

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

在區塊著色繪圖處理器中移除錯誤重疊區塊之方法

False-overlap tiles elimination for tile-based rendering: exact

and approximate methods

研 究 生：謝 秀 青

指導教授：單智君 林正中教授

中 華 民 國 九 十 八 年 六 月

在區塊著色繪圖處理器中移除錯誤重疊區塊之方法

False-overlap tiles elimination: exact and approximate

methods

研 究 生：謝秀青 Student：Hsiu-ching Hsieh

指導教授：單智君 林正中 Advisor：Jyh-Jiun Shann

Cheng-Chung Lin

國 立 交 通 大 學
多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis
Submitted to Institute of Multi-media

College of Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of

Master
in

Computer Science

June 2009

Hsinchu, Taiwan, Republic of China

中華民國 九十八 年 六 月

 i

在區塊著色繪圖處理器中移除錯誤重疊區塊之方法

學生：謝秀青 指導教授：單智君 林正中教授

國立交通大學多媒體工程研究所 碩士班

摘摘摘摘 要要要要

在嵌入式裝置的圖形處理中，在進到 tile-binning之前，overlap test是一個

很重要的步驟。Primitive 不管是任意大小、形狀、位置，都會有其 Bounding

Box。然後 Bounding box的面積相對於 primitive而言，有 70%是多餘的。

在 tile-based rendering中，辨識出在 bounding box中沒有與 primitive的重疊

關係的 tile 且刪除它，可以節省 primitive list的儲存空間大小及後續不必要

的動作。現有的 false-overlap偵測演算法不是過程繁瑣且不夠直覺，不然就

是過於簡略，無法精確找出 false-overlap tile。在此，我們提出一些精確找

出 false-overlap tile的方法：Cross Product Test (CPT), Edge Walk (EW), Count

X Ratio (CXR)和 Approximation Method。設計重點在於，以較少的硬體設計

出時間複雜度低的設計。為了提升效能，我們將 bounding box切分成三個

矩形，使得 primitive 的邊會是每個矩形的對角線且都有完整的數學公式來

處理此區域內的 false-overlap tile。如此一來，也可以平行處理被切分割的

primitive。

 ii

False-overlap tiles elimination: exact and approximate

methods

Student：Hsiu-ching Hsieh Advisor：Jyh-Jiun Shann
 Cheng-Chung Li

Institute of Multi-media

National Chiao-Tung University

Abstract
In graphics processing, overlap test is a crucial step before tile-binning in tile-based

rendering for embedded devices. An object in a frame is decomposed into primitives, triangles

of different sizes, for processing. In tile-binning process, these triangular primitives are

typically represented by bounding boxes. However, the bounding box of a primitive usually

covers a significant number of tiles which are not overlapped by the primitive. These tiles are

called false-overlap tiles and approximate 70% of the tiles of a bounding box. Therefore, in

tile-based rendering, identifying and eliminating those false-overlap tiles in a bounding box to

reduce both storage pressures in tile-binning and data accesses of external memory for

rasterizer become inviting. Existing false-overlap detection algorithms are either too tedious

to reduce computation or too rough to gain high coverage. In this paper, we propose three

methods to eliminate all false-overlap tiles: Cross-Product Test (CPT), Edge-Walk Test

(EWT), Counting X-Ratio (CXR) and approximation method. We partition the bounding box

of a primitive into three rectangles at most according to the number of primitive vertices

which are also the vertices of the bounding box. The edges of the primitive then become the

diagonals of these rectangles, and false overlap detection becomes a well-formulated math

processing. The false-overlap detection of these three rectangles may be processed in parallel

to improve performance further. The proposed methods are tested using Doom3 and Quake4

for different screen sizes.

 v

Table of Contents

摘摘摘摘 要要要要 ...i

Abstract ii

Table of Contents ..v

List of Figures ...vii

List of Tables ..ix

Chapter 1 Introduction ..1

1.1 Research observation ...1

1.2 Research motivation and objective ...3

1.3 Organization of this thesis ...4

Chapter 2 Background and Related work..5

2.1 Typical graphics pipeline ...5

2.2 Tile-based rendering...6

2.2.1 Tile-based rendering pipeline ..6

2.2.2 Data structures for Primitive lists ...8

2.3 Primitive list Problem ..8

2.4 Related works..9

2.4.1 Linear Edge Function Test (LET) ...9

2.4.2 Iterative Division Test (IDT).. 11

Chapter 3 Design...13

3.1 Exact false-overlap detections ...13

3.1.1 BBox Division..14

3.1.2 False-overlap Elimination by Exact False-Overlap Tile Detection

Algorithms ...18

3.2 False-overlap Detection by Approximate Method ...25

3.2.1 Vertexes Alignment ...26

3.2.2 Boundary Expanding and Sub BBoxes...27

3.2.3 Elimination by Table Lookup ..28

Chapter 4 Evaluation Results and Discussion..37

4.1 Evaluation environment...37

4.2 Test frame data ...39

4.3 Simulation results ...41

4.3.1 Correct Rates of Different Entry Size of Differential Table for our

Approximation Method..41

4.3.2 Storage Size of Primitive Lists...43

4.3.3 Time complexity..49

 vi

Chapter 5 Conclusion and Future Work ..51

5.1 Conclusion ...51

5.2 Future work...52

References ...53

Appendix A. Simulation Test Frame Images..55

 vii

List of Figures

Figure1-1 The relation of the primitive, tiles and BBox in the BBox test2

Figure1-2 The benchmarks observed are Doom 3 and Quake 4. ..3

Figure1-3 Average percentage of false-overlap tiles list in a BBox test3

Figure 2-1 Typical 3D graphics pipeline..5

Figure 2-2 Tile-based rendering pipeline ...6

Figure 2-3 Tile binning process..7

Figure 2-4 Linked-list implementations of primitive lists ...8

Figure 2-5 Relationship of Tile and Primitive list..9

Figure 2-6 Edge function for a point and a line ...10

Figure 2-7 Triangle to tile test using linear function..10

Figure 2-8 Example for Iterative Division Test.. 11

Figure 2-9 Algorithm of Iterative Division Test...12

Figure 3-1 Processing flow of exact method..13

Figure 3-2 Partition of primitive ABC ..14

Figure 3-3 Edge of primitive divides the rectangle into two triangular regions..................15

Figure 3-4 Illustration and algorithm for distinguishing false-overlap region and preserved

region 16

Figure 3-5 Algorithm for determining the number of filter units required16

Figure 3-6 Flow chart for determining the number of filter units required..........................17

Figure 3-7 Cross Product Test (CPT) for detecting all possible false-overlap tiles.19

Figure 3-8 CPT Algorithm ...19

Figure 3-9 CPT hardware design..20

Figure 3-10 Optimal Bresenham’s line algorithm..21

Figure 3-12 Edge Walk Test (EWT) algorithm ..22

Figure 3-13 EWT hardware design ..23

Figure 3-14 Example of Counting X Ratio ..24

Figure 3-15 Algorithm of Counting X Ratio (CXR)..24

Figure 3-16 EWT hardware design ..25

Figure 3-17 Flowchart of approximate false-overlap detection ...26

Figure 3-18 Cases analysis of vertex alignment...27

Figure 3-20 Using the width and height of a sub BBox to look up the differential table28

Figure 3-21 Example of eliminating false-overlap tiles with differential table29

Figure 3-22 Example of differential table reduction. ..30

Figure 3-23 Difference of false-overlap tiles between adjacent rows....................................32

Figure 3-24 Circuit in front of Converter...33

Figure 3-25 Direction for eliminating false-overlap tiles...34

 viii

Figure 3-26 Example of eliminating rows larger the differential pattern...............................35

Figure 4-1 simulation flow and ATTILA architecture [13] ..38

Figure 4-2 Frame 30 in DOOM3..38

Figure 4-3 Frame 30 in QUAKE4..39

Figure 4-4 Correct rate with entry size for DOOM3..42

Figure 4-5 Correct rate with entry size for QUAKE4..42

Figure 4-6 Amount of primitive lists for Doom3...44

Figure 4-7 Amount of primitive lists for Quake4 ..44

Figure 4-8 Number of Records in Primitive Lists with Iterative Division Test45

Figure 4-9 Correct Rate of Iterative Division Test...45

Figure 4-10 Correct rate of primitive lists for DOOM3...46

Figure 4-11 Correct rate of primitive lists for QUAKE4 ...47

Figure 4-12 Reduction Rate of Primitive Lists for DOOM3 ...48

Figure 4-13 Reduction Rate of Primitive Lists for QUAKE4..48

Figure 5-1 Use pixel pattern to eliminate false-overlap tiles ...52

 ix

List of Tables
Table 3-1 Error of different table entry..31

Table 3-2 Inputs and output of converter...34

Table 4-1 Statistics of test frames on Doon3...40

Table 4-2 Statistics of test frames on Quake 4 ..40

Table 4-3. Average number of different operations per right triangle of each

algorithm in various tests..40

Table 4-3 Time complexity of our methods and relate work.................................49

 i

 1

Chapter 1 Introduction

3D graphic applications in embedded systems such as 3D games [1], personal navigation

devices, graphical user interface, etc., become more and more popular in recent years. As we

knew, the embedded systems are designed for some specific applications. Accordingly, the

system designers usually want to reduce the costs by limiting system resources. However, the

3D graphic applications in embedded systems become more complex than before. Therefore,

the trade off between performance, power, and storage of 3D graphic processing in such

systems becomes an important issue.

