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作室內安全監控之研究 

 

研究生：王建元         指導教授：蔡文祥  教授 

 

國立交通大學多媒體工程研究所 

 

摘要 

本論文提出了一個以天花板上多環場攝影機輔助自動車做室內安全監控之

方法。我們使用一部以無線網路傳遞控制訊號之自動車，並在其上裝置一部攝影

機，用以監視室內環境及拍攝入侵者影像。另外使用兩部裝置在天花板上的魚眼

攝影機協助此自動車做導航。在此研究中，我們提出了一種即時對環境中空地和

障礙物做定位的技術，並以計算出的位置建立完整的環境地圖及規劃自動車的巡

邏路線，使自動車可以在複雜的環境中導航並避開障礙物和牆壁。此外，我們亦

提出了一種能夠適應高度變化的空間對映法，利用推導出的公式計算設置在不同

高度的魚眼攝影機的對映表，以此對映表配合內插法，為環境中的物體進行定

位。因為自動車行走時會產生機械誤差，我們也提出了四個策略，以修正自動車

的位置及方向。此外，我們亦提出了一種追蹤入侵者的技術，使用追踨視窗準確

地預測及計算人物在扭曲影像中的位置，並在追踨過程中同時記錄人物的特徵。

為了擴大可監視的範圍，我們使用了多台裝置於天花板上的攝影機，為此我們也

提出了一種在多台攝影機下“交棒” (handoff)的技術，使自動車或入侵者從一台

攝影機的視野範圍移動到另外一台時，能夠不間斷的被追蹤。實驗結果證明我們

所提出的方法是可行而且有效的。 
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ABSTRACT 

Vision-based methods for security surveillance using an autonomous vehicle 

with fixed fish-eye cameras on ceilings in an indoor environment are proposed. An 

autonomous vehicle controllable by wireless communication and equipped with a 

camera is used as a test bed and navigates in a room space under the surveillance of 

multiple fisheye cameras affixed on the ceiling. To learn the information of the 

unknown room environment in advance, a method is proposed for locating the ground 

regions, identifying the positions of obstacles, and planning the patrolling paths. The 

data obtained by the method enable the vehicle to navigate in the complicated room 

space without collisions with obstacles and walls. Also, a height-adaptive space 

mapping method is proposed, in which the coordinates of corresponding points in 2-D 

images and 3-D global spaces are computed by interpolation to form a space mapping 

table for object localization. Appropriate equations are derived to adapt the table to 

fish-eye cameras affixed to different ceiling heights. Because the vehicle suffers from 

mechanic errors, a vehicle location and direction correction method is proposed for 

correcting the errors according to four strategies. Furthermore, a method for detecting 

and tracking intruding people is proposed. The approximate position of the person can 



 v 

be predicted first, and the exact position is then calculated via a tracking window in 

images. Some useful features of the intruding person are computed for person 

identification. To enlarge the area under surveillance using multiple cameras, the 

camera handoff problem is also solved by using information of the overlapping 

regions of the cameras’ fields of view. Experiments for measuring the precisions of 

the proposed methods and tracking intruding persons were conducted with good 

results proving the feasibility of the proposed methods. 
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Chapter 1  

Introduction 

 

 

1.1 Motivation of Study 

 

As the technology is progressing nowadays, more and more robots emerge in 

many applications. An autonomous vehicle is an important and common form of 

robots. It can move and turn by the control of programs and can take images by 

cameras equipped on it to increase its abilities. It is convenient to use autonomous 

vehicles to substitute for human beings in many automation applications. For example, 

a vehicle may be utilized to patrol in an environment for a long time without a rest. In 

addition, the video which is taken by a camera can be recorded forever for later search 

for its contents of various interests. For example, if a certain object in a 

video-monitored house is stolen, the video can be watched to find out possibly the 

thief, providing a better evidence of the crime than just the memory of a person. 

Using vehicles to patrol in indoor environments automatically is convenient and 

can save manpower. The images which are taken by the cameras on vehicles may be 

transmitted by wireless networks to a central surveillance center, so that a guard there 

can monitor the environment without going to the spots of events, and this is also 

safer for a guard to avoid conflicts with invaders. Additionally, it is useful for a 

vehicle to follow a suspicious person who breaks into an indoor environment under 

automatic video surveillance, and clearer images of the person’s behavior can be 
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taken by the cameras on the vehicle. It is desired to investigate possible problems 

raised in achieving the previously-mentioned goals and to offer solutions to them. 

Possible problems include: 

1. constructing the mapping tables of cameras automatically, so that the 

positions of vehicles, invading persons, concerned objects, etc. can be 

computed; 

2. detection of concerned objects and humans from images acquired by 

cameras equipped on vehicles and/or affixed to walls or ceilings; 

3. recording of invaders’ trajectories and computation of their walking speeds 

for later inspection for the security purpose. 

We try to solve in this study all these problems for indoor environments with 

complicated object arrangements in space. But if the environment under surveillance 

is very large, we cannot monitor the entire environment by using just one 

omni-camera. So it is desired to use simultaneously several cameras affixed on 

ceilings to cover large environment areas. In order to achieve this goal, possible 

problems to be solved include: 

1. calculating the relative positions of the omni-cameras whose fields of view 

(FOV’s) overlap; 

2. calculating the rotation angles of the omni-cameras; 

3. handling with the hand-off problem among multiple cameras. 

By calculating the relative positions and rotation angles of the cameras, we can 

calculate the position of an object in images which are taken by the cameras. And 

when a person walks from one region covered by a camera to another region covered 

by another camera, the system should know which camera should be used to get the 

image of the person and where in the image should the person be localized. This is the 
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camera hand-off problem which we desire to deal with in this study. 

Because omni-cameras are highly distorted and are affixed to the ceiling, they 

cannot monitor the whole environment clearly. On the other hand, autonomous 

vehicles are mobile and are suitable to remedy this shortness of cameras. Hence, we 

can utilize the vehicles to drive to the place where should be monitored to take clearer 

images of concerned objects or humans there as stronger evidences for crime 

investigations. 

Another problem is that the FOV’s of omni-cameras are finite, and the cameras 

are expensive. If the indoor environment is very large, we will have to use many 

omni-cameras on the ceiling, as mentioned previously. But if we can utilize the 

cameras on vehicles to take images of the place which is out of the FOV’s of the 

cameras, we will not have to use a lot of omni-cameras. 

Hence if we want to navigate a vehicle to some spot in the environment, we 

should calculate the position of the vehicle first, and then we can plan the path for a 

vehicle from its position to the spot. In most environments, there are a lot of obstacles 

in them, such as furniture and walls. In order to avoid collisions between vehicles and 

obstacles, we may gather the information of the environment first. The information 

may include the positions of still obstacles and open spaces where the vehicles can 

walk through. Afterward, we may integrate the information to construct an 

environment map for the purpose of convenience. In short, an environment map is 

used in obstacle avoidance and path planning in this study. If we want to drive a 

vehicle to a certain spot out of the FOV’s of the cameras, we should calculate the 

position and direction of the vehicle at any time and plan a path for the vehicle to 

drive to that spot. Possible problems in these applications include: 

1. gathering environmental information and constructing an environment map; 

2. calculating the position and direction of each vehicle; 
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3. path planning and avoidance of still and dynamic obstacles in the path for 

the vehicle to navigate to its destination. 

As a summary, in this study it is desired to investigate solutions to various 

problems involved in the following topics of indoor autonomous vehicle navigation: 

1. security patrolling in indoor environments by autonomous vehicles; 

2. effective integration of the omni-cameras on the ceiling and the cameras on 

the vehicles. 

3. following a suspicious person and taking clearer images of her/him by the 

cameras on vehicles; 

4. using the cameras on vehicles to monitor spots which are out of the FOV’s 

of omni-cameras and take clearer images. 

 

 

1.2 Survey on Related Studies 

 

In the study, we will use multiple omni-cameras on the ceiling to locate the 

position of a vehicle, so the omni-cameras should be calibrated before being used. 

Traditionally, the intrinsic and extrinsic parameters of the camera should be calculated 

in order to obtain a projection matrix for transforming points between 2-D image and 

3-D global spaces [1, 2, 3]. Besides, a point-correspondence technique integrated with 

an image interpolation method have been proposed in recent years for object location 

estimation [4], but it will cause another problem, that is, the calibration data will 

change according to the environment where the cameras are used. In this study, we 

will propose a technique to solve this problem for the case of changing the height of 

the ceiling on which the cameras are affixed. 
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Autonomous vehicles in general suffer from mechanical errors, and many 

methods have been proposed to eliminate this kind of error. The geometric shapes of 

object boundaries [5, 6] or those labeled by users are utilized frequently [7, 8]. 

Furthermore, natural landmarks, such as house corners [9, 10] and the SIFT features 

of images [11], are also used to correct the position of a vehicle. In recent years, 

techniques of integrating laser range finders with conventional imaging devices have 

been proposed [12, 13]. Besides, when it is desired to find a specific object in the 

image, the method of color histogramming is often used [14]. 

 The applications of autonomous vehicles emerge in many aspects, such as house 

cleaning robots, watchdog systems, automatic guides, etc. In Takeshita [15], a camera 

was equipped on the ceiling, and a user can control the vehicle to suck garbage on the 

ground by watching the images taken by the camera. In Yang [16], the vehicles were 

designed to patrol in an environment, too. He used the vectors of vehicles and 

obstacles to avoid collisions between them. 

 

 

1.3 Overview of Proposed System 

 

There are four main goals in this system. First, a vehicle should patrol 

automatically in an indoor environment whose information has been learned. Second, 

the vehicle should avoid static and dynamic obstacles, and third it should correct its 

position automatically. At last, the vehicle should follow an intruding person and take 

the images of the person. 

In order to achieve these goals, the following steps should be done: 

1. construct mapping tables for top-view cameras; 
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2. acquire environment information by top-view cameras; 

3. detect obstacles on the path; 

4. correct mechanic errors by top-view omni-cameras; 

5. calculate the position of any intruder by top-view omni-cameras continually; 

6. initiate the vehicle to follow the intruder and take images of him/her; 

7. deal with the hand-off problem of the cameras. 

Because we need to convert coordinates between the image coordinate system and 

the global coordinate system, we have to construct the mapping tables for the cameras 

we use first. Afterward, the coordinates between the multiple cameras can be 

transformed correctly. Because the vehicles patrol in the indoor environment, the 

environment information should be learned in advance. The information learned in 

this study includes the positions of obstacles and the open space in the environment 

where the vehicles can walk through. And the information will be used to build an 

environmental map. 

When vehicles patrol in the environment whose information has been learned, the 

patrolling path can be checked to see if there are obstacles on the path. If so, the 

vehicles should avoid them automatically. Besides, the vehicles generally suffer from 

mechanical errors, so it needs to correct their positions and directions continuously, to 

avoid intolerable deviations from their correct path way. 

When a person breaks into the environment, the position of a person will be 

calculated continually, and then the computer will give orders to guide a vehicle to 

follow the person. In order to expand the range of surveillance, several omni-cameras 

are used in the study, so the hand-off problem should be handled. The problem means 

briefly the need of identifying a person in an image acquired by a camera and passing 

the information to an image taken by another camera. Figure 1.1 shows a flowchart of 

the whole proposed system for security patrolling by autonomous vehicles. 
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Figure 1.1 The flowchart of proposed system. 

