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在區塊著色繪圖處理器中移除錯誤重疊區塊之方法 

學生：謝秀青         指導教授：單智君 林正中教授 

 

國立交通大學多媒體工程研究所 碩士班 

 

摘摘摘摘  要要要要 

在嵌入式裝置的圖形處理中，在進到 tile-binning之前，overlap test是一個

很重要的步驟。Primitive 不管是任意大小、形狀、位置，都會有其 Bounding 

Box。然後 Bounding box的面積相對於 primitive而言，有 70%是多餘的。

在 tile-based rendering中，辨識出在 bounding box中沒有與 primitive的重疊

關係的 tile 且刪除它，可以節省 primitive list的儲存空間大小及後續不必要

的動作。現有的 false-overlap偵測演算法不是過程繁瑣且不夠直覺，不然就

是過於簡略，無法精確找出 false-overlap tile。在此，我們提出一些精確找

出 false-overlap tile的方法：Cross Product Test (CPT), Edge Walk (EW), Count 

X Ratio (CXR)和 Approximation Method。設計重點在於，以較少的硬體設計

出時間複雜度低的設計。為了提升效能，我們將 bounding box切分成三個

矩形，使得 primitive 的邊會是每個矩形的對角線且都有完整的數學公式來

處理此區域內的 false-overlap tile。如此一來，也可以平行處理被切分割的

primitive。 
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Abstract 
In graphics processing, overlap test is a crucial step before tile-binning in tile-based 

rendering for embedded devices. An object in a frame is decomposed into primitives, triangles 

of different sizes, for processing. In tile-binning process, these triangular primitives are 

typically represented by bounding boxes. However, the bounding box of a primitive usually 

covers a significant number of tiles which are not overlapped by the primitive. These tiles are 

called false-overlap tiles and approximate 70% of the tiles of a bounding box. Therefore, in 

tile-based rendering, identifying and eliminating those false-overlap tiles in a bounding box to 

reduce both storage pressures in tile-binning and data accesses of external memory for 

rasterizer become inviting. Existing false-overlap detection algorithms are either too tedious 

to reduce computation or too rough to gain high coverage. In this paper, we propose three 

methods to eliminate all false-overlap tiles: Cross-Product Test (CPT), Edge-Walk Test 

(EWT), Counting X-Ratio (CXR) and approximation method. We partition the bounding box 

of a primitive into three rectangles at most according to the number of primitive vertices 

which are also the vertices of the bounding box. The edges of the primitive then become the 

diagonals of these rectangles, and false overlap detection becomes a well-formulated math 

processing. The false-overlap detection of these three rectangles may be processed in parallel 

to improve performance further. The proposed methods are tested using Doom3 and Quake4 

for different screen sizes. 
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Chapter 1 Introduction 

3D graphic applications in embedded systems such as 3D games [1], personal navigation 

devices, graphical user interface, etc., become more and more popular in recent years. As we 

knew, the embedded systems are designed for some specific applications. Accordingly, the 

system designers usually want to reduce the costs by limiting system resources. However, the 

3D graphic applications in embedded systems become more complex than before. Therefore, 

the trade off between performance, power, and storage of 3D graphic processing in such 

systems becomes an important issue. 

A promising technique called tile-based rendering [2] has been widely use in those 

resource-limited graphic processing environments like ARM Mali [3], PowerVR SGX [4], 

and ATi Imageon 2380 [5]. Instead of rendering a full frame in one pass, this technique 

divides screen into many small blocks called tiles and rendering tile by tile. Typically, tile size 

is 32x32 pixels, such that we can use less than 10KBytes for frame buffer and Z-buffer to 

store runtime information in rendering a tile. Due to this low runtime storage requirement, we 

can employ a small on-chip memory to render a scene instead of a large off-chip frame buffer 

and Z-buffer. Localized runtime storage can greatly reduces the external memory traffic in 

GPU. However, this technique requires extra buffers called scene buffer to store all 

primitives’ data and each tile has a corresponding primitive list to record which primitives 

should be rendered in this tile. Then the primitives will be sent to renderer in per tile basis 

when rendering in progress. 

1.1 Research observation  

To render a tile of the scene, the tile-based rendering needs the information of the 

primitives which overlap with the tile. In other words, these primitives have to be stored into 
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the correspondent primitive list. The most commonly used method for a primitive to 

determine the tiles overlapped with it is Bounding Box (BBox) test [4,6-8] as shown in Fig 

1-1(a).However, there are false-overlap tiles which overlapped with BBox only but not the 

primitive in the BBox test as Fig 1-1(b) shown. The primitive list of a false-overlap tile will 

also keep the information of the primitive. After accessing the primitive list from the external 

memory to render the tile, rasterizer will find out that the primitive does not overlap with the 

tile, i.e., the information of the primitive in the primitive list is redundant. Therefore, if we 

can detect a false-overlap tile before inserting the primitive information into the 

corresponding primitive list, we could both reduce the storage size of the primitive list and the 

data accesses of external memory.  

Tile

31 32

51 52 53

71 72 73

33

11 12 13
Bounding Box (BBox)

Screen Size : 640x480 
Tile : 32x32

Bounding box overlap

No overlap 

False-overlap 

Tile

31 32

51 52 53

71 72 73

NO.103

33

11 12 13

Bounding Box (BBox)

# Tile numberNO.103

 

(a)                        (b) 

Figure1-1   The relation of the primitive, tiles and BBox in the BBox test. 

The benchmarks observed are Doom3 and Quake4 as shown in Fig1-2 and the average 

percentages of frame 30, 60, 90, 120, 150 of false-overlap primitive list in BBOX test for 

various screen sizes is growing up with the resolution as shown in Fig 1-3. The reason is that 

when the resolution is getting higher, the primitive and the bounding box become larger, and 

thus the false-overlap has more change to happen. Simulation results show that there are 30 ~ 

65% false-overlap primitive lists in Doom3 and 58 ~ 85% in Quake4 while applying 

traditional BBox test. 
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If we can find out the false-overlap tiles early and avoid inserting the primitive 

information to the primitive list, we can reduce the amount of the primitive list and data traffic 

of memory access for rasterizaer. 

 

Doom3Doom3Doom3Doom3Doom3Doom3Doom3Doom3 Quake4Quake4Quake4Quake4Quake4Quake4Quake4Quake4

 
Figure1-2   The benchmarks observed are Doom 3 and Quake 4. 
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Figure1-3   Average percentage of false-overlap tiles list in a BBox test 

 

1.2 Research motivation and objective  

As mentioned above, there is a significant amount of false-overlap tiles in bounding 

boxes. Hence, in tile-based rendering, identifying and eliminating those false-overlap tiles in a 

bounding box to reduce both storage pressure in tile-binning and data accesses of external 
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memory for rasterizer become inviting. Existing false-overlap detection algorithms are either 

to tedious to reduce computation or too rough to gain high coverage. Therefore, we propose 

four methods for false-overlap detection in tile-based rendering by the relationship of the 

primitive’s edges and the tiles.   

