A o ¥

ERBFS ERILEY "fér%;f—:éf. i PSR IPE
False-overlap tiles elimination for tile-based remag: exact

and approximate methods

SRR A

tp e T EATE RD Y o

PoE X R4 N E R

B2

ERAF S RFALE Y BRHFLET AL

False-overlap tiles elimination: exact and appr@tan

methods
oA LA Student Hsiu-ching Hsieh
iR HAE kn v Advisor: Jyh-Jiun Shann
Cheng-Chung Lin
R
A T
2w
A Thesis

Submitted to Institute of Multi-media
College of Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in

Computer Science
June 2009

Hsinchu, Taiwan, Republic of China

ﬁ_fviﬁu%g.ég}%‘]}*@‘?)?ﬂ ﬁ%“f%pf—‘é‘ﬁ'& 2 35k

CERERE EFE R Y R e

K=

rNER RS EIE Y > Aig 3] tile-binning 2 % » overlap test?_- 1

o,

3

4

E & s Fr o Primitive 7 § £ F) Ak ik ¢ 7 ¥ Bounding

Box - X {¢ Bounding boxsm #% 4p ¥+ primitive @ % > § 70%48_% 4o

i tile-based rendering - 7%) & bounding box® X 3 £ primitive ch €

B xentile & o fo » B g g primitive listenig s 2 B4 2 8572 v B

chds 1T o I3 o false-overlap BliF 52 7 SEARH T 2532 K0 7 #)Tk,
BB ek > @ reds 1) false-overlap tile At > 2N dg - 2l

41 false-overlap tiler= ;% : Cross Product Test (CPT), Edge Walk (EW), Count

X Ratio (CXR)f= Approximation Method X 3+ & Bk 3% > 12> sl §83K 25

JPE AR FE R M ek 3t o 500 - skar 0 A4 P 3- bounding boxtr 4 s = 1B

ﬁ‘«

250 @ 18 primitive ehif § £F BAEA % AR NG xR 25 %
R Pt T 38 e false-overlap tile 4ot — k5 2 F T (T AR A B b

primitive o

False-overlap tiles elimination: exact and appratan

methods

Student: Hsiu-ching Hsieh AdvisorJyh-Jiun Shann
Cheng-Chung Li
Institute of Multi-media
National Chiao-Tung University

Abstract

In graphics processing, overlap test is a crudiep Pefore tile-binning in tile-based
rendering for embedded devices. An object in a &@mecomposed into primitives, triangles
of different sizes, for processing. In tile-binnimgocess, these triangular primitives are
typically represented by bounding boxes. Howeuss, lounding box of a primitive usually
covers a significant number of tiles which are o¢rlapped by the primitive. These tiles are
called false-overlap tiles and approximate 70%hef tiles of a bounding box. Therefore, in
tile-based rendering, identifying and eliminatihgse false-overlap tiles in a bounding box to
reduce both storage pressures in tile-binning aath éccesses of external memory for
rasterizer become inviting. Existing false-overtigiection algorithms are either too tedious
to reduce computation or too rough to gain highecage. In this paper, we propose three
methods to eliminate all false-overlap tiles: CtPssduct Test (CPT), Edge-Walk Test
(EWT), Counting X-Ratio (CXR) and approximation imed. We partition the bounding box
of a primitive into three rectangles at most acowydo the number of primitive vertices
which are also the vertices of the bounding boxe &tiges of the primitive then become the
diagonals of these rectangles, and false overlégctien becomes a well-formulated math
processing. The false-overlap detection of thessethectangles may be processed in parallel
to improve performance further. The proposed methareé tested using Doom3 and Quake4

for different screen sizes.

Table of Contents

OO SUURPPRRR [
Abstract il
TaADIE Of CONLENTS. ...t e e e e e e e e e e aaeaaaeeeeees %
S o T 01U] =TT Vi
LISt Of TADIES ... e e e e e e e et eeeeeeeeeeeeeeeeeannnes IX
(O gF=To 1 (= gt R o 11 oo [U Tt A o o PP 1.
1.1 ReSearch ODSENVALIONcoooiiiiiiiiiiiiiiee et e e 1
1.2 Research motivation and Objective...........oouuuuiiiiiiiiii e 3
1.3 Organization of thiSTNESIS.......ccoiiiiiiie e 4
Chapter 2 Background and Related WOrK..........ccoooeieiiiiiiiiiiiiiiiii e 5
21 Typical graphiCS PIPEINE.....cooiii i 5
2.2 Tile-based rendering.....c.oooe i 6
221 Tile-based rendering PIPENe.......cooo it 6
2.2.2 Datastructuresfor Primitive lIStS.......c.oooiiviiiiiiiiiiiii e 8
2.3 Primitivelist Problem ...ttt 8
24 RE@IEA WOIKS. ... ettt e e e e e e e e eees 9.
24.1 Linear EAdge FUNCION TESE (LET) cooieeiieiiiiieeiieeee e 9
24.2 Iterative DIVISION TESE (IDT) . ceeeriiiiiiiiiiiiiiiiee ettt 11
(O gF=T o] (= GG T B 1= o o R PSPPI 13
3.1 Exact false-overlap deteCtionS........ccoooviiiiiiiiiiiiiiiiii e 13
311 BBOX DIVISION....coiiiiiiiiiiiiiiiit e ae et ee e e et ettt a e e e e e e eaees 14
3.1.2 False-overlap Elimination by Exact False-Overlap Tile Detection
AlGOrTTRMIS. ...t e e et e e e enneees 18
3.2 False-overlap Detection by Approximate Method.............ooovviiiiiiiiiiiiiinneneennn, 25
321 VerteXeSAIGNMENTo 26
3.2.2 Boundary Expanding and SUb BBOXES............ccoeviriiiiiiiiiiiiiiiieee e 27
3.2.3 Elimination by Table LOOKUPcooviiiiiiiiiiiiaieeee e eeeeeeeeeeeeeee e 28
Chapter 4 Evaluation Results and DiSCUSSION..........cccouiiiiiiiiiiiiiiiiiarn e eeaeeee e 37
4.1 Evaluation enVIrONMENTuueiiiee et e e e e e e e eees 37
4.2 TeStframeEdalacccouuuiuiriiiiiii et e e e e eraeae 39
4.3 SIMUIALTON FESUITS ...eiiiieiiiiiiiiiee et e e e e e e e e e e eeeeeanannes 41
4.3.1 Correct Rates of Different Entry Size of Differential Table for our
Approximation Method.............uueueiiii e 41
4.3.2 Storage Size of PrimitivVe LiStS.....coooeeiiiiiiiiiiiiiieeieiii e 43
4.3.3 TimMeE COMPIEXITY .. .cciiiiiiiiiiiiiii e e 49

Chapter 5 Conclusion and FUtUF@WOrKcooeveiiiiiiiiiiiiiiiie e eeeeeseeeeeeee e 51

5.1 CONCIUSION ...cceeiiiiiiteieee ettt s s e e e e e e e e aeeeaeeeeeessnsssnnnns 51

5.2 FULUF B WO K. ..o ee aeas 52
RS, L= = 0= S RSSRRR 53
Appendix A. Simulation Test Frame IMages...........ccvevuuuuuiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeeeenennnnes 55

Vi

List of Figures

Figurel-1
Figurel-2
Figurel-3
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8
Figure 2-9
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
region
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-12
Figure 3-13
Figure 3-14
Figure 3-15
Figure 3-16
Figure 3-17
Figure 3-18
Figure 3-20
Figure 3-21
Figure 3-22
Figure 3-23
Figure 3-24
Figure 3-25

The relation of the primitive, tilesdaBBox in the BBox test 2.
The benchmarks observed are Doom aake 4.ccccoooeeeiviiiiiiieeeeennnnn, 3
Average percentage of false-overlags filst in a BBox test...........cccceeeevvvvm 3.
Typical 3D graphics pipeline...... oo 5
Tile-based rendering PIPEIINE ... eeeeeiiiiiiiiiiie e 6
Tile DINNING PrOCESS....cceiiiiiiitieieee e e e e e e e e 7
Linked-list implementations of primitiietsccccooiiiiiiiiiiiiiiiicci, 8
Relationship of Tile and Primitive ISt..........ccooiiiiiiiiiiii s 9
Edge function for a point and a liN€. cece....coovveeeiiiiiiii e 10
Triangle to tile test using linear fuoot...............oouvviiiiiiiii s 10
Example for Iterative DIVISION TeSte e .uiiiiiieeeeeeiieeeeeeeeii e 11
Algorithm of Iterative DIVISION TeSto.........uuuuiiiiiirieie e 12
Processing flow of exact method. ..., 13
Partition of primitivABC............oooiii it 14
Edge of primitive divides the rectangito two triangular regions.................. 15

lllustration and algorithm for distingbing false-overlap region and preserved
16

Algorithm for determining the numberfitier units required 16
Flow chart for determining the numbefilodér units required..............ccccccce.... 17
Cross Product Test (CPT) for detectihgassible false-overlap tiles. 19
(@ N [0 To] 10 o U UPUPURPPPPTR 19
CPT hardware deSIgN...........u i emurenniaaaaee e e e e eeeeeeeeeieeaee e 20
Optimal Bresenham’s line algorithm..............oooo e, 21
Edge Walk Test (EWT) algorithm ... 22
EWT hardware deSignuuuueeeeerieieiiiiiiiiiesse e e eeeeeeeeeeeeeeeeeeees 23
Example of Counting X RALIOcceariiiiiiiiiiiiiiieee e e 24
Algorithm of Counting X Ratio (CXR)ceeeuevvvvuuiiiiiiieeeeeeeeeeeeeeeeeiiiii s 24
EWT hardware deSignuuuueceeaeieieeiiiiiiiiieaea e e e ee e eeeeeeeeeeeeeeeeeees 25
Flowchart of approximate false-oved@pectionccveieiiiiiiiieeeeiiee 26
Cases analysis of vertex alignment.. ... 27
Using the width and height of a sub BBolook up the differential table 28
Example of eliminating false-overldpgiwith differential table 29
Example of differential table redanti..................ouvviiiiiiiiii e 30
Difference of false-overlap tiles betwedjacent rows.............ccoeeevvevviiiin 32.
Circuit in front Of CONVEIEN ... 33
Direction for eliminating false-overlales..............ccccceeiiiiiiiiiiiiiiiiiiiiis 34

