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Abstract

In this thesis, we propose a novel method to reconstruct fluttering surface such as
flags and cloth in the video:sequence which can be used for the 3D display. Shape
recovery of real object from a video:sequenceris a difficult subject. Here, we focus
only on fluttering surface which can possibly be folded. While most
shape-from-shading can only deal with single-material smooth objects, we propose
using shape-from-shading and decoloring techniques to reconstruct more detailed
surfaces under a single directional lighting condition, the surface can be
multi-material with folding. To alleviate the noise and ill-pose problem, we take
shape-from-shading as initial-guess, and further use Principle Component Analysis

(PCA)-based subspace approximation to recover full video sequence.



With the proposed method, users only have to designate the flag by
graph-cut-based tool. We can then automatically recover waving flag’s 3D geometry
and change its texture. Our results demonstrate that our system work satisfactorily
even under a noisy situation, and provide a reasonable solution for free-view point
content generation.

Keyword: Depth Recovery, Shape-From-shading, Video Editing.
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1. Introduction

1.1 Motivation

Televisions are important in every family. They bring not only information but
also entertainment to us. In recent years, televisions have dramatic improvements,
especially in size and resolution, and one remarkable technology of them is the free
viewpoint 3D display. In.the near future, one can respect to see 3D movie at home.

To show a videowithout view limitation, we display not only.the color frame
channels but also the depth of the scene. New 3D content videos.are recorded by a
special camera with two view-points for depth estimation. In'computer graphics-based
video, since the scenes were rendered according to_polygonal models, depths were
retrieved inherently. Unfortunately, conventional video doesn’t have depth channel so

it cannot'directly be displayed over 3D.display. That is the goal of this thesis.

1.2 Background

There are many methods proposed.to-generate depth maps, and it’s a prevailing
approach by using multiple views which requires synchronously captured images and
accurate pixel correspondence in each view. Due to the scene ambiguity (not-rigid
body ~ similar color object ~ occlusion), it is a challenge to full automatically recover
depth map of a general scene by the multiple-view technique. Even though, with
manual assistants, multiple views can get a more effective result. However, traditional
popularly—used videos, like existing DVD movies, were not captured by multiple

views. For these reason, we want to find out an efficient and practical approach such
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that we can generate sequence of depth map toward the target object from the
common video sequence.

The challenge is : we have no any clues except image color in the video. The
surface is undulation so it cannot be regarded as rigid body; the video was taken by a
single-view point so we cannot get synchronized potion parallax as these in binocular
views. Besides, the low-resolution and noise of video make it more difficult.

Our goal is to recover the depth maps of target surface from a general

single-view video sequence like .r eSO i deo, illuminated at a simple
se-the target surface in the video, se

multi-material; , igi s > SFS and the

J/

real as possib

lighting conditio e can be folded, of

PC-basis s surface as



1.3 Framework

Initial-guess Model

Fitting

Space-time

optimization

Figl.Framework of our system



In this paper, we focus on fluttering surface such as flags and clothes. Our
system has three parts: In pre-processing step, we take one video sequence as input
and segment the target object frame by frame, and then remove the color component
of each frame but keep the shading.

After decoloring, we apply SFS on each frame. Although the result is still
imperfect, it provides a reasonable initial-guess depth map. Then we calculate all

distance from the surface’s two corners to every point over it. These distances help us

to figure out where the fe poin ould Ic d. After fitting the shape as a linear
combination of Principle-Camponent-basis vectors, we oroper 3D mesh

surface.



2. Related work

This section has three parts: First of all, we introduce geometry-based 3D
construction method like Blender3D and Maya. Then we show image-based
reconstruction techniques such as Structured-line, Multi-view reconstruction,
Photometric stereo, and SFS. Finally, we describe some applications of

reconstruction.

2.1 Geometry-based Method

The first approach -is..interactive- modeling with» manual assistance, like
Blender3D ~ Maya. Through these tools we can build_a model.manually, but it is
labor-intensive to create a photorealistic result. Several intelligent or hybrid modeling
system were proposed to reduce manual.intervention. [Hengel et al. 2007.] proposed
building a realistic 3D models from video by point clouds with a small number of
simple 2D sketches as constraints.

