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單一視角影片中折疊表面之深度重建 

 

 

研究生：蔡明翰 指導教授：林奕成 助理教授 

 

國立交通大學 

多媒體工程研究所 

 

摘要 

 

 這篇論文提供了新的方法還原影片中有皺折的表面的深度值, 像是衣服或

飄動的旗子, 並使其結果可應用在立體顯示器上. 我們的方法結合了

Shape-from-shading 和基於主軸分析的子空間近似法, 使結果能保留表面的高

低起伏變化, 同時不會受影片中的雜訊影響. 

 

關鍵字: 深度還原, 由明暗還原形狀, 影片處理. 
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Foldable 3D Surface Reconstruction from 

Single-view Video 

 

 

 

Student: Ming-Han Tsai Advisor: Dr. I-Chen Lin 

 

Institute of Multimedia Engineering 

National Chiao Tung University 

 

Abstract 

 In this thesis, we propose a novel method to reconstruct fluttering surface such as 

flags and cloth in the video sequence which can be used for the 3D display. Shape 

recovery of real object from a video sequence is a difficult subject. Here, we focus 

only on fluttering surface which can possibly be folded. While most 

shape-from-shading can only deal with single-material smooth objects, we propose 

using shape-from-shading and decoloring techniques to reconstruct more detailed 

surfaces under a single directional lighting condition, the surface can be 

multi-material with folding. To alleviate the noise and ill-pose problem, we take 

shape-from-shading as initial-guess, and further use Principle Component Analysis 

(PCA)-based subspace approximation to recover full video sequence.  



 

III 
 

 With the proposed method, users only have to designate the flag by 

graph-cut-based tool. We can then automatically recover waving flag‟s 3D geometry 

and change its texture. Our results demonstrate that our system work satisfactorily 

even under a noisy situation, and provide a reasonable solution for free-view point 

content generation. 

Keyword: Depth Recovery, Shape-From-shading, Video Editing. 
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1. Introduction 

1.1 Motivation 

Televisions are important in every family. They bring not only information but 

also entertainment to us. In recent years, televisions have dramatic improvements, 

especially in size and resolution, and one remarkable technology of them is the free 

viewpoint 3D display. In the near future, one can respect to see 3D movie at home. 

To show a video without view limitation, we display not only the color frame 

channels but also the depth of the scene. New 3D content videos are recorded by a 

special camera with two view points for depth estimation. In computer graphics-based 

video, since the scenes were rendered according to polygonal models, depths were 

retrieved inherently. Unfortunately, conventional video doesn‟t have depth channel so 

it cannot directly be displayed over 3D display. That is the goal of this thesis. 

 

1.2 Background 

There are many methods proposed to generate depth maps, and it‟s a prevailing 

approach by using multiple views which requires synchronously captured images and 

accurate pixel correspondence in each view. Due to the scene ambiguity (not-rigid 

body、similar color object、occlusion), it is a challenge to full automatically recover 

depth map of a general scene by the multiple-view technique. Even though, with 

manual assistants, multiple views can get a more effective result. However, traditional 

popularly–used videos, like existing DVD movies, were not captured by multiple 

views. For these reason, we want to find out an efficient and practical approach such 
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that we can generate sequence of depth map toward the target object from the 

common video sequence. 

The challenge is : we have no any clues except image color in the video. The 

surface is undulation so it cannot be regarded as rigid body; the video was taken by a   

single-view point so we cannot get synchronized potion parallax as these in binocular 

views. Besides, the low-resolution and noise of video make it more difficult.  

Our goal is to recover the depth maps of target surface from a general 

single-view video sequence like movies or family video illuminated at a simple 

lighting condition. Because the target surface in the video sequence can be folded, of 

multi-material, or with non-rigid-body properties, we combine the SFS and the 

PC-basis Morphable model with space-time optimization to approximate its surface as 

real as possible. 
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In this paper, we focus on fluttering surface such as flags and clothes. Our 

system has three parts: In pre-processing step, we take one video sequence as input 

and segment the target object frame by frame, and then remove the color component 

of each frame but keep the shading. 

