

國 立 交 通 大 學

多媒體工程研究所

碩碩碩碩 士士士士 論論論論 文文文文

由 二 維 紋 理 形 成 具 有 向 量 場 控 制

的 實 體 紋 理 合 成

Solid Texture Synthesis with Vector Field Control

from a 2D Texture

研 究 生：林菊穗

指導教授：施仁忠 教授

 張勤振 教授

中中中中 華華華華 民民民民 國國國國 九九九九 十十十十 八八八八 年年年年 六六六六 月月月月

由二維材質形成具有向量場控制的實體紋理合成

Solid Texture Synthesis with Vector Field Control from a 2D Texture

研 究 生：林菊穗 Student：Chu-Sui Lin

指導教授：施仁忠 教授 Advisor：Dr. Zen-Chung Shih

 張勤振 教授 .Dr.Chin-Chen Chang

國 立 交 通 大 學

多 媒 體 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Multimedia Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2009

Hsinchu, Taiwan, Republic of China

中華民國九十八年六月

I

由二維紋理形成具有向量場控制的實體紋理合成

Solid Texture Synthesis with Vector Field Control

 from a 2D Texture

 研究生：林菊穗 指導教授：施仁忠 教授

 .張勤振 教授

國立交通大學多媒體工程研究所

摘 要

本論文輸入一張二維紋理來合成實體紋理(solid texture synthesis)。由於二維紋

理在三維空間中無法得知足夠的資訊，故本論文利用預先計算好的三維候選點

(3D-candidates)來做實體紋理合成，三維候選點是分別由三個方向(x, y, z)的 5×5 二

維切面(2D slices)所構成，而且必須保持三個切面交叉軸(crossbar)的顏色一致性

(color consistency)，接著利用金字塔合成方法(pyramid synthesis method)來完成實體

紋理的合成。在合成過程中使用表面向量值(appearance vector)取代傳統只用色彩值

(RGB color value)來做鄰近點比對，有了資料量豐富的表面向量值，我們就可以分別

只比對 4 個點來建立 5×5 個點的三平面內的鄰近點(neighborhood)資料，並利用額外

的向量場(vector field)來達到紋理控制(texture control)的目的。

II

Solid Texture Synthesis with Vector Field Control

 from a 2D Texture

Student：Chu-Sui Lin Advisor：Dr. Zen-Chung Shih

 .Dr. Chin-Chen Chang

Institute of Multimedia Engineering

National Chiao Tung University

ABASTRACT

In this thesis, we achieve solid texture synthesis from a 2D input texture. Because

2D input texture does not have enough information in 3D space, we introduce a method

that using a set of pre-computed 3D-candidates, each being a triple of interleaved 5×5 2D

slices from three coordinates. Moreover, our approach can keep the color consistency

along the crossbar of the 3D-candidates. Then we can synthesize solid textures by

applying pyramid synthesis method. Appearance vectors are used to replace RGB color

values. With these information-rich vectors, 4 locations for each coordinate are used to

obtain 5×5 slice neighborhoods. Moreover, we introduce our approach for controllable

texture synthesis with vector fields.

III

Acknowledgements

 First of all, I would like to thank my advisors, Dr. Zen-Chung Shih and Dr. Chin-Chen

Chang, for their supervision and helps in this work. Then I want to thank all the members in

Computer Graphics & Virtual Reality Lab for their comments and instructions. Especially two

persons, Yu-Ting Tsai and Ya-Lin Su, I want to thank them for their suggestions and helps.

Finally, special thanks for my dear family, and this achievement of this work dedicated to

them.

IV

Contents

摘摘摘摘 要要要要 ... I

ABASTRACT .. II

Acknowledgements ... III

Contents .. IV

List of Figures ... V

Chapter 1 Introduction ... 1

1.1 Motivation ... 1

1.2 Overview ... 2

1.3 Thesis Organization ... 3

Chapter 2 Related Works ... 5

2.1 Texture Synthesis with Control Mechanism ... 5

2.2 Solid Texture Synthesis ... 7

2.3 Texture Synthesis and Vector Field ... 9

Chapter 3 Solid Synthesis Process .. 11

3.1 Feature Vector Generation ... 11

3.2 Similarity Set Generation .. 13

3.3 3D-Candidate Generation .. 13

3.4 Pyramid Solid Texture Synthesis ... 15

3.4.1 Pyramid Upsampling ... 15

3.4.2 Jitter Method .. 16

3.4.3 Voxel Correction ... 17

Chapter 4 Anisometric Synthesis Process .. 22

4.1 3D Vector Field ... 22

4.2 Anisometric Solid Texture Synthesis .. 25

4.2.1 Pyramid Upsampling ... 25

4.2.2 Voxel Correction ... 26

Chapter 5 Implementation and Results .. 31

5.1 Vector Fields .. 32

5.2 Synthesis Results ... 36

Chapter 6 Conclusions and Future Works .. 72

Reference .. 74

V

List of Figures

Figure 1.1 System flowchart .. 4

Figure 3.1 Overview of texture data transformation ... 12

Figure 3.2 The process for feature vector generation: ... 12

Figure 3.3 The diagram of 3D-candidate: .. 14

Figure 3.4 Synthesis from one voxel to mmm ×× solid texture .. 15

Figure 3.5 Twelve neighbors for)(vN
ls : ... 18

Figure 3.6 Three sub-neighbors for each neighbor of voxel v : ... 19

Figure 3.7 The process of forming triple candidates in direction x : 21

Figure 4.1 5×5×5 3D vector field with orthogonal axes .. 23

Figure 4.2 5×5×5 3D vector field with a circle pattern on XY plane 24

Figure 4.3 Twelve warped neighbors for)(
~

vN
ls : .. 27

Figure 4.4 Three warped sub-neighbors for warped neighbors of voxel v 29

Figure 4.5 The process of forming warped triple candidates in direction x : 30

Figure 5.1 5×5×5 3D vector field about circular & emissive control 32

Figure 5.2 5×5×5 3D vector field about slant control ... 33

Figure 5.3 5×5×5 3D vector field about zigzag control ... 34

Figure 5.4 5×5×5 3D vector field about 3D slant control.. 35

Figure 5.5 Input and result data for case_1 .. 37

Figure 5.6 Anisometric results with circular control for case_1.. 38

Figure 5.7 Anisometric results with emissive control for case_1 .. 39

Figure 5.8 Anisometric results with slant control for case_1 .. 40

Figure 5.9 Anisometric results with zigzag control for case_1 ... 41

Figure 5.10 Anisometric results with 3D slant control for case_1 .. 42

Figure 5.11 Input and result data for case_2 .. 44

Figure 5.12 Anisometric results with circular control for case_2.. 45

Figure 5.13 Anisometric results with emissive control for case_2 .. 46

Figure 5.14 Anisometric results with slant control for case_2 .. 47

Figure 5.15 Anisometric results with zigzag control for case_2 ... 48

Figure 5.16 Anisometric results with 3D slant control for case_2 .. 49

Figure 5.17 Input and result data for case_3 .. 51

Figure 5.18 Anisometric results with circular control for case_3.. 52

Figure 5.19 Anisometric results with emissive control for case_3 .. 53

Figure 5.20 Anisometric results with slant control for case_3 .. 54

VI

Figure 5.21 Anisometric results with zigzag control for case_3 ... 55

Figure 5.22 Anisometric results with 3D slant control for case_3 .. 56

Figure 5.23 Input and result data for case_4 .. 58

Figure 5.24 Anisometric results with circular control for case_4.. 59

Figure 5.25 Anisometric results with emissive control for case_4 .. 60

Figure 5.26 Anisometric results with slant control for case_4 .. 61

Figure 5.27 Anisometric results with zigzag control for case_4 ... 62

Figure 5.28 Anisometric results with 3D slant control for case_4 .. 63

Figure 5.29 Input and result data for case_5 .. 65

Figure 5.30 Anisometric results with circular control for case_5.. 66

Figure 5.31 Anisometric results with emissive control for case_5 .. 67

Figure 5.32 Anisometric results with slant control for case_5 .. 68

Figure 5.33 Anisometric results with zigzag control for case_5 ... 69

Figure 5.34 Anisometric results with 3D slant control for case_5 .. 70

1

Chapter 1

Introduction

1.1 Motivation

Nowadays, a lot of textures can be synthesized well in 2D. But there is still a lack

of techniques in generating 3D textures. There are different kinds of techniques for 3D

surface texturing like texture mapping [8, 23, 24], procedural texturing [5, 15] and

image-based surface texturing [18, 20, 22]. 3D surface texturing has some undesired

problems, so solid texture is introduced to solve this problems.