Vii

Figure 3-26
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 4-10
Figure 4-11
Figure 4-12
Figure 4-13
Figure 5-1

Example of eliminating rows larger thigerential pattern.......................... 35.

simulation flow and ATTILA architeCtuE3]uueeiiiiiiiiieeeieeieeeeeeeeiiea 38
Frame 30 iN DOOMBS3... ... e e 38
Frame 30 iNn QUAKEAo e e e e e 39
Correct rate with entry size for DOOMS...........ccoovviiiiiieeeiiiin e, 42
Correct rate with entry size for QUAKEA..........uuuiiiiiiiiniieiiieeeeeeieee, 42
Amount of primitive liStS fOr DOOM3B ce.vveiiiiieieeeeeeeeei s 44
Amount of primitive lists for Quakes..........cccoooiiiiiiiiiiii s 44
Number of Records in Primitive Listsiwiterative Division TesSt................... 45
Correct Rate of Iterative DiviSiONn TeSE.........coiveiiiiiiiiieieeeeee e, 45
Correct rate of primitive lists for DONB........ccoovveieiiiiiiiieeieeeiiii e 46
Correct rate of primitive lists for QUEAcooviiiiiiiiiiiiiiieee e 47
Reduction Rate of Primitive Lists fODDMS3ccooviiiiiiiiiiiiiiee e 48
Reduction Rate of Primitive Lists fOUBKEA..........cccooeeevviiiiiiieeeeee o 48
Use pixel pattern to eliminate falsefa@tilesccoooovvviieiiiiiiiiienene, 52

viii

List of Tables

Table 3-1
Table 3-2
Table 4-1
Table 4-2

Table 4-3.

Table 4-3

Error of different table entry. ... 31
Inputs and output Of CONVEITEr....couueeiiiiiiiieeeeeeeeee 34
Statistics of test frames 0N DOON3.........ovviiiiiiiiiieie s 0.4
Statistics of test frames on QuUake 4............ocoeeiiiiiiiiiiie e, 40
Average number of different operatipasright triangle of each
algorithm in various teStS.........oooi i 40
Time complexity of our methods and reVabek...................cccevvvvneee. 49

Chapter 1 Introduction

3D graphic applications in embedded systems su@Dagames [1], personal navigation
devices, graphical user interface, etc., becomeerand more popular in recent years. As we
knew, the embedded systems are designed for soewdfispapplications. Accordingly, the
system designers usually want to reduce the cgdlisiiing system resources. However, the
3D graphic applications in embedded systems becoore complex than before. Therefore,
the trade off between performance, power, and gtoa 3D graphic processing in such
systems becomes an important issue.

A promising technique called tile-based renderi@y ias been widely use in those
resource-limited graphic processing environmerke ARM Mali [3], PowerVR SGX [4],
and ATi Imageon 2380 [5]. Instead of rendering W ftame in one pass, this technique
divides screen into many small blocks called t#ad rendering tile by tile. Typically, tile size
is 32x32 pixels, such that we can use less tharBY@#s for frame buffer and Z-buffer to
store runtime information in rendering a tile. Dtoghis low runtime storage requirement, we
can employ a small on-chip memory to render a so®stead of a large off-chip frame buffer
and Z-buffer. Localized runtime storage can greatlyuces the external memory traffic in
GPU. However, this technique requires extra buffeatled scene buffer to store all
primitives’ data and each tile has a correspongingitive list to record which primitives
should be rendered in this tile. Then the primgiwvell be sent to renderer in per tile basis

when rendering in progress.

1.1 Research observation

To render a tile of the scene, the tile-based nemgleneeds the information of the

primitives which overlap with the tile. In other vds, these primitives have to be stored into

the correspondent primitive list. The most commonked method for a primitive to
determine the tiles overlapped with it is BoundBgx (BBox) test [4,6-8] as shown in Fig
1-1(a).However, there are false-overlap tiles wloelerlapped with BBox only but not the
primitive in the BBox test as Fig 1-1(b) shown. Tgramitive list of a false-overlap tile will
also keep the information of the primitive. Aftercassing the primitive list from the external
memory to render the tile, rasterizer will find abat the primitive does not overlap with the
tile, i.e., the information of the primitive in th@imitive list is redundant. Therefore, if we
can detect a false-overlap tile before inserting tprimitive information into the
corresponding primitive list, we could both reddlce storage size of the primitive list and the

data accesses of external memory.

Bounding Box (BBox) Boundjng Box (BBox)
ilal s d e X... B < 7] Do) 7.
: : : : Screen Size : 640x480
3 P 33| |31 i 2o Tile : 32x32
0.10 0.10 # Tile number
Bounding box overla
51 52 53 51 152 R 53 I:I 9 P
Tile Tile No overlap
71 72 73 71 72 73 False-overlap
(@) (b)

Figurel-1 The relation of the primitive, tilescaBBox in the BBox test.

The benchmarks observed are Doom3 and Quake4 as shd-igl-2 and the average
percentages of frame 30, 60, 90, 120, 150 of falsgtap primitive list in BBOX test for
various screen sizes is growing up with the regmuas shown in Fig 1-3. The reason is that
when the resolution is getting higher, the prinatand the bounding box become larger, and
thus the false-overlap has more change to happenla&ion results show that there are 30 ~
65% false-overlap primitive lists in Doom3 and 5885% in Quake4 while applying

traditional BBox test.

If we can find out the false-overlap tiles earlydaavoid inserting the primitive
information to the primitive list, we can reduce imount of the primitive list and data traffic

of memory access for rasterizaer.

Figurel-2 The benchmarks observed are Doom aradte 4.

; [
Percentage Average Percentage of False Overlap in Frame 30, 60, 90, 120, 150 8 Doom3
I Quake4

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

240x320 640x480 . 1280x1024 1600x1200
Screen Size

Figurel-3 Average percentage of false-overlags filst in a BBox test

1.2 Research motivation and objective

As mentioned above, there is a significant amounfatse-overlap tiles in bounding
boxes. Hence, in tile-based rendering, identifyang eliminating those false-overlap tiles in a

bounding box to reduce both storage pressure erbiiining and data accesses of external

memory for rasterizer become inviting. Existings&bverlap detection algorithms are either
to tedious to reduce computation or too rough io gagh coverage. Therefore, we propose
four methods for false-overlap detection in tilesé@ rendering by the relationship of the

primitive’s edges and the tiles.

1.3 Organization of thisthesis

The main chapters of this thesis are organizedlasas: In chapter 2, we would provide
background knowledge for tile-based rendering, asldted works would be introduced. In
chapter 3, we would present four different appreaabf our design and a plain evaluation of
the four methods. Chapter 4 would demonstrate ithalation technique and results of this
work; some environment assumptions would also btedi in this chapter. And finally,

Chapter 5, a summary would be made and some fuwrewould be proposed.

Chapter 2 Background and Related work

In this chapter, we will give an overview of typliaggraphics pipeline. Then, we will
introduce the tile-based rendering; explain théedéhces between these two different GPU
implementations. Also, the inefficiency of memorgage in tile-based rendering will be

discussed. At the end of this chapter, we will preghe details of two previous work related

to this problem.

2.1 Typical graphicspipeline

(- I—

V.S - P.S.

prog. = § g‘ prog.
< al| Je| |3 . E
Q_ Verteer\ C e % —| Pixel Depth | MEGIME
@ |Shader[V £ |3 N | | Shaderp/| Processing buffer

Sl S e 3
e ld A =31 fragment 4

Off-Chip Memory
On-Chip Memory

Figure 2-1 Typical 3D graphics pipeline
Typical 3D graphics pipeline can be showed as [Ei@#i. Each object in a 3D scene

may be composed of many primitives, typically tgkes. And each triangle consists of three
vertices. The graphics pipeline will perform coorate transformation on each vertex from
object space to 3D scene space, and finally imteescspace by vertex shader. And then, the
triangle setup will assemble vertices into primesy In rasterization stage, the primitive will
be rasterized into many fragments according tecéteen coordinates. These fragments will
be tested by Early-Z or Hierarchical-Z test toefilbut invisible fragments as soon as possible

to reduce the workload in pixel shader and Z-t€kese fragments that passed Early-Z or

Hierarchical-Z test will be sent to pixel shademptrform color shading and texture filtering.
After fragment shading process in pixel shaderfile Z-test will perform on each shaded
fragment to see if it should be displayed on theet or not and then send to frame buffer
and update corresponding value in Z-buffer accgrttinthe test result.

