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Abstracts 

 This thesis proposes a method to synthesis the shading of object surface 

under different light source position from a single image. We obtain the 

objective function from image colors and the reflection angles, and then apply 

an EM-like algorithm to solve this function. Besides, user could specify the 

normal of target surface which we synthesize. And we use shape from shading 

to recover the object surface from the image. Finally, we can synthesize a 

sequence of images in different lighting configuration from a single image. 
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1. Introduction 

 

1.1 Motivation 

In order to reproduce the visual realism of the real world, many different texture 

synthesis methods have been researched and applied in computer graphics, vision and 

image processing. For instance, pixel-based and patch-based texture synthesis, 

extracting the colors from input images by comparing the neighbors for visual 

consistency. For synthesizing more detailed reflection on object surface, Bidirectional 

Texture Function (BTF), a 6-dimentional function, represent each pixel color by the 

angle between light vector and pixel normal and by the angle between view vector 

and pixel normal. 

 

However, the input of the synthesis process could be obtained from a variety of 

sources such as hand-drawn images or photographs. In order to synthesize realistic 

reflection on the surface, BTF requires a large database containing thousands of 

captured photographs from different viewing and lighting configurations as the input. 

Nevertheless, it is a very difficult and tedious work to obtain such large amount of 

images even with professional facilities. 

 

We present a simple way to synthesize view-dependent surfaces from lighting 

directions. The input to our system is only a single image of a nearly convex object, 

where the surface materials are nearly identical. We assuming the surface is mainly 

dominated by Lambertian reflection but also with slight self-shadow or subsurface 
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scattering and we considerate the surface shading based on the normal and the light 

vector. Furthermore, we solve the view-dependent detail reflection by texture 

optimization. In order to keep consistency of the images during light source moves, 

we treat it as texture flow and use a consequent initial guess to keep the pattern 

consistency. 

 

1.2 Overview 

 The requirement of the input to our system is very simple; we just use an 

off-the-shelf camera and take a photo of a nearly single-material object under 

directional lighting conditions, e.g. under the sun light. We assuming that the surface 

is a Lambertian-dominant, so that the color of pixels is strong connected to the surface 

normal vector and the normalized light vector. Then we apply the shape from shading 

to reconstruct the normal of object surface. Because the input surface is single 

material, the normal we reconstructed will less affected by noise.  

 

 Once we obtain the rough surface normal according to shady information, we 

could compute the angle between normal and light vector for each pixel in the input 

image. Also, the angle between surface normal and target light vector could be 

calculated by N*L. According to Lambertian reflectance model, we could use the 

angles to re-compute the surface color under the target illumination condition to get a 

new photo. Nevertheless, while simply scaling according to the incident angles, 

view-dependent properties, such as self-shadowing, subsurface scattering can not be 

synthesized. Therefore we use the Lambertian-based re-shading image as the 

soft-constraint in our optimization process. Besides, in order to keep the appearance 
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consistency of the texture pattern, the similarity of neighboring pixels is another 

strong constraint in the energy function. 

 

 The other issue in this thesis is how to keep the consistency of textures 

synthesized from different lighting settings. General texture synthesis would 

synthesize quit different results with different initial guesses. To keep the 

view-consistency texture, we take the synthesis result of the first illumination 

configuration as an initial guess in the optimization for other light settings during 

entire synthesis process. 

  

 We apply an Expectation Maximization (EM)-like algorithm to solve the 

minimization of the energy function [McLachlan and Krishnan 1997]. Through 

successive iterations with different resolutions, the texture energy will decrease 

gradually and the result could be refined. For different resolution, different 

neighborhood sizes will be applied to catch the feature in the input. The large 

neighborhoods allows large scale pattern to be settle in the output, the smaller 

neighborhoods is used to refine the texture. 

 

 In this thesis, we first introduce researches related to our work in chapter 2, such 

as texture synthesis and shape from shading. In chapter 3, we combine shape from 

shading and image segmentation technique to reconstruct a smooth surface normal. 