Texture mapping is the easiest method for 3D surface texturing, but the quality of

the results is not good. It may be suffered from some well-know problems such as

distortion, discontinuity, and unwanted seams. Procedural texturing can solve the

problems of distortion and discontinuity. However, it still has some drawbacks.

Procedural texturing models only limit types of textures, such as marble. Furthermore,

users may take time to understand and control parameters. The results will be decided

the designers. Image-based surface texturing can synthesize more textures, but it can’t

handle large structural textures like bricks. When the curvature is too large, it still has

distortion and discontinuous problems. Furthermore, image-based surface texturing is

non-reusable such that textures generated for one surface cannot be used for other

2

surfaces.

Solid textures can be used to solve the above problems. By Peachey [14] and Perlin

[15], solid textures are blocks of colored points in 3D space to represent real-world

materials. Using solid textures, users do not need to find a parameterization for the

surface of the object to be textured. Furthermore, solid textures provide texture

information inside the entire volume.

Recently, some techniques [3, 4, 11, 16] used three orthogonal slices for

neighborhood matching. We take advantage of this idea and present a method for real

3D space texture synthesis from a 2D texture. Moreover, we use vector fields to control

the solid texture synthesis. Unlike above methods, we replace 2D k-coherent candidates

with 3D-candidates. When we select the best matching candidates, we consider all the

three directions instead of each direction independently. We use information-rich

appearance vectors for neighborhood matching. The whole process is automatic. The

results illustrate that our approach can do well on a wide range of textures.

1.2 Overview

The flowchart of our system is shown in Figure 1.1. First, input a 2D texture and

repeat the texture thrice as three directional exemplars. In the pre-process, it generates

feature vectors, similarity sets, and 3D-candidates for each pixel. For feature vector

generation, it captures 5×5 window information and uses principal component analysis

(PCA) to decrease the dimensions. For similarity set generation, it finds the three pixels

most similar to each pixel. For 3D-candidates generation, it computes a small candidate

set from the other two exemplars for each pixel. In the synthesis process, we apply the

3

pyramid synthesis method [12] to our system. Upsampling, jitter and correction are used

at each synthesis level to obtain the results. For anisometric synthesis, vector fields are

used to control the synthesis. We input a vector field as the anisometric field and

compute the inverse anisometric field. These two fields are used in synthesis process to

get the results.

The major contributions of this thesis are as follows: First, we present an approach

for synthesizing solid textures from a 2D texture. Using appearance vectors, only 12

locations (4 locations for each direction) are needed to synthesize solid textures. Second,

we present a coherent anisometric synthesis method for solid textures according to

vector field control.

1.3 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2, we review related

works about texture synthesis with control and solid texture synthesis. In Chapter 3, we

present our approach for synthesizing solid textures from a 2D texture. Chapter 4

presents the proposed anisometric synthesis approach for solid textures based on vector

field control. Chapter 5 shows the implementation and results. Finally, conclusions and

future works are discussed in Chapter 6.

4

Input 2D Texture Vector Field

Feature Vector

Generation

Anisometric Field

Inverse

Anisometric Field

Similarity Set

Generation

Pre-process

Upsampling

Jitter

Synthesis Process

Correction

Result

Figure 1.1 System flowchart

3D-candidate

Generation

5

Chapter 2

Related Works

In this chapter, we review some recent and representative works.

2.1 Texture Synthesis with Control Mechanism

Ashikhmin [1] presented a texture synthesis algorithm for natural textures. He

provided an interactive interface for users to control the texture synthesis process. He

introduced an idea of “shifted-candidates” for neighborhood matching and found the

best similar candidate. This approach uses a smaller neighborhood to obtain the quality

characteristics of a larger neighborhood and maintains the coherence of the results.

Users can use painting-style interface to indicate large-scale properties of the texture.

Furrhermore, this method is fast and straightforward for the users. But it could not

obtain good results if the user’s control does not contain significant amount of high

frequency components.

6

Lefebvre and Hoppe [12] introduced a high-quality and parallel pyramid synthesis

algorithm. Their method includes upsampling step to maintain patch coherence, jittering

of exemplar coordinates to increase the randomness of the texture, and an

order-independent correction step to keep the similarities between synthesized results

and input textures. They obtained high-quality and efficient results thanks to the

order-independent correction step. It corrects the pixel coordinate for more accurate

neighborhood matching and the whole step can be divided into several subpasses to

promote performance. However, it still has one drawback: when the features are too

large to be captured by small neighborhoods, it could perform poorly. This drawback is

also a well-known problem for other neighborhood-based per-pixel synthesis methods.

Lefebvre and Hoppe [13] proposed a structure for exemplar-based texture synthesis

with anisometric control. They replaced traditional RGB values with appearance vectors

for neighborhood matching. Their appearance space reduces runtime neighborhood

vectors from 5×5 grids to only 4 locations, so the synthesis is more efficient, and the

quality of results is good because of the information-rich appearance vectors. In

addition, they combined their pyramid synthesis with appearance vectors to accelerate

neighborhood matching and proposed novel methods for coherent anisometric synthesis

which makes arbitrary affine deformation on textures. They presented a convenient way

to control textures.

Kwatra et al. [9] introduced a method to control flows on 2D textures and presented

an algorithm to perform texture control on 3D surfaces [10]. They proposed a vector

advection technique with global texture synthesis to accomplish dynamically changing

7

fluid surfaces. Users can define fluid velocity field to control the texture results on 3D

surfaces. The neighborhood construction step in the process considers orientation

coherent with the user-defined velocity field. This method not only makes the

synthesized results similar to the input texture, but also keeps temporally coherent.

However, it is difficult for users to define an orientation velocity field which is smooth

everywhere.

2.2 Solid Texture Synthesis

Jagnow et al. [7] used traditional stereological methods to synthesize 3D solid

textures from 2D images. They synthesized solid textures for spherical particles first

and then extended the technique to apply to arbitrary-shaped particles. Their approach

needs cross-section images to record the distribution of circle sizes on 2D slices, and

then builds the relationship of 2D profile density and 3D particle density. Users could

use the particle density to add one particle at a time to reconstruct the volume data, so it

means the step is manual. This method uses many 2D profiles to construct 3D density

for volume results, which are good for marble textures. However, their system is not

automatic and only for particle textures.

Chiou and Yang [2] improved the above system to automatic process. They divided

the synthesis into two parts: 2D analysis phase and 3D synthesis phase. First, they

collected essential statistics to develop a probability model. Then they used this

probability model to control the variation in particle size through the 3D synthesis

procedure. However, this system inherits the above system so it is only for particle

textures.

