
 

 

 

國 立 交 通 大 學 

 

多媒體工程研究所 
 

碩 士 論 文 

 

 

 

 

 

基於柏林雜訊之可控制隨機性材質生成 

 
Controllable stochastic texture synthesis based on Perlin Noise 

 

 

 

 

 

研 究 生：鄭惟謙 

指導教授：林文杰  教授 

 

 

 

 

 

 

中 華 民 國  九 十 八  年 十一 月



 

 

基 於 柏 林 雜 訊 之 可 控 制 隨 機 性 材 質 生 成 

Controllable stochastic texture synthesis based on Perlin Noise 

 

 

 

 

研 究 生：鄭惟謙          Student：Wei-Chien Cheng 

指導教授：林文杰          Advisor：Wen-Chieh Lin 

 

 

 

國 立 交 通 大 學 

多 媒 體 工 程 研 究 所 

碩 士 論 文 

 

 
A Thesis 

Submitted to Institute of Multimedia Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Computer Science 

 

November 2009 

 

Hsinchu, Taiwan, Republic of China 

 

 

中華民國九十八年十一月 

 

 

 



 

i 

 

 

 

 

基於柏林雜訊之可控制隨機性材質生成 

 

 

研究生 : 鄭惟謙             指導教授 : 林文杰 博士 

                                        
 

國立交通大學 

資訊學院多媒體工程研究所 
 

 

 

 

摘 要 
柏林雜訊廣泛運用在產生自然現象，例如：雲，火焰，木紋和地形等應用。藉由

加入柏林雜訊增加擾動也可增添動畫的變化度。然而，過去較少的研究是針對控

制柏林雜訊。我們提出一個可以修改和控制柏林函數所生成的雜訊值，並且不會

破壞原有雜訊函數所擁有的統計上的特性。我們可以產生非常貼近使用者需求的

雜訊樣式並且保有原本雜訊函數該有的統計特性。我們將處理的問題運用多層式

最佳化方法，而分層的依據及最佳化順序是由低頻率雜訊到高頻率雜訊。我們的

方法可以輕易的達到整體性或是區域性的控制例如程序化材質樣式控制，並且我

們可以有效率的再產生相似雜訊樣式。 

 

關鍵字: 柏林雜訊函數，程序化材質生成 
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ABSTRACT  
 

Perlin noise is widely used to render natural phenomena such as cloud, fire, 

woodgrain and terrain. It is also used to enrich the variety of animation by adding 

disturbance to the motion of objects. However, there is less attention on controlling 

Perlin noise in the past. We present a new approach to modify and control the noise 

value generated by Perlin noise function without destroying the statistical properties 

of the noise function. We can generate the controllable noise that closely matches a 

user’s demand pattern while preserving the original statistical properties of noise. We 

formulate our problem as a multi-level optimization problem in which the 

optimization process is executed from low frequency level to high frequency level. 

Our approach can easily achieve global and local control on texture pattern design and 

can reproduce the same pattern efficiently. 
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Chapter 1 

 

Introduction 

 

 

 

 

Noise functions are commonly used in computer graphics. It is used to create 

complex natural phenomenon and generate procedural texture as shown in Figure 1.1. 

Acquiring a noisy appearance by simply sampling a random number generator for 

every point would not be appropriate, since the appearance is too random. Instead, we 

would like the noise to be smoother and without losing the random property. The 

noise function introduced by Ken Perlin [1,2] is a well-established method for random 

number generator. There are several functions to generate random numbers. However, 

the problem is that those functions are not continuous at all. The Perlin noise is a 

well-known generator which gives random numbers that are almost continuous, 

furthermore, it is not only used as a primitive operation to create procedural texture 

and shading but also as an approach to create natural and realistic animation by 

adding some random disturbance to a motion. Unlike white noise which is composed 

of unconstrained random number, Perlin constructs noise from different bands and 

each band is limited to a range of frequencies. By summing up different noise bands 

weighted by amplitude, we can produce a variety of pattern such as wood, marble, 

cloud etc [4] (Fig.1.1) and provide more natural looking. Perlin noise function is 
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simple, efficient and provides adequate spectral control, so it is still the most popular 

approach in computer graphics. The ideal noise function should have following 

properties: band-limited, stationary, isotropic, reproducible, and not periodic. These 

properties have motivated researchers on improving the noise quality by developing 

more precise random number table to reduce the bias and band-limited. 

 

   
(a) Cloud            (b)Woodgrain 

   
(c) Marble             (d) Fire 

 

(e) Erosion            (f) Woodring 

Figure 1.1: Procedure textures generated by Perlin noise function 
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Although, computer graphics researchers have proposed various applications 

by composing multiple noises to describe a complex pattern or natural phenomenon, 

there is less attention on controlling the noise functions. This is because modifying on 

the noise value arbitrarily will destroy the ideal properties of the noise function. Some 

applications, such as procedural texture synthesis and terrain synthesis need to specify 

noise values to generate a pattern that meets the user’s demands. Figure 1.2 shows an 

example of terrain editing in which the noise values are used as a map of height filed 

and we can assign the noise value in some positions of this map to generate the 

demanded terrain. 

 

 

(a)                            (b) 

Figure 1.2: Terrain editing by modifying the height at a specific location on (a) 

original terrain (b) after editing [8] 

 

In this thesis, we propose an approach, targeted at interactive application, to 

generate controllable noise that closely matches a user’s demand value without losing 

its original properties through an optimization process. Furthermore, we can make the 

controllable noise function reproducible without re-running lengthy optimization by 

sampling the distribution of the random number tables that fulfill the user-specified 

pattern and statistical properties. The contributions of this thesis are: 

 

 Proposing an approach that can generate a user-demanded noise pattern 

through an optimization process while preserving the statistical properties of 

the random number table. 
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 Developing a multi-level optimization algorithm that can effectively reduce 

the computational time by propagating the optimizing values from lower 

levels to higher levels.  

 

 

 Reproducing the same noise patterns without re-running the computationally 

expensive optimization process. 

 

The rest of the thesis is organized as follows: Chapter 2 reviews previous work: on 

noise functions and related work on controlling noise generation. Chapter 3 briefly 

introduces the background of Perlin noise function and describes our approach to 

generate a controllable and reproducible noise function. Chapter 4 shows our 

experimental results. Finally, conclusion and future work are discussed in Chapter 5. 
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Chapter 2

 
Related Work 

 
 

 

 

In this chapter, we give a brief introduction about Perlin noise and related 

applications of noise function researches in section 2.1 and review some methods of 

controlling noise in section 2.2.  

 

2.1 Noise Functions 

 

Perlin [1,2] introduced the noise function that can be used to generate procedural 

textures [4,5,6] such as cloud, marble, fire, woodgrain and etc. Besides, it can be used 

to disturb the movement of an object to make animated motions look more natural 

[10]. Perlin and Neyret [15] suggested a method to carry out swirling and flowing 

time varying texture by rotating the gradient and making pseudo-advection by 

sampling the noise with an offset. With programmable graphics hardware, Perlin 

noise has been implemented on GPU shader [3] who developed a general purpose 

multipass pixel shader to generate the Perlin noise function. Lewis [11] proposed 

another approach to generate natural pattern based on Wienner interpolation. His 

approach can generate noise with arbitrary energy spectrum, but his method is more 

complicated than Perlin’s method. Cook and DeRose [13] pointed out that Lewis’ 
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approach is insufficient to solve the loss-of-detail and aliasing problem. They propose 

the wavelet analysis to construct noise bands for anti-aliasing and achieve 

band-limited by eliminating unnecessary low frequencies. Goldberg et al. [14] 

introduced a method that provides high quality anisotropic filter for noise textures. 