1.3 Organization of this thesis  

The main chapters of this thesis are organized as follows: In chapter 2, we would provide 

background knowledge for tile-based rendering, and related works would be introduced. In 

chapter 3, we would present four different approaches of our design and a plain evaluation of 

the four methods. Chapter 4 would demonstrate the simulation technique and results of this 

work; some environment assumptions would also be listed in this chapter. And finally, 

Chapter 5, a summary would be made and some future work would be proposed.  
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Chapter 2 Background and Related work 

In this chapter, we will give an overview of typical graphics pipeline. Then, we will 

introduce the tile-based rendering; explain the differences between these two different GPU 

implementations. Also, the inefficiency of memory usage in tile-based rendering will be 

discussed. At the end of this chapter, we will present the details of two previous work related 

to this problem. 

2.1 Typical graphics pipeline  
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T
riangle Setup
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Figure 2-1 Typical 3D graphics pipeline 

Typical 3D graphics pipeline can be showed as Figure 2-1. Each object in a 3D scene 

may be composed of many primitives, typically triangles. And each triangle consists of three 

vertices. The graphics pipeline will perform coordinate transformation on each vertex from 

object space to 3D scene space, and finally into screen space by vertex shader. And then, the 

triangle setup will assemble vertices into primitives. In rasterization stage, the primitive will 

be rasterized into many fragments according to its screen coordinates. These fragments will 

be tested by Early-Z or Hierarchical-Z test to filter out invisible fragments as soon as possible 

to reduce the workload in pixel shader and Z-test. These fragments that passed Early-Z or 
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Hierarchical-Z test will be sent to pixel shader to perform color shading and texture filtering. 

After fragment shading process in pixel shader, the final Z-test will perform on each shaded 

fragment to see if it should be displayed on the screen or not and then send to frame buffer 

and update corresponding value in Z-buffer according to the test result. 

In this process, both Z-test and frame buffer are external memories which means that 

access these two buffers will cause extra latencies. As the 3D scenes become complex, there 

are more than ten times of visible fragments that need to access these two buffers since 

primitives are not process by any specific order and cause lot of external memory traffic. 

2.2 Tile-based rendering 

In this section, we will introduce the basis of tile-based rendering and its corresponding 

data structures. And finally discuss some observations and problems. 

2.2.1 Tile-based rendering pipeline 
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Figure 2-2 Tile-based rendering pipeline 

 

As for the tile-based rendering GPU, instead of rendering a full frame at a time, this 

technique render a small region of frame, called a tile which is typically 32x32 pixels, one by 
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one. According to this characteristic, the temporary storage such as the Z-buffer and the frame 

buffer can be easily built in a chip, and thus significantly reduce the external memory traffic. 

Figure 2-2 shows the diagram of the tile-based rendering pipeline. The process before 

triangle setup is exactly the same as that of the typical graphics pipeline. After triangle setup, 

the data of the transformed primitives will be stored in an extra storage called scene buffer. 

Also, each tile on screen has a corresponding external storage called primitive list which 

records the primitives rendered in this tile. After storing all primitives of a frame into the 

scene buffer, the tile binning process will be performed. As Figure 2-3 shows, the tile binning 

process will begin with the bounding box test which is formed by the primitive’s maximum X 

and Y and minimum X and Y values of its transformed vertices’ coordinates. This bounding 

box will be used to check which tiles are covered by this bounding box. If a tile is covered by 

the bounding box, then the scene buffer address of this primitive will be recorded into the 

primitive list of the tile. After all primitives in this frame are sorted into tiles, then the 

rendering process will begin in tile base. The disadvantage of this method is that the pixel 

process must start after all primitives in current frame have been sorted into tiles. Fortunately, 

this latency may be hidden by doubling scene buffer and primitive lists to process multiple 

frames simultaneously. 

Primitive Lists

Primitive List 11: .../01/...

Primitive List 12: .../01/...

Primitive List 55: .../01/...

Primitive List 56: .../01/...

Scene buffer

Triangle Data No.1

Triangle Data No.2

Triangle Data No.5000

Entry Number

00000000

00004999

00000001

11 12

55 56

Bounding Box

 

Figure 2-3 Tile binning process 

 



 

 8

2.2.2 Data structures for Primitive lists 

 

Figure 2-4 Linked-list implementations of primitive lists 

 

Figure 2-4 shows the implementation of primitive lists. Each tile has a corresponding 

entry in the memory region. And each entry consists of two fields, one for the scene buffer 

address of a primitive and the other for the next record address. This implementation can 

ensure that no internal fragmentation in each list, but storage redundancy is very serious since 

it records every data with a corresponding next address. If a NULL is found in the next 

address filed, for example, 0x00C1004 in Figure 2-4, it means that the record is the end of the 

current primitive list. 

Another way to implement the primitive list structure is using fixed-size storage in which 

every tile has a corresponding entry in memory with a fixed number of fields to record scene 

buffer addresses. Although this method is very efficiency in list retrieving, the internal 

fragmentation problem is very serious in it. 

2.3 Primitive list Problem 

Tile binning inserts the information of primitives into the primitive list of a tile to record 

which primitives overlap with the tile. Binning usually uses bounding box (BBox) test is 
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usually used in tile binning process to decide which tiles overlap with the primitive. In Fig 2-5, 

the purple dotted rectangle is the BBox of the primitive No.103. The information of primitive 

No.103 is inserted into the primitive lists of the tiles which overlap with the BBox. However, 

there are false-overlap tiles in BBox test. False-overlap tiles are those which overlap with the 

BBox only but not the primitive, as the green tiles in Figure 2-5. According to the traditional 

BBox test, tile binning also inserts the information of the primitive into the primitive lists of 

the false-overlap tiles. In this way, it also increases the data traffic for accessing external 

memory of rasterizer.  

Screen Size : 640x480 
Tile : 32x32

Bounding box 
overlap
No overlap 

False-overlap 

Tile

31 32

51 52 53

71 72 73

NO.103

33

11 12 13

Bounding Box (BBox)

Tile  12 : … / 103 / …

Tile  31 : … / 103 / …

Tile  32 : … / 103 / …

Tile  33 : … / 103 / …

Tile Buffers (Primitive List)

Tile  11 : … / 103 / …

Tile  13 : … / 103 / …

Tile  51 : … / 103 / …

Tile  52 : … / 103 / …

Tile  53 : … / 103 / …

Tile  12 : … / 103 / …

Tile  31 : … / 103 / …

Tile  32 : … / 103 / …

Tile  33 : … / 103 / …

Tile Buffers (Primitive List)

Tile  11 : … / 103 / …

Tile  13 : … / 103 / …

Tile  51 : … / 103 / …

Tile  52 : … / 103 / …

Tile  53 : … / 103 / …

redundant

redundant

redundant

redundant

 

Figure 2-5 Relationship of Tile and Primitive list 

2.4 Related works 

2.4.1 Linear Edge Function Test (LET) 

Antochi et al. proposed Linear Edge Test (LET) [9] to detect false-overlap tiles in 

2004. LET employs edge function which is used to detect the relationship of a point and a line 

to filter out the false-overlap tiles [10]. 