A promising technique called tile-based rendering [2] has been widely use in those

resource-limited graphic processing environments like ARM Mali [3], PowerVR SGX [4],

and ATi Imageon 2380 [5]. Instead of rendering a full frame in one pass, this technique

divides screen into many small blocks called tiles and rendering tile by tile. Typically, tile size

is 32x32 pixels, such that we can use less than 10KBytes for frame buffer and Z-buffer to

store runtime information in rendering a tile. Due to this low runtime storage requirement, we

can employ a small on-chip memory to render a scene instead of a large off-chip frame buffer

and Z-buffer. Localized runtime storage can greatly reduces the external memory traffic in

GPU. However, this technique requires extra buffers called scene buffer to store all

primitives’ data and each tile has a corresponding primitive list to record which primitives

should be rendered in this tile. Then the primitives will be sent to renderer in per tile basis

when rendering in progress.

1.1 Research observation

To render a tile of the scene, the tile-based rendering needs the information of the

primitives which overlap with the tile. In other words, these primitives have to be stored into

 2

the correspondent primitive list. The most commonly used method for a primitive to

determine the tiles overlapped with it is Bounding Box (BBox) test [4,6-8] as shown in Fig

1-1(a).However, there are false-overlap tiles which overlapped with BBox only but not the

primitive in the BBox test as Fig 1-1(b) shown. The primitive list of a false-overlap tile will

also keep the information of the primitive. After accessing the primitive list from the external

memory to render the tile, rasterizer will find out that the primitive does not overlap with the

tile, i.e., the information of the primitive in the primitive list is redundant. Therefore, if we

can detect a false-overlap tile before inserting the primitive information into the

corresponding primitive list, we could both reduce the storage size of the primitive list and the

data accesses of external memory.

Tile

31 32

51 52 53

71 72 73

33

11 12 13
Bounding Box (BBox)

Screen Size : 640x480
Tile : 32x32

Bounding box overlap

No overlap

False-overlap

Tile

31 32

51 52 53

71 72 73

NO.103

33

11 12 13

Bounding Box (BBox)

Tile numberNO.103

(a) (b)

Figure1-1 The relation of the primitive, tiles and BBox in the BBox test.

The benchmarks observed are Doom3 and Quake4 as shown in Fig1-2 and the average

percentages of frame 30, 60, 90, 120, 150 of false-overlap primitive list in BBOX test for

various screen sizes is growing up with the resolution as shown in Fig 1-3. The reason is that

when the resolution is getting higher, the primitive and the bounding box become larger, and

thus the false-overlap has more change to happen. Simulation results show that there are 30 ~

65% false-overlap primitive lists in Doom3 and 58 ~ 85% in Quake4 while applying

traditional BBox test.

 3

If we can find out the false-overlap tiles early and avoid inserting the primitive

information to the primitive list, we can reduce the amount of the primitive list and data traffic

of memory access for rasterizaer.

Doom3Doom3Doom3Doom3Doom3Doom3Doom3Doom3 Quake4Quake4Quake4Quake4Quake4Quake4Quake4Quake4

Figure1-2 The benchmarks observed are Doom 3 and Quake 4.

Average Percentage of False Overlap in Frame 30, 60, 90, 120, 150

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

240x320 640x480 1280x1024 1600x1200
Screen Size

Percentage Doom3

Quake4

Figure1-3 Average percentage of false-overlap tiles list in a BBox test

1.2 Research motivation and objective

As mentioned above, there is a significant amount of false-overlap tiles in bounding

boxes. Hence, in tile-based rendering, identifying and eliminating those false-overlap tiles in a

bounding box to reduce both storage pressure in tile-binning and data accesses of external

 4

memory for rasterizer become inviting. Existing false-overlap detection algorithms are either

to tedious to reduce computation or too rough to gain high coverage. Therefore, we propose

four methods for false-overlap detection in tile-based rendering by the relationship of the

primitive’s edges and the tiles.

1.3 Organization of this thesis

The main chapters of this thesis are organized as follows: In chapter 2, we would provide

background knowledge for tile-based rendering, and related works would be introduced. In

chapter 3, we would present four different approaches of our design and a plain evaluation of

the four methods. Chapter 4 would demonstrate the simulation technique and results of this

work; some environment assumptions would also be listed in this chapter. And finally,

Chapter 5, a summary would be made and some future work would be proposed.

 5

Chapter 2 Background and Related work

In this chapter, we will give an overview of typical graphics pipeline. Then, we will

introduce the tile-based rendering; explain the differences between these two different GPU

implementations. Also, the inefficiency of memory usage in tile-based rendering will be

discussed. At the end of this chapter, we will present the details of two previous work related

to this problem.

2.1 Typical graphics pipeline

On-Chip Memory

Off-Chip Memory

V
ertex

Depth
Processing

P.S.
prog.

fragment

Vertex
Shader

Pixel
Shader

T
riangle Setup

R
asterizaton

E
arly-Z

/H
Z

 test

Z-Buffer

Frame
buffer

V.S
prog.

On-Chip Memory

Off-Chip Memory

V
ertex

Depth
Processing

P.S.
prog.

fragmentfragment

Vertex
Shader

Pixel
Shader

T
riangle Setup

R
asterizaton

E
arly-Z

/H
Z

 test

Z-Buffer

Frame
buffer

V.S
prog.

Figure 2-1 Typical 3D graphics pipeline

Typical 3D graphics pipeline can be showed as Figure 2-1. Each object in a 3D scene

may be composed of many primitives, typically triangles. And each triangle consists of three

vertices. The graphics pipeline will perform coordinate transformation on each vertex from

object space to 3D scene space, and finally into screen space by vertex shader. And then, the

triangle setup will assemble vertices into primitives. In rasterization stage, the primitive will

be rasterized into many fragments according to its screen coordinates. These fragments will

be tested by Early-Z or Hierarchical-Z test to filter out invisible fragments as soon as possible

to reduce the workload in pixel shader and Z-test. These fragments that passed Early-Z or

 6

Hierarchical-Z test will be sent to pixel shader to perform color shading and texture filtering.

After fragment shading process in pixel shader, the final Z-test will perform on each shaded

fragment to see if it should be displayed on the screen or not and then send to frame buffer

and update corresponding value in Z-buffer according to the test result.

In this process, both Z-test and frame buffer are external memories which means that

access these two buffers will cause extra latencies. As the 3D scenes become complex, there

are more than ten times of visible fragments that need to access these two buffers since

primitives are not process by any specific order and cause lot of external memory traffic.

2.2 Tile-based rendering

In this section, we will introduce the basis of tile-based rendering and its corresponding

data structures. And finally discuss some observations and problems.

2.2.1 Tile-based rendering pipeline

Vertex
Shader

Pixel
Shader

V
ertex

Tile

Frame

buffer

Tile Z-Buffer

V.S prog. T
riangle Setup

R
asterizaton

E
arly-Z

/H
Z

 test

P.S. prog.

Depth
Processing

Frame buffer

Scene buffer
Current frame

Next frame

Tile list Buffer

Tile list 00

Tile list N

Tile list 01

On-Chip Memory

Off-Chip Memoryfragment

T
ile B

inning

Vertex
Shader

Pixel
Shader

V
ertex

Tile

Frame

buffer

Tile Z-Buffer

V.S prog. T
riangle Setup

R
asterizaton

E
arly-Z

/H
Z

 test

P.S. prog.

Depth
Processing

Frame buffer

Scene buffer
Current frame

Next frame

Scene buffer
Current frame

Next frame

Tile list Buffer

Tile list 00

Tile list N

Tile list 01

Tile list Buffer

Tile list 00

Tile list N

Tile list 01

On-Chip Memory

Off-Chip Memoryfragmentfragment

T
ile B

inning

Figure 2-2 Tile-based rendering pipeline

As for the tile-based rendering GPU, instead of rendering a full frame at a time, this

technique render a small region of frame, called a tile which is typically 32x32 pixels, one by

 7

one. According to this characteristic, the temporary storage such as the Z-buffer and the frame

buffer can be easily built in a chip, and thus significantly reduce the external memory traffic.

Figure 2-2 shows the diagram of the tile-based rendering pipeline. The process before

triangle setup is exactly the same as that of the typical graphics pipeline. After triangle setup,

the data of the transformed primitives will be stored in an extra storage called scene buffer.

Also, each tile on screen has a corresponding external storage called primitive list which

records the primitives rendered in this tile. After storing all primitives of a frame into the

scene buffer, the tile binning process will be performed. As Figure 2-3 shows, the tile binning

process will begin with the bounding box test which is formed by the primitive’s maximum X

and Y and minimum X and Y values of its transformed vertices’ coordinates. This bounding

box will be used to check which tiles are covered by this bounding box. If a tile is covered by

the bounding box, then the scene buffer address of this primitive will be recorded into the

primitive list of the tile. After all primitives in this frame are sorted into tiles, then the

rendering process will begin in tile base. The disadvantage of this method is that the pixel

process must start after all primitives in current frame have been sorted into tiles. Fortunately,

this latency may be hidden by doubling scene buffer and primitive lists to process multiple

frames simultaneously.