They generated noise directly on frequency domain partitioned into oriented subbands 

and approximated noise with desired spectrum. Perlin [4] introduced an improved 

algorithm that solved two problems in the original Perlin noise function [1,2]: One is 

second order interpolation discontinuity and the other is non-optimal gradient 

distribution which might cause directional bias. He proposed a new interpolation that 

gives c2 continuity. To prevent the gradient distributed non-uniformly and speed up 

the computation, Perlin suggested a new gradient table containing only 16 vectors. 

However, the 16 gradient vectors are fixed and insufficient to satisfy the 

user-demanded noise value.   

 

2.2 Noise Control 

 

There have been few approaches dealing with the controllability of noise 

functions. Lewis [12] proposed the stochastic subdivision construction which provides 

control of the autocorrelation and spectral properties of the synthesized random 

functions. The stochastic techniques can model a variety of natural and complex 

phenomenon. Ebert et al. [4] introduced different types of noise function 

implementation. Yoon et al. [8] proposed a method to control Perlin noise by 

modifying the pseudo-random gradient table for satisfying users’ demand. They use 

the Chi-Square test to preserve the uniform distribution of the random number table 

while modifying the element of the table. However, they only considered the 

composition of the modified noise value as their optimized variables; their approach 

can just achieve local control. Later, Yoon et al. [25] proposed a method that can 

extract patterns from existing objects by non-uniform noise functions and use it to 

generate procedural textures. Yoon et al. [9] integrated other statistical tools to 

measure the stability of a random number table during an optimization process to 

meet the user specified pattern. Their method can maintain the property of the noise 
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function including uniform distributed, non-periodic and band-limited. They also 

introduced a stochastic tiling approach using Wang tiles [16] to accelerate the 

generation of the random number table. These two approaches proposed by Yoon et al. 

[8,9] above cannot achieve reproducibility because they need to run the optimization 

procedure repeatedly to generate the same noise pattern. It is time-consuming. 

Therefore, we proposed an approach to generate the similar noise pattern in real-time 

in this thesis.   
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Chapter 3 

 
Approach 

 
 

 

 

This chapter describes our algorithm for generating user-defined noise and 

reproducing the controlled noise pattern without re-optimization. First, we give an 

overview of our approach in section 3.1. Second, we describe the background of 

Perlin noise function, including the composition of Perlin noise function and rewriting 

the noise function into a simpler form for control. Finally, we describe the details of 

our algorithm, including the goodness of test for maintaining the uniform distribution 

of the gradient vectors (section 3.2), the optimization process (section 3.3) and the 

noise reproducing approach (section 3.4). 

 

3.1 Overview 

 

 The goal of our approach is to control the generation of the noise value as 

much similar as user-defined pattern; however, modifying the components of the 

noise composition arbitrarily might violate required statistical property of Perlin noise. 

To achieve our goal, we develop a multi-level optimization process to obtain noise 

which does not only preserve statistical properties but also closely match 

user-specified noise patterns. 
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Figure 3.1 shows an overview of our approach, which can be divided into two 

stages: the preprocessing stage and the noise reproducing stage. In the preprocessing 

stage, the input of our system is a user-specified pattern image. Our system extracts 

the user controls and uses them as the initial guess of the optimization solver. Then, 

the optimization process will keep the user-specified noise with the statistical 

properties. Since the fractal sum of noise is composed of low to high frequency noise, 

the gradient vectors are shared by low to high frequency noise. We applied a 

hierarchical framework of optimization to reduce the computational time. We classify 

the gradient vector in accordance with which belongs to low frequency or high 

frequency noise for our optimizing order. Once we get the optimized gradient vectors 

(the component of the noise composition), we estimate the gradient vector distribution 

so that we can resample the gradient vectors from the estimated distribution model 

without re-running optimization. We apply the hierarchical clustering algorithm that 

clusters the optimized solutions to get an initial guess of the number of component in 

the Gaussian mixture model. We iteratively use Gaussian mixture model to fit our 

solution set until we get the appropriate number of component in order to reproduce 

the same pattern of noise. In the next stage, we can real-time reproduce the similar 

pattern noise without losing the statistical properties. 

 

3.2 Perlin Noise Function 

 

 As our method is based on Perlin noise function[1, 2], we introduce the 

background of Perlin noise function and derive the noise function into a more definite 

form for our optimization problem.  

 Perlin noise function is known as lattice noise. This function uses a hypercubic 

lattice on which a gradient vector is assigned at each grid point (see Figure. 3.2(a)). 

The noise value between grid points is obtained by interpolating the noise values at 

the surrounding grid points (Figure 3.2(b)).We store the gradient vectors in a gradient 

table G, and a permutation table P for hashing indices. The number of lattice points 

for each noise value is determined by the dimension of noise function, for example, 

2D noise requires 22 gradient vectors and 3D noise requires 23 gradient vectors so 
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that N-dimensional noise requires 2N  gradient vectors to compute a noise value. We 

summarize the noise generating operation below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.1: System Overview 

 

Step 1: Precompute the unit length gradient vectors which store in the G table with 

size M and precompute P table of size M called permutation table which stores the 

integer random number from 0 to M-1. 

 

Step 2: Acquire 2N  sets of grid point coordinates. In 2D case for instance, we obtain 

Multi-Level Optimization Process 

 

User-defined  

Pattern Input 

 

 Initial Guess  

(Pseudo-Random Table) 

Minimize 

KS test &Control term 

 

Generating similar 

noise distribution 

without re-optimizing 

optimization 

Collect the solution clusters 

& Modeling with GMMs 

 

GMMs parameters 
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22  integer points 𝑣1 =   𝑥 ,  𝑦  , 𝑣2 =   𝑥 + 1,  𝑦  , 𝑣3 =   𝑥 ,  𝑦 + 1 , 𝑣4 =

  𝑥 + 1,  𝑦 + 1   (see Fig 3.2). The four integer grid points form an unit quadrangle 

surrounded the input point (𝑥,𝑦). Hence, we acquire four unit gradient vectors from 

the G table hashing by the indices ( 𝑥 ,  𝑦 ) through the P table 𝑔 1 = 𝐺[𝑃 𝑃  𝑥  +

 𝑦  ] (see Fig 3.2(b)) and the other three gradient vectors 𝑔 2, 𝑔 3, 𝑔 4 may obtain as 

the same operation. 

    

(a)                         (b) 

Figure 3.2: (a) Grid points with assigned gradient vectors. (b) Noise value is 

interpolated from surrounding dot product value 

 

Step 3: In 2D case, the noise value is interpolated by the four dot products (see Fig 

3.2(b)). The dot product is operated as 𝑔 1 ∙   𝑥, 𝑦 − 𝑣1  and the other three grid 

noise values will be obtained. We used the improved ease curve 𝑤 𝑡 = 6 𝑡 5 −

15 𝑡 4 + 10 𝑡 3 [7] instead of the original Perlin’s method to compute the weight. In 

the next section, we will formulate the above concept and derive the noise function to 

deal with our optimization problem. 

