

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

Bidirectional texture synthesis using optimization

from a single image

中 華 民 國 九 十 八 年 七 月

Bidirectional texture synthesis using optimization from a single image

 Student Chan-Yu Lin

 Advisor I-Chen Lin

A Thesis

Submitted to Institute of Multimedia Engineering
College of Computer Science

National Chiao Tung University
in partial Fulfillment of the Requirements

for the Degree of
Master

in

Computer Science

July 2009

Hsinchu, Taiwan, Republic of China

I

II

Bidirectional texture synthesis using

optimization from a single image

Student: Chan-Yu Lin Advisor: Dr. I-Chen Lin

Institute of Multimedia Engineering

National Chiao Tung University

Abstracts

 This thesis proposes a method to synthesis the shading of object surface

under different light source position from a single image. We obtain the

objective function from image colors and the reflection angles, and then apply

an EM-like algorithm to solve this function. Besides, user could specify the

normal of target surface which we synthesize. And we use shape from shading

to recover the object surface from the image. Finally, we can synthesize a

sequence of images in different lighting configuration from a single image.

Keyword: EM algorithm, shape from shading, texture synthesis

III

IV

Contents

... I

Abstracts .. II

... III

Contents ..IV

1. Introduction .. 1

1.1 Motivation .. 1

1.2 Overview .. 2

2. Related Work .. 5

2.1 Texture Synthesis .. 5

2.2 Bidirectional Texture function .. 6

2.3 Shape From Shading .. 8

3. Normal Reconstruction .. 11

4. Optimization Process ... 18

4.1 Texture Synthesis .. 18

4.2 Multi-level Synthesis .. 22

4.3 Synthesis with Reflection Angle ... 23

4.4 Appearance Consistency .. 25

5. Results .. 28

6. Summary & Future Work ... 31

7. Reference .. 32

1

1. Introduction

1.1 Motivation

In order to reproduce the visual realism of the real world, many different texture

synthesis methods have been researched and applied in computer graphics, vision and

image processing. For instance, pixel-based and patch-based texture synthesis,

extracting the colors from input images by comparing the neighbors for visual

consistency. For synthesizing more detailed reflection on object surface, Bidirectional

Texture Function (BTF), a 6-dimentional function, represent each pixel color by the

angle between light vector and pixel normal and by the angle between view vector

and pixel normal.

However, the input of the synthesis process could be obtained from a variety of

sources such as hand-drawn images or photographs. In order to synthesize realistic

reflection on the surface, BTF requires a large database containing thousands of

captured photographs from different viewing and lighting configurations as the input.

Nevertheless, it is a very difficult and tedious work to obtain such large amount of

images even with professional facilities.

We present a simple way to synthesize view-dependent surfaces from lighting

directions. The input to our system is only a single image of a nearly convex object,

where the surface materials are nearly identical. We assuming the surface is mainly

dominated by Lambertian reflection but also with slight self-shadow or subsurface

2

scattering and we considerate the surface shading based on the normal and the light

vector. Furthermore, we solve the view-dependent detail reflection by texture

optimization. In order to keep consistency of the images during light source moves,

we treat it as texture flow and use a consequent initial guess to keep the pattern

consistency.

1.2 Overview

 The requirement of the input to our system is very simple; we just use an

off-the-shelf camera and take a photo of a nearly single-material object under

directional lighting conditions, e.g. under the sun light. We assuming that the surface

is a Lambertian-dominant, so that the color of pixels is strong connected to the surface

normal vector and the normalized light vector. Then we apply the shape from shading

to reconstruct the normal of object surface. Because the input surface is single

material, the normal we reconstructed will less affected by noise.

 Once we obtain the rough surface normal according to shady information, we

could compute the angle between normal and light vector for each pixel in the input

image. Also, the angle between surface normal and target light vector could be

calculated by N*L. According to Lambertian reflectance model, we could use the

angles to re-compute the surface color under the target illumination condition to get a

new photo. Nevertheless, while simply scaling according to the incident angles,

view-dependent properties, such as self-shadowing, subsurface scattering can not be

synthesized. Therefore we use the Lambertian-based re-shading image as the

soft-constraint in our optimization process. Besides, in order to keep the appearance

3

consistency of the texture pattern, the similarity of neighboring pixels is another

strong constraint in the energy function.