Primitive Lists

Primitive List 11: .../01/...

Primitive List 12: .../01/...

Primitive List 55: .../01/...

Primitive List 56: .../01/...

Scene buffer

Triangle Data No.1

Triangle Data No.2

Triangle Data No.5000

Entry Number

00000000

00004999

00000001

11 12

55 56

Bounding Box

Figure 2-3 Tile binning process

 8

2.2.2 Data structures for Primitive lists

Figure 2-4 Linked-list implementations of primitive lists

Figure 2-4 shows the implementation of primitive lists. Each tile has a corresponding

entry in the memory region. And each entry consists of two fields, one for the scene buffer

address of a primitive and the other for the next record address. This implementation can

ensure that no internal fragmentation in each list, but storage redundancy is very serious since

it records every data with a corresponding next address. If a NULL is found in the next

address filed, for example, 0x00C1004 in Figure 2-4, it means that the record is the end of the

current primitive list.

Another way to implement the primitive list structure is using fixed-size storage in which

every tile has a corresponding entry in memory with a fixed number of fields to record scene

buffer addresses. Although this method is very efficiency in list retrieving, the internal

fragmentation problem is very serious in it.

2.3 Primitive list Problem

Tile binning inserts the information of primitives into the primitive list of a tile to record

which primitives overlap with the tile. Binning usually uses bounding box (BBox) test is

 9

usually used in tile binning process to decide which tiles overlap with the primitive. In Fig 2-5,

the purple dotted rectangle is the BBox of the primitive No.103. The information of primitive

No.103 is inserted into the primitive lists of the tiles which overlap with the BBox. However,

there are false-overlap tiles in BBox test. False-overlap tiles are those which overlap with the

BBox only but not the primitive, as the green tiles in Figure 2-5. According to the traditional

BBox test, tile binning also inserts the information of the primitive into the primitive lists of

the false-overlap tiles. In this way, it also increases the data traffic for accessing external

memory of rasterizer.

Screen Size : 640x480
Tile : 32x32

Bounding box
overlap
No overlap

False-overlap

Tile

31 32

51 52 53

71 72 73

NO.103

33

11 12 13

Bounding Box (BBox)

Tile 12 : … / 103 / …

Tile 31 : … / 103 / …

Tile 32 : … / 103 / …

Tile 33 : … / 103 / …

Tile Buffers (Primitive List)

Tile 11 : … / 103 / …

Tile 13 : … / 103 / …

Tile 51 : … / 103 / …

Tile 52 : … / 103 / …

Tile 53 : … / 103 / …

Tile 12 : … / 103 / …

Tile 31 : … / 103 / …

Tile 32 : … / 103 / …

Tile 33 : … / 103 / …

Tile Buffers (Primitive List)

Tile 11 : … / 103 / …

Tile 13 : … / 103 / …

Tile 51 : … / 103 / …

Tile 52 : … / 103 / …

Tile 53 : … / 103 / …

redundant

redundant

redundant

redundant

Figure 2-5 Relationship of Tile and Primitive list

2.4 Related works

2.4.1 Linear Edge Function Test (LET)

Antochi et al. proposed Linear Edge Test (LET) [9] to detect false-overlap tiles in

2004. LET employs edge function which is used to detect the relationship of a point and a line

to filter out the false-overlap tiles [10].

Consider a 2D vector defined by two points A (X, Y) and B (X+dX, Y+dY) and a line

LAB that passes through the two points as shown in Fig 2-6. The edge function for a certain

 10

point (x, y) is defined in the following:

.)()(),(dXYydYXxyxE ABL ⋅−−⋅−= (2-1)

The edge function can be also written using an incremental form as follows:

.),(),(dXydYxyxEyyxxE ABAB LL ⋅−⋅+=++ δδδδ (2-2)

A

B

(X, Y)

(X+dX, Y+dY)

“Right” side
+

“Left” side
−

A

B

(X, Y)

(X+dX, Y+dY)

“Right” side
+

“Left” side
−

Figure 2-6 Edge function for a point and a line

The edge function can be used to determine the position of a point (x, y) relative to the

line LAB as follows:

If then the point is to the right of LAB

If then the point is on LAB (2-3)

If then the point is to the left of LAB

LET can be use to determine if a counter-clockwise oriented triangle T, defined by

three vertices A(xa, ya), B(xb, yb), C(xc, yc), intersects a square S defined by a center point

CS(xcs,ycs) and having width of l. The determination equation are decided as follow:

Figure 2-7 Triangle to tile test using linear function

0),(

0),(

0),(

<
=
>

yxE

yxE

yxE

AB

AB

AB

L

L

L

 11

)(
2

),(

)(
2

),(

)(
2

),(

CACACSCSL

BCBCCSCSL

ABABCSCSL

yyxx
l

yxE

yyxx
l

yxE

yyxx
l

yxE

CA

BC

AB

−+−⋅≤

−+−⋅≤

−+−⋅≤

 (2-4)

However, LET cannot eliminate all false-overlap tiles in the BBox and involves with a

lot of floating multiplications and subtractions.

2.4.2 Iterative Division Test (IDT)

The method proposed by Intel [11] iteratively divides a primitive into several

smaller triangles and makes the BBoxes of those triangles closer to the primitive. If the width

of the BBox of the primitive is larger than a threshold, the primitive will be divided into

smaller triangles by the middle points on the three vertices as shown in Fig 2-8.

Original Bounding Box Original Bounding Box Original Bounding Box

(a) (b) (c)

Original Bounding Box Original Bounding Box

(d) (e)

Figure 2-8 Example for Iterative Division Test

 12

In Fig 2-8 (a), assume that the width of the BBox of the primitive is larger than the

threshold, and then the primitive is divided into smaller triangles by the middle points of the

three vertices as Fig 2-8 (b) shown. If the width of the BBox of these triangles is still larger

than the threshold as shown in Fig 2-8 (c), these triangles are further divided into smaller

triangle as Fig 2-8 (d) shown until the width of the BBox of the smaller triangle is smaller

than threshold. The algorithm is described in Fig 2-9 [11].

Figure 2-9 Algorithm of Iterative Division Test

Although the operation in the iterative division test is addition and the hardware cost is

not high, it is necessary to process iteratively to get more precise result when the primitive is

large. And the number of the sub BBoxes which increase processing time groups up with

power of three. If the number of iterate is not suitable, there will be a lot of false-overlap tiles.

{
 Compute new Reference Coordinate Point (RCP (current))
 if absolute value of (RCP (current) –RCP (previous))> threshold
 {
 Create a new Subdivision Record
 /* Do subdivision */
 Construct the axis aligned bounding box for the polygon
 Mark all tiles contained within the bounding box

If either of the {x, y} dimensions of the bounding box are greater than a specified threshold,
subdivide the polygon into four new polygon
 Compute the midpoints along each of the three line segments of the polygon
 Connect the three midpoints to form three new exterior polygons and one new interior polygon
 Generate new axis aligned bounding boxes for the exterior polygons
 Unmark any tiles from the original bounding box that are not contained in any of three new

bounding boxes
 For each bounding box go to the dimension checking step above
Store the bin assignment in the subdivision record

}
else
{
 Resubmit polygon to the bins stored in subdivision record
}

}

 13

Chapter 3 Design

 In this chapter, our false-overlap detection methods are proposed. The objective of exact

false-overlap detections is to eliminate all false-overlap tiles for different hardware resources

and requirement. We also propose approximate method to remove false-overlap tiles roughly

and quickly. This chapter is organized as follows: in section 3.1, exact false-overlap detections

are introduced; in section 3.2 our approximate false-overlap detection is proposed.

3.1 Exact false-overlap detections

The processing flow of exact false-overlap detection is shown in Fig 3-1. After building

BBox for a primitive, the BBox will be divided into rectangles. And then false-overlap

elimination removes all false-overlap tiles in each rectangle. Finally, primitive listing inserts

the information of the primitive into the primitive lists of the remaining tiles.

Primitive

BBox building

BBox division

False-overlap
elimination

Tile listing

Primitive

BBox building

BBox division

False-overlap
elimination

Tile listing

Figure 3-1 Processing flow of exact method

 14

3.1.1 BBox Division

To eliminate false-overlap tiles precisely, we partition the BBox of a primitive into

rectangles whose diagonal is one of the edge of the primitive. Moreover, the diagonal divides

the rectangle into two right triangle regions. As shown in Fig.3-2, primitive ABC has BBox

AEFG which is partitioned into rectangles ADCG, IBFC, and AEBH. The edge AC of

primitive ABC is the diagonal of the rectangle ADCG and divides the rectangle ADCG into

two right triangle regions ACD and ACG, where ACG is the false-overlap region. Our

algorithms are proposed to eliminate the false-overlap tiles in the false-overlap regions ACG,

ABE, and BCF in parallel. The other regions ACD, ABH, BCI are fully overlapped by the

primitive. In Fig.3-2, the shadow tiles are the false-overlap tiles to be eliminated.