8

Qin et al. [16] introduced an image-based solid texturing in terms of basic

gray-level aura matrices (BGLAMs) framework. They replaced traditional gray-level

histograms with BGLAMs for neighborhood matching. They defined aura matrices from

input exemplars and generated a solid texture from multiple view directions. In the

volume result, they will only consider the pixels on the three orthogonal slices for

neighborhood matching. The whole system is fully automatic without user interactions.

Furthermore, they can generate reliable results for both stochastic and structural textures.

However, it needs large storages for large matrices and the results are not good for color

textures.

Kopf et al. [11] provided a solid texture synthesis method from 2D exemplars. They

took advantage of 2D texture optimization techniques to do 3D solid texture synthesis

and then preserved global statistical properties by histogram matching to achieve

optimization. For each voxel, they only considered the neighborhood coherence in three

orthogonal slices, and increased the similarity between the solid textures and the

exemplar iteratively. Their approach could do well for wide range of textures. But they

synthesized the texture with the information on the slices.

Takayama et al. [17] presented a method which fills a model with anisotropic

textures. They had some volume textures and defined it how to map to 3D objects. Then

they pasted solid texture exemplars repeatedly on the 3D object. Volumetric tensor

over the mesh can be set by users, and the texture patches are located according to these

fields. This method still has drawbacks. The patch seams became noticeable when using

a texture with strong low-frequency components and the blurring artifacts appeared

9

when using highly structured textures.

Dong et al. [4] introduced a new algorithm to restrict synthesis to a subset of the

voxels, while enforcing spatial determinism. They reduced the dependency chain of

neighborhood matching, so that each voxel only depended on a small number of other

voxels. They synthesized a volume by using pre-computed 3D-candidates, each being a

triple of interleaved 2D neighborhoods. These 3D-candidates are selected carefully to

form consistent triples. Their approach could generate good results efficiently. However,

if the three exemplars do not define a coherent 3D volume, the quality of the result will

be poor.

2.3 Texture Synthesis and Vector Field

Many patterns are created by interactions between texture elements and surface

geometry, so Turk [18] synthesized a texture directly on the surface of the model. An

orientation field must be specified over the surface in order to preserve the directional

nature of textures. They did this by allowing users to pick the directions at several

locations and then interpolating vectors over the rest of the surface.

Ying et al. [22] presented a method that synthesized the texture directly on the

surface, rather than synthesizing a texture image and mapping it to the surface. A 2D

vector field was used to specify the correspondence between orientation on the surface

and orientation in the domain of the example texture. A pair of orthogonal tangent

vector fields is used for the purpose. They got one field first, and the second field is

computed as the cross-product of the first field and the oriented surface normal.

10

Taponecco et al. [19] used Markov Random Field (MRF) texture synthesis method

to implement 2D vector field visualization. In their approach, they defined a vector field

by magnitude and direction. The magnitude could be easily computed using an

appropriate norm of the values. Assigning the direction required a projection of the

vector onto the image plane, and then the angle of the tangent in the vector field relative

to the x-axis is gotten. The magnitude and direction were used to scale and rotate the

image.

Wu et al. [21] proposed an approach to directly synthesize texture on arbitrary

surface with texture sample. It had a tangential vector field which indicated the desired

growing orientation of the texture on the surface. First, users specified tangential

vectors at a few seed triangles, and then they interpolated vectors at the remaining

triangles to build a tangential vector field. They recursively mapped triangles to texture

space until the whole surface is mapped completely based on the vector field.

11

Chapter 3

 Solid Synthesis Process

In this section, we present our approach for synthesizing solid textures from 2D

textures. In Section 3.1, we describe feature vectors in appearance space and how we

get the feature vectors. Then we use the similarity set to accelerate neighborhood

matching in Section 3.2. In Section 3.3, we keep the color coherence of the three

orthogonal slices by computing 3D-candidates. We introduce how to apply 2D pyramid

texture synthesis to solid texture synthesis in Section 3.4. The upsampling process

increases the texture sizes between different levels, that each voxel in parent level

generates eight voxels in children level. The jitter step perturbs the textures to achieve

deterministic randomness. The last step in pyramid solid synthesis is voexl correction,

using neighborhood matching to make the results more similar to the exemplar.

3.1 Feature Vector Generation

Solid texture synthesis using RGB color values for neighborhood matching needs

12

larger neighborhood size and data. Appearance vectors have been proved that they are

continuous and low-dimensional for neighborhood matching. Hence, we transform the

texture data values in color space into feature vectors in appearance space. As shown in

Fig. 3.1, we transform texture data T into appearance space texture data T' .

Figure 3.1 Overview of texture data transformation

According to Lefebvre and Hoppe [13], we take the RGB values in 5×5 windows

(Fig. 3.2 (b)) to construct appearance vectors for each pixel of an input texture T (Fig.

3.2 (a)). The exemplar T' consists of the feature vectors at each pixel. There are 75

dimensions (25 for grids and 3 for RGB) for each pixel in T' , and then we perform

principal component analysis (PCA) to reduce the dimensions for a transformed

exemplar '
T
~

 (Fig. 3.2 (c)).

Figure 3.2 The process for feature vector generation:

(b)

(a) (c)

13

(a) input texture data T (b) 5×5 windows structure for feature vectors

(c) transformed exemplar '
T
~

3.2 Similarity Set Generation

By the k -coherence search method [24], searching from the candidates can

accelerate neighborhood matching because we do not have to search from each pixel in

the exemplar for neighborhood matching. Thus, we construct a similarity set to record

the candidates similar to each pixel.

Based on the principle of coherence synthesis [1], searching candidates from the

nn × neighbors of pixel p in the exemplar T can accelerate the synthesis process.

Hence, we find the k most similar pixels from the nn× neighbors of pixel p in the

transformed exemplar '
T
~

 to construct the similarity set)(...1 pC
l

k for pixel p , where

k is a user-defined parameter, and l is the pyramid level, ppC
l =)(1 . Note that n is a

user-defined parameter to control the window size for coherent synthesis. In the

experiments, n is set as 7.

3.3 3D-Candidate Generation

First, we repeat the input texture thrice as three directional exemplars
xT , yT and

zT .

By Dong et al. [4], we generate a small set of 3D-candidates for each pixel of the three

exemplars to build the relation between the three exemplars. The 3D-candidate is

by three 5×5 slices (2D neighborhoods) (Fig. 3.3 (a)). It is important that a suitable

candidate should be consistent across the crossbar. The crossbar is the strip that is

intersected by two slices (Fig. 3.3 (b)). Therefore, we seek to minimize the color

14

disparity between the strips shared by interleaved slices.

Figure 3.3 The diagram of 3D-candidate:

(a) Three input exemplars xT , yT ,
zT and a corresponding 3D-candidate.

(b) The crossbars are defined by the three slices.

(c) A consistent triple from each exemplar.

We define the triple to be the three coordinates which is pointed by the center pixel

of the three slices. For each pixel of each exemplar, we form triples using the pixel

and two neighborhoods from the other two exemplars. We select the triples which have

the smaller crossbar error. The 3D-candidate set is composed of these triples. For

instance, as shown in Fig. 3.3(c), assuming we want to compute a 3D-candidate set for

(a)

(b)

(c)

15

pixel p in
xT , we first find in yT the K pixel strips best matching the orange line from

xT , and in
zT the K pixel strips best matching the green line from

xT . We use the

current pixel p as the third coordinate to produce all possible K
2
 triples, and then order

them based on the crossbar error which is the sum of color differences for the three

of pixel strips. In the experiments, we keep the 12 best triples as 3D-candidates for each

pixel and set a value K as 65.

