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A Synthesis-Quality-Oriented Depth Refinement
Scheme for MPEG Free Viewpoint Television (FTV)

Student : Chun-Chi Chen Advisor : Wen-Hsiao Peng
Institute of Multimedia Engineering

National Chiao Tung University

ABSTRACT

This thesis addresses the problem of refining depth information from the received
reference and depth images within thé MPEG/FTV framework. An analytical model
is first developed to approximate thepper=pixelsynthesis distortion (caused by
depth-image compression) as«a/ function of depth-error wariances, intensity variations,
ground-truth depth and virtial camera loCafions. We thenh follow the model to detect
unreliable depth pixels by inspecting intensity gradicnts and to refine their values
with a candidate-based block disparity=sear¢h. Additional side information is
transmitted to make both operations robust against compression effects. Experimental
results show that our scheme offers an average PSNR improvement of 1.2 dB over
MPEG FTV and consistently outperforms the state-of-the-art methods. Moreover, it
can remove synthesis artifacts to a great extent, producing a result that is very close in

appearance to the ground-truth view image.
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CHAPTER 1

Research Overview

1.1 Introduction

Technology evolution in the capturé anddisplay of 3D videos will soon extend visual
sensation from 2D to 3D while allowing unrestricted spatiotemporal scene navigation.
In general, offering a 3D depth impression of a real-world scene requires two separate
images captured from properly arranged viewing positions. To enable scene navigation,
a multi-view video may have to be acquired through a dense camera set-up. However,
due to the complexity involved in acquisition, storage and transmission, it is unlikely
to have a large number of camera inputs. An efficient 3D data format is thus needed
to allow the generation of intermediate views from a sparse sampling of the observed
scene.

For this, the MPEG committee has recently defined a "multi-view video plus depth"
data format [1], which specifies a way of multiplexing the coded representations of a
multi-view video and its associated per-pixel depth information. With explicit scene
geometry, an arbitrary virtual view can be generated at the receiver side by means of

the so-called depth-image-based rendering (DIBR) [2][3][4][5], requiring only a small
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Chapter 1. Research Overview

number of view images for scene navigation. Since depth images must be conveyed
together with the corresponding view images, both types of scene representations are

compressed, based mostly on H.264/AVC, for an efficient use of network bandwidth.

1.2 Problem Statement

Although block-based hybrid coding is equally applicable to depth-image compression,
it causes undesirable synthesis artifacts. This is because depth images represent scene
geometry information, the characteristics of which are very different from those of
intensity data. It was shown in [6] that visually imperceptible depth errors can still
have a profound effect on synthesis quality. To tackle this problem, we propose to
regard both the received reference and depth images as sources of information about
the ground-truth depth of the scene, and provide ways to detect and refine unreliable

depth values.

1.3 Contributions

In this thesis, we propose a symthesis-quality-oniented/depth refinement scheme. Rather
than trying to minimize depth efrors, our schemeffiténds to detect and refine only those
depth pixels that are highly sensitive 46 'errors. The main contributions of our work
include:

1. An analytical model that formulates the per-pixel synthesis distortion (caused
by depth-image compression) as a function of depth-error variances, intensity
variations, ground-truth depth and virtual camera locations.

2. A detection scheme that discovers unreliable depth pixels by inspecting inten-
sity gradients, where the detection threshold is determined by evaluating, at the
sender side, the detection quality as perceived by the receiver.

3. A refinement scheme that performs depth refinement with a candidate-based
block disparity search, where a uniform quantizer operates on the received depth
and categorizes the unreliable depth pixels into several disjoint subsets, each of
which is assigned with a proper disparity search range.

In order for the detection and refinement processes to be able to adapt to statis-

tical changes due to compression effects, the settings of their control parameters are

-2-



Chapter 1. Research Overview

first determined at the sender side by evaluating the performance as perceived by the
receiver over the range of all possible choices, and then sent to the receiver as the side
information. Although extra bits are required for signaling, the overhead is negligible
and justified by the significant improvement in synthesis quality. Experimental results
show that our scheme offers an average PSNR improvement of 1.2 dB over MPEG FTV
and consistently outperforms the state-of-the-art methods. Moreover, it can remove
synthesis artifacts to a great extent, producing a result that is very close in appearance

to the ground-truth view image.

