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摘         要 

 

 

本論文輸入一張二維紋理來合成實體紋理(solid texture synthesis)。由於二維紋

理在三維空間中無法得知足夠的資訊，故本論文利用預先計算好的三維候選點

(3D-candidates)來做實體紋理合成，三維候選點是分別由三個方向(x, y, z)的 5×5 二

維切面(2D slices)所構成，而且必須保持三個切面交叉軸(crossbar)的顏色一致性

(color consistency)，接著利用金字塔合成方法(pyramid synthesis method)來完成實體

紋理的合成。在合成過程中使用表面向量值(appearance vector)取代傳統只用色彩值

(RGB color value)來做鄰近點比對，有了資料量豐富的表面向量值，我們就可以分別

只比對 4 個點來建立 5×5 個點的三平面內的鄰近點(neighborhood)資料，並利用額外

的向量場(vector field)來達到紋理控制(texture control)的目的。 
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ABASTRACT 

 

In this thesis, we achieve solid texture synthesis from a 2D input texture. Because 

2D input texture does not have enough information in 3D space, we introduce a method 

that using a set of pre-computed 3D-candidates, each being a triple of interleaved 5×5 2D 

slices from three coordinates. Moreover, our approach can keep the color consistency 

along the crossbar of the 3D-candidates. Then we can synthesize solid textures by 

applying pyramid synthesis method. Appearance vectors are used to replace RGB color 

values. With these information-rich vectors, 4 locations for each coordinate are used to 

obtain 5×5 slice neighborhoods. Moreover, we introduce our approach for controllable 

texture synthesis with vector fields. 
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Chapter 1 

Introduction 

 
1.1 Motivation 

Nowadays, a lot of textures can be synthesized well in 2D. But there is still a lack 

of techniques in generating 3D textures. There are different kinds of techniques for 3D 

surface texturing like texture mapping [8, 23, 24], procedural texturing [5, 15] and 

image-based surface texturing [18, 20, 22]. 3D surface texturing has some undesired 

problems, so solid texture is introduced to solve this problems. 

Texture mapping is the easiest method for 3D surface texturing, but the quality of 

the results is not good. It may be suffered from some well-know problems such as 

distortion, discontinuity, and unwanted seams. Procedural texturing can solve the 

problems of distortion and discontinuity. However, it still has some drawbacks. 

Procedural texturing models only limit types of textures, such as marble. Furthermore, 

users may take time to understand and control parameters. The results will be decided 

the designers. Image-based surface texturing can synthesize more textures, but it can’t 

handle large structural textures like bricks. When the curvature is too large, it still has 

distortion and discontinuous problems. Furthermore, image-based surface texturing is 

non-reusable such that textures generated for one surface cannot be used for other 
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surfaces.  

Solid textures can be used to solve the above problems. By Peachey [14] and Perlin 

[15], solid textures are blocks of colored points in 3D space to represent real-world 

materials. Using solid textures, users do not need to find a parameterization for the 

surface of the object to be textured. Furthermore, solid textures provide texture 

information inside the entire volume. 

Recently, some techniques [3, 4, 11, 16] used three orthogonal slices for 

neighborhood matching. We take advantage of this idea and present a method for real 

3D space texture synthesis from a 2D texture. Moreover, we use vector fields to control 

the solid texture synthesis. Unlike above methods, we replace 2D k-coherent candidates 

with 3D-candidates. When we select the best matching candidates, we consider all the 

three directions instead of each direction independently. We use information-rich 

appearance vectors for neighborhood matching. The whole process is automatic. The 

results illustrate that our approach can do well on a wide range of textures. 

 

1.2 Overview 

The flowchart of our system is shown in Figure 1.1. First, input a 2D texture and 

repeat the texture thrice as three directional exemplars. In the pre-process, it generates 

feature vectors, similarity sets, and 3D-candidates for each pixel. For feature vector 

generation, it captures 5×5 window information and uses principal component analysis 

(PCA) to decrease the dimensions. For similarity set generation, it finds the three pixels 

most similar to each pixel. For 3D-candidates generation, it computes a small candidate 

set from the other two exemplars for each pixel. In the synthesis process, we apply the 
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pyramid synthesis method [12] to our system. Upsampling, jitter and correction are used 

at each synthesis level to obtain the results. For anisometric synthesis, vector fields are 

used to control the synthesis. We input a vector field as the anisometric field and 

compute the inverse anisometric field. These two fields are used in synthesis process to 

get the results. 

The major contributions of this thesis are as follows: First, we present an approach 

for synthesizing solid textures from a 2D texture. Using appearance vectors, only 12 

locations (4 locations for each direction) are needed to synthesize solid textures. Second, 

we present a coherent anisometric synthesis method for solid textures according to 

vector field control.  

 

1.3 Thesis Organization 

The rest of this thesis is organized as follows: In Chapter 2, we review related 

works about texture synthesis with control and solid texture synthesis. In Chapter 3, we 

present our approach for synthesizing solid textures from a 2D texture. Chapter 4 

presents the proposed anisometric synthesis approach for solid textures based on vector 

field control. Chapter 5 shows the implementation and results. Finally, conclusions and 

future works are discussed in Chapter 6.   
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Chapter 2 

Related Works 

 
In this chapter, we review some recent and representative works. 

 

2.1 Texture Synthesis with Control Mechanism 

Ashikhmin [1] presented a texture synthesis algorithm for natural textures. He 

provided an interactive interface for users to control the texture synthesis process. He 

introduced an idea of “shifted-candidates” for neighborhood matching and found the 

best similar candidate. This approach uses a smaller neighborhood to obtain the quality 

characteristics of a larger neighborhood and maintains the coherence of the results. 

Users can use painting-style interface to indicate large-scale properties of the texture. 