A

B
I

CG F

ED

H

Figure 3-2 Partition of primitive ABC

After BBox division, each primitive edge becomes the diagonal of a rectangle, and the

diagonal divides the rectangle into two triangular regions, false-overlap region and preserved

region, distinguishing by the third vertex of the primitive as shown in Fig. 3-3. With

false-overlap and preserved regions, our exact methods can eliminate the false-overlap tiles in

false-overlap region.

 The diagonal contains two vertices of the primitive, the one which y coordinate is

 15

smaller is called A and the other is called point C. The third vertex of the primitive is named

point B. The one of other two vertex of the divided BBox which y coordinate is the same as

point A is called point D, and the other one is called point E as the Fig. 3-4(a) shown. The

algorithm for distinguishing false-overlap region and preserved region is shown in Fig. 3-4(a).

If the values of x and y of directed segment AC are larger than zero, and the cross product

of AC and AB is larger than zero, the triangle region ACE in the Fig. 3-4(a) is false-overlap

region. If values of x and y of directed segment AC are larger than zero, and cross of

AB and AC is smaller than zero, the triangle region ADC in the Fig. 3-4(a) is false-overlap

region. If the value of x of directed segment AC is smaller than zero, y of directed segment

AC large than zero and cross of AB and AC larger than zero, the triangle region ADE in

the Fig. 3-4(a) is false-overlap region. If the value of x of directed segment AC is smaller

than zero, y of directed segment AC large than zero and cross of AB and AC smaller

than zero, the triangle region DEC in the Fig. 3-4(a) is false-overlap region.

A

B

C

D

E

Preserved region

False-overlap region

Figure 3-3 Edge of primitive divides the rectangle into two triangular regions

We design a filter unit which is the hardware to implement our false-overlap detection

algorithm to distinguish the false-overlap tiles and eliminate them. We use the relation of tile

and diagonal of the rectangle to develop three algorithms to remove the false-overlap tiles:

 16

Cross Product Test (CPT), Edge Walk Test (EWT) and Counting X Ratio (CXR). The number

of rectangles partitioned from a BBox of a primitive depends on the number of concurrents

between the vertices of the primitive and that of the bounding box. In other word, the number

of concurrent of primitive vertices and BBox vertices decide the number of filter units to

eliminate the false-overlap tiles in parallel. The algorithm for determining the number of filter

units required is shown in Fig.3-5.

if and
if

ACE is False-overlap region

else
ADC is False-overlap region

else if and
if

ADE is False-overlap region

else
DEC is False-overlap region

0>
AC

x 0>
AC

y

0>× ACAB

0<
AB

x 0>
AB

y

0>× ACAB

if and
if

ACE is False-overlap region

else
ADC is False-overlap region

else if and
if

ADE is False-overlap region

else
DEC is False-overlap region

0>
AC

x 0>
AC

y

0>× ACAB

0<
AB

x 0>
AB

y

0>× ACAB

A

B

C

0<× ACAB

D

E

A

B

C

0<× ACAB

D

E

(a) (b)

Figure 3-4 Illustration and algorithm for distinguishing false-overlap region and preserved

region

Figure 3-5 Algorithm for determining the number of filter units required

if Concurrent [BBOX, Primitive] = 1
→Need three Filter Units

else if Concurrent [BBOX, Primitive] = 2
→if the third vertex of the primitive is in the BBOX

 Need three Filter Units
else

 Need two Filter Units
else if Concurrent [BBOX, Primitive] = 3

→Need a Filter Units
else

→Need no Filter Units

 17

Fig. 3-6 is the flow chart for determining the number of filter units required. When the

triangle setup output the triangle information to the tile binning unit, the tile binning unit

makes bounding box for the primitive and counts many vertex of the primitive and the BBox

are concurrent. According to the area of bounding box, tile binning can decide whether the

false-overlap tiles should be eliminated or not. If the BBox has to be filet out the false-overlap

tiles in the false-overlap region, the concurrence will decide the number of rectangles

partitioned from a BBox of a primitive to be processed. After eliminating all false-overlap

tiles from a BBox, tile binning inserts the information of the primitive into the primitive lists

of tile. The Min, Mid and Max are vertices of primitive ordered by y coordinate from small to

large.

Figure 3-6 Flow chart for determining the number of filter units required

 18

3.1.2 False-overlap Elimination by Exact False-Overlap Tile Detection Algorithms

In Fig. 3-7, 3-9, 3-12, we name one of the vertices on the diagonal in rectangle whose Y

coordinate is the same as the right angle of the preserved region is called point Start (vertex A

in these figures) and another vertex on the diagonal as point End (vertex C in these figures).

The right angle of preserved region is called point Rp (vertex D in these figures), and right

angle of false-overlap region is called point Rf (vertex E in these figures).

Algorithm for Cross Product Test (CPT)

CPT exams that a vertex of a tile which relative position to the tile is the same as point

Rp to preserved region to decide the tile is false-overlap or not. If the tile is not false-overlap

tile in the row, then CPT exam next tile.

For example, in Fig. 3-7, the relative position of point Rp to the preserved region ADC is

lower right. We take the lower-right vertex of each tile in the false-overlap region for cross

product test. Using the cross product to determine how line segments SE (point Start to

point End) and ST (point Start to point Tile vertex) turn at point Start. We check whether the

directed segment SE is clockwise or counterclockwise relative to the directed segment SR

(from point Start to point Right angle) andST . If SRSE × and STSE × have the same sign

number, the primitive list of the tile can be inserted the information of the primitive.

Otherwise, SRSE × has different sign number to STSE × , the tile is a false-overlap tile. The

algorithm is shown in Fig.3-8. And main advantage of algorithm CPT is that it needs integer

multiplication and integer subtraction. Each cross product needs tow multiplications and one

subtraction. And the hardware design is show in Fig.3-9.

 19

(Start)

(End)

A

C

(Rp)D

Tile1

1ST

SE

SR

X

E (Rf)

Tile2
V

2ST

(Start)

(End)

A

C

(Rp)D

Tile1

1ST

SE

SR

X

E (Rf)

Tile2
V

Tile2
V

2ST

Figure 3-7 Cross Product Test (CPT) for detecting all possible false-overlap tiles.

0<× SRSE and 01 >× STSE indicate that Tile1 false-overlaps with the

primitive; whereas 0<× SRSE and 02 <× STSE indicate that Tile2 overlaps
with the primitive.

Figure 3-8 CPT Algorithm

for row_next_Start to row_End

 for column_Start to column_End

 if (0>× SRSE and 0<× STSE) or (0<× SRSE and 0>× STSE)
 the tile is false overlap tile for primitive

 else if (0<× SRSE and 0<× STSE) or (0>× SRSE and 0>× STSE)
 the tile overlap with primitive

 else

 change to next row

 20

MUL MUL

SUB

SE_ySE_x ST_y ST_x

comparator

SE_SR SE_ST
Is SE_SR

empty or not?

Output

Figure 3-9 CPT hardware design

Algorithm for Edge Walk Test (EWT)

In the algorithm Edge Walk Test, for each row, we eliminate false-overlap tiles from the

column of point Start to the hypotenuse of preserved region. Here, we employ the optimal

Bresenham’s line algorithm [7] shown in Fig.3-10, to get x coordinate corresponding to the

specific y coordinate on the hypotenuse of preserved region. The optimal Bresenham’s line

algorithm only uses integer addition, subtraction, and shift. It reduces hardware cost to get a

value on linear edge without slope.

 21

 function optimal_ Bresenham’s_line (x0, x1, y0, y1)
 boolean steep := abs(y1 ﹣y0) > abs(x1 ﹣x0)
 if steep then
 swap(x0, y0)
 swap(x1, y1)
 if x0 > x1 then
 swap(x0, x1)
 swap(y0, y1)
 int deltax := x1 ﹣x0
 int deltay := abs(y1 ﹣y0)
 int error := deltax / 2
 int ystep
 int y := y0
 if y0 < y1 then ystep := 1 else ystep := ﹣1
 for x from x0 to x1
 if steep then plot(y,x) else plot(x,y)
 error := error ﹣deltay
 if error < 0 then
 y := y + ystep
 error := error + deltax

Figure 3-10 Optimal Bresenham’s line algorithm

If the y coordinate of point Start is smaller than that of point End, we let the specific y be

the ceiling of y coordinate of point Start. Otherwise, specific y is the floor of y coordinate of

point Start. We get the x coordinate corresponding to the specific y on the hypotenuse of

preserved region, as AC in Fig. 3-11, and then we can know the tile on the diagonal of

rectangle in that row. The false-overlap tiles in each row are from the tile where column is the

same as point Start to the tile on the diagonal of rectangle in that row. The algorithm is shown

in Fig. 3-12. And the hardware design is show in Fig.3-13.