1.4 Organization

This thesis is organized as follows: Chapter 2 contains a brief review of DIBR. Chapter
3 introduces an analytical model for characterizing synthesis distortions caused by
depth-image compression. Chaptertd-deseribes otur proposed synthesis-quality-oriented
depth refinement scheme. Chapter-5-compates, the proposed scheme with the state-
of-the-art approaches in terms of ‘syathesis- gtiality “The thesis is concluded with a

summary of our observations.



CHAPTER 2

Background

2.1 Depth-Image-baséd Rendéring

Depth-image-based rendering (DIBR) isiarviéw generation method that renders virtual
views of a scene from a known reference image and its associated per-pixel depth infor-
mation. Often referred to as 3D image warping, the process involves first reprojecting
the reference image into the 3D space utilizing its depth information, followed by the
projection of the reconstructed scene onto the image plane of a virtual view camera.
The warping defines a vector-valued function ¥ that takes pixel coordinates p = [z, y]©

in the reference view as input and returns the corresponding coordinates p'= [z, y/]”

in the virtual view as output:

1
v | P =ara | P | 4T (2.1)
1 1 1 Zp

where the rotation and translation matrices, R and T, specify the relative position
of the virtual camera; A’ and A indicate respectively the intrinsic parameters of the

virtual and reference cameras; and Z, is the depth value associated with p. In the
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Chapter 2. Background

Left View Virtual View Right View

Figure 2.1: View synthesis based on multi-view video plus depth.

above, we have tacitly assumed parallel camera configuration. The reader is referred
to [2] for details. For brevity we use ¥(p; Z,) to denote the warping of the pixel p.

Equation (2.1) establishes a depth dependent relation between the pixel coordinates
of corresponding points in an imdge pair—Acfording to the equation, an arbitrary
virtual view can in principle hé/generated, provided that the depth value 7, is known
for every pixel p in the refereticeitnage and tliat camera parameters are available. In
practice, however, the viewpoint navigation is constrained by disocclusion problems:
"holes" appear in synthesizedimages if aréas écclided in the reference view become
visible in a virtual view. Such affifaets becomeZfiost obvious when the virtual view is
very far away from its reference.

To reduce the effects of disocclusion, the MPEG committee has recently proposed a
"multi-view video plus depth" data format that enables the generation of a virtual view
to make use of more than one reference view. Figure 2.1 shows a classic illustration of
the view synthesis based on such data format. In the example, each pixel in the virtual
view is formed by a weighted sum of its corresponding points in the two reference views,
and depending on the disocclusion level, the weight vector can vary from one pixel to
another. To find the corresponding points, depth images must be transmitted along
with their video signals. Due to the enormous amount of data involved, both view and
depth images must be compressed prior to transmission. The influence of depth-image

compression on synthesis quality is the subject of the next chapter.
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Figure 2.2: Categorization of the synthesis errors observed in a neaby reference view
[7].

2.2 Compensation of Synthesis Errors

In [7] Tanimoto et al. proposed tg\compensate-the synthesis errors (due to the use of an
impaired depth representationy in p=virtual view, by estimating their magnitudes from
the errors observed in a neafby weference view . In-pheit approach, the synthesis errors
are classified into two categoties ac¢ording totheir magnitudes. As shown in Figure
2.2, the less significant errors fall, wathin Categery ¥ whereas the more significant ones
belong to Category 2. The formér ¢atr-be.attributed to the depth errors in areas where
the intensity changes smoothly, while the latter is due to the errors in regions with a
sudden change in intensity. On account of their distinct characteristics, the synthesis
errors of different categories are compensated separately.

As a general observation, the magnitude of synthesis errors is proportional to the
distance between the reference and virtual cameras. The fact helps to predict the errors
in a virtual view. For example, in Figure 2.1, if we warp the left view image to the
right view, then the resulting errors can be linearly scaled to estimate the ones when
the left view image is warped to the virtual view. This approach, although being useful
for compensating the Category-1 errors, is less effective at dealing with the Category-2
€rrors.

For this reason, the authors [7] turned to make use of the linear relation between the
geometry distortions of different views to compensate the Category-2 errors. First, they

spotted the Category-2 errors by observing the misalignment of vertical edges when one
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Figure 2.3: Detected unreliable pixels [8].

of the reference views was warped to the other. More specifically, the pixels between
the misaligned vertical edges were marked as being distorted by the Category-2 errors,
and their corresponding depth was réfined to-tnimimize the geometry misalignments.
In [7], the edge maps were, manually generated in order to distinguish pixels cor-
rupted by the errors of differentypeategories.” While the results were promising, the
approach neglected to accofint for theseHects, of ill-fétmed edge maps. Besides, the
bandwidth necessary for signaling ithe edgesmaps was not considered if the compensa-

tion were to be done at the receiver-side.