 As show in Figure 3.2(b), noise value is the combination of its surrounded dot 

product value at grid point. In 2D case, we can easily formulate as below: 

 

 

 

 
𝑁𝑜𝑖𝑠𝑒 𝑥, 𝑦 =    𝑤(𝑥 − 𝑖)𝑤(𝑦 − 𝑗)(Δ   𝑖𝑗 ∙ 𝐺 𝑖𝑗 )

 𝑦 +1

𝑗= 𝑦 

 𝑥 +1

𝑖= 𝑥 

 

 

 

(3.1) 



 

 

12 

 

We define Δ   𝑖𝑗 = (𝑢, 𝑣) = (𝑥 − 𝑖, 𝑦 − 𝑗) where  𝑤(𝑥 − 𝑖)𝑤(𝑦 − 𝑗)(Δ   𝑖𝑗 ∙ 𝐺 𝑖𝑗 ) can be 

represented as 𝑤(𝑢)𝑤(𝑣)(Δ   𝑖𝑗 ∙ 𝐺 𝑖𝑗 ),  G   𝑖𝑗  denotes the gradient vector hashing by the 

indices  𝑖, 𝑗  and the weighting function 𝑤 𝑡 = 1 − (6 𝑡 5 − 15 𝑡 4 + 10 𝑡 3). For 

convenience, we merge the  𝑤(𝑢)𝑤(𝑣)(Δ   𝑖𝑗 ) into a vector representation 𝑊    𝑖 ,𝑗 , so the 

noise function can represent as a combination of four dot products below: 

 

𝑁𝑜𝑖𝑠𝑒 𝑥, 𝑦 = 𝑊    𝑖 ,𝑗 ∙ 𝐺 𝑖 ,𝑗 + 𝑊    𝑖 ,𝑗+1 ∙ 𝐺 𝑖 ,𝑗+1 + 𝑊    𝑖+1,𝑗 ∙ 𝐺 𝑖+1,𝑗 + 𝑊    𝑖+1,𝑗+1 ∙ 𝐺 𝑖+1,𝑗+1           

 

To express the natural-looking phenomenon, we need the noise function to be 

smooth and random. Therefore, we sum up several frequencies of noise called fractal 

sum. It is composed of low frequency noise with higher amplitude and high frequency 

with lower amplitude. Figure 3.3 shows the fractal sum noise appearance. The fractal 

sum is defined as follows: 

 

 

 

where 𝐹 is called "octave",𝑓𝑖  is the weight of frequency and 𝑎𝑖  is the weight of 

amplitude. The coefficients own the following properties. 𝑓𝑖 < 𝑓𝑖+1 and 𝑎𝑖 < 𝑎𝑖+1 

and usually two times larger than the previous one. 

 

 

Figure 3.3: Fractal sum image composed of different frequencies. 

 

(3.2) 

(3.3) 𝐹𝑠𝑢𝑚 =  
𝑁𝑜𝑖𝑠𝑒(𝑓𝑖𝑥, 𝑓𝑖𝑦))

𝑎𝑖

𝐹

𝑖=1
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3.3 Goodness of Fit Test 

 

As the above section described, the N dimension noise value is composed of 

N2 dot products. Since our goal is to modify the gradient vectors in the G table to 

match the user-specified noise value, we need to use some statistical tools to maintain 

the gradient vectors distribution uniformly. Figure 3.4 shows the comparison between 

the non-uniform and the uniform gradient distribution. As shown, bias distribution 

might cause the artifacts with the noise appearance. Consequently, we should exploit 

the statistical tool to assess the uniformity of the gradient distribution.    

 The goodness of fit of a statistical model is used to describe how well the 

observed data fits the expected distribution. We adopt goodness of fit test to compare 

the observed data with the desired distribution. Instead of using Chi-Square goodness 

of test [8, 24], we adopt Kolmogorov-Smirnov goodness of fit proposed by Massey 

[17]. We will introduce both methods in section and explain the reason why we 

replace Chi-Square test with Kolmogorov-Smirnov test (KS test) in section 3.3.3. 

 

 

(a)Uniform distribution      (b) Non-uniform distribution 

Figure 3.4: Noise appearance with uniform and non-uniform gradient vectors 

distribution. 

 

3.3.1 Chi-Square goodness of fit test 

 

 Chi-Square goodness of fit statistical test is used to measure the difference of 

http://en.wikipedia.org/wiki/Statistical_model
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two distributions based on their sample data and determine if the sample data comes 

from a specified distribution. Let 𝑋 = {𝑋1, 𝑋2, 𝑋3 …… , 𝑋𝑀  } be the observed 𝑀 data. 

To compute the distribution from observed data, we divide the set 𝑋 into 𝐾 bins and 

define 𝑂𝑘  as the set of observed data in the 𝑘𝑡  bin. Let 𝐸  be the specified 

distribution and 𝐸𝑘  be the observed distribution for the 𝑘𝑡  bin. Thus, the 

Chi-square test measuring the similarity between the set 𝑂 and set 𝐸 is defined as 

follows:  

 

𝐶𝑆(𝑋, 𝐸) =  ( 𝑂𝑘  −  𝐸𝑘  )
2/ 𝐸𝑘  

𝐾

𝑘=1

 

 

where  𝑂𝑘   is the number of observed data in the 𝑘𝑡  bin and  𝐸𝑘   denotes the 

number of samples in the 𝑘𝑡  bin. For Perlin noise, we need the direction of gradient 

vectors to be uniformly distributed. Thus, we divide the data 𝑋 into 𝐾 bins with the 

same  𝐸𝑘   which equals to 𝑀/𝐾 . 𝐶𝑆  is the difference between the observed 

distribution and specified distribution. Hence, the smaller a 𝐶𝑆 value is, the better the 

distribution of observed data matches the specified distribution. But how to decide the 

value K  and there are some limitations and disadvantages on Chi-Square test, we 

will explain in section 3.3.3 later.  

 

3.3.2 Kolmogorov-Smirnov goodness of fit test 

 

The Kolmogorov-Smirnov goodness of fit test (KS test) is used to determine 

whether a sample comes from a population with a specific distribution. The KS test 

quantifies the distance between the empirical distribution function of the sample and 

the empirical distribution function of the specified distribution. It is formed as a 

minimum distance estimation as below: 

 

𝐾𝑆 𝑋, 𝐸 = 𝑀𝑎𝑥 𝐹𝑋 𝑥 − 𝐹𝐸(𝑥)  

 

(3.4) 

(3.5) 

http://en.wikipedia.org/wiki/Metric_(mathematics)
http://en.wikipedia.org/wiki/Empirical_distribution_function
http://en.wikipedia.org/wiki/Empirical_distribution_function
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where 𝐹𝑋  is the empirical distribution function which is a cumulative probability 

distribution function for M independent and identically distributed observations 𝑋𝑖  

defined as below: 

 

𝐹𝑀 𝑥 =
1

𝑀
 𝐼(𝑋𝑖 ≤ 𝑥) 

𝑀

𝑖=1

 

 

where 𝐼(𝑋𝑖 ≤ 𝑥) is the  indicator function which equals to 1 if 𝑋𝑖 ≤ 𝑥 and equals to 

0 otherwise. Figure 3.5 indicates the concept of the KS test. If the observed 

distribution matches the specified distribution, the curve of the cumulative distribution 

function (CDF) might be similar. Thus, the maximum distance between the two 

curves must be very small. In the uniform distribution case, the curve of the CDF is 

approximated to a straight line so our observed CDF must be yield to be a straight line 

in order to satisfy the uniform property.  

