Chapter 4

The Scheduling Algorithm for
Downlink Dedicated and Shared
Channels in Multimedia CDMA
Cellular Systems

In this chapter, a cellular neural network and utility (CNNU)-based scheduler is pro-
posed for multimedia CDMA cellular networks supporting differentiated quality-of-service
(Q0S). The cellular neural network is powerful for complicated optimization problems and
has been proved that it can rapidly converge to a desired equilibrium; the utility-based
scheduling algorithm can efficiently utilize the radio resource for system and provide QoS
requirements and fairness for connections. A relevant utility function for each connection
is here defined as its radio resource function further weighted by both a QoS requirement
deviation function and a fairness compensation function. The CNNU-based scheduler de-
lermines a radio resource assignment veclor for all connections so lhal the overall system
utility is mazimized and the system throughput can be achieved as high as possible. Al
the same time, the performance measures of all connections are kept closed to their QoS
requirements i an efficient way. The simulation results exhibit that CNNU-based sched-
uler has higher system throughput and larger QoS quaranteed region than other scheduling

algorithm for environments with variant type of services.
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4.1 Notation List of Chapter 4

We summarize the important notations of this chapter in the following table. The tem-

porary variables used in the proof which are also defined in the process of the derivation

are not included in this table.

Table 4.1: Notation List of Chapter 4

Notation Description
w The bandwidth of the carrier of CDMA network
SF; The spreading factor used by connection
a The downlink orthogonality factor for orthogonal channelization code
Ny The AWGN noise power density
7Z; The resulting interference of connection ¢ received at the base station
in the downlink
STR;(t) The received SIR connection 7 at frame time ¢
the required SIR; of voice connections
P o The required received power at base station for connection %
K; The modulation scheme index adopted by connection 2
M,, The modulation order with respect to modulation index x;
(%); The required ]Iff—’; for modulation scheme k;
i (1) The allocated transmission rate of connection ¢ at frame time ¢
N The number of connections in the system
R}, The traffic parameter of mean rate for connection 4
P, The QoS requirement of packet dropping probablity for connection 7
Dy The QoS requirement of tolerable delay bound for connection i
BER; | The BER requirement of connection ¢ derived from the required F,/Ny
d The distance from the new/handoff connection to the base station
G (t) The link gain model at frame time ¢
L(t) The log-normal shadowing part of the link gain model
¢ (1) The short-term fading part of the link gain model
CNRT The averaged mean link gain of all NRT connections
Q:(t) The queue size of connection ¢ at frame time ¢
¢ (1) The ratio of assignment of radio resource for connection 7 at frame ¢
ci(t) The ratio of assignment of radio resource for connection 7 at frame ¢
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Notation Description
R; The transmission rate of connection ¢
R, The coded symbol transmission rate of connection 7
U (t) The individual utility function for connection ¢
U(t) The system utility function for connection @
Ri(t) The radio resource function
A (1) The QoS requirement deviation function
Fi(t)
w; The target weighting factor of connection 2
w; The target weighting factor of connection ¢
D;(t) The head-of-line packet delay of connetion 7
L;(t) The normalized measurement on the difference of guaranteed
minimum transmission rate
G The priority bias for RT connections
Bo The basic reference value for NRT connections
Yi(,?(t) The first external input for the (7, k)-th neuron of CNN at frame time ¢
Yz(,z) (t) The second external input for the (i, k)-th neuron of CNN at frame time ¢
Xik(T) The output of the (i, k)-th neuron of CNN at transient time 7
E(T) The energy function of CNN at transient time 7
H(T) The cost function of CNN at transient time 7
v, The system constraint 1 for CNN processor
vy The system constraint 2 for CNN processor
Aigjm | The recurrent interconnection weight from (i, k)-th neuron to (j, m)-th neuron
i(}k);j’m The first external control weight from (i, k)-th neuron to (j, m)-th neuron
Bl-( - The second external control weight from (¢, k)-th neuron to (j,m)-th neuron
Vik The bias current for (i, k)-th neuron

