

國 立 交 通 大 學

多媒體工程研究所

碩 士 論 文

基於柏林雜訊之可控制隨機性材質生成

Controllable stochastic texture synthesis based on Perlin Noise

研 究 生：鄭惟謙

指導教授：林文杰 教授

中 華 民 國 九 十 八 年 十一 月

基 於 柏 林 雜 訊 之 可 控 制 隨 機 性 材 質 生 成

Controllable stochastic texture synthesis based on Perlin Noise

研 究 生：鄭惟謙 Student：Wei-Chien Cheng

指導教授：林文杰 Advisor：Wen-Chieh Lin

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

November 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年十一月

i

基於柏林雜訊之可控制隨機性材質生成

研究生 : 鄭惟謙 指導教授 : 林文杰 博士

國立交通大學

資訊學院多媒體工程研究所

摘 要
柏林雜訊廣泛運用在產生自然現象，例如：雲，火焰，木紋和地形等應用。藉由

加入柏林雜訊增加擾動也可增添動畫的變化度。然而，過去較少的研究是針對控

制柏林雜訊。我們提出一個可以修改和控制柏林函數所生成的雜訊值，並且不會

破壞原有雜訊函數所擁有的統計上的特性。我們可以產生非常貼近使用者需求的

雜訊樣式並且保有原本雜訊函數該有的統計特性。我們將處理的問題運用多層式

最佳化方法，而分層的依據及最佳化順序是由低頻率雜訊到高頻率雜訊。我們的

方法可以輕易的達到整體性或是區域性的控制例如程序化材質樣式控制，並且我

們可以有效率的再產生相似雜訊樣式。

關鍵字: 柏林雜訊函數，程序化材質生成

ii

Controllable Stochastic Texture Synthesis based on Perlin Noise

Student: Wei-Chien Cheng Advisor: Dr. Wen-Chieh Lin

Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

ABSTRACT

Perlin noise is widely used to render natural phenomena such as cloud, fire,

woodgrain and terrain. It is also used to enrich the variety of animation by adding

disturbance to the motion of objects. However, there is less attention on controlling

Perlin noise in the past. We present a new approach to modify and control the noise

value generated by Perlin noise function without destroying the statistical properties

of the noise function. We can generate the controllable noise that closely matches a

user’s demand pattern while preserving the original statistical properties of noise. We

formulate our problem as a multi-level optimization problem in which the

optimization process is executed from low frequency level to high frequency level.

Our approach can easily achieve global and local control on texture pattern design and

can reproduce the same pattern efficiently.

Keyword: Perlin Noise, stochastic texture synthesis

iii

Acknowledgements

I would like to thank my advisor, Professor Wen-Chieh Lin for his guidance,

inspirations, useful ideas and encouragement. Thanks to my colleagues in our lab:

Kuei-Li Fang, Hsi-Chou Huang, Yi-Jheng Huang, Ting-Chieh Huang, Zhi-Cheng

Yan, . Hsuan-Ya Yu, Hong-Xuan Ji, Jau-An Yang, Tsung-Sheng Fu and Chan-Yu Lin

for their assistances and discussions. It is honor to work with all of them. Eventually,

I would like to thank my parents and my girlfriend for their love and support.

iv

Contents

Introduction .. 1

Related Work ... 5

2.1 Noise Functions ... 5

2.2 Noise Control ... 6

Approach .. 8

3.1 Overview .. 8

3.2 Perlin Noise Function .. 9

3.3 Goodness of Fit Test .. 13

3.3.1 Chi-Square goodness of fit test ... 13

3.3.2 Kolmogorov-Smirnov goodness of fit test .. 14

3.3.3 Comparisons of both tests ... 15

3.4 Noise Optimization Process ... 17

3.4.1 Objective Function .. 17

3.4.2 Multi-Level Optimization ... 18

3.5 Noise Reproduction ... 21

3.5.1 Sampling Optimal Gradient Vectors ... 23

3.5.2 Initial Clustering of Sampled Gradient Vectors.................................. 24

3.5.3 Modeling Gradient Vector Distribution .. 25

Results .. 28

4.1 Control of 2D Textures Synthesis .. 28

4.2 Statistical Analysis ... 33

4.3 Comparison of results under different parameters settings 36

4.3.1 Different Starting Frequencies .. 36

4.3.2 Different weightings of the control term and the KS term 37

4.4 Noise Reproduction ... 39

v

4.5 Terrain Generation ... 47

Conclusion and Future Work ... 51

Bibliography ... 54

vi

List of Figures

Figure 1.1: Procedure textures generated by Perlin noise function 2

Figure 1.2: Terrain editing by modifying the height at a specific location on (a)

original terrain (b) after editing [8] .. 3

Figure 3.1: System Overview .. 10

Figure 3.2: (a) Grid points with assigned gradient vectors. (b) Noise value is

interpolated from surrounding dot product value .. 11

Figure 3.3: Fractal sum image composed of different frequencies. 12

Figure 3.4: Noise appearance with uniform and non-uniform gradient vectors

distribution. .. 13

Figure 3.5: The KS test is based on the maximum distance between these two curves. .

 .. 15

Figure 3.6: Two situations with the same chi-square error. Each arrow represents a

gradient vector and the color distinguish different bins.(a) The gradient vectors in the

bin are uniformly distributed, (b) The gradient vectors in the bin are gathered with a

non-uniform distribution. ... 16

Figure 3.7: User control pattern. .. 18

Figure 3.8: (a) Low frequency noise controls the global shape of the noise appearance

and the (b) high frequency noise controls the detail. ... 19

Figure 3.9: Propagate the gradient from low-freq level to high-freq level as the initial

guess. .. 21

Figure 3.10: A sketch of the noise reproducing procedure. ... 22

Figure 3.11: Merge the NQ input data ... 25

Figure 4.1: Thee Cloud textures generated with different user control patterns. 29

Figure 4.2: Three Marble textures generated with different control patterns. 30

Figure 4.3: Three Erosion textures generated with different control patterns. 31

vii

Figure 4.4: Three Fire textures generated with different control patterns. 32

Figure 4.5: Comparison of the Chi-square test and KS test. .. 34

Figure 4.6: Comparison of the Chi-square test and KS test. .. 35

Figure 4.7: Stochastic textures of different starting frequency of fractal sum: (a)

𝑓1 = 2 (b) 𝑓1 = 4 (c) 𝑓1 = 6 (d) 𝑓1 = 8.. 37

Figure 4.8: Stochastic textures of different control weight (a) 𝑤1 = 0, 𝑤2 = 1 (b)

𝑤1 = 0.1, 𝑤2 = 0.9 (c) 𝑤1 = 0.01, 𝑤2 = 0.99 (d) 𝑤1 = 0.001, 𝑤2 = 0.999 (e)

𝑤1 = 0.0001, 𝑤2 = 0.9999 (f) 𝑤1 = 0.00001, 𝑤2 = 0.99999 38

Figure 4.9: The reproduced erosion texture and the original texture by optimization.

List the KS error and the control term error in the right column. 40

Figure 4.10: CDF comparison between Original and Reproduced Noises, plot the 41

Figure 4.11: The reproduced marble texture and the original texture by optimization.

List the KS error and the control term error in the right column. 42

Figure 4.12: CDF comparison between Original and Reproduced Noises, plot the

curves together and the curve is approximated to the original CDF. 43

Figure 4.13: The reproduced cloud texture and the original texture by optimization.

List the KS error and the control term error in the right column. 44

Figure 4.14: CDF comparison between Original and Reproduced Noises, plot the 45

Figure 4.15: Terrain height map generated by user-specified flower pattern. 48

Figure 4.16: Terrain height map generated by user-specified “X” pattern. 49

Figure 4.17: Terrain height map generated by user-specified star pattern. 50

Figure 4.18: Stochastic texture synthesis applied in 3D application. 52

Figure 4.19: Spherical Coordinate ... 53

viii

List of Tables

Pseudo code 3.1: The algorithm of multi-level optimization 20

Pseudo code 3.2: Noise Reproducing Procedure .. 27

Table 4.1: The parameters used in GMM fitting for erosion texture 41

Table 4.2: The parameters used in GMM fitting for marble texture 43

Table 4.3: The parameters used in GMM fitting for cloud texture 45

Table 4.4: List the 𝐸𝐾.𝑆 and 𝐸𝐶𝑜𝑛 errors with different control weights 39

file:///C:\Documents%20and%20Settings\QQMAX\�ୱ\�פ��Z-�G����.docx%23_Toc2
file:///C:\Documents%20and%20Settings\QQMAX\�ୱ\�פ��Z-�G����.docx%23_Toc20

1

Chapter 1

Introduction

Noise functions are commonly used in computer graphics. It is used to create

complex natural phenomenon and generate procedural texture as shown in Figure 1.1.