The recovering normal will be the constraint during the synthesis process. After 

normal recovering, we present the texture synthesis by optimization for detail at 

chapter 4. Experiment results and further discussion will be presented at last two 

chapters. 
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Our system can use a successive of optimization process to get a sequence of results 

under different light position. The following figure is the flow chart of our system: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input Image 

(single material) 

Normal Recovering 

(SFS+Segmentation) 

Constrain Generation 

(N*L) 

Optimization Phase 

Result (as initial guess) 

Change light position 

Change resolution 

Change patch size 

EM like algorithm 

Figure (1): The flow chart of our system 
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2. Related Work 

 This goal of this thesis is to avoid the tedious acquisition of the enormous BTF 

database but keep view-dependent properties as well. We survey researches about 

BTF. Besides, we apply shape from shading to reconstruct the surface normal as soft 

constraints and apply texture synthesis to obtain the result. 

 

2.1 Texture Synthesis 

Texture synthesis has been widely researched for years; there are a variety of 

methods toward synthesizing textures. Pixel-based methods are easier to assign 

constraint on the texture because they synthesize the texture color one pixel at a time 

by comparing partially synthesized neighborhood with exemplar neighborhood [Efros 

and Freeman 2001; Kwatra et al. 2003]. In contrast, patch-based methods are 

amenable to keep the global structure well by synthesizing one patch at a time [Efros 

and Leung 1999]. 

 

 

 

Figure (2): The input is on the left and the output on the right. 
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Optimization also has been applied to texture synthesis with Markov Random 

Field (MRF). Paget and Longstaff [1998] use a multi-scale synthesis algorithm 

incorporating local annealing to obtain larger realizations of texture visually 

indistinguishable from the training texture. 

Besides, there are some researches about texture relighting. Using photometric 

stereo [Hertzmann and Seitz 2003] to reconstruct the rough normal map, Y-C Shen et 

al.[2006] relight the object by interpolation similar lighting conditions. They need to 

take a few photographs for a fixed viewpoint under controlled light. In contrast, our 

system uses only a single image as input. 

 

2.2 Bidirectional Texture function 

  The Bidirectional Texture Function (BTF) is a 6D function that can describe 

textures arising from both spatially-variant surface reflectance and surface details. 

The BTF captures not only the surface appearance, but also the fine-scale shadows, 

occlusions, and specularities caused by surface mesostructures. Therefore, it can 

greatly increase the surface relism in the rendering. 

 
 Figure (3): Capturing photos from different viewing and light position. 
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Surface appearance modeling using the BTF can be roughly subdivided into the 

following phases[Leung et al. 2007]:  

1. BTF acquisition (real or synthetic data), 

2. BTF compression, 

3. BTF synthesis,  

4. BTF rendering. 

 

 

 

 BTF acquisition is the capturing and modeling the BTF data from real-world 

material. It may take hundreds of range cameras to construct a camera array in order 

to get photograph from different viewing and lighting settings. However, the high 

dimensionality and enormous storage of the BTF is difficult and computationally 

expensive for synthesis directly. The PCA method and some multi-linear methods 

were applied to compactly represent the whole database to reduce the dimension, and 

this is call BTF compression. 

 The BTF is directly synthesized with reference to the target geometry before 

Figure (4): The simple flow chart of BTF process. 



 

8 
 

rendering the data on target surface. If we want to change the appearance with another 

BTF, we need to re-synthesize the BTF data because the data is tied to the geometry 

when we first synthesize. The BTF captures not only the surface appearance, but also 

the mesostructure, it can greatly increase the surface relism in the rendering. 

  

2.3 Shape From Shading 

In computer vision, shape from shading is a technique to recover the shape from 

a gradual variation of shading in the image. A widely used model that relates shape 

with image information is the Lambertian model, in which the image intensity 

depends on the light source direction and the surface normal. The formulation for 

recovering the surface normals was given by Horn[1990] for a wide range of 

reflectance functions.  

In SFS, given a image intensity, the aim is to recover the light source and the 

surface shape at each pixel in the image. However, real images do not always follow 

the Lambertian model. Even if we assume Lambertian reflectance and known light 

source direction, and if the brightness can be described as a function of surface shape 

and light source direction, the problem is still not simple. This is because if the 

surface shape is described in terms of the surface normal, we have a linear equation 

with three unknowns, and if the surface shape is described in terms of the surface 

gradient, we have a non-linear equation with two unknowns. Therefore, finding a 

unique solution to SFS is difficult; it requires additional constraints. Ruo et al[1999] 

implement and compare six well-known SFS algorithm, such as propagation approach 

and linear approach.  