4.2 Introduction

In future wireless networks, heterogeneous and customized services with diverse traffic

characteristics and QoS requirements are expected to be provided via a number of air

interfaces. Also, multimedia applications are commonly accepted as enabling services,

which are categorized into several classes [1]. To meet various traffic characteristics and

QoS requirements of these potential applications, a sophisticaled scheduling algorithm

plays an essential role so that the system resource allocation is optimal, while retaining a

73




‘ Notation ‘ Description ‘

pre-defined QoS requirements and fairness among them.

Many scheduling algorithms have been widely studied for wireline networks [32]-[36].
For connections without hard delay and jitter bound requirements, weighted fairness
among all connections is the reasonable criterion to share the system capacity, and many
scheduling algorithms were developed based on the concept of generalized processor shar-
ing (GPS) [32]. On the other hand, for those with explicit delay and jitter requirements,
the scheduling algorithms considering the packet delay perform better than the algorithms
in GPS class within the QoS guaranteed region.

The radio channel in wireless networks has quite different characteristics from that
in wireline networks, and the available maximum transmission rate to each connection is
location-dependent and time-varying due to link loss, shadowing, and multi-path fading,.
Scheduling for radio resource of wireless networks is to determine which connection and
how long this connection can use the system resource so that the utilization of radio re-
source can be maximized while performance measures of each connection can be efficiently
retained at its QoS requirements. We can categorize the design criteria into three main di-
rections: the efficiency of the utilization of radio resource with respect to the link quality,
the QoS requirement, achievement, and the fairness among all connections. Several further
constraints on terminal capability, power range, and some MAC control algorithms can be
added in parallel to these scheduling criteria. Also, the multiple access scheme will impact
on the link state and should be considered in the design of scheduling algorithms. Several
literature studied the resource scheduling and allocation among connections in wireless
networks with consideration of physical layer processing, power control range, and link

conditions [38]-[39]. Bhargharvan, Lu, and Nandagopal [40] proposed a framework to
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achieve long-term fairness in wireless networks. There are schemes considering either de-
lay bound or minimum rate as its QoS requirements. For those schemes considering delay
requirements, Varsou and Poor [42] studied the scheduling algorithm based on an EDF
(earliest deadline first) concept adapted to wireless environments. They also proposed a
simple analysis for the performance of generalized PEDF (powered earliest deadline first)
and HOLPRO (head-of-line pseudo-probability assignment) scheduling schemes [43]. Stol-
yar and Ramanan studied a throughput-optimal scheduling algorithm for delay bounded
system [44]; a variational scheduling algorithm for rate guarantee was also investigated.
For non-real-time interactive connections, the rate guarantee is desirable. Kam and Siu
considered the minimal rate guarantee with fairness in their proposed scheme [45]. More-
over, some schemes considered joint scheduling criteria to deal with complicated needs
for systems. Shakkottai and Stolyar [46] considered both link quality and QoS require-
ments as the criteria and derived an exponential form of scheduling function via fluid
Markovian techniques. Many of these scheduling algorithms above, [38]-[39], [44]-[47],
were formulated in utility-based approaches. Generally, the utility function is defined as
the benefit [rom receiving an amount ol service [or each connection so that the overall
utility is maximized in addition to fulfilling the design criteria, such QoS requirements
and fairness.