 The other issue in this thesis is how to keep the consistency of textures

synthesized from different lighting settings. General texture synthesis would

synthesize quit different results with different initial guesses. To keep the

view-consistency texture, we take the synthesis result of the first illumination

configuration as an initial guess in the optimization for other light settings during

entire synthesis process.

 We apply an Expectation Maximization (EM)-like algorithm to solve the

minimization of the energy function [McLachlan and Krishnan 1997]. Through

successive iterations with different resolutions, the texture energy will decrease

gradually and the result could be refined. For different resolution, different

neighborhood sizes will be applied to catch the feature in the input. The large

neighborhoods allows large scale pattern to be settle in the output, the smaller

neighborhoods is used to refine the texture.

 In this thesis, we first introduce researches related to our work in chapter 2, such

as texture synthesis and shape from shading. In chapter 3, we combine shape from

shading and image segmentation technique to reconstruct a smooth surface normal.

The recovering normal will be the constraint during the synthesis process. After

normal recovering, we present the texture synthesis by optimization for detail at

chapter 4. Experiment results and further discussion will be presented at last two

chapters.

4

Our system can use a successive of optimization process to get a sequence of results

under different light position. The following figure is the flow chart of our system:

Input Image

(single material)

Normal Recovering

(SFS+Segmentation)

Constrain Generation

(N*L)

Optimization Phase

Result (as initial guess)

Change light position

Change resolution

Change patch size

EM like algorithm

Figure (1): The flow chart of our system

5

2. Related Work

 This goal of this thesis is to avoid the tedious acquisition of the enormous BTF

database but keep view-dependent properties as well. We survey researches about

BTF. Besides, we apply shape from shading to reconstruct the surface normal as soft

constraints and apply texture synthesis to obtain the result.

2.1 Texture Synthesis

Texture synthesis has been widely researched for years; there are a variety of

methods toward synthesizing textures. Pixel-based methods are easier to assign

constraint on the texture because they synthesize the texture color one pixel at a time

by comparing partially synthesized neighborhood with exemplar neighborhood [Efros

and Freeman 2001; Kwatra et al. 2003]. In contrast, patch-based methods are

amenable to keep the global structure well by synthesizing one patch at a time [Efros

and Leung 1999].

Figure (2): The input is on the left and the output on the right.

6

Optimization also has been applied to texture synthesis with Markov Random

Field (MRF). Paget and Longstaff [1998] use a multi-scale synthesis algorithm

incorporating local annealing to obtain larger realizations of texture visually

indistinguishable from the training texture.

Besides, there are some researches about texture relighting. Using photometric

stereo [Hertzmann and Seitz 2003] to reconstruct the rough normal map, Y-C Shen et

al.[2006] relight the object by interpolation similar lighting conditions. They need to

take a few photographs for a fixed viewpoint under controlled light. In contrast, our

system uses only a single image as input.

2.2 Bidirectional Texture function

 The Bidirectional Texture Function (BTF) is a 6D function that can describe

textures arising from both spatially-variant surface reflectance and surface details.

The BTF captures not only the surface appearance, but also the fine-scale shadows,

occlusions, and specularities caused by surface mesostructures. Therefore, it can

greatly increase the surface relism in the rendering.

 Figure (3): Capturing photos from different viewing and light position.

7

Surface appearance modeling using the BTF can be roughly subdivided into the

following phases[Leung et al. 2007]:

1. BTF acquisition (real or synthetic data),

2. BTF compression,

3. BTF synthesis,

4. BTF rendering.

 BTF acquisition is the capturing and modeling the BTF data from real-world

material. It may take hundreds of range cameras to construct a camera array in order

to get photograph from different viewing and lighting settings. However, the high

dimensionality and enormous storage of the BTF is difficult and computationally

expensive for synthesis directly. The PCA method and some multi-linear methods

were applied to compactly represent the whole database to reduce the dimension, and

this is call BTF compression.