After decoloring, we apply SFS on each frame. Although the result is still 

imperfect, it provides a reasonable initial-guess depth map. Then we calculate all 

distance from the surface‟s two corners to every point over it. These distances help us 

to figure out where the feature points should located. After fitting the shape as a linear 

combination of Principle-Component-basis vectors, we can get a proper 3D mesh 

surface. 
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2. Related work 

This section has three parts: First of all, we introduce geometry-based 3D 

construction method like Blender3D and Maya. Then we show image-based 

reconstruction techniques such as Structured-line, Multi-view reconstruction, 

Photometric stereo, and SFS. Finally, we describe some applications of 

reconstruction.  

 

2.1 Geometry-based Method 

The first approach is interactive modeling with manual assistance, like 

Blender3D、Maya. Through these tools we can build a model manually, but it is 

labor-intensive to create a photorealistic result. Several intelligent or hybrid modeling 

system were proposed to reduce manual intervention. [Hengel et al. 2007.] proposed 

building a realistic 3D models from video by point clouds with a small number of 

simple 2D sketches as constraints. 

[Debevec et al. 1996] provided another method to construct 3D model from 

video. Users needed only draw some structure lines, and the system then built 3D 

buildings and retargeted the texture over it.  

 

 

 

 

 

 

Fig2.P. Devebec et al‟s 3D reconstrunction from video. 
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2.2 Active Structured-line System 

By contrast, the second kind of approach using active structured light system is 

faster and more convenient. It is also the main stream of the high-accuracy 3D 

recovery. In the early years, 3D scanning technique was only suitable for static 

objects, and it needed more scanning time. [S.Rusinkiewicz et al. 2002.] developed 

the system based on the structured-light system and a real-time variant of 

ICP(iterative closest points) to align the shapes acquired from multiple views. It made 

the significant impact of rapid 3D recovery. [L.Zhang et al. 2004.] used the consistent 

space-time stereo technique to enhance the reliability of acquired 3D data. By usage 

of the structure-light system, we can precisely estimate the shape of the target object, 

but it still has several defects limiting its usability. The target object is limited to be a 

nearly-lambertian object and not suitable for the one too big or the scene outdoors. 

 

Fig3. L.Zhang et al.’s facial detail reconstruction system and depth data 

 

2.3Multiple views 

Multiple view technique plays an important role in reconstruction. With well 

calibration and correspondence matching, we can reconstruct scene‟s surface. But 

it’s cost-high to find the reliable correspondence matching at untextural or highly 



 

7 
 

repeated regions and the occlusion of correspondences are also the problem. Even 

though, it‟s still widely used as the constrain to other technique or a coarse shape 

recovery. 

 

[Vogiatzis et al. 2005.] proposed a novel technique combined multi-view stereo 

with graph-cut based optimization for detailed surface reconstruction. They used the 

visual hull as the initial shape, and then defined a continuous photo-consistency 

function as a flow graph to minimize the detailed surface. 

 

Structure form motion is the same technique but use only one single camera 

instead and suitable for the moving rigid or static object. With such a uncalibrated 

property, it is more suitable for the common video sequence. 

 

[Pollefeys et al. 2006.] used the corner detection to find out the feature points, 

and then found out the correspondences by use of the epipolar geometric properties. 

The affine transformations between multiple-views were therefore acquired. 

 

 

 

 

 

 

Fig4. Pollefeys et al.‟s Reconstructed model and the view points 

 

If there were few correspondences, only sparse 3D points can be estimated. [M. 

Lhuillier et al. 2005.] proposed an approach to generate quasi-dense 3D points toward 
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the surface with fewer feature points. They produced a dense disparity map and used 

it to improve numbers and qualities of the feature correspondences matching by the 

correlation method. Moreover, they proposed a fast gauge-fee algorithm to estimate 

the accuracy of the recovered 3D depth. 

 

For the non-rigid body, [Torresami et al. 2003.] proposed a method combined 

with structure from motion to recover the target shape from the video. They defined a 

non-rigid body as a rigid transformation combined with a non-rigid deformation in the 

time frames. Under the assumption that the object shape at each time frame was 

organized from a Gaussian distribution, they simultaneously estimated 3D shapes in 

each time frame, learned the parameters of the Gaussian, and also recovered the 

missing data points. Finally, they implemented the space-time constrain to the object 

shape for the better consistent result. 

2.4 Photometric stereo 

Photometric stereo estimates local surface orientation by using several images of 

a surface taken from the same viewpoint but under illumination from different 

directions. 