 22

(Start)

(End)

A

C

D

B

X X X

X X

X X

X

X

X

E
(Rf)

(Rp)(Start)

(End)

A

C

D

B

X X X

X X

X X

X

X

X

E
(Rf)

(Rp)

Figure 3-11 Example of EWT

Figure 3-12 Edge Walk Test (EWT) algorithm

if Start_y <End_y
 y = ceil (Start_y);
else
 y = floor (Start_y);
for row_next_Start to row_End
 x = Bresenham’s line algorithm(y);
 compute the edge_tile of (x, y)
 for the column_same_Start to edge_tile
 delete the false overlap tile
 y += tile_height

x

y

 23

FloorCeil

Start_y

SUB

SUBSUB

Start_y End_yStart_x End_x

ADD

abs shift1 -1

ADD

10

10

Swap Swap

Signal:abs(Ex1 - Sx0) >
abs(Ey1 - Sy0)

Swap Swap

Signal: Sy0 > Ey1

Start_y End_y

Start_x End_x

1
0

Count < y ?

error < 0 ?

Start_x Start_y End_x End_y

error

x

Control Unit 10 2 10 2 10 2 10 2

Intput
Start_y

Intput
End_y

Intput
Start_x

Intput
End_x

10 2

Output x

Figure 3-13 EWT hardware design

Algorithm for Counting X Ratio (CXR)

In this algorithm, we accumulate the reciprocal of slope of hypotenuse of preserved

region, as AC in Fig. 3-14 to x ratio, for each row and the floor of ratio is the number of

false-overlap tiles in that row. Here, initial x ratio is the ratio of the length on tile edge which

is most close to point Start from point Start toward point End and is not covered by preserved

region, as FG in Fig 3-14, to tile width. Because there is no false-overlap tile in the row of

point Start, we ignore computing the false-overlap tile in that row and start from the row next

to row of point Start.

 24

In Fig 3-14, the point F is the tile vertex which is most close to point Start from point

Start toward point End and is not covered by preserved region, and the point G is an

intersection point of the tile vertex which is most close to point Start from point Start toward

point End and hypotenuse of preserved region. The initial x ratio is the ratio of FG to tile

width. The floor of x ratio is the number of false-overlap tiles. The algorithm is shown in Fig.

3-15. And the hardware design is show in Fig.3-16.

(Start)

(End)      

     

     

     

     

     

    06.0_

10.14.06.0_

14.14.00.1_

18.14.04.1_

22.24.08.1_

26.24.02.2_

30.34.06.2_

==
==+=
==+=
==+=
==+=
==+=
==+=

ratiox

ratiox

ratiox

ratiox

ratiox

ratiox

ratiox

A

C

D

B

F G

X X X

X X

X X

X

X

X

E
(Rf)

(Rp)(Start)

(End)      

     

     

     

     

     

    06.0_

10.14.06.0_

14.14.00.1_

18.14.04.1_

22.24.08.1_

26.24.02.2_

30.34.06.2_

==
==+=
==+=
==+=
==+=
==+=
==+=

ratiox

ratiox

ratiox

ratiox

ratiox

ratiox

ratiox

A

C

D

B

F G

X X X

X X

X X

X

X

X

E
(Rf)

(Rp)

Figure 3-14 Example of Counting X Ratio

if Start_y <End_t
 y = ceil (Start_y);
else
 y = floor (Start_y);
x = Bresenham’s line algorithm(y);
if Start_x<End_x
 x_ratio = (x % tile_width) / tile_width
else
 x_ratio = [tile_width- (x % tile_width)] / tile_width
for row_next_Start to row_End
 delete_tile_num = ciel (x_ratio)
 for the column_same_Start to (column_same_Star+ delete_tile_num)
 delete the false overlap tile
 y += tile_height

 x_ratio = reciprocal of slope_Start_End

Figure 3-15 Algorithm of Counting X Ratio (CXR)

 25

FloorCeil

Start_y

SUB

SUBSUB

Start_y End_yStart_x End_x

ADD

abs shift1 -1

ADD
10

10

Swap Swap

Signal:abs(Ex1 - Sx0) >
abs(Ey1 - Sy0)

Swap Swap

Signal: Sy0 > Ey1

Start_y End_y

Start_x End_x

1
0

Count < y ?

error < 0 ?

Start_x Start_y End_x End_y

error

x

Control Unit 10 2 10 2 10 2 10 2

Intput
Start_y

Intput
End_y

Intput
Start_x

Intput
End_x

10 2

Output x

& 0xffxxx

DIVI

Tile width

SUB

Floor

ADD

Signal: Start_x < End_x

Signal: Index=1

x ratio

DIVI

Output

Figure 3-16 EWT hardware design

3.2 False-overlap Detection by Approximate Method

To avoid a lot of computations for eliminating false-overlap tiles, we try to use table

lookup to reduce the computations. We observe that there are patterns for the numbers of

false-overlap tiles in rows. If we could store the patterns of false-overlap tiles for difference in

a table, we can eliminate the false-overlap tiles without complex computing.

 26

Fig. 3-17 is the flow chart of approximate false-overlap detection. The difference of the

flow chart to that of the exact methods is the vertex alignment and boundary expanding before

BBox division. Vertex alignment aligns the vertices of a primitive to the tile vertices to the

representative tile vertices, and then boundary expanding connects the representative tile

vertices to form a new geometric figure whose area is larger than or equal to the primitive.

BBox division divides the BBox of the primitive according to the expanding boundary and

makes the expanded boundary be the diagonal of the sub BBox. After these approximations,

we can eliminate false-overlap tiles in the false-overlap region by using the height and width

of the sub BBox by table lookup.

Primitive

BBox building

Vertex alignment

False-overlap
elimination with

table lookup

Tile listing

Boundary
expanding

BBox division

Primitive

BBox building

Vertex alignment

False-overlap
elimination with

table lookup

Tile listing

Boundary
expanding

BBox division

Figure 3-17 Flowchart of approximate false-overlap detection

3.2.1 Vertexes Alignment

For reducing the computations, we align the vertexes of a primitive to the tile vertex to

representative tile vertices. According to the relation of vertices of a primitive and the number

of tile vertices in the region of the extending edges (along the edge of primitive extend to

outside of the primitive) of the primitive, we classify some cases of vertex alignment in

 27

Fig.3-18.

Choose both vertex of
the edge of the tile

The vertex of the primitive is on
the edge of a tile

1

Choose the tile vertex overlapped
with the vertex of the primitive

The vertex of the primitive is on the
vertex of a tile

2

There are vertex in
the region of the
extending edges of
the primitive

There is no tile vertex
in the region of the
extending edges of the primitive

Case description

Choose any one of the
vertex in the extending
edges of the primitive

4

Choose both vertex of the tile
edge crossed by the extending
edges of the primitive

3

How to choose the tile vertices to represent the
vertex of the primitive ?

Case

Choose both vertex of
the edge of the tile

The vertex of the primitive is on
the edge of a tile

1

Choose the tile vertex overlapped
with the vertex of the primitive

The vertex of the primitive is on the
vertex of a tile

2

There are vertex in
the region of the
extending edges of
the primitive

There is no tile vertex
in the region of the
extending edges of the primitive

Case description

Choose any one of the
vertex in the extending
edges of the primitive

4

Choose both vertex of the tile
edge crossed by the extending
edges of the primitive

3

How to choose the tile vertices to represent the
vertex of the primitive ?

Case

Figure 3-18 Cases analysis of vertex alignment

Case 1 is that the vertex of primitive is on the vertex of a tile, and the representative tile

vertices are the vertices of primitive falls into. Class 2 is that when the vertices of primitive

fall on the edge of tile , the representative tile vertices are the vertices on the edge of the tile.

Case 3 is that there is no tile vertex in the region of extending edge at the vertex of the

primitive. The representative tile vertices in case 3 are the tile vertices on the edge of tile

which is crossed by the extending edge. In the case 4, there are vertices of tile in the reigon of

extended edge at the vertex of primitive, and any one of these tile vertices can be

representative tile vertices.

3.2.2 Boundary Expanding and Sub BBoxes

For each two vertices of the primitive, connect the representative tile vertices which

are out of the edge at the same time.

 28

Build a sub BBox for each expaned boundary of one of the edges of primitive, and let

the expanded boundarys be the diagonals of the sub BBoxes as shown in the Fig.3-19.

Expanded Boundary
Sub BBox

Figure 3-19 Expanded Boundary and Building Sub BBox

3.2.3 Elimination by Table Lookup

For the sub BBoxes, we can use the height and width of a sub BBox to look up a

differential table through a converter shown in Fig. 3-20 to know the difference of the

numbers of false-overlap tiles between two adjacent rows. An example is shown in Fig. 3-21.

i

j

Index m

Index 0

Index 1

...
...

Differential Table

Index n 1,1,1,....

.............

0,1,0,....

.........

0,0,1....

0,0,1,....

1,1,1,....

.............

0,1,0,....

.........

0,0,1....

0,0,1,....