 The BTF is directly synthesized with reference to the target geometry before

Figure (4): The simple flow chart of BTF process.

8

rendering the data on target surface. If we want to change the appearance with another

BTF, we need to re-synthesize the BTF data because the data is tied to the geometry

when we first synthesize. The BTF captures not only the surface appearance, but also

the mesostructure, it can greatly increase the surface relism in the rendering.

2.3 Shape From Shading

In computer vision, shape from shading is a technique to recover the shape from

a gradual variation of shading in the image. A widely used model that relates shape

with image information is the Lambertian model, in which the image intensity

depends on the light source direction and the surface normal. The formulation for

recovering the surface normals was given by Horn[1990] for a wide range of

reflectance functions.

In SFS, given a image intensity, the aim is to recover the light source and the

surface shape at each pixel in the image. However, real images do not always follow

the Lambertian model. Even if we assume Lambertian reflectance and known light

source direction, and if the brightness can be described as a function of surface shape

and light source direction, the problem is still not simple. This is because if the

surface shape is described in terms of the surface normal, we have a linear equation

with three unknowns, and if the surface shape is described in terms of the surface

gradient, we have a non-linear equation with two unknowns. Therefore, finding a

unique solution to SFS is difficult; it requires additional constraints. Ruo et al[1999]

implement and compare six well-known SFS algorithm, such as propagation approach

and linear approach.

Propagation approaches start from a single reference surface point, or a set of

surface points where the shape either is known or can be uniquely determined (such as

9

singular points), and propagate the shape information across the whole image.

Given initial values at the singular points (brightest points), the algorithm looks

in eight discrete directions in the image and propagates the depth information away

from the light source to ensure the proper termination of the process.

 Linear approaches reduce the non-linear problem into a linear through the

linearization of the reflectance map. The idea is based on the assumption that the

lower order components dominate in the reflectance map.

Figure (5): (a)The input image (b)The depth map from linear approach

(c)The depth map from propagation approach (d) The difference map of these two

methods.

10

In this thesis, we reconstruct the normal of the surface by the image gradient, the

light vectors and the intensity of pixels [Fang, H., and Hart, John C 2004].

Figure (6): (a) An ordinary photo is scanned in.

(b) Normal map reconstructed from shape from shading.

11

3. Normal Reconstruction
 The goal of this chapter is to reconstruct the normals of the input image for

obtaining the relationship between pixel colors and normals. The angle between the

estimated normal and the light vector will be the constraint during the optimization

process. In order to obtain a smooth surface normal, we first apply image

segmentation to the input. There are two important properties in doing

segmentation：

1. Capture perceptually important clusters, which often represent the global

feature in the image. Capturing precise characterizations that is perceptually

important, and being able to specify what a given segmentation technique

does is two central issues.

2. Be highly efficient, run time is nearly linear in pixel number. Segmentation

technique could be widely used if the method is highly efficient. For example,

it runs several frames per second can be applied to video processing field.

We applied an efficient image segmentation method based on graph-cut

proposed by Pedro et al[2004]. It constructs a graph that each pixel is a node in the

graph and certain neighboring pixel are connected by undirected edges. Let G= (V, E)

be an undirected graph with vertices viV, the elements to be segmented, and edges

(vi, vi) E corresponding to each pair of neighboring vertices. Each edge (vi, vi) E

has a corresponding weight w((vi, vi)), which describes the dissimilarity between

neighboring vertices vi and vi. In our case of image segmentation, the elements in V

refer to the pixels in the image and the weight of corresponding edges is the measure

of the dissimilarity of two pixels connected by the edge. The edges between two

pixels in the same segment should have relatively low weights, while edges between

12

pixels in different segment should have higher weights.