 
Fig5. The left two images are the reconstructed surface by the M. seitz et al‟s method. 

The right four images are the reference and target object used for 
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[M. seitz et al. 2004.] proposed the example-based photometric stereo method. 

They introduced orientation-consistency concept to reconstruct the surface normal 

from the reference images where the reference objects with identical materials were 

also taken. Combined with traditional photometric stereo, a more detailed surface can 

be recovered. The technique is reliable to be applied to a broader class of objects than 

previous photometric stereo technique. 

. 

 

[Carlos et al. 2008.] used the silhouettes in multiple views to recover camera 

motion and then got a coarse shape of the object by the visual hull. Besides, they 

proposed a robust technique to estimate light directions and introduced a novel 

formulation to combine photometric stereo and 3D points from visual hull.  

 

2.5 Shape-from-shading (SFS) 

Shape-form-shading recovers the shape from the gradual variation of shading of 

one single image. However, it has several limitations. For example, it is sensitive to 

the noise of intensity, and the light condition is limited to simple lighting conditions. 

SFS techniques only work for single material object by its principle. Most important 

of all, SFS techniques can only recover continuous surface, so it cannot deal with 

folding. Even though, it‟s single-view requirement is a benefit for image-based 

modeling. We need only one single shot and without the correspondences matching 

compared to multiple views technique.  

Due to its intrinsic ill-pose problem, [Zeng et al. 2005.] proposed a user-assistant 

solution of continuous surface. Users input surface normal on specific feature points 

and the system refined the surface variations to the whole face. This method applied a 
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Fast Marching Method speed up the computation. After optimizing the energy 

function combining with each local surface, it can evaluate a global solution toward 

synthetic and real-world data. 

 

[Tai-Pang et al. 2008.] made a extension of the above one. Toward the biases of 

the light direction, they reformulated SFS and produced good initial normals for a 

large region to leave most noticeable errors mainly in the smooth part. They also 

developed an easily used 2D user-interface to edit and correct the normal map. 

 

 

Fig7. Tai-Pang et al’s reconstructed surface 

 

 

 

Fig6.Interactive Shape-from-shading 
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2.6 Others 

[Fang et al. 2006.] combined the Shape-from-shading and texture synthesis to 

re-texture the target object in the photograph and video. They used optical flow 

keeping the texture coordinate in each frame. However, this approach is error-prone 

due to the Lambertian surface assumption and simple lighting conditions. It was only 

suitable for some simple objects, like t-shirt or sculptures, and needed manual 

rectification. Furthermore, it can only recover normal vectors.  

 

Fig8. Fang et al.‟s method pastes an image on a surface in video. 

 

[Lin et al. 2004] analyzed the texture‟s type of geometry. They viewed 

near-regular textures as statistical departures from a regular texture along different 

dimensions. So they used shape-from-texture to recover geometry. This method 

worked mainly on surface with regular/near-regular texture and it also only recovered 

normal vectors. The two methods don‟t really recover surface geometry, but they 

synthesized realistic results by texture synthesis. It motivates us that we may not need 

to recover the exact depth map, but related depths for view changes. 
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[Mathieu et al. 2009.] provided another optimization method to recover 3D mesh 

with inequality constraints. It also combined with Principle Component Analysis 

(PCA) so that it can folds and individual images. Nevertheless, this method needed an 

initial mesh on the surface, and cannot deal with self-occlusion. 

     Fig10. Mathieu et al.‟s method recovers 3D mesh in video. 

 

 

 

Fig9.Lin et al perform texture 

replacement on an outdoor photo. 
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3. Method 

The input of our system is a single-view video sequence. Here we divide our 

method into four stages: Preprocessing, Initial surface by Shape-from-shading , 

Control Point Estimation and PCA-based space-time optimization. Details of 

these stages are then introduced in the following sections. 
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Fig11.Demostration of our system. 
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3.1 Preprocessing: 

Given a single-view input video, our first step is to perform image/video 

segmentation for tar region extraction. Here, we modify [Jue Wang 2005.]‟s video cut 

method. 

For a common cloth image, its reflected intensities result from both shading from 

surface gradients and material reflection. Before we estimate its surface undulation, 

we should remove the material‟s effect and reduce our problem to 

Shape-from-shading of a single-material surface.. 