In this process, both Z-test and frame buffer atiereaal memories which means that
access these two buffers will cause extra latenéisgshe 3D scenes become complex, there
are more than ten times of visible fragments the#dnto access these two buffers since

primitives are not process by any specific ordet eause lot of external memory traffic.

2.2 Tile-based rendering

In this section, we will introduce the basis oétblased rendering and its corresponding

data structures. And finally discuss some obsermatand problems.

2.2.1 Tile-based rendering pipeline

Scene buffer

Next frame

Frame buffer

—

Tile

Depth
rEszEs) buffer

<

Buluuiga|iL

uoreziesey

dnjes ajbuel |

| 1501 ZH/Zz-A| /e 3 |

Tile Z-Buffer
Tile list 00 A

Tile Ist 01 fragr%ent Off-Chip Memory
On-Chip Memory

Figure 2-2 Tile-based rendering pipeline

\

N

As for the tile-based rendering GPU, instead ofdezimg a full frame at a time, this

technique render a small region of frame, calléteavhich is typically 32x32 pixels, one by

one. According to this characteristic, the temppstorage such as the Z-buffer and the frame
buffer can be easily built in a chip, and thus sigantly reduce the external memory traffic.
Figure 2-2 shows the diagram of the tile-based egnd pipeline. The process before
triangle setup is exactly the same as that ofytpeal graphics pipeline. After triangle setup,
the data of the transformed primitives will be stbin an extra storage called scene buffer.
Also, each tile on screen has a corresponding readtestorage called primitive list which
records the primitives rendered in this tile. Afegoring all primitives of a frame into the
scene buffer, the tile binning process will be perfed. As Figure 2-3 shows, the tile binning
process will begin with the bounding box test whigliormed by the primitive’s maximum X
and Y and minimum X and Y values of its transfornvedtices’ coordinates. This bounding
box will be used to check which tiles are covergdhis bounding box. If a tile is covered by
the bounding box, then the scene buffer addreshisfprimitive will be recorded into the
primitive list of the tile. After all primitives inthis frame are sorted into tiles, then the
rendering process will begin in tile base. The dsatage of this method is that the pixel
process must start after all primitives in curreaime have been sorted into tiles. Fortunately,
this latency may be hidden by doubling scene budfed primitive lists to process multiple

frames simultaneously.

S buff
Bounding Box cene buffer

I I I
| | | Entry Number
| / i ! 00000000 | Triangle Data No.1
I I I
————————————— 00000001 | _Trisngle Data No.2
~
/

00004999 | Triangle Data No.5000

) Primitive Lists)
| |

Primitive List 11: .../01/...
Primitive List 12: .../01/...
v

'
Primitive List 55: .../01/...

Primitive List 56: .../01/...

Figure 2-3 Tile binning process

2.2.2 Data structuresfor Primitivelists

Primitive List in Memory

Address Scene buffer addr. Next addr.
0x00C0000 0x000003 < 0100C1000 > Next Available Address
0x00C0002 05000004 77 000C1002” > Ox00C2020
0x00C0004 0000010 7| ” 0x00CI004
. s 7
7/ /
/ /7 "
Ve Ve
7 /
/7 /
4 /
4 /
/
7 ’

=

0000006 7 0000C1200 ">
0000012 -~ | 0x00C2000

0000020 " NULL >

R 4%
7 0x00C1000,
7 0x00C1002

|

0x00C1004

~

L
-~
-~

Figure 2-4 Linked-list implementations of primitilists

Figure 2-4 shows the implementation of primitivetdi Each tile has a corresponding
entry in the memory region. And each entry cons$tevo fields, one for the scene buffer
address of a primitive and the other for the nedord address. This implementation can
ensure that no internal fragmentation in each list,storage redundancy is very serious since
it records every data with a corresponding nextreskl If a NULL is found in the next
address filed, for example, 0x00C1004 in Figure R-iheans that the record is the end of the
current primitive list.

Another way to implement the primitive list strutus using fixed-size storage in which
every tile has a corresponding entry in memory \aiiked number of fields to record scene
buffer addresses. Although this method is verycificy in list retrieving, the internal

fragmentation problem is very serious in it.

2.3 Primitivelist Problem

Tile binning inserts the information of primitivasto the primitive list of a tile to record

which primitives overlap with the tile. Binning wEly uses bounding box (BBox) test is

usually used in tile binning process to decide Whiles overlap with the primitive. In Fig 2-5,
the purple dotted rectangle is the BBox of the g No.103. The information of primitive
N0.103 is inserted into the primitive lists of ttiles which overlap with the BBox. However,
there are false-overlap tiles in BBox test. FalgeHap tiles are those which overlap with the
BBox only but not the primitive, as the green tiled=igure 2-5. According to the traditional
BBox test, tile binning also inserts the informatiof the primitive into the primitive lists of
the false-overlap tiles. In this way, it also inses the data traffic for accessing external

memory of rasterizer.

Tile Buffers (Primitive List)

Tile 11: ... / ... —" redundant
Tile 12:.../103/ ...
11 dPppeny 13 Tile 13: ... / ... — redundant
_— | 4| Screen Size : 640x480 Tile 31:.../Q03Y... —p redundant
AN | Tile:32x32 Tile 32:.../103/ ...
I:I Bounding box Tile 33: ... / ... _—> redundant
51 si5aine e B 53 overlap ¢
Tile Bounding|Box (BB No overlap Tile 51:.../103/ ...
71 72 73 False-overlap Tile 52:.../103/ ...
Tile 53:.../103/ ...

Figure 2-5 Relationship of Tile and Primitive list

2.4 Related works

2.4.1 Linear Edge Function Test (LET)

Antochi et al. proposed Linear Edge Test (LET) {®@]detect false-overlap tiles in
2004. LET employs edge function which is used tiectethe relationship of a point and a line

to filter out the false-overlap tiles [10].

Consider a 2D vector defined by two points)XA ¥) and B K+dX, Y+dY) and a line

Lag that passes through the two points as shown irRfag The edge function for a certain

point (x, y) is defined in the following:

ELe(X,y) = (x— X) [dY = (y-Y) [dX. (2-1)

The edge function can be also written using areimental form as follows:

Evo(X+ &, Y + dy) = Eve(X, y) + X [dY — dy [dX. (2-2)

“Left” side B
T (X£dX, Y+dY)
“Right” side

A$X, Y)

Figure 2-6 Edge function for a point and a line

The edge function can be used to determine théigosif a point (X, y) relative to the
line Lag as follows:

If ELe(x,y) >0 then the point is to the rightlofs
If Ee(Xy)=0 then the point is dig (2-3)
If ELe(X,Y) <O then the point is to the leftlofs

LET can be use to determine if a counter-clockvagented trianglel, defined by
three verticedA(xa, ya), B(xb, yb), C(xc, yc), intersects a squatkdefined by a center point

CS(xcs,ycs) and having width of |. The determination equatoea decided as follow:

X

Figure 2-7 Triangle to tile test using linear fuont

10

|
ELAB(XCS' yCS) < E EQ|XB - XA| + |YB - YA|)

|
B (s Yes) S5 % = Xs| *+|Ye = V&) (2-4)

I
ELCA(XCS’ yCS) < E |1|XA - Xc| +|YA - YC|)

However, LET cannot eliminate all false-overlapegiin the BBox and involves with a

lot of floating multiplications and subtractions.
2.4.2 Iterative Division Test (IDT)

The method proposed by Intel [11] iteratively desda primitive into several
smaller triangles and makes the BBoxes of thoaedtes closer to the primitive. If the width
of the BBox of the primitive is larger than a thiekl, the primitive will be divided into

smaller triangles by the middle points on the thwvegices as shown in Fig 2-8.

\ / \ 7 1 /
Original Bounding Box Original Bounding Box Original Bounding Box

@ (b) ()

L]

\ / \ Z
Original Bounding Box Original Bounding Box

(d) (e)

Figure 2-8 Example for Iterative Division Test

11

In Fig 2-8 (a), assume that the width of the BBdxhe primitive is larger than the
threshold, and then the primitive is divided intoadler triangles by the middle points of the
three vertices as Fig 2-8 (b) shown. If the widthih@ BBox of these triangles is still larger
than the threshold as shown in Fig 2-8 (c), thesadles are further divided into smaller
triangle as Fig 2-8 (d) shown until the width oétBBox of the smaller triangle is smaller

than threshold. The algorithm is described in F@[21].