Converter
Index m

The differenceof the numbers of false-overlap
tiles between two adjacent rows

1...010

Field

[n-1]
...Field

[2]
Field

[1]
Field

[0]

1...010

Field

[n-1]
...Field

[2]
Field

[1]
Field

[0]
k

k

Figure 3-20 Using the width (i) and height (j) of a sub BBox to look up the differential

table

 29

i

j

Sub BBox

i

Sub BBox

j

i

j

i

j

Sub BBox

i

Sub BBox

jj

+
+
+

+
2row 4

row 0

0row 1

1row 2

1row 3

2row 5
2row 4

row 0

0row 1

1row 2

1row 3

2row 5

+0

1

0

1

0

0

1

0

1

0

Figure 3-21 Example of eliminating false-overlap tiles with differential table

Differential table

The differential table is pre-computed offline. Each field of an entry of the table records

the difference of the numbers of false-overlap tiles between two adjacent rows. In the

differential table, the first field of an entry means the difference between the row 0 and row 1

of a sub BBox, and so on. Here the row 0 is the first row in the sub BBox.

To reduce the number of entries of the differential table, we use three skills described as

follows and apply i for antecedent and j for back tern to explain ratio :

(a) If i1:j1 = i2:j2, then these two ratios map to the same entry of the differential table.

Ex: 1:2 and 3:6 map to the same entry of table, as Fig.3-22(a) shown.

(b) If i1:j1 = j2:i2, these two ratios to the same entry of the differential table.

Ex: 2:1 and 1:2 map to the same entry of table, as Fig.3-22(b) shown.

(c) Adopt the approximation of the reciprocal of slope. Let the denominator d of the

approximate ratio be a specific integer, such are 8, 16, 32, or 64, to approximate the

original ratio. Then,
d

d 1~0 −
 (

8
7~0

,
16

15~0
,

32
31~0

 or
64

63~0
) may represent all

 30

slopes, and thus the number of entries of the approximated table may be reduced to d (8,

16, 32, or 64). For example, 2:3, the ratio is
3
2

. We can use
8
5

 to represent it when the

denominator is 8. Since 58
3
2 =




 × , as shown in Fig. 3-19(c). And Table 3-1 shows the

errors and and table sizes in different number of differential table entries.

Equation 3-1 is the mathematic equation of the inputs and outputs of the converter. Here i

and j may excahnge to preserve that j is larger than i.

 (3-1)

0

1

0

1

0 10 1

(a) (b) (c)

Figure 3-22 Example of differential table reduction. (a) 1:2 and 3:6 have the same

differential of false-overlap tile pattern. (b) 2:1 and 1:2 have the same

differential of false-overlap tile pattern. (c) 2:3, the ratio is
3
2

. We can use
8
5

to represent it when the denominator is 8.









×= numberentry

jinput

iinput
outputindex _

_

_

 31

Table 3-1 Error of different table entry. Screen size is 1200 x 1600, and tile size is 32 x 32

Number of Entry Max error Bits Table size (bits)

8 0.12 8 56

16 0.06 15 240

32 0.03 31 992

64 0.01 63 4032

 Because that there is no false-overlap tile in the first row of a sub box, the first bit

(Field[0]) of the entry in a differential table is the number of false-overlap tiles in the second

row of the sub BBox as Fig. 3-23 shown. We let the larger one of the height and width of the

sub BBox be the specific entry numbe and adjust the samller one to be index which come

from the outputindex of equation 3-1. The Field[0] can be represent as equation 3-2. The second

bit (Field[1]) of the entry is the difference of fasle-overlap tiles between row 1 and row 2.

And the number of false-overlap tiles in row 2 is the floor of double of
numberentry

index

_
. Thus,

Field[2] can be represent as equation 3-3. The number of the false-overlap tiles in row n is the

floor of n times of
numberentry

index

_
. Therefore, Field[n-1] is as equation 3-4 shown.









−×−








×=−









−







×=









=

)1(
__

]1[Field

_
2

_
Field[1]

_
]0[Field

n
numberentry

index
n

numberentry

index
n

numberentry

index

numberentry

index

numberentry

index

.

.

.

3-2

3-3

3-4

 32

8

4

0
8

4 =






12
8

4 =




 ×

13
8

4 =




 ×

37
8

4 =




 ×

...

Field[0]=0

Field[2]= 0

Field[1]= 1

Figure 3-23 Difference of false-overlap tiles between adjacent rows

Converter

The inputs of the converter are the width and height of a sub BBox, and the output is the

index of the differential table. To reduce the complexity of circuit of the converter, we let i be

the width of the sub BBox and j be the height, and exchange i and j to make j is larger than i.

When i and j are equal, we know that the difference of nubmer of false-overlap tiles in

adjacent rows is one without table lookup. The circuit is as Fig.3-24.

 33

i
j

Index m

Index 0

Index 1

...
...

Differential Table

Index n 1,1,1,....

.............

0,1,1,....

.........

0,0,1....

0,0,0,....

1,1,1,....

.............

0,1,1,....

.........

0,0,1....

0,0,0,....

k
k

i’
j’

Figure 3-24 Circuit in front of Converter

Because the output of the converter is the index of the differential table, reducing the

entries of the table also may simplify the complexity of the converter. The entry of the

differential table records the difference of false-overlap tiles in adjacent rows for specific

slope. And the differential table is pre-computed off-line. Table 3-2 is an example of the

converter. The input i’and j’ in Table 3-2 are the inputs of converter as shown in Fig.3-21. We

can use approximate ratio to approach i’/j’ and get the outputindex through the converter

according to equation 3-1.

False-overlap Tiles Elimination

In presevered region, let the vertex on the hypotenuse with the smaller edge of the width

and height be point Start, the other one be point End. If the width (i) of a sub BBox is smaller

its than height (j), we eliminate false-overlap tiles from point Start to point End row by row as

Fig. 3-25(a) shown. Otherwise, we eliminate false-overlap tiles from point Start to point End

column by column as Fig 3-25(b) shown. By the width and height of a sub BBox, we may

look up the differential table and get the differenec pattern of false-overlap tiles in rows.

 34

Table 3-2 Inputs and output of converter

5/8

7/8

1/8

4/8

5/8

0

2/8

4/8

Approximate
ratio

outputindexi’ / j’input j’input i’

50.80 108

70.8998

10.20102

40.542

50.6732

00.10101

20.33 31

40.50 21

5/8

7/8

1/8

4/8

5/8

0

2/8

4/8

Approximate
ratio

outputindexi’ / j’input j’input i’

50.80 108

70.8998

10.20102

40.542

50.6732

00.10101

20.33 31

40.50 21

... ...

... ...

... ...

... ...

... ...

...
...

...

i

j

Start

End

2

1
0

1

2

+1
+0
+1
+0

Start

End

2 1 012

+1+0+1+0

i
j

Start

End

2 1 012

+1+0+1+0

i
j

 (a) (b)

Figure 3-25 Direction for eliminating false-overlap tiles

With the direction for eliminating false-overlap tiles and the difference pattern of

false-overlap tiles in rows (columns), we can accumulate the bits of difference pattern to get

the number of false-overlap tiles in each row (column) from the second row (column). For

 35

example, there is a primitive (with black line) in Fig. 3-26, and its width is 8 and height is 10.

Let the table size be 8. Through our convreter, we can use the entry which record the

false-overlap tile with approximate difference of 6/8 to eliminate the false-overlap tiles. We

make the first row in the primitve be row 0, and so on. The initial value of false-overlap_tile

is zero for row 0 and accmulate the value of field in the entry to false-overlap_tile. The value

of accmulated false-overlap_tile is the number of false-overlap tiles in each row.

8

108

6

8

108

6

0

Field

[4]

1

Field

[5]

1

Field

[6]

1

Field

[7]

1

Field

[3]

110

Field

[2]
Field

[1]
Field

[0]

0

Field

[4]

1

Field

[5]

1

Field

[6]

1

Field

[7]

1

Field

[3]

110

Field

[2]
Field

[1]
Field

[0]

Differential pattern of 6/8

6row 9
6row 8
5row 7
4row 6

3row 4

0row 0

0row 1

1row 2

2row 3

3row 5

6row 9
6row 8
5row 7
4row 6

3row 4

0row 0

0row 1

1row 2

2row 3

3row 5

+

+

+

+

+

+

+

+

0

1

1

1

0

1

1

1

0

0

1

1

1

0

1

1

1

0

+ Initial of false-overlap_tile

False-overlap_tileValue of Field

Figure 3-26 Example of eliminating rows larger the differential pattern

 36

 37

Chapter 4 Evaluation Results and Discussion

In this chapter, we first describe our evaluation environment and the characteristics of the

input frame data (in section 4.1 and 4.2). Then, we show and analyze the simulation results of

memory requirement and execution time during rendering of each method: Bounding Box test,

LET, iterative division test of Intel, and our exact and approximate methods in section 4.3. In

the last section, we briefly discuss and summarize our conclusion from the results.

4.1 Evaluation environment

Figure 4-1 shows the architecture of ATTILA simulator and in which stage we dump the

coordinates of transformed primitives from triangle setup of the ATTILA GPU simulator for

the input of our simulation. We implemented a behavioral simulator of our architecture in

C++, and modified ATTILA simulator [13] to output coordinates information to a tracefile.