We combine [Marshall F. Tappen 2005.]‟s methods to remove the 

material-reflectance component. First, we create a color histogram to store colors of 

extracted regions of the whole video sequence. For each pixel in one particular image, 

we calculate the color vector C(x,y) = <R,G,B> and find the same direction color 

vector in the histogram which has maximum intensity. Because the histogram is 

created from all frames, for a highly deformed surface, it‟s highly possible that there 

exists one pixel of an individual material has faced the light direction. Based on the 

Lambertian reflection, we assume the maximum intensity of a color vector as the 

individual material color. After all, we can calculate normal of each pixel (x,y) as 

N x, y =   
C x,y −IMin

IMax −IMin
 . 

 

 

 

 

 

 

(a) (b) (c) 

Fig12.The decoloring processing. (a) Source image. 

(b)Recovered shading (c) Color component. 
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3.2 Initial surface by Shape-from-shading: 

3D mesh is usually a good parametric representation of geometry reconstruction. 

Nevertheless, for estimating highly deformed surface from a single view, exploring 

the whole degrees of freedoms of meshes is too expensive in computation and is also 

easily trapped into local minima. Instead, we use a lower dimensional parametric 

space, called morphable model space(or PCA space) for more stable shape recovery. 

We assume that our target surface has following properties: 

(1) Foldable but with little self-occlusion. 

(2) The maximum of surface undulation is less than 
1

4
 of an edge. 

(3) The four boundary vertices are nearly laid on one plane. 

Surface with these properties can provide more reasonable Shape-from-Shading 

result. Furthermore, to track the motion markless cloth, we select the surface with the 

biggest area as our “reference frame” from the video sequence.  

The following step is to generate an initial-guess depth map. Our input is only 

one single image and has no other viewpoints. Shape-from-Shading (SFS) is the few 

solution that can deal with such limited information. Here, we adapt Pentland‟s linear 

Shape-from-shading method.  

Shape-from-Shading recovers depth from normal vector. Due to noise and 

insufficient scene information, it cannot tell us the surface‟s really height. In other 

word, Shape-from-Shading only recovers “relative” height. 

 

 

 

 

 Fig13.SFS result in different viewpoint. 



 

16 
 

3.3 Control Point Estimation 

To deal with unstable and highly deformed clothes or flags, we propose using 

morphable model for shape recovery. Nevertheless, mapping between morphable 

grids to input image is not straightforward. Here we consider the geodesic distances 

on the surface we recovered in SFS stage. Given point 𝑋 and 𝑌 on the surface, if 

the surface is flat, the straight line across 𝑋 and 𝑌 have minima distance. When the 

surface is undulating, the “line” with minimum geodesic distance may not look  

“straight” at the camera viewpoint as shown in Fig.10. No matter the line looks like, 

the geodesic distance is the same location. 

 

 

 

 

 

 

 

 

 

 

 

Without loss of generality, we consider the distance from the upper two vertices 

to all other points over the surface. Our generic mesh can be seen as lattices with the 

same size. Assume the width and height of the square flags is 𝐿 and break the flag 

into n*n grid. Every grid‟ size is 
𝐿

𝑛
∗

𝐿

𝑛
 .We name every vertex  𝑉 𝑢, 𝑣  of mesh as 

Fig.15. 

Fig14.The line across 𝑋 and 𝑌. (a) Source texture 

with straight line. (b) (c) The same line on not-flat 

geometry. 

(a) (b) (c) 
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First we consider the v-axis .To the point over the v=k axis, we can write: 

 

 

 . 

 Then about the u-axis. To all points over the i=k axis we can write: 

 

 

 

 

 

 With the above two equation, we can locate control points over the 3D geometry 

of the surface. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig15.An example of 3*3 mesh. 
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 After we define the above two equations, the next step is how to calculate the 

distance between 
vuV ,

and 
0,0V over the surface. Of course we cannot directly 

calculate the L2 norm between the two vertexes. The solution is to use Dijkstra 

algorithm. 

 Dijkstra algorithm bases on the following concept: If there exists a path P from 

0,0V  to 
yxV ,
which has minima geodesic length, the path 'P  from 

0,0V  to some 

point just in front of 
yxV ,
 is also a minima path. In our experiment, the basic 

dynamic programming function is: 

 

 

 

 We calculate the distance function all over the surface, therefore, we get a table 

saved all vertex‟s minima distance to 
0,0V . 