Consider a 2D vector defined by two points A (X, Y) and B (X+dX, Y+dY) and a line 

LAB that passes through the two points as shown in Fig 2-6. The edge function for a certain 
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point (x, y) is defined in the following: 

.)()(),( dXYydYXxyxE ABL ⋅−−⋅−=                                   (2-1) 

The edge function can be also written using an incremental form as follows: 

.),(),( dXydYxyxEyyxxE ABAB LL ⋅−⋅+=++ δδδδ                           (2-2) 

A

B

(X, Y)

(X+dX, Y+dY)

“Right” side 
+

“Left” side 
−

A

B

(X, Y)

(X+dX, Y+dY)

“Right” side 
+

“Left” side 
−

 

Figure 2-6 Edge function for a point and a line 

 

The edge function can be used to determine the position of a point (x, y) relative to the 

line LAB as follows: 

If              then the point is to the right of LAB 

If              then the point is on LAB                                               (2-3) 

If              then the point is to the left of LAB 

LET can be use to determine if a counter-clockwise oriented triangle T, defined by 

three vertices A(xa, ya), B(xb, yb), C(xc, yc), intersects a square S defined by a center point 

CS(xcs,ycs) and having width of l. The determination equation are decided as follow: 

 

Figure 2-7 Triangle to tile test using linear function 
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However, LET cannot eliminate all false-overlap tiles in the BBox and involves with a 

lot of floating multiplications and subtractions.  

2.4.2 Iterative Division Test (IDT) 

The method proposed by Intel [11] iteratively divides a primitive into several   

smaller triangles and makes the BBoxes of those triangles closer to the primitive. If the width 

of the BBox of the primitive is larger than a threshold, the primitive will be divided into 

smaller triangles by the middle points on the three vertices as shown in Fig 2-8. 

Original Bounding Box Original Bounding Box Original Bounding Box  

(a)               (b)               (c) 

Original Bounding Box Original Bounding Box  

(d)               (e) 

Figure 2-8 Example for Iterative Division Test 
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In Fig 2-8 (a), assume that the width of the BBox of the primitive is larger than the 

threshold, and then the primitive is divided into smaller triangles by the middle points of the 

three vertices as Fig 2-8 (b) shown. If the width of the BBox of these triangles is still larger 

than the threshold as shown in Fig 2-8 (c), these triangles are further divided into smaller 

triangle as Fig 2-8 (d) shown until the width of the BBox of the smaller triangle is smaller 

than threshold. The algorithm is described in Fig 2-9 [11].  

 

Figure 2-9 Algorithm of Iterative Division Test 

Although the operation in the iterative division test is addition and the hardware cost is 

not high, it is necessary to process iteratively to get more precise result when the primitive is 

large. And the number of the sub BBoxes which increase processing time groups up with 

power of three. If the number of iterate is not suitable, there will be a lot of false-overlap tiles.   

{ 
  Compute new Reference Coordinate Point (RCP (current)) 
  if absolute value of (RCP (current) –RCP (previous))> threshold 
  { 
    Create a new Subdivision Record 
    /* Do subdivision */ 
    Construct the axis aligned bounding box for the polygon 
    Mark all tiles contained within the bounding box  

If either of the {x, y} dimensions of the bounding box are greater than a specified threshold, 
subdivide the polygon into four new polygon 
  Compute the midpoints along each of the three line segments of the polygon 
  Connect the three midpoints to form three new exterior polygons and one new interior polygon 
  Generate new axis aligned bounding boxes for the exterior polygons 
  Unmark any tiles from the original bounding box that are not contained in any of three new 

bounding boxes 
  For each bounding box go to the dimension checking step above 
Store the bin assignment in the subdivision record 

} 
else 
{ 
  Resubmit polygon to the bins stored in subdivision record 
} 

} 



 

 13

Chapter 3 Design 

 In this chapter, our false-overlap detection methods are proposed. The objective of exact 

false-overlap detections is to eliminate all false-overlap tiles for different hardware resources 

and requirement. We also propose approximate method to remove false-overlap tiles roughly 

and quickly. This chapter is organized as follows: in section 3.1, exact false-overlap detections 

are introduced; in section 3.2 our approximate false-overlap detection is proposed. 

3.1 Exact false-overlap detections  

The processing flow of exact false-overlap detection is shown in Fig 3-1. After building 

BBox for a primitive, the BBox will be divided into rectangles. And then false-overlap 

elimination removes all false-overlap tiles in each rectangle. Finally, primitive listing inserts 

the information of the primitive into the primitive lists of the remaining tiles.    

Primitive

BBox building

BBox division

False-overlap 
elimination

Tile listing

Primitive

BBox building

BBox division

False-overlap 
elimination

Tile listing
 

Figure 3-1 Processing flow of exact method 
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3.1.1 BBox Division 

To eliminate false-overlap tiles precisely, we partition the BBox of a primitive into 

rectangles whose diagonal is one of the edge of the primitive. Moreover, the diagonal divides 

the rectangle into two right triangle regions. As shown in Fig.3-2, primitive ABC has BBox 

AEFG which is partitioned into rectangles ADCG, IBFC, and AEBH. The edge AC of 

primitive ABC is the diagonal of the rectangle ADCG and divides the rectangle ADCG into 

two right triangle regions ACD and ACG, where ACG is the false-overlap region. Our 

algorithms are proposed to eliminate the false-overlap tiles in the false-overlap regions ACG, 

ABE, and BCF in parallel. The other regions ACD, ABH, BCI are fully overlapped by the 

primitive. In Fig.3-2, the shadow tiles are the false-overlap tiles to be eliminated. 

A

B
I

CG F

ED

H

 
Figure 3-2 Partition of primitive ABC 

After BBox division, each primitive edge becomes the diagonal of a rectangle, and the 

diagonal divides the rectangle into two triangular regions, false-overlap region and preserved 

region, distinguishing by the third vertex of the primitive as shown in Fig. 3-3. With 

false-overlap and preserved regions, our exact methods can eliminate the false-overlap tiles in 

false-overlap region.  

 The diagonal contains two vertices of the primitive, the one which y coordinate is 
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smaller is called A and the other is called point C. The third vertex of the primitive is named 

point B. The one of other two vertex of the divided BBox which y coordinate is the same as 

point A is called point D, and the other one is called point E as the Fig. 3-4(a) shown. The 

algorithm for distinguishing false-overlap region and preserved region is shown in Fig. 3-4(a). 

