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ABASTRACT

In this thesis, we achieve solid texture synthesis from a 2D input texture. Because
2D input texture does not have enough information in 3D space, we introduce a method

that using a set of pre-computed 3D-candidates, each being a triple of interleaved 5x5 2D

slices from three coordinates. Moreover, our approach can keep the color consistency
along the crossbar of the 3D-candidates. Then we can synthesize solid textures by
applying pyramid synthesis method. Appearance vectors are used to replace RGB color
values. With these information-rich vectors, 4 locations for each coordinate are used to
obtain 5x5 slice neighborhoods. Moreover, we introduce our approach for controllable

texture synthesis with vector fields.

II



Acknowledgements

First of all, I would like to thank my advisors, Dr. Zen-Chung Shih and Dr. Chin-Chen
Chang, for their supervision and helps in this work. Then I want to thank all the members in
Computer Graphics & Virtual Reality Lab for their comments and instructions. Especially two
persons, Yu-Ting Tsai and Ya-Lin Su, I want to thank them for their suggestions and helps.
Finally, special thanks for my dear family, and this achievement of this work dedicated to

them.

I



Contents

k74 BB crrceennniennnnissanesatessasse st s sassesassesssssesass s stt e bsssbas e as s natesaassssassesestsessasessnts I
ABASTRACT .uuuiiiiiiisnniisnninsnnicsssncssssnesssssssssssssssssssssssssssssssssssssssssssessssssssssssssssssssssssssssssnss II
ACKNOWIEAZEINENLS ...oevvvrrareereiecssssssraasssicssssssssassssessssssssssassssssssssssssassssssssssrsassassssssssssrsansas III
COMEENLS...cuuerirrriiisrenissrnicsssnssssniesssnisssssesssnssssssesssssssssssssssssssssssssssesssssssssssssssssssassssssssssssssssans v
LSt Of FIGUI'ES .euvveeeiieinnisersnnnnccscssssssnnsssnecssssssssansssessssssssssasssssssssssssanssssssssssrersanssssssssssrsansasss A\
Chapter 1  INIrodUCLION ....ucicerirreicisesnrissssantisssssasiossssssesssssssessssassssssssssssssssssesssssassssssasssssses 1
| Y (057 Y o) o LTS 1
1.2 OVEIVIEW .eiiiiieiiieeiie ettt ettt et e bt e ettt e st e st e e sabe e e abeesasaesssbeesaseeessbeesasaeennseesnneeennne 2
1.3 Thesis OrganizZation ..........cceecuiertierieeie et erte et et estceeeteeaee et et essteeteesseesseesaeeeneeenneenne 3
Chapter 2 Related WOTKS ...ccccceiiiiereiicessaniissssariosssssrcsssssssissssassessssssssossssssesssssssssssssssssssns 5
2.1 Texture Synthesis with Control MechanisSm ..........ccceceerieririieiieeie e 5
2.2 Solid Texture Synthesis ........... . B AL T b i 7
2.3 Texture Synthesis and VectorField.............. 0 e 9
Chapter 3  Solid Synthesis ProCess iiidiueeeescssessssareeesssnsssessssassecssssssssssssssessssssssssssassasss 11
3.1 Feature Vector GENETAtION . ... iiiiivsessisan sfh ciueenbns s eiieeeeeseesseesseeeneeenseesseeseesnsessseens 11
3.2 Similarity Set GEeNEIation .......cceeeseeee citeaiseeennieesinseeisaarieseessseessseessseeessseessseessseesssseenns 13
3.3 3D-Candidate GeneratiOn i...... . i sessssssssssssenseesdaeTheeenseesseesseesseeenseesseeseesneesssessseens 13
3.4 Pyramid Solid Texture Synthesis. ik .. et 15
3.4.1 Pyramid UpSampling e ifieiieeeueeeoereeiiaiihe et eeeeeieeteeseeeseieeieeeieesieeseeseeeneeens 15

3.4.2 Jitter Method.......oooeeeee i L e 16

3.4.3 VOXEl COTTECTION ...ttt ettt ettt e et eaeeeeee e bt et e eeeeeeens 17

Chapter 4 Anisometric SynthesisS ProcCess........cccoeesseiccssericsscsariossssnsesssssnsissssassecssssssssses 22
4.1 3D VeCtOr FIBIA ..cuueieiieiieie ettt st e 22
4.2 Anisometric Solid Texture SYNthesis ........ccccerveeriiriiiiiieieineeteeeeeesee e e 25
4.2.1 Pyramid UpSampPling .......cccceeeuieriiiiieeieeiieeeee ettt 25

4.2.2 VOXEL COTTECHON ...uveieiiieeiieeiteeiteeeiee ettt eeteeeteesteeessteesnteeasnteesnneessaseeensees 26

Chapter 5 Implementation and ReSUItS.......cccieciiinrrrnneiecssssssssassssecsssssssssssssssssssssssassssssss 31
5.1 VECtOr FIBLAS....uvvieiiieiie ettt ettt et ee e tee st e e sabeeesteens 32
5.2 Synthesis RESUILS ........oeuiiiiiiieiee ettt st ettt 36
Chapter 6 Conclusions and Future WOorKS ........cooeiiconneeicsscariossssncsssssssiosssassesssssssssses 72
L 2 ) (T 1 LR 74

v



List of Figures

Figure 1.1
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 4.1
Figure 4.2
Figure 4.3

Figure 4.4
Figure 4.5
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19
Figure 5.20

SyStem fIOWCHATT.......coiiiiiieiie ettt s 4
Overview of texture data tranSformation ..........cc..ccoceerverniinienieinieeneenecneeeeens 12
The process for feature vector Zeneration: ..........cceerveereerieeieeieeseeseeeeee e 12
The diagram of 3D-candidate:...........cocueevieeiiiriinniiiiiiie ettt 14
Synthesis from one voxel to mxmxm solid teXture .........ccccevveerveerveeneenncnne 15
Twelve neighbors for N (V)1 ..o, 18
Three sub-neighbors for each neighbor of voxel v:......ccccoviiiiniiniiiniiniinn, 19
The process of forming triple candidates in direction x: .....c..ccccceveevenveeceenennee. 21
5x5x%5 3D vector field with orthogonal axes.........ccccceeeeevierienienie e 23
5x5x5 3D vector field with a circle pattern on XY plane......cc..cceceevieeveeneeneene 24
Twelve warped neighbors for Ns, (V) 1 et 27
Three warped sub-neighbots for warped neighbors of voxel v .......cccoceeveneenee. 29
The process of forming warped triple-candidates in direction x:.......c.cccccoeenee. 30
5x5x5 3D vector field about circular & €missive control...........cccceeveeceeneenenn. 32
5x5x5 3D vector field about slant control ...........%........ocoiviiiiniiniiiieee 33
5%5x%5 3D vector field about zigZag control........c.o.coooieiierienieeieeie e 34
5x5x5 3D vector field.about 3D Slant-Control i v ......coooveevuerirniiniiiicrceeeee 35
Input and result data fOr ase_1.........cooeeoiedesiiinieeee et 37
Anisometric results with circular-control for case_1...........cocevceeviniinenceiennene. 38
Anisometric results with emissive control for case_1........ccoccoevieiieiiiiiininnienn. 39
Anisometric results with slant control for case_1 ......c.ccooceeviiniiniinniiniininnnen. 40
Anisometric results with zigzag control for case_1 .......ccccoeoeieiiiiiiiiiiiiniinen, 41
Anisometric results with 3D slant control for case_1 ........cccceveevienienincnnnen. 42
Input and result data for CaSe_2........cooierieriiiiieeeeeeeee e 44
Anisometric results with circular control for case_2.........ccocceeveenieniencicennee. 45
Anisometric results with emissive control for case_2........cccceeceevienierrnennennen. 46
Anisometric results with slant control for case_2 .........ccoccevverveeneeneenicnieennen. 47
Anisometric results with zigzag control for case_2 .......c.cccocceevieninnieiieeneenen. 48
Anisometric results with 3D slant control for case_2 ........cccceeeeveenienicncennen. 49
Input and result data for Case_3........coooierieeiiiiieeeeee e 51
Anisometric results with circular control for case_3.........ccocceeveenienicnicnneennen. 52
Anisometric results with emissive control for case_3........ccccoeceerirnienieennennen. 53
Anisometric results with slant control for case_3 .........ccocevverviinennieniciieennen. 54