{
Compute new Reference Coordinate Point (RCP (current))
if absolute value of (RCP (current) -RCP (previous))> threshold
{
Create a new Subdivision Record
/* Do subdivision */
Construct the axis aligned bounding box for the polygon
Mark all tiles contained within the bounding box
If either of the {x, y} dimensions of the bounding box are greater than a specified threshold,
subdivide the polygon into four new polygon
Compute the midpoints along each of the three line segments of the polygon
Connect the three midpoints to form three new exterior polygons and one new interior polygon
Generate new axis aligned bounding boxes for the exterior polygons
Unmark any tiles from the original bounding box that are not contained in any of three new
bounding boxes
For each bounding box go to the dimension checking step above
Store the bin assignment in the subdivision record

}

else

{

Resubmit polygon to the bins stored in subdivision record

}
}

Figure 2-9 Algorithm of Iterative Division Test

Although the operation in the iterative divisiosttes addition and the hardware cost is
not high, it is necessary to process iterativelgeb more precise result when the primitive is
large. And the number of the sub BBoxes which iaseeprocessing time groups up with

power of three. If the number of iterate is notadie, there will be a lot of false-overlap tiles.

12

Chapter 3 Design

In this chapter, our false-overlap detection meshare proposed. The objective of exact
false-overlap detections is to eliminate all fatserlap tiles for different hardware resources
and requirement. We also propose approximate methoginove false-overlap tiles roughly
and quickly. This chapter is organized as folloiussection 3.1, exact false-overlap detections

are introduced; in section 3.2 our approximatestalgerlap detection is proposed.

3.1 Exact false-overlap detections

The processing flow of exact false-overlap detecitsoshown in Fig 3-1. After building
BBox for a primitive, the BBox will be divided intoectangles. And then false-overlap
elimination removes all false-overlap tiles in eaebtangle. Finally, primitive listing inserts

the information of the primitive into the primitiVists of the remaining tiles.

Primitive
|
BBox building

|

BBox division

|

False-overlap
elimination

|

Tile listing

Figure 3-1 Processing flow of exact method

13

3.1.1 BBox Division

To eliminate false-overlap tiles precisely, we piam the BBox of a primitive into
rectangles whose diagonal is one of the edge gptingtive. Moreover, the diagonal divides
the rectangle into two right triangle regions. Awwn in Fig.3-2, primitiveABC has BBox
AEFG which is partitioned into rectangleS8DCG, IBFC, and AEBH. The edgeAC of
primitive ABC is the diagonal of the rectangdCG and divides the rectanghDCG into
two right triangle regionsACD and ACG, where ACG is the false-overlap region. Our
algorithms are proposed to eliminate the falselapstiles in the false-overlap regioASG,
ABE, andBCF in parallel. The other region&CD, ABH, BCI are fully overlapped by the

primitive. In Fig.3-2, the shadow tiles are thesé&abverlap tiles to be eliminated.

Figure 3-2 Partition of primitivéBC

After BBox division, each primitive edge becomes thagonal of a rectangle, and the
diagonal divides the rectangle into two triangukagions, false-overlap region and preserved
region, distinguishing by the third vertex of thenmtive as shown in Fig. 3-3. With
false-overlap and preserved regions, our exactedsthan eliminate the false-overlap tiles in

false-overlap region.

The diagonal contains two vertices of the pringtithe one which y coordinate is

14

smaller is calledA and the other is called poifit The third vertex of the primitive is named
point B. The one of other two vertex of the divided BBoRieh y coordinate is the same as
point A is called pointD, and the other one is called poklhtas the Fig. 3-4(a) shown. The
algorithm for distinguishing false-overlap regiamdgreserved region is shown in Fig. 3-4(a).
If the values of x and y of directed segmeﬁ are larger than zero, and the cross product
of ACand AB is larger than zero, the triangle regl@E in the Fig. 3-4(a) is false-overlap
region. If values of x and y of directed segmeﬁ are larger than zero, and cross of
ABand AC is smaller than zero, the triangle regdDC in the Fig. 3-4(a) is false-overlap
region. If the value of x of directed segmeﬁ is smaller than zero, y of directed segment
AC large than zero and cross @B and AC larger than zero, the triangle regidBE in

the Fig. 3-4(a) is false-overlap region. If theuealbf x of directed segmerﬁ is smaller
than zero, y of directed segmeWC large than zero and cross #Band AC smaller
than zero, the triangle regi@EC in the Fig. 3-4(a) is false-overlap region.

E C

fIIISIIIEIIsEn

I .
False-ov?rlap region

|

|

|

N

A D

Preserved region

Figure 3-3 Edge of primitive divides the recti@nigto two triangular regions

We design a filter unit which is the hardware tgpiement our false-overlap detection
algorithm to distinguish the false-overlap tileslaliminate them. We use the relation of tile

and diagonal of the rectangle to develop threerdlgos to remove the false-overlap tiles:

15

Cross Product Test (CPT), Edge Walk Test (EWT)@adnting X Ratio (CXR). The number
of rectangles partitioned from a BBox of a primitidepends on the number of concurrents
between the vertices of the primitive and thathef hounding box. In other word, the number
of concurrent of primitive vertices and BBox veescdecide the number of filter units to
eliminate the false-overlap tiles in parallel. Tdgorithm for determining the number of filter

units required is shown in Fig.3-5.

if ABxAC>0
ACE is False-overlap region
else
: ADC is False-overlap region
celseif x,<0 and y_>0
B if Xéxfé>0
ADE is False-overlap region
else
DEC is False-overlap region

ﬂ?;xA—Cf<O

() (b)

Figure 3-4 lllustration and algorithm for distinghing false-overlap region and preserved
region

if Concurrent [BBOX, Primitive] =1
—Need three Filter Units
elseif Concurrent [BBOX, Primitive] = 2
—if the third vertex of the primitive is in the BBOX
Need three Filter Units
else
Need two Filter Units
elseif Concurrent [BBOX, Primitive] = 3
—Need a Filter Units
else
—Need no Filter Units

Figure 3-5 Algorithm for determining the numberfitier units required

16

Fig. 3-6 is the flow chart for determining the nuenlof filter units required. When the
triangle setup output the triangle information ke ttile binning unit, the tile binning unit
makes bounding box for the primitive and counts ynaertex of the primitive and the BBox
are concurrent. According to the area of boundiog, ltile binning can decide whether the
false-overlap tiles should be eliminated or nothd# BBox has to be filet out the false-overlap
tiles in the false-overlap region, the concurrena# decide the number of rectangles
partitioned from a BBox of a primitive to be prosed. After eliminating all false-overlap
tiles from a BBox, tile binning inserts the infortiwa of the primitive into the primitive lists
of tile. The Min, Mid and Max are vertices of primae ordered by y coordinate from small to

large.

Triangle Setup

!

Primitive information

BBox building

No
BBox area > thyeshold

ConCurrent] BBox, Copurrent] BBax, N°
R Al -
Primjtive]==3 ?

False-overlap detection

1.Filter(Min, Mid) Yes Non-oncurrent Vertex Mo
2 Filter(Mid, Max) inside the Bondirig Box ??
3 Filter(Min, Max)

False-overlap detection
1.Filter(Min, Mid) False-overlap detection False-overlap detection
2 Filter(Mid, Max) 1.Filter(Mid, Max) 1.Filter(Min, Max)
3.Filter(Min, Max) 2.Fi|ter(Mir}, Max) ‘

L

|

Insert the primitive information to primitive lists

l

Tile List
Tile No: --- / Primitive No./---
Tile#:--- | Primitive# /---
Tile #:--- | Primitive # /---

Figure 3-6 Flow chart for determining the numbefileér units required

17

3.1.2 False-overlap Elimination by Exact False-Overlap Tile Detection Algorithms

In Fig. 3-7, 3-9, 3-12, we name one of the vertimeghe diagonal in rectangle whose Y
coordinate is the same as the right angle of thegoved region is called poigart (vertexA
in these figures) and another vertex on the didgamgointEnd (vertexC in these figures).
The right angle of preserved region is called p&nfvertexD in these figures), and right

angle of false-overlap region is called pdRafvertexE in these figures).

Algorithm for Cross Product Test (CPT)

CPT exams that a vertex of a tile which relativsifion to the tile is the same as point
R, to preserved region to decide the tile is falserlap or not. If the tile is not false-overlap

tile in the row, then CPT exam next tile.

For example, in Fig. 3-7, the relative positiorpofnt R, to the preserved region ADC is
lower right. We take the lower-right vertex of eddh in the false-overlap region for cross
product test. Using the cross product to deternhiow line segmentsSE (point art to
point End) and ST (pointSart to pointTile vertex) turn at pointSart. We check whether the
directed segmentSE is clockwise or counterclockwise relative to theedted segmentSR
(from pointSart to pointRight angle) andST . If SExSR and SExST have the same sign
number, the primitive list of the tile can be irser the information of the primitive.
Otherwise, SE x SRhas different sign number 8 x ST, the tile is a false-overlap tile. The
algorithm is shown in Fig.3-8. And main advantag@lgorithm CPT is that it needs integer
multiplication and integer subtraction. Each crpesduct needs tow multiplications and one

subtraction. And the hardware design is show in3-4y

18

(R

m

=I5z
D == —— =
H

P

__4

Rp)

Figure 3-7 Cross Product Test (CPT) for detectitig passible false-overlap tiles.