3.4 Pyramid Solid Texture Synthesis

3.4.1 Pyramid Upsampling

The pyramid synthesis method [6] synthesizes textures from coarse level to fine

level. There are 1+l levels in synthesis process, l=0~ m2log , where m is the size of

the target texture. We apply this 2D pyramid synthesis method to 3D space.

Figure 3.4 Synthesis from one voxel to mmm ×× solid texture

In our approach, we synthesize from one voxel to a m×m×m solid texture, from

LSS ~0 , where mL 2log= , as shown in Fig. 3.4. We synthesize a volume data S in

which each voxel []vS stores three coordinate values, indicating
'~

xT ,
'~

yT ,
'~

zT

0S 1S 2S

0=l 1=l 2=l

16

exemplar’s pixel, respectively. First, we build a voxel and assign value (1,1), (1,1), (1,1)

to it as triple coordinates. Then, we upsample the coordinates of parent voxels for next

level, assigning each eight children the scaled parent coordinates plus child-dependent

offset as

()2mod,2mod]
2

,
2

,
2

[][1 kjh
kji

SijkS lxlxl +

= − ,

()2mod,2mod]
2

,
2

,
2

[][1 kih
kji

SijkS lylyl +

= − ,

()2mod,2mod]
2

,
2

,
2

[][1 jih
kji

SijkS lzlzl +

= − ,

)(log22
lm

lh
−=

where lh denotes the regular output spacing of exemplar coordinates, and ijk

means the location of voxel v . xl ijkS][is the new coordinate value at location ijk

within the volume of level l for exemplar
'~

xT . yl ijkS][is the new coordinate value at

location ijk within the volume of level l for exemplar
'~

yT . zl ijkS][

is the new

coordinate value at location ijk within the volume of level l for exemplar
'~

zT .

3.4.2 Jitter Method

After upsampling the coordinates, we have to jitter our texture to achieve

deterministic randomness. We plus the upsampled coordinates at each level a jitter

function value to perturb it. The jitter function)(vJ l is produced by a hash function

[]22 1,1:)(+−→ΖvH and a user-defined parameter lr .

17

)(][][vJvSvS lll +=

lll rvHhvJ)()(=

3.4.3 Voxel Correction

In order to make the coordinates similar to those in the exemplars
xT , yT ,

zT , we

take the jittered results to recreate neighbors. There is a feature value for each pixel

after constructing feature vectors. For each voxel v , we collect the feature values of its

neighbors to obtain the neighborhood vectors xs vN
l

)(, ys vN
l

)(, zs vN
l

)(for each

direction, respectively. Then, we search the most similar pixel from the transformed

exemplars
'~

xT ,
'~

yT ,
'~

zT to make the result similar to the exemplars
xT , yT ,

zT .

In neighborhood matching, we take 4 diagonal locations for voxel v in each

direction to obtain the neighborhood vectors xs vN
l

)(, ys vN
l

)(, zs vN
l

)(:

±

±=∆∆+=

1

1

0

]][[
~

)(
'

xxxxs vSTvN
l

±

±

=∆∆+=

1

0

1

]][[
~

)(
'

yyyys vSTvN
l

±

±

=∆∆+=

0

1

1

]][[
~

)(
'

zzzzs vSTvN
l

Fig. 3.5 shows that each direction has 4 diagonal locations for each voxel v .

18

Figure 3.5 Twelve neighbors for)(vN
ls :

(a) 4 neighbors for xs vN
l

)((b) 4 neighbors for ys vN
l

)(

(c) 4 neighbors for zs vN
l

)(

Based on [13], for xs vN
l

)(, we average the voxels nearby voxel
xv ∆+ to

improve convergence without increasing the size of the neighborhood vector xs vN
l

)(.

We average the appearance values from 3 synthesized voxels nearby
xv ∆+ as the new

feature value at voxel
xv ∆+ , and then use the new feature values at 4 diagonal voxel

to construct neighborhood vector xs vN
l

)(. Also, ys vN
l

)(

and zs vN

l
)(can be done by

the same process.);(xs vN
l

∆ means the averaged feature value at voxel
xv ∆+ .

);(ys vN
l

∆

means the averaged feature value at voxel yv ∆+ .);(zs vN

l
∆ means the

averaged feature value at voxel
zv ∆+ .

∑ ∆′−∆′+∆+=∆ Ψ∈∆=∆′]][[
~

3

1
);(

'

, xxMMxs vSTv
xxl

N

{ }

∈Ψ

100

000

000

,

000

010

000

,

000

000

000

x

∑ ∆′−∆′+∆+=∆ Ψ∈∆=∆′]][[
~

3

1
);(

'

, yyMMys vSTv
yyl

N

(a) (b) (c)

19

{ }

∈Ψ

100

000

000

,

000

000

001

,

000

000

000

y

∑ ∆′−∆′+∆+=∆ Ψ∈∆=∆′]][[
~

3

1
);(

'

, zzMMzs vSTv
zzl

N

{ }

∈Ψ

000

010

000

,

000

000

001

,

000

000

000

z

Fig. 3.6 shows the locations of 3 synthesized voxels for each neighbor.

Figure 3.6 Three sub-neighbors for each neighbor of voxel v :

 (a) in xs vN
l

)((b) in ys vN
l

)((c) in zs vN
l

)(

We use the similarity sets and coherence synthesis method in the searching process,

utilizing the 4 voxels for each direction nearby voxel v . Taking direction x for

example, for the neighbor voxel
xi (4~1=xi), we can get the most similar 3 pixels

(1xi , 2xi , 3xi) in exemplar
xT for voxel

xi from the similarity set. And then we

the offset between voxel
xi and voxel v from 3D space to 2D space to infer the

(a) (b) (c)

20

candidates (vxi 1 , vxi 2 , vxi 3) in exemplar
xT for voxel v (Fig. 3.7(b)). In order to keep

color consistence in three directions, we use the 3D-candidate set to infer the other two

coordinates (()vyxi → , ()vzxi →) in exemplars yT and
zT (Fig. 3.7(c)). In addition,

directions y , z are done by the same steps.

Now, for each v , we can get a set of triple candidates
k1...TC which point towards

pixels in exemplars
xT , yT ,

zT . We compute the neighborhood vectors xks TCN
l

)(...1 ,

yks TCN
l

)(...1 , zks TCN
l

)(...1 by the averaged feature values from the 4 nearby pixels.

Finally, we sum up the total difference between xks TCN
l

)(...1 , yks TCN
l

)(...1 ,

zks TCN
l

)(...1 and xs vN
l

)(, ys vN
l

)(, zs vN
l

)(, then replace the triple coordinate for

voxel v with the best matching triple candidate.

21

Figure 3.7 The process of forming triple candidates in direction x :

 (a) A voxel v is corrected.

 (b) The candidates in exemplar
xT .

 (c) Find the other two candidates in exemplar yT and
zT .

(a)

(b)

Tx

Ty Tz

(c)

x1i

x2i

x3i

x1vi

x2vi

x3vi

y)v(xi →

z)v(xi →

22

Chapter 4
 Anisometric Synthesis Process

In this section, we present the proposed anisometric synthesis approach for solid

textures with vector field control. In Section 4.1, we introduce 3D vector fields and how

we generate anisometric fields and inverse anisometric fields with the 3D vector fields.

In Section 4.2, we introduce the differences between solid synthesis and anisometric

synthesis. These different steps are upsampling and correction. The jitter step is the

same as it in the solid synthesis process.