v



Figure 5.21
Figure 5.22
Figure 5.23
Figure 5.24
Figure 5.25
Figure 5.26
Figure 5.27
Figure 5.28
Figure 5.29
Figure 5.30
Figure 5.31
Figure 5.32
Figure 5.33
Figure 5.34

Anisometric results with zigzag control for case_3 .......c.cccovevveeneenienicnncennen. 55
Anisometric results with 3D slant control for case_3 ..........ccccceevveerciveenveenennen. 56
Input and result data for Case_4........cooeerieriiiiiniiieeeee e 58
Anisometric results with circular control for case_4.........ccccoevvvevveenciveenieenennen. 59
Anisometric results with emissive control for case_4..........ccccceeeeveieecciveeeennnen. 60
Anisometric results with slant control for case_4 ..........ccocceevvvveecireencieeenieeennen, 61
Anisometric results with zigzag control for case_4 .......c.cccovevveeneenienrcincennen. 62
Anisometric results with 3D slant control for case_4 ..........ccccceevveevciveenveenennen. 63
Input and result data for Case_S.......ccovieriiriiniiniieicetee e 65
Anisometric results with circular control for case_5S........cccceevvveviveenciieenieenennen. 66
Anisometric results with emissive control for case_5S.........ccoceeeeciiieecciieeeennnee. 67
Anisometric results with slant control for case_5.......cccceevevviveecieeniieenie e, 68
Anisometric results with zigzag control for case_5 .......ccccvverveenienienicncennen. 69
Anisometric results with 3D slant control for case_5 .......c.cccoceevveevcieeenieenennen. 70

VI



Chapter 1

Introduction

1.1 Motivation

Nowadays, a lot of textures can:bé synthesized well in 2D. But there is still a lack
of techniques in generating 3Ditextures. 'There ate different kinds of techniques for 3D
surface texturing like texture mapping [8, 23 24],.procedural texturing [5, 15] and
image-based surface texturing [18, 20,22]. 3D surface ‘texturing has some undesired
problems, so solid texture is introduced to solve this problems.

Texture mapping is the easiest method for 3D surface texturing, but the quality of
the results is not good. It may be suffered from some well-know problems such as
distortion, discontinuity, and unwanted seams. Procedural texturing can solve the
problems of distortion and discontinuity. However, it still has some drawbacks.
Procedural texturing models only limit types of textures, such as marble. Furthermore,
users may take time to understand and control parameters. The results will be decided
the designers. Image-based surface texturing can synthesize more textures, but it can’t
handle large structural textures like bricks. When the curvature is too large, it still has
distortion and discontinuous problems. Furthermore, image-based surface texturing is

non-reusable such that textures generated for one surface cannot be used for other
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surfaces.

Solid textures can be used to solve the above problems. By Peachey [14] and Perlin
[15], solid textures are blocks of colored points in 3D space to represent real-world
materials. Using solid textures, users do not need to find a parameterization for the
surface of the object to be textured. Furthermore, solid textures provide texture
information inside the entire volume.

Recently, some techniques [3, 4, 11, 16] used three orthogonal slices for
neighborhood matching. We take advantage of this idea and present a method for real
3D space texture synthesis from a 2D texture. Moreover, we use vector fields to control
the solid texture synthesis. Unlike above methods, we replace 2D k-coherent candidates
with 3D-candidates. When we select the best matching candidates, we consider all the
three directions instead of seach | direction.independently. We use information-rich
appearance vectors for neighborhood matching. The whole process is automatic. The

results illustrate that our approach can do-wellromarwide range of textures.

1.2 Overview

The flowchart of our system is shown in Figure 1.1. First, input a 2D texture and
repeat the texture thrice as three directional exemplars. In the pre-process, it generates
feature vectors, similarity sets, and 3D-candidates for each pixel. For feature vector
generation, it captures 5x5 window information and uses principal component analysis
(PCA) to decrease the dimensions. For similarity set generation, it finds the three pixels

most similar to each pixel. For 3D-candidates generation, it computes a small candidate

set from the other two exemplars for each pixel. In the synthesis process, we apply the



pyramid synthesis method [12] to our system. Upsampling, jitter and correction are used
at each synthesis level to obtain the results. For anisometric synthesis, vector fields are
used to control the synthesis. We input a vector field as the anisometric field and
compute the inverse anisometric field. These two fields are used in synthesis process to
get the results.

The major contributions of this thesis are as follows: First, we present an approach
for synthesizing solid textures from a 2D texture. Using appearance vectors, only 12
locations (4 locations for each direction) are needed to synthesize solid textures. Second,
we present a coherent anisometric synthesis method for solid textures according to

vector field control.

1.3 Thesis Organization

The rest of this thesis:is organized as- follows: In Chapter 2, we review related
works about texture synthesis:with icontrol-and-solid texture synthesis. In Chapter 3, we
present our approach for synthesizing solid textures from a 2D texture. Chapter 4
presents the proposed anisometric synthesis approach for solid textures based on vector
field control. Chapter 5 shows the implementation and results. Finally, conclusions and

future works are discussed in Chapter 6.
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Chapter 2
Related Works

In this chapter, we review some-recent and representative works.

2.1 Texture Synthesis.with Control-'Mechanism

Ashikhmin [1] presented a texture synthesis algorithm for natural textures. He
provided an interactive interface for users to control the texture synthesis process. He
introduced an idea of “shifted-candidates” for neighborhood matching and found the
best similar candidate. This approach uses a smaller neighborhood to obtain the quality
characteristics of a larger neighborhood and maintains the coherence of the results.
Users can use painting-style interface to indicate large-scale properties of the texture.
Furrhermore, this method is fast and straightforward for the users. But it could not
obtain good results if the user’s control does not contain significant amount of high

frequency components.