 

1.4 Contributions 

 

Several contributions are made in this study, as described in the following: 

1. A height adaptation method is proposed to construct the mapping tables for 

omni-cameras in order to make the cameras usable at different ceiling heights. 

2. An integrated space mapping method is proposed to localize objects in real space 

using multiple fisheye cameras. 

3. A method is proposed to solve the problem of camera hand-off in highly 

distorted images taken by fisheye cameras. 

4. A method is proposed to gather distorted environment images taken by 

omni-cameras, and convert them into a flat map. 

5. A method is proposed to correct dynamically errors of the position and direction 

of a vehicle caused by mechanical errors. 

6. A method is proposed to avoid static and dynamic obstacles automatically in real 
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time on vehicle navigation paths. 

7. A technique is proposed to calculate the position of a person according to 

rotational invariance property of omni-camera. 

8. A method is proposed to predict the position of a person in a highly distorted 

image. 

 

 

1.5 Thesis Organization 

 

The remainder of this thesis is organized as follows. In Chapter 2, the hardware 

and processes of this system will be introduced. And in Chapter 3, the proposed 

method for constructing the mapping tables for fisheye cameras will be described. 

In Chapter 4, the construction steps of an environmental map and the proposed 

method for obstacle avoidance are described, and four strategies of correcting the 

positions and directions of vehicles are also described. In Chapter 5, the method of 

finding specific partial regions in an image to compute the position of a person and 

the technique for prediction of the person’s next movement are described. The 

hand-off problem is solved in this chapter, too. 

The experimental results of the study are shown in Chapter 6, and some 

discussions are also included. At last, conclusions and some suggestions for future 

works are given in Chapter 7. 



 

 9 

Chapter 2  

System Configuration 

 

 

2.1 Introduction 

The hardware and software which are used in this study will be introduced in this 

chapter. The hardware includes the autonomous vehicle we use and the fisheye 

cameras and wireless network equipments. The software includes the programs for the 

processes of gathering the information of an environment, constructing an 

environment map, avoiding obstacles when patrolling in an environment and 

calculating the position of a person automatically. 

 

 

2.2 Hardware 

The autonomous vehicle we use in this study is a Pioneer 3-DX vehicle made by 

MobileRobots Inc., and an Axis 207MW camera made by AXIS was equipped on the 

vehicle as shown in Figure 2.1. The Axis 207MW camera is shown in Figure 2.2. 

The Pioneer 3-DX vehicle has a 44cm38cm22cm aluminum body with two 

19cm wheels and a caster. It can reach a speed of 1.6 meters per second on flat floors, 

and climb grades of 25
o
 and sills of 2.5cm. At slower speeds it can carry payloads up 

to 23 kg. The payloads include additional batteries and all accessories. By three 12V 

rechargeable lead-acid batteries, the vehicle can run 18-24 hours if the batteries are 
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fully charged initially. A control system embedded in the vehicle makes the user’s 

commands able to control the vehicle to move forward or backward, or to turn around. 

The system can also return some status parameters of the vehicle to the user. 

The Axis 207MW camera has the dimension of 855540mm (3.3”2.2”1.6”), 

not including the antenna, and the weight of 190g (0.42 lb), not including the power 

supply, as shown in Figure 2.4. The maximum resolution of images is up to 

12801024 pixels. In our experiment, the resolution of 320240 pixels is used for the 

camera fixed on the vehicle and that of 640480 pixels is used for the one affixed on 

the ceiling. Both of their frame rates are up to 15 fps. By wireless networks (IEEE 

802.11b and 802.11g), captured images can be transmitted to users at speeds up to 54 

Mbit/s. Each camera used in this study is equipped with a fish-eye lens that expands 

the field of view of a traditional lens in general. 

 

 
 

(a) (b) 

Figure 2.1 The vehicle used in this study is equipped with a camera. (a) A perspective 

view of the vehicle. (b) A front view of the vehicle. 
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(a) (b) 

Figure 2.2 The camera system used in this study. (a) A perspective view of the camera. 

(b) A front view of the camera. 

 

The Axis 207MW cameras are fisheye cameras. They are also affixed on the 

ceiling and utilized as omni-cameras, as shown in Figure 2.3. A notebook is used as a 

central computer to control the processes and calculate needed parameters from the 

information gathered by the cameras. 

 

 

Figure 2.3 An Axis 207MW camera is affixed on the ceiling. 
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Figure 2.4 A notebook is used as the central computer. 

 

Communication between the hardware components mentioned above is via a 

wireless network, a WiBox made by Lantronix equipped on the vehicle, in order to 

deliver and receive the signals of the odometer as shown in figure 2.5. 

 

  

(a) (b)  

Figure 2.5 The wireless network equipments. (a) A wireless access point. (b) A WiBox 

made by Lantronix. 
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2.3 System Process 

 

In the proposed process of constructing the mapping tables for omni-cameras, we 

calculate the relative positions and rotation angles between the cameras. Afterward, 

mapping tables are constructed automatically for every camera, and a 

point-correspondence technique integrated with an image interpolation method is used 

to calculate the position of any object appearing in the image. 

In the proposed process of environment learning, the information is gathered by 

a region growing technique first. The information includes the position of obstacles 

and open spaces where a vehicle can drive through. Afterward, the positions will be 

converted into the global coordinate system, and an environment map will be 

constructed by composing the coordinates of all obstacles appearing in the vehicle 

navigation environment. 

In the proposed process of security patrolling in an indoor environment, each 

vehicle is designed to avoid obstacles on the navigation path. If there are some 

obstacles on a path of the vehicle, the vehicle system will plan several turning points 

to form a new path for the vehicle to navigate safely. After the vehicle patrol for a 

while, it will diverge from its path because the vehicle suffers from mechanical errors. 

In the proposed process of vehicle path correction, we calculate the position of a 

vehicle in the image coordinate system by the images taken by the omni-cameras 

affixed on the ceiling, and then convert the coordinates into global coordinates and 

modify accordingly the value of the odometer in the vehicle. 

In the proposed process of person following, the position of an intruding person’s 

feet is calculated also by the images taken by omni-cameras on the ceiling, and then 

the coordinates are converted into global coordinates, too. Afterward, the vehicle 
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system will calculate the relative position and the rotation angle between the vehicle 

and the person, and adjust accordingly the orientation and speed of the vehicle to 

achieve the goal of following the person. 

The major processes of the system are summarized and listed below: 

1. Construct mapping tables for every top-view cameras. 

2. Acquire environmental information by top-view cameras and construct the 

environment map. 

3. Correct mechanic errors continuously in each cycle. 

4. Plan a path to avoid obstacles in the environment. 

5. Detect, predict, and compute the position of any intruding person by top-view 

omni-cameras continuously. 

6. Handle the camera hand-off problem to keep tracking any intruding person using a 

single camera at a time. 
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Chapter 3  

Adaptive Space Mapping Method for 

Object Location Estimation Subject 

to Camera Height Changes 

 

 

3.1 Ideas of Proposed Adaptive Space 

Mapping Method 
 

In this study, we use multiple fish-eye cameras affixed on the ceiling to keep an 

indoor environment under surveillance. The cameras are utilized to locate and monitor 

the autonomous vehicle, and trace the track of any suspicious person when he/she 

comes into the environment. When using these omni-cameras, we want to know the 

conversion between the ICS (image coordinate system) and the GCS (global 

coordinate system). So we propose a space mapping method and construct a mapping 

table for converting the coordinates of the two coordinate systems. 

Because the indoor environment under surveillance is unknown at first, we 

propose further in this study another space mapping method by which the cameras can 

be affixed to different ceiling heights for use, which we call height-adaptive space 

mapping method. Besides, multiple fish-eye cameras are used in the mean time to 

monitor an environment in this study, so calculating the relative positions and angles 

between every two cameras which have overlapping fields of view (FOV’s) is needed 
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and is done in this study. Finally, a point-correspondence technique integrated with an 

image interpolation method is used to convert the coordinates between the ICS and 

the GCS. 

 

 

3.2 Construction of Mapping Table 

 

In this section, we propose a method of constructing a basic mapping table for 

use at a certain ceiling height. The mapping table we use contains 1515 pairs of 

points, each pair including an image point and a corresponding space point. And the 

data of each pair of points in the table includes the coordinates (x1, y1) of the image 

point in the ICS and the coordinates (x2, y2) of the corresponding space point in the 

GCS. We use a calibration board which contains 15 vertical lines and 15 horizontal 

lines to help us constructing the mapping table. 

First, we take an image of the calibration board, find the curves in the image by 

curve fitting, and calculate the intersection points of the lines in the image. Then, we 

measure manually the width of the real-space interval between every two intersection 

points, and compute the coordinates of the intersection points in the GCS in terms of 

the value of this interval width. Afterward, we affix the cameras to the ceiling, and 

modify the global coordinates in the mapping table by the height of the ceiling. The 

details of these tasks will be described in Sections 3.2.1 and 3.2.2. The major steps 

from constructing a space mapping table to calculating the position of a certain object 

are described below. 

 

Step 1. Set up a camera (not necessarily attached to the ceiling) at a known height 
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from the floor and take an image of the calibration board under the camera. 

Step 2. Find the curves in the image of the calibration board by curve fitting, and 

calculate the coordinates of the intersection points of the curves in both the 

ICS and the GCS, forming a basic space mapping table. 

Step 3. Attach the camera to the ceiling. 

Step 4. Calculate the coordinates of the intersection points of the calibration board 

in the GCS utilizing the height of the ceiling assumed to be known and the 

content of the basic space mapping table, forming an adaptive space 

mapping table. 

Step 5. Calculate the relative positions and rotation angles between the cameras. 

Step 6. Calculate the position of any object under the camera by a 

point-correspondence technique integrated with an image interpolation 

method using the adaptive space mapping table. 

 

In both the basic and adaptive space mapping tables, we only record the 

coordinates of the corresponding intersection points between the ICS and the GCS. 

When we want to calculate the position of a certain object which is not right on the 

above-mentioned intersection points, a point-correspondence technique integrated 

with an image interpolation method will be applied (Step 6 above). The detail will be 

described in Section 3.4. We only have to calculate the coordinates in the GCS and 

construct the adaptive mapping table once after the cameras are attached to the ceiling 

(Step 4 above). The adaptive mapping table can be stored in a computer and can be 

used any time. 
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3.2.1 Proposed Method for Constructing A 

Basic Mapping Table 

 

The basic mapping table of a camera should be constructed first before the 

camera can be used for environment monitoring. Assume that the camera is attached 

at a fixed height h (not necessarily to the ceiling). To construct the basic mapping 

table, at first we put a calibration board on the ground right under the camera. The 

calibration board contains at least 15 horizontal lines and 15 vertical lines, and the 

intervals between every two lines are all the same, as shown in Figure 3.1. Then, we 

use the camera to take an image of the calibration board, extract the quadratic curves 

in the image by minimum mean-square-error (MMSE) curve fitting, and find the 

intersections of these curves, as shown in Figure 3.2. 

 

 

Figure 3.1 The calibration board used for basic table construction with 15 horizontal 

lines and 15 vertical lines. 

 

These intersection points are described by image coordinates, which are recorded 

in the basic mapping table. And the height h of the camera is recorded, too. We 

assume that the upmost and leftmost point found in the image is taken to correspond 
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to the origin in the GCS, as shown in Figure 3.3. 

 

 

Figure 3.2 Finding the intersection points in the image of the calibration board. 

 

 

Figure 3.3 The mapping of the origins of the ICS and GCS. 

