G PR

i

TR

A

==

-
‘_‘_\ﬁ:
i
RS

s v L 7 ’ > 2 >
SRR BT R

Study and Implementation of Reliable Peer-to-Peer Streaming System

IR AR Ik ¥
s Hed R

s S - FE Tk

7,

BE 4t uL 2 2 Boon kS g ega ;Ln

AT

Study and Implementation of Reliable Peer-to-Peer Streaming System

T A Student : Chia-Ming Liou
hEFR D Hek Advisor : Hsu-Feng Hsiao

5 RS ARRT A

A Thesis
Submitted to Institute of Multimedia Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

February 2010

Hsinchu, Taiwan, Republic of China

BTSHERY T I SR

TR B, e e P e 2

B 5 AT PR

iife!

FUTE &8 LT IR o peer-to-peer(P2P) Rk 1o RNy o H Tk~ {1
FRSEARAY A 0 2N e T SRl - S R (R RS
itk o Fiot o Z5PER ATSRAR i (SIa T Rty - DORRE | A EL L
B [1 i st S5 R S N) SRR R B £ 1 T AR
ARSI RS RTICE « PP AR e o Flﬁpﬁﬂ A& R AR A
fils » R Y Fi AR - 25 MaT ¢% IR AR B R ”F'“ﬁ”f’ﬁg > B2 Ay

[l R TR R pIAR R S R Y e T 3 (T (RS o 2
S R VR A R R o S PIPSI SR R ARE - R T NS2
R B I T R PR

Study and implementation of reliable peer-to-peer streaming

system

Student: Chia-Ming Liou Advisor: Hsu-Feng Hsiao

Institute of Multimedia Engineering
National Chiao Tung University

Abstracts

Nowadays, there are more and more video streaming services based on peer-to-peer
architecture. There are many challenges to build a real time peer-to-peer streaming system. In
this paper, we attempt to construct a stable peer-to-peer streaming system. At the beginning,
we choose the mesh-based structure to'construct the peer-to-peer overlay network. The whole
system is more robust when dealing with peer churn because of the mesh-based structure.
Next, we dynamically choose the parents that are suitable to us by four factors. Furthermore,
the original data from source is encoded by video coding and channel coding sequentially.
With video coding, we save the total size of data to send. With channel coding, we save a lot
of data coordinate messages for peers and enhance the protection of data. During the process
of building our system, we find some important implementation issues to make our
peer-to-peer streaming system more stable. Finally, the NS2 simulation also shows the

stability of the method we proposed.

Acknowledgement

fiE30k SRR P IR O R G R L
PRM-EIERTT =S TS5 LRI B PR ol Yy < a0 557 %
S PIIERE o GRS T (T B R R s S R T [RIS o [
SN B SREVE- R S R N IR S RN S e i B2\ TR
o [Fﬁ?‘f%,mu%piimyu Gl Uﬁl »quﬁaajmﬂf @Fﬁ'ﬁf‘ﬁzfﬁ =]‘E';qﬂjHUFygf

el RABIH R VB[] 2 AP~ LA - PR s~ S s -

Huiﬂ?u—‘l’ EE%’IH’yﬁﬁ‘& lJrJ#[|5~ o

Contents

F A ST T I T A O 1 1]
ACKNOWLEDGEMENT ...ttt ettt e et e et e e e s st e e s et e e e sbaeeessabeeesasbeeessbeeeesssbesesareeseans]
LOL @ AV I =1 A I 1S T v
CHAPTER 1. INTRODUCTIONciiiitiii ettt e ettt e ettt e e tte s s s esaee e s sabaeessabeeeessaeaessabeeesabeesesnes -1-
1.1 (21 =X =TT -1-
1.2 1Y (o A/ 1 (0] TSR -1-
1.3 SYSTEM OPERATING ENVIRONMENT L..uvtiiiiiiiiiiitieiiie e s seiitbtit e s s e s s sibbaseessesssasbbabasssessssbbsbasssesssassssbenss -2-
1.4 THESIS ORGANIZATION 1.eiiiieiieittttittteessesitbbett s e s s s s it b asaeesessiesbbabaeesesssas bbb besesesssasbbbbbessesssesbbbasesesessssres -3-
CHAPTER 2. RELATED WORK ...ttt ettt etee ettt e s et e s e e etae e e s sabe e e s sabeesesnbeeeessabeeessbeeeesnes -4 -
2.1 (1= =X = O -4 -
2.2 PEER-TO-PEER STREAMING SYSTEM ..iiiiiiiiiiitttesiiesiieeitbneiieesssesiibestsessssssbbsssssssssssssbasssssessssssssssssessns -4 -
2.3 PEER-TO-PEER OVERLAY. INETWORK t1tttieiiitttttreteeieeeisibresssiesseisssessssssssisssssssssssssisssssssessessissssssessesns -5-
2.4 FORWARD ERROR CORRECTION CODES . .uuttueieieeiiiibiatieeassssiessrertsesssaiississssessssisssssssessssissssssssessssisnes -6-
2.5 DATA PROTOCOL AND PEER MANAGEMENTiiiiieitttriiiiee it iiibtseeteessseiississssessssssssssssssssssissssssseessssisnns -7-
CHAPTER 3. PROPOSED METHODiciintiiiiuiiiiisieeesissne e sre e sttt sesessseseesssssesssssssessssssessssssessssssessesnnes -9-
3.1 SYSTEM ARCHITECTURE ... iiotuetietieeiiiitttitieessseisssesssiesieaiassssssssessisssssssessessisssssesssessissssssssssesssoissrssnss -9-
311 Video COmMPIreSSION COUBC .. i vesitiuueseiiriaueruiaieauesubeseeseeseeseessestessessesseaseeseessesbesbessesseaseessenseseessesss -11-

TN A O - 14 o -] oo 14 o F RS TUTRURUR TS OROT -12 -

3.2 CONNECTING PROTOCOL ... utttiiiiiiiiiititiiie e e e st ibb bt e s s e s s st bbb ae e s e s s s e bbb b e e e s e e s s e bbb b s e e s e s s s e bbb b b aeseesssssbabaness -15-
3.3 [= Y N] = =1 R -17 -
3.4 (D N =0 [0 ToT o] ST -20-

R o Vo = o 1Y =TT 0 [OO TTT R URURUSURO -22-

3.4.2 How to allocate the bandwidth of children and parents...........ccccocoeriiiniiieien e -24 -

3.4.3 COMMUNICALION PTOTOCONvviiiieeii ittt ettt e st e et e e s st a e s s st b e s s sabaa e e s sbbeeessbaaeans -25-

N - 1o (<Y A = (0] (=03 (0] o TR -26 -
CHAPTER 4. SIMULATION RESULT ...ttt ettt vtee s et e e s entae s snae e e s enaeeeean -28 -
4.1 SIMULATION ENVIRONMENT L1vtiiiiiiiiitiiiiie ettt e e e st bab s e e s e s s seabbab e s e s e s s sabbbbaaesesssabbbbaassessssssbebannss -28-
4.2 WVEIGHT SETTING ...ttttiiieie e ittt e e e et s ettt et s e e s s e bbb b e e e s e e s sasbbe b e e e s e e s sa bbb baeeseesse bbb bbassasesssabbbaaasesssssasre -29-
4.3 THE ENVIRONMENT UNDER BACKGROUND TRAFFIC ..c.iiiiiiiiutiiiiiee s seiitbtis s e s s s ssabbaessesssssssbasssasssssannns -31-
4.4 THE REAL-WORLD IMPLEMENTATION L..uututiiiiieiiiiitittieeiessieiussssssesssasssssssssessssssssssssssssssssssssssessssisnns -36-