ExR<0andExST:>0 indicate that Tilel false-overlaps with the

primitive; whereas SE x SR<0andSE xST»< 0 indicate that Tile2 overlaps
with the primitive.

for row_next_Sart to row_End
for column Sart to column End

if (SExSR>0andSEx ST <0) or (Ex SR<0andE x ST >0)
the tile is false overlap tile for primitive

dseif (SExSR<0andSEx ST <0) or (SExSR>0andSE x ST > 0)
the tile overlap with primitive

else
change to next row

Figure 3-8 CPT Algorithm

19

SE x STy SEy ST.X

\? \

N

N

Nt/

N/

SUB
Is SE_SR
empty or not? >SE_SF?>SE_ST
comparator
\L Output
Figure 3-9 CPT hardware design

Algorithm for Edge Walk Test (EWT)

In the algorithm Edge Walk Test, for each row, Wmimate false-overlap tiles from the
column of pointSart to the hypotenuse of preserved region. Here, wpl@nthe optimal
Bresenham’s line algorithm [7] shown in Fig.3-16,get x coordinate corresponding to the
specific y coordinate on the hypotenuse of preseregion. The optimal Bresenham’s line

algorithm only uses integer addition, subtractiang shift. It reduces hardware cost to get a

value on linear edge without slope.

20

i function optimal_ Bresenham’s_line (x0, x1, y0, y1)
: boolean steep := abs(yX: y0) > abs(x1- x0)

if steepthen

swap(x0, y0)

swap(x1, yl)
if X0 > x1then

swap(x0, x1)

swap(y0, y1)
int deltax := x1- x0
int deltay := abs(yl- y0)
int error := deltax / 2
int ystep
inty:=yo0
if yO < ylthen ystep := lelseystep :=- 1
for x from x0to x1

if steepthen plot(y,x) else plot(x,y)

error := error- deltay

if error < Othen

y =y + ystep
error := error + deltax

Figure 3-10 Optimal Bresenham’s line algorithm

If the y coordinate of poirftart is smaller than that of poind, we let the specific y be
the ceiling of y coordinate of poilgart. Otherwise, specific y is the floor of y coordieatf
point Sart. We get the x coordinate corresponding to the iBpeg on the hypotenuse of
preserved region, a?C in Fig. 3-11, and then we can know the tile on diegonal of
rectangle in that row. The false-overlap tiles acterow are from the tile where column is the
same as poirfitart to the tile on the diagonal of rectangle in tlwt.rThe algorithm is shown

in Fig. 3-12. And the hardware design is show m3-i13.

21

D

n A

Figure 3-11 Example of EWT

if Start_y <End_y
y = ceil (Start_y);
else
y = floor (Start_y);
for row_next_Sart to row_End
x = Bresenham’s line algorithm(y);
compute the edge_tile of (X, y)
for thecolumn_same_Sart to edge tile
delete the false overlap tile
y +=tile_height

Figure 3-12 Edge Walk Test (EWT) algorithm

22

Intput Intput

Start x End_x End
Intput| Tntput Start_y e Ly
Start y End_y ﬁv—\] s TF
Control Unit P 0 l,LZ [_> 012
Signal:abs(Ex1 - Sx0) >
e End @ abs(Ey1 - Sy0)
[Signal: Sy0 > Eyl
Start_y
1 -1
No 1/
Floor
ACD o1/

e (e
)
\L X

Output x

Figure 3-13 EWT hardware design

Algorithm for Counting X Ratio (CXR)

In this algorithm, we accumulate the reciprocalstdpe of hypotenuse of preserved

region, asE in Fig. 3-14 to x ratio, for each row and the flad ratio is the number of

false-overlap tiles in that row. Here, initial Xiais the ratio of the length on tile edge which

is most close to point Start from point Start todvaoint End and is not covered by preserved

region, as FG in Fig 3-14, to tile width. Because there is nisdaoverlap tile in the row of

point Start, we ignore computing the false-ovetibgin that row and start from the row next

to row of point Start.

23

In Fig 3-14, the point F is the tile vertex whichmost close to point Start from point
Start toward point End and is not covered by preskrregion, and the point G is an

intersection point of the tile vertex which is mogise to point Start from point Start toward

point End and hypotenuse of preserved region. Ttialix ratio is the ratio of% to tile
width. The floor of x ratio is the number of faleeerlap tiles. The algorithm is shown in Fig.

3-15. And the hardware design is show in Fig.3-16.

(Ry)
X = XX (End) | x_ratio|=| 26+04|=|30]=3
X, X | x_ratio]=]22+04]|=|26]|=2
X | X | x_ratio|=[18+04]|=]22]=2
X| | x_ratio|=|14+04|=|18]=1
X! | x_ratio|=|1.0+04|=|14|=1
X | x_ratio|=]|06+04]=|10]|=1
£ | x_ratio|=]06]|=0
AStart) D(Rp)

Figure 3-14 Example of Counting X Ratio

if Start_y <End_t
y = ceil (Start_y);
else
y = floor (Start_y);
X = Bresenham'’s line algorithm(y);
if Start x<End_x
X_ratio = (x % tile_width) / tile_width
else
x_ratio = [tile_width- (x % tile_width)] / tilewidth
for row_next Sart to row_End
delete_tile_num = ciel (x_ratio)
for thecolumn_same Sart to (column_same Sar+ delete tile num)
delete the false overlap tile
y +=tile_height

X_ratio = reciprocal aflope_Sart End

Figure 3-15 Algorithm of Counting X Ratio (CXR)

24

Intput Intput

Start x End_x End
Intput Start_y _y
Start_x T *J/ End_x TP
—l L o 0 1 \LZ
Control Unit N1 2 P\o_1 2 P T

0 1 2
1 1 ﬁ
Signal:abs(Ex1 - Sx0) >
Start Start
FF ar J FF Jjir 75{' End_; r End_ @ abs(Ey1 - Sy0)
ﬁ, I Signal: Sy0 > Ey1

L

Start_x End_xStart_y End_]
SuB Start_y

_sle /
i
0 1
C@

2
*error
— error<0?
X

Output x

Tile width| & OXfPox | X\ /7 7
DIVI

<——— Signal: Start_x < End_x

\oki / \aho/

<——— Signalf Index=1

Figure 3-16 EWT hardware design

3.2 False-overlap Detection by Approximate M ethod

To avoid a lot of computations for eliminating flsverlap tiles, we try to use table
lookup to reduce the computations. We observe ttiexre are patterns for the numbers of
false-overlap tiles in rows. If we could store pragterns of false-overlap tiles for difference in

a table, we can eliminate the false-overlap tiléghaut complex computing.

25

Fig. 3-17 is the flow chart of approximate falsesdap detection. The difference of the
flow chart to that of the exact methods is theasedlignment and boundary expanding before
BBox division. Vertex alignment aligns the verticagfsa primitive to the tile vertices to the
representative tile vertices, and then boundaryaedimg connects the representative tile
vertices to form a new geometric figure whose aselarger than or equal to the primitive.
BBox division divides the BBox of the primitive ading to the expanding boundary and
makes the expanded boundary be the diagonal cfubeéBBox. After these approximations,
we can eliminate false-overlap tiles in the falsertap region by using the height and width

of the sub BBox by table lookup.

Primitive

BBox building
v
Vertex alignment
v
Boundary
expanding
v
BBox division
v
False-overlap
elimination with
table lookup
v
Tile listing

Figure 3-17 Flowchart of approximate false-ovedapection

3.2.1 VertexesAlignment

For reducing the computations, we align the vedexfea primitive to the tile vertex to
representative tile vertices. According to thetrefaof vertices of a primitive and the number
of tile vertices in the region of the extending esigalong the edge of primitive extend to

outside of the primitive) of the primitive, we ckify some cases of vertex alignment in

26

Fig.3-18.

Case

Case description

How to choose the tile vertices to represent the
vertex of the primitive ?

There are vertex in_ Q) _‘ \
the region of the wed T

extending edges o

1 The vertex of the primitive is on Choose both vertex of
the edge of a tile 7 the edge of the tile 7.

2 The vertex of the primitive is on th Choose the tile vertex overlapped
vertex of a tile i with the vertex of the primitive &

3 There is no tile vertex .| Choose both vertex of the t; 1 ')
in the region of the >> | > | edge crossed by the extenc> > | > .
extending edges of the primitive edges of the primitive

4 Choose any one of th&

K IXIX

L
vertex in the extendin| "y

edges of the primitive>__,,.-" >

Case 1 is that the vertex of primitive is on thetese of a tile, and the representative tile
vertices are the vertices of primitive falls intdass 2 is that when the vertices of primitive
fall on the edge of tile , the representative Vigetices are the vertices on the edge of the tile.
Case 3 is that there is no tile vertex in the negid extending edge at the vertex of the
primitive. The representative tile vertices in c&sare the tile vertices on the edge of tile
which is crossed by the extending edge. In the 4atieere are vertices of tile in the reigon of

extended edge at the vertex of primitive, and amg @f these tile vertices can be

the primitive " o
Figure 3-18 Cases analysis of vertex alignment

representative tile vertices.

3.2.2 Boundary Expanding and Sub BBoxes

For each two vertices of the primitive, connect tepresentative tile vertices which

are out of the edge at the same time.

27

Build a sub BBox for each expaned boundary of dnth@ edges of primitive, and let

the expanded boundarys be the diagonals of th&Bokes as shown in the Fig.3-19.