Lefebvre and Hoppe [12] introduced a high-quality and parallel pyramid synthesis
algorithm. Their method includes upsampling step to maintain patch coherence, jittering
of exemplar coordinates to increase the randomness of the texture, and an
order-independent correction step to keep the similarities between synthesized results
and input textures. They obtained high-quality and efficient results thanks to the
order-independent correction step. It corrects the pixel coordinate for more accurate
neighborhood matching and the whole step can be divided into several subpasses to
promote performance. However, it still has one drawback: when the features are too
large to be captured by small neighborhoods, it could perform poorly. This drawback is

also a well-known problem for other neighborhood-based per-pixel synthesis methods.

Lefebvre and Hoppe [13}.proposed a structure for exemplar-based texture synthesis
with anisometric control. They replaced traditional RGB| values with appearance vectors
for neighborhood matching.. Their -appearance—space reduces runtime neighborhood

vectors from 5x5 grids to only 4 locations, so the synthesis is more efficient, and the

quality of results is good because of the information-rich appearance vectors. In
addition, they combined their pyramid synthesis with appearance vectors to accelerate
neighborhood matching and proposed novel methods for coherent anisometric synthesis
which makes arbitrary affine deformation on textures. They presented a convenient way

to control textures.

Kwatra et al. [9] introduced a method to control flows on 2D textures and presented
an algorithm to perform texture control on 3D surfaces [10]. They proposed a vector

advection technique with global texture synthesis to accomplish dynamically changing



fluid surfaces. Users can define fluid velocity field to control the texture results on 3D
surfaces. The neighborhood construction step in the process considers orientation
coherent with the user-defined velocity field. This method not only makes the
synthesized results similar to the input texture, but also keeps temporally coherent.
However, it is difficult for users to define an orientation velocity field which is smooth

everywhere.

2.2 Solid Texture Synthesis

Jagnow et al. [7] used traditional stereological methods to synthesize 3D solid
textures from 2D images. They synthesized solid textures for spherical particles first
and then extended the technique to apply to arbitrary=shaped particles. Their approach
needs cross-section images to record thedistribution of ‘circle sizes on 2D slices, and
then builds the relationshipsof 2D profile-density and 3D:particle density. Users could
use the particle density to add:one particle at-a-time to‘reconstruct the volume data, so it
means the step is manual. This method:uses-many*2D profiles to construct 3D density
for volume results, which are good for marble textures. However, their system is not

automatic and only for particle textures.

Chiou and Yang [2] improved the above system to automatic process. They divided
the synthesis into two parts: 2D analysis phase and 3D synthesis phase. First, they
collected essential statistics to develop a probability model. Then they used this
probability model to control the variation in particle size through the 3D synthesis
procedure. However, this system inherits the above system so it is only for particle

textures.



Qin et al. [16] introduced an image-based solid texturing in terms of basic
gray-level aura matrices (BGLAMs) framework. They replaced traditional gray-level
histograms with BGLAMs for neighborhood matching. They defined aura matrices from
input exemplars and generated a solid texture from multiple view directions. In the
volume result, they will only consider the pixels on the three orthogonal slices for
neighborhood matching. The whole system is fully automatic without user interactions.
Furthermore, they can generate reliable results for both stochastic and structural textures.
However, it needs large storages for large matrices and the results are not good for color
textures.

Kopf et al. [11] provided a solid texture synthesis method from 2D exemplars. They
took advantage of 2D texture. optimization techniques to. do 3D solid texture synthesis
and then preserved global statistical properties by histogram matching to achieve
optimization. For each voxel,.they only consideredrthe neighborhood coherence in three
orthogonal slices, and increased the similarity.sbetween the solid textures and the
exemplar iteratively. Their approach could do well for wide range of textures. But they

synthesized the texture with the information on the slices.

Takayama et al. [17] presented a method which fills a model with anisotropic
textures. They had some volume textures and defined it how to map to 3D objects. Then
they pasted solid texture exemplars repeatedly on the 3D object. Volumetric tensor
over the mesh can be set by users, and the texture patches are located according to these
fields. This method still has drawbacks. The patch seams became noticeable when using

a texture with strong low-frequency components and the blurring artifacts appeared



when using highly structured textures.

Dong et al. [4] introduced a new algorithm to restrict synthesis to a subset of the
voxels, while enforcing spatial determinism. They reduced the dependency chain of
neighborhood matching, so that each voxel only depended on a small number of other
voxels. They synthesized a volume by using pre-computed 3D-candidates, each being a
triple of interleaved 2D neighborhoods. These 3D-candidates are selected carefully to
form consistent triples. Their approach could generate good results efficiently. However,
if the three exemplars do not define a coherent 3D volume, the quality of the result will

be poor.

2.3 Texture Synthesis and: Vector Field

Many patterns are created by interactions between texture elements and surface
geometry, so Turk [18] synthesized a -téxture directly on the surface of the model. An
orientation field must be specified over the surface.in order to preserve the directional
nature of textures. They did this by allowing users to pick the directions at several

locations and then interpolating vectors over the rest of the surface.

Ying et al. [22] presented a method that synthesized the texture directly on the
surface, rather than synthesizing a texture image and mapping it to the surface. A 2D
vector field was used to specify the correspondence between orientation on the surface
and orientation in the domain of the example texture. A pair of orthogonal tangent
vector fields is used for the purpose. They got one field first, and the second field is

computed as the cross-product of the first field and the oriented surface normal.



Taponecco et al. [19] used Markov Random Field (MRF) texture synthesis method
to implement 2D vector field visualization. In their approach, they defined a vector field
by magnitude and direction. The magnitude could be easily computed using an
appropriate norm of the values. Assigning the direction required a projection of the
vector onto the image plane, and then the angle of the tangent in the vector field relative
to the x-axis is gotten. The magnitude and direction were used to scale and rotate the

image.

Wu et al. [21] proposed an approach to directly synthesize texture on arbitrary
surface with texture sample. It had a tangential vector-field which indicated the desired
growing orientation of thestexture on- the”Surface. First, users specified tangential
vectors at a few seed triangles, and then they interpolated vectors at the remaining
triangles to build a tangential.vector. field. They-recursively mapped triangles to texture

space until the whole surface is mapped:completely based on the vector field.

10



Chapter 3
Solid Synthesis Process

In this section, we present our approach for. synthesizing solid textures from 2D
textures. In Section 3.1, we_describe feature vectors*in appearance space and how we
get the feature vectors. Then weyuse” the similarity set to accelerate neighborhood
matching in Section 3.2. In Section 3.3, we keep the color coherence of the three
orthogonal slices by computing 3D-candidates! We introduce how to apply 2D pyramid
texture synthesis to solid texture synthesis in Section 3.4. The upsampling process
increases the texture sizes between different levels, that each voxel in parent level
generates eight voxels in children level. The jitter step perturbs the textures to achieve
deterministic randomness. The last step in pyramid solid synthesis is voexl correction,

using neighborhood matching to make the results more similar to the exemplar.