CHAPTER 5. CONCLUSIONS

5.1 (070] N ol I UES] (o] N F< TSR -

REFERENCE

Table 4-1 The parameter setting
Table 4-2 The parameter setting

List of Tables

Vi

List of Figures

Figure 1-1: The upper left: Sopcast [18] , the upper right PPStream [19] and TVUPlayer [20]........ccccccevenee -2-
Figure 2-1 Reed-SolomOon COUE [15] ..viviieieriiriesistisiese st e ettt e st sa e et s resbesnesnesbesneeraeneeneeneens -7-
Figure 3-1 SyStem AFCHITECIUIEoviiviiice e ettt ae s r et seesaesbeaneereeneeneeneens -9-
Figure 3-2 The COMPONENT OF PN,eiviiieiee ettt ettt e e s e e et e teseeste e e enee e enteneenrenren -11-
Figure 3-3 The process Of VIdEO COMPIESSIONciviieieiieeiieeiesieses e sie e se e e ree e e e tesresresre s e eneeseenseseesrenns -11-
Figure 3-4 LT COUES ENCOUBTccveiiieie sttt ettt ettt ene e e e e sa et et srenteaneenee e eneees -13-
Figure 3-5 The decoding process Of LT COUESuviiiiiieiieiesesese e eie st ste st sre e see et srestesneereeneens -14 -
Figure 3-6 The Complete LT Encoding process 0f ROOL.........c.ciueviieiereiie st -15-
Figure 3-7 The Connecting PrOtOCOL.........cviie ittt sr e sneere e -16 -
Figure 3-8 The Format of Communication PAcCKet...........c.coveieieiiiii i -17 -
FIgure 3-9 Te PEEI POOL.......e ettt ettt e et et e s te e aeere e e e s ee e e eeseesnenreeneereeneeneees -17 -
Figure 3-10 The data PrOtOCOL.........ccuiiiieie et v s sttt re s e e e tesa e te e seenresnearee e eneees -21-
Figure 3-11 The condition of the sending BUfer........ ... s -23-
Figure 3-12 The process of allocating children’s bandwidth............ccocooov oo, -24 -
Figure 3-13 The process of passing.the NAT €nVIFONMENT ... ccocoiiiiiieeiererese e -25-
Figure 3-14 Data protection for regular communication Packets..........c.ive v i - 26 -
Figure 3-15 Data protection for important communication PACKELSccevviveveeerierirere e -27 -
Figure 4-1 The NEtWOIK tOPOI0QY ...ur..iiireiueeresieeraeseetueseesssensaseeseshedanesbestessessesseesseseensessessessessessessesnessesseensenes -29-
Figure 4-2 The searching process Of WEIGHESccviiiriieiieie it ere e -31-
Figure 4-3 The average jitter under background traffiC.........cc..ooov i -32-
Figure 4-4 The continuous playback index under background traffic..........ccccooveveveicni v -33-
Figure 4-5 The changing level of parent under background traffic..........cccccooviveieiiniic s -34-
Figure 4-6 The effective throughput under background traffiC............ccoceveiiniicii s, -34-
Figure 4-7 The source delay under background traffiCcccoceviiiiiiiiinci e -35-
Figure 4-8 The ratio of the parents with background traffiCc.cccovviiiiiiii i -36 -
Figure 4-9 The system interface deSCIIPLIONcccviiiiiieerese et sresreere e ens -37-
Figure 4-10 The network topology in real WOrTd...........c.coveeiiiiii e -37-
Figure 4-11 The average throUghPUL.........oooi it sneere e ens -39-
Figure 4-12 The average SOUICE TEIAYvcveieriere ettt sresnenreeneens -39-
Figure 4-13 The PSNR for each decoded frame.........cccviveieieriie s -40 -

vii

Chapter 1. Introduction

1.1 Preface

In the recent years, multimedia video streaming is considered to be one of the killer
applications. The quality and quantity of the applications also increase day by day. The
simplest way to do video streaming service is to make the source unicast the video streaming
to each receiver. But since the video streaming services are basically high bandwidth
consuming applications, this way will consume a tremendous amount of bandwidth and
encounter a bottleneck at source. So its scale has a limitation. IP multicast could be the best
way to overcome this drawback because it can serve many receivers from a single stream.
However, it is still not widely deployed on the internet. On second thoughts, the peer-to-peer

architecture provides a more feasible solution.

1.2 Motivation

Nowadays, there are more and more video streaming services [Figure 1.1] [18] [19] [20]
based on peer-to-peer architecture. However, there are still a lot of topics need to be discussed
in peer-to-peer architecture. For instance, a peer’s behavior is unpredictable. They may leave
or join at any time. Besides, the network condition between adjacent two peers may change
with time. These drawbacks probably make the whole peer-to-peer video streaming system
unstable.

In order to provide more stable video streaming system, we proceed with three aspects (video

-1-

streaming encoding, network topology construction and peer dynamic management) to build

our system.

=z

NEWS|TEASER 1

PHER TR R R B AT
{EEEE BoFpzaQrEd AT

T —
=
-
=
-
-
-

Figure 1-1: The upper left: Sopcast [18] , the upper right PPStream [19] and TVVUPIlayer [20]

1.3 System Operating Environment

[Figure 1.3] shows the environment our system operates in. It is a mesh based
peer-to-peer network. There is one root and a large number of servers in the system.
Furthermore, we need a patch server to record every peer in this system. The source attempts
to spread the video streaming data to each server in the system. Similarly, each server wants
to receive the newest video streaming data steadily. A server stands for a peer in the
peer-to-peer network. It means that a server has to receive data from servers and upload data
to servers simultaneously. Servers provide their available bandwidth to the system. The more
servers are in the system, the more stable service the servers will have. [Figure 1.2] shows the

screenshot of our system.

Server
. Root soul'ce/a

\

Patch Server \

Figure 1-2 Screenshot of the system Figure 1-3: System operating environment

1.4 Thesis Organization

In the remainder of this paper, we review the related works in Chapter 2. The
peer-to-peer streaming architecture and the practical implementation issues are presented in
Chapter 3. In Chapter 4, the simulated experiment results are presented. Finally, the

conclusions are given in Chapter 5.

Chapter 2. Related Work

2.1 Preface

At beginning, we would like to study a few cases about peer-to-peer live streaming. That

will help us to build our system.

2.2 Peer-to-Peer Streaming System

The AnySee [17] is a tree-based peer-to-peer live streaming system. It uses a multiple
tree protocol and lets each peer join multiple overlays. Each peer in the system maintains one
active path and one backup path, in case the active path fails to deliver. Besides, it is the first
to introduce the concept of inter-overlay optimization. In other words, it uses the remaining
bandwidth of the peers that are watching channel A to help the peers that are watching
channel B [26].

