002 V
bandpass 2to30Hz
baseline -200 to 0 ms
tradeoff 0.03
window interval -50 to 850 ms
control interval -200 to -100 ms

by MCB, and the time interval of the source signal chosen as the reference signal depended

on each reference region and the pattern of the source signal. The parameters of MCB was

listed at Table 3.1.

Left inferior frontal gyrus

Subject A

The anatomical position of left inferior frontal gyrus was shown in the first row

of the Table 3.3. The axis of the volume was at (56,152,76) voxel. The source signals

at the left inferior frontal gyrus of three conditions calculated by MCB was shown

in the next row of the Table 3.3. We chose a time interval as reference signal of

each condition as shown in Table 3.2; In this reference position, 100 to 200 ms were

chosen as reference signal on imitation and observation conditions, and 180 to 280

ms was chosen as reference signal on execution condition.

Imitation condition The results were shown in Table 3.4. We can observe that at
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Table 3.2: The referenced time interval of each source signal

imitate observation execution
Right insula 100 to 200 ms 100 to 200 ms 100 to 200 ms
Left inferior frontal gyrus 100 to 200 ms 100 to 200 ms 180 to 280 ms
Right inferior frontal gyrus 50 to 150 ms 140to 280 ms 120 to 220 ms
50 to 250 ms
Left amygdala 100 to 200 ms =~ 100 to 200 ms 140 to 250 ms
Right amygdala 100t0 200 ms 100 to 160 ms 150 to 250 ms

130 to 280 ms
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Table 3.3: The source signal of the left inferior frontal gyrus as reference signal which were
calculated by MCB. The first row shows the position of the left inferior frontal gyrus. The

next is the source signal of three condition - imitate, observation and execution.

the information of the reference — left inferior frontal gyrus

the position
(56,152,76)

the source activities at tsc imitate L IFG (56, 152,76)

x107°
oF

the signal imitate

Il Il Il Il Il Il Il
-200 -100 0 100 200 300 400 500 600 700

x10°° the source activities at tsc view L IFG voxel(56 152 76)
T T T T T T
observation
-3c | | | | | | | | |
—200 -100 0 100 200 300 400 500 600 700
%10 the source activities at tsc exe L IFG (56 152 76)
T T T T
execution

- Il Il Il Il I Il
-200 -100 0 100 200 300 400 500 600 700
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Observation condition The results were shown in Table 3.5.
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Execution condition The results were shown in Table 3.6.
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Subject B

The anatomical position of left inferior frontal gyrus was shown in the first row of
the Table 3.7. The axis of the volume was at (68,160,68) voxel. The source signals
at the left inferior frontal gyrus of three conditions calculated by MCB was shown
in the next row of the Table 3.7. In this reference position, We chose 120 to 220 ms
were chosen as reference signal on imitation and observation conditions, and 180 to

2xz2180 ms was chosen as reference signal on execution condition.

Imitation condition The results were shown in Table 3.8. In addition, the result
with different threshold were shown in Table 3.9 which included 400 ms to 670 ms.

We can observe that at



62

Experiment Results

Table 3.7: The source signal of the left inferior frontal gyrus as reference signal which were

calculated by MCB. The first row shows the position of the left inferior frontal gyrus. The

next is the source signal of three condition - imitate, observation and execution.

the information of the reference — left inferior frontal gyrus

the position

(56,152,76)
x10™° the source activities at ccy imi Lifg voxel(68 160 68)
T T T T T T
the signal | jmjtate
-3c I I I I I I I 7
—200 -100 0 100 200 300 400 500 600 700
%107 the source activities at ccy view Lifg voxel(68 160 68)
T T T T T T =
observation
L L L L L L L L
-200 -100 0 100 200 300 400 500 600 700
x10°° the source activities at ccy exe Lifg voxel(68 160 68)
4F T T T T T T |
3
. 2
execution |
0

-100

0

Il Il Il Il Il
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Observation condition The results were shown in Table 3.10.
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Execution condition The results were shown in Table 3.11.
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4.1 Simulation data

We apply our method to the simulation data in Chapter 3.3.1 and Chapter 3.3.2, and the
result is accurate. The correlation source localization error is zero mm. It can prove our
method can correctly image the distribution.

Furthermore, The result in Figure 4.1(a) is the reconstructed signal at the highest cor-
relation position when we used C2 as the reference signal. The filtered signal is similar
to reference signal even there are two source signals at the position. When we used the
conventional source localization technique, we can reconstruct the signal containing two
sources. The Figure 4.1(b) is the result calculated by MCB. The reconstructed signal is not
similar to what we focus on, that is why we need to develop the proposed method to reveal
the correlated level according to a specified reference. The reference can be a component
decomposed by ICA, a cortical activities inside the brain, or the peripheral signal such as

EMG measurement.

4.2 Real data - happy mirror neuron

In the section3.3.3, those highly correlation region are important in the emotional face
perception, mirror neuron system. The related emotional face perception regions which
have suggested by the past studies are shown as Figure 4.2; And the related mirror neuron
regions are shown as Figure 4.3

In Figure 4.2, the area in yellow represent regions about the processing identity and
associated semantic information, the area in red represent region involved in emotion anal-
ysis, and those in blue represent regions involved in spatial attention. The solid lines mean
cortical pathway and dashed lines represent the subcortical route for rapid processing.