4.1 3D Vector Field

We need the user-defined 3D vector fields to implement anisometric solid texture

synthesis. We use these 3D vector fields to control the result.

First, we design a 3D space which contains three orthogonal axes at every point,

then we use mathematics formulas to control the three axes. Fig. 4.1 shows a 3D vector

field with orthogonal axes at each point, and the space size is 5×5×5. We make the three

23

axes various, and expect that the texture results would be changed with the fields. For

example, we design a circular field, and there will be a circular pattern on the texture.

Fig. 4.2 shows the 3D vector field with a circular pattern on XY plane. The vector field

should be the same size as the texture result.

(a) (b)

(c)

Figure 4.1 5×5×5 3D vector field with orthogonal axes

 (a) XY plane (b) XZ plane

(c) three orthogonal axes at each point

24

(a) (b)

(c)

Figure 4.2 5×5×5 3D vector field with a circle pattern on XY plane

 (a) XY plane (b) and (c) are three axes at each point

For each level, we have to make the anisometric field A and the inverse

anisometric field 1−A based on the user-defined 3D vector field. The anisometric field

A is created by downsampling the 3D vector field, and we obtain lA for each level.

Afterward we inverse the lA to get inverse anisometric field
1−

lA for each level. In

anisometrc synthesis process, the upsampling and correction steps will refer to the fields

25

lA and
1−

lA at each level.

4.2 Anisometric Solid Texture Synthesis

4.2.1 Pyramid Upsampling

The goal for upsmapling step in anisometric synthesis is the same as it in isometric

synthesis. It synthesizes from coarse level to fine level. We upsample the coordinate

values of parent voxels for the next level.

The difference is that the child-dependent offset for upsmapling step is dependent

on the anisometric field A . The anisometric field A is used to compute the distance

for spacing.

)(][][1 vAhvSvS lxlxxlxl ⋅∆+∆−= −

)(][][1 vAhvSvS lylyylyl ⋅∆+∆−= −

)(][][1 vAhvSvS lzlzzlzl ⋅∆+∆−= −

)(log22
lm

lh
−=

{ }

−

−

−

−

−

−

−

−∈∆

5.0

5.0

0

,

5.0

5.0

0

,

5.0

5.0

0

,

5.0

5.0

0

,

5.0

5.0

0

,

5.0

5.0

0

,

5.0

5.0

0

,

5.0

5.0

0

x

{ }

−

−

−

−

−

−

−

−

∈∆

5.0

0

5.0

,

5.0

0

5.0

,

5.0

0

5.0

,

5.0

0

5.0

,

5.0

0

5.0

,

5.0

0

5.0

,

5.0

0

5.0

,

5.0

0

5.0

y

{ }

−

−

−

−

−

−

−

−

∈∆

0

5.0

5.0

,

0

5.0

5.0

,

0

5.0

5.0

,

0

5.0

5.0

,

0

5.0

5.0

,

0

5.0

5.0

,

0

5.0

5.0

,

0

5.0

5.0

z

where lh is the regular output spacing of exemplar coordinates. x∆ means the

relative locations for 8 children in direction x , and y∆ , z∆ as well.

26

4.2.2 Voxel Correction
The goal for correction step is to make the coordinates similar to those in the

exemplars
xT , yT , zT . For each voxel v , we collect the feature values of warped

neighbors by the anisometric field lA and the inverse anisometric field
1−

lA to obtain

xs vN
l

)(, ys vN
l

)(, zs vN
l

)(. Then we search the most similar voxel from the

transformed exemplars
'~

xT ,
'~

yT ,
'~

zT to make the result similar to the exemplars xT ,

yT , zT according to the 3D vector field.

Lefebvre and Hoppe [13] presented a method for anisometric synthesis which is

able to reproduce arbitrary affine deformations, including shears and non-uniform scales.

They only accessed immediate neighbors of pixel p to construct the neighborhood

vector)(pN
ls . They used the Jacobian field J and the inverse Jacobian field 1−J to

infer which pixel neighbors to access, and the results will be transformed by the inverse

Jacobian field
1−J at the current point. We apply this method to 3D space.

First, we have to know which 4 voxel neighbors in each direction to voxel v . We

use the inverse anisometric field
1−

lA to infer the 4 warped neighbors for voxel v , and

construct the three warped neighborhood vectors xs vN
l

)(
~

, ys vN
l

)(
~

, zs vN
l

)(
~

:

±

±=∆∆+=

1

1

0

)](~[[
~

)(
~ '

xxxxs vSTvN
l

ϕ

xlx vA ∆⋅=∆
−

)()(
1

ϕ

)(

)(
)(~

x

x
x

∆

∆
=∆

ϕ

ϕ
ϕ

27

±

±

=∆∆+=

1

0

1

)](~[[
~

)(
~ '

yyyys vSTvN
l

ϕ

yly vA ∆⋅=∆
−

)()(
1

ϕ

)(

)(
)(~

y

y

y
∆

∆
=∆

ϕ

ϕ
ϕ

±

±

=∆∆+=

0

1

1

)](~[[
~

)(
~ '

zzzzs vSTvN
l

ϕ

zlz vA ∆⋅=∆
−

)()(
1

ϕ

)(

)(
)(~

z

z
z

∆

∆
=∆

ϕ

ϕ
ϕ

where)(~ ∆ϕ keeps its rotation but removes any scaling.

Fig. 4.3 shows the 4 warped neighbors for each voxel v for each direction. Their

locations are changed from diagonal locations because of the inverse anisometric

field
1−

lA .

 (a) (b) (c)

Figure 4.3 Twelve warped neighbors for)(
~

vN
ls :

(a) 4 neighbors for xs vN
l

)(
~

 (b) 4 neighbors for ys vN
l

)(
~

(c) 4 neighbors for zs vN
l

)(
~

28

Second, we have to find the 3 synthesized voxels nearby warped neoghborhod

voxels of voxel v for each direction. Taking direction x for example, we use the

inverse anisometric field 1−A to infer the 3 synthesized voxels for voxel)(~
xv ∆+ ϕ ,

and compute the averaged feature value as the new feature value at)(~
xv ∆+ ϕ . Also,

directions y , z are done by the same process. Fig. 4.4 shows the locations of 3

warped synthesized voxels for each warped neighbor.

])](~)(~[[
~

3

1
);(

~ '

),(~)(~ xxxxxMMxsl MvSTvN
xx

∆−∆′+∆+=∆ ∑ Ψ∈∆=∆′ ϕϕϕϕ

{ }

∈Ψ

100

000

000

,

000

010

000

,

000

000

000

x

])](~)(~[[
~

3

1
);(

~ '

),(~)(~ yyyyMMysl MvSTvN
yyy

∆−∆′+∆+=∆ ∑ Ψ∈∆=∆′ ϕϕϕϕ

{ }

∈Ψ

100

000

000

,

000

000

001

,

000

000

000

y

])](~)(~[[
~

3

1
);(

~ '

),(~)(~ zzzzzMMzsl MvSTvN
zz

∆−∆′+∆+=∆ ∑ Ψ∈∆=∆′ ϕϕϕϕ

{ }

∈Ψ

000

010

000

,

000

000

001

,

000

000

000

z

29

 (a) (b) (c)

Figure 4.4 Three warped sub-neighbors for warped neighbors of voxel v

We utilize the 4 warped voxels for each direction nearby voxel v . Taking direction

x for example, the warped neighbor voxel xi′ (4~1=′
xi), we can get the most similar

3 voxels (
1xi′ ,

2xi′ , 3xi′) in exemplar
xT for voxel

xi′ from the similarity set. Then we

use the warped relationship with the anisometric fields A between voxel
xi′ and

voxel v to infer the candidate voxels (vxi 1
′ , vxi 2

′ , vxi 3
′) in exemplar xT for voxel v , as

shown in Fig. 4.5(b). We want to keep the color consistence in three directions, so we

use the precomputed 3D-candidate set to infer the other two coordinates (()vyxi →
′ , ()vzxi →

′)

in exemplar yT and zT (Fig. 4.5(c)). In addition, directions y , z are done by the

same steps.