The benchmarks chosen are DOOM3 and QUAKE4 [14], modern graphics applications, and

resolutions are 320x240, 640x480, 1280x1024 and 1600x1200 in frame 30, 60, 90, 120, 150,

180, 210, 240, 270, and 300. Fig. 4-2 and Fig.4-3 show one frame in DOOM3 and QUAKE4,

respectively. The trace file outputted from ATTILA simulator contains the coordinates in

frames. Our simulator reads the tracefile and evaluates storage size and correct rate of

primitive lists.

 38

Figure 4-1 simulation flow and ATTILA architecture [13]

Figure 4-2 Frame 30 in DOOM3

 39

Figure 4-3 Frame 30 in QUAKE4

4.2 Test frame data

In this section, we provide statistics of Doom3 and Quake4 in different screen sizes of

frames, for frame30, 60, 90, 120, and 150, as shown in Table 4-1 and Table 4-2. In Table 4-1

and Table 4-2, the second row indicates the average number of tiles covering in a primitive;

the third row shows the maximum number of tiles covering in a primitive; the fourth row

shows the total number of tiles in all BBoxes; the fifth row shows the number of actually

overlapped tiles; the sixth row brings the percentage of tiles really be rendered; the seventh

row shows the average height of primitives in number of tiles. The last row shows the average

width of primitives in number of tiles. And Table 4-3 shows Average number of different

operations per right triangle of each algorithm in various tests.

 40

Table 4-1 Statistics of test frames on Doon3

Screen size 320x640 640x480 1280 x 1024 1200x1600

Actual Tile Coverage of Primitives (Avg) 2.87 6.34 19.00 25.39

Maximum Tile Coverage of Primitives 70 300 1280 1850

Total Number of Tiles in all BBoxes 24428 54047 161864 216362

Number of Actually Overlapped Tiles 16265 30076 71860 91792

Tile correct ratio 66.58% 55.65% 44.40% 42.43%

Average Height of Primitives in number of tiles 1.8 2.7 4.8 5.4

Average Width of Primitives in number of tiles 1.5 2.0 3.1 3.6

Table 4-2 Statistics of test frames on Quake 4

Screen size 320x640 640x480 1280 x 1024 1200x1600

Actual Tile Coverage of Primitives (Avg) 7.45 24.91 94.81 135.64

Maximum Tile Coverage of Primitives 80 300 1280 1850

Total Number of Tiles in all BBoxes 381553 1276076 4857531 6949631

Number of Actually Overlapped Tiles 125220 262100 659722 862638

Tile correct ratio 32.82% 20.54% 13.58% 12.41%

Average Height of Primitives in number of tiles 2.4 3.8 7.2 8.3

Average Width of Primitives in number of tiles 2.4 4.1 7.3 8.9

Table 4-3. Average number of different operations per right triangle of each algorithm in

various tests.

 Cross Product Test (CPT) Edge Walk Test(EWT) Count X Ratio (CXR)
Divide-and-conquer

and table lookup

Benchmark Doom 3 Quake 4 Doom 3 Quake 4 Doom 3 Quake 4 Doom 3 Quake 4

Operation MUL SUB MUL SUB ADD SUB ADD SUB Add SUB DIVI Add SUB DIVI ADD ADD

320x240 6 3 6 3 4 6 4 6 4 3 1 5 3 1 1 1

640x480 8 4 10 5 6 9 8 12 5 3 1 6 3 1 1 1

1280x1024 12 6 16 8 10 15 14 21 7 3 1 10 3 1 1 1

1600x1200 12 6 18 9 10 15 16 24 8 3 1 11 3 1 1 1

 41

4.3 Simulation results

In this section, we show the simulation results of time complexity, primitive list, and

primitive list correct ratio. We compare the results of our design with the method of BBox test

[4, 6-8], Linear Edge Function Test (LET) [11] and Iterative Division Test (IDT) [13].

4.3.1 Correct Rates of Different Entry Size of Differential Table for our Approximation

Method

Fig. 4-4 and Fig.4-5 show the relationship of the entry sizes of differential table with

correct rate for DOOM3 and QUAKE4, respectively. More differential table entries bring

more false-overlap tile detection. As Fig. 4-4 shown, in DOOM3, screen size of 320x240

needs 4 entries for differential table, 640x480 needs 8 entries, and there are 16 entries enough

are for 1280x1024 and 1600x1200. However, in QUAKE4 as Fig. 4-5 shown, 8 entries are

enough for 320x240, 16 for 640x480, and 640x480 and 1200x1600 needs 32 entries for

differential table. As the screen size becomes larger, the primitives become larger and need

more table entry to remove false-overlap tiles. Since more table entry may remove

false-overlap tile more precisely. Furthermore, the primitives in QUAKE4 are larger than in

DOOM3, and thus the approximate method needs more table entry to get higher correct rate at

the same screen size.

 42

DOOM3 Correct Rate

0

10

20

30

40

50

60

70

80

2 4 8 16 32 64 128 256Entry Size

%

320x240 640x480 1280x1024 1600x1200

Figure 4-4 Correct rate with entry size for DOOM3

QUAKE4 Correct Rate

0

10

20

30

40

50

60

70

80

2 4 8 16 32 64 128 256Entry Size

%

320x240 640x480 1280x1024 1600x1200

Figure 4-5 Correct rate with entry size for QUAKE4

 43

4.3.2 Storage Size of Primitive Lists

In order to evaluate our methods, we compare our storage size with the method of BBox

test [4, 6-8], Linear Edge Function Test (LET) [11] and Iterative Division Test (IDT) [13]. We

list the amount of primitive lists of each method both in Figure 4-6 and Figure 4-7 for

DOOM3 and QUAKE4. The first and orange bar is the primitive lists really rendered, and it

also the results of our exact methods CPT, EW, and CXR. The second bar is the amount of

primitive list with BBox test. The third bar is the primitive list with LET, and the fourth to

sixth bars are IDT with one to three times of iterative. Since the results of them are close to

our approximate method, we list the results of IDT with one to three times of iterative to

compare and discuss. Furthermore, the seventh to fourteen bars are the primitive lists in for

own approximate method with 2, 4, 8, 16, 32, 64, 128 and 256 entries of differential table.

Although the primitive lists in IDT are the fewest among BBox, LET, IDT and

approximate method with different entries in Fig. 4-6 with one iterative, they needs more

iterative when the primitives are larger as Fig. 4-7 shown. In Fig. 4-7, IDT needs three

iterative to get the results which are close to approximate method. In the other words, a

primitive can be divided up to ten iterative and get 33 smaller primitives to process.

Fig. 4-8 shows different iterative and storage size of the primitive list with IDT, and

Fig.4-9 shows different iterative and correct rate of primitive with IDT. Here, we use correct

rate to represent the percentage of the primitive lists which are really rendered. From Fig.4-8

and Fig.4-9, we can see that the IDT can get less storage size of primitive lists and higher

correct rate with more iterative, but it also costs more time with power of three. Although the

LET produces the same storage size of the primitive lists comparing to our approximate

method in Fig. 4-6 and Fig. 4-7, it needs floating subtraction, multiplication and division.

 44

DOOM3 Record of Primitive Lists

0

100000

200000

300000

400000

500000

600000

320x240 640x480 1280x1024 1600x1200Screen Size

Amount

Correct/CPT/EWT/CXR Bbox LET
IDT_1 IDT_2 IDT_3
Entry_2 Entry_4 Entry_8
Entry_16 Entry_32 Entry_64
Entry_128 Entry_256

Figure 4-6 Amount of primitive lists for Doom3

QUAKE4 Record of Primitive Lists

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

320x240 640x480 1280x1024 1600x1200Screen Size

Amount

Correct/CPT/EWT/CXR Bbox LET
IDT_1 IDT_2 IDT_3
Entry_2 Entry_4 Entry_8
Entry_16 Entry_32 Entry_64
Entry_128 Entry_256

Figure 4-7 Amount of primitive lists for Quake4

 45

Number of Records in Primitive Lists with IDT

0

200000

400000

600000

800000

1000000

1200000

1400000

1 2 3 4 5 6 7 8 9 10
Iterative Number

Amount

D3_320x240 D3_640x480 D3_1280x1024 D3_1600x1200
Q4_320x240 Q4_640x480 Q4_1280x1024 Q4_1600x1200

Figure 4-8 Number of Records in Primitive Lists with Iterative Division Test

Correct Rate of Iterative Division Test

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10
Iterative number

%

D3_320x240 D3_640x480 D3_1280x1024 D3_1600x1200
Q4_320x240 Q4_640x480 Q4_1280x1024 Q4_1600x1200

Figure 4-9 Correct Rate of Iterative Division Test

Differential table with more entries can get fewer primitive lists and higher correct rate.

 46

The difference of correct rate between 8 and 64 entries of differential table is up to 5% as

Fig.4-10 and Fig. 4-11 shown.