 The segmentation algorithm is based on the dissimilarity among neighboring

pixels within each of the two segments. The internal difference of a region RV to be

the largest weight in the minimum spanning tree of the region, MST(R,E). That is

)(max)(
),(

ewRInt
ERMSTe

The other measurement describe the difference between two regions R1,R2V to be

the minimum weight edge connecting the two regions. That is

)),((min),(
),(,,

21
21

ji
EvvRvRv

vvwRRDif
jiji

Then we could use these two kinds of difference to decide whether the regions could

be merged or not by the following pair wise comparison,

),(21 RRD ｛
otherwisefalse

RRMIntRRDififtrue),(),(2121

where the minimum internal difference , Mint, is defined as,

))()(),()(min(),(221121 RRIntRRIntRRMInt

τ is a threshold function based on the size of the region,

R
kR)(

13

where 𝑅 denotes the size of R, and k is a constant parameter. In practice k sets a

scale of observation, a larger k will cause larger region segmentation. The threshold

function controls the degree to which the difference between two regions must be

greater than their internal difference in order to be evidence of a combination them or

not. Figure (7) simply shows how the segmentation works.

 The input is a image, we take it as a graph G=(V,E), each pixel represent a vertex

in V and any two pixels form a edge in E. Assuming there are n vertices and m edges

in G. The output is a segmentation of V into regions S = (R1,…,Rr). The following is

the algorithm,

0. Sort E into into π=(o1,…,om), by non-decreasing edge weight.

1. Start with a segmentation S
0
, where each vertex vi is in its own component.

2. Construct S
0
 given S

q-1
 as follows. Let vi and vj denote the vertices connected

by the q-th edge in the ordering , i.e., oq = (vi, vi). If vi and vi are in disjoint

components of S
q-1

and w(oq) is small compared to the internal difference of

R2

Figure (7): The white arrows in the figure represent Int(R1) and Int(R2). While

the orange arrow is the Dif(R1, R2). We can tell that the orange arrow is longer

than the two white arrows, that is to say R1and R2 can not be merged.

R1

14

both those components, then merge the two components otherwise do

nothing. More formally , let 𝑅𝑖
𝑞−1 be the component of S

q-1
 containing vi and

𝑅𝑖
𝑞−1 the component containing vj. if 𝑅𝑖

𝑞−1
≠ 𝑅𝑗

𝑞−1
 and w(oq) ≤

Mint(𝑅𝑖
𝑞−1, 𝑅𝑗

𝑞−1
) then S

q
 is obtained from S

q-1
 by merging 𝑅𝑖

𝑞−1𝑎𝑛𝑑 𝑅𝑗
𝑞−1

.

Otherwise . S
q
 =S

q-1
 .

3. Repeat step 2 for q=1,…,m.

4. Return S = S
m

We could get the segmentation result after the algorithm. Figure (7) and

Figure (8) show the segmentation results from synthetic model and real objects.

Figure (8): [Synthesis data]

(a)The input image, (b)The segmentation result with k=150

(c) The result with k=500.

(a) (b) (c)

15

After the segmentation, we could recover a more stable normal of the input

image. Horn [1990] presents the formulae for recovering the shape of a surface from a

shaded image which can deal with complex, wrinkled surfaces. And the following

simple Lambertian reflectance model works well for our purposes. Let S be the unit

vector from the center of the object toward a sufficiently distant point light source.

We further assume the point on the surface with largest intensity Imax towards the

light source position. The darkest point is shadowed and its intensity Imin indicates

the ambient light in the scene. The function c(x,y) = (I(x,y)−Imin)/(Imax −Imin)

estimates the cosine of the angle between incidence and normal. We could reconstruct

the surface normal by the cosine angle and the image gradient.

SSyxIyxIyxG)),((),(),(

Figure (9): [Real data]

Left top is the input image.

Right top is the segmentation result with k=150.

Left bottom is the result with k=500.

16

)0,,(),(

),(/),(),(),(),(

y
I

x
IyxIwhere

yxGyxGyxsSyxcyxN

Because the reconstructed normal is rough and easily affected by noise, we use

the segmentation result to get a smooth surface normal. We compute the average

normal of each region and assign to the center of the region. Then we could

interpolate the normal of each pixel by the distance between specified pixel and each

region center. That is, the closer the region is the higher weight it has. The following

figure shows the difference of interpolation or not. Figure. 9 shows the normal map of

different methods.

is the image gradient.