Prime [3] is a receiver-driven mesh-based streaming system and its streaming data is
encoded with multiple description coding (MDC). The peers in Prime receiving more
descriptions have better video quality. The parents push the information about their available
data to their children periodically. On the other hand, every child requests data by pulling it
from parents. PPLive [23] is the most popular video streaming system up to now. It is built by
the proprietary company. By the work from [23] [24], we know it is a mesh-based
peer-to-peer live streaming system and its parent selection mechanism is to pick the peers

with high upload bandwidth.

At next part, in order to create a stable peer-to-peer streaming system, we have to choose
which kind of peer-to-peer overlay network that is feasible for our system. And then we need
to pick the appropriate peers to be our parents for enjoying stable video streaming. Besides,
since each peer’s status in peer-to-peer system is unstable, we want to enhance the protection

of data streaming.

2.3 Peer-to-Peer Overlay Network

The Peer-to-peer overlay network can be generally classified to two classes: centralized
and decentralized [21].

The centralized peer-to-peer network means that each peer in the system is assigned to a
fixed connection with some peers by a central server. The central server organizes all peers
into a predetermined graph likes a single tree or multiple trees. The architecture of single tree
[1] [6] is simple and easy to be deployed. The peer just follows the order from central server
and starts to receive data from parents. However, peers differ in survival time, bandwidth and
CPU power. [2] [5] try to divide peers into several groups by exploiting the heterogeneity of
peers. And then each group will pick up a leader. All group leaders are formed by a single
tree based structure. The centralized architecture has low management overhead and is
suitable for multicast scheme. Nevertheless, it is vulnerable to disrupt under high rate of peer
churn. Because each peer has one parent in a single tree, as long as the peer leaves suddenly,
the peers at its downstream might suffer low downloading bandwidth.

The decentralized overlay network organizes peers in a random graph. It is a distributed
system and also called mesh-based overlay network [3] [17]. Because there is no centralized
server, peers in this kind of architecture need to transfer information with adjacent neighbors
frequently. But it means that constructing this type of overlay network costs lots of control

packets. Furthermore, since peers obtain information from neighbors, it is hard to get the

-5-

real-time situation of all peers in the system. Nevertheless, we think the decentralized
architecture is suitable for our peer-to-peer streaming system. It could conquer the problem of
peer churn. The reason is each peer has many peers to be its parents and has its own peer list.

In addition, peers in the system could pick the parents that are suitable to them.

2.4 Forward Error Correction Codes

Peer-to-peer systems are mostly known from file sharing application. Why is
peer-to-peer architecture widely used in file sharing services? This is because peers in file
sharing only care whether it can get complete data. A large number of peers can alleviate the
influence of unstable peers. Therefore you got more peer, you have higher chance to get
complete data. However, the stability of a peer in video streaming system is more important
than in file-sharing system. This is because video streaming service is time-dependent and
each peer in system needs a stable streaming bit rate. High fluctuation of peer’s survival time
and heterogeneous uploading bandwidth could make the video streaming system unstable.
Here, we use streaming data protection to solve peer fluctuation problem. Forward
Error-Correction coding (FEC) makes sure that receiving some number of different encoded
blocks can restore the original data. The main principle is to send out the extra data, making
the wrong place can be identified and corrected. Next, let us introduce some channel codes
with Forward Error-Correction characteristics

In channel coding, Reed Solomon codes [15] is one of the forward error correction codes,
as shown in [figure 2.1] which is trying to explain the principle of operation. At beginning
peer has k copies of message symbols, and then produces n-k copies of the parity symbols by

the RS coding. This coding guarantees to restore the original data if receiving k copies of

symbols. By the extra n-k copies protection of data, this could achieve the feature of forward
error correction coding.

Reed-Solomon code can have the ability to nearly achieve rateless digital fountain codes.
But the R-S code has time-consuming problem and the decoding process has asymmetric
computational complexity, if the amount of processing data is small, the decoding speed is
acceptable, but if the amount of processing data is large , the decoding speed is very slow.
Therefore we go toward a much faster error correction code such as: LT code [11], Raptor

code [16] that are exclusive-or as the main calculation.

Uncompressed Header Compressed Headers

NN

K Message Symbols

Systematic
R-S
Encoder

[TTTTTE |

| |

K Message Symbols |[IN-K) Parity S)-'mbczlslI
' N Coded Symbols '

Figure 2-1 Reed-Solomon code [15]

2.5 Data Protocol and Peer Management

There are mainly two different ways in peer-to-peer streaming data protocol [21]. They
are push based [7] [8] and pull based [4] [9]. The type of push based is that source decides to
deliver what kind of data and when to deliver it. The type of push based is naturally
associated with tree based architecture. Nevertheless, it always needs a super node to be

source. When the users increase rapidly, the streaming service will be influenced. As a result,

-7-

[2] attempts to decrease the depth of tree for lowering the communication delay and overhead
[26].

The other is pull based type [4] [9]. On the contrary, every peer periodically notifies its
neighbors (parents) of what data it has. And the peer needs to select the data it wants and
informs the parents of that. The type of pull based is normally connected with mesh based
architecture. The weakness is that it costs a lot of control packets to get neighbors’
information. And how to coordinate with parents is also a problem. In our system, we use the
channel code to alleviate this problem. We will describe it in detail in next chapter.

The architecture we implement refers to [9]. [9] proposed an architecture that attempts to
do application routing in peer-to-peer network. The application routing in peer-to-peer
network means to select the parents that are good for you. [9] makes the decision of
parent-selection dynamically by utilizing the residual lifetime of peers and other factors. [9]
exploits a phenomenon in a peer-to-peer system. That is “the longer a peer lives in the system,
the less probability it will leave later.”” And this peer lifetime distribution can be modeled by
heavy-tailed distribution [12] [13]. In the process of research, we found some different issues
and factors. Therefore, we attempt to enhance the method proposed in [9] and hope to create a

stable peer-to-peer streaming system in real world.

Chapter 3. Proposed Method

3.1 System Architecture

In this section, we will introduce the system architecture [figure 3.1]. At first, we start

with the view of the root (source).

K
Server Root / Source
2
{II\III\III\IIIM----
Section i Section i+1 [@ [[------
1 P P P P P P
2
R .
P P P P P P N S Y T
4 =
Section i Section i+1
Playback

> Connecting Peer Data
Protocol Management Protocol
—_— Connecting Peer Data

Protocol Management Protocol

~

Figure 3-1 System Architecture

Root:

Stepl: Initially, the root enters this system and sends a notification to the patch server.

Step2: The root needs to get the raw video data. The input could be video file or webcam.

Step3: Before sending the data, the raw video data needs to be compressed by video
encoder.

Step4:. After the process of video encoding, we put the encoded video data into channel

encoder.

Step5: After encoding a section of data, root keeps sending data to its downstream nodes
in peer-to-peer network. The root will go back to step2 to get the next raw video data and

keep going.
Server:

Stepl: Initially, the server enters this system and sends a notification to the patch server. It
will get the reply and follow the connecting protocol to get its parents.

Step2: The server will ask the video data by the data protocol.

Step3: The server starts to decode the data by channel decoding.

Step4: After the process of channel decoding, the server gets the encoded video streaming
data. It needs to be decoded by video decoder.