[Debevec et al. 1996] provided another method to.construct 3D model from
video. Users needed ‘only draw, somerstructure lines; and the system then built 3D

buildings and retargeted the texture over it.

Fig2.P. Devebec et al’s 3D reconstrunction from video.



2.2 Active Structured-line System

By contrast, the second kind of approach using active structured light system is
faster and more convenient. It is also the main stream of the high-accuracy 3D
recovery. In the early years, 3D scanning technique was only suitable for static
objects, and it needed more scanning time. [S.Rusinkiewicz et al. 2002.] developed
the system based on the structured-light system and a real-time variant of
ICP(iterative closest points) to align the shapesacquired fram multiple views. It made
the significant impact.of rapid 3D recovery. [L.Zhang etal. 2004.] used the consistent
space-time stereastechnique to enhance the reliability of acquired 3D data. By usage
of the structure-light system, we can precisely estimate the shape of the'target object,
but it still.has several defects-limiting its usability. The target object is limited to be a

nearly-lambertian object and not suitable for the onetoo big or the scene outdoors.

Fig3. L.Zhang et al.” s facial detail reconstruction system and depth data

2.3Multiple views

Multiple view technique plays an important role in reconstruction. With well
calibration and correspondence matching, we can reconstruct scene’s surface. But

it” s cost-high to find the reliable correspondence matching at untextural or highly



repeated regions and the occlusion of correspondences are also the problem. Even
though, it’s still widely used as the constrain to other technique or a coarse shape

recovery.

[Vogiatzis et al. 2005.] proposed a novel technique combined multi-view stereo
with graph-cut based optimization for detailed surface reconstruction. They used the

visual hull as the initial shape, and then defined a continuous photo-consistency

function as a flow graph tc i

Structure“forr ion i G e single camera
instead and Suits e \i : i calibrated

property,si

[Po e points,

and then fa ' es by use of the epipolar geometricsproperties.

The affine trans ' , fore /-'-

Fig4. Pollefeys et al.’s Reconstructed model and the view points

If there were few correspondences, only sparse 3D points can be estimated. [M.

Lhuillier et al. 2005.] proposed an approach to generate quasi-dense 3D points toward



the surface with fewer feature points. They produced a dense disparity map and used
it to improve numbers and qualities of the feature correspondences matching by the
correlation method. Moreover, they proposed a fast gauge-fee algorithm to estimate

the accuracy of the recovered 3D depth.

For the non-rigid body, [Torresami et al. 2003.] proposed a method combined
with structure from motion to recover the target shape from the video. They defined a
non-rigid body as a rigid transformation combined.with a non-rigid deformation in the
time frames. Under the assumption that the object shape at<each time frame was
organized from a.Gaussian distribution, they simultaneously estimated 3D shapes in
each time ‘frame; learned the parameters of the Gaussian, and also.recovered the
missing data points. Finally; they-implementedthe space-time constrain tosthe object

shape for the better consistent result.

2.4 Photemetric stereo

Photometric stereo estimates local surface-orientation by using several images of

a surface taken from the same viewpoint but under illumination from different

directions.

Fig5. The left two images are the reconstructed surface by the M. seitz et al’s method.

The right four images are the reference and target object used for .



[M. seitz et al. 2004.] proposed the example-based photometric stereo method.
They introduced orientation-consistency concept to reconstruct the surface normal
from the reference images where the reference objects with identical materials were
also taken. Combined with traditional photometric stereo, a more detailed surface can
be recovered. The technique is reliable to be applied to a broader class of objects than

previous photometric stereo technique.

[Carlos et al. 2008.] used the silhouettes=in.multiple views to recover camera
motion and then{got a coarse shape of the object by the wisual-hull. Besides, they
proposed a sobust technique-to-estimate light directions and introduced a novel

formulation to combine photometric stereo and:3D points from.visual hull.

2.5 Shape-from-shading (SFS)

Shape-form-shading recovers the shape from the gradual variation of shading of
one single image. However, it'has several limitations. For example, it'is sensitive to
the noise of intensity, andithe light condition is limited to.simple. lighting conditions.
SFS techniques only work for single material-object by Its principle. Most important
of all, SFS techniques can only recover continuous surface, so it cannot deal with
folding. Even though, it’s single-view requirement is a benefit for image-based
modeling. We need only one single shot and without the correspondences matching
compared to multiple views technique.