 Generally, the above equation cannot work well because of our decoloring 

method. The decoloring method is not perfect so there exists gaps between color 

regions. Surface‟s Normals near the gap sharp thus effect shape-from-shading‟s result 

and so that the ),( ,0,0 jiVVdist  will become larger if the path P cross the gap. So we 

adjust the dist function: 

 

 

 

 Here dT  acts like an upper bound of distance of any two close vertices. So the 

color‟s effect is diminished. Not only we calculate all the distance from 
0,0V  to all 
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other vertex, we also take 
0,nV into account. After the two dynamic programming 

processes, we get two distance map from the two upper vertexes. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig17. The distance map.(a) The recovered shading image. (b) 

From the left-up vertex (c) From the right-up vertex. The 

Darker is closer. 

(a) 

(b) (c) 
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0,00,0 PV  , 
0,0, wn PV 

 
//Assign the two upper point‟s position 

For u = 1 to W 

For v = 1 to H 

 For 1≤ rk , ck ≤ n 

If( row
r
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vu TL
n

k
LPVdist

n
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End rk , ck
 

End j 

End i 

Finally we check all the pixels to find someone located at right distance from two 

upper vertices: 

 

 

 

 

 

 

 

 

 

Fig18. The control points algorithm. colT  and rowT are thresholds. 
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 The above mentioned algorithm has a problem: because of error propogation, the 

estimated lengh and position are not precise in lower region (far from the origin 

vertices). From Fig19, we can see that control points are compact in upper region, but 

are distorted in lower part.  

3.4 Space Optimization of Mesh Recovering 

It is difficult and imprecise to treat the above result as the really mesh point‟s 

position.The z-axis of each points is from shape-from-shading result, which is just a 

“related” depth. Worst of all, the control points miss much and we easily see that 

those points didn‟t locate at what they should be as i and j increased.  

Because of the above reason, we need a stable method to recover the geometry 

and take its characteristic into account. Meanwhile, the method should restrict the 

improved control points‟ location near our estimation. One appropriate technique is 

Fig19.Estimating control points. (a) The selected frame. (b) The 

columns when n=10. (c) The columns when n=10. Notice that the 

two row/column of k=0 and 10 is not appear. (d) The control 

point we really recovered. The mesh is 16*15. 

(c) (d) 

(a) (b) 
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using Principle Component Analysis(PCA). First we generate training data by cloth 

simulation, then find out their statistics characteristics, called principle componenes. 

Then we use the PCs to recover the mesh by subspace optimization. 

 

 

 

 

 

 

The relation among input estimation control points ( X ,Y , Z ) generated at the 

3.3, PCs and PC projected coefficient kw  is: 

 

 

 

where θ and ρ are two rotate angles, T is tranition and S is scalar matrix.  
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To reduce the computing complexity, we change the matrix order as follows: 

 

 

 

    where 
11  ST  are inverse of T  and S . 

Because the two upper vertices should be translated to the same position, we can 

easily define the scalar matrix S‟ by scale the distance between 
0,0V
 
and 

jiV ,
to 

0,0VP
 
and 

jiVP ,
. At the mean while, the translation vector T‟ can be defined as the 

vector           . Finally, we consider the following equation: 

 For each )',','( ,,,, jijijiji ZYXV  , 

 

Fig21. The relation between PC subspace and input image 

domain. 
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where                  is        .  

 

We therefore recover the shape by solving the optimization problem: 

    

 

     

 

As we mentioned before, our estimation control points‟ correctness is inversely 

proportional to the distance from upper vertex. So we modified the optimization 

equation with a weight                   .As    go near the lower corner,  ,  

decreases. Here we set   = 1.0. 

 

     

 

 

 

Besides, the grid‟s size will keeps no matter how the flag waves. So to 

each   ,the distance of           and           should be limited. The problem 

is: as [Mathieu Salzmann 2009] mentioned, when deformed, while the geodesic 

distance between the two points is preserved, the projected one decreases. Here we 

don‟t directly deal with this problem, but we just limit the distance in a reasonable 

range. While we implement it as penalty according to length variation, it can be 

regarded as a spring constraint between vertices. The following energy function will 

be added in our minimize function: 
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 where L is the grid‟s length and cE is our previous optimization equation. 