Correct Rate =
nderalrecords

TestMethodrecords

ReRe_#
_#

 (4-1)

DOOM3 Correct Rate of Primitive Lists

0

10

20

30

40

50

60

70

80

90

100

320x240 640x480 1280x1024 1600x1200Screen Size

%

Correct/CPT/EWT/CXR Bbox LET
IDT_1 IDT_2 IDT_3
Entry_2 Entry_4 Entry_8
Entry_16 Entry_32 Entry_64
Entry_128 Entry_256

Figure 4-10 Correct rate of primitive lists for DOOM3

 47

QUAKE4 Correct Rate of Primitive Lists

0

10

20

30

40

50

60

70

80

90

100

320x240 640x480 1280x1024 1600x1200Screen Size

%

Correct/CPT/EWT/CXR Bbox LET
IDT_1 IDT_2 IDT_3
Entry_2 Entry_4 Entry_8
Entry_16 Entry_32 Entry_64
Entry_128 Entry_256

Figure 4-11 Correct rate of primitive lists for QUAKE4

For larger size and primitive, our approximation method may eliminate more

false-overlap tiles as Fig. 4-12 and Fig.4-13 shown.

Reduction Rate =
oxrecords_BB#

stMethodrecords_Te# -ox records_BB#
 (4-2)

 48

DOOM3 Reduction Rate of Primitive Lists

0

10

20

30

40

50

60

70

80

90

100

320x240 640x480 1280x1024 1600x1200Screen Size

%

Correct/CPT/EWT/CXR LET IDT
Entry_2 Entry_4 Entry_8
Entry_16 Entry_32 Entry_64
Entry_128 Entry_256

Figure 4-12 Reduction Rate of Primitive Lists for DOOM3

QUAKE4 Reduction Rate of Primitive Lists

0

10

20

30

40

50

60

70

80

90

100

320x240 640x480 1280x1024 1600x1200Screen Size

%

Correct/CPT/EWT/CXR LET IDT
Entry_2 Entry_4 Entry_8
Entry_16 Entry_32 Entry_64
Entry_128 Entry_256

Figure 4-13 Reduction Rate of Primitive Lists for QUAKE4

 49

4.3.3Time complexity

The time complexity of our methods and LET are shown in Fig. 4-14. IDT divides the

BBox by adding middle points on each edge of primitive, so it needs three additions and shifts

before next iterative.

Although the approximation method has additional converter and differential table, it has

fewest computations in false-overlap tiles and the correct rate is not worse than current design.

In the exact methods, they all have the same correct rate, 100%. However, the CPT has the

highest computing time.

If we just require the correct without considering hardware cost, CPT and EWT are good

choices for the benchmark with small primitive. And CXR is good for larger primitive. Since

the operation for each row tile in CXR only needs an addition. Comparing to exact methods,

our approximate can reduce primitive lists without adding too much hardware cost.

Table 4-4 Time complexity of our methods and relate work

.)()(),(dXYydYXxyxE ABL ⋅−−⋅−=

50~75%100%100%100%50~70%Close rate

leastmediummediummediummostOperator

Add:1Add : 1Sub :3
Add :2

Mul :2
Sub :1

Sub:3
Mul:2

Operation for
each row tile

Look up tableSub :3
Add :2
Divi :2

Sub:6 Mul:3
Add:3 Divi:3

Operation for
each sub right
triangle

Accumulate x_ration =
x_ration +
1/slope*(row_i
ndes-1)

Compute which
tile is on the
edge of
primitive

Cross product-For tile:Operation in
each row tile

1.Expand
Boundary
2.Look up
converter table
3.Look up
different table

1.Compute the
initial of
x_ration
2.For
reciprocal of
slope

Pre-processing

Expand Boundary
and Look up table

Count X
Ration (CXR)

Edge Walk Test
(EWT)

Cross Product
Test (CPT)

Linear Edge
Function Test (LET)

50~75%100%100%100%50~70%Close rate

leastmediummediummediummostOperator

Add:1Add : 1Sub :3
Add :2

Mul :2
Sub :1

Sub:3
Mul:2

Operation for
each row tile

Look up tableSub :3
Add :2
Divi :2

Sub:6 Mul:3
Add:3 Divi:3

Operation for
each sub right
triangle

Accumulate x_ration =
x_ration +
1/slope*(row_i
ndes-1)

Compute which
tile is on the
edge of
primitive

Cross product-For tile:Operation in
each row tile

1.Expand
Boundary
2.Look up
converter table
3.Look up
different table

1.Compute the
initial of
x_ration
2.For
reciprocal of
slope

Pre-processing

Expand Boundary
and Look up table

Count X
Ration (CXR)

Edge Walk Test
(EWT)

Cross Product
Test (CPT)

Linear Edge
Function Test (LET)

P.S.

STSE ×

)(
2

)(
2

)(
2

CACA

BCBC

ABAB

yyxx
l

yyxx
l

yyxx
l

−+−⋅

−+−⋅

−+−⋅

),(

),(

),(

CSCSL

CSCSL

CSCSL

yxE

yxE

yxE

CA

BC

AB

 50

 51

Chapter 5 Conclusion and Future Work

5.1 Conclusion

In this thesis, we propose exact and approximation methods to eliminate false-overlap

tiles. In the exact methods, CPT, EWT, and CXR, all of them may eliminate all false-overlap

tiles in a BBox. However, they need a lot of computations and hardware cost than our

approximate method. With the pre-computed differential table, the approximate method can

eliminate most of the false-overlap tiles in a BBox without complex computation. And our

approximate method can eliminate 70% false-overlap tiles without complex computing. In

DOOM3 and QUAKE4, the correct rate is up to 75% comparing to BBOX, LET and IDT.

Our exact methods, CTP, EWT and CXR, can product really work primitive lists which

are really rendering in rasterizer. And CTP and EWT are suitable for benchmark with small

primitives, like DOOM3. CXR is good for benchmark with large primitives, like QUAKE4.

However, they all needs more hardware cost than our approximation method. Although,

approximation method cannot provide 100% correct rate of primitive lists, it can look up

differential table to get false-overlap tiles without complex computations.

 52

5.2 Future work

In our observation, there are patterns of false-overlap tiles in rows. The patterns also can

be employed to pixels in tile with a repaired table to assist the differential table. Then we can

eliminate false-overlap tiles without aligning the primitive vertex to tile vertex, and can

eliminate all false-overlap tiles in the BBox.

4 pixels

.

.

.
1
0
1
0
1
0
1
0

Ignore 4-bit

N-bit for a tile
to eliminate

Figure 5-1 Use pixel pattern to eliminate false-overlap tiles

 53

References

[1] “PowerVR. 3D Graphical Processing (Tile Based Rendering - The Future of 3D),” white

paper, Imagination Tech. Corp., 2000.

[2] “ARM Mali 3D Graphics System Solutions,” white paper, ARM Corp., Dec. 2006.

[3] (2009) PowerVR SGX Series5XT Graphics IP Core Family, [Online]. Available:

http://www.imgtec.com/powervr/sgx_series5XT.asp

[4] “Imageon 3D 238x White Paper,” white paper, ATi Corp., 2005.

[5] E. Sorgard, B. Ljosland, J. Nystad, M. Blazevic, F. Langtind, “Method of and apparatus

for processing graphics,” U.S. Patent 2007/0146378 A1, Jun. 28, 2007.

[6] E. Hsieh, V. Pentkovski, and T. Piazza, “ZR: A 3D API Transparent Technology for Chunk

Rendering,” In Proc. 34th ACM/IEEE Int. Symp. on Microarchitecture MICRO-34, 2001.

[7] M. Chen, G. Stoll, H. Igehy, K. Proudfoot, and P. Hanrahan, “Simple Models of the Impact

of Overlap in Bucket Rendering,” In Proc. ACM SIGGRAPH/EUROGRAPHICS

Workshop on Graphics Hardware, pages 105–112, Lisbon, Portugal, 1998, ACM Press.

[8] M. Cox and N. Bhandari, “Architectural Implications of Hardware-Accelerated Bucket

Rendering on the PC,” In Proc. 1997 SIGGRAPH/Eurographics Workshop on Graphics

Hardware, pages 25–34, ACM Press, 1997.

[9] I. Antochi, B.H.H. Juurlink, S. Vassiliadis, and P. Liuha, “Efficient Tile-Aware

Bounding-Box Overlap Test for Tile-Based Rendering” , Proceedings of the 2004

International Symposium on System-on-Chip 2004, Tampere, Finland, November 2004, pp.

165-168.

 54

[10] J. Pineda. A Parallel Algorithm for Polygon Rasterization. In Proc. 15th Annual

Conference on Computer Graphics and Interactive Techniques, pages 17–20. ACM

Press, 1988.

[11] Stephen Junkins, Oliver A. Heim, Lance R. Alba, “Methods and apparatuses for a

polygon bining process for rendering”, U.S. Patent US 6,975,318 B2/US 7,167,171 B2

[12] Bresenham's line algorithm on Wiki:

http://en.wikipedia.org/wiki/Bresenham%27s_line_algorithm

[13] Víctor Moya, Carlos González, Jordi Roca, Agustín Fernández and Roger Espasa,

“ATTILA: A Cycle-Level Execution-Driven Simulator for Modern GPU Architectures”,

IEEE International Symposium on Performance Analysis of Systems and Software

(ISPASS-2006), March 2006

[14] http://www.quake4game.com/

 55

Appendix A. Simulation Test Frame Images

Figure A-1 frame30

\

Figure A-2 frame60

 56

Figure A-3 frame90

Figure A-4 frame120

 57

Figure A-5 frame150