At beginning, mirror neuron system is originally discovered in area F5 of the monkey
premotor cortex, that discharge both when the monkey does a particular action and when it
observes another individual. Later, some evidences show the mirror neuron system is also
exit in humans. A large number of studies showed that the observation of actions done by
another individual activates a neural network formed by occipital. temporal, parietal and

rostral part of inferior parietal lobe and inferior frontal gyrus. These region form the core
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The filtered source signal at yellow position

x10°

Figure 4.1: (a) The filtered signal at the yellow position obtained by our method (b) The
filtered signal in the yellow position obtained by MCB.

of human mirror neuron system.

If the subject is asked to follow the action of what they see (imitation), some areas
would activate more strong, such as left IFG, the right anterior parietal region, the right
parietal operculum, and right STS. A study show superior parietal is not present when the

subject just instruct to observe.

In Figure 4.3, it represents an extended mirror neuron system was proposed by Pineda
[51]. The extended mirror neuron system include insula, middle temporal gyrus and so-
matosensory cortex. In general, the STS and parietal operculum are not thought as mirror
neuron area. However, at the level of transformation performed on the data would make

them important. Therefore they are included into extended mirror neuron system.

We collected the significant correlation regions from Table 3.4, Table 3.5 and Table 3.6

and listed them in Table 4.1. These regions are correlated to left inferior frontal gyrus
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Figure 4.2: Anatomical view of a human brains showing areas involved with the mirror

neuron system [50].

on corresponding condition. There correlation regions are highly coherent with previous
finding of emotion processing, face perception and the mirror neuron task. The areas cor-
related the emotion processing and face are amygdala, dorsolateral prefontal cortex, ACC,
orbitofrontal cortex, fusiform gyrus, anterior temporal, superior temporal sulcus, occipital
and parietal cortex [50,52-56]. The areas correlated the mirror neuron system are inferior
frontal gyrus [51,57-62], fronto-parietal [63], superior temporal sulcus [51,59, 60, 64, 65],
meddle temporal gyrus [60, 66], insula [51, 56, 60, 66, 67], superior parietal [66], inferior
parital [51,59,65,66,68], SMA [51,66], sensorimotor cortex [51], premotor cortex [51,69].

Besides, in imitation and observation condition, we can reveal the automatic smiling
at 240 ms and 275 ms respectively as suggested in a previous study suggested [60]. We
also find the highly correlation between the left inferior frontal gyrus and the facial move-

ment at 435 ms in the imitation condition, and it is the voluntary smiling. Furthermore,
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in observation condition, the facial movement is also highly correlated with the left infe-
rior frontal gyrus at 520 ms. This phenomenon matches the theory of the mirror neuron
system [51,57-59,61].

Furthermore, a previous finding [70] pointed out the superior parietal lobe is typically
not present when subjects are instructed to observe actions without the instruction to imitate
them. In our study, we have the same finding. In imitation condition, the left superior
parietal is highly correlated to left inferior frontal gyrus at 420 ms. And in execution
condition the right superior parietal is highly correlated to the left inferior frontal gyrus
at 310 ms. The impossible interpretation of this activation is that the request to imitate
produces, through backward projections,sensory copies of the intended actions.

We also observe the correlation pattern in imitation and observation condition is more
similar than the execution condition. A possible interpretation is the execution condition is
a emotion expression interference effect, the subject has to smile at a neutral face. As [60]

suggested, the right hemisphere would enhance at the expression interference effect.
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Figure 4.3: Anatomical view of a human brains showing areas involved with the mirror

neuron system [51].
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92 Conclusion

In this thesis, we have proposed a beamformer-based imaging method of correlated
brain activities that can reveal the neural network with similar temporal patterns for in-
formation exchange. The method can identify the regions correlated to a specified brain
region, called the reference region. In principle, we can apply our method on all pairs of
grid points to identify all possible the neural networks of correlated activities.

Our method exploits a maximum-correlation criterion that maximizes the significant
level of correlation between the reference region and other regions inside the brain. The
maximum correlation criterion helps to analytically and accurately determine the dipole
orientation in a closed-form manner and thus determine the spatial filter very efficiently
for each position. The correlation map can be calculated to reveal cortical regions with
significant similarity to the reference position in the brain.

The experiments with simulation data demonstrated that our method can accurately de-
termine the correlated region. Different from the conventional source localization method,
we focus on the areas which have the similar temporal patterns with the reference signal. In
the mirror neuron experiment, most of the regions we revealed are reported by the previous
finding of emotional processing, face perception and the mirror neuron system. Moreover,
we can provide the time information about when these regions are correlated to the neural
network.

In summary, the proposed method can be used to directly study dynamic of correlation
brain areas based on electromagnetic recordings of brain activities. Given the reference
region as one of the areas in the neural network, our method can estimate the the correlated

regions at each time point and thus reveal the dynamic behavior of the neural network.
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