Propagation approaches start from a single reference surface point, or a set of 

surface points where the shape either is known or can be uniquely determined (such as 
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singular points), and propagate the shape information across the whole image. 

Given initial values at the singular points (brightest points), the algorithm looks 

in eight discrete directions in the image and propagates the depth information away 

from the light source to ensure the proper termination of the process. 

 Linear approaches reduce the non-linear problem into a linear through the 

linearization of the reflectance map. The idea is based on the assumption that the 

lower order components dominate in the reflectance map. 

 

 

 

 

 

 

 

 

 

 

Figure (5): (a)The input image (b)The depth map from linear approach 

(c)The depth map from propagation approach (d) The difference map of these two 

methods. 
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In this thesis, we reconstruct the normal of the surface by the image gradient, the 

light vectors and the intensity of pixels [Fang, H., and Hart, John C 2004]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (6): (a) An ordinary photo is scanned in. 

(b) Normal map reconstructed from shape from shading. 
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3. Normal Reconstruction 
 The goal of this chapter is to reconstruct the normals of the input image for 

obtaining the relationship between pixel colors and normals. The angle between the 

estimated normal and the light vector will be the constraint during the optimization 

process. In order to obtain a smooth surface normal, we first apply image 

segmentation to the input. There are two important properties in doing 

segmentation： 

1. Capture perceptually important clusters, which often represent the global 

feature in the image. Capturing precise characterizations that is perceptually 

important, and being able to specify what a given segmentation technique 

does is two central issues. 

2. Be highly efficient, run time is nearly linear in pixel number. Segmentation 

technique could be widely used if the method is highly efficient. For example, 

it runs several frames per second can be applied to video processing field.  

 

We applied an efficient image segmentation method based on graph-cut 

proposed by Pedro et al[2004]. It constructs a graph that each pixel is a node in the 

graph and certain neighboring pixel are connected by undirected edges. Let G= (V, E) 

be an undirected graph with vertices viV, the elements to be segmented, and edges 

(vi, vi) E corresponding to each pair of neighboring vertices. Each edge (vi, vi) E 

has a corresponding weight w((vi, vi)), which describes the dissimilarity between 

neighboring vertices vi and vi. In our case of image segmentation, the elements in V 

refer to the pixels in the image and the weight of corresponding edges is the measure 

of the dissimilarity of two pixels connected by the edge. The edges between two 

pixels in the same segment should have relatively low weights, while edges between 
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pixels in different segment should have higher weights. 

 The segmentation algorithm is based on the dissimilarity among neighboring 

pixels within each of the two segments. The internal difference of a region RV to be 

the largest weight in the minimum spanning tree of the region, MST(R,E). That is  

 

)(max)(
),(

ewRInt
ERMSTe


 

 

The other measurement describe the difference between two regions R1,R2V to be 

the minimum weight edge connecting the two regions. That is 
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Then we could use these two kinds of difference to decide whether the regions could 

be merged or not by the following pair wise comparison, 
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where the minimum internal difference , Mint, is defined as, 
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τ is a threshold function based on the size of the region, 

 

R
kR )(

 



 

13 
 

where  𝑅  denotes the size of R, and k is a constant parameter. In practice k sets a 

scale of observation, a larger k will cause larger region segmentation. The threshold 

function controls the degree to which the difference between two regions must be 

greater than their internal difference in order to be evidence of a combination them or 

not. Figure (7) simply shows how the segmentation works. 

 

 

 

 

 

 The input is a image, we take it as a graph G=(V,E), each pixel represent a vertex 

in V and any two pixels form a edge in E. Assuming there are n vertices and m edges 

in G. The output is a segmentation of V into regions S = (R1,…,Rr). The following is 

the algorithm, 

0. Sort E into into π=(o1,…,om), by non-decreasing edge weight. 

1. Start with a segmentation S
0
, where each vertex vi is in its own component. 

2. Construct S
0
 given S

q-1
 as follows. Let vi and vj denote the vertices connected 

by the q-th edge in the ordering , i.e., oq = (vi, vi). If vi and vi are in disjoint 

components of S
q-1 

and w(oq) is small compared to the internal difference of 

R2 

Figure (7): The white arrows in the figure represent Int(R1) and Int(R2). While 

the orange arrow is the Dif(R1, R2). We can tell that the orange arrow is longer 

than the two white arrows, that is to say R1and R2 can not be merged. 