Acquiring a noisy appearance by simply sampling a random number generator for

every point would not be appropriate, since the appearance is too random. Instead, we

would like the noise to be smoother and without losing the random property. The

noise function introduced by Ken Perlin [1,2] is a well-established method for random

number generator. There are several functions to generate random numbers. However,

the problem is that those functions are not continuous at all. The Perlin noise is a

well-known generator which gives random numbers that are almost continuous,

furthermore, it is not only used as a primitive operation to create procedural texture

and shading but also as an approach to create natural and realistic animation by

adding some random disturbance to a motion. Unlike white noise which is composed

of unconstrained random number, Perlin constructs noise from different bands and

each band is limited to a range of frequencies. By summing up different noise bands

weighted by amplitude, we can produce a variety of pattern such as wood, marble,

cloud etc [4] (Fig.1.1) and provide more natural looking. Perlin noise function is

2

simple, efficient and provides adequate spectral control, so it is still the most popular

approach in computer graphics. The ideal noise function should have following

properties: band-limited, stationary, isotropic, reproducible, and not periodic. These

properties have motivated researchers on improving the noise quality by developing

more precise random number table to reduce the bias and band-limited.

(a) Cloud (b)Woodgrain

(c) Marble (d) Fire

(e) Erosion (f) Woodring

Figure 1.1: Procedure textures generated by Perlin noise function

3

Although, computer graphics researchers have proposed various applications

by composing multiple noises to describe a complex pattern or natural phenomenon,

there is less attention on controlling the noise functions. This is because modifying on

the noise value arbitrarily will destroy the ideal properties of the noise function. Some

applications, such as procedural texture synthesis and terrain synthesis need to specify

noise values to generate a pattern that meets the user’s demands. Figure 1.2 shows an

example of terrain editing in which the noise values are used as a map of height filed

and we can assign the noise value in some positions of this map to generate the

demanded terrain.

(a) (b)

Figure 1.2: Terrain editing by modifying the height at a specific location on (a)

original terrain (b) after editing [8]

In this thesis, we propose an approach, targeted at interactive application, to

generate controllable noise that closely matches a user’s demand value without losing

its original properties through an optimization process. Furthermore, we can make the

controllable noise function reproducible without re-running lengthy optimization by

sampling the distribution of the random number tables that fulfill the user-specified

pattern and statistical properties. The contributions of this thesis are:

 Proposing an approach that can generate a user-demanded noise pattern

through an optimization process while preserving the statistical properties of

the random number table.

4

 Developing a multi-level optimization algorithm that can effectively reduce

the computational time by propagating the optimizing values from lower

levels to higher levels.

 Reproducing the same noise patterns without re-running the computationally

expensive optimization process.

The rest of the thesis is organized as follows: Chapter 2 reviews previous work: on

noise functions and related work on controlling noise generation. Chapter 3 briefly

introduces the background of Perlin noise function and describes our approach to

generate a controllable and reproducible noise function. Chapter 4 shows our

experimental results. Finally, conclusion and future work are discussed in Chapter 5.

5

Chapter 2

Related Work

In this chapter, we give a brief introduction about Perlin noise and related

applications of noise function researches in section 2.1 and review some methods of

controlling noise in section 2.2.

2.1 Noise Functions

Perlin [1,2] introduced the noise function that can be used to generate procedural

textures [4,5,6] such as cloud, marble, fire, woodgrain and etc. Besides, it can be used

to disturb the movement of an object to make animated motions look more natural

[10]. Perlin and Neyret [15] suggested a method to carry out swirling and flowing

time varying texture by rotating the gradient and making pseudo-advection by

sampling the noise with an offset. With programmable graphics hardware, Perlin

noise has been implemented on GPU shader [3] who developed a general purpose

multipass pixel shader to generate the Perlin noise function. Lewis [11] proposed

another approach to generate natural pattern based on Wienner interpolation. His

approach can generate noise with arbitrary energy spectrum, but his method is more

complicated than Perlin’s method. Cook and DeRose [13] pointed out that Lewis’

6

approach is insufficient to solve the loss-of-detail and aliasing problem. They propose

the wavelet analysis to construct noise bands for anti-aliasing and achieve

band-limited by eliminating unnecessary low frequencies. Goldberg et al. [14]

introduced a method that provides high quality anisotropic filter for noise textures.

They generated noise directly on frequency domain partitioned into oriented subbands

and approximated noise with desired spectrum. Perlin [4] introduced an improved

algorithm that solved two problems in the original Perlin noise function [1,2]: One is

second order interpolation discontinuity and the other is non-optimal gradient

distribution which might cause directional bias. He proposed a new interpolation that

gives c2 continuity. To prevent the gradient distributed non-uniformly and speed up

the computation, Perlin suggested a new gradient table containing only 16 vectors.

However, the 16 gradient vectors are fixed and insufficient to satisfy the

user-demanded noise value.

2.2 Noise Control

There have been few approaches dealing with the controllability of noise

functions. Lewis [12] proposed the stochastic subdivision construction which provides

control of the autocorrelation and spectral properties of the synthesized random

functions. The stochastic techniques can model a variety of natural and complex

phenomenon. Ebert et al. [4] introduced different types of noise function

implementation. Yoon et al. [8] proposed a method to control Perlin noise by

modifying the pseudo-random gradient table for satisfying users’ demand. They use

the Chi-Square test to preserve the uniform distribution of the random number table

while modifying the element of the table. However, they only considered the

composition of the modified noise value as their optimized variables; their approach

can just achieve local control. Later, Yoon et al. [25] proposed a method that can

extract patterns from existing objects by non-uniform noise functions and use it to

generate procedural textures. Yoon et al. [9] integrated other statistical tools to

measure the stability of a random number table during an optimization process to

meet the user specified pattern. Their method can maintain the property of the noise

7

function including uniform distributed, non-periodic and band-limited. They also

introduced a stochastic tiling approach using Wang tiles [16] to accelerate the

generation of the random number table. These two approaches proposed by Yoon et al.

[8,9] above cannot achieve reproducibility because they need to run the optimization

procedure repeatedly to generate the same noise pattern. It is time-consuming.

Therefore, we proposed an approach to generate the similar noise pattern in real-time

in this thesis.

8

Chapter 3

Approach

This chapter describes our algorithm for generating user-defined noise and

reproducing the controlled noise pattern without re-optimization. First, we give an

overview of our approach in section 3.1. Second, we describe the background of

Perlin noise function, including the composition of Perlin noise function and rewriting

the noise function into a simpler form for control. Finally, we describe the details of

our algorithm, including the goodness of test for maintaining the uniform distribution

of the gradient vectors (section 3.2), the optimization process (section 3.3) and the

noise reproducing approach (section 3.4).

3.1 Overview

 The goal of our approach is to control the generation of the noise value as

much similar as user-defined pattern; however, modifying the components of the

noise composition arbitrarily might violate required statistical property of Perlin noise.

To achieve our goal, we develop a multi-level optimization process to obtain noise

which does not only preserve statistical properties but also closely match

user-specified noise patterns.