3.1 Feature Vector Generation

Solid texture synthesis using RGB color values for neighborhood matching needs

11



larger neighborhood size and data. Appearance vectors have been proved that they are
continuous and low-dimensional for neighborhood matching. Hence, we transform the
texture data values in color space into feature vectors in appearance space. As shown in

Fig. 3.1, we transform texture data T into appearance space texture data 7".

Color Space Appearance Space

Appearance - :
Texture Data Vectors Dimension Reduced

T I

—~

T!

Figure 3.1 Overview of texture data transformation

According to Lefebvre and Hoppe [13], we take the RGB values in 5x5 windows

(Fig. 3.2 (b)) to construct appearance vectors for-each.pixel of an input texture 7 (Fig.
3.2 (a)). The exemplar 7' eonsists-of the feature vectors at each pixel. There are 75
dimensions (25 for grids and 3 for RGB)for each'pixelsin 7', and then we perform

principal component analysis (PCA), to.reduce the dimensions for a transformed

exemplar T (Fig. 3.2 (c)).

(b)

() (c)

Figure 3.2 The process for feature vector generation:

12



(a) input texture data T (b) 5x5 windows structure for feature vectors

(c) transformed exemplar T

3.2 Similarity Set Generation

By the k -coherence search method [24], searching from the candidates can
accelerate neighborhood matching because we do not have to search from each pixel in
the exemplar for neighborhood matching. Thus, we construct a similarity set to record

the candidates similar to each pixel.

Based on the principle of coherence synthesis [1], searching candidates from the

nxn neighbors of pixel p in the eXemplar 7» can accelerate the synthesis process.

Hence, we find the k& most similar pixels from the nxn neighbors of pixel p in the
transformed exemplar T to construct the sithilarity set “C. , (p) for pixel p, where

k is a user-defined parameter, and /is-the pyramid level, C/(p)= p.Note that n isa
user-defined parameter to control the window' size for coherent synthesis. In the

experiments, n is setas 7.

3.3 3D-Candidate Generation

First, we repeat the input texture thrice as three directional exemplars7,, T and T, .

By Dong et al. [4], we generate a small set of 3D-candidates for each pixel of the three
exemplars to build the relation between the three exemplars. The 3D-candidate is

by three 5x5 slices (2D neighborhoods) (Fig. 3.3 (a)). It is important that a suitable

candidate should be consistent across the crossbar. The crossbar is the strip that is

intersected by two slices (Fig. 3.3 (b)). Therefore, we seek to minimize the color

13



disparity between the strips shared by interleaved slices.

Y

()

(b)

(©)

Figure 3.3 The diagram of 3D-candidate:

(a) Three input exemplars 7,, 7,, T, and a corresponding 3D-candidate.

(b) The crossbars are defined by the three slices.

(c) A consistent triple from each exemplar.

We define the triple to be the three coordinates which is pointed by the center pixel
of the three slices. For each pixel of each exemplar, we form triples using the pixel
and two neighborhoods from the other two exemplars. We select the triples which have
the smaller crossbar error. The 3D-candidate set is composed of these triples. For

instance, as shown in Fig. 3.3(c), assuming we want to compute a 3D-candidate set for

14



pixel pin T, we first find in 7, the K pixel strips best matching the orange line from
T, and in T, the K pixel strips best matching the green line from T,. We use the

current pixel p as the third coordinate to produce all possible K’ triples, and then order
them based on the crossbar error which is the sum of color differences for the three
of pixel strips. In the experiments, we keep the 12 best triples as 3D-candidates for each

pixel and set a value K as 65.

3.4 Pyramid Solid Texture Synthesis

3.4.1 Pyramid Upsampling
The pyramid synthesis method [6]isynthesizes textures from coarse level to fine
level. There are [+1 levels in Synthesis-process, /=0~1log, m, where m is the size of

the target texture. We apply this 2D pyramid synthesis,method to 3D space.

Figure 3.4 Synthesis from one voxel to mxmxm solid texture

In our approach, we synthesize from one voxel to a mxmxm solid texture, from

S, ~S,, where L=log,m, as shown in Fig. 3.4. We synthesize a volume data S in

~ ~

which each voxel S[v] stores three coordinate values, indicating i , T, , T,
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exemplar’s pixel, respectively. First, we build a voxel and assign value (1,1), (1,1), (1,1)
to it as triple coordinates. Then, we upsample the coordinates of parent voxels for next
level, assigning each eight children the scaled parent coordinates plus child-dependent

offset as

S,lijk] =S,_ 1[’7

—_I
—I
N |~.
__I
—l
N | =

é —l]x+h(jmod2 kmod?2),

s
S,lijk], =S, 1[[31 %—l

__ ~(log, m=1)
hy = 2%

1] +h (imod2,kmod2),

N|>- Nl»

1] +h,(imod2, jmod2),

where £, denotes the regulan output spacing of exemplar coordinates, and ijk

means the location of voxel v §[ijk], is-the new coordinate value at location ijk
within the volume of level [+for exemiplar T; -8, [ijk], " is the new coordinate value at
location ijk within the volume of level ‘1" for exemplar ﬁ S,[ijk], is the new

coordinate value at location ijk within the volume of level [/ for exemplar fz

3.4.2 Jitter Method

After upsampling the coordinates, we have to jitter our texture to achieve

deterministic randomness. We plus the upsampled coordinates at each level a jitter

function value to perturb it. The jitter function J,(v) is produced by a hash function

H(v):Z* - [-1+1] and a user-defined parameter 7.
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S,vl=S,vl+ J,(v)

J,wW)=hHW)r,

3.4.3 Voxel Correction
In order to make the coordinates similar to those in the exemplars 7,, T, T, we

take the jittered results to recreate neighbors. There is a feature value for each pixel
after constructing feature vectors. For each voxel v, we collect the feature values of its

neighbors to obtain the neighborhood vectors N, (v)., N (v),, N, (v), for each
direction, respectively. Then, we search the most similar pixel from the transformed

exemplars T; , ﬁ f to make the result similar to the exemplars T, T) T .

z

In neighborhood matching, we take-4-diagonal locations for voxel v in each

direction to obtain the neighborhood vectors“ N, (v),, No(v),, N, (v),:

N, (), =T IS+ A, 1A, =| £1

I+
—_

I+

N, (), =T, [Sv+A,1]A, =

I+
—_— O =

I+
—

N, (), =1T.[Sv+A1]A, =

I+
—

Fig. 3.5 shows that each direction has 4 diagonal locations for each voxel v.
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4 3 %

4

(a) (b) ©

Figure 3.5 Twelve neighbors for N, (v):
(a) 4 neighbors for N, (v),  (b) 4 neighbors for N (v),

(c) 4 neighbors for N (v),

Based on [13], for N, (v),, we average the voxels nearby voxel v+A to
improve convergence without increasing the size of the neighborhood vector N, (v),.
We average the appearance values from 3 synthesized voXels nearby v+ A as the new
feature value at voxel v+ A, , and then usé.the new feature values at 4 diagonal voxel
to construct neighborhood vector. N, (v) “Also;=N (v}, and N, (v), can be done by
the same process. N, (v;A,) means ithe averaged feature value at voxel v+A, .
N, (v;A)) means the averaged feature value at voxel v+A =~ N, (v;A ) means the

averaged feature value at voxel v+A .