R1 
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both those components, then merge the two components otherwise do 

nothing. More formally , let 𝑅𝑖
𝑞−1 be the component of S

q-1
 containing vi and 

𝑅𝑖
𝑞−1 the component containing vj. if 𝑅𝑖

𝑞−1
≠ 𝑅𝑗

𝑞−1
 and w(oq) ≤ 

Mint(𝑅𝑖
𝑞−1, 𝑅𝑗

𝑞−1
) then S

q
 is obtained from S

q-1
 by merging 𝑅𝑖

𝑞−1𝑎𝑛𝑑 𝑅𝑗
𝑞−1

. 

Otherwise . S
q
 =S

q-1
 . 

3. Repeat step 2 for q=1,…,m. 

4. Return S = S
m
 

 

We could get the segmentation result after the algorithm. Figure (7) and 

Figure (8) show the segmentation results from synthetic model and real objects. 

  

 

 

 

   

 

 

Figure (8): [Synthesis data] 

(a)The input image, (b)The segmentation result with k=150 

(c) The result with k=500. 

(a) (b) (c) 
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After the segmentation, we could recover a more stable normal of the input 

image. Horn [1990] presents the formulae for recovering the shape of a surface from a 

shaded image which can deal with complex, wrinkled surfaces. And the following 

simple Lambertian reflectance model works well for our purposes. Let S be the unit 

vector from the center of the object toward a sufficiently distant point light source. 

We further assume the point on the surface with largest intensity Imax towards the 

light source position. The darkest point is shadowed and its intensity Imin indicates 

the ambient light in the scene. The function c(x,y) = (I(x,y)−Imin)/(Imax −Imin) 

estimates the cosine of the angle between incidence and normal. We could reconstruct 

the surface normal by the cosine angle and the image gradient.  

 

SSyxIyxIyxG )),((),(),(   

Figure (9): [Real data] 

Left top is the input image.  

Right top is the segmentation result with k=150.  

Left bottom is the result with k=500. 
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Because the reconstructed normal is rough and easily affected by noise, we use 

the segmentation result to get a smooth surface normal. We compute the average 

normal of each region and assign to the center of the region. Then we could 

interpolate the normal of each pixel by the distance between specified pixel and each 

region center. That is, the closer the region is the higher weight it has. The following 

figure shows the difference of interpolation or not. Figure. 9 shows the normal map of 

different methods. 

 

 

  

is the image gradient.
 

(a) 

(b) (c) 
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Figure (10): (a)The input image  

(b)Rough normal from SFS 

(c)Grouping normal by the segmentation result 

(d)Interpolating pixel normal 

(e)The interpolated normal map from (b) and (d) 

(d) (e) 
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4. Optimization Process  

In this chapter, we will describe how our synthesis process works and how to 

keep the surface appearance consistency. The first section is about basic texture 

synthesis using optimization. Then we present how we consider normal as a 

soft-constraint during the optimization. The last section is about how to keep the 

appearance consistency. 

 

4.1 Texture Synthesis 

The input to our system is just a single image; we use this image to perform 

basic texture synthesis using optimization based on Kwatra et al [2004]. According to 

the Markov Random Field (MRF) property of texture, locality and stationary is two 

major issues. The color of pixel is only related with the color of its neighboring pixel 

that is locality; stationary implies that the locality property is independent with the 

actual position of the pixel, it means no matter what location the pixel is, its color is 

only depend on its neighboring pixels.  

Now we would like to describe the similarity of the input image and the 

synthesized output based on the MRF theory mentioned above. Base on the 

assumption that the synthesized output will perceptually similar to the input image if 

all the patches in the output be similar to some patches in the input image. The 

objective function could be defined by the similarity between input patches and output 

patches. Let Z be the input image which we want to capture the color information and 

X be the output we want to synthesize. We could concatenate the value of all the 

pixels in X to form a vectorized version of X, x. Then let Np be the patch which is 

centered at p in the output, and its corresponding vector is the sub-vector of x, xp. 
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Under the same definition, z would be a vectorized version of input Z, and zp is a 

sub-vector of z. zp is the most similar patch corresponding to xp under the Euclidean 

norm.  