 

 

Figure 3.5: The KS test is based on the maximum distance between these two curves.  

 

3.3.3 Comparisons of both tests 

(3.6) 

http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Indicator_function
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 In this section, we explain why we adopt KS test instead of Chi-Square test. 

There are some drawbacks in those two tests. KS test is confined to one- and two- 

sample condition, whereas Chi-Square test can be extended to k sample condition. In 

our case, we just compare two distributions so the limitation of the KS test is not an 

issue. Besides, the Chi-square test requires the expected number in each bin 

sufficiently large. It is often accepted that each bin have an expected number greater 

or equal to 5 [19, 20, 21]. KS test does not have the restriction of expected number 

associated with Chi-Square test. Although the Chi-Square error might be small, it 

cannot ensure that the distribution of the gradient vectors is truly uniform. Figure 3.6 

shows a situation about the drawbacks of Chi-Square. Despite the Chi-Square error is 

small, it might happen the situation as shown in Figure 3.6(b). The gradient vectors 

aggregating in the same bin might cause the non-uniform distribution but the 

Chi-square test misjudges this case as the same condition as Figure 3.6(a). As 

described by Mitchell [22] who compared the two tests, KS test is considerable 

advantage when the samples are scattered throughout a relatively large discrete 

categories. We experiment the both test and plot their CDF curve to observe the 

distribution in chapter 4. As the result, we apply the KS test to measure the uniformity 

of the distribution of gradient vectors. 

       

(a)                                (b) 

Figure 3.6: Two situations with the same chi-square error. Each arrow represents a 

gradient vector and the color distinguish different bins.(a) The gradient vectors in the 

bin are uniformly distributed, (b) The gradient vectors in the bin are gathered with a 

non-uniform distribution. 
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3.4 Noise Optimization Process 

 

 In the previous section, we described the uniform property of the noise 

generation. We apply the property as a part of terms in the optimization process. We 

will describe how we set the objective function for the optimization (section 3.4.1) 

and extend the optimization to the multi-level hierarchical framework (section 3.4.2).  

 

3.4.1 Objective Function 

 

We applying Kolmogorov-Smirnov goodness of fit test introduced in the 

section 3.3.2 as a mechanism for preserving the gradient vectors to be uniformly 

distributed when modifying the gradient vectors. It is a part of terms in our objective 

function named 𝐸𝐾.𝑆 defined below: 

 

𝐸𝐾.𝑆 = 𝐾𝑆 𝑋𝑖𝑑𝑒𝑎𝑙 , 𝑋𝑜𝑏𝑠  = 𝑀𝑎𝑥 𝐹𝑖𝑑𝑒𝑎𝑙  𝑥 − 𝐹𝑜𝑏𝑠 (𝑥)  

 

where 𝑋𝑖𝑑𝑒𝑎𝑙  is the ideal uniform sample set used to compare with the observed 𝑋𝑜𝑏𝑠  

samples. In 2D case, we collect the set 𝑋𝑖𝑑𝑒𝑎𝑙  from the uniform samples in 𝑅2. Since 

the length of all gradient vectors is 1, we can represent a vector X = (𝑥, 𝑦) by 

(𝑐𝑜𝑠𝜃, s𝑖𝑛𝜃). This reduces the dimension of variables in the optimization process. 

 In order to control the noise value, we require applying some controls on the 

gradient vectors. We simply extract the control information from the user input 

pattern. As shown in Figure 3.7, black color and red color denote noise value of 0 and 

1, respectively. In this thesis, we focus on the 2D case. Thus, the noise function can 

represent as Equation 3.2. Let 𝑉𝑖= 𝑁𝑜𝑖𝑠𝑒 𝑥𝑖 , 𝑦𝑖  and 𝐷𝑖  be the noise value to be 

optimized and user-specified noise value, respectively. The user-control term in our 

objective function is defined as follows.  

 

𝐸𝐶𝑜𝑛 =  (𝑉𝑖 − 𝐷𝑖)
2

𝐼

𝑖=0

 

(3.7) 

(3.8) 
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Figure 3.7: User control pattern. 

 

where 𝐼 denotes the total number of user-specified noise values. Therefore, we can 

define our objective function 𝐸 as below: 

 

𝐸 = 𝑤1𝐸𝐾.𝑆 + 𝑤2𝐸𝐶𝑜𝑛  

 

where 𝑤1 and 𝑤2 are the control weight of these two terms to achieve not only the 

gradient vectors uniformly distributed but user-demanded control. As our experiment 

result, we set the 𝑤1 as 0.995 and 𝑤2 as 0.005 as the weight value. The Simulated 

Annealing algorithm that is a method for solving unconstrained optimization 

problems and it is often used when the search space is discrete. Hence, we apply this 

algorithm to solve our optimization problem. 

 

3.4.2 Multi-Level Optimization 

  

 As described in section 3.2, fractal sum which used to express the 

natural-looking phenomenon is composed of several frequencies of noise from low 

frequency noise with higher amplitude and high frequency with lower amplitude. 

However, we can divide the optimization process into several stages based on this 

property. As shown in Figure 3.8, low frequency noise controls the global shape of the 

fractal noise appearance. The low frequency noise uses the fewer gradient vectors due 

to the grid points contains in low frequency noise are fewer than those in high 

frequency noise. In low frequency noise, the range of hashing indices ( 𝑓𝑙𝑥 ,  𝑓𝑙𝑦 ) is  

(3.9) 
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(a)               (b) 

 

                     (c)              (d) 

Figure 3.8: (a) Low frequency noise controls the global shape of the noise appearance 

and the (b) high frequency noise controls the detail.  

 

two times smaller than that in high frequency. That is, in low frequency noise the 

number of the grid points hashing by ( 𝑓𝑙𝑥 ,  𝑓𝑙𝑦 ) is fewer than in high frequency 

noise. We simply classify the gradient vectors in accordance with which are shared by 

low frequency noise and the rest gradient vectors are classified into high frequency 

noise for our optimizing order. Besides, the gradient vectors corresponding to lower 

frequency noise will propagate the optimized gradient vectors to the higher frequency 

level as its initial guess. In this paper, we set the octaves 𝐹 = 4, the start amplitude 

𝑎1 = 4 , 𝑓1 = 8 , 𝑓𝑙+1 = 2𝑓𝑙  and 𝑎𝑙+1 = 2𝑎𝑙 . Therefore, the fractal sum noise 

function can be expanded as follow:  

 

𝐹𝑠𝑢𝑚 =  
𝑁𝑜𝑖𝑠𝑒(𝑓𝑙𝑥, 𝑓𝑙𝑦)

𝑎𝑖

4

𝑙=1

 

 

where −1 ≤ 𝑁𝑜𝑖𝑠𝑒(𝑥, 𝑦) ≤ 1 and 𝑙 denotes the level in optimization. Apparently, 

we can observe that the lowest frequency affect the noise value the most due to the 

largest weight of this component. Our strategy is that satisfying the lowest frequency 

(3.10) 



 

 

20 

 

noise value which is prior to higher ones and propagate the gradient vectors to the 

next higher noise function. Besides, the number of gradient vectors shared by lower 

level is smaller than the higher one. Pseudo code 3.1 summarizes our hierarchy 

framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Assume that the frequency in the higher level is two times larger than the  

lower level, we list the gradient vectors shared by the two levels 𝑙 and 𝑙 + 1 as 