Furrhermore, this method is fast and straightforward for the users. But it could not 

obtain good results if the user’s control does not contain significant amount of high 

frequency components. 
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Lefebvre and Hoppe [12] introduced a high-quality and parallel pyramid synthesis 

algorithm. Their method includes upsampling step to maintain patch coherence, jittering 

of exemplar coordinates to increase the randomness of the texture, and an 

order-independent correction step to keep the similarities between synthesized results 

and input textures. They obtained high-quality and efficient results thanks to the 

order-independent correction step. It corrects the pixel coordinate for more accurate 

neighborhood matching and the whole step can be divided into several subpasses to 

promote performance. However, it still has one drawback: when the features are too 

large to be captured by small neighborhoods, it could perform poorly. This drawback is 

also a well-known problem for other neighborhood-based per-pixel synthesis methods. 

  

Lefebvre and Hoppe [13] proposed a structure for exemplar-based texture synthesis 

with anisometric control. They replaced traditional RGB values with appearance vectors 

for neighborhood matching. Their appearance space reduces runtime neighborhood 

vectors from 5×5 grids to only 4 locations, so the synthesis is more efficient, and the 

quality of results is good because of the information-rich appearance vectors. In 

addition, they combined their pyramid synthesis with appearance vectors to accelerate 

neighborhood matching and proposed novel methods for coherent anisometric synthesis 

which makes arbitrary affine deformation on textures. They presented a convenient way 

to control textures. 

 

Kwatra et al. [9] introduced a method to control flows on 2D textures and presented 

an algorithm to perform texture control on 3D surfaces [10]. They proposed a vector 

advection technique with global texture synthesis to accomplish dynamically changing 
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fluid surfaces. Users can define fluid velocity field to control the texture results on 3D 

surfaces. The neighborhood construction step in the process considers orientation 

coherent with the user-defined velocity field. This method not only makes the 

synthesized results similar to the input texture, but also keeps temporally coherent. 

However, it is difficult for users to define an orientation velocity field which is smooth 

everywhere. 

 

2.2 Solid Texture Synthesis 

Jagnow et al. [7] used traditional stereological methods to synthesize 3D solid 

textures from 2D images. They synthesized solid textures for spherical particles first 

and then extended the technique to apply to arbitrary-shaped particles. Their approach 

needs cross-section images to record the distribution of circle sizes on 2D slices, and 

then builds the relationship of 2D profile density and 3D particle density. Users could 

use the particle density to add one particle at a time to reconstruct the volume data, so it 

means the step is manual. This method uses many 2D profiles to construct 3D density 

for volume results, which are good for marble textures. However, their system is not 

automatic and only for particle textures.  

 

Chiou and Yang [2] improved the above system to automatic process. They divided 

the synthesis into two parts: 2D analysis phase and 3D synthesis phase. First, they 

collected essential statistics to develop a probability model. Then they used this 

probability model to control the variation in particle size through the 3D synthesis 

procedure. However, this system inherits the above system so it is only for particle 

textures. 



 

8 

 

 

Qin et al. [16] introduced an image-based solid texturing in terms of basic 

gray-level aura matrices (BGLAMs) framework. They replaced traditional gray-level 

histograms with BGLAMs for neighborhood matching. They defined aura matrices from 

input exemplars and generated a solid texture from multiple view directions. In the 

volume result, they will only consider the pixels on the three orthogonal slices for 

neighborhood matching. The whole system is fully automatic without user interactions. 

Furthermore, they can generate reliable results for both stochastic and structural textures. 

However, it needs large storages for large matrices and the results are not good for color 

textures.   

Kopf et al. [11] provided a solid texture synthesis method from 2D exemplars. They 

took advantage of 2D texture optimization techniques to do 3D solid texture synthesis 

and then preserved global statistical properties by histogram matching to achieve 

optimization. For each voxel, they only considered the neighborhood coherence in three 

orthogonal slices, and increased the similarity between the solid textures and the 

exemplar iteratively. Their approach could do well for wide range of textures. But they 

synthesized the texture with the information on the slices. 

 

Takayama et al. [17] presented a method which fills a model with anisotropic 

textures. They had some volume textures and defined it how to map to 3D objects. Then 

they pasted solid texture exemplars repeatedly on the 3D object. Volumetric tensor 

over the mesh can be set by users, and the texture patches are located according to these 

fields. This method still has drawbacks. The patch seams became noticeable when using 

a texture with strong low-frequency components and the blurring artifacts appeared 
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when using highly structured textures. 

 

Dong et al. [4] introduced a new algorithm to restrict synthesis to a subset of the 

voxels, while enforcing spatial determinism. They reduced the dependency chain of 

neighborhood matching, so that each voxel only depended on a small number of other 

voxels. They synthesized a volume by using pre-computed 3D-candidates, each being a 

triple of interleaved 2D neighborhoods. These 3D-candidates are selected carefully to 

form consistent triples. Their approach could generate good results efficiently. However, 

if the three exemplars do not define a coherent 3D volume, the quality of the result will 

be poor. 

 

2.3 Texture Synthesis and Vector Field 

Many patterns are created by interactions between texture elements and surface 

geometry, so Turk [18] synthesized a texture directly on the surface of the model. An 

orientation field must be specified over the surface in order to preserve the directional 

nature of textures. They did this by allowing users to pick the directions at several 

locations and then interpolating vectors over the rest of the surface. 

 

Ying et al. [22] presented a method that synthesized the texture directly on the 

surface, rather than synthesizing a texture image and mapping it to the surface. A 2D 

vector field was used to specify the correspondence between orientation on the surface 

and orientation in the domain of the example texture. A pair of orthogonal tangent 

vector fields is used for the purpose. They got one field first, and the second field is 

computed as the cross-product of the first field and the oriented surface normal. 
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Taponecco et al. [19] used Markov Random Field (MRF) texture synthesis method 

to implement 2D vector field visualization. In their approach, they defined a vector field 

by magnitude and direction. The magnitude could be easily computed using an 

appropriate norm of the values. Assigning the direction required a projection of the 

vector onto the image plane, and then the angle of the tangent in the vector field relative 

to the x-axis is gotten. The magnitude and direction were used to scale and rotate the 

image. 