9

Figure 3.1 shows an overview of our approach, which can be divided into two

stages: the preprocessing stage and the noise reproducing stage. In the preprocessing

stage, the input of our system is a user-specified pattern image. Our system extracts

the user controls and uses them as the initial guess of the optimization solver. Then,

the optimization process will keep the user-specified noise with the statistical

properties. Since the fractal sum of noise is composed of low to high frequency noise,

the gradient vectors are shared by low to high frequency noise. We applied a

hierarchical framework of optimization to reduce the computational time. We classify

the gradient vector in accordance with which belongs to low frequency or high

frequency noise for our optimizing order. Once we get the optimized gradient vectors

(the component of the noise composition), we estimate the gradient vector distribution

so that we can resample the gradient vectors from the estimated distribution model

without re-running optimization. We apply the hierarchical clustering algorithm that

clusters the optimized solutions to get an initial guess of the number of component in

the Gaussian mixture model. We iteratively use Gaussian mixture model to fit our

solution set until we get the appropriate number of component in order to reproduce

the same pattern of noise. In the next stage, we can real-time reproduce the similar

pattern noise without losing the statistical properties.

3.2 Perlin Noise Function

 As our method is based on Perlin noise function[1, 2], we introduce the

background of Perlin noise function and derive the noise function into a more definite

form for our optimization problem.

 Perlin noise function is known as lattice noise. This function uses a hypercubic

lattice on which a gradient vector is assigned at each grid point (see Figure. 3.2(a)).

The noise value between grid points is obtained by interpolating the noise values at

the surrounding grid points (Figure 3.2(b)).We store the gradient vectors in a gradient

table G, and a permutation table P for hashing indices. The number of lattice points

for each noise value is determined by the dimension of noise function, for example,

2D noise requires 22 gradient vectors and 3D noise requires 23 gradient vectors so

10

that N-dimensional noise requires 2N gradient vectors to compute a noise value. We

summarize the noise generating operation below:

Figure 3.1: System Overview

Step 1: Precompute the unit length gradient vectors which store in the G table with

size M and precompute P table of size M called permutation table which stores the

integer random number from 0 to M-1.

Step 2: Acquire 2N sets of grid point coordinates. In 2D case for instance, we obtain

Multi-Level Optimization Process

User-defined

Pattern Input

 Initial Guess

(Pseudo-Random Table)

Minimize

KS test &Control term

Generating similar

noise distribution

without re-optimizing

optimization

Collect the solution clusters

& Modeling with GMMs

GMMs parameters

11

22 integer points 𝑣1 = 𝑥 , 𝑦 , 𝑣2 = 𝑥 + 1, 𝑦 , 𝑣3 = 𝑥 , 𝑦 + 1 , 𝑣4 =

 𝑥 + 1, 𝑦 + 1 (see Fig 3.2). The four integer grid points form an unit quadrangle

surrounded the input point (𝑥,𝑦). Hence, we acquire four unit gradient vectors from

the G table hashing by the indices (𝑥 , 𝑦) through the P table 𝑔 1 = 𝐺[𝑃 𝑃 𝑥 +

 𝑦] (see Fig 3.2(b)) and the other three gradient vectors 𝑔 2, 𝑔 3, 𝑔 4 may obtain as

the same operation.

(a) (b)

Figure 3.2: (a) Grid points with assigned gradient vectors. (b) Noise value is

interpolated from surrounding dot product value

Step 3: In 2D case, the noise value is interpolated by the four dot products (see Fig

3.2(b)). The dot product is operated as 𝑔 1 ∙ 𝑥, 𝑦 − 𝑣1 and the other three grid

noise values will be obtained. We used the improved ease curve 𝑤 𝑡 = 6 𝑡 5 −

15 𝑡 4 + 10 𝑡 3 [7] instead of the original Perlin’s method to compute the weight. In

the next section, we will formulate the above concept and derive the noise function to

deal with our optimization problem.

 As show in Figure 3.2(b), noise value is the combination of its surrounded dot

product value at grid point. In 2D case, we can easily formulate as below:

𝑁𝑜𝑖𝑠𝑒 𝑥, 𝑦 = 𝑤(𝑥 − 𝑖)𝑤(𝑦 − 𝑗)(Δ 𝑖𝑗 ∙ 𝐺 𝑖𝑗)

 𝑦 +1

𝑗= 𝑦

 𝑥 +1

𝑖= 𝑥

(3.1)

12

We define Δ 𝑖𝑗 = (𝑢, 𝑣) = (𝑥 − 𝑖, 𝑦 − 𝑗) where 𝑤(𝑥 − 𝑖)𝑤(𝑦 − 𝑗)(Δ 𝑖𝑗 ∙ 𝐺 𝑖𝑗) can be

represented as 𝑤(𝑢)𝑤(𝑣)(Δ 𝑖𝑗 ∙ 𝐺 𝑖𝑗), G 𝑖𝑗 denotes the gradient vector hashing by the

indices 𝑖, 𝑗 and the weighting function 𝑤 𝑡 = 1 − (6 𝑡 5 − 15 𝑡 4 + 10 𝑡 3). For

convenience, we merge the 𝑤(𝑢)𝑤(𝑣)(Δ 𝑖𝑗) into a vector representation 𝑊 𝑖,𝑗 , so the

noise function can represent as a combination of four dot products below:

𝑁𝑜𝑖𝑠𝑒 𝑥, 𝑦 = 𝑊 𝑖,𝑗 ∙ 𝐺 𝑖,𝑗 + 𝑊 𝑖,𝑗+1 ∙ 𝐺 𝑖,𝑗+1 + 𝑊 𝑖+1,𝑗 ∙ 𝐺 𝑖+1,𝑗 + 𝑊 𝑖+1,𝑗+1 ∙ 𝐺 𝑖+1,𝑗+1

To express the natural-looking phenomenon, we need the noise function to be

smooth and random. Therefore, we sum up several frequencies of noise called fractal

sum. It is composed of low frequency noise with higher amplitude and high frequency

with lower amplitude. Figure 3.3 shows the fractal sum noise appearance. The fractal

sum is defined as follows:

where 𝐹 is called "octave",𝑓𝑖 is the weight of frequency and 𝑎𝑖 is the weight of

amplitude. The coefficients own the following properties. 𝑓𝑖 < 𝑓𝑖+1 and 𝑎𝑖 < 𝑎𝑖+1

and usually two times larger than the previous one.

Figure 3.3: Fractal sum image composed of different frequencies.

(3.2)

(3.3) 𝐹𝑠𝑢𝑚 =
𝑁𝑜𝑖𝑠𝑒(𝑓𝑖𝑥, 𝑓𝑖𝑦))

𝑎𝑖

𝐹

𝑖=1

13

3.3 Goodness of Fit Test

As the above section described, the N dimension noise value is composed of

N2 dot products. Since our goal is to modify the gradient vectors in the G table to

match the user-specified noise value, we need to use some statistical tools to maintain

the gradient vectors distribution uniformly. Figure 3.4 shows the comparison between

the non-uniform and the uniform gradient distribution. As shown, bias distribution

might cause the artifacts with the noise appearance. Consequently, we should exploit

the statistical tool to assess the uniformity of the gradient distribution.

 The goodness of fit of a statistical model is used to describe how well the

observed data fits the expected distribution. We adopt goodness of fit test to compare

the observed data with the desired distribution. Instead of using Chi-Square goodness

of test [8, 24], we adopt Kolmogorov-Smirnov goodness of fit proposed by Massey

[17]. We will introduce both methods in section and explain the reason why we

replace Chi-Square test with Kolmogorov-Smirnov test (KS test) in section 3.3.3.

(a)Uniform distribution (b) Non-uniform distribution

Figure 3.4: Noise appearance with uniform and non-uniform gradient vectors

distribution.

3.3.1 Chi-Square goodness of fit test

 Chi-Square goodness of fit statistical test is used to measure the difference of

http://en.wikipedia.org/wiki/Statistical_model

14

two distributions based on their sample data and determine if the sample data comes

from a specified distribution. Let 𝑋 = {𝑋1, 𝑋2, 𝑋3 …… , 𝑋𝑀 } be the observed 𝑀 data.