 

 Afterward, we measure manually the width of the real-space interval Wcali 

between every two intersection points on the calibration board, and the global 

coordinates of the intersections can be calculated by the following way. 

First, assume that the upmost and leftmost point in the image is just the 

projection of the origin of the GCS. So, the global coordinates of this point are (0, 0). 

The x-axis is in the horizontal direction, and the y-axis is in the vertical direction. 
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Hence the coordinates of the intersection points in the GCS can be calculated simply 

as a multiple of the value Wcali as shown in Figure 3.4. Or more specifically, the 

global coordinates of the (i, j)-th intersection point in Figure 3.4 may be computed as 

(i Wcali, j Wcali), where the origin is regarded to be the (0, 0)-th intersection point. 

 

(0, 0) (Wcali, 0)

(Wcali, Wcali)

(Wcali, 2Wcali)

(0, Wcali)

(0, 2Wcali)

(2Wcali, 0)

(2Wcali, Wcali)

(2Wcali, 2Wcali)

 

Figure 3.4 Calculating the coordinates of intersection points in the GCS by Wcali. 

 

 If the cameras are used at a height which is the same as that used during the stage 

of constructing the basic mapping table, we can then use this table to calculate the 

position of any object under the camera by a point-correspondence technique 

integrated with an image interpolation method, which will be described in next 

section. 

But if the camera is used at a different height, the global coordinates in the basic 

mapping table should be modified. Otherwise, the object position we calculate later 

will be wrong. The method will be described in Section 3.2.3. 
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3.2.2 Using a Point-correspondence 

Technique Integrated With An Image 

Interpolation Method to Locate 

Objects 

 

After the basic mapping table is constructed, we can know the corresponding 

coordinates of the above-mentioned intersection points in the ICS and the GCS. But 

when we want to calculate the position of a certain object which is not right on any 

intersection point, a point-correspondence technique integrated with an image 

interpolation method is applied in this study. As shown in Figure 3.5, we want to 

calculate the global coordinates of the point I which is not right on the intersection 

point. The detail is described as an algorithm in the following. 

 

Pij

Pi(j+1)

P(i+1)j

P(i+1)(j+1)

L0

L1

L2

L3 t

s

r
q

I

Mh

Mv

 

Figure 3.5 Calculating the coordinates of a non-intersection point by interpolation. 

 

Algorithm 3.1: Calculating the coordinates of an object in the GCS. 
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Input: A mapping table and the image coordinates of a non-intersection point I. 

Output: The global coordinates of the space point G corresponding to I. 

Steps:  

Step 1. Derive the equations of the lines L0, L1, L2 and L3 in the ICS by the image 

coordinate data of the points Pij, P(i+1)j, P(i+1)(j+1) and Pi(j+1), as shown in 

Figure 3.5. 

Step 2. Derive the equations of lines Mh and Mv in the ICS. 

Step 3. Calculate the image coordinates of the intersection points s, r, t, and q. 

Step 4. Calculate the global coordinates G of point I in the GCS. 

 

The above algorithm is just an outline, whose details are now explained. In Step 

1, the image coordinates of Pij, P(i+1)j, P(i+1)(j+1) and Pi(j+1) are known, so the equations 

of lines L0, L1, L2 and L3 in the ICS can be derived. In Step 2, the slope of Mh is the 

average of those of lines L1 and L3, and the slope of Mv is the average of those of lines 

L0 and L2. The equation of Mh and Mv in the ICS can be derived by these slopes and I. 

Then, the intersection point s of L1 and Mv can be computed accordingly, so are r, t, 

and q in similar ways. Finally, the global coordinates (Gx, Gy) of I can be calculated 

by the following formulas according to the principle of side proportionality under the 

assumption that the space area enclosed by the four corners Pij, P(i+1)j, P(i+1)(j+1) and 

Pi(j+1) is not too large so that the linearity inside the area holds: 

 

),(

),(

rqd

Iqd
WXG calix  ; (3.1) 

),(

),(

tsd

Isd
WYG caliy  , (3.2) 

 

where (X, Y) are the global coordinates of Pij computed in a way described previously, 
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and d(q, I) means that the distance between points q and I. Note that (X, Y) = (i Wcali, 

j Wcali) as mentioned previously in Section 3.2.1 if Pij is the (i, j)-th intersection point 

in the calibration board.  

 

3.2.3 Proposed Method for Constructing An 

Adaptive Mapping Table 

 

If the camera is used at a height different from that used in constructing the basic 

mapping table, then when calculating the global coordinates of the intersections found 

on the calibration board, the value of the interval should be changed to another value 

Wreal as shown in Figure 3.6; otherwise, the computation results will be incorrect. 

Thereafter, the method of calculating the global coordinates of space points is the 

same as discussed previously. 

 

(0, 0) (Wreal, 0)

(Wreal, Wreal)

(Wreal, 2Wreal)

(0, Wreal)

(0, 2Wreal)

(2Wreal, 0)

(2Wreal, Wreal)

(2Wreal, 2Wreal)

 

Figure 3.6 Calculating the coordinates of intersection points in the GCS by Wreal. 

 

To compute Wreal, we make the following observation first. When the camera is 
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attached to a lower height, the FOV’s will decrease, and the number of points found in 

Figure 3.2 is the same, so the value of Wreal will also decrease. On the other hand, 

when cameras are attached to a higher height, the FOV’s will increase, and the value 

of Wreal will increase, too. Accordingly, we derive a formula to calculate Wreal in the 

following. Note that if we use multiple cameras in this study, the global coordinates 

should be revised additionally, because there may be some rotation between the 

cameras. The detail of this problem will be described in Section 3.3. 

As depicted in Figure 3.7 there is a camera lens and an object O1 with height h1 

on the left. Hence, the formation of an image of O1 will be on the right side. The 

distance between point B and C is d1, the distance between point C and E is f, and the 

distance between E and F is a. The height of the projection of the object on the image 

is i. Because the two triangles ABC and CFG are similar in shape, we can obtain the 

following equation from the principle of side proportionality: 

af

h

i

d


 11 . (3.3) 

Similarly, from the similar triangles DCE and EFG, we can obtain the following 

equation: 

a

f

i

d
1 . (3.4) 

 

B
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C
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G

d1Calibration board O1

h1

f a

i Image plane

 
Figure 3.7 The imaging process of an object O1. 

 

 In Figure 3.8 another object O2 with height h2 is on the left, and the formation of 
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image is on the right side with height i, too. But the distance between O2 and lens is 

farther than O1. The lens is the same as in Figure 3.7, and we can also obtain two 

equations: 

bf

h

i

d


 22 ; (3.5) 

b

f

i

d
2 . (3.6) 
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Figure 3.8 The imaging process of object O2. 

 

By Equations 3.3 and 3.4, we know 

a

f

af

h




1 . (3.7) 

By Equations 3.5 and 3.6, we know 

b

f

bf

h




2 . (3.8) 

Then, we divide 
i

d1  by 
i

d 2  according to Equations 3.4 and 3.6 as follows: 

b

f

a

f

i

d

i

d
 21  (3.9) 

a

b

d
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

2
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2

1

d

d
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We also derive 
2

1

h

h
by Equations 3.7 and 3.8 as follows: 
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b
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Substituting Equation 3.11 into the above for the value of b, we get 
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 Because the focus length of the camera does not change, and if the distance 

between the lens and the object image is fixed, then f + a will be equal to f + b. Hence, 

(3.16) leads to the following formulas: 

2

1

2

1

d

d

h

h
  (3.17) 

1

12
2

h

dh
d


 . (3.18) 

We may rewrite the formulas above more clearly by other symbols as follows: 

cali

calireal
real

H

WH
W


 . (3.19) 

where Wcali is the interval between every two intersection points on the calibration 

board as mentioned before; Hcali is the height between the camera and the calibration 

board, alse mentioned previously; Hreal is the real height at which the camera is 

affixed now; and Wreal is the desired new interval for use now to replace the value 

Wcali in Equations (3.1) and (3.2). 
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3.3 Using Multi-cameras to Expand the 

Range of Surveillance 

 

 

Because the range of surveillance of a single camera is finite, we use multiple 

cameras to expand the range of surveillance in the study. First, the adaptive mapping 

tables should be constructed for every camera by the method mentioned above. But if 

there are displacements and rotations between the cameras, then the global 

coordinates of the mapping table should be modified further. The major steps of 

constructing a modified mapping table are listed below, and the detail will be 

described in the rest of this section. 

1. Calculate the relative position of two cameras. 

2. Calculate the relative rotation angle of two cameras. 

3. Calculate the global coordinates of intersection points in the calibration board 

in the expanded range. 

 

3.3.1 Calculating Relative Position of 

Cameras 

 

We design a special target board with a shape of a very small rhombus region on 

the ground as shown in Figure 3.9, and put it at the upmost and leftmost intersection 

area of the two cameras as shown in Figure 3.10. Because we want to calculate the 

global coordinates of all the intersections in the image via the coordinates of the 

center of this upmost and leftmost intersection area, we need to calculate the global 
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coordinates of this center point first. 

Then, an image of the target board is taken with the first camera. The target 

board area in the image are found out by the information of color, and the coordinates 

(x, y) of the center point of the rhombus shape in the GCS are calculated by the 

mapping table of the first camera. Accordingly, we can know that the global 

coordinates of the upmost and leftmost intersection of the second camera are (x, y). 

More details are described as an algorithm as follows. 

 

Figure 3.9 An Image of a specific target board on the ground seen from the first 

camera. 

 

 

Figure 3.10 The position of the target board on the ground seen from the second 

camera. 
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Algorithm 3.2: Calculating the relative position of two cameras. 

Input: An images I of a target board with a rhombus shape taken by the first 

omni-camera, and the adaptive mapping table of the first camera. 

Output: The global coordinates (x, y) of the center of the rhombus shape in the 

upmost and leftmost intersection area of the two cameras. 

Step: 

Step 1. Load the image coordinates of the intersection points of the second camera, as 

illustrated by Figure 3.10. 

Step 2. Put a specific target board on the uppermost and leftmost intersection point of 

the 2nd camera. 

Step 3. Use the first camera to take an image of the target board. 

Step 4. Calculate the central point C of the rhombus region on the target board in I 

taken by the first camera. 

Step 5. Convert the image coordinates of C into global coordinates (x, y) by the 

mapping table of the first camera using Algorithm 3.1 as the desired output. 

 

3.3.2 Calculating Relative Rotation Angle of 

Two Cameras 

 

The relative rotation angle of the two cameras should also be calculated. In this 

phase we prepare two special target boards and put them on the ground. The target 

boards should be put on the centerline of the FOV’s of the cameras as exactly as 

possible. Then, the center points of the target boards in the images can be calculated, 

and the vectors through the center points can be obtained, as shown in Figure 3.11. 

Assume that the vector in image 1 is p


, and the vector in image 2 is q


. Then the 
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relative angle  of rotation can be calculated by the following formula: 

 

)(cos 1

qp

qp







  . (3.20) 

 

  

(a) (b) 

Figure 3.11 Calculating the vectors of the centers. 

 

  actually can be figured out to be the angle between the center lines (the y-axis 

of the ICS) of the two images as shown in Figure 3.12, and we use this value to 

modify the global coordinates of adaptive mapping table of the second camera. 