 

Wu et al. [21] proposed an approach to directly synthesize texture on arbitrary 

surface with texture sample. It had a tangential vector field which indicated the desired 

growing orientation of the texture on the surface. First, users specified tangential 

vectors at a few seed triangles, and then they interpolated vectors at the remaining 

triangles to build a tangential vector field. They recursively mapped triangles to texture 

space until the whole surface is mapped completely based on the vector field. 
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Chapter 3 

 Solid Synthesis Process 

 

In this section, we present our approach for synthesizing solid textures from 2D 

textures. In Section 3.1, we describe feature vectors in appearance space and how we 

get the feature vectors. Then we use the similarity set to accelerate neighborhood 

matching in Section 3.2. In Section 3.3, we keep the color coherence of the three 

orthogonal slices by computing 3D-candidates. We introduce how to apply 2D pyramid 

texture synthesis to solid texture synthesis in Section 3.4. The upsampling process 

increases the texture sizes between different levels, that each voxel in parent level 

generates eight voxels in children level. The jitter step perturbs the textures to achieve 

deterministic randomness. The last step in pyramid solid synthesis is voexl correction, 

using neighborhood matching to make the results more similar to the exemplar.  

 

3.1 Feature Vector Generation 

Solid texture synthesis using RGB color values for neighborhood matching needs 
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larger neighborhood size and data. Appearance vectors have been proved that they are 

continuous and low-dimensional for neighborhood matching. Hence, we transform the 

texture data values in color space into feature vectors in appearance space. As shown in 

Fig. 3.1, we transform texture data T  into appearance space texture data T' . 

 

Figure 3.1  Overview of texture data transformation 

 

According to Lefebvre and Hoppe [13], we take the RGB values in 5×5 windows 

(Fig. 3.2 (b)) to construct appearance vectors for each pixel of an input texture T (Fig. 

3.2 (a)). The exemplar T'  consists of the feature vectors at each pixel. There are 75 

dimensions (25 for grids and 3 for RGB) for each pixel in T' , and then we perform 

principal component analysis (PCA) to reduce the dimensions for a transformed 

exemplar '
T
~

 (Fig. 3.2 (c)). 

 

Figure 3.2 The process for feature vector generation: 

(b) 

(a) (c) 
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(a) input texture data T  (b) 5×5 windows structure for feature vectors  

(c) transformed exemplar '
T
~

 

 

3.2 Similarity Set Generation 

By the k -coherence search method [24], searching from the candidates can 

accelerate neighborhood matching because we do not have to search from each pixel in 

the exemplar for neighborhood matching. Thus, we construct a similarity set to record 

the candidates similar to each pixel. 

 

Based on the principle of coherence synthesis [1], searching candidates from the 

nn ×  neighbors of pixel p  in the exemplar T  can accelerate the synthesis process. 

Hence, we find the k  most similar pixels from the nn×  neighbors of pixel p  in the 

transformed exemplar '
T
~

 to construct the similarity set )(...1 pC
l

k  for pixel p , where 

k  is a user-defined parameter, and l is the pyramid level, ppC
l =)(1 . Note that n  is a 

user-defined parameter to control the window size for coherent synthesis. In the 

experiments, n  is set as 7.  

 

3.3 3D-Candidate Generation 

First, we repeat the input texture thrice as three directional exemplars
xT , yT and 

zT . 

By Dong et al. [4], we generate a small set of 3D-candidates for each pixel of the three 

exemplars to build the relation between the three exemplars. The 3D-candidate is 

by three 5×5 slices (2D neighborhoods) (Fig. 3.3 (a)). It is important that a suitable 

candidate should be consistent across the crossbar. The crossbar is the strip that is 

intersected by two slices (Fig. 3.3 (b)). Therefore, we seek to minimize the color 
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disparity between the strips shared by interleaved slices. 

 

Figure 3.3  The diagram of 3D-candidate: 

(a) Three input exemplars xT , yT , 
zT  and a corresponding 3D-candidate.   

(b) The crossbars are defined by the three slices. 

(c) A consistent triple from each exemplar. 

 

We define the triple to be the three coordinates which is pointed by the center pixel 

of the three slices. For each pixel of each exemplar, we form triples using the pixel 

and two neighborhoods from the other two exemplars. We select the triples which have 

the smaller crossbar error. The 3D-candidate set is composed of these triples. For 

instance, as shown in Fig. 3.3(c), assuming we want to compute a 3D-candidate set for 

(a) 

(b) 

(c) 
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pixel p in 
xT , we first find in yT  the K pixel strips best matching the orange line from 

xT , and in 
zT  the K pixel strips best matching the green line from 

xT . We use the 

current pixel p as the third coordinate to produce all possible K
2
 triples, and then order 

them based on the crossbar error which is the sum of color differences for the three 

of pixel strips. In the experiments, we keep the 12 best triples as 3D-candidates for each 

pixel and set a value K as 65. 

 

3.4 Pyramid Solid Texture Synthesis 

3.4.1 Pyramid Upsampling 

The pyramid synthesis method [6] synthesizes textures from coarse level to fine 

level. There are 1+l  levels in synthesis process, l=0~ m2log , where m is the size of 

the target texture. We apply this 2D pyramid synthesis method to 3D space.  