To compute the distribution from observed data, we divide the set 𝑋 into 𝐾 bins and

define 𝑂𝑘 as the set of observed data in the 𝑘𝑡𝑕 bin. Let 𝐸 be the specified

distribution and 𝐸𝑘 be the observed distribution for the 𝑘𝑡𝑕 bin. Thus, the

Chi-square test measuring the similarity between the set 𝑂 and set 𝐸 is defined as

follows:

𝐶𝑆(𝑋, 𝐸) = (𝑂𝑘 − 𝐸𝑘)
2/ 𝐸𝑘

𝐾

𝑘=1

where 𝑂𝑘 is the number of observed data in the 𝑘𝑡𝑕 bin and 𝐸𝑘 denotes the

number of samples in the 𝑘𝑡𝑕 bin. For Perlin noise, we need the direction of gradient

vectors to be uniformly distributed. Thus, we divide the data 𝑋 into 𝐾 bins with the

same 𝐸𝑘 which equals to 𝑀/𝐾 . 𝐶𝑆 is the difference between the observed

distribution and specified distribution. Hence, the smaller a 𝐶𝑆 value is, the better the

distribution of observed data matches the specified distribution. But how to decide the

value K and there are some limitations and disadvantages on Chi-Square test, we

will explain in section 3.3.3 later.

3.3.2 Kolmogorov-Smirnov goodness of fit test

The Kolmogorov-Smirnov goodness of fit test (KS test) is used to determine

whether a sample comes from a population with a specific distribution. The KS test

quantifies the distance between the empirical distribution function of the sample and

the empirical distribution function of the specified distribution. It is formed as a

minimum distance estimation as below:

𝐾𝑆 𝑋, 𝐸 = 𝑀𝑎𝑥 𝐹𝑋 𝑥 − 𝐹𝐸(𝑥)

(3.4)

(3.5)

http://en.wikipedia.org/wiki/Metric_(mathematics)
http://en.wikipedia.org/wiki/Empirical_distribution_function
http://en.wikipedia.org/wiki/Empirical_distribution_function

15

where 𝐹𝑋 is the empirical distribution function which is a cumulative probability

distribution function for M independent and identically distributed observations 𝑋𝑖

defined as below:

𝐹𝑀 𝑥 =
1

𝑀
 𝐼(𝑋𝑖 ≤ 𝑥)

𝑀

𝑖=1

where 𝐼(𝑋𝑖 ≤ 𝑥) is the indicator function which equals to 1 if 𝑋𝑖 ≤ 𝑥 and equals to

0 otherwise. Figure 3.5 indicates the concept of the KS test. If the observed

distribution matches the specified distribution, the curve of the cumulative distribution

function (CDF) might be similar. Thus, the maximum distance between the two

curves must be very small. In the uniform distribution case, the curve of the CDF is

approximated to a straight line so our observed CDF must be yield to be a straight line

in order to satisfy the uniform property.

Figure 3.5: The KS test is based on the maximum distance between these two curves.

3.3.3 Comparisons of both tests

(3.6)

http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Indicator_function

16

 In this section, we explain why we adopt KS test instead of Chi-Square test.

There are some drawbacks in those two tests. KS test is confined to one- and two-

sample condition, whereas Chi-Square test can be extended to k sample condition. In

our case, we just compare two distributions so the limitation of the KS test is not an

issue. Besides, the Chi-square test requires the expected number in each bin

sufficiently large. It is often accepted that each bin have an expected number greater

or equal to 5 [19, 20, 21]. KS test does not have the restriction of expected number

associated with Chi-Square test. Although the Chi-Square error might be small, it

cannot ensure that the distribution of the gradient vectors is truly uniform. Figure 3.6

shows a situation about the drawbacks of Chi-Square. Despite the Chi-Square error is

small, it might happen the situation as shown in Figure 3.6(b). The gradient vectors

aggregating in the same bin might cause the non-uniform distribution but the

Chi-square test misjudges this case as the same condition as Figure 3.6(a). As

described by Mitchell [22] who compared the two tests, KS test is considerable

advantage when the samples are scattered throughout a relatively large discrete

categories. We experiment the both test and plot their CDF curve to observe the

distribution in chapter 4. As the result, we apply the KS test to measure the uniformity

of the distribution of gradient vectors.

(a) (b)

Figure 3.6: Two situations with the same chi-square error. Each arrow represents a

gradient vector and the color distinguish different bins.(a) The gradient vectors in the

bin are uniformly distributed, (b) The gradient vectors in the bin are gathered with a

non-uniform distribution.

17

3.4 Noise Optimization Process

 In the previous section, we described the uniform property of the noise

generation. We apply the property as a part of terms in the optimization process. We

will describe how we set the objective function for the optimization (section 3.4.1)

and extend the optimization to the multi-level hierarchical framework (section 3.4.2).

3.4.1 Objective Function

We applying Kolmogorov-Smirnov goodness of fit test introduced in the

section 3.3.2 as a mechanism for preserving the gradient vectors to be uniformly

distributed when modifying the gradient vectors. It is a part of terms in our objective

function named 𝐸𝐾.𝑆 defined below:

𝐸𝐾.𝑆 = 𝐾𝑆 𝑋𝑖𝑑𝑒𝑎𝑙 , 𝑋𝑜𝑏𝑠 = 𝑀𝑎𝑥 𝐹𝑖𝑑𝑒𝑎𝑙 𝑥 − 𝐹𝑜𝑏𝑠 (𝑥)

where 𝑋𝑖𝑑𝑒𝑎𝑙 is the ideal uniform sample set used to compare with the observed 𝑋𝑜𝑏𝑠

samples. In 2D case, we collect the set 𝑋𝑖𝑑𝑒𝑎𝑙 from the uniform samples in 𝑅2. Since

the length of all gradient vectors is 1, we can represent a vector X = (𝑥, 𝑦) by

(𝑐𝑜𝑠𝜃, s𝑖𝑛𝜃). This reduces the dimension of variables in the optimization process.

 In order to control the noise value, we require applying some controls on the

gradient vectors. We simply extract the control information from the user input

pattern. As shown in Figure 3.7, black color and red color denote noise value of 0 and

1, respectively. In this thesis, we focus on the 2D case. Thus, the noise function can

represent as Equation 3.2. Let 𝑉𝑖= 𝑁𝑜𝑖𝑠𝑒 𝑥𝑖 , 𝑦𝑖 and 𝐷𝑖 be the noise value to be

optimized and user-specified noise value, respectively. The user-control term in our

objective function is defined as follows.

𝐸𝐶𝑜𝑛 = (𝑉𝑖 − 𝐷𝑖)
2

𝐼

𝑖=0

(3.7)

(3.8)

18

Figure 3.7: User control pattern.

where 𝐼 denotes the total number of user-specified noise values. Therefore, we can

define our objective function 𝐸 as below:

𝐸 = 𝑤1𝐸𝐾.𝑆 + 𝑤2𝐸𝐶𝑜𝑛

where 𝑤1 and 𝑤2 are the control weight of these two terms to achieve not only the

gradient vectors uniformly distributed but user-demanded control. As our experiment

result, we set the 𝑤1 as 0.995 and 𝑤2 as 0.005 as the weight value. The Simulated

Annealing algorithm that is a method for solving unconstrained optimization

problems and it is often used when the search space is discrete. Hence, we apply this

algorithm to solve our optimization problem.

3.4.2 Multi-Level Optimization

 As described in section 3.2, fractal sum which used to express the

natural-looking phenomenon is composed of several frequencies of noise from low

frequency noise with higher amplitude and high frequency with lower amplitude.