If the values of x and y of directed segment AC  are larger than zero, and the cross product 

of AC and AB  is larger than zero, the triangle region ACE in the Fig. 3-4(a) is false-overlap 

region. If values of x and y of directed segment AC  are larger than zero, and cross of 

AB and AC  is smaller than zero, the triangle region ADC in the Fig. 3-4(a) is false-overlap 

region. If the value of x of directed segment AC  is smaller than zero, y of directed segment 

AC  large than zero and cross of AB and AC  larger than zero, the triangle region ADE in 

the Fig. 3-4(a) is false-overlap region. If the value of x of directed segment AC  is smaller 

than zero, y of directed segment AC  large than zero and cross of AB and AC  smaller 

than zero, the triangle region DEC in the Fig. 3-4(a) is false-overlap region. 

A 

B

C

D

E

Preserved region

False-overlap region

 

Figure 3-3    Edge of primitive divides the rectangle into two triangular regions 

We design a filter unit which is the hardware to implement our false-overlap detection 

algorithm to distinguish the false-overlap tiles and eliminate them. We use the relation of tile 

and diagonal of the rectangle to develop three algorithms to remove the false-overlap tiles: 
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Cross Product Test (CPT), Edge Walk Test (EWT) and Counting X Ratio (CXR). The number 

of rectangles partitioned from a BBox of a primitive depends on the number of concurrents 

between the vertices of the primitive and that of the bounding box. In other word, the number 

of concurrent of primitive vertices and BBox vertices decide the number of filter units to 

eliminate the false-overlap tiles in parallel. The algorithm for determining the number of filter 

units required is shown in Fig.3-5.   

if                and 
if

ACE is False-overlap region

else
ADC is False-overlap region

else if and
if

ADE is False-overlap region

else
DEC is False-overlap region

0>
AC

x 0>
AC

y

0>× ACAB

0<
AB

x 0>
AB

y

0>× ACAB

if                and 
if

ACE is False-overlap region

else
ADC is False-overlap region

else if and
if

ADE is False-overlap region

else
DEC is False-overlap region

0>
AC

x 0>
AC

y

0>× ACAB

0<
AB

x 0>
AB

y

0>× ACAB

A

B

C

0<× ACAB

D

E

A

B

C

0<× ACAB

D

E

 

(a)                                     (b)                     

Figure 3-4 Illustration and algorithm for distinguishing false-overlap region and preserved 

region  

 

 
Figure 3-5 Algorithm for determining the number of filter units required 

if Concurrent [BBOX, Primitive] = 1 
→Need three Filter Units   

else if Concurrent [BBOX, Primitive] = 2  
→if the third vertex of the primitive is in the BBOX 

 Need three Filter Units 
else 

         Need two Filter Units  
else if Concurrent [BBOX, Primitive] = 3 

→Need a Filter Units 
else 

→Need no Filter Units 
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Fig. 3-6 is the flow chart for determining the number of filter units required. When the 

triangle setup output the triangle information to the tile binning unit, the tile binning unit 

makes bounding box for the primitive and counts many vertex of the primitive and the BBox 

are concurrent. According to the area of bounding box, tile binning can decide whether the 

false-overlap tiles should be eliminated or not. If the BBox has to be filet out the false-overlap 

tiles in the false-overlap region, the concurrence will decide the number of rectangles 

partitioned from a BBox of a primitive to be processed. After eliminating all false-overlap 

tiles from a BBox, tile binning inserts the information of the primitive into the primitive lists 

of tile. The Min, Mid and Max are vertices of primitive ordered by y coordinate from small to 

large.   

 
Figure 3-6 Flow chart for determining the number of filter units required 
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3.1.2 False-overlap Elimination by Exact False-Overlap Tile Detection Algorithms 

In Fig. 3-7, 3-9, 3-12, we name one of the vertices on the diagonal in rectangle whose Y 

coordinate is the same as the right angle of the preserved region is called point Start (vertex A 

in these figures) and another vertex on the diagonal as point End (vertex C in these figures). 

The right angle of preserved region is called point Rp (vertex D in these figures), and right 

angle of false-overlap region is called point Rf (vertex E in these figures).  

Algorithm for Cross Product Test (CPT)  

CPT exams that a vertex of a tile which relative position to the tile is the same as point 

Rp to preserved region to decide the tile is false-overlap or not. If the tile is not false-overlap 

tile in the row, then CPT exam next tile.   

For example, in Fig. 3-7, the relative position of point Rp to the preserved region ADC is 

lower right. We take the lower-right vertex of each tile in the false-overlap region for cross 

product test. Using the cross product to determine how line segments SE  (point Start to 

point End) and ST  (point Start to point Tile vertex) turn at point Start. We check whether the 

directed segment SE is clockwise or counterclockwise relative to the directed segment SR  

(from point Start to point Right angle) andST . If SRSE ×  and STSE ×  have the same sign 

number, the primitive list of the tile can be inserted the information of the primitive. 

Otherwise, SRSE × has different sign number to STSE × , the tile is a false-overlap tile. The 

algorithm is shown in Fig.3-8. And main advantage of algorithm CPT is that it needs integer 

multiplication and integer subtraction. Each cross product needs tow multiplications and one 

subtraction. And the hardware design is show in Fig.3-9. 
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(Start)

(End)

A

C

(Rp)D

Tile1

1ST

SE

SR

X

E (Rf)

Tile2
V

2ST

(Start)

(End)

A

C

(Rp)D

Tile1

1ST

SE

SR

X

E (Rf)

Tile2
V

Tile2
V

2ST

 
Figure 3-7 Cross Product Test (CPT) for detecting all possible false-overlap tiles. 

0<× SRSE and 01 >× STSE  indicate that Tile1 false-overlaps with the 

primitive; whereas 0<× SRSE and 02 <× STSE  indicate that Tile2 overlaps 
with the primitive. 

 

 

 

Figure 3-8 CPT Algorithm 

 

for row_next_Start to row_End  

   for column_Start to column_End 

    if ( 0>× SRSE and 0<× STSE ) or ( 0<× SRSE and 0>× STSE )  
     the tile is false overlap tile for primitive 

   else if  ( 0<× SRSE and 0<× STSE ) or ( 0>× SRSE and 0>× STSE ) 
     the tile overlap with primitive 

   else  

     change to next row  



 

 20

MUL MUL

SUB

SE_ySE_x ST_y ST_x

comparator

SE_SR SE_ST
Is SE_SR 

empty or not?