Expanded Boundary

Sub BBox

Figure 3-19 Expanded Boundary and Building SubBBo

3.2.3 Elimination by Table L ookup

For the sub BBoxes, we can use the height and wfith sub BBox to look up a
differential table through a converter shown in.F8320 to know the difference of the

numbers of false-overlap tiles between two adjaoamns. An example is shown in Fig. 3-21.

Differential Table

Index 0 | 0,0,1,..., :
Thedifferenceof the numbers of false-overlap
index 11992 tiles between two adjacent rows
k) mde;m 010 Field | Field | Field [[Field
S T = R (I (M
7 ndexnl 110 = e 0 1 0 L1

Figure 3-20 Using the width)(and heightjj of a sub BBox to look up the differential
table

28

row 5
row 4
row 3
row 2
row 1
row O

Figure 3-21 Example of eliminating false-overldpgiwith differential table

Differential table

The differential table is pre-computed offline. Bdeld of an entry of the table records
the difference of the numbers of false-overlapstileetween two adjacent rows. In the
differential table, the first field of an entry nm=sathe difference between the row 0 and row 1

of a sub BBox, and so on. Here the row O is tst fiow in the sub BBox.

To reduce the number of entries of the differerthhle, we use three skills described as

follows and apply for antecedent arjdfor back tern to explain ratio :

(@) Ifil:j1 =i2:j2, then these two ratios map to the same entryeflifierential table

Ex: 1:2 and 3:6 map to the same entry of tabl&ig8-22(a) shown.

(b) If i1;j1 = j2i2, these two ratios to the same entry of the diffead table

Ex: 2:1 and 1:2 map to the same entry of tabl&ig8-22(b) shown.

(c) Adopt the approximation of the reciprocal obst. Let the denominatat of the

approximate ratio be a specific integer, such aré63 32, or 64, to approximate the

- . 0~d-1 ,0~7 0~15 0~31 0~6
original ratio. Then; (: or
32 64

3) may represent all
d 8 16

29

slopes, and thus the number of entries of the anpeded table may be reducedd@s,

16, 32, or 64). For example, 2:3, the ratio—grs We can useg to represent it when the

denominator is 8. Sinc%EXSJ =5, as shown in Fig. 3-19(c). And Table 3-1 shows the

errors and and table sizes in different numbeiriféedéréntial table entries.

Equation 3-1 is the mathematic equation of the tmaund outputs of the converter. Here

andj may excahnge to preserve that larger than.

input_ | J a1

outputindex = L =—xentry__number
input _j

)
s
!
r
Fl
!
¥
r
!
|
0 I
| ~
— I —————————— \—\‘

(@) (b) (c)

—H
-

Figure 3-22 Example of differential table redanti (a) 1:2 and 3:6 have the same

differential of false-overlap tile pattern. (b) 2dnd 1:2 have the same
differential of false-overlap tile pattern. (c) 2tBe ratio isg. We can useg

to represent it when the denominator is 8.

30

Table 3-1 Error of different table entry. Screeress 1200 x 1600, and tile size is 32 x 32
Number of Entry Max error Bits Table size (bits)

8 0.12 8 56
16 0.06 15 240
32 0.03 31 992
64 0.01 63 4032

Because that there is no false-overlap tile infite# row of a sub box, the first bit
(Field[0O]) of the entry in a differential table the number of false-overlap tiles in the second
row of the sub BBox as Fig. 3-23 shown. We letldrger one of the height and width of the
sub BBox be the specific entry numbe and adjustsdraller one to bendex which come
from theoutput;,qgex Of €quation 3-1. The Field[0] can be represerdcqstion 3-2. The second
bit (Field[1]) of the entry is the difference fafsle-overlap tiles between row 1 and row 2.
index

And the number of false-overlap tiles in row 2he floor of double of . Thus,
entry__number

Field[2] can be represent as equation 3-3. The eumbthe false-overlap tiles in rowis the

floor of n times of Indeg . Therefore, Field[n-1] is as equation 3-4 shown.
entry _number

; 3-2
Field[0] { Index J
entry _number
index index 3-3
Field[1]= x2 |-
entry _number entry _number

Fielo[n—.l]:{ index XHJ{ index

entry _number entry _number

x(n—l)J

31

Field[2]= o(

Field[1]= 1(

Field[0]=0 4

Figure 3-23 Difference of false-overlap tiles betwedjacent rows

Converter

The inputs of the converter are the width and hedjfa sub BBox, and the output is the
index of the differential table. To reduce the céemfiy of circuit of the converter, we lete
the width of the sub BBox arjdoe the height, and exchanigendj to make is larger than.
Wheni andj are equal, we know that the difference of nubmefatse-overlap tiles in

adjacent rows is one without table lookup. Theutris as Fig.3-24.

32

Differential Table
Index O | 0,0,0,....

ndex 1] 0,0,1...

smaller

Converter Index mj] 0,1,1,....

larger Index n| 1,1.1,...

Figure 3-24 Circuit in front of Converter

Because the output of the converter is the indethefdifferential table, reducing the
entries of the table also may simplify the complexaf the converter. The entry of the
differential table records the difference of fatseerlap tiles in adjacent rows for specific
slope. And the differential table is pre-computdfilioe. Table 3-2 is an example of the
converter. The inputandj”in Table 3-2 are the inputs of converter as shimwFig.3-21. We
can use approximate ratio to approdth)’ and get the outpwdex through the converter

according to equation 3-1.

False-overlap Tiles Elimination

In presevered region, let the vertex on the hypaterwith the smaller edge of the width
and height be poirfiart, the other one be poifnd. If the width () of a sub BBox is smaller
its than heightj, we eliminate false-overlap tiles from pofért to pointEnd row by row as
Fig. 3-25(a) shown. Otherwise, we eliminate falgertap tiles from poin&art to pointEnd
column by column as Fig 3-25(b) shown. By the widtid height of a sub BBox, we may

look up the differential table and get the diffexempattern of false-overlap tiles in rows.

33

Table 3-2 Inputs and output of converter

/i Approximate

input/ inputj i ratio outputindex
1 2 0.50 4/8
1 3 0.33 2/8 2
10 0.10 0 0
3 0.67 5/8
0.5 4/8 4
2 10 0.20 1/8 1
9 0.89 7/8 7
8 10 0.80 5/8
Q +1
N\ sart
0]
J
(@) (b)

Figure 3-25 Direction for eliminating false-overlales

With the direction for eliminating false-overlapes and the difference pattern of
false-overlap tiles in rows (columns), we can acelate the bits of difference pattern to get

the number of false-overlap tiles in each row (ool from the second row (column). For

34

example, there is a primitive (with black line)kig. 3-26, and its width is 8 and height is 10.
Let the table size be 8. Through our convreter,caa use the entry which record the
false-overlap tile with approximate difference @8 &0 eliminate the false-overlap tiles. We
make the first row in the primitve be row 0, andoso The initial value of false-overlap_tile
is zero for row 0 and accmulate the value of fielthe entry to false-overlap_tile. The value

of accmulated false-overlap_tile is the numberatdd-overlap tiles in each row.

Differential pattern of 6/8 ’
Field | Field | Field | Field | Field | Field | Field | Field |/
0] [[A] |21 [[3] |[4] [[5] |[6l |I[7]
0 1 1 1 0 1 1 1

Value of Field False-overlap_tile o

v 4 .

row9 9+ (6 '
row8 1+
row 7 1+<

row6 1,
rows 0,

row 4 1,
row 3 1+<
row 2 14
row 1 0.4
row O

Figure 3-26 Example of eliminating rows larger tigerential pattern

10

O P N W W » 01 O

Initial of false-overlap_tile

6 !

8

35

Chapter 4 Evaluation Resultsand Discussion

In this chapter, we first describe our evaluatiomi®nment and the characteristics of the
input frame data (in section 4.1 and 4.2). Thenshw@v and analyze the simulation results of
memory requirement and execution time during rendesf each method: Bounding Box test,
LET, iterative division test of Intel, and our ekand approximate methods in section 4.3. In

the last section, we briefly discuss and summanizeconclusion from the results.

4.1 Evaluation environment

Figure 4-1 shows the architecture of ATTILA simolaand in which stage we dump the
coordinates of transformed primitives from triangktup of the ATTILA GPU simulator for
the input of our simulation. We implemented a betwal simulator of our architecture in
C++, and modified ATTILA simulator [13] to outpubordinates information to a tracefile.
The benchmarks chosen are DOOM3 and QUAKE4 [14eno graphics applications, and
resolutions are 320x240, 640x480, 1280x1024 an@XB2ZDO in frame 30, 60, 90, 120, 150,
180, 210, 240, 270, and 300. Fig. 4-2 and Fig.dwsone frame in DOOM3 and QUAKEA4,
respectively. The trace file outputted from ATTIL$Mmulator contains the coordinates in
frames. Our simulator reads the tracefile and etaki storage size and correct rate of

primitive lists.

37

Index Buffer Streamer

[Vertex cache Wertex Request Buffer}
[

Primitive Assembly [T
egiste:

= -
< s =
3) == =
Tagment Ganaration] H*;fg;;ggﬁ‘ =
=

- Tracefile
Fragment, (x,y,zRGBA) .
Fragment,(x,y,z.RGBA) .