However, we can divide the optimization process into several stages based on this

property. As shown in Figure 3.8, low frequency noise controls the global shape of the

fractal noise appearance. The low frequency noise uses the fewer gradient vectors due

to the grid points contains in low frequency noise are fewer than those in high

frequency noise. In low frequency noise, the range of hashing indices (𝑓𝑙𝑥 , 𝑓𝑙𝑦) is

(3.9)

19

(a) (b)

 (c) (d)

Figure 3.8: (a) Low frequency noise controls the global shape of the noise appearance

and the (b) high frequency noise controls the detail.

two times smaller than that in high frequency. That is, in low frequency noise the

number of the grid points hashing by (𝑓𝑙𝑥 , 𝑓𝑙𝑦) is fewer than in high frequency

noise. We simply classify the gradient vectors in accordance with which are shared by

low frequency noise and the rest gradient vectors are classified into high frequency

noise for our optimizing order. Besides, the gradient vectors corresponding to lower

frequency noise will propagate the optimized gradient vectors to the higher frequency

level as its initial guess. In this paper, we set the octaves 𝐹 = 4, the start amplitude

𝑎1 = 4 , 𝑓1 = 8 , 𝑓𝑙+1 = 2𝑓𝑙 and 𝑎𝑙+1 = 2𝑎𝑙 . Therefore, the fractal sum noise

function can be expanded as follow:

𝐹𝑠𝑢𝑚 =
𝑁𝑜𝑖𝑠𝑒(𝑓𝑙𝑥, 𝑓𝑙𝑦)

𝑎𝑖

4

𝑙=1

where −1 ≤ 𝑁𝑜𝑖𝑠𝑒(𝑥, 𝑦) ≤ 1 and 𝑙 denotes the level in optimization. Apparently,

we can observe that the lowest frequency affect the noise value the most due to the

largest weight of this component. Our strategy is that satisfying the lowest frequency

(3.10)

20

noise value which is prior to higher ones and propagate the gradient vectors to the

next higher noise function. Besides, the number of gradient vectors shared by lower

level is smaller than the higher one. Pseudo code 3.1 summarizes our hierarchy

framework.

Assume that the frequency in the higher level is two times larger than the

lower level, we list the gradient vectors shared by the two levels 𝑙 and 𝑙 + 1 as

𝑁𝑜𝑖𝑠𝑒 𝑓𝑙𝑥, 𝑓𝑙𝑦 → 𝐺[𝑃[𝑃 𝑓𝑙𝑥 + 𝑓𝑙𝑦]]

𝑁𝑜𝑖𝑠𝑒 𝑓𝑙+1𝑥, 𝑓𝑙+1𝑦) = 𝑁𝑜𝑖𝑠𝑒 2𝑓𝑙𝑥, 2𝑓𝑙𝑦) → 𝐺[𝑃[𝑃 2𝑓𝑙𝑥 + 2𝑓𝑙𝑦]]

we can derive the relation between the adjacent two levels and propagate the gradient

vectors as this rule:

𝐺 𝑃 𝑃 𝑓𝑙+1𝑥 + 𝑓𝑙+1𝑦 = 𝐺[𝑃[𝑃 (𝑓𝑙+1𝑥)/2 + (𝑓𝑙+1𝑦)/2]

Figure 3.9 shows the schematic diagram of the propagation concept. Since the fractal

noise value is cumulated from lower to higher frequency noise, satisfying the lower

Pseudo code 3.1: The algorithm of multi-level optimization

//step 1: Classify the gradient vectors according to frequency.

//step 2: Assign random value to the lowest level

for each gradient vector in lowest level{

 assign a random value as initial guess.

}

//step 3:Multi-level optimization process

for(l=0; 𝑙 < 𝐹 ; l++){

 optimize the gradient vectors of current level l.

 propagate the gradient to the next level i+1 as the initial guess.

}

(3.12)

(3.11)

(3.13)

21

level ensured that the error between 𝑉𝑖 − 𝐷𝑖 might be reduced immensely. Since we

propagate the gradient vectors to the higher level as its initial guess, the initial error

value is usually smaller than that of the random initial guess. The optimization

converges faster due to the more reasonable initial guess.

Figure 3.9: Propagate the gradient from low-freq level to high-freq level as the initial

guess.

 In each level, we simply modified the KS term and user-control term as below:

𝐸𝑙
𝐾.𝑆 = 𝐾𝑆 𝑋𝑖𝑑𝑒𝑎𝑙 , 𝑋𝑙

𝑜𝑏𝑠

𝐸𝑙
𝐶𝑜𝑛 = (𝑉𝑙

𝑖 − 𝐷𝑖)
2

𝐼

𝑖=0

where 𝑋𝑜𝑏𝑠 𝑙
 is the gradient vectors in the 𝑙 level and 𝑉𝑙𝑖

 is the noise value we want

to optimize in the 𝑙𝑡𝑕 level.

3.5 Noise Reproduction

 In this section, we proposed a simple approach to make the noise reproducible.

The reproduced noise should possess the same properties as the original noise that the

gradient vectors distribute uniformly and the user control pattern should be closely

matched. Figure 3.10 illustrates basic idea of our framework.

(3.14)

(3.15)

22

Hierarchical Clustering

Gradient Vector Table

Iteratively GMMs Fitting

GMMs
Parameters

Sampled gradient
vectors

Initial guess of the number of
components in GMMs

Sampling Optimal Gradient
Vectors

Randomly Swap

High Frequency partLow Frequency part

Merge into gradient vector table

Sampling from GMMs

Reproduced Noise

Figure 3.10: A sketch of the noise reproducing procedure.

23

3.5.1 Sampling Optimal Gradient Vectors

As shown in Figure 3.9, low frequency noise controls the global pattern of the

fractal noise and the high frequency noise controls the detail of the fractal noise.

Based on this property, we separate the gradient vectors into two parts. We try to

sample the gradient vectors belonging to high frequency noise the same distribution as

the original noise or simply swap those gradient vectors randomly. We focus on

creating varieties of low frequency noises which can affect the global appearance

immensely. Since we cannot destroy the original noise properties included both

uniformity and user control pattern, we apply an optimization process to hold those

properties. In order to preserve the gradient vector to be uniformly distributed, we

define 𝐸𝑢 below:

𝐸𝑢 = 𝐾𝑆 𝑋𝑖𝑑𝑒𝑎𝑙 , {𝑋𝑜𝑝𝑡𝑕𝑖𝑔𝑕 , 𝑋𝑟𝑒𝑝𝑙𝑜𝑤 }

where 𝑋𝑖𝑑𝑒𝑎𝑙 is the ideal uniform sample set, 𝑋𝑜𝑝𝑡 𝑕𝑖𝑔𝑕 denotes the optimized

gradient vectors belonging to high frequency noise. 𝑋𝑜𝑝𝑡𝑕𝑖𝑔𝑕 is extracted from the

noise we obtained through multi level optimization process. 𝑋𝑟𝑒𝑝𝑙𝑜𝑤 are the gradient

vectors we want to obtain. In order to preserve the user-specified noise value, we

define 𝐸𝑐 below:

𝐸𝐶𝑜𝑛 = (𝑉𝑟𝑒𝑝 𝑖
− 𝐷𝑖)

2

𝐼

𝑖=0

where 𝐼 denotes the total number of user-specified pattern information, 𝑉𝑟𝑒𝑝 𝑖
 is the

𝑖𝑡𝑕 noise value we want to reproduce and 𝐷𝑖 is the 𝑖𝑡𝑕 user-demanded noise value.

Therefore, the objective function can define as below:

𝐸𝑅 = 𝑤1𝐸𝑢 + 𝑤2𝐸𝐶𝑜𝑛

(3.16)

(3.17)

(3.18)

24

where 𝑤1 and 𝑤2 are the control weight of these two terms. We set the 𝑤1 as

0.955 and 𝑤2 as 0.005 in our experiments. We maintain the gradient of high

frequency noise distribution and re-optimize the low frequency part based on two

reasons. One is for time-consuming consideration that the variables within

optimization process are less than the high frequency part. The other is that the value

of high frequency noise is much less than the low frequency part. Therefore, we spend

much more effort on obtaining varieties of the low frequency noise appearances and

model those information for our purpose.

3.5.2 Initial Clustering of Sampled Gradient Vectors

We iteratively execute the above optimization process with random initial

conditions. As each execution, we collect the 𝑁 solutions before the end of the

optimization as the set 𝑃𝑖 in 𝑖𝑡𝑕 iteration. In this step, we set the value 𝑁 as a

constant value 100. Besides, we assure that the differences between each error value

corresponding to the element in 𝑃𝑖 and the error of the optimal solution are less than

an error bound ℇ . We collect the solutions 𝑃 into a solution pool 𝑆𝑝 where

𝑆𝑝 = {𝑃1, 𝑃2 , 𝑃3, 𝑃4, … . 𝑃𝑄}. If the number of element in 𝑆𝑝 equals to 𝑄, the process

stops. We set the total number of iterations 𝑄 = 100 to assure that we can collect as

many different solutions as possible. We apply the hierarchical clustering algorithm

which groups the data by establishing a clustering tree where clusters at one level are

grouped as clusters in the next level and the input data is all the elements in each 𝑃𝑖 .