2.3 Group-based Depth Refinement

Sung et al. [8], on the other hand, made use of the Lambertian condition to refine depth
images. The process involves using the similarity between the depth and intensity
values of corresponding pixels to detect unreliable depth pixels and then refining their
values through a group-based disparity search.

This scheme first follows the FTV framework that warps the stereo reference and
depth images to the position of the virtual view. A pixel in one warped reference
view is considered to be unreliable if both the intensity and depth differences between
itself and the correspondent in the other warped view, respectively, exceed the given
depth and intensity thresholds. Figure 2.3 marks the unreliable pixels in white. A

group-based depth correction scheme first groups the unreliable pixels by connected-
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component analysis, and then independently corrects the depth pixels of each group.
The correction tries to optimize an offset value for depth pixels in a group that min-
imizes the sum of synthesis errors, and adds the offset to these depth pixels. Finally,
the virtual view images is synthesized by referring to the updated depth images.

Although the group-based depth correction reduces many synthesis errors by its
hybrid processes, this scheme is inefficient if a group covers too many pixels to meet
the local condition, especially when the depth images are severely distorted.

In summary, only a few approaches have been proposed to alleviate synthesis arti-
facts caused by depth-image compression. Because these schemes rely entirely on the
decoded information for intensity correction or depth refinement, their performance is

greatly influenced by compression effects.



CHAPTER 3

Per-Pixel Synthesis Distortion Model

3.1 Synthesis Distortion NMaodel

An analytical model is introduced fon ¢haracterizing synthesis distortions caused by
depth-image compression. The model is explained with reference to Figure 3.1, which
illustrates an example of disparity-compensated interpolation based on an impaired
depth representation. In the figure, I+ denotes a virtual view image generated from
the reference image [ utilizing its ground-truth, per-pixel depth information. As
mentioned previously, the warping W establishes a relation between the intensity values
of the reference and virtual images: p’ = ¥(p;Z,) and Ir(p’) = Ir(p). To simplify our
discussion, we assume that the reference image Iy is without coding errors. The more
general case can be analyzed along the same lines of derivations that follow.

To examine the influence of depth-image compression on synthesis quality, we ap-
proximate the coding effects of depth images by an additive noise model, i.e., Zp =
Z, + n,. Through the warping function ¥, the depth error n, causes the projection of

the pixel p to move from p’ = ¥(p;Z,) to ' = ¥(p;Z,); the effect is known as geometry
distortion. It then follows that I (p) is substituted for I (q') as the intensity value

-9-
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Intensity
A
IR /\
Geometry
Distortion
| P q -
I, _/.—a-\-" -a Z,
\ N ~ Synthesis
« \\\ Zp Distortion
Pq

Figure 3.1: Disparity-compensated interpolation using an impaired depth represen-
tation.

of the pixel '; the squared difference indicates the synthesis distortion contributed by

Np:

(>

(Ir (p) — I (d))" = (Ir (p) — Ir (q))*
(In ()5 1R (P) — VD) - (0 —p))°

= (-9Ir (PE=(a= D)) (3.1)

&

Q

where ¢’ is inversely projectéd\to Ly b¥-<the inverse mapping function ¥~(q’; Z,) and
a Taylor’s series expansion iSsuseddto approximate Iz (q). Recognizing that q' =
U(q;Z,) =¥ (p;Z, + n,), we solve forthexector difference (q — p) as

q-p=—+—c
Zq (Zp +”p)

where ¢ = [ I, 0s ] AR™'T is a vector depending solely on camera parameters.
Substituting this result into Equation (3.1) then yields

Tp

& = (WVIR (p) - C>2- (32)

Now let us consider parallel camera configuration, with which the vector ¢ has the
form of [¢, 0] where |c| is proportional to the distance between the reference and virtual

cameras. Then it is obvious that

& = (%) x g2 (p) x ¢, (3.3)

-10-



Chapter 3. Per-Pixel Synthesis Distortion Model

300

—e— Average Ratio

250 ¢

200

150

100

Zp to o,(p) Ratio

50 ¢

0

22 24 26 28 30 32 34 36 38 40 42 44
Depth QP

Figure 3.2: The ratio of Z, to o,,(p) over depth QP. Each point represents the average
ratio of all test sequences.