Now, for each v , we can get a set of triple candidates
k1...CT ′ which point towards

pixels in exemplars xT , yT , zT . With the inverse anisometric field
1−

lA , we can

compute the warped neighborhood vectors xks CTN
l

)(
~

...1
′ , yks CTN

l
)(

~
...1
′

 and

zks CTN
l

)(
~

...1
′ . Finally, we sum up the total difference between xks CTN

l
)(

~
...1
′ ,

30

yks CTN
l

)(
~

...1
′

 , zks CTN
l

)(
~

...1
′ and xs vN

l
)(

~
, ys vN

l
)(

~
, zs vN

l
)(

~
, and then replace the

triple coordinate for voxel v with the best matching triple candidate.

Figure 4.5 The process of forming warped triple candidates in direction x :

 (a) A voxel v is corrected.

 (b) The candidates in exemplar xT

(b) Find the other two candidates in exemplars yT , zT

(a)

x1i′

x2i′

(b)

Ty Tz

(c)

x3i′

x1vi′

x2vi′

x3vi′

y)v(xi →
′

z)v(xi →
′

Tx

31

Chapter 5

 Implementation and Results

We implement our system on a PC with 3.00GHz and 3.00GHz Core2 Extreme

CPU and 8.0GB of system memory. We use MATLAB to implement our method. We

always use 128×128 input texture, and we can synthesize to any target size which we

want. It needs about 2.5 seconds to construct a transformed exemplar from feature

vectors. It takes various times to construct a similarity set based on characteristic of the

input texture. However, the time does not exceed 11 minutes. And we spend about 3.5

hours constructing a 3D-candidate set. The transformed exemplar from feature vectors

and the similarity set can be reused for synthesis process. It means that once the feature

vectors and similarity sets are constructed, we can use them for other syntheses with

different target sizes for results and with different vector fields.

For a 128×128×128 result data, it needs about 11~12 hours for synthesis process.

For a 256×256×256 result data, it needs about 5 days for synthesis process. We will

32

our results with 128×128 input texture data and 128×128×128 result data in this chapter.

The detail computation times for different textures are shown in Table 5.1. In Section

we show some vector fields which we use in anisometric synthesis, and we show

synthesis results in Section 5.2.

5.1 Vector Fields

We use different vector field controls: circular pattern on XY plane, emissive

pattern on XY plane, slant pattern on XY plane, zigzag pattern on XY plane, and slant

control on 3D space.

The vector field about circular and emissive control is in Fig. 5.1. In circular control,

we use the green arrows as the primary vectors. On the contrary, we use the blue arrows

as the primary vectors in emissive control.

(a) (b)

Figure 5.1 5×5×5 3D vector field about circular & emissive control

(a) XY plane (b) three orthogonal axes at every point

33

The vector field about slant control is in Fig. 5.2.

(a) (b)

(c) (d)

Figure 5.2 5×5×5 3D vector field about slant control

(a) one axes on XY plane (b) one axes at every point

(c) three axes on XY plane (d) three orthogonal axes at every point

34

The vector field about zigzag control is in Fig. 5.3, and we make it changed by two

different directions for slant.

(a) (b)

(c) (d)

Figure 5.3 5×5×5 3D vector field about zigzag control

(a) one axes on XY plane (b) one axes at every point

(c) three axes on XY plane (d) three orthogonal axes at every point

35

The vector field about 3D slant control is in Fig. 5.4.

 (a) (b)

(c) (d)

Figure 5.4 5×5×5 3D vector field about 3D slant control

(a) one axes on XY plane (b) one axes at every point

(c) three axes on XY plane (b) three orthogonal axes at every point

36

5.2 Synthesis Results

The input data in Fig. 5.5(a) (case_1) is a particle-like texture. It contains few kinds

of color, and it is very different between particles and background. The particles in

case_1 are the same kind. As long as there are few complete particle patterns in the

input data, we can synthesize good result, as shown in Fig. 5.5(b)~(e).

We add the circular vector field control to the synthesis, as shown in Fig. 5.6(a)~(d).

Because this texture is not structural enough, the effect by vector field is not obvious.

But we still can see the arc-like patterns.

We add the emissive vector field control to the synthesis, as shown in Fig.

5.7(a)~(d). The effect by vector field is also obscure. Only little emissive-like patterns

are appeared in the cross section.

We add the slant vector field control to the synthesis, as shown in Fig. 5.8(a)~(d).

On XY plane, the patterns have slanted directional consistency.

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.9(a)~(d).

In this case, the effect by zigzag vector field control is obscure, just like no vector field.

We add the 3D slant vector field control to the synthesis, as shown in Fig.

5.10(a)~(d). On XY plane, the slant patterns are obvious. On the other two planes, the

effect is less than the XY plane, but the spots are squelched.

37

(a) (b)

(c) (d)

(e) (f)

Figure 5.5 (a) Input and result data for case_1

 (b) cross section at X=126, Y=126, and Z=126 for result data

 (c) cross section at X=80, Y=80, and Z=80 for result data

 (d) cross section at X=64, Y=64, and Z=64 for result data

 (e) 128×128×128 result volume data for case_1

 (f) 256×256×256 result volume data for case_1

38

(a) (b)

(c) (d)

Figure 5.6 Anisometric results with circular control for case_1

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with circular control for case_1

39

(a) (b)

(c) (d)

Figure 5.7 Anisometric results with emissive control for case_1

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with emissive control for case_1

40

(a) (b)

(c) (d)

Figure 5.8 Anisometric results with slant control for case_1

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with slant control for case_1

41

(a) (b)

(c) (d)

Figure 5.9 Anisometric results with zigzag control for case_1

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with zigzag control for case_1

42

(a) (b)

(c) (d)

Figure 5.10 Anisometric results with 3D slant control for case_1

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with 3D slant control for case_1

43

The input data in Fig. 5.11(a) (case_2) is stochastic and marble-like texture. It only

contains two kinds of colors, and it is vivid. It has rich information so that only needing

small amount of data to represent the whole texture. It means that we can synthesize

larger results with this kind of textures. Fig. 5.11(b)~(e) show the result.

We add the circular vector field control to the synthesis, as shown in Fig.

5.12(a)~(d). As we can see, there are circular patterns on XY plane.

We add the emissive vector field control to the synthesis, as shown in Fig.

5.13(a)~(d). On XY plane, we can see some emissive-patterns.

We add the slant vector field control to the synthesis, as shown in Fig. 5.14(a)~(d).

On XY plane, the patterns have slanted directional consistency.

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.15(a)~(d).

In this case, the effect by the zigzag vector field is obscure. The result looks like

random distribution.

We add the 3D slant vector field control to the synthesis, as shown in Fig.

5.16(a)~(d). On XY plane, there are blocks of slanted patterns. On the other two planes,

the patterns are squelched.