 

Figure 3.4  Synthesis from one voxel to mmm ××  solid texture 

 

In our approach, we synthesize from one voxel to a m×m×m solid texture, from 

LSS ~0 , where mL 2log= , as shown in Fig. 3.4. We synthesize a volume data S  in 

which each voxel [ ]vS  stores three coordinate values, indicating
'~

xT , 
'~

yT , 
'~

zT  

0S             1S                      2S  

0=l           1=l                    2=l    
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exemplar’s pixel, respectively. First, we build a voxel and assign value (1,1), (1,1), (1,1) 

to it as triple coordinates. Then, we upsample the coordinates of parent voxels for next 

level, assigning each eight children the scaled parent coordinates plus child-dependent 

offset as 

 

( )2mod,2mod]
2

,
2

,
2

[][ 1 kjh
kji

SijkS lxlxl +

















= − , 

( )2mod,2mod]
2

,
2

,
2

[][ 1 kih
kji

SijkS lylyl +

















= − , 

( )2mod,2mod]
2

,
2

,
2

[][ 1 jih
kji

SijkS lzlzl +

















= − , 

)(log22
lm

lh
−=

 

 

where lh  denotes the regular output spacing of exemplar coordinates, and ijk  

means the location of voxel v . xl ijkS ][  is the new coordinate value at location ijk  

within the volume of level l  for exemplar 
'~

xT . yl ijkS ][  is the new coordinate value at 

location ijk  within the volume of level l  for exemplar 
'~

yT . zl ijkS ][
 
is the new 

coordinate value at location ijk  within the volume of level l  for exemplar 
'~

zT . 

 

3.4.2 Jitter Method 

After upsampling the coordinates, we have to jitter our texture to achieve 

deterministic randomness. We plus the upsampled coordinates at each level a jitter 

function value to perturb it. The jitter function )(vJ l  is produced by a hash function 

[ ]22 1,1:)( +−→ΖvH  and a user-defined parameter lr . 
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)(][][ vJvSvS lll +=  

lll rvHhvJ )()( =  

 

3.4.3 Voxel Correction 

In order to make the coordinates similar to those in the exemplars 
xT , yT , 

zT , we 

take the jittered results to recreate neighbors. There is a feature value for each pixel 

after constructing feature vectors. For each voxel v , we collect the feature values of its 

neighbors to obtain the neighborhood vectors xs vN
l

)( , ys vN
l

)( , zs vN
l

)(  for each 

direction, respectively. Then, we search the most similar pixel from the transformed 

exemplars 
'~

xT , 
'~

yT , 
'~

zT  to make the result similar to the exemplars 
xT , yT , 

zT . 

 

In neighborhood matching, we take 4 diagonal locations for voxel v  in each 

direction to obtain the neighborhood vectors xs vN
l

)( , ys vN
l

)( , zs vN
l

)( : 
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Fig. 3.5 shows that each direction has 4 diagonal locations for each voxel v . 
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Figure 3.5  Twelve neighbors for )(vN
ls :  

(a) 4 neighbors for xs vN
l

)(    (b) 4 neighbors for ys vN
l

)(  

(c) 4 neighbors for zs vN
l

)(
 

 

Based on [13], for xs vN
l

)( , we average the voxels nearby voxel 
xv ∆+  to 

improve convergence without increasing the size of the neighborhood vector xs vN
l

)( . 

We average the appearance values from 3 synthesized voxels nearby 
xv ∆+  as the new 

feature value at voxel 
xv ∆+ , and then use the new feature values at 4 diagonal voxel 

to construct neighborhood vector xs vN
l

)( . Also, ys vN
l

)(
 
and zs vN

l
)(  can be done by 

the same process. );( xs vN
l

∆  means the averaged feature value at voxel 
xv ∆+ . 

);( ys vN
l

∆
 
means the averaged feature value at voxel yv ∆+ . );( zs vN

l
∆  means the 

averaged feature value at voxel 
zv ∆+ . 

 

∑ ∆′−∆′+∆+=∆ Ψ∈∆=∆′ ]][[
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1
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Fig. 3.6 shows the locations of 3 synthesized voxels for each neighbor. 

 

Figure 3.6  Three sub-neighbors for each neighbor of voxel v : 

   (a) in xs vN
l

)(   (b) in ys vN
l

)(   (c) in zs vN
l

)(  

 

We use the similarity sets and coherence synthesis method in the searching process, 

utilizing the 4 voxels for each direction nearby voxel v . Taking direction x  for 

example, for the neighbor voxel 
xi  ( 4~1=xi ), we can get the most similar 3 pixels 

( 1xi , 2xi , 3xi ) in exemplar 
xT  for voxel 

xi  from the similarity set. And then we 

the offset between voxel 
xi  and voxel v  from 3D space to 2D space to infer the 

(a) (b) (c) 
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candidates ( vxi 1 , vxi 2 , vxi 3 ) in exemplar 
xT  for voxel v  (Fig. 3.7(b)). In order to keep 

color consistence in three directions, we use the 3D-candidate set to infer the other two 

coordinates ( ( )vyxi → , ( )vzxi → ) in exemplars yT  and 
zT  (Fig. 3.7(c)). In addition, 

directions y , z  are done by the same steps.  

 

Now, for each v , we can get a set of triple candidates 
k1...TC  which point towards 

pixels in exemplars 
xT , yT , 

zT . We compute the neighborhood vectors xks TCN
l

)( ...1 , 

yks TCN
l

)( ...1 , zks TCN
l

)( ...1  by the averaged feature values from the 4 nearby pixels. 

Finally, we sum up the total difference between xks TCN
l

)( ...1 , yks TCN
l

)( ...1 , 

zks TCN
l

)( ...1  and xs vN
l

)( , ys vN
l

)( , zs vN
l

)( , then replace the triple coordinate for 

voxel v  with the best matching triple candidate. 
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Figure 3.7  The process of forming triple candidates in direction x :  

  (a) A voxel v  is corrected.  

  (b) The candidates in exemplar 
xT .  

  (c) Find the other two candidates in exemplar yT  and 
zT . 

   

(a) 

(b) 

Tx 

Ty Tz 

(c) 

x1i  

x2i  

x3i  

x1vi

x2vi

x3vi

y)v(xi →  

z)v(xi →  



 

22 

 

 

 

 

Chapter 4 
 Anisometric Synthesis Process 

 

In this section, we present the proposed anisometric synthesis approach for solid 

textures with vector field control. In Section 4.1, we introduce 3D vector fields and how 

we generate anisometric fields and inverse anisometric fields with the 3D vector fields. 