where ¢, (p) denotes the z component of the gradient VIg (p) = [9. (P), g, (P)]* com-
puted at p. To obtain the expected per-pixel synthesis distortion conditioned on
ground-truth depth values, we take-eonditionakexpectations of both sides and expand

(ny/Z, (Z, +mny))* into its Taylor §erias in (7,

E{gp’Zm Zq}

zE{<Zq<z ))’ }Xméz)(p)XCQ

i b {np} E {n3} E {TL4} ] x m(2)(p) % 02
Zg 73 Z1 g
1 ( .(p) o5 (p) ) 2
= — X —|—9" T (R A x mP(p) x
72 78 g
1 on ) (2) 2
N X e 7 x my’ (p) X ¢, (3.4)
q

where m.” (p) = FE{¢?(p)} can be viewed as a measure of how rapidly the intensity
changes along the horizontal direction at p, and o2(p) indicates the corresponding
depth-error variance. In the above, n, is assumed to be independent of g, (p) and
to obey the normal distribution, i.e., n, ~ N(0,02(p)). The last approximation in
Equation (3.4) is justified because Z, is usually much greater than o, (p). As we can
see in Figure 3.2, the magnitudes Z, are, on average, about 40 to 250 times larger

than o, (p), when the depth QP is varied from 22 to 44.

-11-
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Figure 3.3: Measuring the depth-error sensitivity under various settings of Z,, Z,

and mff) (p)-
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3.2 Observations

Equation (3.4) provides a non-stationary model for the expected per-pixel synthesis
distortion, which suggests that the depth error for different pixels should have different
contributions to the overall synthesis distortions. From the equation, the distortion
caused by n, is determined by several factors measured at p: the depth-error variance,
the intensity variation, the (ground-truth) depth value, as well as the position of the
virtual camera. Further insight into the combined effects of these factors is gained
by looking at Figure 3.3, which displays the ratio of Z, to o,(p) as a function of
E{&)|Z,, Z,}, under various settings of Z,, Z,, and m§2) (p) simulating smoothly- or
rapidly-changing depth /intensity fields. In the experiment, o, (p) was varied to identify
the highest level of error variance at which the specified distortion is achieved. The
result is then used to compute Z,/0,(p). Intuitively, the ratio, which we call depth-
error sensitivity, characterizes how sensifive/aspixel is to its depth error in terms of the
extent of synthesis distortions, $A*higher ratio, (seusitivity) implies that a small error
in depth can lead to a considerablé-distortion.

From the figure, several mnportant obsérvations) cam be made:

1. Compare the curves producédswith-difierent seftings of mgz)(p). The larger the
value of m§2) (p), the more sensitive the pixel p is to its depth error; namely,
when depth errors happen in®areas with vertical edges or fine texture details,
their effects on synthesis quality are more apparent. This observation is also
corroborated by [7].

2. Compare parts (a)(c)(e) with parts (b)(d)(f). When a pixel corresponds to a
farther clipping plane, it exhibits a lower depth-error sensitivity. In this case, the
pixel has a larger depth value Z, and according to Equation (2.1), the resulting
geometry distortion is less significant.

3. Compare part (e) with parts (a)(c) (or (f) with (b)(d)). When a pixel p is ill-
warped to ', the resulting synthesis error is less observable if Z, is much greater
than Z, (and hence /Z\p). The result can be explained using the example shown
in Figure 3.4, where q; and q, denote respectively the inverse projections of ¢’
for the two extreme cases: Z,; > Z, and Zp < Z,. Since Zg > Z\p N Ly > Ly,
the artifact is more noticeable when a depth error causes warping to substitute a

background pixel for a foreground pixel, which explains the less significant change

-13-
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» Reference View

» Target View

Figure 3.4: A geometrical interpretation of the effect of Z, on depth-error sensitivity.

in intensity when Z, > Z,,.

4. Observe the reciprocal relation between o2 (p)/Z; and ¢ in Equation (3.4). It
suggests that when a pixel p is warped to a virtual view that is farther away from
the reference view, it is more sensitive to depth errors.

These observations remain valid for other camera configurations, except that the ef-

fects of the intensity variation ant nent must jointly be considered by

evaluating E{(VIx (p) - c)’}.