44

(a) (b)

(c) (d)

(e) (f)

Figure 5.11 (a) Input and result data for case_2

 (b) cross section at X=126, Y=126, and Z=126 for result data

 (c) cross section at X=80, Y=80, and Z=80 for result data

 (d) cross section at X=64, Y=64, and Z=64 for result data

 (e) 128×128×128 result volume data for case_2

 (f) 256×256×256 result volume data for case_2

45

(a) (b)

(c) (d)

Figure 5.12 Anisometric results with circular control for case_2

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with circular control for case_2

46

(a) (b)

(c) (d)

Figure 5.13 Anisometric results with emissive control for case_2

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with emissive control for case_2

47

(a) (b)

(c) (d)

Figure 5.14 Anisometric results with slant control for case_2

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with slant control for case_2

48

(a) (b)

(c) (d)

Figure 5.15 Anisometric results with zigzag control for case_2

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with zigzag control for case_2

49

(a) (b)

(c) (d)

Figure 5.16 Anisometric results with 3D slant control for case_2

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with 3D slant control for case_2

50

The input data in Fig. 5.17(a) (case_3) is a kind of structural textures. The patterns

in the input data are small and compact, so the texture is information-rich. Only small

size for input data could provide enough patterns for synthesis. It can be synthesized

with a few input data and get good results. The result is shown in Fig. 5.17(b)~(e).

We add the circular vector field control to the synthesis, as shown in Fig.

5.18(a)~(d). As we can see, the result is good. The cross sections also display the

character of the texture.

We add the emissive vector field control to the synthesis, as shown in Fig.

5.19(a)~(d). On XY plane, the result is good that it has emissive patterns completely.

But on the other two planes, there are some discontinuous lines.

We add the slant vector field control to the synthesis, as shown in Fig. 5.20(a)~(d).

We can see that the result is pretty good in all the three planes. It not only exhibits the

character of the texture but also has continuous lines.

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.21(a)~(d).

It has good zigzag patterns on XY plane, but there is a little discontinuity on the other

two planes.

We add the 3D slant vector field control to the synthesis, as shown in Fig.

5.22(a)~(d). The result is good. In all the three planes, it has slanted and continuous

patterns completely.

51

(a) (b)

(c) (d)

(e) (f)

Figure 5.17 (a) Input and result data for case_3

 (b) cross section at X=126, Y=126, and Z=126 for result data

 (c) cross section at X=80, Y=80, and Z=80 for result data

 (d) cross section at X=64, Y=64, and Z=64 for result data

 (e) 128×128×128 result volume data for case_3

 (f) 256×256×256 result volume data for case_3

52

(a) (b)

(c) (d)

Figure 5.18 Anisometric results with circular control for case_3

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with circular control for case_3

53

(a) (b)

(c) (d)

Figure 5.19 Anisometric results with emissive control for case_3

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with emissive control for case_3

54

(a) (b)

(c) (d)

Figure 5.20 Anisometric results with slant control for case_3

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with slant control for case_3

55

(a) (b)

(c) (d)

Figure 5.21 Anisometric results with zigzag control for case_3

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with zigzag control for case_3

56

(a) (b)

(c) (d)

Figure 5.22 Anisometric results with 3D slant control for case_3

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with 3D slant control for case_3

57

The input data in Fig. 5.23(a) (case_4) is between structural and stochastic. It has

different length and width patterns, but these patterns have the same slanted directions.

Because of the slanted direction, it displays different effects comparing with case_3

adding vector field control. The result is shown in Fig. 5.23(b)~(e).

We add the circular vector field control to the synthesis, as shown in Fig.

5.24(a)~(d). As we can see, the result has vortex-like patterns on XY plane because of

the input texture’s slanted direction.

We add the emissive vector field control to the synthesis, as shown in Fig.

5.25(a)~(d). It has the similar result to circular vector field because of the same factor.

We add the slant vector field control to the synthesis, as shown in Fig. 5.26(a)~(d).

We can see that the patterns on XY plane change their directions from slant to

horizontal.

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.27(a)~(d).

On XY plane, the patterns separate to two parts. Each part has different effect by the

zigzag vector field. The left part has horizontal direction, and the right part has slanted

direction.

We add the 3D slant vector field control to the synthesis, as shown in Fig.

5.28(a)~(d). The results has horizontal direction on XY and YZ planes. But on XZ plane,

it has point-like patterns.

58

(a) (b)

(c) (d)

(e) (f)

Figure 5.23 (a) Input and result data for case_4

 (b) cross section at X=126, Y=126, and Z=126 for result data

 (c) cross section at X=80, Y=80, and Z=80 for result data

 (d) cross section at X=64, Y=64, and Z=64 for result data

 (e) 128×128×128 result volume data for case_4

 (f) 256×256×256 result volume data for case_4

59

(a) (b)

(c) (d)

Figure 5.24 Anisometric results with circular control for case_4

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with circular control for case_4

60

(a) (b)

(c) (d)

Figure 5.25 Anisometric results with emissive control for case_4

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with emissive control for case_4

61

(a) (b)

(c) (d)

Figure 5.26 Anisometric results with slant control for case_4

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with slant control for case_4

62

(a) (b)

(c) (d)

Figure 5.27 Anisometric results with zigzag control for case_4

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with zigzag control for case_4

63

(a) (b)

(c) (d)

Figure 5.28 Anisometric results with 3D slant control for case_4

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with 3D slant control for case_4

64

The input data in Fig. 5.29(a) (case_5) is a structural texture. It has simple wooden

patterns. Because of its sparse patterns, it has different effects for different vector fields,

and we discuss later. The result is shown in Fig. 5.29(b)~(e).

We add the circular vector field control to the synthesis, as shown in Fig.

5.30(a)~(d). The result is bad, just little arc-like patterns on XY plane. The other places

in the volume are blurring, and the color of the result is unlike the input texture’s color.

We add the emissive vector field control to the synthesis, as shown in Fig.

5.31(a)~(d). As we can see, there are emissive patterns on XY plane. The color of this

result is also odd.

We add the slant vector field control to the synthesis, as shown in Fig. 5.32(a)~(d).

The result is pretty good that it has slanted patterns on XY plane completely. Moreover,

the characteristic of the wood is displayed well in the result.

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.33(a)~(d).

On XY plane, we can see the zigzag patterns. The result is sparse because the input

texture is also sparse.

We add the 3D slant vector field control to the synthesis, as shown in Fig.

5.34(a)~(d). The result is not bad. It has slanted patterns on all the three planes.

65

(a) (b)

(c) (d)

(e) (f)

Figure 5.29 (a) Input and result data for case_5

 (b) cross section at X=126, Y=126, and Z=126 for result data

 (c) cross section at X=80, Y=80, and Z=80 for result data

 (d) cross section at X=64, Y=64, and Z=64 for result data

 (e) 128×128×128 result volume data for case_5

 (f) 256×256×256 result volume data for case_5

66

(a) (b)

(c) (d)

Figure 5.30 Anisometric results with circular control for case_5

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with circular control for case_5

67

(a) (b)

(c) (d)

Figure 5.31 Anisometric results with emissive control for case_5

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with emissive control for case_5

68

(a) (b)

(c) (d)

Figure 5.32 Anisometric results with slant control for case_5

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with slant control for case_5

69

(a) (b)

(c) (d)

Figure 5.33 Anisometric results with zigzag control for case_5

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with zigzag control for case_5

70

(a) (b)

(c) (d)

Figure 5.34 Anisometric results with 3D slant control for case_5

 (a) cross section at X=126, Y=126, and Z=126 for result data

 (b) cross section at X=80, Y=80, and Z=80 for result data

 (c) cross section at X=64, Y=64, and Z=64 for result data

 (d) anisometric result with 3D slant control for case_5

71

Table 5.1 Computation time without vector field control for different textures

 Feature Vector

Construction

Similarity Set

Construction

3D Candidate

Construction

Synthesis

Process

(128×128×128)