(a)

(b) (c)

17

 \

Figure (10): (a)The input image

(b)Rough normal from SFS

(c)Grouping normal by the segmentation result

(d)Interpolating pixel normal

(e)The interpolated normal map from (b) and (d)

(d) (e)

18

4. Optimization Process

In this chapter, we will describe how our synthesis process works and how to

keep the surface appearance consistency. The first section is about basic texture

synthesis using optimization. Then we present how we consider normal as a

soft-constraint during the optimization. The last section is about how to keep the

appearance consistency.

4.1 Texture Synthesis

The input to our system is just a single image; we use this image to perform

basic texture synthesis using optimization based on Kwatra et al [2004]. According to

the Markov Random Field (MRF) property of texture, locality and stationary is two

major issues. The color of pixel is only related with the color of its neighboring pixel

that is locality; stationary implies that the locality property is independent with the

actual position of the pixel, it means no matter what location the pixel is, its color is

only depend on its neighboring pixels.

Now we would like to describe the similarity of the input image and the

synthesized output based on the MRF theory mentioned above. Base on the

assumption that the synthesized output will perceptually similar to the input image if

all the patches in the output be similar to some patches in the input image. The

objective function could be defined by the similarity between input patches and output

patches. Let Z be the input image which we want to capture the color information and

X be the output we want to synthesize. We could concatenate the value of all the

pixels in X to form a vectorized version of X, x. Then let Np be the patch which is

centered at p in the output, and its corresponding vector is the sub-vector of x, xp.

19

Under the same definition, z would be a vectorized version of input Z, and zp is a

sub-vector of z. zp is the most similar patch corresponding to xp under the Euclidean

norm.

The objective function could define as:

𝑂 𝑥; {𝑧𝑝} = 𝑥𝑝 − 𝑧𝑝
2

𝑝∈𝑋+ (1)

If we consider the patch formed by all the pixels in the image, it would be very

computationally expensive and inefficient in practice. So selecting a subset of the

patches whose center is located at X
+⊂X is more efficient. The elements in X

+
 are

choosing by pixels in the output which is w/4 apart and w is the patch size. The

patches we choosing would be sufficiently overlapped to avoid sampling not enough.

Besides, choosing patches in the sparse grid manner could prevent too many patches

affect one pixel simultaneously getting the synthesized output too blurry.

Input Z

Output X

xp

Figure (11): xp is the patch centered at pixel p, and zp is the closest

corresponding patch in the input.

zp

20

 Using the formula mentioned above, we could refine the synthesized output

progressively. If the initial status of x is unknown, there are two ways to do the initial

guess. First, we could full the output resolution with random color; the other is

assigning random patches to each xp. At each iteration, we treat x and zp as variable at

different phase. Given an initial guess of x, we could find the corresponding zp that is

closest to each xp. Then we could update the value of x according to the corresponding

patches. Once we update the value of x, the patch set that contain the corresponding zp

of x may change. So we have to iteratively repeat these two steps until it coverage.

When the patch set of zp at current iteration is equal to the patch set of zp at previous

iteration, the optimization process is complete.

An expectation-maximization (EM) algorithm is used in statistics for finding

Figure (12): The figure shows how we

spread the sample point. Each center is

w/4 apart and w is the patch size.

Figure (13): Left: input image, Middle: random initial guess, Right: patch initial guess.

21

maximum likelihood estimates of parameters in probabilistic models, where the

model depends on unobserved latent variables. EM is an iterative method which

alternates between performing an expectation (E) step, which computes an

expectation of the log likelihood with respect to the current estimate of the

distribution for the latent variables, and a maximization (M) step, which computes the

parameters which maximize the expected log likelihood found on the E step. These

parameters are then used to determine the distribution of the latent variables in the

next E step.