-14-



CHAPTER 4

Synthesis-Quality-Oriented Depth

Refinement Scheme

The framework of MPEG FTV [9] &iews the transmitted depth images as determin-
istically specifying the depth information for the reference images. The compression
effects of depth images were neglected during the rendering of virtual views. As seen
from the analysis in §3, depth errors can cause disturbing synthesis artifacts, especially
at areas with sharp edges or fine texture details. To tackle the problem, we propose
to regard both the received view and depth images as sources of information about
the ground-truth depth of the scene, and provide ways to detect and refine unreliable

depth values.

4.1 System Architecture

To allow for an easier understanding of our algorithm, Figure 4.1 depicts the system
block diagram with a highlight on the data communicated between functional blocks.

As shown, for an economic use of network bandwidth, both reference images {1, I}

-15-
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Figure 4.1: System Block Diagram.

and their respective per-pixel depth, infommation {D;, Dy} are compressed prior to
transmission. These data are décoded and recemistructed at the receiver side before
they are used for the creatign/of wrfual siews.\ Thé, "prime" symbols in the figure
differentiate the coded viewand depth images from their original sources.
Recognizing that depth-image ¢omipression may give rise to depth errors, we intro-
duce a depth refinement mechénisni at the receivet side. The objective is to improve
synthesis quality by refining the dépthvalues®or those pixels (which we call unreliable
pizels) being highly sensitive to depth errors. The process consists of two sequen-
tially operated steps: (1) the detection of unreliable pixels and (2) the refinement of
their depth values, both need to access the coded view and depth images. To make
their performance robust against compression effects, additional control parameters are
transmitted to the receiver as the side information, with their settings being determined
at the sender side by evaluating the detection and refinement quality as perceived by
the receiver over the range of all possible choices. The details are elaborated in the

subsequent sections.

4.2 Reliability Detection

The detection process at the receiver side aims to discover unreliable pixels—i.e., those

that are highly sensitive to depth errors and hence require higher fidelity for their depth
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Chapter 4. Synthesis-Quality-Oriented Depth Refinement Scheme

values in order to minimize rendering errors. From the theoretical analysis in §3, a pixel
is likely to be unreliable if it locates in a region with large intensity variation, or if it
represents a pixel in a near clipping plane. Although both facts can jointly be utilized
to form detection criteria, we consider only the use of intensity variation because view
images are generally better compressed than their depth representations, making the
intensity information more reliable for decision-making.

To quantify intensity variation, we adopt the Gaussian derivative operator to com-
pute gradient for all the pixels in view images. A pixel p is considered to be unreliable
and its depth value deserves refining if the magnitude ||V I}, (p)]| of its gradient exceeds
a given level Tp'. According to Observation #1 in §3, such a pixel is highly sensitive to
depth errors, hence requiring higher precision for its depth value. Apparently, the value
of Tp plays a pivotal role in determining the detection accuracy. With non-stationary
signal statistics, we propose to adapt Tp on a frame-by-frame basis. This is realized
by transmitting its value as the frame=tevel*side information.

In determining the value @f /I p=for a parficular-rame, we wish to strike a good
balance between the hit andl false-alarm vateS: “The best setting of T, denoted by
T}, should have the subset 6f pixels S{Z75) = \{p : ||V, (p)|| > T}, } contain as many
unreliable pixels as possible while lkeeping the .nuniber of reliable ones to be minimal.
To find T7,, we first associate eath plausible.elivice of T, and the corresponding set of
pixels S(Tp) with a matching score that weights the hit rate against the false-alarm

rate:

J(Tp) = Y (Ls(p)é — (1 1s(p))7),

pES(Tp)

where 1s : p €S — {0,1} is an indicator function defined as

1 it g, >0

1s(p) = :
0 ifg <o

Then we choose, among all possible choices, the one that yields the highest matching
score, i.e., Tf, = argmaxr, J(Tp). The approach can be interpreted as to evaluate, at
the sender side, the detection quality as perceived by the receiver.