 

𝑁𝑜𝑖𝑠𝑒 𝑓𝑙𝑥, 𝑓𝑙𝑦 → 𝐺[𝑃[𝑃  𝑓𝑙𝑥  +  𝑓𝑙𝑦 ]] 

 

𝑁𝑜𝑖𝑠𝑒 𝑓𝑙+1𝑥, 𝑓𝑙+1𝑦) = 𝑁𝑜𝑖𝑠𝑒 2𝑓𝑙𝑥, 2𝑓𝑙𝑦) → 𝐺[𝑃[𝑃  2𝑓𝑙𝑥  +  2𝑓𝑙𝑦 ]] 

 

we can derive the relation between the adjacent two levels and propagate the gradient 

vectors as this rule: 

 

𝐺 𝑃 𝑃  𝑓𝑙+1𝑥  +  𝑓𝑙+1𝑦   = 𝐺[𝑃[𝑃  (𝑓𝑙+1𝑥)/2  +  (𝑓𝑙+1𝑦)/2 ] 

 

Figure 3.9 shows the schematic diagram of the propagation concept. Since the fractal 

noise value is cumulated from lower to higher frequency noise, satisfying the lower 

Pseudo code 3.1: The algorithm of multi-level optimization 

//step 1: Classify the gradient vectors according to frequency. 

 

//step 2: Assign random value to the lowest level 

for each gradient vector in lowest level{ 

 assign a random value as initial guess. 

}  

 

//step 3:Multi-level optimization process 

for( l=0; 𝑙 < 𝐹 ; l++){ 

 optimize the gradient vectors of current level l.  

 propagate the gradient to the next level i+1 as the initial guess. 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.12) 

(3.11) 

(3.13) 
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level ensured that the error between 𝑉𝑖 − 𝐷𝑖  might be reduced immensely. Since we 

propagate the gradient vectors to the higher level as its initial guess, the initial error 

value is usually smaller than that of the random initial guess. The optimization 

converges faster due to the more reasonable initial guess.   

 

Figure 3.9: Propagate the gradient from low-freq level to high-freq level as the initial 

guess. 

 

 In each level, we simply modified the KS term and user-control term as below: 

 

𝐸𝑙
𝐾 .𝑆 = 𝐾𝑆 𝑋𝑖𝑑𝑒𝑎𝑙 , 𝑋𝑙

𝑜𝑏𝑠   

 

𝐸𝑙
𝐶𝑜𝑛 =  (𝑉𝑙

𝑖 − 𝐷𝑖)
2

𝐼

𝑖=0

 

 

where 𝑋𝑜𝑏𝑠 𝑙
 is the gradient vectors in the 𝑙 level and 𝑉𝑙𝑖

 is the noise value we want 

to optimize in the 𝑙𝑡  level. 

 

3.5 Noise Reproduction 

 In this section, we proposed a simple approach to make the noise reproducible. 

The reproduced noise should possess the same properties as the original noise that the 

gradient vectors distribute uniformly and the user control pattern should be closely 

matched. Figure 3.10 illustrates basic idea of our framework. 

 

(3.14) 

(3.15) 
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Hierarchical Clustering

Gradient Vector Table

Iteratively GMMs Fitting

GMMs
Parameters

Sampled gradient 
vectors

Initial guess of the number of  
components in GMMs

Sampling Optimal Gradient 
Vectors

Randomly Swap

High Frequency partLow Frequency part

Merge into gradient vector table

Sampling from GMMs

Reproduced Noise
 

Figure 3.10: A sketch of the noise reproducing procedure. 
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3.5.1 Sampling Optimal Gradient Vectors 

 

As shown in Figure 3.9, low frequency noise controls the global pattern of the 

fractal noise and the high frequency noise controls the detail of the fractal noise. 

Based on this property, we separate the gradient vectors into two parts. We try to 

sample the gradient vectors belonging to high frequency noise the same distribution as 

the original noise or simply swap those gradient vectors randomly. We focus on 

creating varieties of low frequency noises which can affect the global appearance 

immensely. Since we cannot destroy the original noise properties included both 

uniformity and user control pattern, we apply an optimization process to hold those 

properties. In order to preserve the gradient vector to be uniformly distributed, we 

define 𝐸𝑢  below: 

 

𝐸𝑢 = 𝐾𝑆 𝑋𝑖𝑑𝑒𝑎𝑙 , {𝑋𝑜𝑝𝑡𝑖𝑔 , 𝑋𝑟𝑒𝑝𝑙𝑜𝑤 }  

 

where 𝑋𝑖𝑑𝑒𝑎𝑙  is the ideal uniform sample set, 𝑋𝑜𝑝𝑡 𝑖𝑔  denotes the optimized 

gradient vectors belonging to high frequency noise. 𝑋𝑜𝑝𝑡𝑖𝑔  is extracted from the 

noise we obtained through multi level optimization process. 𝑋𝑟𝑒𝑝𝑙𝑜𝑤  are the gradient 

vectors we want to obtain. In order to preserve the user-specified noise value, we 

define 𝐸𝑐  below: 

 

𝐸𝐶𝑜𝑛 =  (𝑉𝑟𝑒𝑝 𝑖
− 𝐷𝑖)

2

𝐼

𝑖=0

 

 

where 𝐼 denotes the total number of user-specified pattern information, 𝑉𝑟𝑒𝑝 𝑖
 is the 

𝑖𝑡  noise value we want to reproduce and 𝐷𝑖  is the 𝑖𝑡  user-demanded noise value. 

Therefore, the objective function can define as below: 

 

𝐸𝑅 = 𝑤1𝐸𝑢 + 𝑤2𝐸𝐶𝑜𝑛  

 

(3.16) 

(3.17) 

(3.18) 
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where 𝑤1 and 𝑤2 are the control weight of these two terms. We set the 𝑤1 as 

0.955 and 𝑤2  as 0.005 in our experiments. We maintain the gradient of high 

frequency noise distribution and re-optimize the low frequency part based on two 

reasons. One is for time-consuming consideration that the variables within 

optimization process are less than the high frequency part. The other is that the value 

of high frequency noise is much less than the low frequency part. Therefore, we spend 

much more effort on obtaining varieties of the low frequency noise appearances and 

model those information for our purpose.  

 

3.5.2 Initial Clustering of Sampled Gradient Vectors 

 

We iteratively execute the above optimization process with random initial 

conditions. As each execution, we collect the 𝑁 solutions before the end of the 

optimization as the set 𝑃𝑖  in 𝑖𝑡  iteration. In this step, we set the value 𝑁 as a 

constant value 100. Besides, we assure that the differences between each error value 

corresponding to the element in 𝑃𝑖  and the error of the optimal solution are less than 

an error bound ℇ . We collect the solutions 𝑃  into a solution pool 𝑆𝑝  where 

𝑆𝑝 = {𝑃1, 𝑃2 , 𝑃3, 𝑃4, … . 𝑃𝑄}. If the number of element in 𝑆𝑝  equals to 𝑄, the process 

stops. We set the total number of iterations 𝑄 = 100 to assure that we can collect as 

many different solutions as possible. We apply the hierarchical clustering algorithm 

which groups the data by establishing a clustering tree where clusters at one level are 

grouped as clusters in the next level and the input data is all the elements in each 𝑃𝑖 . 