In Section 4.2, we introduce the differences between solid synthesis and anisometric 

synthesis. These different steps are upsampling and correction. The jitter step is the 

same as it in the solid synthesis process. 

 

4.1 3D Vector Field 

We need the user-defined 3D vector fields to implement anisometric solid texture 

synthesis. We use these 3D vector fields to control the result. 

 

First, we design a 3D space which contains three orthogonal axes at every point, 

then we use mathematics formulas to control the three axes. Fig. 4.1 shows a 3D vector 

field with orthogonal axes at each point, and the space size is 5×5×5. We make the three 
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axes various, and expect that the texture results would be changed with the fields. For 

example, we design a circular field, and there will be a circular pattern on the texture. 

Fig. 4.2 shows the 3D vector field with a circular pattern on XY plane. The vector field 

should be the same size as the texture result.  

 

   

(a)   (b) 

 

 

(c) 

Figure 4.1  5×5×5 3D vector field with orthogonal axes 

          (a) XY plane             (b) XZ plane    

(c) three orthogonal axes at each point 
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(a)                               (b) 

 

 

(c) 

Figure 4.2  5×5×5 3D vector field with a circle pattern on XY plane 

          (a) XY plane   (b) and (c) are three axes at each point 

 

For each level, we have to make the anisometric field A  and the inverse 

anisometric field 1−A  based on the user-defined 3D vector field. The anisometric field 

A  is created by downsampling the 3D vector field, and we obtain lA  for each level. 

Afterward we inverse the lA  to get inverse anisometric field 
1−

lA  for each level. In 

anisometrc synthesis process, the upsampling and correction steps will refer to the fields 
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lA  and 
1−

lA  at each level. 

 

4.2 Anisometric Solid Texture Synthesis 

4.2.1 Pyramid Upsampling 

The goal for upsmapling step in anisometric synthesis is the same as it in isometric 

synthesis. It synthesizes from coarse level to fine level. We upsample the coordinate 

values of parent voxels for the next level. 

 

The difference is that the child-dependent offset for upsmapling step is dependent 

on the anisometric field A . The anisometric field A  is used to compute the distance 

for spacing.  

 

)(][][ 1 vAhvSvS lxlxxlxl ⋅∆+∆−= −  

)(][][ 1 vAhvSvS lylyylyl ⋅∆+∆−= −  

)(][][ 1 vAhvSvS lzlzzlzl ⋅∆+∆−= −  
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where lh  is the regular output spacing of exemplar coordinates. x∆  means the 

relative locations for 8 children in direction x , and y∆ , z∆  as well. 
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4.2.2 Voxel Correction 
The goal for correction step is to make the coordinates similar to those in the 

exemplars 
xT , yT , zT . For each voxel v , we collect the feature values of warped 

neighbors by the anisometric field lA  and the inverse anisometric field 
1−

lA to obtain 

xs vN
l

)( , ys vN
l

)( , zs vN
l

)( . Then we search the most similar voxel from the 

transformed exemplars 
'~

xT , 
'~

yT , 
'~

zT  to make the result similar to the exemplars xT , 

yT , zT  according to the 3D vector field. 

 

Lefebvre and Hoppe [13] presented a method for anisometric synthesis which is 

able to reproduce arbitrary affine deformations, including shears and non-uniform scales. 

They only accessed immediate neighbors of pixel p  to construct the neighborhood 

vector )( pN
ls . They used the Jacobian field J  and the inverse Jacobian field 1−J  to 

infer which pixel neighbors to access, and the results will be transformed by the inverse 

Jacobian field 
1−J  at the current point. We apply this method to 3D space. 

 

First, we have to know which 4 voxel neighbors in each direction to voxel v . We 

use the inverse anisometric field 
1−

lA  to infer the 4 warped neighbors for voxel v , and 

construct the three warped neighborhood vectors xs vN
l

)(
~

, ys vN
l

)(
~

, zs vN
l

)(
~

: 
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where )(~ ∆ϕ  keeps its rotation but removes any scaling. 

 

Fig. 4.3 shows the 4 warped neighbors for each voxel v  for each direction. Their 

locations are changed from diagonal locations because of the inverse anisometric 

field
1−

lA . 

   

          (a)                     (b)                    (c) 

Figure 4.3  Twelve warped neighbors for )(
~

vN
ls : 

 

(a) 4 neighbors for xs vN
l

)(
~

   (b) 4 neighbors for ys vN
l

)(
~

 

(c) 4 neighbors for zs vN
l

)(
~
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Second, we have to find the 3 synthesized voxels nearby warped neoghborhod 

voxels of voxel v  for each direction. Taking direction x  for example, we use the 

inverse anisometric field 1−A  to infer the 3 synthesized voxels for voxel )(~
xv ∆+ ϕ , 

and compute the averaged feature value as the new feature value at )(~
xv ∆+ ϕ . Also, 

directions y , z  are done by the same process. Fig. 4.4 shows the locations of 3 

warped synthesized voxels for each warped neighbor. 
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             (a)                      (b)                     (c) 

Figure 4.4  Three warped sub-neighbors for warped neighbors of voxel v  

 

We utilize the 4 warped voxels for each direction nearby voxel v . Taking direction 

x  for example, the warped neighbor voxel xi′  ( 4~1=′
xi ), we can get the most similar 

3 voxels (
1xi′ ,

2xi′ , 3xi′ )  in exemplar 
xT  for voxel 

xi′  from the similarity set. Then we 

use the warped relationship with the anisometric fields A  between voxel 
xi′  and 

voxel v  to infer the candidate voxels ( vxi 1
′ , vxi 2

′ , vxi 3
′ ) in exemplar xT  for voxel v , as 

shown in Fig. 4.5(b). We want to keep the color consistence in three directions, so we 

use the precomputed 3D-candidate set to infer the other two coordinates ( ( )vyxi →
′ , ( )vzxi →

′ ) 

in exemplar yT  and zT  (Fig. 4.5(c)). In addition, directions y , z  are done by the 

same steps.  