Synthesis

Process

(256×256×256)

Case_1 2.496 seconds 10 minutes

19seconds

3 hours

32 minutes

11 hours

48 minutes

96 hours

38 minutes

Case_2 2.527 seconds 6 minutes

15 seconds

3 hours

42 seconds

12 hours

11 minutes

97 hours

14 minutes

Case_3 2.511 seconds 3 minutes

56 seconds

3 hours

26 seconds

11 hours

57 minutes

96 hours

52 minutes

Case_4 2.512 seconds 5 minutes

14 seconds

3 hours

29 minutes

12 hours

19 minutes

97 hours

27 minutes

Case_5 2.511 seconds 4 minutes

39 seconds

3 hours

30 minutes

12 hours

3 minutes

97 hours

2 minutes

By using the information-rich appearance vectors, we just use 12 locations (4

locations for each direction) in neighborhood matching. The method by Dong et al. [4]

has to compare the corrected voxel’s direct neighborhoods, so it needs 27 (3×3×3)

locations. The same points are following: we also separate the system to two processes

which are pre-process and synthesis process. And we compute the same 3D-candidate

set in pre-process to accelerate the synthesis process.

72

Chapter 6

Conclusions and Future Works

We have presented an exemplar-based system for solid texture synthesis with

anisometric control from a 2D texture. In the preprocessing, we construct the feature

vectors, similarity sets, and 3D-candidate sets from a 2D input texture. We replace

traditional RGB values with the feature vectors to construct neighbor vectors for more

accurate neighborhood matching. The similarity set which records 3 candidates for each

pixel promotes the performance of neighborhood matching in 2D plane. The

3D-candidate set keeps color consistence in three directions and also helps more

effective neighborhood matching in 3D space. In the synthesis process, we use the

pyramid synthesis method to synthesize textures from coarse level to fine level, from

one voxel to m×m×m resulting data. For each direction, we can only use 4 locations of

each voxel for neighborhood matching in synthesis process. In the anisometric synthesis

process, we design vector fields and make the result textures changed by the vector

fields.

73

In the future, we may control the anisometric textures with flow fields that make

the results changed with time. Kwatra et. al. [9] presented a method for 3D surface

texture synthesis with flow field. We may apply their method to synthesize anisometric

textures changing with time in the 3D space. Besides, we may reduce the cost time:

trying another algorithm to make the system more effective.

74

Reference

[1] Ashikhmin, M., “Synthesizing Natural Textures”, ACM SIGGRAPH Symposium on

Interactive 3D graphics, pp. 217-226, 2001.

[2] Chiou, J. W., and Yang, C. K., “Automatic 3D Solid Texture Synthesis from a 2D

Image”, Master’s Thesis, Department of Information Management National Taiwan

University of Science and Technology, 2007

[3] Dischler, J. M., Ghazanfarpour, D., and Freydier, R., “Anisotropic Solid Texture

Synthesis Using Orthogonal 2D Views”, EUROGRAPHICS 1998, vol. 17, no. 3, pp.

87-95, 1998

[4] Dong, Y., Lefebvre, S., Tong, X., and Drettakis, G., “Lazy Solid Texture Synthesis”,

Eurographics Symposium on Rendering 2008, vol. 27, no.4

[5] Ebert, D.S., Musgrave, F.K., Peachey, K.P., Perlin, K. and Worley, S., Texturing &

Modeling: A Procedural Approach, third ed. Academic Press, 2002.

[6] Heeger, D. J., and Bergen, J. R., “Pyramid-Based Texture Analysis Synthesis”,

ACM SIGGRAPH 1995, vol. 14, no. 3, pp. 229-238, 1995

[7] Jagnow, D., Dorsey, J., and Rushmeier, H., “Stereological Techniques for Solid

Textures”, ACM SIGGRAPH 2004, vol. 23, no. 3, pp. 329-335, 2004

[8] Kraevoy, V., Sheffer, A., and Gotsman, C., “Matchmaker: Constructing Constrained

Texture Maps”, ACM SIGGRAPH 2003, vol. 22, no. 3, pp. 326-333, 2003

[9] Kwatra, V., Essa, I., Bobick, A., and Kwatra, N., “Texture Optimization for

75

Exampled-based Synthesis”, ACM SIGGRAPH 2005, vol. 24, no. 3, 2005

[10] Kwatra, V., Adalsteinsson, D., Kim, T., Kwatra, N., Carlson, M., AND Lin, M.,

“Texturing Fluids”, IEEE Transactions on Visualization and Computer Graphics

2007, vol.13, no. 5, pp.939 – 952, 2007

[11] Kopf, J., Fu, C. W., Cohen-Or, D., Deussen, O., Lischinski, D., and Wong, T. T.,

“Solid Texture Synthesis from 2D Exemplars”, ACM SIGGRAPH 2007, vol. 26, no. 3,

2007

[12] Lefebvre, S., and Hoppe, H., “Parallel Controllable Texture Synthesis”, ACM

SIGGRAPH 2005 , vol. 24, no. 3, pp. 777-786, 2005

[13] Lefebvre, S., and Hoppe, H., “Appearance-space Texture Synthesis”, ACM

SIGGRAPH 2006, vol. 25, no. 3, 2006

[14] Peachy, D. R., “Solid Texturing of Complex Surfaces”, ACM SIGGPRACH 1985, vol.

19, no. 3, pp. 279-286, 1985

[15] Perlin, K., “An Image Synthesizer”, ACM SIGGPRACH 1985, vol. 19, no. 3, pp.

287-296, 1985

[16] Qin, X., and Yang, Y. H., “Aura 3D Textures”, IEEE Transactions on Visualization

and Computer Graphics 2007, vol. 13, no. 2, pp.379-389, 2007

[17] Takayama, K., Okade, M., Ijirl, T., and Igarashi, T., “Lapped Solid Textures: Filling a

Model with Anisotropic Textures”, ACM SIGGRAPH 2008, vol. 27, no. 3, 2008

[18] Turk, G., “Texture Synthesis on Surfaces”, ACM SIGGRAPH 2001, vol. 20, no. 3, pp.

347-354, 2001.

[19] Taponecco, F., Alexa, M., “Vector Field Visualization using Markov Random Field

Texture Synthesis”, Proceedings of Eurographics / IEEE TCVG Symposium on

Visualization, 195–202, 2003.

76

[20] Wei, L.Y., and Levoy, M., “Texture Synthesis Over Arbitrary Manifold Surfaces”,

ACM SIGGRAPH 2001, vol. 20, no. 3, pp. 355-360, 2001

[21] Wu, J. W., Mei, C. H., and Shi, J. Y., “Method of Direct Texture Synthesis on

Arbitrary Surfaces”, Journal of Computer Science and Technology, Sept. 2004, Vo1.19,

No.5, pp.643-649.

[22] Ying, L., Hertzmann, A., Biermann, H., and Zorin, D., “Texture and Shape Synthesis

on Surfaces”, Eurographics Workshop on Rendering 2001, vol. 12, pp. 301-312,

2001.

[23] Zelinka, S., and Garland, M., “Interactive Texture Synthesis on Surfaces Using Jump

Maps”, Eurographics Workshop on Rendering 2003, vol. 14, pp. 90-96, 2003

[24] Zhou, K., Wang, X., Tong, Y., Desbrun, M., Guo, B., and Shum, H. Y., “Synthesis of

Bidirectional Texture Functions on Arbitrary Surfaces”, ACM SIGGRAPH 2002, vol.

21, no. 3, pp. 665-672, 2002.