 

Figure 3.12  is the angle between the centerline of two images. 
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3.3.3 Calculating Coordinates in The GCS 

 

 After the relative position and rotation angle are calculated, the adaptive 

mapping table of the second camera can be calculated by the following method. The 

black points in Figure 3.13 are represented by the global coordinates in the mapping 

table of camera 1, and we want to calculate the global coordinates of the blue points 

in the region of camera 2 to construct the adaptive mapping table of camera 2. 

1

5

6

7

2

8

9
10

3
11

12
13

4
14

15
16

Camera 1 Camera 2

 

Figure 3.13 Calculating the adaptive mapping table of camera 2. 

 

 The coordinates (x, y), (x, y) and (x, y) in Figure 3.14 specify three blue points 

in Figure 3.13. The coordinates (x, y) specify any of the blue points, P1, and the 

coordinates (x, y) specify another blue point Ph in the horizontal direction of P1, and 

the coordinates (x, y) specify a third blue point Pv in the vertical direction of P1. 

Symbol p specifies the length between P1 and Ph, and  is the rotation angle between 
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the two cameras. Both p and  are measured in advance. We can obtain four formulas 

to calculate (x, y) and (x, y) via (x, y) as follows: 

 

p

p





(x, y)

(x, y)

(x, y)

Ph

Pv

P1

 

Figure 3.14 Calculating the global coordinates of points in the GCS. 

 

Horizontal:  

cos'  pxx  (3.21) 

sin'  pyy  (3.22) 

Vertical:  

sin''  pxx  (3.23) 

cos''  pyy  (3.24) 

 

These four formulas are used to calculate all the global coordinates of points in 

the FOV of the second camera. First, the coordinates (x, y) of blue point 1 is 

calculated by the method described in Section 3.3.1. Then we may calculate the 

coordinates of blue points 2, 3 and 4 in Figure 3.13 via Equations 3.23 and 3.24 

because they are on the vertical direction of P1. 

For example, when calculating point 2, p is 1Wreal, and when calculating point 3, 
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p is 2Wreal, where Wreal is calculated in advance as described previously. Afterward, 

the horizontal points in every row are calculated by use of the points of the first 

column. For example, when calculating the coordinates of point 8, because this point 

is on the horizontal direction of point 2, Equations 3.21 and 3.22 are used and the 

values of x and y in them will be the coordinates of point 2, and p will be still 1Wreal. 

The calculating sequence is represented in Figure 3.14 by white numbers in blue 

circular shapes. In this way, all the coordinates of points in camera 2 can be calculated, 

and so the adaptive mapping table can be completed. 

 After all the mapping tables of every camera are constructed, we consider all the 

mapping tables as a combined one, and so complete the expansion of the range of 

surveillance. 
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Chapter 4  

Construction of Environmental 

Maps and Patrolling in Learned 

Environments 
 

 

4.1 Introduction 

 

One goal of this study is to make an autonomous vehicle to patrol in an indoor 

environment automatically. Patrolling points where the vehicles should navigate 

through for security monitoring are selected by a user freely. In order to achieve this 

goal, an environment map should be constructed, and the vehicle should have the 

ability to avoid static and dynamic obstacles, or a crash may happen. Besides, 

autonomous vehicles usually suffer from mechanical errors, and such errors will cause 

the vehicle to deviate from the right path, so an automatic path correction process is 

needed. The process should correct the position and direction of the vehicle at 

appropriate timings and spots. 

 

 

4.2 Construction of Environment Maps 

 

For an autonomous vehicle to patrol in a complicated indoor environment, the 

environment map should be constructed first. An environment map includes a two 
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dimensional Boolean array in this study, and each element in the array represents a 

square centimeter in the global. If the value of an element in the array is true, that 

means there are some obstacles in this region, and the autonomous vehicle cannot go 

through this region. On the other hand, if the value of an element in the array is false, 

that means there is no obstacle in this region, and the autonomous vehicle can go 

through this region. 

Furthermore, in this study we use multiple fish-eye cameras affixed on the 

ceiling to get the images of the environment, and use these images to construct the 

environment map. The major steps are described below. 

1. Find the region of ground in taken images by a region growing technique. 

2. Use the combined space mapping table to transform the image coordinates 

of the ground region into global coordinates to construct a rough 

environment map. 

3. Eliminate broken areas in the rough environment map to get the desired 

environment map. 

More details are described subsequently. 

 

4.2.1 Finding Region of Ground by Region 

Growing Technique 

 

 A region growing method is used in this study to find the region of the ground, as 

mentioned previously. First, a seed is selected by a user from the ground part in the 

image as the start point, and the eight neighboring points of this start point are 

examined to check if they belongs to the region or not. The proposed scheme for this 

connected-component check will be described later. Then each of the points decided to 
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belong to the region is used as the seed again, and the connected-component check is 

repeated, until no more region points can be found. More details of the method are 

described as an algorithm in the following. 

 

Algorithm 4.1: Finding the region of the ground in an image. 

Input: An image taken by a camera on the ceiling. 

Output: The image coordinates of the region of the ground in the image. 

Steps: 

1 Select a seed P from the ground part in the image manually as the start point, and 

regard it as a ground point. 

2 Check the eight neighboring points Ti of P to see if they belong to the region or 

not. 

2.1 Find all the neighboring points Ni of Ti which belong to the region of the 

ground for each Ti. 

2.2 Calculate the value of the similarity degree between Ti and each Ni. 

2.3 Decide whether Ti belongs to the ground region according to the similarity 

values by the following steps. 

2.3.1 Compare the values of similarity calculated in Step 2.2 with a threshold 

TH1 separately (the detail will be described later). 

2.3.2 Calculate the number p of similarity values which are larger than TH1. 

2.3.3 Calculate the number q of similarity values which are smaller than or 

equal to TH1. 

2.3.4 Compare p with q, and if the value of p is larger than q, then mark the 

point Ti as not belonging to the region and go to Step 2 to process the 

next Ti; else, continue. 

2.3.5 Calculate the similarity degree d between Ti and the average RGB 



 

 37 

values of all pixels in the region of the ground (the detail will be 

described later). 

2.3.6 Compare the similarity degree d with another threshold TH2, and if d is 

smaller than TH2, then mark Ti as belonging to the ground region; else, 

mark Ti as not. 

2.4 Gather the points Bi which belong to Ti and belong to the region of the 

ground. 

3 If there are some points of Bi which are not examined yet, then regard each Bi as a 

seed P and go to Step 2 again to check if they belong to the ground region or not. 

 

In Steps 2.1 and 2.2, when a point Ti is examined, all the neighboring points Ni of 

Ti which have already been decided to belong to the ground region are found out first, 

and a similarity degree between Ti and each of its eight neighboring points, as shown 

in Figure 4.1, is computed. The similarity degree between two points A and B is 

computed in the following way: 

similarity between A and B  rA  rB   gA  gB   bA  bB  (4.1) 

where rC, gC, and bC are the color values of point C with C = A or B here. 

P

11

11

1

1

1

1

1
 

Figure 4.1 Illustration of calculation of the similarity degree between two image 

points. 
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In Step 2.3.1, after the similarity degree is calculated, the degree is compared 

with a threshold TH1, whose value may be adjusted by a user. If the value is large, 

then the scope of the ground region which is found will be enlarged; else, reduced. 

In Steps 2.3.2 and 2.3.3, the two introduced values p and q are set to zero at first. 

The value of p represents the number of points whose similarity degree is larger than 

TH1, and the value of q represents the number of points whose similarity degree is not 

so. Hence, if a degree is larger than TH1, then we add one to p, and if the degree is not 

so, then we add one to q. Afterward, in Step 2.3.4, if the value of p is larger than q, the 

point Ti is marked as not belonging to the region, and then go to Step 2 again to check 

the next Ti. If the value of p is not so, then an additional iterative process is conducted 

to examine Ti. 

Sometimes the boundary between the region of the ground and obstacles is not 

very clear in images. So in Step 2.3.5, an average values AVR is calculated first, which 

contains 3 values, namely, the average values Ravr, Gavr and Bavr of red, green, and 

blue values, respectively, of all the pixels in the ground region. We use AVR to decide 

whether the pixel Ti belongs to the ground region or not. The similarity degree d 

between the point Ti and AVR, as mentioned in the step, is then calculated according 

to a similar version of Equation 4.1. In Step 2.3.6, d is compared with another 

threshold TH2. If d is smaller than TH2, then the point Ti is marked as belonging to the 

region; else, as not. 

In Step 2.4, the points Bi which belong to Ti and belong to the region of the 

ground are found, and in Step 3, these points are regarded as seeds and Step 2 is 

repeated again to check if these points belong to the region or not. No matter whether 

the point Ti belongs to the region or not, the point will be marked as scanned. An 

example is shown in Figure 4.2. The two images in Figure 4.2(a) are taken by two 

fisheye cameras separately, and in Figure 4.2(b) the blue regions are the ground 
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regions found by the above algorithm. 

 

 

(a) 

 

(b) 

Figure 4.2 An example of finding the region of the ground. 

 

4.2.2 Using Image Coordinates of Ground 

Region to Construct a Rough 

Environment Map 

  

 After the image coordinates of the ground region are found in every image, we 
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can utilize the coordinates to construct a rough environment map by the following 

method. 

Because the mapping tables of the fisheye cameras are constructed in advance, 

coordinates can be converted between the ICS (image coordinate system) and the 

GCS (global coordinate system) freely by Algorithm 3.1. And the size of an 

environment map is defined in advance, so we can convert the global coordinates Gi 

of each point in the map into image coordinates Ii first. 

Also, because all the image coordinates of the ground region Rg have been found 

by Algorithm 4.1 in Section 4.2.1, we can check them to see if the image coordinates 

Ii specify a point pi belonging to Rg or not. If pi belongs to Rg, then we indicate the 

space point Pi of the global coordinates Gi in the map to be an open way otherwise, to 

be an obstacle. Hence we can obtain the global coordinates of all the obstacles in the 

environment, and so can indicate the positions of the obstacles in the map to construct 

a rough environment map. 

 

4.2.3 Eliminating Broken Areas in a Rough 

Environment Map 

 

 After constructing a rough environment map, there will be a lot of broken areas 

in the map, so a refining process is applied to eliminate these broken areas. The 

refining process includes two major operations erosion and dilation. An erosion 

operation can eliminate the noise in the map, and a dilation operation can mend 

unconnected areas to make the map smooth. 

 The erosion operation examines every element in the rough map, and if the value 
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of an element E is true, that means there are some obstacles in this region R. A mask 

with nn size will then be put on R and every element in this mask will be examined 

to see if the values of them are true or false. The values of elements in the mask then 

are gathered to decide the new value of E. If the number of the value of true is larger 

than half of the number of elements in the mask, then the new value of E will be set 

true; otherwise, the value of E will be set false. In another situation, if the value of E 

is false originally, the new value of E will be false, too. Because of the property of this 

erosion operation, the noise in the map will be eliminated. 

 The dilation operation can expand the region of every obstacle, so if there is a 

little gap between two regions of obstacles, after doing the dilation operation, the gap 

will be mended. The dilation operation also scans all of the elements in the map, and 

if the value of element R is true, another mask with size mm is put on R. Afterward, 

the value of every element which is in the mask are set to true, hence every obstacle 

in the map will be expanded, and the gap will be mended. The degree of expansion 

depends on the size of mask, that is, if m is large, then the degree of expansion will be 

high. An example of results is shown in Figure 4.3. 