1 =" ’ ’
Ns, (V, Ax) = §Z AN=MA,MeV¥, Tx [S[V + Ax +A ]_A ]

0 0 0)(0 0 0Y(0 0 O
¥Ye{lO 0O OL/O 1 0/,;JO O 0|}
00 0J/)l0O00/l0OO0°1

1 ="' 2 ’
N, (nA) = gz soms,mew, T, [SV+A + A= A]
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0 0 0)(1 0 0Y(0 0 O
¥ e{|0 0 0[O OOIOOO]|}
00 0Jlo0 0 0JlO O 1
1 ="' 2 7’
N,(v;A)= gz A':MA;,ME‘PZYL [SIv+A. +A]-A]
0 0 0Y(1L 0 0Y(0O 0 O
Y. e{|0 0 0,O 0 OL{0 1 0O}
0 0 0/)lo0 0 0JlO OO

Fig. 3.6 shows the locations of 3 synthesized voxels for each neighbor.

o || e

Ay
@]

'
).
4

58— /7'/:L

(a) (b) (c)

Figure 3.6 Three sub-neighbors for each neighbor of voxel v:

@in N, (), (bin N, (), (©in N, (),

We use the similarity sets and coherence synthesis method in the searching process,
utilizing the 4 voxels for each direction nearby voxel v. Taking direction x for

example, for the neighbor voxel i, (i, =1~4), we can get the most similar 3 pixels
(iy,1,,i4) 1n exemplar 7, for voxel i, from the similarity set. And then we

the offset between voxel i and voxel v from 3D space to 2D space to infer the
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candidates (i, ,i,,,,i,5, ) in exemplar 7 for voxel v (Fig. 3.7(b)). In order to keep

color consistence in three directions, we use the 3D-candidate set to infer the other two

coordinates (i), > {,,., ) in exemplars T, and 7  (Fig. 3.7(c)). In addition,

directions y, z are done by the same steps.

Now, for each v, we can get a set of triple candidates 7C, , which point towards
pixels in exemplars 7., T,, T, We compute the neighborhood vectors N (TC, ).,
N (TC, ;),, N (TC, ,), by the averaged feature values from the 4 nearby pixels.
Finally, we sum up the total difference between N, (TC, ,), , N, (IC, ,), .
N, (TC, ), and N, (v),, N, (v)g. N ()., then replace the triple coordinate for

voxel v with the best matching triple candidate.
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(a)
T

(b)

gl

‘ l(x—)y)v
~aP
. l(x—)z)v

T, T,
(c)

Figure 3.7 The process of forming triple candidates in direction x:
(a) A voxel v is corrected.

(b) The candidates in exemplar 7.

(c) Find the other two candidates in exemplar 7, and T..
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Chapter 4
Anisometric Synthesis Process

In this section, we present the proposed anisometric synthesis approach for solid
textures with vector field control. In Section 4.1, we. introduce 3D vector fields and how
we generate anisometric fields and inverse anisometric fields with the 3D vector fields.
In Section 4.2, we introduce the differénces between'solid synthesis and anisometric
synthesis. These different steps*are -upsampling-and correction. The jitter step is the

same as it in the solid synthesis process.

4.1 3D Vector Field

We need the user-defined 3D vector fields to implement anisometric solid texture

synthesis. We use these 3D vector fields to control the result.

First, we design a 3D space which contains three orthogonal axes at every point,
then we use mathematics formulas to control the three axes. Fig. 4.1 shows a 3D vector

field with orthogonal axes at each point, and the space size is 5x5x5. We make the three
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axes various, and expect that the texture results would be changed with the fields. For
example, we design a circular field, and there will be a circular pattern on the texture.
Fig. 4.2 shows the 3D vector field with a circular pattern on XY plane. The vector field

should be the same size as the texture result.

:
—= f—= = >
= = = = =
—= f—= = >
—= f—= = >
—= f—= = >

(a) (b)

(c)
Figure 4.1 5x5x5 3D vector field with orthogonal axes
(a) XY plane (b) XZ plane

(c) three orthogonal axes at each point

23



(©
Figure 4.2 5x5x5 3D vector field with a circle pattern on XY plane

(a) XY plane  (b) and (c) are three axes at each point

For each level, we have to make the anisometric field A and the inverse
anisometric field A~ based on the user-defined 3D vector field. The anisometric field
A is created by downsampling the 3D vector field, and we obtain A, for each level.
Afterward we inverse the A, to get inverse anisometric field A~ for each level. In

anisometrc synthesis process, the upsampling and correction steps will refer to the fields
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A and A ateach level.

4.2 Anisometric Solid Texture Synthesis

4.2.1 Pyramid Upsampling

The goal for upsmapling step in anisometric synthesis is the same as it in isometric
synthesis. It synthesizes from coarse level to fine level. We upsample the coordinate

values of parent voxels for the next level.

The difference is that the child-dependent offset for upsmapling step is dependent
on the anisometric field A. The anisometric field A is used to compute the distance

for spacing.

S,vl. =S [v—A +thA A Q)

Siv], ESEE=A 1+ AL <A, (v)

Sl =S, [v=A.] +HA: - A )
h, = 2(log2 m=1)

0 0 0)( 0 0 0 0)( 0
A e{|-05| 05||-05]|05]|-05] 05|/-05]|05]}
~05)1-05) 05)(05/(-05)-05) 05)05

—-0.5)( 0.5)(-0.5)(0.5\(-0.5)( 0.5)(-05)(0.5
A, e o, ol ol oLl o} ol o}l o]}
-05)\-05)( 05)105)\-05)(-05/ 05)10.5

—-0.5)( 0.5)(-0.5)(0.5)(-05)( 0.5)(-0.5)(05
A e{|-05/-05] 05[|05|]-05]|-05]| 05//05]|}
0 0 o)L 0 0 0 o)L 0

where £, is the regular output spacing of exemplar coordinates. A  means the

relative locations for 8 children in direction x, and Ay, A as well.
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4.2.2 Voxel Correction
The goal for correction step is to make the coordinates similar to those in the

exemplars T, Ty, T.. For each voxel v, we collect the feature values of warped
neighbors by the anisometric field A, and the inverse anisometric field A~ to obtain

N,(v),, N,(v),, N, (v),. Then we search the most similar voxel from the
transformed exemplars fx , fyv, f to make the result similar to the exemplars T,

Ty , T, according to the 3D vector field.

Lefebvre and Hoppe [13] presented a method for anisometric synthesis which is
able to reproduce arbitrary affine deformations, incliding shears and non-uniform scales.