The utility-based scheduling algorithm over radio channels, is usually formulated as
a complicated optimization problem with real time requirement. To solve the compli-
cated constrained optimization problem, many intelligent techniques have been applied
successfully, for example, genetic algorithm, feed-forward neural network, and generalized
Hopfield neural networks (HNN). Among those intelligent techniques, the class of gener-
alized HNN has been adopted for real-time tasks. However, the stability and the spurious

response problems make the HNN ineffective in practical applications. A special type of
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HNN, named cellular neural network (CNN) proposed in [66], has been proved that it
can rapidly converge to desired equilibrium on vertex along the prescribed trajectories
by applying a proper learning or design procedure [67]. The CNN has the architecture
that all cells (neurons) have the same structure, i.e. the interconnection weights and
bias current, but has much fewer number of inter-connection than that of HNN which
is accomplished by locally recurrent inter-connection. The CNN was widely applied in
image processing field and was suitable for VLSI implementation. However, to adopt the
CNN technique for the scheduling optimization problem, modifications of its architecture
and some basic assumptions are necessary, and therefore, its stability and non-spurious
property are required to further investigate.

In the chapter, we propose a CNN and utility (CNNU)-based scheduler for downlink
in multimedia CDMA cellular networks. The CNNU-based scheduler contains a utility
function (UF) preprocessor, a radio-resource range (RR) decision maker, and a CNN
processor. Noticeably, the utility function for each connection, adopted in the UF prepro-
cessor, jointly considers radio resource efficiency, diverse QoS requirements, and fairness.
It is a radio resource [unction weighted by both its QoS requirement deviation [unction
and its fairness compensation function. The radio resource function indicates the radio
resource efficiency of the connection, which is the maximum achievable transmission rate
with its packet-level BER requirement guaranteed, in terms of link quality and the adap-
tive modulation scheme. The QoS requirement deviation function denotes the extent
of the deviation from its call-level QoS requirements which are defined by delay bound,
packet dropping ratio, and minimum transmission rate. For the fairness compensation
function, a priority bias for each connection is set so that the real-time connections have
relative priority over non-real-time connections. The fairness compensation function also

makes each non-real-time connection share the radio resource proportional to its prede-
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fined target weighting factor in terms of the source characteristics and the channel quality.
The UF preprocessor generates a matrix of normalized utility functions of all connections.
On the other hand, the RR decision maker determines a matrix showing the upper limit,
of radio resource assignment for each connection.

The CNN processor receives the matrix of normalized utility functions and the matrix
of upper limits of radio resource assignment vector as inputs. At stable state, it deter-
mines an optimal normalized radio resource assignment vector for connections in multi-
media CDMA cellular systems, by minimizing the system cost function which is in terms
of the overall system utility function under system constraints of maximum transmission
power, minimum spreading factor, and remaining queue length. The architecture of the
CNN is constructed via the energy-based approach [68]-[69]. by mapping the system cost
function to a proper energy function. It is designed in a two-layered configuration, which
consists of a decision layer and an output layer, to reduce the number of inter-connections
in the CNN. It can be shown that the stable equilibriums locate in the desired state space
and the stability exists. The CNN is powerful for complicated optimization problem.
The perlormance of the proposed CNNU-based scheduler is investigated by comparing
with Ezponential Rule [46] for systems using both dedicated and shared channel. The
simulation results show that CNNU-based scheduler has higher system throughput by the
amount of over 10% than that of exponential rule scheduling algorithm. It can be found
that the CNNU-based scheduler can fully utilize the radio resource and make the perfor-
mance measures of QoS requirements closed but below the desired level, and therefore
achieve larger QoS guaranteed region than the exponential rule does. From the results of
fairness comparison, CNNU-based scheduler can get more closed to the defined weighted
fairness than the exponential rule algorithm does. We can conclude that the CNNU-based

scheduler is efficient and effective for multimedia CDMA cellular networks.
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The rest of the chapter is organized as follows. Section 4.3 presents the features and
the operations of the considered system is presented. In section 4.4, an relevant utility
function is then proposed, and a utility-based scheduling algorithm is proposed. In section
4.5, the design of CNNU-based scheduler is discussed, where preliminaries of CNN are
firstly briefed, the design procedure based on the Lyapunov method, and the detailed
configuration of the CNNU-scheduler are presented. The stability and convergence of
the proposed CNN processor are discussed in section 4.6. Simulation results to examine
the performance of the CNNU-based scheduler is conducted in section 4.7. Finally, some

conclusions are summarized in section 4.8.