Output 
 

Figure 3-9 CPT hardware design 

 

Algorithm for Edge Walk Test (EWT) 

In the algorithm Edge Walk Test, for each row, we eliminate false-overlap tiles from the 

column of point Start to the hypotenuse of preserved region. Here, we employ the optimal 

Bresenham’s line algorithm [7] shown in Fig.3-10, to get x coordinate corresponding to the 

specific y coordinate on the hypotenuse of preserved region. The optimal Bresenham’s line 

algorithm only uses integer addition, subtraction, and shift. It reduces hardware cost to get a 

value on linear edge without slope. 
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 function optimal_ Bresenham’s_line (x0, x1, y0, y1) 
     boolean steep := abs(y1 ﹣y0) > abs(x1 ﹣x0) 
     if steep then 
         swap(x0, y0) 
         swap(x1, y1) 
     if x0 > x1 then 
         swap(x0, x1) 
         swap(y0, y1) 
     int deltax := x1 ﹣x0 
     int deltay := abs(y1 ﹣y0) 
     int error := deltax / 2 
     int ystep 
     int y := y0 
     if y0 < y1 then ystep := 1 else ystep := ﹣1 
     for x from x0 to x1 
         if steep then plot(y,x) else plot(x,y) 
         error := error ﹣deltay 
         if error < 0 then 
             y := y + ystep 
             error := error + deltax 

 
Figure 3-10 Optimal Bresenham’s line algorithm 

 

If the y coordinate of point Start is smaller than that of point End, we let the specific y be 

the ceiling of y coordinate of point Start. Otherwise, specific y is the floor of y coordinate of 

point Start. We get the x coordinate corresponding to the specific y on the hypotenuse of 

preserved region, as AC  in Fig. 3-11, and then we can know the tile on the diagonal of 

rectangle in that row. The false-overlap tiles in each row are from the tile where column is the 

same as point Start to the tile on the diagonal of rectangle in that row. The algorithm is shown 

in Fig. 3-12. And the hardware design is show in Fig.3-13. 
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(Start)

(End)
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B
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X X

X X

X

X
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(Rp)(Start)

(End)
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X X

X X
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X
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E
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Figure 3-11 Example of EWT 
 
 

 
Figure 3-12 Edge Walk Test (EWT) algorithm 

if Start_y <End_y 
  y = ceil (Start_y); 
else  
  y = floor (Start_y); 
for row_next_Start to row_End  
  x = Bresenham’s line algorithm(y); 
  compute the edge_tile of (x, y)  
  for the column_same_Start to edge_tile 
     delete the false overlap tile 
  y += tile_height 

x 

y 
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FloorCeil
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SUBSUB
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1
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Count < y ?
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Control Unit 10 2 10 2 10 2 10 2

Intput 
Start_y

Intput 
End_y

Intput 
Start_x

Intput 
End_x

10 2

Output x  

Figure 3-13 EWT hardware design 

 

Algorithm for Counting X Ratio (CXR) 

In this algorithm, we accumulate the reciprocal of slope of hypotenuse of preserved 

region, as AC  in Fig. 3-14 to x ratio, for each row and the floor of ratio is the number of 

false-overlap tiles in that row. Here, initial x ratio is the ratio of the length on tile edge which 

is most close to point Start from point Start toward point End and is not covered by preserved 

region, as FG  in Fig 3-14, to tile width. Because there is no false-overlap tile in the row of 

point Start, we ignore computing the false-overlap tile in that row and start from the row next 

to row of point Start.  
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In Fig 3-14, the point F is the tile vertex which is most close to point Start from point 

Start toward point End and is not covered by preserved region, and the point G is an 

intersection point of the tile vertex which is most close to point Start from point Start toward 

point End and hypotenuse of preserved region. The initial x ratio is the ratio of FG  to tile 

width. The floor of x ratio is the number of false-overlap tiles. The algorithm is shown in Fig. 

3-15. And the hardware design is show in Fig.3-16. 
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Figure 3-14 Example of Counting X Ratio 

 

if Start_y <End_t 
  y = ceil (Start_y); 
else  
  y = floor (Start_y); 
x = Bresenham’s line algorithm(y); 
if Start_x<End_x  
  x_ratio = (x % tile_width) / tile_width 
else 
  x_ratio = [ tile_width- (x % tile_width)] / tile_width 
for row_next_Start to row_End  
  delete_tile_num = ciel (x_ratio) 
 for the column_same_Start to (column_same_Star+ delete_tile_num) 
     delete the false overlap tile 
  y += tile_height 
 
  x_ratio = reciprocal of slope_Start_End   

 
Figure 3-15 Algorithm of Counting X Ratio (CXR) 
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Figure 3-16 EWT hardware design 

 

3.2 False-overlap Detection by Approximate Method 

To avoid a lot of computations for eliminating false-overlap tiles, we try to use table 

lookup to reduce the computations. We observe that there are patterns for the numbers of 

false-overlap tiles in rows. If we could store the patterns of false-overlap tiles for difference in 

a table, we can eliminate the false-overlap tiles without complex computing.  
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Fig. 3-17 is the flow chart of approximate false-overlap detection. The difference of the 

flow chart to that of the exact methods is the vertex alignment and boundary expanding before 

BBox division. Vertex alignment aligns the vertices of a primitive to the tile vertices to the 

representative tile vertices, and then boundary expanding connects the representative tile 

vertices to form a new geometric figure whose area is larger than or equal to the primitive. 

BBox division divides the BBox of the primitive according to the expanding boundary and 

makes the expanded boundary be the diagonal of the sub BBox. After these approximations, 

we can eliminate false-overlap tiles in the false-overlap region by using the height and width 

of the sub BBox by table lookup.  

Primitive

BBox building

Vertex alignment

False-overlap 
elimination with 

table lookup

Tile listing

Boundary 
expanding

BBox division

Primitive

BBox building

Vertex alignment

False-overlap 
elimination with 

table lookup

Tile listing

Boundary 
expanding

BBox division

 

Figure 3-17 Flowchart of approximate false-overlap detection 

3.2.1 Vertexes Alignment  

For reducing the computations, we align the vertexes of a primitive to the tile vertex to 

representative tile vertices. According to the relation of vertices of a primitive and the number 

of tile vertices in the region of the extending edges (along the edge of primitive extend to 

outside of the primitive) of the primitive, we classify some cases of vertex alignment in 
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Fig.3-18. 
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Figure 3-18 Cases analysis of vertex alignment 

Case 1 is that the vertex of primitive is on the vertex of a tile, and the representative tile 

vertices are the vertices of primitive falls into. Class 2 is that when the vertices of primitive 

fall on the edge of tile , the representative tile vertices are the vertices on the edge of the tile. 

Case 3 is that there is no tile vertex in the region of extending edge at the vertex of the 

primitive. The representative tile vertices in case 3 are the tile vertices on the edge of tile 

which is crossed by the extending edge. In the case 4, there are vertices of tile in the reigon of 

extended edge at the vertex of primitive, and any one of these tile vertices can be 

representative tile vertices. 