 

  

(a) (b) 

Figure 4.3 An example of refining a map. (a) A rough map. (b) A complete map after 

applying the erosion and dilation operations. 
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4.3 Avoiding Static Obstacles 

 

After constructing the complete environment map, we can know exactly the 

positions of the obstacles in an indoor environment. When an autonomous vehicle 

navigates in the environment, it should avoid all of the obstacles automatically. When 

there are some obstacles on the original path from a starting point to a terminal point, 

the system should plan a new path to avoid the obstacles, and the new path will 

satisfies the following constraints: 

1. The shortest path should be chosen. 

2. The turning points should be within the open space where no obstacle 

exists. 

3. The number of turning points should be reduced to the minimum. 

The method we use in this study is to find several turning points to insert 

between the original starting point and the terminal point. Here, by a turning point, we 

mean one where the autonomous vehicle will turn its direction. The lines connecting 

these points will be the new path. As shown in Figure 4.4, the purple points are the 

original starting and terminal points, and the red line is the original path. 

 

Figure 4.4 Illustration of computing turning points to construct a new path (composed 

by blue line segment) different from original straight path (red line 

segment). 
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But by the environment map, there are some obstacles on the straight path from 

the starting point to the terminal one, so turning points should be calculated to 

construct a new path. The green points are the computed turning points, and the blue 

lines which connect the turning points compose the new path. By the following 

algorithm, the turning points can be calculated. 

 

Algorithm 4.2: Calculating turning points to construct a path through no obstacle. 

Input: An environment map M, a starting point S, and a terminal point T. 

Output: The coordinates and the number of turning points in the GCS, through which 

a path from S to T encounters no obstacle. 

Steps: 

Step 1. Calculate the equation of the line L connecting by S and T using the 

coordinates of S and T. 

Step 2. Check whether there are obstacles Oi on L, where i is the number of obstacles 

on L. If not, the final path is L and the algorithm is finish. Otherwise, continue. 

Step 3. Calculate the overlapping regions Ri of L and the obstacles. 

Step 4. Calculate the perpendicular bisectors of each Ri. 

Step 5. Extend each bisector until reaching another obstacle or the boundary of map, 

and compute two intersection points Oi and Oi when reaching another 

obstacle or boundary. 

Step 6. Calculate the middle point Ci between Oi and Oi for each i. 

Step 7. Calculate the middle point Ci between Oi and Oi for each i. 

Step 8. Compare the length of a path connecting S, Ci (for all i in the sequence) and T 

with the length of another path connecting S, Ci (for all i in sequence) and T, 

and choose the path with the shorter length. 
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Step 9. If there is no obstacle on the new path, then output the turning points on the 

new path. If there are some obstacles on the sub-paths, then recursively apply 

this algorithm to each sub-path with obstacles. 

 

After the turning points are calculated, an alternative path is found. The process 

is illustrated in Figure 4.5. In Figure 4.5(a), the purple points are the starting and 

terminal points, the red line is the original path, and the green lines are the 

perpendicular bisectors. In Figure 4.5(b), the first alternative path is found by 

connecting the turning points, but there are still some obstacles on a sub-path of it, as 

shown in Figure 4.5(c). So the algorithm is applied again on the sub-path, and the 

final alternative path is calculated to be as that shown in Figure 4.5(d). 

 

  

(a) (b) 

  

(c) (d) 

Figure 4.5 An example of planning an alternative path. (a) The original path with 

some obstacles on it. (b) The calculated new path but still some obstacles 

on its sub-path. (c) Repeat the algorithm to the sub-path. (d) The calculated 

final path. 
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4.4 Patrolling in Indoor Environment 
 

 After an environment map is constructed and a path is planned, the autonomous 

vehicle can navigate in the indoor environment automatically. But after a while, the 

vehicle will start to deviate from its path because of accumulated mechanic errors. So 

the farther the vehicle goes, the more the deviation will become. Hence we should 

correct the position of the vehicle. Besides, there may be some dynamic obstacles in 

the environment. When an autonomous vehicle patrols in an environment, it should 

avoid these obstacles, or a crash might happen. Furthermore, the FOV’s of a fisheye 

camera is finite. In order to expand the range of surveillance, we use multiple fisheye 

cameras in this study. So the solution to the hand-off problem will be described in this 

chapter, too. In order for an autonomous vehicle to patrol in an indoor environment 

automatically and continuously, we should solve the following problems. 

 

1. Correcting the global coordinates of the vehicle automatically. 

2. Avoiding dynamic obstacles automatically. 

3. Patrolling under several cameras. 

 

The solutions proposed in this study are described in the rest of this chapter. 

 

4.4.1 Correcting Global Coordinates of 

Vehicle Automatically 

 

 Because an autonomous vehicle suffers from mechanical errors, the correction of 

the position is needed. Furthermore, the error of the direction of a vehicle will be 
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accumulated. In this study, we propose four correction strategies to correct the 

position and direction of a vehicle. The four strategies are: 

1. position correction; 

2. direction correction; 

3. enforced direction correction; 

4. ending path segment correction. 

A. Vehicle location correction strategy 1 --- position correction 

When a vehicle navigates to a turning point, it should correct its global 

coordinates. Because a turning point is a destination of a path segment, in order to 

avoid the accumulation of mechanical errors in this path segment, the position of the 

vehicle must be corrected at the turning point. In this study, images taken by the 

fisheye camera are used to calculate the exact position of a vehicle. First, when a 

vehicle navigates to a turning point, we can get the odometer values of the vehicle, 

which include the x-coordinate and the y-coordinate of the vehicle, and the direction 

angle of the vehicle. In this strategy, the x- and y- coordinates will be corrected. After 

getting the values of the odometer, we can know the approximate position of the 

vehicle. Then we judge which camera should be used to get an image of the vehicle 

and calculate the center point of the vehicle shape in the image. When the center point 

is calculated, because the approximate position of the vehicle is known, only a partial 

image neighboring to the vehicle position need be processed. The steps are shown in 

Figure 4.6. 

The method we propose to calculate the position of the vehicle is described in 

the following. Because the odometer values are expressed as global coordinates, the 

values of the position in the odometer should be converted into image coordinates 
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Cimg using the corresponding mapping table. Then the partial image of the square 

region whose center is located at Cimg is subtracted from the background image. The 

size of the square region is changeable and is small at the beginning. The background 

image is an image which is taken by the same camera in advance, so there is no 

dynamic obstacle in there. After the subtraction of two partial images, the pixels 

which have big differences between the foreground and background will be found out. 

Afterward, the erosion and dilation operations mentioned previously are applied to 

eliminate the noise and smooth the edges in the image. Then, a connected component 

in the image is segmented out, and the average of all the coordinates in the component 

is computed to be the new coordinates Cimg of the vehicle shape center. 

 

Figure 4.6 Steps of correcting the position of vehicle. 

 

If the region of the whole vehicle is not found out, then the steps mentioned 

above will be done again with the new Cimg and a square–regioned tracking window 

with a bigger size. After the region of the whole vehicle is found, the exact center 

point of the vehicle is the newest Cimg. The size of the square region will become 

bigger and bigger when every iteration of the steps is done, and every Cimg will 

become closer and closer to the real center point of the vehicle. 

We use a tracking window with a changeable size to find the centroid of the 

vehicle in this study. The advantages of using a tracking window with a changeable 
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size include: 

• avoiding the influence of other dynamic obstacles or people; 

• increasing the precision of the vehicle region detection; 

• speeding up computation. 

Because we use fisheye cameras in this study, the size of a vehicle in images will 

change when the vehicle navigates to a different position. If the size of square region 

is changeable, the area which has to be processed will be much smaller than using a 

square area with a fixed size. When the processed region is smaller, the probability of 

interfering by dynamic obstacles will decrease. The processed region with a square 

mask with a fixed size and a mask with a changeable size are shown in Figure 4.7. 

The yellow point is the real central point of a vehicle, and the purple point is the 

position recorded in the odometer with mechanic errors. The total region with a 

changeable mask is smaller than the region with a mask with a fixed size. 

The process of calculating the exact position of a vehicle is described in 

Algorithm 4.3, and a real example of finding the central point of a vehicle is shown in 

Figure 4.8. 

 

 

 

(a) (b) 

Figure 4.7 The calculating region. (a) with a fixed square mask. (b) with a changeable 

mask. 
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(a) (b) 

 

(c) 

Figure 4.8 Finding the central point of a vehicle. (a) the background image of an 

environment. (b) The foreground image with a vehicle. (c) The found 

central point of a vehicle. 

 

Algorithm 4.3: Calculating the exact position of a vehicle. 

Input: An image taken by a fisheye camera, and the coordinates of the vehicle 

position recorded in the odometer. 

Output: The exact position of the vehicle. 

Steps: 

Step 1. Convert the coordinates in the odometer to the ICS and obtain the image 

coordinates Cimg. 
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Step 2. Subtract the partial image in the square region whose center is located at Cimg 

from the background image to find the pixels which have big difference 

values. 

Step 3. Apply the erosion and dilation operations to the image of the region. 

Step 4. Find the connected component in the image. 

Step 5. Calculate the average of all the coordinates in the component and obtain new 

Cimg. 

Step 6. If the region of the whole vehicle is found out, then go to Step 3; otherwise go 

to Step 2 with the new Cimg and a square region with a bigger size. 

Step 7. Convert the new Cimg to the GCS by the method mentioned in Chapter 3 using 

the mapping table. 

B. Vehicle location correction strategy 2 --- direction correction 

Mechanical errors not only cause inaccuracy in vehicle positions, but also 

inaccuracy in vehicle directions. The technique of this strategy is to correct the 

direction errors. Because the exact positions of a vehicle are calculated at every 

turning point in Strategy 1, we can use two consecutive positions to calculate the 

vector of the direction, as shown in Figure 4.9. 

O

B

A

1

2

 

Figure 4.9 Using two consecutive positions to calculate the vector of direction. 
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 But when the path between two consecutive turning points is too long, the 

mechanical errors will be large. Take OA  in Figure 4.9 as an example. The angle 

calculated by use of the line through points O and A is 2, but the exact angle should 

be 1. So if we want to limit the error of the vehicle direction within a certain degrees, 

say , a limit of the length of the path between two turning points can be calculated 

by the following method. The approximating function of direction errors of a vehicle 

can be obtained by experiments. The function of the error of the vehicle which we use 

in this study is (Tsai and Tsai [17]): 

2( ) 0.00000476 0.00592048 4.16437951f x x x   . (4.2) 

where x is the length of the patrolling path of the vehicle, and f(x) is the error function 

of the direction in degrees. By the following formula of the solution to a quadratic 

equation: 
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we can obtain the positive solution as 
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For an example, if we want to limit the error of the vehicle direction to be within 5 

degrees, then the correction of the direction is done when the length of a path is 

smaller than 

96.127
00000952.0

00592048.000004424.0500001904.0



 cm. (4.5) 

 But when the length of a path is too short, another problem will happen. Because 
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there are some errors when we calculate the center of a vehicle in an image, when the 

length of a path is too short, such errors will become large relatively. As shown in 

Figure 4.10, if the points a and b are the exact center points of the vehicle in two 

consecutive images, and the calculated centers are a and b, then the error of the 

vehicle angle will be . 

 

p

p

a

b

a

b




x

aa 2p




 

Figure 4.10 False direction caused by the error of finding center. 