The advantage of hierarchical clustering is that it can cluster the input data without 

specifying how many clusters before executing this algorithm. However, we can 

specify a cutoff value and the algorithm will stop when the hausdorff distance 

between the two clusters exceeds the cutoff value. We describe how the algorithm 

works below. We compute a distance matrix 𝐷 as follows containing the distances 

which is taken pairwise from the elements. The distance metric is simply using 

Euclidean distance. Since the distance metric is a symmetric 𝑄 × 𝑄 matrix with 

non-negative values, we just need to observe the upper triangle of the matrix. The 

value of 𝐷(𝑖 ,𝑗 ) represents the distance between the cluster i and j. Through this value 
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𝐷(𝑖 ,𝑗 ), we can choose the closest sets and merge into a cluster as a node in our 

hierarchical tree. We merge these newly formed clusters to the other cluster to create 

bigger clusters until all the elements in the original data set are merged together in a 

hierarchical tree. Here we use the cutoff value to determine how we stop the 

clustering algorithm and separate into distinct clusters. Figure 3.11 illustrates how the 

approach works. Once we stop from the clustering we will obtain 𝐾 distinct subtree. 

Each root of the subtree contains the union of the acceptable solution sets from 𝑆𝑝 . 

Generally, when finishing the above clustering approach, we can get 𝐾 disjoint 

acceptable solution sets. The next section will describe how we use GMMs to fit the 

data and achieve real-time reproducing. 

 

 

P1 P2 P3 P4 P5 PNQ-1 PNQ

P1+P2

P3+P4

PNQ-1+PNQ

……

P1+P2+P3+P4 P5

 
 

Figure 3.11: Merge the NQ input data 

 

3.5.3 Modeling Gradient Vector Distribution  

 

After initial clustering, we can obtain 𝐾 disjoint acceptable solution clusters. 

We model the solution pools by exploiting the parametric model in order to achieve 

reproducing by sampling from this model. We apply Gaussian Mixture Models 

(GMMs) to fit the whole data. Gaussian mixture models are often used for data 

clustering which are formed by combining multivariate normal density components 

and fit data by using expectation maximization (EM) algorithm to find the optimum 
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parameters for GMMs. Although using GMMs is a standard method, there is no 

consensus on how to determine the number of mixture components. Therefore, we use 

the value 𝐾 as the initial guess to determine how many components we use in 

GMMs fitting. We use Akaike information criterion [23] (𝐴𝐼𝐶) as a metric to 

determine the goodness between the fitting model and the input data. 𝐴𝐼𝐶 defined as 

below: 

−2𝐿 + 2𝑚 

 

where 𝐿 is the maximum log-likelihood and m is the number of parameters in the 

Gaussian mixture models. 𝐴𝐼𝐶 takes into account both the goodness of fit of an 

estimated statistical model and the number of parameters in the statistical model. The 

lower value of the 𝐴𝐼𝐶 indicates the more appropriate parameters in the GMMs 

describing the input data. Our strategy is that running the GMMs fitting iteratively 

and increasing the components until we find out the appropriate value of component. 

We define 𝐴𝐼𝐶𝑖  as the 𝐴𝐼𝐶  value obtained at the 𝑖𝑡  iteration and 𝛿𝑖 = 𝐴𝐼𝐶𝑖 −

𝐴𝐼𝐶𝑖−1  and a threshold 𝑇. Initially, we use 𝐾  components to fit the data, and 

compute 𝐴𝐼𝐶1. Then, we increase 𝐾 to 𝐾+1 and execute the GMM fitting to acquire 

the 𝐴𝐼𝐶2. If 𝛿𝑖<𝑇 is satisfied, the GMM fitting will stop. Consequently, the new 𝐾 

components of the GMMs are suitable for describing the whole input data. Pseudo 

code 3.2 summarizes our method. Once we get the parameters of GMMs, we can 

easily resample the gradient vectors of low frequency noise. By randomly swapping 

the gradient vectors of the high frequency noise, we can simply make some 

disturbance on the noise appearance since the swap operation will not affect the 

distribution of gradient vectors. Combining the gradient vectors of high frequency 

noise, we can easily achieve the goal of noise reproducing. In the next chapter, we 

will compare the distribution and the difference between the original noise and 

reproduced noise and show their corresponding texture pattern. 

 

 

 

 

(3.19) 
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Pseudo code 3.2: Noise Reproducing Procedure 

//Step1: Optimize the low-frequent gradients iteratively 

for( i=0; i < n ; i++ ) { 

random vectors as initial guess x0 

𝑃𝑖  = Optimization(x0); 

} 

 

//Step 2: Cluster the solutions and get the cluster number. 

 do{ 

for each two sets{ 

 if (hausdorff distance < cutoff value) 

          Merge the two sets 

}while( all the hausdorff distance for each two set > cutoff value) 

𝐾 equals to the cluster number; 

 

//Step3: GMMs fitting 

LAST_AIC=0; 

do{ 

AIC= GMMs_Fitting (𝐾 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠); 

delta_AIC=AIC-last_AIC; 

last_AIC= AIC; 

Increase 𝐾; 

} while( delta_AIC < threshold); 

 

//Step4: Generate the similar noise by resampling the gradient 

Resample the low frequency gradient vectors L from GMMs model. 

For each gradient vectors of high frequency noise{ 

    temp=Random high-freq gradient index 

  swap( H (i) , H (temp) ); 

} 

G_Table = L+H; 
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Chapter 4 

 
Results 

 
 

 

 

All experiments are performed on Intel core 2 duo CPU E6750 2.66GHz using 

NVIDIA Geforce 8800 GTS graphics hardware. We only use one thread without 

taking advantage of multi-core of the CPU. 

 

4.1 Control of 2D Textures Synthesis 

 

 We demonstrate our controllable noise pattern generation approach by 

applying it to procedural texture synthesis, including cloud, marble, erosion and fire 

textures. Figure 4.1-4.4 show our results. The left column shows the input pattern 

from user, the middle column shows the controlled noise through our multi-level 

optimization process and right column shows the corresponding procedural textures 

with user control pattern. 
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Input Pattern: Controlled Noise Output Pattern 

 

  

 

Input Pattern: Controlled Noise Output Pattern 

 

  

 

Input Pattern: Controlled Noise Output Pattern 

 

  

 

Figure 4.1: Thee Cloud textures generated with different user control patterns. 
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Input Pattern: Controlled Noise Output Pattern 

 

 
 

 

Input Pattern: Controlled Noise Output Pattern 

 

  

 

Input Pattern: Controlled Noise Output Pattern 

 

  

 

Figure 4.2: Three Marble textures generated with different control patterns. 
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Input Pattern: Controlled Noise Output Pattern 

 

  

 

Input Pattern: Controlled Noise Output Pattern 

 

  

 

Input Pattern: Controlled noise Output Pattern 

 

  

 

Figure 4.3: Three Erosion textures generated with different control patterns. 
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Input Pattern: Controlled Noise Output Pattern 

 

 
 

 

Input Pattern: Controlled Noise Output Pattern 

 

  

 

Input Pattern: Controlled Noise Output Pattern 

 

  

 

Figure 4.4: Three Fire textures generated with different control patterns. 
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Figure 4.1-4.4 are created by our optimization process. All the output patterns use 

alpha blending to mix two colors and take noise value as the alpha value. The marble 

texture synthesis does not directly use the noise value but through a sine function. 