 In our synthesis case, we applied an EM like algorithm to solve the objective

function in (1) [McLachlan and Krishnan 1997]. At E step, we want to get an

estimation of each pixel in the synthesized output by minimize the error function in

(1). This could be archive by setting the derivative of (1) with respect to x to zero. The

outcome is a linear system that can be solve for x. As mentioned above, each term in

(1) is a patch similarity error between the input and the output and the summation can

be treated as the global error. In the other words, the goal of the minimization is

pulling the pixels in xp towards the pixels in zp. Because pixels in X may exist in more

than one patch in xp, the corresponding zp would simultaneously affect the value of

specified pixel. Through E steps, we could get the color of each pixel in X by

averaging its corresponding pixel in zp from the input image.

 The M step keeps the x value updated from E step as constants, treat zp as

valuables to minimize (1). After E step, a new set of xp could be obtained from the

estimation result, x. The minimization needs to find out the closest zp for each xp. We

could compute the difference patch by patch to get the closest patch we want. But

obviously, using brute-force to do this search process is very inefficient and time

consuming. To accelerate the searching problem, we simply perform the k-means

clustering, one of the widely used and intuitive algorithm. After defining k cluster

22

centers (k=4), we have to take center of patch in zp and associated it to the nearest

centers. Base on the new clusters, we could re-compute each cluster center and

re-associate each pixel. A loop has been generated. The clustering process will stop

when no more changes are done. Once the clustering is complete, we could perform

the search process according to the clustering result to accelerate the optimization

performance.

4.2 Multi-level Synthesis

 In order to refine the synthesized result, we applied the multi-level scheme to the

optimization process. The synthesis process is starting from a lower resolution. At

coarse resolution, the feature patterns on the input are spatially close to each other, it

is easier to keep the appearance consistency through the desired output. The result at

lower resolution then serves as the initial guess at higher resolution via interpolation.

During each resolution, a specific patch size is applied to the optimization process in

order from largest to smallest. Larger patch could capture image structure first, then

the smaller patch removes the fine scale errors to refine the output. In our case, we use

three resolutions and three patch size of 33*33, 17*17, 9*9 at each resolution.

Figure (14): Left: the result without multi-level. Right: the result with multi-level.

23

4.3 Synthesis with Reflection Angle

 Controllable synthesis technique could be applied in our case as the

soft-constraint. Kwatra et al [2004] provide a modulation of objective function with

appropriate weights allows for additional control over individual pixel values. We

propose adding reflection parameters in the objective function as the constraints. For

example, if certain color is desirable at specified location, we can express the control

term as:

𝑂𝑐 𝑥 = 𝑥 𝑚 − 𝑥𝑐 𝑚
2

𝑚∈𝛿 (2)

where 𝛿 is a set of specified pixels and x
c
 is a constrain vector that contains desirable

color and reflection informations. If we combine equation (2) into equation (1), it

would be:

𝑂 𝑥 = 𝑥𝑝 − 𝑧𝑝
2

+𝑝∈𝑋+ 𝜆 𝑥 𝑚 − 𝑥𝑐 𝑚
2

𝑚∈𝛿 (3)

where 𝜆 is a relative weighting coefficient. The former term in (3), tries to keep the

image pattern through the similarity comparison of neighboring patches. While the

control attempts to meet certain control criteria in the synthesized output.

 In our case, we try to synthesize the input image on a given reflection angle. Not

only keep the structure from input, but also the shading variation through the

predefined normal. We assuming the surface is dominated by Lambertian reflection so

that we could considerate the surface shading based on the normal (N) and the light

vector (L).

24

𝐼𝐷 = 𝑁 ⋅ 𝐿𝐶𝐼𝐿

where 𝐼𝐷 is the surface brightness, C is the surface color and 𝐼𝐿 is the intensity of

incoming light. Because

𝑁 ∙ 𝐿 = 𝑁 𝐿 𝑐𝑜𝑠𝛼

where α is the reflection angle between normal and light vector. The intensity will be

the highest if the normal vector in the same direction as the light vector (cos(0) = 1,

the surface will be parallel to the direction of the light), and the lowest if the normal

vector is perpendicular to the light vector (cos(π/2) = 0, the surface runs perpendicular

with the direction of the light).

 With a given output surface normal and target light source vector, we can

compute the reflection angle between normal and light for each pixel in the

synthesized output, 𝑥𝜃 . We can also reconstruct the surface normal of the input image

and compute the reflection angle between the normal of image and input light source

vector, 𝑧𝜃 . Then we can use 𝑥𝜃 .and 𝑧𝜃 to get a constrain map.