 

Now, for each v , we can get a set of triple candidates 
k1...CT ′  which point towards 

pixels in exemplars xT , yT , zT . With the inverse anisometric field 
1−

lA , we can 

compute the warped neighborhood vectors xks CTN
l

)(
~

...1
′ , yks CTN

l
)(

~
...1
′

 and 

zks CTN
l

)(
~

...1
′ . Finally, we sum up the total difference between xks CTN

l
)(

~
...1
′ , 
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yks CTN
l

)(
~

...1
′

 , zks CTN
l

)(
~

...1
′  and xs vN

l
)(

~
, ys vN

l
)(

~
, zs vN

l
)(

~
, and then replace the 

triple coordinate for voxel v  with the best matching triple candidate. 

 

 

Figure 4.5  The process of forming warped triple candidates in direction x :  

   (a) A voxel v  is corrected.  

  (b) The candidates in exemplar xT
 

  
(b) Find the other two candidates in exemplars yT , zT  

(a) 

x1i′  

x2i′  

(b) 

Ty Tz 

(c) 

x3i′  

x1vi′

x2vi′

x3vi′

y)v(xi →
′  

z)v(xi →
′  

Tx 
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Chapter 5 

    Implementation and Results 

 

We implement our system on a PC with 3.00GHz and 3.00GHz Core2 Extreme 

CPU and 8.0GB of system memory. We use MATLAB to implement our method. We 

always use 128×128 input texture, and we can synthesize to any target size which we 

want. It needs about 2.5 seconds to construct a transformed exemplar from feature 

vectors. It takes various times to construct a similarity set based on characteristic of the 

input texture. However, the time does not exceed 11 minutes. And we spend about 3.5 

hours constructing a 3D-candidate set. The transformed exemplar from feature vectors 

and the similarity set can be reused for synthesis process. It means that once the feature 

vectors and similarity sets are constructed, we can use them for other syntheses with 

different target sizes for results and with different vector fields. 

  

For a 128×128×128 result data, it needs about 11~12 hours for synthesis process. 

For a 256×256×256 result data, it needs about 5 days for synthesis process. We will 
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our results with 128×128 input texture data and 128×128×128 result data in this chapter. 

The detail computation times for different textures are shown in Table 5.1. In Section 

we show some vector fields which we use in anisometric synthesis, and we show 

synthesis results in Section 5.2. 

 

5.1 Vector Fields 

We use different vector field controls: circular pattern on XY plane, emissive 

pattern on XY plane, slant pattern on XY plane, zigzag pattern on XY plane, and slant 

control on 3D space. 

 

The vector field about circular and emissive control is in Fig. 5.1. In circular control, 

we use the green arrows as the primary vectors. On the contrary, we use the blue arrows 

as the primary vectors in emissive control. 

  

(a)                                (b) 

Figure 5.1 5×5×5 3D vector field about circular & emissive control 

(a) XY plane               (b) three orthogonal axes at every point 
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The vector field about slant control is in Fig. 5.2. 

  

(a)                                   (b) 

  

(c)                                   (d) 

Figure 5.2 5×5×5 3D vector field about slant control 

(a) one axes on XY plane     (b) one axes at every point 

(c) three axes on XY plane    (d) three orthogonal axes at every point 
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The vector field about zigzag control is in Fig. 5.3, and we make it changed by two 

different directions for slant. 

  

(a)                                   (b) 

   

(c)                                   (d) 

Figure 5.3 5×5×5 3D vector field about zigzag control 

(a) one axes on XY plane     (b) one axes at every point 

(c) three axes on XY plane    (d) three orthogonal axes at every point 
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The vector field about 3D slant control is in Fig. 5.4.  

   

 (a)                                   (b) 

   

(c)                                   (d) 

Figure 5.4 5×5×5 3D vector field about 3D slant control 

(a) one axes on XY plane     (b) one axes at every point 

(c) three axes on XY plane    (b) three orthogonal axes at every point 
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5.2 Synthesis Results 

The input data in Fig. 5.5(a) (case_1) is a particle-like texture. It contains few kinds 

of color, and it is very different between particles and background. The particles in 

case_1 are the same kind. As long as there are few complete particle patterns in the 

input data, we can synthesize good result, as shown in Fig. 5.5(b)~(e). 

 

We add the circular vector field control to the synthesis, as shown in Fig. 5.6(a)~(d). 

Because this texture is not structural enough, the effect by vector field is not obvious. 

But we still can see the arc-like patterns. 

 

We add the emissive vector field control to the synthesis, as shown in Fig. 

5.7(a)~(d). The effect by vector field is also obscure. Only little emissive-like patterns 

are appeared in the cross section. 

 

We add the slant vector field control to the synthesis, as shown in Fig. 5.8(a)~(d). 

On XY plane, the patterns have slanted directional consistency. 

 

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.9(a)~(d). 

In this case, the effect by zigzag vector field control is obscure, just like no vector field. 

 

We add the 3D slant vector field control to the synthesis, as shown in Fig. 

5.10(a)~(d). On XY plane, the slant patterns are obvious. On the other two planes, the 

effect is less than the XY plane, but the spots are squelched. 
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(a)                                (b) 

 

(c)                                (d) 

 

(e)                                (f) 

Figure 5.5 (a) Input and result data for case_1 

         (b) cross section at X=126, Y=126, and Z=126 for result data 

         (c) cross section at X=80, Y=80, and Z=80 for result data 

         (d) cross section at X=64, Y=64, and Z=64 for result data 

         (e) 128×128×128 result volume data for case_1 

         (f) 256×256×256 result volume data for case_1 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.6 Anisometric results with circular control for case_1 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with circular control for case_1 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.7 Anisometric results with emissive control for case_1 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with emissive control for case_1 

 



 

40 

 

 

(a)                                (b) 

 

(c)                                (d) 

Figure 5.8 Anisometric results with slant control for case_1 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with slant control for case_1 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.9 Anisometric results with zigzag control for case_1 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with zigzag control for case_1 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.10 Anisometric results with 3D slant control for case_1 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with 3D slant control for case_1 
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The input data in Fig. 5.11(a) (case_2) is stochastic and marble-like texture. It only 

contains two kinds of colors, and it is vivid. It has rich information so that only needing 

small amount of data to represent the whole texture. It means that we can synthesize 

larger results with this kind of textures. Fig. 5.11(b)~(e) show the result.  