Due to its intrinsic ill-pose problem, [Zeng et al. 2005.] proposed a user-assistant
solution of continuous surface. Users input surface normal on specific feature points

and the system refined the surface variations to the whole face. This method applied a



Fast Marching Method speed up the computation. After optimizing the energy

function combining with each local surface, it can evaluate a global solution toward

synthetic and real-world data.

g Interactive Shape from Shading ~  Shape Refinement ———

=

Optimization

Fig7. Tai-Pang et al’ s reconstructed surface
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2.6 Others

[Fang et al. 2006.] combined the Shape-from-shading and texture synthesis to
re-texture the target object in the photograph and video. They used optical flow
keeping the texture coordinate in each frame. However, this approach is error-prone
due to the Lambertian surface assumption and simple lighting conditions. It was only

suitable for some simple objects, like t-shirt or sculptures, and needed manual

rectification. Furthermorepit

V

a surface i

worked mainly on surface with regular/nea ar texture and it also only recovered
normal vectors. The two methods don’t really recover surface geometry, but they
synthesized realistic results by texture synthesis. It motivates us that we may not need

to recover the exact depth map, but related depths for view changes.

11



Fig9.Lin et al perform texture
replacement on an outdoor photo.

[Mathieuwet al. 2009.] provided another optimization method to recover 3D mesh
with inequality constraints:~lt-also combined with Principle Component: Analysis
(PCA) so that it can folds and individual images. Nevertheless, this method needed an

initial mesh on the surface, and cannotdeal with self-occlusion.

Figl10. Mathieu et al.’s method recovers 3D mesh in video.
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3. Method

The input of our system is a single-view video sequence. Here we divide our
method into four stages: Preprocessing, Initial surface by Shape-from-shading ,

Control Point Estimation and PCA-based space-time optimization. Details of

these stages are then introduced in the following sections.

Selected

reference frame

Shading image Color Component

Initial-guess by SFS

Result surface

Estimated control points
geometry

Figll.Demostration of our system.



3.1 Preprocessing:

Given a single-view input video, our first step is to perform image/video
segmentation for tar region extraction. Here, we modify [Jue Wang 2005.]’s video cut
method.

For a common cloth image, its reflected intensities result from both shading from
surface gradients and material reflection. Beforeswe estimate its surface undulation,
we should remove« the = material’s™effect,.and reduce our problem to
Shape-from-shading of asingle-material surface..

We combine [Marshall—F:~Tappen 2005.]’S methods  to« remove the
material-reflectance component..First, we create a color histogramto store colors of
extracted regions of the whole video sequence. For.each pixel in-one-particular image,
we calculate the color vector C(X,y) = <® ¢ 3>and find the same 'direction color
vector in_the histogram which has maximum intensity. Because the'histogram is
created from all frames, ‘for a highly deformed surface, it’s highly possible that there
exists one pixel of an individual material has faced'the light direction. Based on the
Lambertian reflection, . we,assume the maximum intensity of‘a color vector as the

individual material colors After.all, wercan-calculate'normal of each pixel (x,y) as

Y

Fig12.The decoloring processing. (a) Source image.
(b)Recovered shading (c) Color component.

N(X, y) — C(x,y)~Ipmin )

IMax _IMin

c)

(a)
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3.2 Initial surface by Shape-from-shading:
3D mesh is usually a good parametric representation of geometry reconstruction.
Nevertheless, for estimating highly deformed surface from a single view, exploring
the whole degrees of freedoms of meshes is too expensive in computation and is also
easily trapped into local minima. Instead, we use a lower dimensional parametric
space, called morphable model space(or PCA space) for more stable shape recovery.
We assume that our target surface has following properties:

(1) Foldable but withulittle self-occlusion.
(2) The maximum of surface undulation is less than %of an edge.

(3) Theffour boundary-vertices-are nearly laid on one plane.

Surface with these properties can provide.more reasonable Shape-from-Shading
result. Furthermore, to track the motion markless cloth, we select the surface with the
biggest area as our “reference frame” from the video sequence.