Step5: The server starts to play the raw video data and keeps sending the data to its
downstream nodes in peer-to-peer network. The server will go back to step2 to get next video
data.

The steps described above attempt to simplify the whole process in our streaming system.

Next, we will explain each component in the peer [figure 3.2].

-10 -

Root / Server

Video
Compression
codec

Channe | System

Coding Protocol

Connecting Peer Data
Protocol Management Protocol

Figure 3-2 The component of peer.

3.1.1 Video Compression Codec

This component is used by the root. We attempt to decrease the total data bits of
transmission by video compression codec. This will help each peer in our system. The video
compression codec we used in our system is Windows Media Video 9(VCM) [10]. [10] is the
Microsoft implementation of the VC-1 SMPTE standard. It provides high-quality video for
streaming. This codec supports constant bit rate (CBR) and variable bit rate (VBR) encoding.
And the video compression picture type we used is I-frame and P-frame. For twenty

continuous P-frame, we will insert an I-frame [figure 3.3].

Yuv file or web cam input

N

...... 1 | —

Video co@ing

1 P P P P P P

Figure 3-3 The process of video compression

-11 -

3.1.2 Channel Coding

The channel coding we used is Luby Transform Codes (LT codes) [11]. LT codes makes
sure that receiving fixed number of different encoded blocks could restore the original data
with high probability. Furthermore, it uses simple XOR to encode data so it has low
complexity on encoder and decoder. These properties make that the LT codes is suitable for
peer-to-peer streaming system. Peer does not need to coordinate with its parents frequently. It
greatly reduces the number of control packets and simplifies the data transmission protocol.
Moreover, the overhead of using LT codes is low. Next, we will introduce the process of

encoder and decoder.

The encoder:

First of all, we need to produce a degree distribution table. After that, we have to cut
original file into fixed-size (N) message blocks and decide the degree (d) of each block by a
random seed. According to the degree distribution table, it decides that how many different
blocks doing XOR operation for each message block. If the degree is equal to one, and then
the message block is equal to the encoded block. [Figure 3.4] is the process of producing
encoded blocks. Each encoded block also needs to add the corresponding random seed for

decoder.

-12-

N Message Blocks | | |

Encoded Blocks -

Degree 1 2

|:| : Message Block
P : Encoded Block

——» : XOR Operation

Figure 3-4 LT codes Encoder

The Decoder:

L J

degree distribution table

Degree Probability
1 0.1
2 0.3
N .02

We can get the same relationship between message blocks and encoded blocks by

random seed the encoder provided. Decoding procedure [Figure 3.5] keeps finding the degree

one encoded blocks. Because the message block is equal to the encoded block. The message

block with degree one is restored immediately. After restoring some blocks with degree one,

we can start to restore blocks with degree two. After XOR operation, the encoded block with

degree two decreases its degree to one. Doing above procedure repeatedly, we can restore all

the message blocks.

-13 -

a b c a b c

Degree 1 2 3 Degree 1 0 /2/.I /3’2
Encoded Blocks| 001 111 110 Encoded Blocks | 001 111 110
—

Message Blocks Message Blocks
Block id i i+1 i+2 Block id i i+1 i+2

c
0

Degree Degree /1/
Encoded Blocks Encoded Blocks
Message Blocks Message Blocks - - -

Block id i i+1 i+2 Block id i i+1 i+2

- Undecoding Block
- : Successful Decoding Block

» . XOR Operation

Figure 3-5 The decoding process of LT codes

[Figure 3.6] shows the complete LT encoding process of root. After getting frame from
webcam or file, we put the frame into video encoder. And the size of output frame is different
every time. No matter what, we accumulate each VCM9 encoded frame into buffer until the
total size is equal to or over the section size of LT code. Because it is nearly impossible that
the size of accumulated VCM9 encoded frame is equal to a section size of LT code, there
always exists wasted space [Figure 3.6]. Our solution is to cut the VCMS9 encoded frame and

put the remaining data to the next section.

-14 -

<

| frame | frame
Video coding
-I [T T T [T T T 1771 _EEF'
N
P frame P frame
Channel coding | frame | frame
FI S A I *:l: ------ J
hd Y
Section i Section i+l

Figure 3-6 The Complete LT Encoding process of Root

3.2 Connecting Protocol

Before every peer in the system starts to receive data, they need to follow the connecting
protocol of this system. [Figure 3.7] shows the flow of connecting protocol. We will describe
each step in detail.

Stepl: Initially, the peer (server) enters this system and requests a peer list from patch
server.

Step2: The patch server records every peer in this system. After receiving a request, it will

reply a random peer list.

Step3: After getting the peer list, the server will parse each peer’s information in the peer
list. Next, the server sends the request packets for joining to every peer in the list. We call
these peers in the list candidates.

Step4: These candidates have to decide the reply of the request by their ability. If their
number of children exceeds the threshold, they have to reject the request.

Step5: After receiving the replies of these candidates, we have enough information to

calculate the score for each candidate. We will define the calculation of score later. Finally, we

-15 -

choose the candidates with higher scores to be our parents.

Step6: In this step, we send the packets for confirming the joining action. When the total
number of parents exceeds the threshold, the server will end this connecting procedure. Or the
server goes back to setp4 and picks the other candidates with higher scores.

Connecting protocol

o . Patch Server

9. Calculate each

3. Reguest for join — N O
candidate’ s scor Joining U
and pick the peer 'n

W|th h'gher / Candidates
SCores.

6. Confirm the Joining action @@@
< Parents

Figure 3-7 The Connecting Protocol

[Figure 3.8] shows the format of communication packet. Peer can obtain basic
information of some peers from this packet. Initially, a new peer receives a peer list from
patch server. The header of the packet contains a new ID for this peer and the rest has some

peers’ information. We call these peers candidates. The peer saves all of these candidates’ data

and starts to contact them.

-16 -

Header
Peer 0
Peer 1

Peer i-1

1D ID
Timestamp IP
Info Port
Data Port

Figure 3-8 The Format of Communication Packet

3.3 Peer Management

In peer-to-peer network, how to manage your peers is very important. The reason is the
peers you choose affect your application’s performance. Therefore, how to save and manage
the peers in the system becomes a big issue. Next, we will introduce our peer management
thoroughly.

Initially, we can get some peers by connecting protocol. The information of peers contain
peer’s IP, peer’s port, peer’s score, and ... etc. We save our peers in a peer pool [figure 3.9].

We need to keep updating the data in the peer pool until we leave this system.

Peer Pool

<ID1, IP, Port, Scorei1>

<Idi, IP, Port, Scorei>

Figure 3-9 The peer pool

-17 -

Secondly, we explain how to calculate the score of a peer and how to implement them in
our system. We use four parameters to measure the capability of a node. These four
parameters are the available bandwidth (ABW), and source delay (Fresh Level), the usability

of data (effective ratio), and the variance of packet delay (jitter).

Available Bandwidth (ABW):

This parameter is used to know the available bandwidth the parent can provide. When
peer wants to know available bandwidth of its own, it needs to cumulate the available
bandwidth of all parents. Before cumulating the available bandwidth for each parent, we take
the bandwidth multiplied by the reliable probability. Based on the phenomenon in a
peer-to-peer system (“the longer a peer lives in the system, the less probability it will leave
later.”), [9] uses the Shifted Pareto Distribution [25] to point out the reliable level Ri(t) for
peer i with its lifetime t.