 

We add the circular vector field control to the synthesis, as shown in Fig. 

5.12(a)~(d). As we can see, there are circular patterns on XY plane. 

 

We add the emissive vector field control to the synthesis, as shown in Fig. 

5.13(a)~(d). On XY plane, we can see some emissive-patterns. 

 

We add the slant vector field control to the synthesis, as shown in Fig. 5.14(a)~(d). 

On XY plane, the patterns have slanted directional consistency. 

 

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.15(a)~(d). 

In this case, the effect by the zigzag vector field is obscure. The result looks like 

random distribution. 

 

We add the 3D slant vector field control to the synthesis, as shown in Fig. 

5.16(a)~(d). On XY plane, there are blocks of slanted patterns. On the other two planes, 

the patterns are squelched. 
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(a)                                (b) 

 

(c)                                (d) 

 

(e)                                (f) 

Figure 5.11 (a) Input and result data for case_2 

          (b) cross section at X=126, Y=126, and Z=126 for result data 

          (c) cross section at X=80, Y=80, and Z=80 for result data 

          (d) cross section at X=64, Y=64, and Z=64 for result data 

          (e) 128×128×128 result volume data for case_2 

          (f) 256×256×256 result volume data for case_2 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.12 Anisometric results with circular control for case_2 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with circular control for case_2 
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(a)                                (b) 

 
(c)                                (d) 

Figure 5.13 Anisometric results with emissive control for case_2 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with emissive control for case_2 
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(a)                                (b) 

 
(c)                                (d) 

Figure 5.14 Anisometric results with slant control for case_2 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with slant control for case_2 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.15 Anisometric results with zigzag control for case_2 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with zigzag control for case_2 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.16 Anisometric results with 3D slant control for case_2 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with 3D slant control for case_2 
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The input data in Fig. 5.17(a) (case_3) is a kind of structural textures. The patterns 

in the input data are small and compact, so the texture is information-rich. Only small 

size for input data could provide enough patterns for synthesis. It can be synthesized 

with a few input data and get good results. The result is shown in Fig. 5.17(b)~(e).  

 

We add the circular vector field control to the synthesis, as shown in Fig. 

5.18(a)~(d). As we can see, the result is good. The cross sections also display the 

character of the texture. 

 

We add the emissive vector field control to the synthesis, as shown in Fig. 

5.19(a)~(d). On XY plane, the result is good that it has emissive patterns completely. 

But on the other two planes, there are some discontinuous lines. 

 

We add the slant vector field control to the synthesis, as shown in Fig. 5.20(a)~(d). 

We can see that the result is pretty good in all the three planes. It not only exhibits the 

character of the texture but also has continuous lines. 

 

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.21(a)~(d). 

It has good zigzag patterns on XY plane, but there is a little discontinuity on the other 

two planes. 

 

We add the 3D slant vector field control to the synthesis, as shown in Fig. 

5.22(a)~(d). The result is good. In all the three planes, it has slanted and continuous 

patterns completely. 
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(a)                                (b) 

 

(c)                                (d) 

 

(e)                                (f) 

Figure 5.17 (a) Input and result data for case_3 

          (b) cross section at X=126, Y=126, and Z=126 for result data 

          (c) cross section at X=80, Y=80, and Z=80 for result data 

          (d) cross section at X=64, Y=64, and Z=64 for result data 

          (e) 128×128×128 result volume data for case_3 

          (f) 256×256×256 result volume data for case_3 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.18 Anisometric results with circular control for case_3 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with circular control for case_3 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.19 Anisometric results with emissive control for case_3 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with emissive control for case_3 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.20 Anisometric results with slant control for case_3 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with slant control for case_3 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.21 Anisometric results with zigzag control for case_3 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with zigzag control for case_3 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.22 Anisometric results with 3D slant control for case_3 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with 3D slant control for case_3 
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The input data in Fig. 5.23(a) (case_4) is between structural and stochastic. It has 

different length and width patterns, but these patterns have the same slanted directions. 

Because of the slanted direction, it displays different effects comparing with case_3 

adding vector field control. The result is shown in Fig. 5.23(b)~(e).  

 

We add the circular vector field control to the synthesis, as shown in Fig. 

5.24(a)~(d). As we can see, the result has vortex-like patterns on XY plane because of 

the input texture’s slanted direction. 

 

We add the emissive vector field control to the synthesis, as shown in Fig. 

5.25(a)~(d). It has the similar result to circular vector field because of the same factor. 

 

We add the slant vector field control to the synthesis, as shown in Fig. 5.26(a)~(d). 

We can see that the patterns on XY plane change their directions from slant to 

horizontal.  

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.27(a)~(d). 

On XY plane, the patterns separate to two parts. Each part has different effect by the 

zigzag vector field. The left part has horizontal direction, and the right part has slanted 

direction. 

 

We add the 3D slant vector field control to the synthesis, as shown in Fig. 