3.2.2 Boundary Expanding and Sub BBoxes 

For each two vertices of the primitive, connect the representative tile vertices which 

are out of the edge at the same time. 
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Build a sub BBox for each expaned boundary of one of the edges of primitive, and let 

the expanded boundarys be the diagonals of the sub BBoxes as shown in the Fig.3-19. 

Expanded Boundary
Sub BBox

 

Figure 3-19  Expanded Boundary and Building Sub BBox 

 

3.2.3 Elimination by Table Lookup 

For the sub BBoxes, we can use the height and width of a sub BBox to look up a 

differential table through a converter shown in Fig. 3-20 to know the difference of the 

numbers of false-overlap tiles between two adjacent rows. An example is shown in Fig. 3-21. 
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Figure 3-20 Using the width (i) and height (j) of a sub BBox to look up the differential 

table 
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Figure 3-21 Example of eliminating false-overlap tiles with differential table 

Differential table  

The differential table is pre-computed offline. Each field of an entry of the table records 

the difference of the numbers of false-overlap tiles between two adjacent rows. In the 

differential table, the first field of an entry means the difference between the row 0 and row 1 

of a sub BBox, and so on. Here the row 0 is the first row in the sub BBox. 

To reduce the number of entries of the differential table, we use three skills described as 

follows and apply i for antecedent and j for back tern to explain ratio :  

(a) If i1:j1 = i2:j2, then these two ratios map to the same entry of the differential table.          

Ex: 1:2 and 3:6 map to the same entry of table, as Fig.3-22(a) shown. 

(b) If i1:j1 = j2:i2, these two ratios to the same entry of the differential table.          

Ex: 2:1 and 1:2 map to the same entry of table, as Fig.3-22(b) shown. 

(c) Adopt the approximation of the reciprocal of slope. Let the denominator d of the 

approximate ratio be a specific integer, such are 8, 16, 32, or 64, to approximate the 

original ratio. Then,
d

d 1~0 −
 (

8
7~0

,
16

15~0
,

32
31~0

 or 
64

63~0
) may represent all 
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slopes, and thus the number of entries of the approximated table may be reduced to d (8, 

16, 32, or 64). For example, 2:3, the ratio is 
3
2

. We can use 
8
5

 to represent it when the 

denominator is 8. Since 58
3
2 =




 × , as shown in Fig. 3-19(c). And Table 3-1 shows the 

errors and and table sizes in different number of differential table entries.                       

Equation 3-1 is the mathematic equation of the inputs and outputs of the converter. Here i 

and j may excahnge to preserve that j is larger than i.  

                                                                   (3-1) 

 

     

0

1

0

1

0 10 1

          

(a)                         (b)                      (c) 

Figure 3-22   Example of differential table reduction. (a) 1:2 and 3:6 have the same 

differential of false-overlap tile pattern. (b) 2:1 and 1:2 have the same 

differential of false-overlap tile pattern. (c) 2:3, the ratio is
3
2

. We can use 
8
5

  

to represent it when the denominator is 8. 

 









×= numberentry

jinput

iinput
outputindex _

_

_



 

 31

Table 3-1 Error of different table entry. Screen size is 1200 x 1600, and tile size is 32 x 32 

Number of Entry Max error Bits Table size (bits) 

8 0.12 8 56 

16 0.06 15 240 

32 0.03 31 992 

64 0.01 63 4032 

 Because that there is no false-overlap tile in the first row of a sub box, the first bit 

( Field[0] ) of the entry in a differential table is the number of false-overlap tiles in the second 

row of the sub BBox as Fig. 3-23 shown. We let the larger one of the height and width of the 

sub BBox be the specific entry numbe and adjust the samller one to be index which come 

from the outputindex of equation 3-1. The Field[0] can be represent as equation 3-2. The second 

bit ( Field[1] ) of the entry is the difference of fasle-overlap tiles between row 1 and row 2. 

And the number of false-overlap tiles in row 2 is the floor of double of 
numberentry

index

_
. Thus, 

Field[2] can be represent as equation 3-3. The number of the false-overlap tiles in row n is the 

floor of n times of 
numberentry

index

_
. Therefore, Field[n-1] is as equation 3-4 shown. 
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Figure 3-23 Difference of false-overlap tiles between adjacent rows 

 

 

Converter  

The inputs of the converter are the width and height of a sub BBox, and the output is the 

index of the differential table. To reduce the complexity of circuit of the converter, we let i be 

the width of the sub BBox and j be the height, and exchange i and j to make j is larger than i. 

When i and j are equal, we know that the difference of nubmer of false-overlap tiles in 

adjacent rows is one without table lookup. The circuit is as Fig.3-24.     
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Figure 3-24 Circuit in front of Converter 

Because the output of the converter is the index of the differential table, reducing the 

entries of the table also may simplify the complexity of the converter. The entry of the 

differential table records the difference of false-overlap tiles in adjacent rows for specific 

slope. And the differential table is pre-computed off-line. Table 3-2 is an example of the 

converter. The input i’and j’ in Table 3-2 are the inputs of converter as shown in Fig.3-21. We 

can use approximate ratio to approach i’/j’ and get the outputindex through the converter 

according to equation 3-1. 

 

False-overlap Tiles Elimination  

In presevered region, let the vertex on the hypotenuse with the smaller edge of the width 

and height be point Start, the other one be point End. If the width (i) of a sub BBox is smaller 

its than height (j), we eliminate false-overlap tiles from point Start to point End row by row as 

Fig. 3-25(a) shown. Otherwise, we eliminate false-overlap tiles from point Start to point End 

column by column as Fig 3-25(b) shown. By the width and height of a sub BBox, we may 

look up the differential table and get the differenec pattern of false-overlap tiles in rows.  
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Table 3-2 Inputs and output of converter 
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Figure 3-25 Direction for eliminating false-overlap tiles 

With the direction for eliminating false-overlap tiles and the difference pattern of 

false-overlap tiles in rows (columns), we can accumulate the bits of difference pattern to get 

the number of false-overlap tiles in each row (column) from the second row (column). For 
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example, there is a primitive (with black line) in Fig. 3-26, and its width is 8 and height is 10. 

Let the table size be 8. Through our convreter, we can use the entry which record the 

false-overlap tile with approximate difference of 6/8 to eliminate the false-overlap tiles. We 

make the first row in the primitve be row 0, and so on. The initial value of false-overlap_tile 

is zero for row 0 and accmulate the value of field in the entry to false-overlap_tile. The value 

of accmulated false-overlap_tile is the number of false-overlap tiles in each row. 
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Figure 3-26 Example of eliminating rows larger the differential pattern 
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Chapter 4 Evaluation Results and Discussion 

In this chapter, we first describe our evaluation environment and the characteristics of the 

input frame data (in section 4.1 and 4.2). Then, we show and analyze the simulation results of 

memory requirement and execution time during rendering of each method: Bounding Box test, 

LET, iterative division test of Intel, and our exact and approximate methods in section 4.3. In 

the last section, we briefly discuss and summarize our conclusion from the results.  