4.3 System Model

Assume that there are N real-time (RT) and non-real-time (NRT) connections (users)
in the downlink transmissions of the multimedia CDMA cellular system with chip rate
W. RT connections transmit on dedicated channels and NRT connections transmit on
shared channels. For every active connection using either dedicated or shared channels,
a fixed number of code channels with their corresponding spreading factors are given in
the connection setup phase. A minimum spreading factor SF; is therefore associated with
the assigned code channels for connection i. The system radio resource is here defined to
be the transmission power. It is limited by a maximum power budget denoted by P .
and scheduled to all connections every frame time period 7.

For a downlink connection i, there are four QoS requirements defined in either the
packet level, such as BE R}, or the call level, such as delay bound D}, packet dropping ratio
Pp;, and minimum transmission rate Ry, ;. For RT connections, hard delay bound Dj

exists and P5 ; can be larger than zero; while for NRT connections, no explicit delay bound

is imposed, but Ry, ; > 0 should be satisfied for interactive connections and Ry, ; = 0 be
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set for best effort connections.

For a RT connection ¢, a transmission suspension in a soft fashion is carried out by
allocating zero transmission power when its utility calculated by the scheduler is lower
than those of NRT connections. At that moment, its link gain (;(¢) is lower than the
averaged mean link gains of all NRT connections (ypy by a relative margin, and this
relative margin should be considered to restrict the probability of transmission suspension
below Pp; due to the delay-sensitive nature. Denote by (7 the suspension threshold of
connection 4, which is obtained by P {(;(t) < ('} < P} ;. Then the relative margin of (;(t)
is a function of (yrp and ¢, and is dependent on the design of scheduling algorithm.
For NRT connections, their transmissions are scheduled so that NRT connections will
be allocated with proper radio resource to achieve high system utilization and keep the
fairness and the QoS requirements fulfilled as much as possible.

Assume that the link-gain (;(#) and the interference Z;(¢) for connection i at time ¢
can be measured at the user side and perfectly signaled to the base station. The (;(¢)
consists of the mean path loss, long-term fading, and short-term fading. It is given by

¢k
G(t) =d;" 107 - (1),

where d; is the distance between the user i and its base station, ¢/(t) is the log-normal
shadowing component, and ¢ (¢) is the Rayleigh-fading component. The adaptive QAM
modulation is adopted and the modulation order M, with index k; for connection i is
determined according to the link gain quality and interference. The traffic source of
connection 7 generates packets and packets are queued in its individual buffer. The buffer
size is infinite. The source models are assumed to be on-off for RT connections, Pareto
for NRT interactive connections, and batch Poisson with truncated geometrical batch size
for NRT best effort connections.

The proposed CNNU-based scheduler determines an optimal normalized radio resource
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assignment vector ¢ (¢) = (¢i(t),..., ¢4 (1)) to N connections via maximizing an overall
system utility function so that the system throughput can be achieved as high as possible
within the constraints of maximum power, minimum spreading factor, and waiting queue
length. The transmission rate for connection ¢ at ¢-th frame , denoted by r;(¢), is then

allocated according to ¢;(t) of connection i.

4.4 Formulation of The Utility Function

The utility function for connection i, U;(t), is defined as the radio resource function
of connection i, R;(t), weighted by its QoS requirement deviation function A;(¢t) and its

fairness compensation function F;(t). It can be expressed as

Ui (1) = Ri(t) - Ailt) - Fi(t). (4.1)
4.4.1 Radio Resource Function R;(t)