 

        

 

 

 

 

The objective function could define as: 

 

𝑂 𝑥; {𝑧𝑝} =   𝑥𝑝 − 𝑧𝑝 
2

𝑝∈𝑋+   (1) 

 

If we consider the patch formed by all the pixels in the image, it would be very 

computationally expensive and inefficient in practice. So selecting a subset of the 

patches whose center is located at X
+⊂X is more efficient. The elements in X

+
 are 

choosing by pixels in the output which is w/4 apart and w is the patch size. The 

patches we choosing would be sufficiently overlapped to avoid sampling not enough. 

Besides, choosing patches in the sparse grid manner could prevent too many patches 

affect one pixel simultaneously getting the synthesized output too blurry. 

 

 

Input Z 

Output X 

xp 

Figure (11): xp is the patch centered at pixel p, and zp is the closest 

corresponding patch in the input. 

zp 
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 Using the formula mentioned above, we could refine the synthesized output 

progressively. If the initial status of x is unknown, there are two ways to do the initial 

guess. First, we could full the output resolution with random color; the other is 

assigning random patches to each xp. At each iteration, we treat x and zp as variable at 

different phase. Given an initial guess of x, we could find the corresponding zp that is 

closest to each xp. Then we could update the value of x according to the corresponding 

patches. Once we update the value of x, the patch set that contain the corresponding zp 

of x may change. So we have to iteratively repeat these two steps until it coverage. 

When the patch set of zp at current iteration is equal to the patch set of zp at previous 

iteration, the optimization process is complete. 

 

 

 

  

An expectation-maximization (EM) algorithm is used in statistics for finding 

Figure (12): The figure shows how we 

spread the sample point. Each center is 

w/4 apart and w is the patch size. 

Figure (13): Left: input image, Middle: random initial guess, Right: patch initial guess. 
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maximum likelihood estimates of parameters in probabilistic models, where the 

model depends on unobserved latent variables. EM is an iterative method which 

alternates between performing an expectation (E) step, which computes an 

expectation of the log likelihood with respect to the current estimate of the 

distribution for the latent variables, and a maximization (M) step, which computes the 

parameters which maximize the expected log likelihood found on the E step. These 

parameters are then used to determine the distribution of the latent variables in the 

next E step. 

 In our synthesis case, we applied an EM like algorithm to solve the objective 

function in (1) [McLachlan and Krishnan 1997]. At E step, we want to get an 

estimation of each pixel in the synthesized output by minimize the error function in 

(1). This could be archive by setting the derivative of (1) with respect to x to zero. The 

outcome is a linear system that can be solve for x. As mentioned above, each term in 

(1) is a patch similarity error between the input and the output and the summation can 

be treated as the global error. In the other words, the goal of the minimization is 

pulling the pixels in xp towards the pixels in zp. Because pixels in X may exist in more 

than one patch in xp, the corresponding zp would simultaneously affect the value of 

specified pixel. Through E steps, we could get the color of each pixel in X by 

averaging its corresponding pixel in zp from the input image. 

 The M step keeps the x value updated from E step as constants, treat zp as 

valuables to minimize (1). After E step, a new set of xp could be obtained from the 

estimation result, x. The minimization needs to find out the closest zp for each xp. We 

could compute the difference patch by patch to get the closest patch we want. But 

obviously, using brute-force to do this search process is very inefficient and time 

consuming. To accelerate the searching problem, we simply perform the k-means 

clustering, one of the widely used and intuitive algorithm. After defining k cluster 
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centers (k=4), we have to take center of patch in zp and associated it to the nearest 

centers. Base on the new clusters, we could re-compute each cluster center and 

re-associate each pixel. A loop has been generated. The clustering process will stop 

when no more changes are done. Once the clustering is complete, we could perform 

the search process according to the clustering result to accelerate the optimization 

performance. 