The_following step is to generate an initial-guess depth map. Our input is only
one single image and has no other viewpoints. Shape-from-Shading (SES)is the few
solution that'can deal with such limited information:"Here, we adapt Pentland’s linear
Shape-from-shading methed.

Shape-from-Shading’ recovers depth=from normal vector. Due to noise and
insufficient scene information, 1t cannot tell us the surface’s really height. In other

word, Shape-from-Shading only recovers “relative” height.

Figl13.SFS result in different viewpoint.
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3.3 Control Point Estimation

To deal with unstable and highly deformed clothes or flags, we propose using
morphable model for shape recovery. Nevertheless, mapping between morphable
grids to input image is not straightforward. Here we consider the geodesic distances
on the surface we recovered in SFS stage. Given point X and Y on the surface, if
the surface is flat, the straight line across X and Y have minima distance. When the
surface is undulating, the “line” with minimum geodesic distance may not look
“straight” at the camera viewpoint-as'shown in:Fig.10: No:matter the line looks like,

the geodesic distance is the same location.

(a) (b) (c)
Figl4.The line across X and. Y.[(a) Source texture
with straight:line. (b) (c) The sameline.on not-flat
geometry.

Without loss of generality, we consider the distance from the upper two vertices
to all other points over the surface. Our generic mesh can be seen as lattices with the

same size. Assume the width and height of the square flags is L and break the flag
into n*n grid. Every grid’ size is f—l* % .We name every vertex V(u,v) of mesh as
Fig.15.

16



Figl5.An example of 3*3 mesh.

First we consider the v-axis .To the point over the v=k axis, we can write:

JistVogaVog)® —h2 ydist(V,o, V)2 —h* = L

where h= L*K )
n

Then about the u=axis. To all points over the i=k axis we can write:
diSt(\/0,01Vk,v)2 T D2 = dis’t(\/n,O’Vk,v)2 . (L - D)z
K

where=D=+FL* - _
n

dist(Vy 0, Vy,)* —dist(V, 0.V, )* = D’ —(L—D)
=(D+(L+D))(D-(L=D))
=L(2D-1L)
With'the above two equation, we.can locate control points over the/ 3D geometry
of the surface:

L
A
Vo,o u==k V3,o Voo/ \Vs,o
W L7
\\/ b=k N
L< Vk,v Vu,k
N|
D ) (b)

Fig16.An example of distance between V, and V,,,V;,.

(@) dist(Vy .V, )? ~dist(V, 5,V;,,)? = D? ~(L—D)?

(b) /dist(V, .V, )2 —h? +/dist(V, .V, )2 —h* =L
17



After we define the above two equations, the next step is how to calculate the
distance between V, and V, over the surface. Of course we cannot directly
calculate the L2 norm between the two vertexes. The solution is to use Dijkstra

algorithm.

Dijkstra algorithm bases on the following concept: If there exists a path P from

Voo to V, , which has minima geodesic length, the path P* from V,, to some

point just in front of V, _isalso a minima path.'In our experiment, the basic

dynamic programming function is:

d iSt(VO,O ’Vx—l,y) + norm(\/x—l,y ’Vx,y)
dist(Vo 04V, ,) = mins_dist(Vy .V, ) +norm(V, 4.V, )

d iSt(\/O,O ’Vx—l,y—l) + norm(vx—l,y—l 'Vx,y)
We calculate the distance function all over the surface, therefore, we get a table
saved all'vertex’s minima distance toV, .
Generally, the above equation cannot work well because of our decoloring

method. The'decoloring method is not perfect so'there exists gaps between color

regions. Surface’s Normals,near the gap sharp thus effect shape<from-shading’s result

and so that the dist(Vy,,¥; ;) will.become larger if.the path P cross the gap. So we

adjust the dist function:

dist(Vy 0.V, 1, ) +min(Ty,normV, , .V, )
dist(Vy,,V,,) =minq dist(V,,,V, , ;) +min(T,,normV, .V, ))
diSt(VO,O ’Vx—l,y—l) + min(Td ’ norm(vx—l,y—l’vx,y))

Here T, acts like an upper bound of distance of any two close vertices. So the

color’s effect is diminished. Not only we calculate all the distance from V,, toall

18



other vertex, we also take V, ,into account. After the two dynamic programming

processes, we get two distance map from the two upper vertexes.