 For each pixel p in X, we can find a corresponding pixel 𝑞 in Z that the

reflection angle 𝑝𝜃 is closest to the reflection angle 𝑞𝜃 . Then the constraint map can

be simply obtained by pasting the color of q with the resolution equal to the

synthesized output. Base on the assumption that the surface is dominated by

Lambertian reflection, we could obtain a simple soft-constraint. Then the detail view

dependent properties , such as self-shadowing, subsurface scattering can be

synthesized through the texture optimization.

In the E step, we solve the differential of (3) with respect to x. For the normal

constrain mentioned above, solving the differential problem is corresponding to

compute the weighted average of the constraint map and those corresponding patches.

25

 While in the M step, we search the closest patch zp depending on not only the

Euclidean norm but also the similarity of the normal. Considering the Euclidean norm

between patches can capture the surface patter well. In order to keep the shading

variation on the surface is smooth, we have to consider with the criteria about normal.

 𝑞𝜃 𝑝𝜃

4.4 Appearance Consistency

 Texture synthesis could keep the feature pattern of repeating element on the

sample and generate the output that is larger in size than the input sample but

perceptually similar to it. Although the outcome would be perceptually similar to the

input, but the results would be different through different synthesis phases. That is to

say, even the same program, the synthesized result from first time experiment and the

result from second time experiment wouldn’t be perceptually the same. If we want to

simulate the shading variation on the given surface normal through different light

position, we have to keep the appearance consistent. Then we can tell whether the

Figure (15): Left is the input image with 𝑞𝜃 . With the given sphere normal, we

can compute the 𝑝𝜃 . Right is the constrain map.

26

change in brightness over the surface is correct or not perceptually.

 We want to maintain spatial and temporal continuity to keep the appearance

consistency. So we can treat this problem as texture flowing control. Kwatra et

al.[2003] achieve texture flowing by warping the result of the previous frame with

given vector field. The warped image denotes the soft-constraint during the

optimization in current frame.

Let L denotes the light position which we want to simulate the shading variation.

L is composed by a sequence of 2D synthesized output, (L1,L2,…,Lp-1). Where p is the

number of light source position. The shading variation is treated as shading flow and

Li is the desirable shading flow between light position i and light position i+1. Given

the color of pixel p at synthesized output under light position i, we can get the color of

p under light position i+1 after shading through Li (p).

Let Xi and Xi+1 denote two synthesized results from different lighting configurations.

Each pixel p in Xi could be related to each pixel q in Xi+1 through Li. Hence, the

control term in the objective function can be defined as:

𝑂𝑐 𝑥; 𝐿 = (𝑥 𝑝, 𝑖 − 𝑥(𝑞, 𝑖 + 1))2
𝑝∈𝑋𝑖𝑖∈1:𝐿−1 (3)

Figure (16): This figure shows how we take synthesized result as soft-constraint at next

optimization process.

Synthesized result 1 Synthesized result 2 Synthesized result 3

L1 L2

27

 We apply basic texture synthesis to get a first synthesized result of the sequence,

L1. Then the later optimization process will base on the constraint texture synthesis

that using previous results as soft-constraint.

28

5. Results

Figure (17): Result from basic texture synthesis by optimization

29

 Figure (19) and Figure (20) show the results of different movement of light

source with appearance consistency.

Figure (18): Left is the input image. Right is the given sphere normal.

Figure (19): Light position moves from left to right.

Figure (20): Light position moves from right to left

30

Figure (21) show the results of smaller patch size during optimization.(5*5)

Figure (22): Left is the input image. Right is the given sphere normal.

Figure (21): Light position moves from left to right with smaller patch size

31

6. Summary & Future Work
 We present a simple way to simulate a given surface normal with texture from

the input image under different lighting positions. Base on the assumption that the

surface is mainly dominated by Lambertian reflection with slight self-shadow or

subsurface scattering, we generate the constraint map from the angle between the

normal and the light vector. Then the optimization is applied with the constraint map

to synthesis the output. We also show how to keep the appearance consistency by the

previous synthesized result. A previous result serves as the constraint map that keeps

the appearance of current result consistent.