 We call the rear part    as distance constraint. 

 

 Last but not least, we have to add one more constraint in the optimization 

function. Because of the    , the farther control points may move to unpredicted 

location as follows: 

 

 

 

 

 

 

 

 

 

 To get a better result, we give the boundary point a bigger weight. Althrough our 

minima distance method may not works well over the boundary, the boundary 

vertex‟s location is easy to directly estimate from our SFS result. We define the 

boundary cost function    : 

 

 

 

  where          constraints the boundary‟s 2D position. 

ctrlw

Fig22. The bad result without boundary constraint. 
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 The final optimization function we used is: 

 

 

 

3.5 Time Optimization 

Finally we have to map the mesh on all the frames in the video. Here we use 

the method in [Mathieu Salzmann,2009]. This paper introduce a optimal solution 

with a given 3D mesh and mapping the mesh to all frames. The optimal equation 

is: 

 

   Where   is it‟s objective function for a single frame,  

and  

 We replace the    component with our objective function and apply to all 

frames. Thus we get a continuous video sequence. 

Fig23. The bettwe result and its wireframes. 
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4. Experimental Results 

Our experiment has three steps: First we apply our method to images captured 

from synthetic video sequence. Then we add in time constraint and recover the whole 

surface sequence. In the end, we try to use our method in real world data, shows the 

limitation of our presented method. Furthermore, we also include heavy noise in 

synthetic image to verify the stability of the proposed method. 

We run our experiment in a Core 2 Duo PC with 3G RAM. Our input image‟s 

size is less than 300*300 pixels. The whole process of each frame is finished in less 

than 5 seconds. 

4.1 Synthetic Data(single) 

We generate some frames from our cloth simulation program, and then apply our 

method on each one without time constraints in Fig23&24 below. Clearly see that our 

method can keep the surface‟s geometry, and the recovered surface is smooth, which 

means it is not affected by material color and noise.  

 

 

 

 

 

 

 

 

 

 

Fig24.Two synthetic frames from our cloth simulation and the reconstruction geometries. 

As we mentioned, Our method perform well in upper region but in lower region, the 

boundary is still inconsistent. 
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4.2 Synthetic data(sequential) 

Here we generate a sequence or frames and apply our method with time 

constraints. The motion is smooth but the boundary errors become unpredictable. 

That‟s because we take the frame with biggest area as reference frame, and then all 

other boundary points will be contraction because of interpolation. 

 

 

Fig25.Synthetic data with noise. Easily see the recovered surface is noise-proof. 

Fig26.Synthetic frames sequence. First row is synthetic frames at t=1, t=5 

and t=9, and the second row is the recovered geometry. The boundary is not 

consistent because of the interpolation in optimization processing. 
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4.3 Real data surface 

While applying our method in real data, we found that our mesh is not delicate 

enough to capture the details in real data surface. Our method designed to be not 

affected by small variation like noise, but at the meanwhile, it cannot capture the 

undulation in a small grid, which will be captured by shape-from-shading. That is the 

problem we are going to handle. 

 

 

 

 

 

 

 

 
Fig28.Our test real data and it‟s estimated control points position.  

Fig27. Recovered surface displays in 3DTV. 
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5. Conclusion 

In this paper, we presented a novel approach to recover a surface‟s 

geometry with PC-bases. Because shape-from-shading result is not precise and 

most reconstruction method cannot deal with self-occlusion, we define a lower 

dimensional PCA space for more stable shape recovery. Our method can 

automatically recover surface geometry, without any user interaction. This 

method is also less effected by material, and keeps the surface‟s physical 

characteristics. The result can be used in 3DTV and apply to other applications. 

In future work, we will seek to recover the small variations over surface. 

More specifically, we try to combine SFS results with our mesh. This will helps 

our results more realistic. 

Basically, one purpose of our method is to recover self-occlusion surface. 

Simple SFS cannot recover the covered parts, so we introduce PC-bases 

subspace. Currently, our method can only recover small self-occlusion surface by 

time coherence. In the near future, we plan to include color constraint and 

short-term structure from motion for more accurate tracking. 
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