Finally, we compare the cumulated bandwidth with own uploading bandwidth and take
the smaller one [equation 1]. The one we get is our available bandwidth. As a result, this

factor represents the minimum supportable bandwidth of a peer.

ABW (i) =min(> (ABW(j)*R(t;)), UBW;) L)

jei'sParent

Effective Ratio:

This parameter wants to measure the usable data ratio of the parent after finishing a
section of data. It could express the real contribution of this parent node. With this parameter,
you can discount the scores of the parents that send repeated or overdue data. Therefore, we
measure this parameter for each parent after decoding a section of data. At first, we take the

repeated or overdue data the parent (i) sent divided by the total data parent (i) sent [equation

-18 -

2]. And then, we take one minus previous result. In the end, the result is the effective ratio of

parent (i).

repeated or overdue data parentisent | (2)
the total data parent i sent

effectiveratio(i)=1-

Jitter:

In the real world, the peer under high background traffic may influence its own
uploading quality. So we hope to add jitter evaluation to peer’s score calculation. The
definition of jitter is the variance of packet delay. [equation 3] shows the calculation of jitter.
The setting of weights refers to [14]. When we implement this parameter in our system, the
time of packet delay can be regarded as the relative time difference. As a result, although the

time in the different computers is always not the same, the implementation is much easier.

jitterne(i) = jitternew(i)*0.0625 + jitteroq(i)*0.9375 | ©

Fresh Level:

Setting this parameter is for measuring the source delay of a peer. It can show the peer’s
fresh level of data. Each peer in the system always wants to play the newest video streaming
data. This is why we set this parameter. But how to implement in our system is a problem. In
general, the time in the different computers is always not the same. We can only calculate the
relative time difference of the adjacent two peers. Every data packet records the sender’s
source delay and the receiver is able to get own source delay. And peer takes the longest

source delay as its own source delay from its parents.

-19 -

Score(i) = w, * FL(i) + w, * ABW (i) + w, * ER(i) + w, * Jitter (i) (4)

where wl, w2, w3 and w4, are weighting factors.

Finally, we have to calculate the final score of a peer by these four factors [equation 4]. After
that, we will pick the peers with higher scores. Furthermore, we need to choose the weighting
of each factor. We will explain this part in next chapter. Nevertheless, peers’ condition may
change with the time. We have to adjust the peers’ score periodically. Our coding is the

section based of LT codes. Therefore, we adjust each parent’s score after finishing a session.

3.4 Data Protocol

In peer-to-peer network, how to decide the data you want to download and how to
manage the data you downloaded are important. As a result, we attempt to design a data
protocol that fits our system. [Figure 3.10] shows the flow chart of our data protocol. Next,

we describe this protocol at root side and server side.

-20 -

Encoding Procedure for Root

Server

Get common
section index |e
from parents

Ask bandwidth
from parents
according to
their scores

l Re-Encode the
N saction
inish the™_ Yes & adjust
\\srmtiun? | parents’ score
Timeout ~ and ask for next
Sending congest ion section
Buffer
) — | [— Re-pick parents
Section Section from peer pool
i i+1
Playback
Buffer 1 1 1 1 1 | |
Re-Encode
Sending ¥
Buffer I I I l

Section
i

Figure 3-10 The data protocol

Root:

The data protocol in root is intuitive. The job of root is keeping encoding the data and
sending the encoded data to its downstream nodes. At first, we need to keep obtaining original
frame from the webcam or file. And we save these frames into the queue. Next, there is a
thread keeping encoding the original frame from the queue (A) by VCM9 codec. After
encoding a frame, it puts the encoded frame into queue (B). When the queue (B) accumulates
enough size for channel coding, it will send a notification to channel encoder. Finally, we
have a sending buffer storing the encoded data. The size of a sending buffer represents the
maximal number of section you can keep. This buffer is also a circular buffer. When root puts
the encoded data into the corresponding position which is filled with old data, the newer data

will cover the older one. When the downstream nodes ask the section of data root has, root

-21-

starts to send data from the sending buffer according to their allocated bandwidth. We explain
how to allocate the bandwidth of children later.
Server:

The data protocol in server is much complicated than root. There are two buffers in each
server. One is the sending buffer which is same as root. The other is playback buffer storing
the decoded data. First of all, after choosing parents, server needs to decide the initial section
index among the parents. We will discuss how to decide the index in the next part. When we
finish picking the initial index, it is time to allocate the requested bandwidth from parents. We
believe that the parents with higher scores are more suitable for us. As a result, we allocate the
bandwidth according to their scores [equation 5]. The next step is waiting for the completion
of this section. However, we can’t keep on waiting for infinite time. If the time we wait
exceeds the expected time or no more streaming data can be played, we start with the timeout
mechanism. The expected time is the total bits of a section divided by the target bit rate.
Because real time streaming data is time-dependent, we hope to have a stable throughput. The
timeout mechanism helps us to detect the condition of our streaming service. If we decode
this session within our expected time, we put the decoded data into playback buffer.
Furthermore, we re-encode the decoded session by channel encoder and put it into the sending
buffer. This action increases the data diversity of whole system. When the peer receives data

from upstream nodes, the chance of receiving repeat data (encoded block) is much lower.

Score(i)
> score(j)

jeParents

AskingBanavidth(i) = x TargetRate ()

3.4.1 Adaptive index

-22 -

After choosing our parents, we need to decide which section of data to download. In the
same time, our parents have to reply the section of data they download now. Therefore, we
discuss the issue on the two sides.

First of all, we have to choose the section replying to the children according to our
sending buffer. [Figure 3.11] shows a peer’s condition of the sending buffer. The playback
index is the section index of the data peer watches. And the decoding index is the section
index of the data peer receives. We can see the difference between playback index and
decoding index is D. At the beginning of playing the video stream data, D should be the same
as the initial buffer size. A peer's initial buffer size is the amount of data prepared for playing.
We set the value to be two sections. Nevertheless, with the change of peer’s downloading
ability, D will vary over time. If the throughput of the peer drops off, D will be smaller. If we
send the decoding index to our children, we may not be able to transmit the section of data to
them. Because of this condition, we send the decoding index minus one to our child. If D is
the same as initial buffer size or bigger, the throughput of the peer might increase or keeps
stable. It means we have high probability to decode the section we receive successfully. As a
result, we reply the decoding index to our child.

After obtaining each parent’s decoding index, we have to decide the initial section index. The
strategy we use is to choose the newest and maximum section index the parents have. We
want the newest data and get help from more parents. We think it is the best way for our

system.

1 | | | | | |]

——
D

Playback index Decoding index

Figure 3-11 The condition of the sending buffer

-23-

3.4.2 How to allocate the bandwidth of children and

parents

How to manage the download and upload bandwidth in peer-to-peer network is
important. Because we discussed how to allocate download bandwidth, now we describe how
to allocate children’s bandwidth. The strategy we take is to allocate bandwidth fairly for all
the children [figure 3.12]. At first, we need to find out the smallest upload bandwidth for all
children. The spirit of strategy is that we attempt to satisfy each child with the smallest upload
bandwidth. If we still have uploading bandwidth left, we keep satisfying the remaining

children with the smallest amount of bandwidth until the total bandwidth is allocated.