There are several issues that might improve our results. We generate the

constraint map base on the normal and light vector. If the recovering normal is more

specific, the synthesized output will preserve more details and shading variations. A

more robust normal reconstruct method may apply to our thesis. Besides, when

applying multi-resolution synthesis, we set the patch sizes at constant. Sometimes it

can not capture the feature of the image well. Techniques about feature detection can

help us with more precise patch size that obtains the surface feature well. For the

future work, we want to generate a database like BTF database that containing

different viewing and lighting configuration from a single image. More issues besides

image color and reflection angle should be considerate to reach that goal.

32

7. Reference

Debonet, J. S. 1997. Multiresolution sampling procedure for analysis and synthesis of

texture images. Proceedings of ACM SIGGRAPH 97 (August), 361–368.

Debevec, P. Image-based lighting, 2001.

Efros, A., amd Leung, T. 1999. Texture synthesis by non-parametric sampling. In

International Conference on Computer Vision, 1033–1038.

Efros, A. A., AND Freeman, W. T. 2001. Image quilting for texture synthesis and

transfer. Proceedings of SIGGRAPH 2001, 341–346.

Fang, H., AND Hart, John C. 2004. Textureshop: Texture Synthesis as a Photograph

Editing Tool, Proc. SIGGRAPH 2004.

Horn, B. K. 1990. Height and gradient from shading. 1990. International journal of

computer vision, 5:1,, 37-75, 1990.

Hertzmann, A., Jacobs, C. E., Oliver, N., Curless, B., AND Salesin, D. H. 2001.

Image analogies.Proceedings of SIGGRAPH 2001 (August), 327–340. ISBN

1-58113-292-1.

Hertzmann , A. AND Seitz, S. M.. Shape and materials by example: A photometric

stereo approach. In Proceedings of IEEE Conference on Computer Vision and Pattern

Recognition, volume 1, 533–540, 2003.

33

Kwatra, V., Sch ödl, A., Essa, I., Turk, G., AND Bobick, A. 2003. Graphcut textures:

Image and video synthesis using graph cuts. ACM Transactions on Graphics,

SIGGRAPH 2003 22, 3 (July), 277–286.

Kwatra, V., Essa, I., Bobick, A., AND Kwatra, N. 2005. Texture Optimization for

Example-based Synthesis. ACM Transactions on Graphics, SIGGRAPH 2005

Lefebvre, S., AND Hoppe, H. Appearance-space texture synthesis. 2006. ACM

Transactions on Graphics (Proc. SIGGRAPH 2006), 25(3), 541-548.

Leung MK, Pang WM, Fu CW, Wong TT, AND Heng PA. 2007. Tileable BTF. IEEE

transactions on visualization and computer graphics 13(5):953-65, 2007

Mclachlan, G., AND Krishnan, T. 1997. The EM algorithm and

extensions. Wiley series in probability and statistics. JohnWiley & Sons.

Paget, R., AND Longstaff, I. D. 1998. Texture synthesis via a noncausal

nonparametric multiscale markov random field. IEEE Transactions

on Image Processing 7, 6 (June), 925–931.

Pedro F. Felzenszwalb and Daniel P. Huttenlocher. 2004. Efficient Graph-Based

Image Segmentation. International Journal of Computer Vision, Volume 59, Number 2,

September 2004

Ruo Z. P-S Tsai. James EC And Mubarak S. 1999. Shape-from-shading: a survey.

http://www.siggraph.org/s2005/

34

IEEE Transactions on Pattern Analysis and Machine Intelligence. Volume 21, 690-706

Y-C Shen, W-C Ma, Y-Y Chuang, B-Y Chen, AND M Ouhyoung. 2006.Coherent

Texture Synthesis for Photograph Relighting and Texture Transfer. Proceedings of

2006 Workshop on Computer Vision & Graphic Image Processing, Taoyuan, Taiwan,

2006.