In the course of computing the matching score, it is necessary to decide whether a

'With parallel camera configuration, only the z component of the gradient is computed and
compared with Tp (cf. Equation (3.3)). Also, I}, represents a coded reference image.
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Chapter 4. Synthesis-Quality-Oriented Depth Refinement Scheme

hit or false alarm occurs. This is accomplished by evaluating the per-pixel synthesis
distortion &, at the sender side with I; and I (or in the reverse order) being used
in place of Iy and Ir, respectively (cf. Equation (3.1)). Specifically, if £, is greater
than or equal to a threshold 9§, indicating that the depth associated with the pixel p
may be unreliable, a hit is identified; otherwise, a false alarm is signaled. Ideally, the
0 should be set to zero according to the Lambertian condition; however, in practice
a non-zero value was used to compensate camera noises and illumination difference
between view images. The settings of 6 and 7 that yield the best synthesis quality (in
terms of PSNR) are searched exhaustively at the sender side. Note that they need not

be transmitted to the receiver.

4.3 Depth Refinement

After we discover all the unreliabletpixels;-our-néxt step is to refine their depth values.
Because depth refinement is performed by the,récéiver, its operation must be made
computationally simple andwefficients , For-this reason, we adopt a candidate-based
disparity estimation scheme#0, derive depthi from the received view images. As in most
block-based algorithms, a conghant diSparity is/searélied for each block of pixels (of size
7% T), centered on an unreliable Gixel.p, by miririzing the error between the two view
images after disparity compensation. However, unlike their techniques, which usually
require examining a large number of disparities, ours restricts the search to only those
disparities that correspond to an integer depth value in the interval of [Zp —R,, 2p+Rp].
On one hand, this constraint is an expediency out of complexity considerations, and
on the other hand, it prevents the simple block-based search from getting an improper
disparity.

Although reducing the number of search candidates helps to simplify the disparity
search, the issues are how to determine a proper value of R, for each unreliable pixel
and how to signal the information efficiently. As described previously, the value of R,
determines the maximum modification of Ep that can be caused by depth refinement—
i.e., it controls the strength of refinement. It was found in our analysis that the depth
error sensitivity of a pixel is related to its ground-truth depth value, implying that the

adaptation of R, should refer to the value of Z, (which is an approximation of Z,,).
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(a) (b) (c)
(d) () (f)

Figure 4.2: A sample result of the proposed depth refinement algorithm: (a)(d) the
original depth image, (b)(e) the decd@dddepih image, and (c)(f) the refined depth

e SIS

For a trade-off between quaaaw the set S(T}) into N disjoint
subsets s;(7%),1 < i < N,#@ach | - si a refinement search range r;.

O\ Mo Sl
A uniform quantizer that ope tes.on the recei

S—— A\
unreliable pixels in S(77) into one ‘of Thi¢ IV subsets. After that, the best settings of

{r;} | are searched exhaustively at the sender side and transmitted to the receiver as

epth Zp is used to categorize the

the side information.

Figure 4.2 shows a sample result of our refinement process. Observe that depth
compression introduces blocking artifacts on the decoded depth image (see parts (b)
and (e) of Figure 4.2). With depth refinement, we can remove the artifacts largely (see
parts (c) and (f) of Figure 4.2); note the clarity of object boundaries that simply are
not visible in the decoded depth image. Interestingly, the refinement can even recover

some details that are removed by the enforcement of depth smoothing (compare parts

(a)(d) and (c)(f) of Figure 4.2).
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CHAPTER 5

Experiments

Extensive simulations were carried ut.to.demonstratéthe performance of the proposed
scheme, and the results were Compared with thatof [7] and [8]. All the refinement
schemes were implemented with the/MPEG committee software VSRS 2.1 [10]. All
experiments used DERS 2.0 [10] to generate depth images and JMVC 3.0.1 [11] to
encode multi-view videos and their depth images. The average PSNR of synthesized
images was computed based on the first 100 frames of each test sequence. Particularly,
in implementing the method described in [7], we employed the magnitude of synthesis
errors rather than manually generated edge maps to distinguish pixels of different
categories. For a fair comparison, all the threshold values used in [7] and [8] were
determined by optimizing the quality of synthesized images. Table 5.1 and Table 5.2
detail the depth estimation settings and the encoder settings, respectively.

Figure 5.1, 5.2 and 5.3 compares the PSNR of various schemes when the depth
QP is varied from 22 to 44. The curves associated with MPEG FTV were produced
without depth refinement. To see the effects of reference quality, Figure 5.1 show
the results generated utilizing high-quality references (QP=22), whereas Figure 5.2

are their low-quality counterparts (QP=31). It can be seen that all three schemes
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Table 5.1: Depth Estimation Settings. Column (a) to (c) represents Smoothing
Coeflicient, Precision and Search Level, respectively.