400 kb 200kb 230kb

400kb 200kb 230 kb

Upload bandwidth 640 kb

Upload bandwidth 40 kb
Step 1
Step 2

400kb 200kb 230kb

Upload bandwidth 0 kb

Step 3

Figure 3-12 The process of allocating children’s bandwidth

=24 -

3.4.3 Communication Protocol

In the real world, it is hard to let every computer obtain a public IP. It means there are a
lot of peers under the NAT environment. We use the user datagram protocol (UDP) to solve
NAT traversal problem. [Figure 3.13] shows how our system passes the NAT environment by
UDP. We open two ports for our system. The one (info port) is for sending the communication
packets. The other (data port) is for sending the data packets. When we ask peer list from
patch server, we need to send the request packet through the two ports. The patch server
records every new coming peer’s public IP and ports. Before we ask the data packet from
parents, we need to send the test packet to parent’s data port. That is because we want to
create the mapping from our internal IP and ports to the parents’ external IP and ports in the

router. Therefore, the data packets from parents can be transferred to us by the mapping in the

router.
@ Ask peer list (Info Port & Data Port)
X Reply peer list (nclude Public Into Port &

Data Port) Patch

Send test packet to parent’ s Data Port

Send Data Parents

Figure 3-13 The process of passing the NAT environment

-25-

3.4.4 Packet Protection

Because UDP is a message based connectionless protocol, the packet may be lost in the
process of transmission. Therefore, we provide the data protection for our system. We use
different level of protection according to the importance of packets. At first, we use ACK
mechanism for the regular communication packets (for example: the packets for asking peer
list, joining request, leaving notification ...etc). If a peer receives this kind of packets, it needs
to reply an ACK packet for notifying the sender [Figure 3.14]. If the sender does not receive
the ACK packet after a limited time and the number of resending times for the parent is
smaller than the MAX, we will resend the packet. The MAX is the threshold of resending
times. If the number of sending times is bigger than MAX, we suppose that the peer leaves

this system and remove this peer from peer list.

A. regular communication packets

Limiled ACK

time

.........

A. regular communication packets

X
—
l Limited Barents
tme
Resend Out of date or packet lost
packet if .
(resending
times < MAX)

Figure 3-14 Data protection for regular communication packets

-26 -

When peer decodes the section of data successfully, it needs to request the next section
of data from its parents. If a peer sends this kind of communication packet, it will send the
same communication packet twice [Figure 3.15]. The reason is if the receivers lose this
communication packet, we will receive a bunch of overdue data packets. To prevent this

situation, we send this communication packet twice.

B. request for next session packets

.........

Parents

X

Figure 3-15 Data protection for important communication packets

For the data packet, we do not provide any protection mechanism. That is because we
use the rateless code to encode our data. The encoded packets in the same section are
time-independent. For the receiver, as long as it receives enough packets, it has the ability to

retrieve the original data. Even if we lose a few packets, the decoding will be affected slightly.

-27-

Chapter 4. Simulation Result

4.1 Simulation Environment

In this chapter, we attempt to observe the experiment result in the simulated peer-to-peer
environment. Based on the source code [9] provided, we modify the code according to our
proposed method. Furthermore, we compare the original method with our method in our
designed environment. The simulation platform is NS-2 2.34 and the network topology is
generated with BRITE topology generator.

The topology is generated by some rules. [Figure 4.1] shows one of the topologies. There
are two hundred nodes in the system and we try to let some nodes have background traffic. In
real word, people who are watching the video streaming probably upload some files to
someone at the same time. That is the reason we set our simulated environment like this.

The core nodes (blue) are generated by topology generator. And we put the peers on the
leaf. We set the background traffic as UDP/CBR. The nodes with red color and circular shape
are the senders with background traffic. And the nodes with red color and square shape are the

receivers. We will describe the experiment in detail later.

-28-

Figure 4-1 The network topology

Peer upload/download capacity 1024 Khps
Source upload capacity 10 Mbps

LT block size 1024 Bytes
LT section size 128 K Bytes
Target bit rate 512 Kbps
Buffer size 2 sections
Simulation time 600 seconds
Total peers 200

Table 4-1 The parameter setting

4.2 Weight Setting

-29-

Recalling the [formula 3], we need to decide each factor’s weight. Our goal is to find a
good combination of weights. We let the summation of these four weights equal to one. Thus,
we lock our searching range on the plane of the equation wl+w2+w3+w4=1. [Figure 4-2]
shows the searching process. The coordinate is the weights combination of each factor. They
are fresh level, available bandwidth, jitter and effective ratio in order.

At first, we cut the original square shown in Figure 4-2 into four small squares. Each
black node in the original square is the gravity of each small square. We do experiments to
evaluate these four black nodes. After choosing the best black node in the square, we cut the
corresponding small square into four smaller squares and obtain four red nodes. And we do
the same evaluation to get the best red node. But how to pick the best node from these four
nodes is important. We use four benchmarks to evaluate these four nodes. We separately rank
these four nodes by the four benchmarks. If the node ranks first at one of the benchmarks, it
gets one score. From the average result of many experiments, the score of the best black node
is three and the score of the best red node is four as shown in Figure 4-2.

The standards of evaluation are the average effective throughput, average of playback
continuity, average of jitter and average of source difference in decoding index. The effective
throughput of a peer is computed by non-repeat and non-overdue data packets (encoded
blocks) for every two seconds. The playback continuity of a peer is the ratio of successful
playback before deadlines to the total sections. A peer’s average jitter is the average variance
in the delay of all data packets. The average of source difference is the average of the
decoding section difference of all peers from source for every 10 seconds. In order to observe
the influence of jitter, we add background traffic to half of total nodes in our experiment.

After a series experiments, we get the better combination of weights (3/64, 21/64, 35/64,
3/64). The jitter and the available bandwidth are much more important than other factors.
Because the peers with smaller jitter do not have background traffic to influence their
uploading capacity, we think they have high probability to supply more stable bandwidth for

-30 -

their downstream peers. And the peers with high available bandwidth could make more
contribution to downstream peers than the peers with low available bandwidth. Having

sufficient and stable download bandwidth is important for peers in the system.

(1,0,0,0) (0,1,0,0)

Score : 0 Score : 1

(3/64,21/64,35/64,5/64)
o @® Score:4
Score : 0
® —@
Seore - 0 (1/16,3/169/16,3/16)
® Scoig : 3 ®
Score : 0 Score : 0
(0,0,0,1) (0,0,1,0)

(Fresh Level, Available bandwidth, Jitter, Effective Ratio)
Step1: Black nodes

Step2: Red nodes

Figure 4-2 The searching process of weights

4.3 The Environment under background

traffic

In this section, we want to compare the result to the original method [9]. The method [9]

-31-

proposed did not concern about jitter. As a result, in order to observe the influence of jitter, we
add background traffic to the half of total nodes. The background traffic we use is CBR/UDP.

It is running during the entire simulated time.