The advantage of hierarchical clustering is that it can cluster the input data without

specifying how many clusters before executing this algorithm. However, we can

specify a cutoff value and the algorithm will stop when the hausdorff distance

between the two clusters exceeds the cutoff value. We describe how the algorithm

works below. We compute a distance matrix 𝐷 as follows containing the distances

which is taken pairwise from the elements. The distance metric is simply using

Euclidean distance. Since the distance metric is a symmetric 𝑄 × 𝑄 matrix with

non-negative values, we just need to observe the upper triangle of the matrix. The

value of 𝐷(𝑖,𝑗) represents the distance between the cluster i and j. Through this value

25

𝐷(𝑖,𝑗), we can choose the closest sets and merge into a cluster as a node in our

hierarchical tree. We merge these newly formed clusters to the other cluster to create

bigger clusters until all the elements in the original data set are merged together in a

hierarchical tree. Here we use the cutoff value to determine how we stop the

clustering algorithm and separate into distinct clusters. Figure 3.11 illustrates how the

approach works. Once we stop from the clustering we will obtain 𝐾 distinct subtree.

Each root of the subtree contains the union of the acceptable solution sets from 𝑆𝑝 .

Generally, when finishing the above clustering approach, we can get 𝐾 disjoint

acceptable solution sets. The next section will describe how we use GMMs to fit the

data and achieve real-time reproducing.

P1 P2 P3 P4 P5 PNQ-1 PNQ

P1+P2

P3+P4

PNQ-1+PNQ

……

P1+P2+P3+P4 P5

Figure 3.11: Merge the NQ input data

3.5.3 Modeling Gradient Vector Distribution

After initial clustering, we can obtain 𝐾 disjoint acceptable solution clusters.

We model the solution pools by exploiting the parametric model in order to achieve

reproducing by sampling from this model. We apply Gaussian Mixture Models

(GMMs) to fit the whole data. Gaussian mixture models are often used for data

clustering which are formed by combining multivariate normal density components

and fit data by using expectation maximization (EM) algorithm to find the optimum

26

parameters for GMMs. Although using GMMs is a standard method, there is no

consensus on how to determine the number of mixture components. Therefore, we use

the value 𝐾 as the initial guess to determine how many components we use in

GMMs fitting. We use Akaike information criterion [23] (𝐴𝐼𝐶) as a metric to

determine the goodness between the fitting model and the input data. 𝐴𝐼𝐶 defined as

below:

−2𝐿 + 2𝑚

where 𝐿 is the maximum log-likelihood and m is the number of parameters in the

Gaussian mixture models. 𝐴𝐼𝐶 takes into account both the goodness of fit of an

estimated statistical model and the number of parameters in the statistical model. The

lower value of the 𝐴𝐼𝐶 indicates the more appropriate parameters in the GMMs

describing the input data. Our strategy is that running the GMMs fitting iteratively

and increasing the components until we find out the appropriate value of component.

We define 𝐴𝐼𝐶𝑖 as the 𝐴𝐼𝐶 value obtained at the 𝑖𝑡𝑕 iteration and 𝛿𝑖 = 𝐴𝐼𝐶𝑖 −

𝐴𝐼𝐶𝑖−1 and a threshold 𝑇. Initially, we use 𝐾 components to fit the data, and

compute 𝐴𝐼𝐶1. Then, we increase 𝐾 to 𝐾+1 and execute the GMM fitting to acquire

the 𝐴𝐼𝐶2. If 𝛿𝑖<𝑇 is satisfied, the GMM fitting will stop. Consequently, the new 𝐾

components of the GMMs are suitable for describing the whole input data. Pseudo

code 3.2 summarizes our method. Once we get the parameters of GMMs, we can

easily resample the gradient vectors of low frequency noise. By randomly swapping

the gradient vectors of the high frequency noise, we can simply make some

disturbance on the noise appearance since the swap operation will not affect the

distribution of gradient vectors. Combining the gradient vectors of high frequency

noise, we can easily achieve the goal of noise reproducing. In the next chapter, we

will compare the distribution and the difference between the original noise and

reproduced noise and show their corresponding texture pattern.

(3.19)

27

Pseudo code 3.2: Noise Reproducing Procedure

//Step1: Optimize the low-frequent gradients iteratively

for(i=0; i < n ; i++) {

random vectors as initial guess x0

𝑃𝑖 = Optimization(x0);

}

//Step 2: Cluster the solutions and get the cluster number.

 do{

for each two sets{

 if (hausdorff distance < cutoff value)

 Merge the two sets

}while(all the hausdorff distance for each two set > cutoff value)

𝐾 equals to the cluster number;

//Step3: GMMs fitting

LAST_AIC=0;

do{

AIC= GMMs_Fitting (𝐾 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠);

delta_AIC=AIC-last_AIC;

last_AIC= AIC;

Increase 𝐾;

} while(delta_AIC < threshold);

//Step4: Generate the similar noise by resampling the gradient

Resample the low frequency gradient vectors L from GMMs model.

For each gradient vectors of high frequency noise{

 temp=Random high-freq gradient index

 swap(H (i) , H (temp));

}

G_Table = L+H;

28

Chapter 4

Results

All experiments are performed on Intel core 2 duo CPU E6750 2.66GHz using

NVIDIA Geforce 8800 GTS graphics hardware. We only use one thread without

taking advantage of multi-core of the CPU.

4.1 Control of 2D Textures Synthesis

 We demonstrate our controllable noise pattern generation approach by

applying it to procedural texture synthesis, including cloud, marble, erosion and fire

textures. Figure 4.1-4.4 show our results. The left column shows the input pattern

from user, the middle column shows the controlled noise through our multi-level

optimization process and right column shows the corresponding procedural textures

with user control pattern.

29

Input Pattern: Controlled Noise Output Pattern

Input Pattern: Controlled Noise Output Pattern

Input Pattern: Controlled Noise Output Pattern

Figure 4.1: Thee Cloud textures generated with different user control patterns.

30

Input Pattern: Controlled Noise Output Pattern

Input Pattern: Controlled Noise Output Pattern

Input Pattern: Controlled Noise Output Pattern

Figure 4.2: Three Marble textures generated with different control patterns.

31

Input Pattern: Controlled Noise Output Pattern

Input Pattern: Controlled Noise Output Pattern

Input Pattern: Controlled noise Output Pattern

Figure 4.3: Three Erosion textures generated with different control patterns.

32

Input Pattern: Controlled Noise Output Pattern

Input Pattern: Controlled Noise Output Pattern

Input Pattern: Controlled Noise Output Pattern

Figure 4.4: Three Fire textures generated with different control patterns.

33

Figure 4.1-4.4 are created by our optimization process. All the output patterns use

alpha blending to mix two colors and take noise value as the alpha value. The marble

texture synthesis does not directly use the noise value but through a sine function.

Therefore, we modify the control term 𝐸𝐶𝑜𝑛 below:

𝐸𝐶𝑜𝑛 = (sin(𝑉𝑖) − 𝐷𝑖)
2

𝐼

𝑖=0

the erosion texture uses noise as its absolute value, so the 𝐸𝐶𝑜𝑛 is defined as below:

𝐸𝐶𝑜𝑛 = (𝑉𝑖 − 𝐷𝑖)
2

𝐼

𝑖=0

and the fire texture uses the summation of absolute noise value in all octaves, the

𝐸𝐶𝑜𝑛 is define as below:

𝐸𝐶𝑜𝑛 = (
 𝑁𝑜𝑖𝑠𝑒(𝑓𝑙𝑥, 𝑓𝑙𝑦))

𝑎𝑖

𝐹

𝑙=1

− 𝐷𝑖)
2

𝐼

𝑖=0

It is flexible for modifying the control term 𝐸𝐶𝑜𝑛 according to the type of texture that

user specified.