 

 If we want to limit the error of the vehicle direction to be within α degrees, and 

the maximum error of finding the center of a vehicle in an image to be p cm, then we 

can obtain another limit of the length of the path by the following equations: 

)
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and  90 . (4.7) 
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   px 2)90tan(   . (4.11) 

For an example, if we want to limit the error of the vehicle direction to be within 5 

degrees, and the error of finding the center of the vehicle in an image to be 3 cm, then 

the correction of the direction is done when the length of a path is limited to be larger 

than 

6.6832)590tan(  cm. (4.12) 

 By Equations 4.4 and 4.11 derived above, if the length of a path is between the 

two values Vmax and Vmin calculated by these two equations, then the correction of the 

vehicle direction will be done. 

C. Vehicle location correction strategy 3 --- enforced direction correction 

 Although in Strategy 2 the direction of the vehicle has been corrected, if the 

length of a path is not between Vmax and Vmin, then the correction of the direction 

cannot be done. So we set a threshold M, and if the accumulation of the length of the 

vehicle movement exceeds M and the length L of the next path is not between Vmax 

and Vmin, then the vehicle will be enforced to do the correction of its direction by the 

following method. 

First, the next path is divided into two segments. The length of the first segment 

is set to be (Vmax  Vmin )/2, and the length of the second segment is taken to be L  

(Vmax  Vmin )/2, as shown in Figure 4.11. When the vehicle navigates from point a to b, 

the correction of the vehicle direction will be done by the method mentioned in 

Strategy 2, because the length of this segment is between Vmax and Vmin. 
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( Vmax + Vmin ) 2

a

b
c

 

Figure 4.11 Separating the path into two segments. 

D. Vehicle location correction strategy 4 --- ending path segment correction 

 Because of the mechanical errors, if the length of one path segment is very large, 

a vehicle will suffer from large errors at the end of this path segment. The vehicle may 

so not be able to monitor the exact place where we want to keep under surveillance. 

So if the distance between the original destination and the real position of a vehicle is 

larger than a value which is set in advance, then we will plan another path from the 

real position of the vehicle to the original destination. 

 

4.4.2 Avoiding Dynamic Obstacles 

Automatically 

 

When a vehicle patrols in an indoor environment, there may also be some 

dynamic obstacles in the environment, such as humans or furniture. The vehicle 

should avoid these obstacles, too. First, the image coordinates of the set R of the 

regions of all objects in the environment, including the vehicle and dynamic obstacles, 

are calculated by subtracting the foreground from the background. Because the entire 

region of a vehicle in an image can be found out by the method mentioned in Section 

4.4.1, and a vehicle is not an obstacle, we remove the region of the vehicle from R, 
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and convert the image coordinates of the other regions into global coordinates. 

Afterward, because the global coordinates of all dynamic obstacles have been 

acquired, we can indicate them on the environment map to obtain a new map, and a 

new path can be planned by the method described in Section 4.3 to avoid all the 

obstacles. 

 

Algorithm 4.4: Constructing new map and path for avoiding dynamic obstacles. 

Input: An environment map M, an image I which is taken by an omni-camera. 

Output: A new environment map M with dynamic obstacles, and a new path to avoid 

the dynamic obstacles. 

Steps: 

Step 1. Find the entire region of the vehicle in image I. 

Step 2. Subtract I from the background to find all the non-vehicle objects in image 

I. 

Step 3. Locate the non-vehicle objects in real space. 

Step 4. Indicate all objects on the map M to obtain a new map M. 

Step 5. Plan a new patrolling path by Algorithm 4.2 to the next destination on M. 

 

An example is shown in Figure 4.12, Figure 4.12(a) is the background of an 

environment, and in Figure 4.12(b) a person stands in the environment. In Figure 

4.12(c), the region of the person is found by subtracting the foreground from the 

background. In Figure 4.12(d), the original path is from point A to B, but a new path is 

planned from A through C to B in order to avoid the dynamic obstacle. 
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(a) (b) 

 

(c) 

 

(d) 

Figure 4.12 An example of avoiding dynamic obstacles. (a) The background image of 

an environment. (b) The image with a person stands in the environment. (c) 

The region of the person is found. (d) A new path is planned to avoid the 

dynamic obstacle. 
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4.4.3 Patrolling Under Several Cameras 

 

In order to expand the range of surveillance, we use multiple fisheye cameras in 

this study, so the vehicles will patrol under several cameras. This creates a problem of 

hand-off between cameras, but the problem here can be simplified by the odometer in 

a vehicle, because the odometer value indicate the approximate position of a vehicle. 

The mapping tables of the fisheye cameras are constructed in advance, so the range of 

surveillance of every camera is known. As shown in Figure 4.13, point A is the 

uppermost and leftmost point in Camera 2, and point B is the lowermost and 

rightmost coordinates in Camera 1. The coordinates of these two points are known by 

the mapping tables of the two cameras, hence the coordinates of points C and D can 

be calculated, and afterward the equation of line L can be obtained. Taking the values 

Ox and Oy of the odometer as variables into the equation of line L, we can judge which 

camera should be used to get the image of the vehicle. The equation of L can be 

computed by: 

2 1 2 1 2 2 1 1( ) ( )y y x x x y x y x y     , (4.13) 

and the judgment is conducted as follows: 

If 0)()( 11221212  yxyxOxxOyy yx , then the camera 1 should be used; 

otherwise, the camera 2 should be used. 

LCamera 1

Camera 2
A(x1,y1)

C(x1,y2) B(x2,y2)

D(x2,y1)

 

Figure 4.13 Line L separates the region of two cameras. 
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Chapter 5  

Following Suspicious People 

Automatically and Other 

Applications 

 

 

5.1 Introduction 

 

Although there are several fisheye cameras on the ceiling, they cannot move 

their positions and cannot take images of a person at different angles. Besides, by 

fisheye cameras sometimes we cannot take clear images of the face of the person. In 

this study, a technique is designed to follow a suspicious person who breaks into the 

indoor environment which is under surveillance. Because the autonomous vehicles are 

highly mobile and can take clear images by the cameras equipped on them, they are 

proper to assist the surveillance in the indoor environment. 

In order to let the vehicles follow a person, the position of the person should be 

calculated first. In this study, we only calculate a specific partial region, called the 

tracking window, in an image to decrease the amount of calculation and decrease the 

probability of interference by other dynamic obstacles. Afterward, the distance and 

angle between the vehicle and the person are calculated. Then, the central computer 

can order the vehicle to chase the person. The detail process will be described in 

Section 5.2. 

Because only the partial image is calculated, and the person will move in the 
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environment, hence the next position of a person should be predicted in order to 

decide the region which should be calculated. But the images are taken by the fisheye 

cameras, so there will be high degrees of distortion in the images. The position of 

prediction should be modified when the person appears in different places in the 

image. The detail process will be described in Section 5.3. 

Because the FOV’s of one camera is finite, multi-cameras are used in this study 

to expand the range of surveillance. When a person moves from the region of one 

camera to that of another, it is necessary to switch the camera to get the images of the 

vehicle automatically. The detail process will be described in Section 5.4. And other 

applications, such as recording the track of a person in the computer or calculating the 

walking speed of the person, are described in Section 5.5. 

 

 

5.2 Calculating Position of a Person by 

Specific Partial Region in an Image 
 

One goal in this study is to calculate the position of a person intruding into a 

space under surveillance. Although we can subtract the foreground from the 

background to find out all the objects in the environment, the amount of calculation 

will be very large. Hence we only calculate the specific partial region in an image. 

Besides reducing the amount of calculation, there are other advantages to do this: 

decreasing the probability of interference by other dynamic obstacles, and increasing 

the preciseness of calculating the position of the target. 

 First, the region of the door in a room space under surveillance is set in advance, 

and this region will be kept under close monitoring continually. When the door is 
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opened, the foreground image of that region will change, so we can know the door is 

opened by subtracting the foreground image from the background image in the region 

of the door. After the door is opened, the process of following any suspicious person 

will start. 

When tracking a person, we use the same idea as finding the central point of a 

vehicle in Chapter 4. Only the pixels which are in a square region R will be calculated, 

and the size of R is changeable. The detail of the process is described in Algorithm 5.1. 

The coordinates C of a certain point is introduced here. It represents the position 

where we predict the person should be at this time, and the detail process of 

calculating C will be described in Chapter 5.3. 

 

Algorithm 5.1: Calculating the position of a person. 

Input: An image which is taken by the fisheye camera, and the coordinates C of a 

predicted location of a person. 

Output: The coordinates of the exact position of the person. 

Steps: 

Step 1. Calculate the range of the square region R by the use of coordinates C, at 

which the center of a region R is located, and the size of the region is small at 

first. 

Step 2. Subtract the partial foreground image in R from the background image to 

find the pixels which have big differences between the two images. 

Step 3. Apply the erosion and dilation processes to the image portion in R. 

Step 4. Find the connected components in R. 

Step 5. If there are some components whose sizes are larger than a threshold N in R, 

then go to Step 6; otherwise, go to Step 2 again with the square region R being 

enlarged to be with a bigger size. 
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Step 6. Calculate the distances between all the points in the component and the 

center of the image. 

Step 7. Find the point whose distance calculated in Step 6 is the smallest. 

Step 8. Convert the point found in Step 7 to the global coordinates as output. 

 

In Step 5, we set a threshold N in advance, and if the size of a component is 

larger than N, then we consider the component as an object. When there is no object 

in the square region R, the size of R will be increased, and Step 2 is repeated again 

with the new size. When there are some objects in R, we calculate the distances 

between all the points in the component and the center of the image, and find the 

point whose distance is the smallest. The reason is described below. 

We find the person’s feet by the rotational invariance property of omni-cameras. 

More specifically, it can be proved that the line through the human body (actually 

through the human’s head and feet) always passes the image center according to the 

above property, as shown in Figure 5.1. 

 

 c
d

x y
 

(a) (b) 

Figure 5.1 The rotational invariance property. (a) A real example. (b) A vertical sketch 

chart. 

 

If a person stands at point x, a fisheye camera is affixed on the ceiling to take 

images of the person, the center of the image taken by the camera is c, and the 
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distance between c and x is d, then the region of the projection will be from x to y, as 

seen laterally. So if we want to find the position where the person stands, we should 

check all the pixels in the region to find out the point whose distance to c is the 

smallest, namely, the point x with the smallest distance d. Several real examples are 

shown in Figure 5.2, where the red points are the calculated positions of the tracked 

person. 

  

(a) (b) 

  

(c) (d) 

Figure 5.2 Finding the positions of a person. (a)(b)(c) The person stands at several 

different places in an image. (d) The person stands at the center point in 

an image. 
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5.3 Predicting Position of A Person 

 

Because a person may move in the environment continuously and we only want 

to calculate the specific partial region in an image of the person, the position C of a 

person in the next period of time should be predicted. Then, the region for tracking 

the person can be decided by C and Algorithm 5.1. 

Because the positions of a person in every period of time should be calculated 

continuously and the length of every period of time is set equal, a simpler solution to 

the person prediction problem is to extend the line of two older positions of the person 

to predict the future position of the person. As shown in Figure 5.3, if the person 

moves from point A to point B in sequence, and the distance between A and B is D1, 

we extend the line segment of A and B to a double in length to find the predicting 

point C for the person, where the distance D2 is set equal to D1. 

A B C
D1 D2

 

Figure 5.3 Prediction of the position of a person. 