They only accessed immediate neighbors of pixel p to construct the neighborhood
vector Ns[ (p). They used the Jacobian field - J and the inverse Jacobian field J™' to

infer which pixel neighbors to-access,:and theresults will be transformed by the inverse

Jacobian field J™' at the current point.:We-apply. this method to 3D space.

First, we have to know which 4 voxel neighbors in each direction to voxel v. We

use the inverse anisometric field A,f1 to infer the 4 warped neighbors for voxel v, and

construct the three warped neighborhood vectors N N ., N N ), N N ), :

N, o), =T ISv+P(A)]A, =

PA) = A" ()-A,

= P(A,)
A)= X
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+1
N, (v), ={T,[Sv+PA)]A, =| 0
+1
P(A)=A"(v)-A,

. P(A)

(A) =

" s
+1
N, (v), =4T.[S[v+P(A)]A, =| 1
0

PA)=A"(v)-A,

— ¢(Az)

O(A,)=
PR o]

where @(A) keeps its rotation but removes.any scaling.

Fig. 4.3 shows the 4 warped neighbors for each voxel v for each direction. Their

locations are changed from .diagonal locations because of the inverse anisometric

field A, ™.

(a) (b) (c)
Figure 4.3 Twelve warped neighbors for IVS, ):

(a) 4 neighbors for N, (v),  (b) 4 neighbors for N, (v)

y

(c) 4 neighbors for N 5 (V).



Second, we have to find the 3 synthesized voxels nearby warped neoghborhod

voxels of voxel v for each direction. Taking direction x for example, we use the
inverse anisometric field A™' to infer the 3 synthesized voxels for voxel v+@(A,),
and compute the averaged feature value as the new feature value at v+ @(A ). Also,
directions y, z are done by the same process. Fig. 4.4 shows the locations of 3

warped synthesized voxels for each warped neighbor.

~ 1 ~ - -
Ny A,) = 3 Z @’(Ax):(;z(MAx),Mewax [Sv+o(A)+@ (A )]-MA,]

0 0 0)(0 0 0Y(0 0 O
¥Ye{l00 OLI0 110//0 0 0|}
0 0 04400 0Jk0 0 1

~ 1 5 A -,
N,(v;A)) = 3 Z ¢’<Ay)=¢(MAy>.Me\PyTy [Slv+o(A)+@(A)]-MA ]

0 LO“0Y(10-0)(0- 0 0
¥ e o 0000 040 0 0|}
06.0)l0 0700 0 1

~ 1 ~ - -
Ny(v;A) = 5 z @'(Aj):;T)(MAZ),ME‘PZTz [Sv+@(A )+ ¢ (A)]-MA ]

0 0 0Y(1 0 0Y(0 0 O
Y e{l0O 0O 0O O OLO0 1 0f}
00 0J)lo 0o o/lo 0O
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- ] 4
14 /A // D/ 3
4
/ {
(a) (b) (c)
Figure 4.4 Three warped sub-neighbors for warped neighbors of voxel v

We utilize the 4 warped voxels for each direction nearby voxel v. Taking direction

x for example, the warped neighbor voxel i (i, =1~4), we can get the most similar
3 voxels (i,,i,,,i,;) in exemplar 7. for voxel i, «from the similarity set. Then we

use the warped relationship with the anisometric* fields A between voxel i, and

.’ . ’
1

voxel v to infer the candidate voxels.(i i, ) inexemplar 7 for voxel v, as

X1y x2v o a3y

shown in Fig. 4.5(b). We want to keep the color consistence in three directions, so we

’ o/

use the precomputed 3D-candidate set to ‘infer the other two coordinates (i, _, ), »,,.),)
in exemplar 7, and T, (Fig. 4.5(c)). In addition, directionsy, z are done by the

same steps.

’

Now, for each v, we can get a set of triple candidates 7C, , which point towards
pixels in exemplars 7., 7,, T, With the inverse anisometric field Az_l, we can
compute the warped neighborhood vectors NS, TC, ), | Ns, (ch...k)y and

N 5 (TC/ ). . Finally, we sum up the total difference between N 5 (TC ). ,
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N, (TCl ), , N,(IC,). and N, (,, N,(v),, N, (v)., and then replace the

triple coordinate for voxel v with the best matching triple candidate.

(a)

)

o/
l(x—)y)v

“

o/
l(x—>z)v

(©)

Figure 4.5 The process of forming warped triple candidates in direction x:
(a) A voxel v is corrected.

(b) The candidates in exemplar T,

(b) Find the other two candidates in exemplars Ty, T,

Z
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Chapter 5

Implementation and Results

We implement our system onpa PC with 3.00GHZ and 3.00GHz Core2 Extreme
CPU and 8.0GB of system'memory. We use-MATLAB to implement our method. We

always use 128x128 input texture, ‘and.we_can.synthesize to any target size which we

want. It needs about 2.5 seconds:to construct a‘transformed exemplar from feature
vectors. It takes various times to construct a similarity set based on characteristic of the
input texture. However, the time does not exceed 11 minutes. And we spend about 3.5
hours constructing a 3D-candidate set. The transformed exemplar from feature vectors
and the similarity set can be reused for synthesis process. It means that once the feature
vectors and similarity sets are constructed, we can use them for other syntheses with

different target sizes for results and with different vector fields.

For a 128x128x128 result data, it needs about 11~12 hours for synthesis process.

For a 256x256x256 result data, it needs about 5 days for synthesis process. We will
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our results with 128x128 input texture data and 128x128x128 result data in this chapter.
The detail computation times for different textures are shown in Table 5.1. In Section
we show some vector fields which we use in anisometric synthesis, and we show

synthesis results in Section 5.2.

5.1 Vector Fields

We use different vector field controls: circular pattern on XY plane, emissive
pattern on XY plane, slant pattern on XY plane, zigzag pattern on XY plane, and slant

control on 3D space.

The vector field about circular, and emissive control is in Fig. 5.1. In circular control,
we use the green arrows as the primaryvectors. On the contrary, we use the blue arrows

as the primary vectors in emissive control.

(a) (b)
Figure 5.1 5x5x5 3D vector field about circular & emissive control

(a) XY plane (b) three orthogonal axes at every point
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The vector field about slant control is in Fig. 5.2.

Figure 5.2 5x5x5 3D vector field a

(a) one axes on XY plane

)ne axes at every point

(d) three orthogonal axes at every point

(c) three axes on XY plane

33



The vector field about zigzag control is in Fig. 5.3, and we make it changed by two

different directions for slant.

e \1 x‘
N

e
1 15+ N
05l ‘;///4:/%//__—
05 /)’_& =y “ N
- 0 . U_://:}”&/_&

| 05 S N
. e /J&rlhs‘/’& N
I
4 — —
' i N N
BES BT i /’&_——Q 1 :
i T e 0
&8s e @
- L | | L L I} LS 2 -
> s A 05 0 05 1 5 2 25 3
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Figure 5.3 5x5x5 3D vector field about zigzag control
(a) one axes on XY plane (b) one axes at every point
(c) three axes on XY plane (d) three orthogonal axes at every point
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The vector field about 3D slant control is in Fig. 5.4.
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(c (d)
Figure 5.4 5x5x5 3D vector field about 3D slant control
(a) one axes on XY plane (b) one axes at every point

(c) three axes on XY plane (b) three orthogonal axes at every point

35



5.2 Synthesis Results

The input data in Fig. 5.5(a) (case_1) is a particle-like texture. It contains few kinds
of color, and it is very different between particles and background. The particles in
case_1 are the same kind. As long as there are few complete particle patterns in the

input data, we can synthesize good result, as shown in Fig. 5.5(b)~(e).