Therefore, we modify the control term 𝐸𝐶𝑜𝑛  below: 

𝐸𝐶𝑜𝑛 =  (sin(𝑉𝑖) − 𝐷𝑖)
2

𝐼

𝑖=0

 

 

the erosion texture uses noise as its absolute value, so the 𝐸𝐶𝑜𝑛  is defined as below: 

𝐸𝐶𝑜𝑛 =  ( 𝑉𝑖 − 𝐷𝑖)
2

𝐼

𝑖=0

 

 

and the fire texture uses the summation of absolute noise value in all octaves, the 

𝐸𝐶𝑜𝑛  is define as below: 

𝐸𝐶𝑜𝑛 =  ( 
 𝑁𝑜𝑖𝑠𝑒(𝑓𝑙𝑥, 𝑓𝑙𝑦) )

𝑎𝑖

𝐹

𝑙=1

− 𝐷𝑖)
2

𝐼

𝑖=0

 

 

It is flexible for modifying the control term 𝐸𝐶𝑜𝑛  according to the type of texture that 

user specified.  

 

4.2 Statistical Analysis 

 

 In this section, we compare our experimental results between the KS test and 

the Chi-square test by plotting their probability distribution and cumulative 

distribution function. We list the KS test error and the Chi-square error below. The 

pink line represents the CDF of ideal distribution, the red line represents the gradient 

vectors distribution through the optimization process with Chi-square test and the blue 

line represents the gradient vectors distribution through the optimization process with 

KS test. We also demonstrate histogram in both tests. We separate the 512 gradient 

vectors into 500 bins and the expected number in each bin is set to 1. 

 

(4.1) 

(4.2) 

(4.3) 
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Through Chi-square test Through KS test 

 

Chi-square error: 

383 

 

Chi-square error: 

508 

KS error: 

0.078539 

KS error:  

0.01588 

Control term 

error: 57.6788 

Control term error: 

57.3965 

CDF of the gradient vectors 

 

Histogram of the gradient vectors through Chi-square test 

 

Histogram of the gradient vectors through KS test 

 

Figure 4.5: Comparison of the Chi-square test and KS test. 



 

 

35 

 

Through Chi-square test Through KS test 

 

Chi-square error: 

356 

 

Chi-square error: 

472 

KS error: 

0.043876 

KS error:  

0.013935 

Control term 

error: 30.9799 

Control term error: 

30.8826 

CDF of the gradient vectors 

 

Histogram of the gradient vectors through Chi-square test 

 

Histogram of the gradient vectors through KS test 

 

Figure 4.6: Comparison of the Chi-square test and KS test. 
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In Figure 4.5, the control term error in both tests is very close by our 

experiment. We can observe that the CDF curve of KS test is more approximate to the 

ideal distribution. The CDF curve of Chi-Square test is prone to deviate from the ideal 

curve. In our experiment, the Chi-square error of gradient vectors distribution by KS 

test is bigger than by Chi-square test. We give one more example in Figure 4.6 with 

another control pattern. 

Figure 4.6 shows that the CDF curve optimized by KS test is more 

approximated to the CDF curve of ideal distribution than by Chi-square test. However, 

the control term errors are close in both tests. The Chi-square test confines the number 

of element in each bin. Hence, the Chi-square error by Chi-square test is smaller than 

by KS test in our experiment. 

 

4.3 Comparison of results under different parameters settings 

 We show the result with different start frequencies and varying the control 

weight in the objective function. 

 

4.3.1 Different Starting Frequencies 

The Figure 4.7 (a) to (d) shows the different starting frequencies of the control 

of fractal sum and their corresponding stochastic textures. We can observe that the 

appearance of lower starting frequency is smoother than the higher starting 

frequencies. This experiment demonstrates that we can even control the lower 

frequency appearance. 
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(a)                      (b) 

 

(c)                  (d) 

Figure 4.7: Stochastic textures of different starting frequency of fractal sum: (a) 

𝑓1 = 2 (b) 𝑓1 = 4 (c) 𝑓1 = 6 (d) 𝑓1 = 8 

 

4.3.2 Different weightings of the control term and the KS term 

 We demonstrate the result with different control weights of the objective 

function 𝐸 = 𝑤1𝐸𝐾.𝑆 + 𝑤2𝐸𝐶𝑜𝑛 . In order to hold both terms balanced, we set the 𝑤1 

and 𝑤2 to make the 𝐸𝐾.𝑆 and 𝐸𝐶𝑜𝑛  at the same order of magnitude. We set 𝑤1 as 

0.995 and 𝑤2 as 0.005 since the 𝐸𝐶𝑜𝑛  is relatively large to 𝐸𝐾.𝑆. We adjust weight 

by several sets of parameters. If we cannot make balance from 𝑤1𝐸𝐾.𝑆 and 𝑤2𝐸𝐶𝑜𝑛 , 

the error 𝐸 might be dominated by either 𝐸𝐶𝑜𝑛  or 𝐸𝐾.𝑆. 
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(a) (b)                   (c) 

 

(d)                    (e)                   (f) 

Figure 4.8: Stochastic textures of different control weight (a) 𝑤1 = 0, 𝑤2 = 1 (b) 

𝑤1 = 0.1, 𝑤2 = 0.9 (c) 𝑤1 = 0.01, 𝑤2 = 0.99 (d) 𝑤1 = 0.001, 𝑤2 = 0.999 (e) 

𝑤1 = 0.0001, 𝑤2 = 0.9999 (f) 𝑤1 = 0.00001, 𝑤2 = 0.99999 

 

In Figure 4.8, we observe that the pattern can be well-preserved with larger 

weight in control term (𝐸𝐶𝑜𝑛 ). In Figure 4.8(f), the patterns do not preserve well in 

comparisons of Figure 4.8 (a) due to the unbalanced weight in the objective function. 

We list the 𝐸𝐶𝑜𝑛  and 𝐸𝐾.𝑆 errors in Table 4.1. We can observe that the weight of KS 

term sets to small value, the pattern is more closely matched the user control pattern 

(see Figure 4.8(a)). In contrast, the weight of KS term sets to large value, the KS test 

error is satisfied but the appearance of the texture does not preserve well (see Figure 

4.8(f)). The above table shows the 𝑬𝑲.𝑺 and 𝑬𝑪𝒐𝒏 for the results form Figure 4.8(a) 

to 4.8(f). 
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Table 4.1: List the 𝑬𝑲.𝑺 and 𝑬𝑪𝒐𝒏 errors with different control weights 

Figure 4. 8  𝒘𝟏 𝑬𝑲.𝑺  𝒘𝟐 𝑬𝑪𝒐𝒏 

(a)  0 0.13378  1 49.7715 

(b)  0.1 0.048835  0.9 49.7668 

(c)  0.01 0.072425  0.99 49.7946 

(d)  0.001 0.061537  0.999 49.8427 

(e)  0.0001 0.017303  0.9999 49.7977 

(f)  0.00001 0.012973  0.99999 50.1087 

 

4.4 Noise Reproduction 

 

Applying our noise reproducing approach described in the foregoing section, 

we can real-time generate the similar pattern noise without time-consuming 

computation. We show some sets of noise and their corresponding reproduced noise 

pattern in Figure 4.9, 4.11 and 4.13. Besides, we analyze their distribution differences 

and their errors between the original noise produced by our optimization method and 

reproduced noise. We plot the CDF of the reproduced gradient together in order to 

observe the difference between other reproduced results in Figure 4.10, 4.12 and 4.14. 