 

But in this study, we need to track a person in the images which are taken by 

fisheye cameras. Because there is a high degree of distortion in each of such 

omni-images, the speed of movement of a person in the image will also change even 

if the person walks at a fixed speed. Specifically, if a person moves at the center of an 

image, his/her moving speed will be faster than that of a person who moves at the 

edges of the same image. The reason is that the partial image which neighbors the 

center of an image is enlarged, and the partial image which neighbors the edges of an 
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image is shrunk, as shown in Figure 5.4 where the sizes of two red squares are the 

same in the real world, but different in the image. 

 

 

Figure 5.4 An example of distortion in the image taken by a fisheye camera. 

 

 Because of the problem mentioned above, three situations are identified in this 

study which should be dealt with for our purpose of smooth tracking of a person 

under the surveillance of a fish-eye camera. Situation 1 occurs when a person walks 

from the edge to the center in an image. In such a situation, the distance of prediction 

should be enlarged, meaning that D2 should be longer than D1 in Figure 5.3. On the 

other hand, Situation 2 occurs if a person walks from the center to the edge in an 

image. Here, the distance of prediction should be shrunk, meaning that D2 should be 

shorter than D1. And Situation 3 occurs when the person walks around the center of 

the image. Here, D1 should be set equal to D2. 

 As a summary, the formula for calculating D2 can be written as follows: 

)(12 OBOADD    (5.1) 

where the symbol O represents the central point of the image, the symbol OA  

represents the distance between point A and O, and OB  is interpreted similarly. So 
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OBOA  means the distance of approaching to the center O of an image when a 

person walks from point A to B. The detail of using Equation 5.1 is described below 

for all of the three situations. 

The symbol  in Equation 5.1 is a ratio of enlarging and shrinking, whose 

definition will be different in Situations 1 and 2. The equations for calculating  are 

derived in this study to be: 

q

qp 
  for Situation 1; (5.2) 

p

qp 
  for Situation 2, (5.3) 

where p q is the average ratio of the distance between every two consecutive image 

points listed in the mapping table as shown in Figure 5.5, where we assume p to be 

closer to the center of the image than q. 

 
Figure 5.5 Calculating p and q. 

 

In more detail, in Situation 1 because a person walks from the edge to the center 

in an image, OBOA   will be larger than 0, and the distance D2 will be enlarged, as 

shown in Figure 5.6. For example, if a person moves 30 cm totally, and approaches to 
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the center of the image for a distance 20 cm and pq is 54, then D1 is 30cm, and 

20 OBOA cm. The prediction of D2 will be 3520
4

45
30 


  cm according 

to Formula (5.2). 

A

B

C

D1 = 30

D2 = 35

 

Figure 5.6 Situation 1. 

 

 In Situation 2, the person walks from the center to the edge in an image, so 

OBOA   will be smaller than 0, and the distance D2 will be shrunk, as shown in 

Figure 5.7. For example, if the values of the variables are the same as the above 

except that the person is leaving from the center of the image for a distance of 20 cm, 

then the prediction of D2 will be 2620
5

45
30 


  cm according to Formula (5.3). 

A

B

D1 = 30

D2 = 26

C

 

Figure 5.7 Situation 2. 
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 In Situation 3, because the value of OBOA   is zero, D1 will be set equal to 

D2 as shown in Figure 5.8. 

BD1 = 30

D2 = 30 C

A

 

Figure 5.8 Situation 3. 

 

 

5.4 Using Multi-Cameras to Expand 

Range of Surveillance 

 

Because the FOV’s of a camera is finite, we use multi-cameras in this study to 

expand the range of surveillance. A person may move its position between these 

cameras, so we have to decide which camera should be used to take images of the 

person. A simpler solution to this problem is described in Section 4.4.3, but the target 

is a person now instead of a vehicle, so we cannot use the values of the odometer 

anymore. 

Besides, because we only calculate a partial image to find the position of a 

person, if a person walks to the FOV’s of another camera, we should also decide 

which region in the image taken by camera 2 should be calculated to continue finding 

the position of the person. The proposed method for solving the problem here is 
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described in Algorithm 5.2. 

 

Algorithm 5.2: Calculating the image coordinates of the position of a person in the 

image taken by a second camera. 

Input: The mapping tables of two cameras C1 and C2, and the image coordinates I1 of 

the position of a person in the FOV’s of camera C1. 

Output: The image coordinates I2 of the position of a person in the image taken by C2. 

Steps: 

Step 1. Calculate the coordinates of the four corner points A, B, C and D of the 

overlapping area of cameras C1 and C2, and the equation of line L, as shown 

in Figure 5.9. 

Step 2. Check the position of the person to see if he/she moves from the FOV’s of 

one camera to another and exceeds the line L continuously. If yes, continue; 

otherwise, use the original camera C1 to take images. 

Step 3. Convert I1 to the global coordinates G by the mapping table of C1. 

Step 4. Convert G to the image coordinates I2 by the mapping table of C2. 

Step 5. Use C2 to continue to take images of the person, and calculate the position 

of the person by the mapping table of C2. 

 

In Algorithm 5.2, we calculate the coordinates of points A, B, C and D, and the 

equation of line L as shown in Figure 5.9 by the method described in Section 4.4.3 

first. When a person walks from the FOV’s of one camera to another and exceeds the 

line L, for example from P1 to P2, then the coordinates of the person Pics could be 

calculated as described in Section 5.2 in the ICS (Image Coordinate System), and then 

converted to the GCS (global coordinate system) Pgcs. Afterward, Pgcs is converted to 

the image coordinate system again but in another camera system. 
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LCamera 1

Camera 2
A(x1,y1)

C(x1,y2) B(x2,y2)

D(x2,y1)
P1 P2

 

Figure 5.9 An example of hand-off when a person moves from P1 to P2. 

 

For example, if a person walks from P1 to P2, that is, from a region within the 

FOV of camera 1 to a region within that of camera 2, and exceeds the line L, the 

coordinates of P2 in the ICS will be converted to the GCS in camera 1, and then be 

converted to the ICS again in camera 2, as described in the algorithm. Afterward, 

camera 2 is used to take the image of the person. 

 

 

5.5 Other Applications 

 

In this section, two other applications of tracking a person are described. The 

first is that we can record the trail of a person, and the second is that we can calculate 

the walking speed of a person. Both the trail and the walking speed can be stored in a 

computer. And if something misses in a room, these data can be read out to check to 

see who has come into this room and where he/she has walked through. Besides, the 

walking speed is a characteristic of the person, and it can help us to decide the 

person’s sex, age, and finally identity. 
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5.5.1 Recording Trail of a Person 

 

When a person breaks into the environment under surveillance, he/she will be 

traced by the omni-cameras continuously as described previously. The positions of the 

person will be calculated in every 400 ms, and the coordinates of these positions can 

be reserved in a file, as shown in Table 5.1. 

 

Table 5.1 The record of a person’s trail. 

(379,213) 

(430,199) 

(427,196) 

(442,192) 

(454,186) 

(455,192) 

(473,207) 

(464,192) 

(485,198) 

(502,187) 

(509,211) 

(521,220) 

(543,225) 

(558,216) 

(586,219) 

(593,237) 

(630,227) 

(620,233) 

(616,240) 

(626,244) 

(649,237) 

(657,233) 

(702,221) 

(746,238) 

(781,250) 

(802,260) 

(844,254) 

(844,257) 

(850,257) 

(857,264) 

 

 If something is found missing in the environment later, the video taken by the 

camera on the vehicle and the file recording the person’s trail can be inspected. We 

can then judge who broke into the room by the video, and draw the trail of the person 

on the map as shown in Figure 5.10 to check where the person has walked through, 

and hence judge if he/she has taken the stuff or not. 
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Figure 5.10 The trail of the intruding person drawn on the map. 

 

5.5.2 Calculating Walking Speed of A 

Person 

 

The purpose of calculating the walking speed of a person is that if the person 

who breaks into the environment under surveillance has a mask on his/her face, even 

if we have taken clear images of him/her by the camera equipped on the vehicle, we 

still cannot tell the identity of him/her. However, we can gather other characteristics 

of the person, like the walking speed which is one of the characteristics that can help 

us to identify the person, as mentioned previously. 

Because the position of the person is calculated in every 400 ms, we can 

calculate the distance of movement of the person in the same frequency. Hence, we 

can take every two consecutive positions P1 and P2 of the person, and calculate the 

walking speed of the person by the following equation: 

 

100

60

4.0

21


 PP
 meters/minutes (5.4) 

 

where 21 PP   means the distance between positions P1 and P2 in cm. We can 

calculate the average walking speed by correcting a set S of all the walking speeds in 



 

 72 

a certain duration of time, removing data with zero values from S, and calculating an 

average speed value from S. The necessity of removing zero-valued data is: if the 

walking speed w is zero, it means that the person is not moving now, and so we 

cannot consider w into the average walking speed. 
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Chapter 6  

Experimental Results and 

Discussions 

 

In this chapter, we show some experimental results of the proposed security 

patrolling system. The first is the results of calculating the positions Wreal of 

real-world points when a fisheye camera is affixed at the different heights. We 

compare the values of Wreal which are calculated by the method proposed in Chapter 3 

with those obtained by measuring manually.  

The second is the results of calculating the positions of a person in an actual 

environment in the Computer Vision Laboratory, Department of Computer Science, 

National Chiao Tung University, and the computing results are compared with the real 

positions of the person. 

The third is the results of the distance of deviating from the original path when 

an autonomous vehicle patrols in an actual environment, and the position and 

direction of the vehicle are corrected by the method proposed in Chapter 4. The detail 

will be described in Section 6.3. 

6.1 Experimental Results of 

Calculating Positions of Real-world 

Points 
 

In this experiment, a fisheye camera is affixed at several different heights. We 
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calculated the values of the real-world point positions Wreal for every height by the 

method mentioned in Chapter 3 and by manually measuring simultaneously. 

We construct a basic mapping table for the fisheye camera first. We affix the 

camera at the height of 20 cm from the calibration board as shown in Figure 6.1. The 

real-world width between every two consecutive intersection points on the board we 

used is 1cm obtained by manually measuring. Then we can calculate the image 

coordinates of the intersections of the lines in the image and construct a basic 

mapping table by the method proposed in Chapter 3. 

 

 

Figure 6.1 The camera is affixed at 20 cm from the calibration board. 

 

After the table is constructed, we affix the camera to the heights of 10 cm, 15 cm, 

30 cm, and 40 cm from the calibration board as shown in Figures 6.2, 6.3, 6.4, and 6.5, 

respectively. We can calculate the values Wreal of real-world points for every height by 

the equations derived in Chapter 3 and by manually measuring simultaneously. The 

results of calculation are shown in Table 6.1, and the average error rate is 2.52%. 
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Figure 6.2 The camera is affixed at 10 cm from the calibration board. 

 

 

Figure 6.3 The camera is affixed at 15 cm from the calibration board. 
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Figure 6.4 The camera is affixed at 30 cm from the calibration board. 

 

 

Figure 6.5 The camera is affixed at 40 cm from the calibration board. 
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Table 6.1 The results of calculating the value of Wreal by two ways. 

No. Heights (1)Calculated Wreal (2)Measured Wreal Error (
| (1) (2) |

(1)


%)  

1 5 0.26 0.25 3.85 

2 10 0.49 0.5 2.04 

3 15 0.73 0.75 2.74 

4 20 1 1 N/A 

5 25 1.24 1.25 0.81 

6 30 1.45 1.5 3.45 

7 35 1.77 1.75 1.13 

8 40 1.93 2 3.63 

6.2 Experimental Results of 

Calculating Positions of a Person 

The environment for this experiment is an open space area in our laboratory. 