We add the circular vector field control to the synthesis, as shown in Fig. 5.6(a)~(d).
Because this texture is not structural enough, the effect by vector field is not obvious.

But we still can see the arc-like patterns.

We add the emissive vector «field control to the synthesis, as shown in Fig.
5.7(a)~(d). The effect by vector field is:also obscure. Only little emissive-like patterns

are appeared in the cross seetion,

We add the slant vector field control to the synthesis, as shown in Fig. 5.8(a)~(d).

On XY plane, the patterns have slanted directional consistency.

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.9(a)~(d).

In this case, the effect by zigzag vector field control is obscure, just like no vector field.

We add the 3D slant vector field control to the synthesis, as shown in Fig.
5.10(a)~(d). On XY plane, the slant patterns are obvious. On the other two planes, the

effect is less than the XY plane, but the spots are squelched.
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(e) ®
Figure 5.5 (a) Input and result data for case_1
(b) cross section at X=126, Y=126, and Z=126 for result data
(c) cross section at X=80, Y=80, and Z=80 for result data
(d) cross section at X=64, Y=64, and Z=64 for result data

(e) 128x128x128 result volume data for case_1

(f) 256x256%256 result volume data for case_1
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(@) (b)

© (d)
Figure 5.6 Anisometric results
(a) cross section at X= 5 6, and : for result data
(b) cross section at X=80, : 0 for result data

T

(c) cross section at X=64, Y=64,‘ and Z=64 for result data

(d) anisometric result with circular control for case_1
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(@) (b)

Figure 5.7 Anisometric results ‘

(a) cross section at

(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with emissive control for case_1
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() (b)

(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with slant control for case_1
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(@) (b)

© (d)
Figure 5.9 Anisometric results
(a) cross section at =126, or result data
(b) cross section at X=80, ] 0 for result data

(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with zigzag control for case_1
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(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with 3D slant control for case_1
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The input data in Fig. 5.11(a) (case_2) is stochastic and marble-like texture. It only
contains two kinds of colors, and it is vivid. It has rich information so that only needing
small amount of data to represent the whole texture. It means that we can synthesize

larger results with this kind of textures. Fig. 5.11(b)~(e) show the result.

We add the circular vector field control to the synthesis, as shown in Fig.

5.12(a)~(d). As we can see, there are circular patterns on XY plane.

We add the emissive vector field control to the synthesis, as shown in Fig.

5.13(a)~(d). On XY plane, we can see some emissive-patterns.

We add the slant vector field:control to the synthesis, as shown in Fig. 5.14(a)~(d).

On XY plane, the patterns have slanted directional;consistency.

We add the zigzag vector field controlto-the-synthesis, as shown in Fig. 5.15(a)~(d).
In this case, the effect by the zigzag vector field is obscure. The result looks like

random distribution.

We add the 3D slant vector field control to the synthesis, as shown in Fig.
5.16(a)~(d). On XY plane, there are blocks of slanted patterns. On the other two planes,

the patterns are squelched.
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(e) ®
Figure 5.11 (a) Input and result data for case_2
(b) cross section at X=126, Y=126, and Z=126 for result data
(c) cross section at X=80, Y=80, and Z=80 for result data
(d) cross section at X=64, Y=64, and Z=64 for result data

(e) 128x128x128 result volume data for case_2

(f) 256x256x256 result volume data for case_2
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(a) cross section at #126"‘%#1—25—&3&3—-12&?0r result data
(b) cross section at X= 8'0, YzSO “and Z:80 -fdr result data

] l,.

Figure 5.12 Anisometric results W1th cgrbp}éﬁ.’éontml for cas

(c) cross section at X=64, Y= 621h a‘nd Z—64 for result data

(d) anisometric result with circular control for case_2
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Figure 5.13 Anisometric results;y\nth emtrs_s-w@imntrol for cﬁg 2
(a) cross section at 3.{‘—-1 26 “-Y..-Jl%y,—___.’Z-'.-Hﬁ fd;r result data
(b) cross section at X—80 Y—80 and ZFSQ' fq? result data
(c) cross section at X—64 Y—'64' Jand "Z264 for result data

(d) anisometric result with emissive control for case_2
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Figure 5.14 Anisometric results—\&lth sTaEt.c__gﬁffol fQ'I‘ caseli
(a) cross section at 3.{‘—-126 Y,.—-»126i, I Z-.-l2ﬁ for result data
(b) cross section at X—‘S,‘DJ Y__h80 and ZFS(—)‘ f@ai" result data
(c) cross section at X=64, Y=64. _and 2264 for result data

(d) anisometric result with slant control for case_2
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;'E{ -5 1896 B -

(a) cross section at &ir?lbl, Y=126, and Z=‘1-2§"?'for result data
. PP = 5"

(b) cross section at X=80, ﬂ’f’%&?,ﬁ::ﬁlﬁﬁb for result data

(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with zigzag control for case_2
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© = l{:’fai--
Figure 5.16 Anisometric results-'vd'lth 3E-S

(b) cross section at X= 80" 'Ydﬁg.ﬁnﬁi ﬁ&b for result data
(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with 3D slant control for case_2
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The input data in Fig. 5.17(a) (case_3) is a kind of structural textures. The patterns
in the input data are small and compact, so the texture is information-rich. Only small
size for input data could provide enough patterns for synthesis. It can be synthesized

with a few input data and get good results. The result is shown in Fig. 5.17(b)~(e).

We add the circular vector field control to the synthesis, as shown in Fig.
5.18(a)~(d). As we can see, the result is good. The cross sections also display the

character of the texture.

We add the emissive vector field control to the synthesis, as shown in Fig.
5.19(a)~(d). On XY plane, the result is; goodsthat it has emissive patterns completely.

But on the other two planes, there are some, discontinuous lines.

We add the slant vector field control to the synthesis,.as shown in Fig. 5.20(a)~(d).
We can see that the result is™pretty:good in all the three planes. It not only exhibits the

character of the texture but also has continuous-lines.

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.21(a)~(d).
It has good zigzag patterns on XY plane, but there is a little discontinuity on the other

two planes.