........... %I <= Shader
T 9

Z Cache || || Z Cache [
y Y
7 test]| 7 test

Transparent Fragment ‘
Storage System %‘ %

Software Behavioral Simulator B% ng
— ; I ¥
MCOo ‘ ‘ MC1 ‘ MC2 ‘ ‘ MC3 ‘

ATTILA simulator Architecture

Figure 4-1 simulation flow and ATTILA architectuf&3]

Figure 4-2 Frame 30 in DOOM3

38

Figure 4-3 Frame 30 in QUAKE4

4.2 Test frame data

In this section, we provide statistics of Doom3 &ubkke4 in different screen sizes of
frames, for frame30, 60, 90, 120, and 150, as showiable 4-1 and Table 4-2. In Table 4-1
and Table 4-2, the second row indicates the avemag®er of tiles covering in a primitive;
the third row shows the maximum number of tileserowy in a primitive; the fourth row
shows the total number of tiles in all BBoxes; ftith row shows the number of actually
overlapped tiles; the sixth row brings the percgeataf tiles really be rendered; the seventh
row shows the average height of primitives in nundddiles. The last row shows the average
width of primitives in number of tiles. And Table34shows Average number of different

operations per right triangle of each algorithnvamious tests.

39

Table 4-1 Statistics of test frames on Doon3

Screen size 320x640 640x480 1280 x 1024 1200x1600
Actual Tile Coverage of Primitives (Avg) 2.87 6.34 19.00 25.39
Maximum Tile Coverage of Primitives 70 300 1280 a8s5
Total Number of Tiles in all BBoxes 24428 54047 1648 216362
Number of Actually Overlapped Tiles 16265 30076 608 91792
Tile correct ratio 66.58% 55.65% 44.40% 42.43%
Average Height of Primitives in number of tiles 1.8 2.7 4.8 5.4
Average Width of Primitives in number of tiles 15 2.0 3.1 3.6

Table 4-2 Statistics of test frames on Quake 4
Screen size 320x640 640x480 1280 x 1024 1200x1600
Actual Tile Coverage of Primitives (Avg) 7.45 2491 94.81 135.64
Maximum Tile Coverage of Primitives 80 300 1280 a8s5
Total Number of Tiles in all BBoxes 381553 1276076 8574531 6949631
Number of Actually Overlapped Tiles 125220 262100 50®22 862638
Tile correct ratio 32.82% 20.54% 13.58% 12.41%
Average Height of Primitives in number of tiles 2.4 3.8 7.2 8.3
Average Width of Primitives in number of tiles 24 4.1 7.3 8.9

Table 4-3. Average number of different operatioesrnmght triangle of each algorithm in

various tests.

Divide-and-conquer
Cross Product Test (CHTEdge Walk Test(EWT Count X Ratio (CXR)
and table lookup

Benchmark| Doom 3 Quake 4 | Doom 3 | Quake 4 Doom 3 Quake 4 Doom 3 | Quake 4
Operation | MUL | SUB| MUL |SUB|ADD | SUB| ADD | SUB|Add|SUB|DIVI |Add| SUB|DIVI ADD ADD
320x240 | 6 3 6 3 4 6 4 6 | 4| 3 1]15] 3 1 1 1
640x480 | 8 4 110 | 5 6 9 8 (12| 5] 3 116] 3 1 1 1
1280x1024| 12 6 16 8 10 | 15| 14 | 21| 7 3 1 10| 3 1 1 1
1600x1200] 12 6 18 9 10 | 15| 16 | 24 | 8 3 1 |11 3 1 1 1

40

4.3 Simulation results

In this section, we show the simulation resultgiofe complexity, primitive list, and
primitive list correct ratio. We compare the reswf our design with the method of BBox test

[4, 6-8], Linear Edge Function Test (LET) [11] alterative Division Test (IDT) [13].

4.3.1 Correct Rates of Different Entry Size of Differential Table for our Approximation

M ethod

Fig. 4-4 and Fig.4-5 show the relationship of timérye sizes of differential table with
correct rate for DOOM3 and QUAKEA4, respectively. ieldifferential table entries bring
more false-overlap tile detection. As Fig. 4-4 shpwn DOOMS3, screen size of 320x240
needs 4 entries for differential table, 640x480dse® entries, and there are 16 entries enough
are for 1280x1024 and 1600x1200. However, in QUAKISAFIg. 4-5 shown, 8 entries are
enough for 320x240, 16 for 640x480, and 640x480 aRd0x1600 needs 32 entries for
differential table. As the screen size becomeselaripe primitives become larger and need
more table entry to remove false-overlap tiles.c8immore table entry may remove
false-overlap tile more precisely. Furthermore, pinienitives in QUAKE4 are larger than in
DOOMB3, and thus the approximate method needs rabfte entry to get higher correct rate at

the same screen size.

41

% DOOM3 Correct Rate

80 /
¥
-« . R . . . R
70 l
///‘/F —= - - "]
60 - /

50 A/X/‘:/k/

40
30
20
—*—320x240 —%— 640x480 —*— 1280x1024 =< 1600x1200

10

0
Entry Size 2 4 8 16 32 64 128 256

Figure 4-4 Correct rate with entry size for DOOM3

%
%0 N QUAKE4 Correct Rate

\\
*
~
*
He

I

»

"’ : /‘//Q*‘:’ﬁ
60

40

30

20
—*—320x240 —=— 640x480 —*— 1280x1024 —<1600x1200

10

0

Entry Size 2 4 8 16 32 64 128 256

Figure 4-5 Correct rate with entry size for QUAKE4

42

4.3.2 Storage Size of Primitive Lists

In order to evaluate our methods, we compare auageé size with the method of BBox
test [4, 6-8], Linear Edge Function Test (LET) [&bld Iterative Division Test (IDT) [13]. We
list the amount of primitive lists of each methodttb in Figure 4-6 and Figure 4-7 for
DOOM3 and QUAKEA4. The first and orange bar is thenfiive lists really rendered, and it
also the results of our exact methods CPT, EW,@X4R. The second bar is the amount of
primitive list with BBox test. The third bar is thimitive list with LET, and the fourth to
sixth bars are IDT with one to three times of it Since the results of them are close to
our approximate method, we list the results of With one to three times of iterative to
compare and discuss. Furthermore, the seventhuttetn bars are the primitive lists in for

own approximate method with 2, 4, 8, 16, 32, 648 42d 256 entries of differential table.

Although the primitive lists in IDT are the feweamong BBox, LET, IDT and
approximate method with different entries in Fig6 4vith one iterative, they needs more
iterative when the primitives are larger as Figr éhown. In Fig. 4-7, IDT needs three
iterative to get the results which are close toraxmate method. In the other words, a

primitive can be divided up to ten iterative and gesmaller primitives to process.

Fig. 4-8 shows different iterative and storage ©fehe primitive list with IDT, and
Fig.4-9 shows different iterative and correct ratgrimitive with IDT. Here, we use correct
rate to represent the percentage of the primitste Which are really rendered. From Fig.4-8
and Fig.4-9, we can see that the IDT can get lesage size of primitive lists and higher
correct rate with more iterative, but it also casisre time with power of three. Although the
LET produces the same storage size of the primiists comparing to our approximate

method in Fig. 4-6 and Fig. 4-7, it needs floatudptraction, multiplication and division.

43

Amount DOOM3 Record of Primitive Lists

600000
O Correct/CPT/EWT/CXR H Bbox OLET
BIDT 1 B IDT 2 BIDT 3
O Entry_2 O Entry_4 M Entry_8
500000 [O Entry_16 O Entry_32 O Entry_64
O Entry_128 O Entry_256
400000 -
300000 i
200000 i
100000 i
0 -
Screen Size 320x240 640x480 1280x1024 1600x1200
Figure 4-6 Amount of primitive lists for Doom3
Amount QUAKE4 Record of Primitive Lists
2000000
O Correct/CPT/EWT/CXR O Bbox OLET
1800000 FEIDT_1 B DT 2 BIDT 3 =
O Entry_2 O Entry_4 B Entry_8
| O Entry_16 O Entry_32 O Entry_64]
1600000 O Entry_128 O Entry_256
1400000
1200000
1000000
800000
600000
400000
200000
0
Screen Size 320x240 640x480 1280x1024 1600x1200

Figure 4-7 Amount of primitive lists for Quake4

44

Amount Number of Records in Primitive Lists with IDT
1400000
1200000 ——D3_320x240 —=—D3_640x480 —+— D3_1280x1024 D3_1600x1200
—*%—0Q4_320x240 ——(Q4_640x480 ——Q4_1280x1024 ——Q4_1600x1200
1000000 [
800000
600000 \\‘\‘\\\
400000 e —
‘%\ﬂ\.\ A
200000 ——— ¢ A * * A —
m .2 L 2
. > + 3 &3 : : : 3
0 ‘ ‘ |
! 2 3 4 Itersative Nurr61ber / 8) 10

Figure 4-8 Number of Records in Primitive Listsiwiterative Division Test

% Correct Rate of Iterative Division Test
100 : ° *
.l AK/W/ 3
% —* : 3
70
60
50
40
30
20
10 ——D3_320x240 —=—D3_640x480 —+—D3_1280x1024 D3_1600x1200
—*—04 320x240 —*—04 640x480 ——0Q4 1280x1024 —— Q4 1600x1200
0 ! ! ! ! ! ! !
! 2 3 4 Itersative numbe? ! 8 ’ 10

Figure 4-9 Correct Rate of Iterative Division Test

Differential table with more entries can get fevpeimitive lists and higher correct rate.