Average Jitter

0.08
M—"‘\\
0.07

0.06 / e~
0.05 I/'/ With

Jitter
' % ToN—— — Without

0.04

Average litter (s)

0.02 7 Jitter

0.01

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Time(10s)

Figure 4-3 The average jitter under background traffic
[Figure 4.3] shows the average jitter under background traffic. The interval in the
horizontal axis represents 10 seconds. The blue line'is the method considering jitter and red
line is the method not considering jitter. We can see difference of jitter when the CBR traffic
is running. We set the rate of CBR is 512Kbps and the outside link capacity of peer is
1024Kbps. The whole system suffers from the damage of background traffic. And we can
observe the method considering jitter has smaller average jitter than the compared one.

Next, we want to see the continuous playback index of these two methods [Figure 4.4].
Because we make the background traffic have influence on uploading capacity about 50%, we
can see the great impact on the continuity of playing streaming video. The method with jitter
has smoother streaming quality than without jitter. We believe that our method selects fewer
peers with background traffic as parents. And we will verify it at next part. However, we can

see the method without jitter [9] performs a little bit better after 210s. The reason is shown

-32-

below. At first, the peers may select the nodes with background traffic as parents. After a
period of time, these peers probably do not have smooth video streaming quality. In the
method [9], it adjusts the score of parents by the effective ratio after finishing a section of data.
It means the peer with discontinuous video streaming quality may start to update their parents.
In order to verify our thought, we do an experiment for observing each peer’s change level of
parents [Figure 4.5]. We calculate this parameter for every 2 seconds. Each peer recorded the
parents’ ID two seconds ago and compared with the parents’ ID for now [equation 6]. For
example, node A had the ID vector of parents (1, 5, 25, 33) to be its parents two seconds ago
and had (1, 4, 5, 33, 55) to be its parents for now. The changing level of parent for node A is 2
/' 5. As a result, if the node does not change its parents, its changing level of parent is zero.
From [Figure 4.5], we can see the method without jitter updates their parents frequently
between 110s and 210s. Therefore, that is why the method [9] proposed performs a little bit
better after 210s. On the other hand, the method with jitter picks much fewer nodes with
background traffic in the process of parent selection. As a result, our method enjoys the stable

video streaming quality.

Continue Playback Index
1.02
1
% 098 :\\\./'/ B —
k-]
S 096 —~———— o~
"~ 094 \ o~ With
3 o \~ Yad i
o 032 N 7 Jitter
2 09 N —
£ 088 With
§ o0sc ——Without
© - litter
0.84 _
0.82
1357 911131517192123252729313335373941434547495153555759
Time(10s)

Figure 4-4 The continuous playback index under background traffic

-33-

the count of different parents (6)

changing level (i) =
Max(total number of parents (now), total number of parents (2s ago))

The changing level of parent
0.14

0.12

0.1 _A/\f/\-\,jv\\‘\/\/\/\\ — Without
0.08 v VMVI\—A,/VJV Jitter

0.06 7

The Changing level of parent

WVVW — With
0.04 v Jitter
0.02
0O *—+————rr T T T T T T T T T T
1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Time(10s)

Figure 4-5 The changing level of parent under background traffic

Next, we observe the effective throughput of these two methods [Figure 4.6]. The blue
line is our method and the average is 640.45 kbps. The average of red line is 629.33 kbps. We

can see our method has higher effective throughput than the method [9].

Effective Throughput

800

750 A\

700 %\ .

650 e —\With
p——— — — .

600 < """ —~— ~ litter
V SN~

550

500 —\Without
450 Jitter

400
350

300 L L L e I B O B O

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Effective Throughput (kbps)

Time (10s)

Figure 4-6 The effective throughput under background traffic
[Figure 4.7] shows the source delay of these two methods. Because our encoded data is

=34 -

section-based, we calculate the source delay by section difference. The average of our method
is 1.312 sections. The average of red line is 3.313 sections. We believe our method enjoys

newer video data than the method [9].

Source Delay

5
45
S 4 ~ N
g s // \\-...—.._..--——-—-—’f With
2 3 Jitter
> /
m™ 25
g 15 // // Without
> 1 Jitter
=] et
Y o5 ;4/

0 rrTrrrrrrrrrrrerrrrTrrrTrT T T TrTT TT T T TT TT TT T T TT T T T TT ITTT T TT TT T T T T 1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58
Time(10s)

Figure 4-7 The source delay under background traffic

Finally, we check the ratio of the parents with background traffic for the two methods
[Figure 4.8]. In this experiment, we want to check that our method takes effect on parent
selection in the environment with background traffic. The blue line is our method and the
average is 0.0832. The average of red line is 0.2053. Each peer in the system has 5 parents in
average. In other words, the method [9] proposed selects about one peer with background for
their parent in average. We believe that this is the main reason to explain why our method is
better than original method [9]. Consequently, we consider our method is good for the system

under background traffic.

-35-

The ratio of parents with background traffic

- 0.3
=
2 © o5 ra
[
A e e e ,

g 02 [/ - — With
a £ i
- 50715 P Jitter
e 2 \
T e €1 ____ —Without

=0 .
a 005 Jitter
-]

O M Ilrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr1rrrrrrrrr1rr1rrr1r 11 TT1

1 4 7 10131619 22 25 28 31 34 37 40 43 46 49 52 55 58

Time(10s)

Figure 4-8 The ratio of the parents with background traffic

4.4 The real-world.implementation

We want to introduce our system interface [Figure 4.9] at this part. At first, the resolution
of display is 640x480 and the frame rate (E) is shown in the upper right corner. Each peer in
the system has a unique identification (A) and it is shown in the upper left corner. Next, we
can see the section index we are receiving (B)and playing (C). We also have information
about the parents and it contains the identification and score for each parent (D).

We design a simple environment in order to review our system in the real world. The
connection between two peers may change over time. [Figure 4.10] shows one of the network

topologies in the real world.

-36 -

(A)Node ID

®)
The receiving
section index

(V)]
The playing
section index

Figure 4-10 The network topology in real world

-37 -

B
Frame per
second

©)
The scores of
parents

Peer upload/download capacity 1024 Kbps
Source upload capacity 4096 Kbps
LT block size 1024 Bytes
LT section size 80 K Bytes
Target bit rate 800 Kbps
Buffer size 2 sections
Simulation time 900 seconds
Total peers 10

Table 4-2 The parameter setting

At this experiment, we want to test the stability of our system. Therefore, we reduce half
of the uploading bandwidth for one third of peers at 430s.

[Figure 4.11] shows the average effective throughput of all peers in the system. The
interval in the horizontal axis represents 10 seconds. The blue line represents the effective
throughput and the red line represents the goodput. \We can clearly see that each peer has a
stable throughput before 430s. When we reduced some peers’ uploading capacity, these peers’
children might suffer from insufficient download bandwidth. Nevertheless, these peers in our
system adjust the scores of their parents dynamically and try to find better peers to be their

parents. That is why the throughput becomes stable again after a period of time.

-38 -

1000
900
800
700
600
500
400
300
200
100

Effective Throughput (kbps)

Effective Throughput

A A A s 2 A

VN A WA AN

4

\

/

1 5 91317212529333741454953576165697377818589

Time(s)

[e~ | A~ A —Throughput
S | '

——Goodput

[Figure 4.12] shows the average source delay (section) of all peers in the system. The
blue line represents the decoding index and the red line represents the playback index. We can
see the difference between the two lines keeps in two sections. That is because we set the initial
buffer size to be two sections. On the other hand, it means each peer in the system has a stable

frame rate and source delay. Similarly, we have a higher source delay at 430s and it becomes

Figure 4-11 The average throughput

stable after a period of time.