We add the 3D slant vector field control to the synthesis, as shown in Fig.
5.22(a)~(d). The result is good. In all the three planes, it has slanted and continuous

patterns completely.
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(e) ®
Figure 5.17 (a) Input and result data for case_3
(b) cross section at X=126, Y=126, and Z=126 for result data
(c) cross section at X=80, Y=80, and Z=80 for result data
(d) cross section at X=64, Y=64, and Z=64 for result data

(e) 128x128x128 result volume data for case_3

(f) 256x256x256 result volume data for case_3
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(b) cross section at X=8 ]
(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with circular control for case_3
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(b) cross section at X=8 ]
(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with emissive control for case_3
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(b) cross section at X=8 < - or result data
(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with slant control for case_3
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(b) cross section at X=8 )
(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with zigzag control for case_3
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(b) cross section at X=8 5 | 7: or result data
(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with 3D slant control for case_3
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The input data in Fig. 5.23(a) (case_4) is between structural and stochastic. It has
different length and width patterns, but these patterns have the same slanted directions.
Because of the slanted direction, it displays different effects comparing with case_3

adding vector field control. The result is shown in Fig. 5.23(b)~(e).

We add the circular vector field control to the synthesis, as shown in Fig.
5.24(a)~(d). As we can see, the result has vortex-like patterns on XY plane because of

the input texture’s slanted direction.

We add the emissive vector field control to the synthesis, as shown in Fig.

5.25(a)~(d). It has the similar result to.cireulan-vector field because of the same factor.

We add the slant vector field control|to the synthesis, as shown in Fig. 5.26(a)~(d).
We can see that the patterns on XY plane change their directions from slant to

horizontal.

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.27(a)~(d).
On XY plane, the patterns separate to two parts. Each part has different effect by the
zigzag vector field. The left part has horizontal direction, and the right part has slanted

direction.

We add the 3D slant vector field control to the synthesis, as shown in Fig.
5.28(a)~(d). The results has horizontal direction on XY and YZ planes. But on XZ plane,

it has point-like patterns.
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(e) ®
Figure 5.23 (a) Input and result data for case_4
(b) cross section at X=126, Y=126, and Z=126 for result data
(c) cross section at X=80, Y=80, and Z=80 for result data
(d) cross section at X=64, Y=64, and Z=64 for result data

(e) 128x128x128 result volume data for case_4

(f) 256x256x256 result volume data for case_4
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(@) (b)

(c) cross section at X=64, Y=64, an Z=64 for result data

(d) anisometric result with circular control for case_4
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(@) (b)

(b) cross section at X=80, ¥z 5 | 7: or result data
(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with emissive control for case_4
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(@) (b)

(b) cross section at X=80, ¥z 5 | 7: or result data
(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with slant control for case_4
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(@) (b)

(b) cross section at X=80, ¥z 5 | 7: or result data
(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with zigzag control for case_4
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(b) cross section at X=80, ¥
(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with 3D slant control for case_4
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The input data in Fig. 5.29(a) (case_5) is a structural texture. It has simple wooden
patterns. Because of its sparse patterns, it has different effects for different vector fields,

and we discuss later. The result is shown in Fig. 5.29(b)~(e).

We add the circular vector field control to the synthesis, as shown in Fig.
5.30(a)~(d). The result is bad, just little arc-like patterns on XY plane. The other places

in the volume are blurring, and the color of the result is unlike the input texture’s color.

We add the emissive vector field control to the synthesis, as shown in Fig.
5.31(a)~(d). As we can see, there are emissive patterns on XY plane. The color of this

result is also odd.

We add the slant vector field control to the synthesis,-as shown in Fig. 5.32(a)~(d).
The result is pretty good that it hasslanted patterns on XY plane completely. Moreover,

the characteristic of the wood is:displayed well in the result.

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.33(a)~(d).

On XY plane, we can see the zigzag patterns. The result is sparse because the input

texture is also sparse.

We add the 3D slant vector field control to the synthesis, as shown in Fig.

5.34(a)~(d). The result is not bad. It has slanted patterns on all the three planes.
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Figure 5.29 (a) Input and result data for case_5
(b) cross section at X=126, Y=126, and Z=126 for result data
(c) cross section at X=80, Y=80, and Z=80 for result data
(d) cross section at X=64, Y=64, and Z=64 for result data

(e) 128x128x128 result volume data for case_5

(f) 256x256x256 result volume data for case_5
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(@) (b)

(©)
Figure 5.30 Anisometric result vit ar ontrolfor ca se' 5

(a) cross section at

(c) cross section at X=64, Y=64, and Z=64 for result data

(d) anisometric result with circular control for case_5
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(d) anisometric result with emissive control for case_5
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result data
(c) cross section at X=64, =64 for result data

(d) anisometric result with slant control for case_5
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(d) anisometric result with zigzag control for case_5
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(d) anisometric result with 3D slant control for case_5
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Table 5.1 Computation time without vector field control for different textures

Feature Vector | Similarity Set | 3D Candidate Synthesis Synthesis
Construction | Construction | Construction Process Process
(128x128x128) | (256x256%256)

Case_1 | 2.496 seconds 10 minutes 3 hours 11 hours 96 hours
19seconds 32 minutes 48 minutes 38 minutes

Case_2 | 2.527 seconds 6 minutes 3 hours 12 hours 97 hours
15 seconds 42 seconds 11 minutes 14 minutes

Case_3 | 2.511 seconds 3 minutes 3 hours 11 hours 96 hours
56 seconds 26 seconds 57 minutes 52 minutes

Case_4 | 2.512 seconds 5 minutes 3 hours 12 hours 97 hours
14 seconds 29 minutes 19 minutes 27 minutes

Case_5 | 2.511 seconds 4 minutes 3 hours 12 hours 97 hours
39 seconds 30 minutes 3 minutes 2 minutes

By using the information-rich, appearance ‘vectors, we just use 12 locations (4

locations for each direction) in neighborhood matching.sThe method by Dong et al. [4]

has to compare the corrected: voxel’s direct-neighborhoods, so it needs 27 (3x3x3)

locations. The same points are following:.we-also-separate the system to two processes

which are pre-process and synthesis. process. And-we‘compute the same 3D-candidate

set in pre-process to accelerate the synthesis process.
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Chapter 6

Conclusions and Future Works

We have presented an éxemplar-based system for solid texture synthesis with
anisometric control from a*2D ‘texture. In the preprocessing, we construct the feature
vectors, similarity sets, and=3D-cdndidate_sets.ftom a 2D input texture. We replace
traditional RGB values with the feature vectors to-construct neighbor vectors for more
accurate neighborhood matching. The similarity set which records 3 candidates for each
pixel promotes the performance of neighborhood matching in 2D plane. The
3D-candidate set keeps color consistence in three directions and also helps more
effective neighborhood matching in 3D space. In the synthesis process, we use the
pyramid synthesis method to synthesize textures from coarse level to fine level, from
one voxel to mxmxm resulting data. For each direction, we can only use 4 locations of
each voxel for neighborhood matching in synthesis process. In the anisometric synthesis
process, we design vector fields and make the result textures changed by the vector

fields.
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In the future, we may control the anisometric textures with flow fields that make
the results changed with time. Kwatra et. al. [9] presented a method for 3D surface
texture synthesis with flow field. We may apply their method to synthesize anisometric
textures changing with time in the 3D space. Besides, we may reduce the cost time:

trying another algorithm to make the system more effective.
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