SearchRn, DisparityRn

SL-SR | NL-NR Min_Man I & 1@ m|(
Lovebirdl 6-7 5-8 4-90 1-110 4 4 2
Newspaper 4-5 3-6 26-88 20-90 4 2 2
Alt Moabit 9-8 10-7 1-33 1-32 1 2 2
Book Arrival 9-8 10-7 30-70 30-70 2 2 2
Door Flowers 9-8 10-7 12-38 10-0 2 4 2
Leaving Laptop | 9-8 10-7 15-33 15-33 2 4 | 4
Dog 39-41 38-42 1-20 0-20 4 4 1
Pantomime 39-40 38-41 0-20 0-20 2 4 4

Table 5.2: Encoder Settings

Reference Frame 2

Intra Period 15

CABAC on

8x8 Transforml on

BasisQP 22525, 28,3135, 38, 41, 44
Inter-view Prediction | on

Search Modg A (Fast Search)

Motion Searchy Range | £32

outperform MPEG FTV in all test sequences, and as expected, the improvement is the
greatest when depth images are coarsely quantized. Moreover, ours has the highest
gain of all the schemes—an average PSNR improvement of 1.2dB over MPEG-FTV.
The results are consistent with different test conditions.

Figure 5.4, 5.5, 5.6 further compare the subjective quality of synthesized images.
Part (a) illustrates what can happen if incorrect depth information is used for view
synthesis. Parts (b) through (d) show the results obtained by correcting depth with
one of the three schemes just described (i.e., [7], [8], and ours). As can be seen, "ghost
effects" appear around object boundaries if the depth is not refined; in comparison,
the visual results with depth refinement are considerably improved. Our scheme even
produces a result that is very close in appearance to the ground-truth view image. The
reason behind the superior performance can be explained with Figure 5.7, which makes
visible the unreliable pixels detected by the three schemes. As expected, our scheme

tends to correct more depth pixels locating in areas with fine texture details or vertical
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Figure 5.1: PSNR of synthesized images as a function of the depth and reference QP.
The reference view images are coded with QP=22.
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Figure 5.2: PSNR of synthesized images as a function of the depth and reference QP.
The reference view images are coded with QP=31.
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Figure 5.3: PSNR of synthesized images as a function of the depth and reference QP.
The reference view images are coded with QP=44.
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(5)

- .
(d)

Figure 5.4: Subjective quality comparison of synthesized images: (a) MPEG FTV

(without depth refinement), (b) Tanimoto [7], (c) Sung [8] and (d) the proposed scheme.
The depth QP of Door Flowers sequence is set to 44.
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x
"

anQLAES

(d)

Figure 5.5: Subjective quality comparison of synthesized images: (a) MPEG FTV
(without depth refinement), (b) Tanimoto [7], (c) Sung [8] and (d) the proposed scheme.
The depth QP of Newspaper sequence is set to 44.
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(d)

Figure 5.6: Subjective quality comparison of synthesized images: (a) MPEG FTV
(without depth refinement), (b) Tanimoto [7], (c) Sung [8] and (d) the proposed scheme.
The depth QP of Dog sequence is set to 44.
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s

Figure 5.7: Pixels whose depth values afe judged unzeliable: (a) Tanimoto [7] (cate-
gory 2), (b) Sung [8] and (c) the\propoSed scheme Top-to-down rows are Door Flowers,
Newspaper and Dog sequences; réspectively.

edges—namely, those that will crucially affect synthesis quality.
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CHAPTER 6

Conclusion

To alleviate the coding effects of dépth-images,.we proposed in this thesis a synthesis-
quality-oriented depth refineméntscheme. The apptoach is characterized by the unique
consideration of attempting to refine gnlythose depth pixels that are likely to cause
noticeable synthesis artifacts. In the course, we developed an analytical model to estab-
lish criteria for reliability detection and to form guidelines for depth refinement. Since
both operate on the decoded information, additional side information is transmitted
to make them robust against compression effects. Experimental results show that our
scheme has the highest PSNR gain of all the state-of-the-art methods. It also produces
a result that is visually similar to the ground-truth image.

This work is still in its early stage. Both detection and refinement schemes have
not fully utilized all the factors suggested by the per-pixel synthesis distortion model.
Further improvements can be expected. Possible extensions could include more so-
phisticated disparity search, time-space consistency and signal restoration techniques.
Besides, the analytical model can find its application in developing depth compression

algorithms.
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