4.2 Statistical Analysis

 In this section, we compare our experimental results between the KS test and

the Chi-square test by plotting their probability distribution and cumulative

distribution function. We list the KS test error and the Chi-square error below. The

pink line represents the CDF of ideal distribution, the red line represents the gradient

vectors distribution through the optimization process with Chi-square test and the blue

line represents the gradient vectors distribution through the optimization process with

KS test. We also demonstrate histogram in both tests. We separate the 512 gradient

vectors into 500 bins and the expected number in each bin is set to 1.

(4.1)

(4.2)

(4.3)

34

Through Chi-square test Through KS test

Chi-square error:

383

Chi-square error:

508

KS error:

0.078539

KS error:

0.01588

Control term

error: 57.6788

Control term error:

57.3965

CDF of the gradient vectors

Histogram of the gradient vectors through Chi-square test

Histogram of the gradient vectors through KS test

Figure 4.5: Comparison of the Chi-square test and KS test.

35

Through Chi-square test Through KS test

Chi-square error:

356

Chi-square error:

472

KS error:

0.043876

KS error:

0.013935

Control term

error: 30.9799

Control term error:

30.8826

CDF of the gradient vectors

Histogram of the gradient vectors through Chi-square test

Histogram of the gradient vectors through KS test

Figure 4.6: Comparison of the Chi-square test and KS test.

36

In Figure 4.5, the control term error in both tests is very close by our

experiment. We can observe that the CDF curve of KS test is more approximate to the

ideal distribution. The CDF curve of Chi-Square test is prone to deviate from the ideal

curve. In our experiment, the Chi-square error of gradient vectors distribution by KS

test is bigger than by Chi-square test. We give one more example in Figure 4.6 with

another control pattern.

Figure 4.6 shows that the CDF curve optimized by KS test is more

approximated to the CDF curve of ideal distribution than by Chi-square test. However,

the control term errors are close in both tests. The Chi-square test confines the number

of element in each bin. Hence, the Chi-square error by Chi-square test is smaller than

by KS test in our experiment.

4.3 Comparison of results under different parameters settings

 We show the result with different start frequencies and varying the control

weight in the objective function.

4.3.1 Different Starting Frequencies

The Figure 4.7 (a) to (d) shows the different starting frequencies of the control

of fractal sum and their corresponding stochastic textures. We can observe that the

appearance of lower starting frequency is smoother than the higher starting

frequencies. This experiment demonstrates that we can even control the lower

frequency appearance.

37

(a) (b)

(c) (d)

Figure 4.7: Stochastic textures of different starting frequency of fractal sum: (a)

𝑓1 = 2 (b) 𝑓1 = 4 (c) 𝑓1 = 6 (d) 𝑓1 = 8

4.3.2 Different weightings of the control term and the KS term

 We demonstrate the result with different control weights of the objective

function 𝐸 = 𝑤1𝐸𝐾.𝑆 + 𝑤2𝐸𝐶𝑜𝑛 . In order to hold both terms balanced, we set the 𝑤1

and 𝑤2 to make the 𝐸𝐾.𝑆 and 𝐸𝐶𝑜𝑛 at the same order of magnitude. We set 𝑤1 as

0.995 and 𝑤2 as 0.005 since the 𝐸𝐶𝑜𝑛 is relatively large to 𝐸𝐾.𝑆. We adjust weight

by several sets of parameters. If we cannot make balance from 𝑤1𝐸𝐾.𝑆 and 𝑤2𝐸𝐶𝑜𝑛 ,

the error 𝐸 might be dominated by either 𝐸𝐶𝑜𝑛 or 𝐸𝐾.𝑆.

38

(a) (b) (c)

(d) (e) (f)

Figure 4.8: Stochastic textures of different control weight (a) 𝑤1 = 0, 𝑤2 = 1 (b)

𝑤1 = 0.1, 𝑤2 = 0.9 (c) 𝑤1 = 0.01, 𝑤2 = 0.99 (d) 𝑤1 = 0.001, 𝑤2 = 0.999 (e)

𝑤1 = 0.0001, 𝑤2 = 0.9999 (f) 𝑤1 = 0.00001, 𝑤2 = 0.99999

In Figure 4.8, we observe that the pattern can be well-preserved with larger

weight in control term (𝐸𝐶𝑜𝑛). In Figure 4.8(f), the patterns do not preserve well in

comparisons of Figure 4.8 (a) due to the unbalanced weight in the objective function.

We list the 𝐸𝐶𝑜𝑛 and 𝐸𝐾.𝑆 errors in Table 4.1. We can observe that the weight of KS

term sets to small value, the pattern is more closely matched the user control pattern

(see Figure 4.8(a)). In contrast, the weight of KS term sets to large value, the KS test

error is satisfied but the appearance of the texture does not preserve well (see Figure

4.8(f)). The above table shows the 𝑬𝑲.𝑺 and 𝑬𝑪𝒐𝒏 for the results form Figure 4.8(a)

to 4.8(f).

39

Table 4.1: List the 𝑬𝑲.𝑺 and 𝑬𝑪𝒐𝒏 errors with different control weights

Figure 4. 8 𝒘𝟏 𝑬𝑲.𝑺 𝒘𝟐 𝑬𝑪𝒐𝒏

(a) 0 0.13378 1 49.7715

(b) 0.1 0.048835 0.9 49.7668

(c) 0.01 0.072425 0.99 49.7946

(d) 0.001 0.061537 0.999 49.8427

(e) 0.0001 0.017303 0.9999 49.7977

(f) 0.00001 0.012973 0.99999 50.1087

4.4 Noise Reproduction

Applying our noise reproducing approach described in the foregoing section,

we can real-time generate the similar pattern noise without time-consuming

computation. We show some sets of noise and their corresponding reproduced noise

pattern in Figure 4.9, 4.11 and 4.13. Besides, we analyze their distribution differences

and their errors between the original noise produced by our optimization method and

reproduced noise. We plot the CDF of the reproduced gradient together in order to

observe the difference between other reproduced results in Figure 4.10, 4.12 and 4.14.

We also list the parameters we use in the GMM fitting process in Table 4.2-4.4.

40

Control Pattern Original Texture 𝑬𝑪𝒐𝒏 𝑬𝒖

39.3601

0.014533

Control Pattern Reproduced Texture

39.4204

0.022346

39.3859

0.02259

39.485

0.025439

Figure 4.9: The reproduced erosion texture and the original texture by optimization.

List the KS error and the control term error in the right column.

41

Figure 4.10: CDF comparison between Original and Reproduced Noises, plot the

curves together and the curve is approximated to the original CDF.

 Table 4.2: The parameters used in GMM fitting for erosion texture

Number of input sample 1000

Error bound ℇ 10.0

Initial GMMs components 30

 GMMs component 36
Cutoff Value 18.6

AIC -15079449.0743

42

Control Pattern Original Texture 𝑬𝑪𝒐𝒏 𝑬𝒖

78.9379

0.049023

Control Pattern Reproduced Texture

78.9881

0.04116

78.979

0.41575

78.8778

0.41176

Figure 4.11: The reproduced marble texture and the original texture by optimization.

List the KS error and the control term error in the right column.

43

Figure 4.12: CDF comparison between Original and Reproduced Noises, plot the

curves together and the curve is approximated to the original CDF.

Table 4.3: The parameters used in GMM fitting for marble texture

Number of input sample 1000

Error bound ℇ 10.0

Initial GMMs components 39

 GMMs component 42
Cutoff Value 19.5

AIC -25353476.4511

44

Control Pattern Original Texture 𝑬𝑪𝒐𝒏 𝑬𝒖

41.8651

0.0095667

Control Pattern Reproduced Texture

41.9656

0.024922

42.0567

0.015958

41.9322

0.030781

Figure 4.13: The reproduced cloud texture and the original texture by optimization.

List the KS error and the control term error in the right column.

45

Figure 4.14: CDF comparison between Original and Reproduced Noises, plot the

curves together and the curve is approximated to the original CDF.