45

The difference of correct rate between 8 and 64iemntf differential table is up to 5% as

Fig.4-10 and Fig. 4-11 shown.

#records_ TestMethod

(4-1)
#records_ Real Render

Correct Rate =

% DOOM3 Correct Rate of Primitive Lists
100 FI1 @ Correct/CPT/EWT/CHR B Bbox] OLET]
BIDT 1 OIDT 2 O IDT 3
o0 H | @Entry_2 O Entry_4 B Entry_8 e —
O Entry_16 O Entry_32 O Entry_64
O Epgsy 128 O Entry_256
80 M
70 +
60 H =
50 -
40 H — H
30 H = H
20 H = H
10 F
0 - -
Screen Size 320x240 640x480 1280x1024 1600x1200

Figure 4-10 Correct rate of primitive lists for DO

46

% QUAKE4 Correct Rate of Primitive Lists
100 @ Correct/CPT/EWT/CXE] O Bbox 3 OLET 3
@ DT _1 B DT 2 BEIDT 3
00 || @ Entry_2 O Entry_4 B Entry_8
O Entry_16 O Entry_32 O Entry_64
I Fntrv 1978 M Fntrv 75A
80
70 — —
60 — — ¥
50 — — ¥
40 H — — ¥
30 M — — ¥
20 — — ¥
10
0 - -
Screen Size 320x240 640x480 1280x1024 1600x1200

Figure 4-11 Correct rate of primitive lists for QUE4

For larger size and primitive, our approximation thoel may eliminate more

false-overlap tiles as Fig. 4-12 and Fig.4-13 shown

_#records_BBx -#records_TstMethod
#records_BBx

Reduction Rate (4-2)

47

%

DOOM3 Reduction Rate of Primitive Lists

100
Correct/CPT/EWT/CXE OLET B IDT
on L Entry 2 O Entry_4 B Entry 8
Entry_16 O Entry_32 O Entry_64
0 | Entry_128 O Entry_256
70
60 [
50 [
40 F
30
20
10 J
O L
Screen Size 320x240 640x480 1280x1024 1600x1200
Figure 4-12 Reduction Rate of Primitive Lists fooDM3
% QUAKE4 Reduction Rate of Primitive Lists
100
Correct/CPT/EWT/CXH OLET B IDT
00 Entry 2 O Entry_4 M Entry_8
Entry_16 OEntry_32 O Entry_64
0 - Entry 128 O Entry_256
70
60 [
50
40
30
20
10
O L L
Screen Size 320x240 640x480 1280x1024 1600x1200
Figure 4-13 Reduction Rate of Primitive Lists fOdAKE4

48

4.3.3Time complexity

The time complexity of our methods and LET are smowFig. 4-14. IDT divides the
BBox by adding middle points on each edge of pnmajtso it needs three additions and shifts

before next iterative.

Although the approximation method has additionavester and differential table, it has
fewest computations in false-overlap tiles anddbweect rate is not worse than current design.
In the exact methods, they all have the same dorage, 100%. However, the CPT has the

highest computing time.

If we just require the correct without considerimagydware cost, CPT and EWT are good
choices for the benchmark with small primitive. AGXR is good for larger primitive. Since
the operation for each row tile in CXR only needsaadition. Comparing to exact methods,

our approximate can reduce primitive lists withadtling too much hardware cost.

Table 4-4 Time complexity of our methods and relatek

Linear Edge Cross Product Edge Walk Tesf Count X Expand Boundaryf
Function Test (LET)| Test (CPT) (EWT) Ration (CXR) | and Look up table
Pre-processing | e l+lv - 1.Compute the| 1.Expand
ZH‘XB Xl *Ye =v:d initial of Boundary
I _ _ x_ration 2.Look up
2 e =l +[¥e = va) 2.For converter table
I _ _ reciprocal of 3.Look up
2 =% *lya = e slope different table
Operation in For tile: Cross product- Compute which| x_ration = Accumulate
each row tile E .. (X Yes) tile is on the X_ration +
E... (Xs» Vo) e — edge of 1/slope*(row_i
EL ()):CCS ycs) SExST primitive ndes-1)
Lea S1 JCS
Operation for | Sub:6 Mul:3 Sub :3 Look up table
each subright | Add:3 Divi:3 Add :2
triangle Divi :2
Operation for | Sub:3 Mul :2 Sub :3 Add : 1 Add:1
each row tile Mul:2 Sub :1 Add :2
Operator most medium medium medium least
Close rate 50~70% 100% 100% 100% 50~75%

P.S. Eus(Xy)=(x=X)IdY - (y-Y)[dX.

49

Chapter 5 Conclusion and Future Work

5.1 Conclusion

In this thesis, we propose exact and approximati@thods to eliminate false-overlap
tiles. In the exact methods, CPT, EWT, and CXRpalhem may eliminate all false-overlap
tiles in a BBox. However, they need a lot of conapioins and hardware cost than our
approximate method. With the pre-computed diffaegribble, the approximate method can
eliminate most of the false-overlap tiles in a BBaihout complex computation. And our
approximate method can eliminate 70% false-ovetilag without complex computing. In

DOOM3 and QUAKEA4, the correct rate is up to 75% parmg to BBOX, LET and IDT.

Our exact methods, CTP, EWT and CXR, can prodwdtyrevork primitive lists which
are really rendering in rasterizer. And CTP and Edv@ suitable for benchmark with small
primitives, like DOOM3. CXR is good for benchmarkthwlarge primitives, like QUAKE4.
However, they all needs more hardware cost thanapproximation method. Although,
approximation method cannot provide 100% corretg¢ @i primitive lists, it can look up

differential table to get false-overlap tiles with@omplex computations.

51

52 Futurework

In our observation, there are patterns of falselapeiles in rows. The patterns also can
be employed to pixels in tile with a repaired tatoleassist the differential table. Then we can
eliminate false-overlap tiles without aligning tipeimitive vertex to tile vertex, and can

eliminate all false-overlap tiles in the BBox.

")
1 > N-bitforatile
0 to eliminate
1
02

: 1

— / 2 > Ignore 4-bit
4 pixels
0
-7

Figure 5-1 Use pixel pattern to eliminate falsertaetiles

52

References

[1] “PowerVR. 3D Graphical Processing (Tile BaseehRering - The Future of 3D),” white

paper, Imagination Tech. Corp., 2000.
[2] “ARM Mali 3D Graphics System Solutions,” whigaper, ARM Corp., Dec. 2006.

[3] (2009) PowerVR SGX SeriesbXT Graphics IP CoramBy, [Online]. Available:

http://www.imgtec.com/powervr/sgx_series5XT.asp

[4] “Imageon 3D 238x White Paper,” white paper, AJorp., 2005.

[5] E. Sorgard, B. Ljosland, J. Nystad, M. Blazewc Langtind, “Method of and apparatus

for processing graphics,” U.S. Patent 2007/01468¥8Jun. 28, 2007.

[6] E. Hsieh, V. Pentkovski, and T. Piazza, “ZR3B API Transparent Technology for Chunk

Rendering,” InProc. 34th ACM/IEEE Int. Symp. on Microarchitecture MICRO-34, 2001.

[7] M. Chen, G. Stoll, H. Igehy, K. Proudfoot, aRdHanrahan, “Simple Models of the Impact
of Overlap in Bucket Rendering,” IProc. ACM SGGRAPH/EUROGRAPHICS

Workshop on Graphics Hardware, pages 105-112, Lisbon, Portugal, 1998, ACM Press.

[8] M. Cox and N. Bhandari, “Architectural Implicahs of Hardware-Accelerated Bucket
Rendering on the PC,” IRroc. 1997 S GGRAPH/Eurographics Workshop on Graphics

Hardware, pages 25-34, ACM Press, 1997.

[9] I. Antochi, B.H.H. Juurlink, S. Vassiliadis, dnP. Liuha, “Efficient Tile-Aware
Bounding-Box Overlap Test for Tile-Based RenderingProceedings of the 2004
International Symposium on System-on-Chip 2004, Tampere, Finland, November 2004, pp.

165-168.

53

[10] J. Pineda. A Parallel Algorithm for Polygon d®erization. InProc. 15th Annual
Conference on Computer Graphics and Interactive Techniques, pages 17-20. ACM

Press, 1988.

[11] Stephen Junkins, Oliver A. Heim, Lance R. Aldlethods and apparatuses for a

polygon bining process for rendering”, U.S. Patd§t6,975,318 B2/US 7,167,171 B2

[12] Bresenham's line algorithm on Wiki:

http://en.wikipedia.org/wiki/Bresenham%?27s line calthm

[13] Victor Moya, Carlos Gonzalez, Jordi Roca, AfjusFernandez and Roger Espasa,
“ATTILA: A Cycle-Level Execution-Driven Simulatorol Modern GPU Architectures”,
IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS-2006), March 2006

[14] http://www.quaked4game.com/

54

Appendix A. Simulation Test Frame I mages

Figure A-1 frame30

Figure A-2 frame60

55

Figure A-3

Figure A-4

frame90

framel20

56

Figure A-5 framel50

57