 

4.2 Multi-level Synthesis 

 In order to refine the synthesized result, we applied the multi-level scheme to the 

optimization process. The synthesis process is starting from a lower resolution. At 

coarse resolution, the feature patterns on the input are spatially close to each other, it 

is easier to keep the appearance consistency through the desired output. The result at 

lower resolution then serves as the initial guess at higher resolution via interpolation. 

During each resolution, a specific patch size is applied to the optimization process in 

order from largest to smallest. Larger patch could capture image structure first, then 

the smaller patch removes the fine scale errors to refine the output. In our case, we use 

three resolutions and three patch size of 33*33, 17*17, 9*9 at each resolution. 

 

Figure (14): Left: the result without multi-level. Right: the result with multi-level. 
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4.3 Synthesis with Reflection Angle 

 Controllable synthesis technique could be applied in our case as the 

soft-constraint. Kwatra et al [2004] provide a modulation of objective function with 

appropriate weights allows for additional control over individual pixel values. We 

propose adding reflection parameters in the objective function as the constraints. For 

example, if certain color is desirable at specified location, we can express the control 

term as: 

 

𝑂𝑐 𝑥 =   𝑥 𝑚 − 𝑥𝑐 𝑚  
2

𝑚∈𝛿   (2) 

 

where 𝛿 is a set of specified pixels and x
c
 is a constrain vector that contains desirable 

color and reflection informations. If we combine equation (2) into equation (1), it 

would be:  

 

𝑂 𝑥 =   𝑥𝑝 − 𝑧𝑝 
2

+𝑝∈𝑋+ 𝜆  𝑥 𝑚 − 𝑥𝑐 𝑚  
2

𝑚∈𝛿   (3) 

 

where 𝜆 is a relative weighting coefficient. The former term in (3), tries to keep the 

image pattern through the similarity comparison of neighboring patches. While the 

control attempts to meet certain control criteria in the synthesized output. 

 In our case, we try to synthesize the input image on a given reflection angle. Not 

only keep the structure from input, but also the shading variation through the 

predefined normal. We assuming the surface is dominated by Lambertian reflection so 

that we could considerate the surface shading based on the normal (N) and the light 

vector (L).  
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𝐼𝐷 = 𝑁 ⋅ 𝐿𝐶𝐼𝐿 

 

where 𝐼𝐷  is the surface brightness, C is the surface color and 𝐼𝐿 is the intensity of 

incoming light. Because  

𝑁 ∙ 𝐿 =  𝑁  𝐿 𝑐𝑜𝑠𝛼 

 

where α is the reflection angle between normal and light vector. The intensity will be 

the highest if the normal vector in the same direction as the light vector (cos(0) = 1, 

the surface will be parallel to the direction of the light), and the lowest if the normal 

vector is perpendicular to the light vector (cos(π/2) = 0, the surface runs perpendicular 

with the direction of the light).  

 With a given output surface normal and target light source vector, we can 

compute the reflection angle between normal and light for each pixel in the 

synthesized output, 𝑥𝜃 . We can also reconstruct the surface normal of the input image 

and compute the reflection angle between the normal of image and input light source 

vector, 𝑧𝜃 . Then we can use 𝑥𝜃 .and 𝑧𝜃  to get a constrain map. 

 For each pixel p in X, we can find a corresponding pixel 𝑞 in Z that the 

reflection angle 𝑝𝜃  is closest to the reflection angle 𝑞𝜃 . Then the constraint map can 

be simply obtained by pasting the color of q with the resolution equal to the 

synthesized output. Base on the assumption that the surface is dominated by 

Lambertian reflection, we could obtain a simple soft-constraint. Then the detail view 

dependent properties , such as self-shadowing, subsurface scattering can be 

synthesized through the texture optimization. 

In the E step, we solve the differential of (3) with respect to x. For the normal 

constrain mentioned above, solving the differential problem is corresponding to 

compute the weighted average of the constraint map and those corresponding patches. 
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 While in the M step, we search the closest patch zp depending on not only the 

Euclidean norm but also the similarity of the normal. Considering the Euclidean norm 

between patches can capture the surface patter well. In order to keep the shading 

variation on the surface is smooth, we have to consider with the criteria about normal. 