Table 4.4: The parameters used in GMM fitting for cloud texture

Number of input sample 1000

Error bound ℇ 10.0

Initial GMMs components 20

 GMMs component 24
Cutoff Value 15.5

AIC -20163091.2097

The Figure 4.9, 4.11 and 4.13 show that the reproduced results are quite

similar to those of the original optimized noise both the distribution and the control

term error. We can observe that the cloud and erosion textures are closely matched the

original texture appearance. However, the reproduced marble textures are not closely

matched the original texture through optimization since the marble texture does not

directly use the noise value but through a sine function. Hence, the appearance of the

marble texture is sensitive to the noise value through sine function. A little difference

46

on the noise value will cause the appearance changes immensely. Since our objective

function is considered not only the lower frequency part but also the whole gradient

vectors, we can observe that the 𝑬𝑪𝒐𝒏 and 𝑬𝑲.𝑺 of reproduced noises are probable to

have the smaller error value than the original noise. We demonstrate the CDF in

Figure 4.10, 4.12 and 4.14 in order to show that the CDF curves from the original

noise and the reproduced noises are close. We do not lose the statistical property

through our noise reproducing process.

 Table 4.2-4.4 list the parameters we use in GMM fitting process. The

numbers of input sample and the error bound ℇ in different textures are set to 1000

and 10.0, respectively. The difference between initial guess of the GMMs components

and the final used number of components are small, so the hierarchical clustering

approach makes a suitable initial guess for the GMM fitting. In our experiment, we set

the cutoff value in different textures respectively. This parameter is suitable in one

texture but in other textures it might happen that the number of clustering is too large.

Therefore, we adjust this parameter case by case in order to find out the proper

clustering number for the initial guess of GMM fitting. Based on the statistics

measurement and the reproduced texture appearance, the GMMs we apply is suitable

for our input data and fit well. As the result, we can simply resample the similar noise

from GMMs without re-running the time-consuming optimization.

47

4.5 Terrain Generation

 We apply the noise control approach in terrain generation by taking the noise

as a height map. Through our approach, we can easily control the generation of the

terrain appearance and the following figures from 4.7 to 4.9 demonstrate the different

height map with their corresponding terrain appearances. We also demonstrate the

terrain with only polygon mesh for clearly realizing the variation of the height.

48

Figure 4.15: Terrain height map generated by user-specified flower pattern.

49

Figure 4.16: Terrain height map generated by user-specified “X” pattern.

50

Figure 4.17: Terrain height map generated by user-specified star pattern.

51

Chapter 5

Conclusion and Future Work

We propose a method that can generate noise satisfied the user demand and

preserve its original statistical properties. Our system achieves these goals by

formulating the problem as a high-dimensional nonlinear optimization and casting to a

hierarchy optimization framework. Besides, we achieve the reproducible property for

generating similar control noise without redundant computational time via

optimization. This approach might be used in many further applications such as

animation or computer games.

Currently, our system only implements the noise control in two dimensioned

case. We might apply the control on 3D application. Figure 4.17 is the 3D procedure

texture synthesis application. If we extend our framework to 3D, we need to quantify

the 3D gradient vectors in order to measure if the gradient vectors are uniformly

distributed. We can transform the Cartesian coordinate into Spherical coordinate (see

Figure 4.18): 𝑥, 𝑦, 𝑧 = 𝑟𝑠𝑖𝑛𝜃, 𝜑, 𝑟𝑐𝑜𝑠𝜃 , 𝑟 = 1 since the gradient vectors are

unit-length. Therefore, we can use 𝜃 and 𝜑 to express a 3D gradient vector.

Applying into our framework, the KS test can also measure the uniform distribution

of the gradient vector and the control term error is the same concept as our description

in section 3.4.1. Since our framework is flexible for other gradient-based noise

52

generating techniques, we might adopt other noise function for our controllable source

in the future.

(a)

(b)

Figure 4.18: Stochastic texture synthesis applied in 3D application.

53

Figure 4.19: Spherical Coordinate

In the fractal sum representation, we only take the gradient vectors as the

control mechanism. However, we can develop a method to automatically adjust the

amplitude in the fractal sum representation to achieve much more closely matched the

user control pattern.

In our algorithm, simulated-annealing solver consumes most computational

time. Currently, simulated-annealing is invoked from Matlab, which provides precise

calculation but the performance is not as efficient as C-code based solver. We might

adopt C-code based solver to reduce much computational time.

54

Bibliography

[1] K. Perlin, A unified texture/reflectance model, in: SIGGRAPH’84 Advanced

Image Synthesis Course Notes, 1984.

[2] K. Perlin, An image synthesizer, in: SIGGRAPH’85 Proceedings, 1985, pp.

287–296.

[3] J.C. Hart, Perlin noise pixel shaders, in: Proceedings of Graphics Hardware 2001:

Eurographics/SIGGRAPH Workshop, 2001, pp. 87–94.

[4] D. Ebert, F.K. Musgrave, D. Peachey, K. Perlin, S. Worley, B. Mark, J. Hart,

Texture & Modeling: A Procedural Approach, third ed., Morgan

Kaufmann, 2002. Chapter 2.

[5] A.A. Apodaca, L. Gritz, Advanced Renderman: Creating CGI for Motion Pictures,

Morgan Kaufman, 2000.

[6] J.P. Lewis, Algorithms for solid noise synthesis, in: Proceedings of ACM

SIGGRAPH’89, 1989, pp. 263–270.

[7] K. Perlin, Improving noise, in: SIGGRAPH’02 Proceedings, 2002, pp. 681–682.

55

[8] J.C. Yoon, I.K. Lee, J.J. Choi, Editing noise, Computer Animation and Virtual

Worlds 15 (3) (2004) 277–287.

[9] J.C. Yoon, I.-K. Lee, Stable and controllable noise, Graph. Models (2008)

[10] K. Perlin, Realtime responsive animation with personality, IEEE Transactions on

Visualization and Computer Graphics 1 (1) (1995) 5–15.

[11] J.P. Lewis, Algorithms for solid noise synthesis, in: Proceedings of ACM

SIGGRAPH’89, 1989, pp. 263–270.

[12] J.P. Lewis, Generalized stochastic subdivision, ACM Transactions on Graphics 6

(3) (1987) 167–190.

[13] R.L. Cook, T. DeRose, Wavelet noise, in: Proceedings of ACM SIGGRAPH’05,

2005, pp. 803–811.

[14] A. Goldberg, M. Zwicker, F. Durand, Anisotropic noise, in: Proceedings of ACM

SIGGRAPH’08, 2008

[15] K. Perlin, F. Neyret, Flow noise, in: SIGGRAPH’01 Technical Sketches and

Applications, 2001, p. 187.

[16] M.F. Cohen, J. Shade, S. Hiller, O. Deussen, Wang tiles for image and texture

generation, in: Proceedings of ACM SIGGRAPH’03, 2003, pp.287–294.

[17] F. J .Massey, The Kolmogorov-Smirnov Test for Goodness of Fit, in: Journal of

the American Statistical Association, Vol. 46, No. 253, pp. 68–78, 1951.

[18] A.M. Law, W.D. Kelton, Simulation Modeling & Analysis, third ed.,

McGraw-Hill, 1991.

56

[19] D. Lewis, and C.J. Burke, 1969. The use and misuse of the Chi-square test.

Psychological Bulletin, 46, 433- 89.

[20] B. Lieberman,(ed),1970. Contemporary problems in statistics. Toronto: Oxford

University Press.

[21] S. Siegel, 1956. Nonparametric statistics. New York: McGraw-Hill.

[22] B. Mitchell, A Comparison of Chi-Square and Kolmogorov-Smirnov Tests,

Published by: Blackwell Publishing on behalf of The Royal Geographical Society

(with the Institute of British Geographers) Vol. 3, No. 4 (1971), pp. 237-241.

[23] H. Akaike, A new look at the statistical model identification, in: IEEE

Transactions on Automatic Control 19 (1974)pp. 716–723.

[24] D.E. Knuth, The Art of Computer Programming, Addison-Wesley,1998

[25] J.C. Yoon, I.K. Lee, J.J. Choi, Gradient Noise Fitting for Procedural Textures, in:

Proceeding Pacific Graphics 2005.

http://en.wikipedia.org/wiki/Akaike_information_criterion#cite_ref-Akaiki1974_0-0
http://en.wikipedia.org/wiki/Hirotsugu_Akaike