We also list the parameters we use in the GMM fitting process in Table 4.2-4.4.  
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Control Pattern   Original Texture 𝑬𝑪𝒐𝒏 𝑬𝒖 

  

 

 

 

39.3601 

 

 

 

0.014533 

Control Pattern Reproduced Texture   

  

 

 

 

39.4204 

 

 

 

0.022346 

  

 

 

 

39.3859 

 

 

 

0.02259 

  

 

 

 

39.485 

 

 

 

0.025439 

Figure 4.9: The reproduced erosion texture and the original texture by optimization. 

List the KS error and the control term error in the right column. 
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Figure 4.10: CDF comparison between Original and Reproduced Noises, plot the 

curves together and the curve is approximated to the original CDF. 

 

  Table 4.2: The parameters used in GMM fitting for erosion texture 

Number of input sample 1000 

Error bound ℇ 10.0 

Initial GMMs components 30 

  GMMs component 36 
Cutoff Value 18.6 

AIC -15079449.0743 

 

 

 

 

 

 

 

 

 



 

 

42 

 

Control Pattern   Original Texture 𝑬𝑪𝒐𝒏 𝑬𝒖 

  

 

 

 

78.9379 

 

 

 

0.049023 

Control Pattern Reproduced Texture   

  

 

 

 

78.9881 

 

 

 

0.04116 

  

 

 

 

78.979 

 

 

 

0.41575 

  

 

 

 

78.8778 

 

 

 

0.41176 

Figure 4.11: The reproduced marble texture and the original texture by optimization. 

List the KS error and the control term error in the right column. 
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Figure 4.12: CDF comparison between Original and Reproduced Noises, plot the 

curves together and the curve is approximated to the original CDF. 

 

Table 4.3: The parameters used in GMM fitting for marble texture 

Number of input sample 1000 

Error bound ℇ 10.0 

Initial GMMs components 39 

  GMMs component 42 
Cutoff Value 19.5 

AIC -25353476.4511 
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Control Pattern   Original Texture 𝑬𝑪𝒐𝒏 𝑬𝒖 

  

 

 

 

41.8651 

 

 

 

0.0095667 

Control Pattern Reproduced Texture   

  

 

 

 

41.9656 

 

 

 

0.024922 

  

 

 

 

42.0567 

 

 

 

0.015958 

  

 

 

 

41.9322 

 

 

 

0.030781 

Figure 4.13: The reproduced cloud texture and the original texture by optimization. 

List the KS error and the control term error in the right column. 
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Figure 4.14: CDF comparison between Original and Reproduced Noises, plot the 

curves together and the curve is approximated to the original CDF. 

 

Table 4.4: The parameters used in GMM fitting for cloud texture 

Number of input sample 1000 

Error bound ℇ 10.0 

Initial GMMs components 20 

  GMMs component 24 
Cutoff Value 15.5 

AIC -20163091.2097 

 
The Figure 4.9, 4.11 and 4.13 show that the reproduced results are quite 

similar to those of the original optimized noise both the distribution and the control 

term error. We can observe that the cloud and erosion textures are closely matched the 

original texture appearance. However, the reproduced marble textures are not closely 

matched the original texture through optimization since the marble texture does not 

directly use the noise value but through a sine function. Hence, the appearance of the 

marble texture is sensitive to the noise value through sine function. A little difference 
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on the noise value will cause the appearance changes immensely. Since our objective 

function is considered not only the lower frequency part but also the whole gradient 

vectors, we can observe that the 𝑬𝑪𝒐𝒏 and 𝑬𝑲.𝑺 of reproduced noises are probable to 

have the smaller error value than the original noise. We demonstrate the CDF in 

Figure 4.10, 4.12 and 4.14 in order to show that the CDF curves from the original 

noise and the reproduced noises are close. We do not lose the statistical property 

through our noise reproducing process.  

 Table 4.2-4.4 list the parameters we use in GMM fitting process. The 

numbers of input sample and the error bound ℇ in different textures are set to 1000 

and 10.0, respectively. The difference between initial guess of the GMMs components 

and the final used number of components are small, so the hierarchical clustering 

approach makes a suitable initial guess for the GMM fitting. In our experiment, we set 

the cutoff value in different textures respectively. This parameter is suitable in one 

texture but in other textures it might happen that the number of clustering is too large. 

Therefore, we adjust this parameter case by case in order to find out the proper 

clustering number for the initial guess of GMM fitting. Based on the statistics 

measurement and the reproduced texture appearance, the GMMs we apply is suitable 

for our input data and fit well. As the result, we can simply resample the similar noise 

from GMMs without re-running the time-consuming optimization. 
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4.5 Terrain Generation 

 

 We apply the noise control approach in terrain generation by taking the noise 

as a height map. Through our approach, we can easily control the generation of the 

terrain appearance and the following figures from 4.7 to 4.9 demonstrate the different 

height map with their corresponding terrain appearances. We also demonstrate the 

terrain with only polygon mesh for clearly realizing the variation of the height.  
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Figure 4.15: Terrain height map generated by user-specified flower pattern. 
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Figure 4.16: Terrain height map generated by user-specified “X” pattern. 
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Figure 4.17: Terrain height map generated by user-specified star pattern. 
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Chapter 5 

 
Conclusion and Future Work 

 
 

 

 

We propose a method that can generate noise satisfied the user demand and 

preserve its original statistical properties. Our system achieves these goals by 

formulating the problem as a high-dimensional nonlinear optimization and casting to a 

hierarchy optimization framework. Besides, we achieve the reproducible property for 

generating similar control noise without redundant computational time via 

optimization. This approach might be used in many further applications such as 

animation or computer games. 

Currently, our system only implements the noise control in two dimensioned 

case. We might apply the control on 3D application. Figure 4.17 is the 3D procedure 

texture synthesis application. If we extend our framework to 3D, we need to quantify 

the 3D gradient vectors in order to measure if the gradient vectors are uniformly 

distributed. We can transform the Cartesian coordinate into Spherical coordinate (see 

Figure 4.18):  𝑥, 𝑦, 𝑧 =  𝑟𝑠𝑖𝑛𝜃, 𝜑, 𝑟𝑐𝑜𝑠𝜃 , 𝑟 = 1  since the gradient vectors are 

unit-length. Therefore, we can use 𝜃  and 𝜑  to express a 3D gradient vector. 

Applying into our framework, the KS test can also measure the uniform distribution 

of the gradient vector and the control term error is the same concept as our description 

in section 3.4.1. Since our framework is flexible for other gradient-based noise 
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generating techniques, we might adopt other noise function for our controllable source 

in the future. 

 

 

(a) 

 

(b) 

Figure 4.18: Stochastic texture synthesis applied in 3D application. 
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Figure 4.19: Spherical Coordinate 

In the fractal sum representation, we only take the gradient vectors as the 

control mechanism. However, we can develop a method to automatically adjust the 

amplitude in the fractal sum representation to achieve much more closely matched the 

user control pattern. 

In our algorithm, simulated-annealing solver consumes most computational 

time. Currently, simulated-annealing is invoked from Matlab, which provides precise 

calculation but the performance is not as efficient as C-code based solver. We might 

adopt C-code based solver to reduce much computational time. 
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