 

 

 𝑞𝜃                                  𝑝𝜃  

 

 

 

 

                                                     

               

 

 

 

4.4 Appearance Consistency 

 Texture synthesis could keep the feature pattern of repeating element on the 

sample and generate the output that is larger in size than the input sample but 

perceptually similar to it. Although the outcome would be perceptually similar to the 

input, but the results would be different through different synthesis phases. That is to 

say, even the same program, the synthesized result from first time experiment and the 

result from second time experiment wouldn’t be perceptually the same. If we want to 

simulate the shading variation on the given surface normal through different light 

position, we have to keep the appearance consistent. Then we can tell whether the 

Figure (15): Left is the input image with 𝑞𝜃 . With the given sphere normal, we 

can compute the 𝑝𝜃 . Right is the constrain map. 
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change in brightness over the surface is correct or not perceptually.  

 We want to maintain spatial and temporal continuity to keep the appearance 

consistency. So we can treat this problem as texture flowing control. Kwatra et 

al.[2003] achieve texture flowing by warping the result of the previous frame with 

given vector field. The warped image denotes the soft-constraint during the 

optimization in current frame.  

Let L denotes the light position which we want to simulate the shading variation. 

L is composed by a sequence of 2D synthesized output, (L1,L2,…,Lp-1). Where p is the 

number of light source position. The shading variation is treated as shading flow and 

Li is the desirable shading flow between light position i and light position i+1. Given 

the color of pixel p at synthesized output under light position i, we can get the color of 

p under light position i+1 after shading through Li (p). 

 

 

 

 

 

 

 

  

 

 

 

 

Let Xi and Xi+1 denote two synthesized results from different lighting configurations. 

Each pixel p in Xi could be related to each pixel q in Xi+1 through Li. Hence, the 

control term in the objective function can be defined as: 

 

𝑂𝑐 𝑥; 𝐿 =   (𝑥 𝑝, 𝑖 − 𝑥(𝑞, 𝑖 + 1))2
𝑝∈𝑋𝑖𝑖∈1:𝐿−1  (3) 

 

Figure (16): This figure shows how we take synthesized result as soft-constraint at next 

optimization process. 

Synthesized result 1 Synthesized result 2 Synthesized result 3 

L1 L2 
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 We apply basic texture synthesis to get a first synthesized result of the sequence, 

L1. Then the later optimization process will base on the constraint texture synthesis 

that using previous results as soft-constraint.  
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5. Results  

 

 

 

 

 

 

 

 

 

Figure (17): Result from basic texture synthesis by optimization 
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 Figure (19) and Figure (20) show the results of different movement of light 

source with appearance consistency. 

 

 

 

 

 

 

 

 

Figure (18): Left is the input image. Right is the given sphere normal. 

Figure (19): Light position moves from left to right. 

Figure (20): Light position moves from right to left 
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Figure (21) show the results of smaller patch size during optimization.(5*5) 

 

      

 

 

 

 

 

 

 

 

 

Figure (22): Left is the input image. Right is the given sphere normal. 

Figure (21): Light position moves from left to right with smaller patch size 



 

31 
 

6. Summary & Future Work 
 We present a simple way to simulate a given surface normal with texture from 

the input image under different lighting positions. Base on the assumption that the 

surface is mainly dominated by Lambertian reflection with slight self-shadow or 

subsurface scattering, we generate the constraint map from the angle between the 

normal and the light vector. Then the optimization is applied with the constraint map 

to synthesis the output. We also show how to keep the appearance consistency by the 

previous synthesized result. A previous result serves as the constraint map that keeps 

the appearance of current result consistent.  

 

There are several issues that might improve our results. We generate the 

constraint map base on the normal and light vector. If the recovering normal is more 

specific, the synthesized output will preserve more details and shading variations. A 

more robust normal reconstruct method may apply to our thesis. Besides, when 

applying multi-resolution synthesis, we set the patch sizes at constant. Sometimes it 

can not capture the feature of the image well. Techniques about feature detection can 

help us with more precise patch size that obtains the surface feature well. For the 

future work, we want to generate a database like BTF database that containing 

different viewing and lighting configuration from a single image. More issues besides 

image color and reflection angle should be considerate to reach that goal.  
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