4.1 Evaluation environment 

Figure 4-1 shows the architecture of ATTILA simulator and in which stage we dump the 

coordinates of transformed primitives from triangle setup of the ATTILA GPU simulator for 

the input of our simulation. We implemented a behavioral simulator of our architecture in 

C++, and modified ATTILA simulator [13] to output coordinates information to a tracefile. 

The benchmarks chosen are DOOM3 and QUAKE4 [14], modern graphics applications, and 

resolutions are 320x240, 640x480, 1280x1024 and 1600x1200 in frame 30, 60, 90, 120, 150, 

180, 210, 240, 270, and 300. Fig. 4-2 and Fig.4-3 show one frame in DOOM3 and QUAKE4, 

respectively. The trace file outputted from ATTILA simulator contains the coordinates in 

frames. Our simulator reads the tracefile and evaluates storage size and correct rate of 

primitive lists. 
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Figure 4-1 simulation flow and ATTILA architecture [13] 

 

 
Figure 4-2 Frame 30 in DOOM3 
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Figure 4-3 Frame 30 in QUAKE4 

 

4.2 Test frame data 

In this section, we provide statistics of Doom3 and Quake4 in different screen sizes of 

frames, for frame30, 60, 90, 120, and 150, as shown in Table 4-1 and Table 4-2. In Table 4-1 

and Table 4-2, the second row indicates the average number of tiles covering in a primitive; 

the third row shows the maximum number of tiles covering in a primitive; the fourth row 

shows the total number of tiles in all BBoxes; the fifth row shows the number of actually 

overlapped tiles; the sixth row brings the percentage of tiles really be rendered; the seventh 

row shows the average height of primitives in number of tiles. The last row shows the average 

width of primitives in number of tiles. And Table 4-3 shows Average number of different 

operations per right triangle of each algorithm in various tests. 
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Table 4-1 Statistics of test frames on Doon3 

Screen size 320x640 640x480 1280 x 1024 1200x1600 

Actual Tile Coverage of Primitives (Avg) 2.87 6.34 19.00 25.39 

Maximum Tile Coverage of Primitives 70 300 1280 1850 

Total Number of Tiles in all BBoxes  24428 54047 161864 216362 

Number of Actually Overlapped Tiles 16265 30076 71860 91792 

Tile correct ratio 66.58% 55.65% 44.40% 42.43% 

Average Height of Primitives in number of tiles 1.8  2.7  4.8  5.4  

Average Width of Primitives in number of tiles 1.5  2.0  3.1  3.6  

Table 4-2 Statistics of test frames on Quake 4 

Screen size 320x640 640x480 1280 x 1024 1200x1600 

Actual Tile Coverage of Primitives (Avg) 7.45 24.91 94.81 135.64 

Maximum Tile Coverage of Primitives 80 300 1280 1850 

Total Number of Tiles in all BBoxes  381553 1276076 4857531 6949631 

Number of Actually Overlapped Tiles 125220 262100 659722 862638 

Tile correct ratio 32.82% 20.54% 13.58% 12.41% 

Average Height of Primitives in number of tiles 2.4  3.8  7.2  8.3  

Average Width of Primitives in number of tiles 2.4  4.1  7.3  8.9  

 

 

Table 4-3. Average number of different operations per right triangle of each algorithm in 

various tests. 

 Cross Product Test (CPT) Edge Walk Test(EWT) Count X Ratio (CXR) 
Divide-and-conquer 

and table lookup 

Benchmark Doom 3 Quake 4 Doom 3 Quake 4 Doom 3 Quake 4 Doom 3 Quake 4 

Operation MUL SUB MUL SUB ADD SUB ADD SUB Add SUB DIVI  Add SUB DIVI  ADD ADD 

320x240 6 3 6 3 4 6 4 6 4 3 1 5 3 1 1 1 

640x480 8 4 10 5 6 9 8 12 5 3 1 6 3 1 1 1 

1280x1024 12 6 16 8 10 15 14 21 7 3 1 10 3 1 1 1 

1600x1200 12 6 18 9 10 15 16 24 8 3 1 11 3 1 1 1 
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4.3 Simulation results 

In this section, we show the simulation results of time complexity, primitive list, and 

primitive list correct ratio. We compare the results of our design with the method of BBox test 

[4, 6-8], Linear Edge Function Test (LET) [11] and Iterative Division Test (IDT) [13].  

  

4.3.1 Correct Rates of Different Entry Size of Differential Table for our Approximation 

Method 

Fig. 4-4 and Fig.4-5 show the relationship of the entry sizes of differential table with 

correct rate for DOOM3 and QUAKE4, respectively. More differential table entries bring 

more false-overlap tile detection. As Fig. 4-4 shown, in DOOM3, screen size of 320x240 

needs 4 entries for differential table, 640x480 needs 8 entries, and there are 16 entries enough 

are for 1280x1024 and 1600x1200. However, in QUAKE4 as Fig. 4-5 shown, 8 entries are 

enough for 320x240, 16 for 640x480, and 640x480 and 1200x1600 needs 32 entries for 

differential table. As the screen size becomes larger, the primitives become larger and need 

more table entry to remove false-overlap tiles. Since more table entry may remove 

false-overlap tile more precisely. Furthermore, the primitives in QUAKE4 are larger than in 

DOOM3, and thus the approximate method needs more table entry to get higher correct rate at 

the same screen size. 
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Figure 4-4 Correct rate with entry size for DOOM3 
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Figure 4-5 Correct rate with entry size for QUAKE4 
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4.3.2 Storage Size of Primitive Lists  

In order to evaluate our methods, we compare our storage size with the method of BBox 

test [4, 6-8], Linear Edge Function Test (LET) [11] and Iterative Division Test (IDT) [13]. We 

list the amount of primitive lists of each method both in Figure 4-6 and Figure 4-7 for 

DOOM3 and QUAKE4. The first and orange bar is the primitive lists really rendered, and it 

also the results of our exact methods CPT, EW, and CXR. The second bar is the amount of 

primitive list with BBox test. The third bar is the primitive list with LET, and the fourth to 

sixth bars are IDT with one to three times of iterative. Since the results of them are close to 

our approximate method, we list the results of IDT with one to three times of iterative to 

compare and discuss. Furthermore, the seventh to fourteen bars are the primitive lists in for 

own approximate method with 2, 4, 8, 16, 32, 64, 128 and 256 entries of differential table. 

Although the primitive lists in IDT are the fewest among BBox, LET, IDT and 

approximate method with different entries in Fig. 4-6 with one iterative, they needs more 

iterative when the primitives are larger as Fig. 4-7 shown. In Fig. 4-7, IDT needs three 

iterative to get the results which are close to approximate method. In the other words, a 

primitive can be divided up to ten iterative and get 33 smaller primitives to process.  