(b) (c)
Figl7. The distance map.(a) The recovered shading image. (b)
From the left-up vertex (c) From the right-up vertex. The
Darker is closer.

19



Finally we check all the pixels to find someone located at right distance from two

upper vertices:

Voo =Poor Voo =P //Assign the two upper point’s position

w,0

Foru=1toW

Forv=1toH

For 1<k, ,k,<n

If(n\/dist(vo,o,u,v, ) -(Ley: +\/dist(vn,o,Pu,v,)2 (LA LK T,,)

And(]| dist(Vy o, R, ,)* —dist(V, 0, R,,)* - L(ZL%— L)< Teor)

End j

Endi

Fig18."The control points algorithm. T, and T,,,are thresholds.

row

20




(c) (d)
Fig19.Estimating-control points. (a) The selected frame. (b) The

columns when n=10. (c) The columns when n=10. Notice that the
two row/column of k=0 and 10 _is not appear. (d) The control
point we really recovered. The mesh is 16*15.

The above 'mentioned algorithm has a problem: because of error propegation, the
estimated lengh and position are not precise<in lower‘region (far/ from the origin
vertices). From Figl9, we can see that control points are compact in.upper region, but
are distorted in lower part.

3.4 Space Optimization of Mesh Recovering

It is difficult and imprecise to treat the above result as the really mesh point’s
position.The z-axis of each points is from shape-from-shading result, which is just a
“related” depth. Worst of all, the control points miss much and we easily see that
those points didn’t locate at what they should be as i and j increased.

Because of the above reason, we need a stable method to recover the geometry
and take its characteristic into account. Meanwhile, the method should restrict the

improved control points’ location near our estimation. One appropriate technique is
21



using Principle Component Analysis(PCA). First we generate training data by cloth
simulation, then find out their statistics characteristics, called principle componenes.

Then we use the PCs to recover the mesh by subspace optimization.

PC1 PC2 PC3 PC4 PC5

Fig20. The PCs of training data.

The relation among input estimation control points ( X ,Y ,Z ) generated at the

3.3, PCs and PC projected coefficient w, is: -

STR,R,| PC, PC, PC;--- PCy |w,|=|Z

where 6 and p are two rotate angles, T is tranition and S is scalar matrix.
22



Image Domain
VP,

PC Subspace
VP

m,0

3D Rotatigp: Rest

Voo :
Transition: 7 mp

To redt

are inverse of T and

Because the two uppervertices should'k slated to the same position, we can

easily define the scalar matrix S’ by scale the distance between V,, and V,;to

VP, and VP ;. At the mean while, the translation vector T* can be defined as the

vector VR, o —Vo, . Finally, we consider the following equation:

Foreach V,; =(X";,Y%;,Z%;),
W,
1 Xlij
W, ’
W PC, PC, PC,-- PC | .|=|Y",
) Z' 23



where R=|r, T,

r, nor

min R PC, .PC
m,wp,p=1tokuzv

As we me 1- pefore, our es - C ess is inversely
proportional 'te the distance or verte ydified  the optimization

equation pwitk eight ' V As JO I gorner, Wetri

decreases. we se

min ,,
R,w,, p=lto L (1
L

Besides, the grid’s size will keep tter. how the flag waves. So to
eachV, ; the distance of Vi;—Vi.; and m should be limited. The problem
is: as [Mathieu Salzmann 2009] mentioned, when deformed, while the geodesic
distance between the two points is preserved, the projected one decreases. Here we
don’t directly deal with this problem, but we just limit the distance in a reasonable
range. While we implement it as penalty according to length variation, it can be
regarded as a spring constraint between vertices. The following energy function will

be added in our minimize function:
24



E,= Z{Kd(

VvV, yemesh

- L)+ Kq( -L)}

Nu v _Vu+1,v

Nu,v _Vu,v+1

where L is the grid’s length and E_is our previous optimization equation.

We call the rear part E, as distance constraint.

Last but not least, we have to add one more constraint in the optimization
function. Because of the Weri, the farther contrel points may move to unpredicted

location as follows:

Fig22. The bad result without‘boundary constraint.