Because of the property of imaging projection, after the region of a person is found in 

the image, the point which is in the region and is closest to the center of the image is 

the position of the person, as shown in Figure 6.6. We calculated several positions of a 

person by the method described in Chapter 5 and by manually measuring 

simultaneously. The positions are equally and randomly scattered in the region which 

is under surveillance in the laboratory as the red points shown in Figure 6.7, and the 

two images are taken by the two fisheye cameras affixed on the ceiling. 
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Figure 6.6 Finding the position of a person in the image. 

 

  

(a) (b) 

Figure 6.7 The experimental positions of the person. 

 

In Table 6.2, we show the global coordinates of the positions of the person which 

were obtained both by measuring manually and by calculation from the images, and 

the error rates of the positions so obtained. 

The average error rate of finding the position of a person is 1.26% which is small 

enough for the vehicle to follow the person successfully in real applications. 
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Table 6.2 Calculating errors of the position of a person. 

No. 

(1)Actual Position (2)Calculated Position 
Error (

| (1) (2) |

(1)


%) 

x y x y 

1 457.5 213.5 458 198 2.971 

2 47.6 7.4 45.9 7.4 0.035 

3 163.4 32.2 160.7 34.2 0.020 

4 457.5 305 439 289 4.364 

5 244 30.5 238.19 30.5 0.024 

6 457.5 396.5 442 387 2.973 

7 272.3 35.2 269.3 41.1 0.024 

8 610 213.5 596 204 2.475 

9 382.2 29.8 378.8 40.9 0.030 

10 610 305 595 291 2.932 

11 399 85.3 392.8 97.3 0.033 

12 610 396.5 591 383 3.161 

13 915 213.5 906 223 1.383 

14 304.5 115.5 299.2 124.2 0.031 

15 61 30.5 52.89 28.56 0.122 

16 305 30.5 303.48 30.58 0.005 

17 915 305 894 290 2.592 

18 122 30.5 113.62 28.68 0.068 

19 915 396.5 901 383 1.905 

20 183 30.5 174.53 30.5 0.046 

 

 A real example of following a specific person in our laboratory is shown below. 

In Figure 6.8(a), the vehicle patrolled in the laboratory. In Figure 6.8(b), a person 
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broke into the laboratory, and the vehicle stopped the patrolling task and started to 

follow the person. In Figures 6.8(c) through 6.8 (f), the vehicle followed the person 

continuously until the person left the environment. 

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 6.8 A real example of following the specific person. (a) The vehicle patrolled 

in the laboratory. (b) through (f) The vehicle followed the person 

continuously. 
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The images taken by the fisheye cameras on the ceiling is shown in Figure 6.9. 

The black squares are the regions we processed, and the white circles in the black 

squares are the positions of the person we calculated.  

 

  

(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 6.9 The images taken by the cameras on the ceiling, and the positions of the 

person are indicated. 
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6.3 Experimental Results of Distance 

of Deviations from Navigation Path 

Because the autonomous vehicle used in this study suffers from accumulation of 

mechanical errors, two top-view omni-cameras are utilized to locate and monitor the 

vehicles. In this experiment, the vehicle patrols in our laboratory continuously and the 

monitored points are selected by a user in the environment map, as shown in Figure 

6.10. 

 

 
Figure 6.10 The monitored points selected by a user. 

 

We record the length of every segment of the path in cm, and the total length of 

the navigation of the vehicle in meter in Table 6.3. In our experiments, when the 

vehicle navigated to the destinations of every segment of the path, the distance 

between the real position of the vehicle and the original destination of every segment 

of the path was calculated and recorded in the table, too. The error rates obtained by 

dividing the distance of the error by the length of the segment are also listed in the 

table. 

We also performed a double-check experiment. In the first time, the vehicle 
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position and direction were not corrected by any method, and the results are recorded 

in Table 6.3. In the second time, the data were corrected by the method described in 

Chapter 4, and the results are recorded in Table 6.4. 

 

Table 6.3 Records of the uncorrected mechanic errors in every segment of path 

No. 
(1) Length of 

Segment 

Length of Total 

Segments 

(2) Distance of 

Error 

Percentage of Error 

(
)1(

)2(
%) 

1 168 1.68 9 5.36 

2 288 4.56 11 3.82 

3 93 7.41 23 24.73 

4 190 9.31 18 9.47 

5 162 10.93 16 9.87 

6 62 13.15 32 51.61 

7 155 14.7 68 43.87 

8 125 15.95 57 45.6 

9 367 19.61 24 6.54 

10 306 26.73 81 26.47 

11 188 31.49 12 6.38 

12 192 33.41 38 19.79 

13 92 36.24 63 68.47 

14 162 37.86 63 38.88 

15 160 39.46 101 63.12 

16 57 41.58 99 173.68 
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Table 6.4 Records of the corrected mechanic errors in every segment of path. 

No. 
(1)Length of 

Segment 

Length of Total 

Segments 

(2)Distance of 

Error 

Percentage of Error 

(
)1(

)2(
%) 

1 131 1.31 9 6.87 

2 283 4.14 8 2.82 

3 97 7.05 5 5.15 

4 195 9.00 12 6.15 

5 158 10.58 7 4.43 

6 73 12.96 5 6.84 

7 160 14.56 8 5.00 

8 132 15.88 13 9.84 

9 380 19.68 31 8.15 

10 317 27.06 16 5.04 

11 185 31.99 5 2.70 

12 189 33.88 7 3.70 

13 91 36.73 7 7.69 

14 141 38.34 7 4.34 

15 145 39.99 5 3.03 

16 53 42.04 5 9.43 

17 128 43.32 15 11.71 

18 381 47.13 27 7.08 

19 316 54.48 10 3.16 

20 191 59.46 6 3.14 

 

As seen from the two tables, the average error rate of deviation is 37.35% 

without any correction, and is 5.81% with the correction of positions and directions 
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using the proposed technique. The average error rate with correction is much smaller 

than those without any correction. Besides, by the tables above we also can know that 

the mechanic errors of every segment of the path will not accumulate anymore, 

because we have eliminated the errors caused in every segment of the path using our 

method. 

6.4 Discussions 

The proposed system utilizes the vision-based autonomous vehicle to perform 

the security patrolling task. For this purpose, some monitored points were utilized to 

guide the vehicle. By the way, there are more applications of monitoring specific 

spots in indoor environments, such as providing various services at various 

application environments. Every monitored point can be regarded, for example, as a 

business service point in which there are some customers. If the environment is a 

restaurant, the apparatus of showing menus can be equipped on a vehicle, and then the 

vehicle can move to each service point along assigned optimal paths to ask what 

dishes or services are needed. If the environment is a company, the vehicles also can 

be utilized to deliver documents or messages in each service point.  

However, there are still some problems in the proposed system. If an object 

appears next to the vehicle suddenly, the top-view omni-cameras will not have the 

ability to identify the vehicle. Furthermore, when tracking a person in the 

environment, if another person walks close to the person who is tracked, we may not 

be able to calculate the right position of the person. To solve the problem, it might be 

necessary to add information of color and sample models of the vehicle and the 

person to this system. The problems are worth for future researches. 
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Chapter 7  

Conclusions and Suggestions for 

Future Works 

 

 

7.1 Conclusions 
 

In this study, we utilize a vision-based autonomous vehicle and omni-cameras 

affixed on the ceiling to perform indoor security surveillance. The indoor environment 

can be complicated with static and dynamic obstacles. We have proposed several 

techniques and designed some algorithms for indoor security surveillance, which are 

summarized in the following. 

(1) A height-adaptive space mapping method has been proposed, by which we can 

construct an adaptive mapping table for a camera irrespective of the height of the 

camera. By the mapping table, we can convert the coordinates of the points in the 

environment between the image coordinates and the global coordinates. Hence 

we can calculate the real-world position of a vehicle or a person. 

(2) An environment-information calculation method has been proposed, by which we 

can obtain all the ground regions in the environment, which form the 

environment map of the patrolling environment. By the constructed map, we can 

know the positions of all the obstacles. When a vehicle navigates, the patrolling 

path can be checked to see if there is any obstacle on it. If so, we can plan 

another path to avoid the obstacles also by use of the environment map. 

(3) A fast obstacle avoidance method has been proposed, by which a vehicle can 
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avoid static and dynamic obstacles in the environment. If there are some 

obstacles on the original path, several turning points are calculated by the 

method and form a new path for navigation. The new path is the shortest path 

with the least number of turning points. 

(4) A vehicle location and direction correction method has been proposed. Because 

the vehicles suffer from mechanic errors, we utilize the top-view omni-cameras 

to locate them in this study. By the odometer values of the vehicles, we can 

calculate the centroids of the vehicles in the image. After the centroids are 

transformed into the global space, the odometer values are corrected by the 

coordinates of the resulting points. Besides, the directional angles of the vehicles 

also must be corrected, in which two continuous correct position points are 

utilized to do the job. By the correction method, the position and the direction of 

the vehicle can be corrected automatically. Accordingly, the vehicle will not 

deviate from the planned path too far. 

(5) A method for handling the camera handoff problem has been proposed, by which 

a vehicle can navigate under several cameras to expend the range of surveillance. 

Besides, when tracking a person in the environment, because the person may 

move among the FOV’s of the cameras, the method is also applied to calculate 

the position of the person in the images. 

(6) A method for calculating the position of a person in omni-images based on the 

rotational invariance property has been proposed, by which we can calculate the 

position via the image taken by the fisheye camera on the ceiling. Besides, only 

the partial image has to be processed to calculate the exact position of the person 

to reduce the amount of calculation, decrease the probability of interference by 

other dynamic obstacles, and increase the preciseness of calculating the position 

of the target. 
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(7) A position prediction method for use in omni-images has been proposed. Because 

we only process the partial image to calculate the position of a person, the 

position of the person in the next segment of time should be predicted by the 

prediction method. Besides, because the fisheye cameras are highly distorted, the 

predicting position of the person is revised by the proposed method, too. 

The experimental results shown in the previous chapters have revealed the feasibility 

of the proposed system. 

7.2 Suggestions for Future Works 

The proposed strategies and methods, as mentioned previously, have been 

implemented on a vehicle system with multiple omni-cameras on the ceiling. 

According to this study, in the following we make several suggestions and point out 

some related interesting issues, which are worth further investigation in the future: 

(1) using a pen-tilt-zoom camera equipped on the vehicle to extract features of 

images to detect whether monitored objects still exist; 

(2) increase the ability to detect more dangerous conditions; 

(3) increase the ability of warning users immediately through cell phones or 

electronic mails; 

(4) increase the ability of voice control when users want to issue navigation orders to 

the vehicle; 

(5) increase the ability of constructing the adaptive mapping table automatically for 

the cameras whose FOV’s is not vertical to the ground; 

(6) increase the ability of tracking multiple people in the environment 

simultaneously; 
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(7) increase the ability of processing the fragmented images taken by the camera due 

to insufficient network bandwidths; 

(8) control the vehicle by the information gathered in the image space to reduce the 

errors of converting the coordinates of the vehicle or the person between the 

global coordinates and the image coordinates; 

(9) increase the ability of patrolling in a dark room via infrared-ray cameras; 

(10) increase the ability of handling more complicated situations of the handoff 

problem by using more information such as camera positions. 
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