Fig. 4-8 shows different iterative and storage size of the primitive list with IDT, and 

Fig.4-9 shows different iterative and correct rate of primitive with IDT. Here, we use correct 

rate to represent the percentage of the primitive lists which are really rendered. From Fig.4-8 

and Fig.4-9, we can see that the IDT can get less storage size of primitive lists and higher 

correct rate with more iterative, but it also costs more time with power of three. Although the 

LET produces the same storage size of the primitive lists comparing to our approximate 

method in Fig. 4-6 and Fig. 4-7, it needs floating subtraction, multiplication and division. 
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Figure 4-6 Amount of primitive lists for Doom3 

 

QUAKE4 Record of Primitive Lists
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Figure 4-7 Amount of primitive lists for Quake4 
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Number of Records in Primitive Lists with IDT
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Figure 4-8 Number of Records in Primitive Lists with Iterative Division Test 
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Figure 4-9 Correct Rate of Iterative Division Test 

Differential table with more entries can get fewer primitive lists and higher correct rate. 
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The difference of correct rate between 8 and 64 entries of differential table is up to 5% as 

Fig.4-10 and Fig. 4-11 shown. 

Correct Rate = 
nderalrecords

TestMethodrecords

ReRe_#
_#

                                      (4-1) 
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Figure 4-10 Correct rate of primitive lists for DOOM3 
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QUAKE4 Correct Rate of Primitive Lists
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Figure 4-11 Correct rate of primitive lists for QUAKE4 

For larger size and primitive, our approximation method may eliminate more 

false-overlap tiles as Fig. 4-12 and Fig.4-13 shown. 

Reduction Rate = 
oxrecords_BB#

stMethodrecords_Te# -ox records_BB#
                       (4-2) 
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DOOM3 Reduction Rate of Primitive Lists
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Figure 4-12 Reduction Rate of Primitive Lists for DOOM3 
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Figure 4-13 Reduction Rate of Primitive Lists for QUAKE4 
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4.3.3Time complexity 

The time complexity of our methods and LET are shown in Fig. 4-14. IDT divides the 

BBox by adding middle points on each edge of primitive, so it needs three additions and shifts 

before next iterative. 

Although the approximation method has additional converter and differential table, it has 

fewest computations in false-overlap tiles and the correct rate is not worse than current design. 

In the exact methods, they all have the same correct rate, 100%. However, the CPT has the 

highest computing time.  

If we just require the correct without considering hardware cost, CPT and EWT are good 

choices for the benchmark with small primitive. And CXR is good for larger primitive. Since 

the operation for each row tile in CXR only needs an addition. Comparing to exact methods, 

our approximate can reduce primitive lists without adding too much hardware cost.  

Table 4-4 Time complexity of our methods and relate work 

.)()(),( dXYydYXxyxE ABL ⋅−−⋅−=

50~75%100%100%100%50~70%Close rate

leastmediummediummediummostOperator 

Add:1Add : 1Sub :3    
Add :2

Mul :2 
Sub :1  

Sub:3    
Mul:2

Operation for 
each row tile

Look up tableSub :3          
Add :2         
Divi :2

Sub:6    Mul:3
Add:3    Divi:3

Operation for 
each sub right 
triangle

Accumulate x_ration =
x_ration + 
1/slope*(row_i
ndes-1)

Compute which 
tile is on the 
edge of 
primitive

Cross product-For tile:Operation in 
each row tile

1.Expand 
Boundary
2.Look up 
converter table
3.Look up 
different table

1.Compute the 
initial of 
x_ration
2.For 
reciprocal of 
slope

Pre-processing

Expand Boundary 
and Look up table

Count X 
Ration (CXR)

Edge Walk Test 
(EWT) 

Cross Product 
Test (CPT)

Linear Edge 
Function Test (LET) 

50~75%100%100%100%50~70%Close rate

leastmediummediummediummostOperator 

Add:1Add : 1Sub :3    
Add :2

Mul :2 
Sub :1  

Sub:3    
Mul:2

Operation for 
each row tile

Look up tableSub :3          
Add :2         
Divi :2

Sub:6    Mul:3
Add:3    Divi:3

Operation for 
each sub right 
triangle

Accumulate x_ration =
x_ration + 
1/slope*(row_i
ndes-1)

Compute which 
tile is on the 
edge of 
primitive

Cross product-For tile:Operation in 
each row tile

1.Expand 
Boundary
2.Look up 
converter table
3.Look up 
different table

1.Compute the 
initial of 
x_ration
2.For 
reciprocal of 
slope

Pre-processing

Expand Boundary 
and Look up table

Count X 
Ration (CXR)

Edge Walk Test 
(EWT) 

Cross Product 
Test (CPT)

Linear Edge 
Function Test (LET) 

P.S. 

STSE ×

)(
2

)(
2

)(
2

CACA

BCBC

ABAB

yyxx
l

yyxx
l

yyxx
l

−+−⋅

−+−⋅

−+−⋅

),(

),(

),(

CSCSL

CSCSL

CSCSL

yxE

yxE

yxE

CA

BC

AB

 



 

 50

 



 

 51

Chapter 5 Conclusion and Future Work 

5.1 Conclusion 

In this thesis, we propose exact and approximation methods to eliminate false-overlap 

tiles. In the exact methods, CPT, EWT, and CXR, all of them may eliminate all false-overlap 

tiles in a BBox. However, they need a lot of computations and hardware cost than our 

approximate method. With the pre-computed differential table, the approximate method can 

eliminate most of the false-overlap tiles in a BBox without complex computation. And our 

approximate method can eliminate 70% false-overlap tiles without complex computing. In 

DOOM3 and QUAKE4, the correct rate is up to 75% comparing to BBOX, LET and IDT.  

Our exact methods, CTP, EWT and CXR, can product really work primitive lists which 

are really rendering in rasterizer. And CTP and EWT are suitable for benchmark with small 

primitives, like DOOM3. CXR is good for benchmark with large primitives, like QUAKE4. 

However, they all needs more hardware cost than our approximation method. Although, 

approximation method cannot provide 100% correct rate of primitive lists, it can look up 

differential table to get false-overlap tiles without complex computations.  
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5.2 Future work 

In our observation, there are patterns of false-overlap tiles in rows. The patterns also can 

be employed to pixels in tile with a repaired table to assist the differential table. Then we can 

eliminate false-overlap tiles without aligning the primitive vertex to tile vertex, and can 

eliminate all false-overlap tiles in the BBox. 
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Figure 5-1 Use pixel pattern to eliminate false-overlap tiles 
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Appendix A. Simulation Test Frame Images 

 
Figure A-1 frame30 

\ 

Figure A-2 frame60 
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Figure A-3 frame90 

 

 

Figure A-4 frame120 
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Figure A-5 frame150 

 

 

 