5.28(a)~(d). The results has horizontal direction on XY and YZ planes. But on XZ plane, 

it has point-like patterns. 
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(a)                                (b) 

 

(c)                                (d) 

 

(e)                                (f) 

Figure 5.23 (a) Input and result data for case_4 

          (b) cross section at X=126, Y=126, and Z=126 for result data 

          (c) cross section at X=80, Y=80, and Z=80 for result data 

          (d) cross section at X=64, Y=64, and Z=64 for result data 

          (e) 128×128×128 result volume data for case_4 

    (f) 256×256×256 result volume data for case_4 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.24 Anisometric results with circular control for case_4 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with circular control for case_4 

 



 

60 

 

 

(a)                                (b) 

 

(c)                                (d) 

Figure 5.25 Anisometric results with emissive control for case_4 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with emissive control for case_4 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.26 Anisometric results with slant control for case_4 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with slant control for case_4 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.27 Anisometric results with zigzag control for case_4 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with zigzag control for case_4 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.28 Anisometric results with 3D slant control for case_4 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with 3D slant control for case_4 
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The input data in Fig. 5.29(a) (case_5) is a structural texture. It has simple wooden 

patterns. Because of its sparse patterns, it has different effects for different vector fields, 

and we discuss later. The result is shown in Fig. 5.29(b)~(e).  

 

We add the circular vector field control to the synthesis, as shown in Fig. 

5.30(a)~(d). The result is bad, just little arc-like patterns on XY plane. The other places 

in the volume are blurring, and the color of the result is unlike the input texture’s color. 

 

We add the emissive vector field control to the synthesis, as shown in Fig. 

5.31(a)~(d). As we can see, there are emissive patterns on XY plane. The color of this 

result is also odd. 

 

We add the slant vector field control to the synthesis, as shown in Fig. 5.32(a)~(d). 

The result is pretty good that it has slanted patterns on XY plane completely. Moreover, 

the characteristic of the wood is displayed well in the result. 

 

We add the zigzag vector field control to the synthesis, as shown in Fig. 5.33(a)~(d). 

On XY plane, we can see the zigzag patterns. The result is sparse because the input 

texture is also sparse. 

 

We add the 3D slant vector field control to the synthesis, as shown in Fig. 

5.34(a)~(d). The result is not bad. It has slanted patterns on all the three planes. 
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(a)                                (b) 

 
(c)                                (d) 

 
(e)                                (f) 

Figure 5.29 (a) Input and result data for case_5 

          (b) cross section at X=126, Y=126, and Z=126 for result data 

          (c) cross section at X=80, Y=80, and Z=80 for result data 

          (d) cross section at X=64, Y=64, and Z=64 for result data 

          (e) 128×128×128 result volume data for case_5 

    (f) 256×256×256 result volume data for case_5 
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(a)                                (b) 

 

(c)                                (d) 

Figure 5.30 Anisometric results with circular control for case_5 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with circular control for case_5 
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(a)                                (b) 

 
(c)                                (d) 

Figure 5.31 Anisometric results with emissive control for case_5 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with emissive control for case_5 
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(a)                                (b) 

 
(c)                                (d) 

Figure 5.32 Anisometric results with slant control for case_5 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with slant control for case_5 
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(a)                                (b) 

 
(c)                                (d) 

Figure 5.33 Anisometric results with zigzag control for case_5 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with zigzag control for case_5 
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(a)                                (b) 

 
(c)                                (d) 

Figure 5.34 Anisometric results with 3D slant control for case_5 

          (a) cross section at X=126, Y=126, and Z=126 for result data 

          (b) cross section at X=80, Y=80, and Z=80 for result data 

          (c) cross section at X=64, Y=64, and Z=64 for result data 

          (d) anisometric result with 3D slant control for case_5 
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Table 5.1  Computation time without vector field control for different textures 

 Feature Vector 

Construction 

Similarity Set 

Construction 

3D Candidate 

Construction 

Synthesis 

Process 

(128×128×128) 

Synthesis 

Process 

(256×256×256) 

Case_1 2.496 seconds  10 minutes 

19seconds 

3 hours  

32 minutes 

11 hours  

48 minutes 

96 hours 

38 minutes 

Case_2 2.527 seconds 6 minutes  

15 seconds 

3 hours  

42 seconds 

12 hours  

11 minutes 

97 hours 

14 minutes 

Case_3 2.511 seconds 3 minutes  

56 seconds 

3 hours  

26 seconds 

11 hours  

57 minutes 

96 hours 

52 minutes 

Case_4 2.512 seconds 5 minutes 

14 seconds 

3 hours 

29 minutes 

12 hours  

19 minutes 

97 hours 

27 minutes 

Case_5 2.511 seconds 4 minutes 

39 seconds 

3 hours 

30 minutes 

12 hours 

3 minutes 

97 hours 

2 minutes 

 

By using the information-rich appearance vectors, we just use 12 locations (4 

locations for each direction) in neighborhood matching. The method by Dong et al. [4] 

has to compare the corrected voxel’s direct neighborhoods, so it needs 27 (3×3×3) 

locations. The same points are following: we also separate the system to two processes 

which are pre-process and synthesis process. And we compute the same 3D-candidate 

set in pre-process to accelerate the synthesis process. 
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Chapter 6 

Conclusions and Future Works 

 

We have presented an exemplar-based system for solid texture synthesis with 

anisometric control from a 2D texture. In the preprocessing, we construct the feature 

vectors, similarity sets, and 3D-candidate sets from a 2D input texture. We replace 

traditional RGB values with the feature vectors to construct neighbor vectors for more 

accurate neighborhood matching. The similarity set which records 3 candidates for each 

pixel promotes the performance of neighborhood matching in 2D plane. The 

3D-candidate set keeps color consistence in three directions and also helps more 

effective neighborhood matching in 3D space. In the synthesis process, we use the 

pyramid synthesis method to synthesize textures from coarse level to fine level, from 

one voxel to m×m×m resulting data. For each direction, we can only use 4 locations of 

each voxel for neighborhood matching in synthesis process. In the anisometric synthesis 

process, we design vector fields and make the result textures changed by the vector 

fields.  
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In the future, we may control the anisometric textures with flow fields that make 

the results changed with time. Kwatra et. al. [9] presented a method for 3D surface 

texture synthesis with flow field. We may apply their method to synthesize anisometric 

textures changing with time in the 3D space. Besides, we may reduce the cost time: 

trying another algorithm to make the system more effective. 
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