Source Delay

A

A A AM;—'\I

VYo

Source Delay (section)
W

NS

0 T TTTTTTTTTTI T T T T T T T T I T T T T T T T T I T T T T T T T T I T T T T T T T I T T T T T T T T I T T T T T T T T I T T T T T T T I T T T T T T T TITTI Tl

1 5 9 131721252933374145495357616569 7377 818589

Time(s)

—Decoding
index

——Playback
Index

Figure 4-12 The average source delay

-39-

[Figure 4.13] shows the PSNR for each decoded frame. Due to the space limit, we list
about 750 frames. For twenty continuous P-frame, we insert an I-frame. Therefore, the peak

values represent the PSNR for the I-frame. And the average PSNR is 37.13009.

PSNR
39.5
39 I RN " - N
385 | LI LI 1] |
L 38 | 1L 1111 111 [
Z 37s | LI L 111 |
a 37 -
36.5
36
—~ O o0 M~ WD W s MmO D~ Wy D Oy 0~ D W
NN OISR AN IR IITEIIANARBEIRXR
Frame Index

Figure 4-13 The PSNR for each decoded frame

- 40 -

Chapter 5. Conclusions

5.1 Conclusions

In this paper, we attempt to build a real time peer-to-peer streaming system. Referring to
[9], we modify the method [9] and implement it into the peer-to-peer streaming system. At
first, we choose the mesh-based architecture to construct the peer-to-peer topology. Next, we
use VCMO for our video compression and LT codes for reducing the data coordination
packets. Finally, we have to establish the system protocol. The system protocol contains the
connecting protocol, data protocol and peer management. The connecting protocol is for the
new coming peers joining our streaming system. The data protocol teaches the peer how to
allocate self downloading and uploading bandwidth and ask what section of data. The peer
management protocol is to manage the peer pool and update the parents’ score. We add the
jitter parameter to parents’ score evaluation. The simulated experiment under background
traffic shows the score evaluation considering with jitter is good for the proposed system. We

believe our peer-to-peer streaming system is suitable for the real world.

-41 -

Reference

[1] Jagadish HV, Ooi BC, Vu QH BATON: A Balanced tree structure for peer-to-peer
networks. In: Proceedings of the international conference on very large data bases 2005,
Trondheim, Norway. p. 661-72.

[2] Hung-Chang Hsiao and Chih-Peng He, "A Tree based Peer-to-Peer Network with Quality
Guarantees"”, IEEE Trans. on Parallel and Distributed Systems, Vol. 19, No. 8, pp.
1099-1110, Aug. 2008.

[3] N.Magharei and R. Rejaie, “Prime: Peer-to-peer receiver-drivenmesh-based streaming,”
in Proc. IEEE INFOCOM, 2007, pp. 1415-1423

[4] X. Zhang, J. Liu, B. Li, and T.P. Yum, "CoolStreaming/DONet: a data-driven overlay
network for peer-to-peer live media streaming,” in INFOCOM 2005. 24th Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings IEEE,
2005, pp. 2102-2111 vol. 3.

[5] D.A. Tran, K. A. Hua, and T. Do, "ZIGZAG: an efficient peer-to-peer scheme for media
streaming,” in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE
Computer and Communications Societies. IEEE, 2003, pp. 1283-1292 vol.2.

[6] Y.-H.G. Chu, S. Rao, and H. Zhang, “A case for end system multicast,”
in Proc. ACM SIGMETRICS, 2000, pp. 1-12.

[7] S. Banerjee, B. Bhattacharjee, and C. Kommareddy, “Scalable application layer
multicast,” in Proc. ACM SIGCOMM, Oct. 2002, pp.205-217.

[8] V. Paietal., “Chainsaw: Eliminating trees from overlay multicast,” in
Proc. IPTPS, Feb. 2005.

[9] Chih-Wei Fan-Chiang and Hsu-Feng Hsiao , “Dynamic and Resilient Peer-to-Peer
Architecture for Live Streaming”, NCTU, master's degree, 2009

[10] Windows Media Codecs :
http://www.microsoft.com/windows/windowsmedia/forpros/codecs/video.aspx

[11] M. Luby, "LT codes," in Foundations of Computer Science, 2002. Proceedings. The 43rd
Annual IEEE Symposium on, 2002, pp. 271-280.

[12] K. Sripanidkulchai, B. Maggs, and H. Zhang, "An analysis of live streaming workloads
on the internet,” in Proceedings of the 4th ACM SIGCOMM conference on Internet
measurement Taormina, Sicily, Italy: ACM, 2004.

[13] K. Sripanidkulchai, A. Ganjam, B. Maggs, and H. Zhang, "The feasibility of supporting
large-scale live streaming applications with dynamic application end-points,”
SIGCOMM Comput. Commun. Rev., vol. 34, pp. 107-120, 2004.

[14] Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson,"RTP: A transport protocol for
real-time applications”, RFC1889, January 1996.

-42 -

[15] L. Rizzo, “Effetive Erasure Codes for Reliable Computer Communication Protocols,”
ACM Computer Communication Review, Vol. 27, n. 2, Apr. 97, pp 24-36

[16] A. Shokrollahi, “Raptor codes,” Digital Fountain, Inc., Tech. Rep. DF2003-06-001, June
2003.

[17] X. Liao, H. Jin, Y. Liu, L.M. Ni, and D. Deng, “AnySee: Peer-To-Peer live streaming,” in
Proc. IEEE INFOCOM, Apr. 2006.

[18] Sopcast : http://www.sopcast.com/

[19] PPStream : http://www.ppstream.com/

[20] TvuNetworks : http://www.tvunetworks.com/

[21] Y. Liu, Y. Guo, and C. Liang, “A survey on peer-to-peer video streaming systems,”
Peer-to-Peer Networking and Applications, vol. 1, no. 1, pp.18-28, March 2008.

[22] G. Huang, “PPLive — a practical P2P live systems with huge amount of users” (keynote),
P2P streaming and IPTV workshop (P2P-TV), Kyoto, Japan , Aug. 2007

[23] X. Hei, C. Liang, J. Liang, Y. Liu, and K. W. Ross, "A Measurement Study of a
Large-Scale P2P IPTV System," Multimedia, IEEE Transactions on, vol. 9, pp.
1672-1687, 2007.

[24] A. Horvath, M. Telek, D. Rossi, P. Veglia, D. Ciullo, M. A. Garcia, E.Leonardi, M.
Mellia, “Dissecting PPLive, SopCast, TVAnts”, submitted to ACM Conext, 2008.

[25] Derek Leonard, Vivek Rai, and Dmitri Loguinov, "On lifetime-based node failure and
stochastic resilience of decentralized peer-to-peer networks,” SIGMETRICS Perform.
Eval. Rev., vol. 33, pp. 26-37, 2005.

[26] NF Huang, YJ Tzang, HY Chang, “Construction of an efficient ring-tree-based
Peer-to-Peer streaming platform”, Networked Computing and Advanced Information
Management (NCM), 2010.

-43-