To get a better result, we give therboundary point-a bigger weight. Althrough our
minima distance method may not works wellTover the boundary, the boundary
vertex’s location is easy to directly estimate from our SFS result. We define the

boundary cost function Es :

Wl Xl

ij

E, = KRl PC, PC, PC,--- PC W2—Y'
b_z b 1 2 3 k . i
i,jeQ) 7'

W, "

where K, >K_  constraints the boundary’s 2D position.

25



The final optimization function we used is:

W,
1 “_:‘
: K al al al ad “..-)' 'lu.v
min > ———=——WR PC, PC, PCy- PC,| " |-|T',, | +E+E,
2 2 - . *
Rowy, p=ltok . ' (” _I’%)-’ 4+ . .
L = . Z .y
w,
"l
) ) ) . 11‘ ) u,v
where  E, = Y | K% FC, PC, PC,- PC| Fl-T',
Bae0 : VA

Fig23. The bettwe result and its wireframes.

3.5 Time Optimization
Finally we have toimap the mesh on all the frames in thevideo. Here we use
the method In [Mathieu.Salzmann,2009]. This paperintroduce a optimal solution
with a given 3D mesh and mapping.the mesh-to all frames. The optimal equation
is:
o max ;Et(x”?) —w, E_(XTH X7, X™

Where E; is it’s objective function for a single frame,

and E, (X" X7, XTH) o XTH=2XT + X™.
We replace the E, component with our objective function and apply to all

frames. Thus we get a continuous video sequence.

26



4. Experimental Results

Our experiment has three steps: First we apply our method to images captured
from synthetic video sequence. Then we add in time constraint and recover the whole
surface sequence. In the end, we try to use our method in real world data, shows the
limitation of our presented method. Furthermore, we also include heavy noise in
synthetic image to verify the stability of the propesed method.

We run our experiment.in‘a Core'2 ' DuoPC with 3G RAM. Our input image’s
size is less than 300*300 pixels. The whole process of each.frame is finished in less
than 5 seconds:

4.1 Synthetic Data(single)

We generate 'some frames from our cloth simulation.program;-and then apply our

method oneach one without time constraints in Fig23&24 below: Clearly see that our

method cankeep the surface’s geometry,and the recovered surface is smooth, which

means it is'not affected by material color and noise.

Fig24.Two synthetic frames from our cloth simulation and the reconstruction geometris:;.
As we mentioned, Our method perform well in upper region but in lower region, the
boundary is still inconsistent.



Fig25.Synthetic‘data with'noise. Easily see the recovered surface is noise-proof.

4.2 Synthetic data(sequential)

Here..we /generate a-sequence ‘or frames and<apply our method-with time
constraints. The motion i1s smooth but the boundary errors become unpredictable.
That’s because we take the frame with biggest area as reference frame, and then all

other boundary points will be eontraction because of interpolation.

Fig26.Synthetic frames sequence. First row is synthetic frames at t=1, t=5
and t=9, and the second row is the recovered geometry. The boundary is not
consistent because of the interpolation in optimization processing. 28



Fig27. Recovered surface displays in 3DTV.
4.3 Real data surface

While applying our method in real data, we found that our mesh is not delicate
enough to.capture the details<in real data surface. Our method designed.to be not
affected by small variation like noise, but at<the-meanwhile, it/cannot capture the

undulation in a'small.grid, which will be captured by shape-from-shading. That is the

problem we are going.to handle.

R e

Fig28.0ur test real data and it’s estimated control points position.
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5. Conclusion

In this paper, we presented a novel approach to recover a surface’s
geometry with PC-bases. Because shape-from-shading result is not precise and
most reconstruction method cannot deal with self-occlusion, we define a lower

dimensional PCA space for more stable shape recovery. Our method can

automatically recover surface: geomet ithout any user interaction. This

ﬁ
el ed -

It can be used in 3DTV \R»

ana ap

method is also e surface’s physical

characteristi ) other applications.

we will ations over surface.
I
. E S Its v mesh. This.will helps
I

E ally, o /r 0d.i ov:o
Simple: SES cannot re — C so we introd
subspace. rentl c self-o / 10n surface by

time cc rh’ Ide
short-term struct om motion for more accurate tra n/

:
LR

surface.

6. PC-bases

straint and
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