With the modulation order M, of the adaptive QAM modulation scheme and the
corresponding (E,/Ny)% to satisfy the BER; requirement for connection i, the following

inequality should hold

W Glt) - Phae - G _ (B
Ry(t) T:(t) i (ﬁbl : (4.2)

where R, ;(t) is its symbol rate and ¢;(¢) is its normalized radio resource assignment at

time t. The Z;(¢) in Eq. (4.2) is given by [(1 — )P}, - G) + >4 Prae - Gol(t) + NoW],

max

where « is the orthogonality factor for downlink, b is the index referring to the adjacent
base stations, and (;(¢) is the link gain from base station b to connection i. The BER

of connection 7 can be expressed by

—L5y |,
ﬁ} f%(/)ﬁl/,

a7}

BER; = 0.2/ e:rp{
v
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where ; is the instantaneous (£),/Ny), received by connection ¢, and f,,(7) is the pdf of

2

~; [70]. Since the channel state is assumed to be known and to remain constant during a

frame time, the (F;/Ny): in Eq. (4.2) is given by

—(M,, — 1) -In{5BER}}

(4.3)

We denote the mazimum achievable symbol rate that can fulfill the (£, /No)% at ¢;(t) = 1

by R;;(t). Clearly, R:,(t) = T /‘%O)E - - P’?’%f(g(t). The R} ;(t) is further limited by % for a

given spreading factor SF; of the allocated code channel. Thus the R ;(t) can be obtained

by

W P;Lax'Ci(t) W } <44)

R} ;(t) = min : ;
0 =min{ e B
According to (4.4), the most efficient modulation order M, is selected by the following
inequality,
SE ) P';rkzam ) Ci(t)
R S 7 (-ln{5BER;f}>

1.5

+1< M(,{H_l). (4.5)

Since the information bit of one symbol is log, M,,, consequently the radio resource func-

tion of connection i, R;(t), can be obtained by

Rift) = log, My, + R, (1) = — 00 100 Me _ Frar GO -y )

Note that if the assignment of radio resource for connection i, ¢;(t), is allocated, the

transmission rate r;(t) is therefore equal to ¢;(t) - R;(t).

4.4.2 The QoS Requirement Deviation Function A;(t)

The QoS requirement deviation function 4;(t) is used to indicate how much extent
the connection ¢ deviates from its call-level QoS requirements. The higher extent the
deviation from the QoS requirements is, the more resource allocated to the connection

should be. For a RT connection 4, a hard delay bound D} is imposed on each packet.
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Since QoS over wireless interface can be provided in a soft fashion, the QoS guarantee of
packet dropping ratio due to excess delay is expressed by F.o {D;(t) > Di} < P} ;, where
D;(t) is the waiting time delay for head-of-line packet at time ¢. For an NRT interactive
connection 4, a different notion of QoS requirement is that a minimum transmission rate
must be guaranteed by E [r;(f)] > R}, ;. As for an NRT best-effort connection 4, no call
level QoS requirements are guaranteed and the R, . is set to be 0.

From [72], the proposed Modified Largest Weighted Delay First (M-LWDF) algorithm
suggests that an exponential rule [46] be the form with throughput optimal for the above

call level QoS requirement constraints. Therefore, the QoS requirement deviation function

A;(t) is defined as

) puy-B) (i IRT
: 1/2 ) i . E t‘ ?
exp TR if i € {RT connections}
Ai(t) = o (4.7)
exp %} , if - € {NRT interactive connections},
14[Z(1)]
1, if ¢ € {NRT best-effort connections},

—log( Pt

where D(t) = + X (TDZ)> - Dy(t) is the average weighted delay, L;(t) = L;(t — 1) +

R:n,v —7; (t)
Ry

> is the normalized measurement on the difference of guaranteed minimum
transmission rate and the assigned rate, and L(t) = £ fjl(t) For the RT connections,
the delay of connection i is weighted by the log-scale packet dropping ratio and the
inverse of the delay bound requirements [46]. If the weighted delay is more than the
average weighted delay of all connections, the 4;(¢) will be exponentially increased, and
more resource will be scheduled; on the other hand, if the weighted delay is less than
the average weighted delay, the 4;(t) will dramatically decayed, and less resource will be
allocated. Similarly, for the NRT interactive connections, if the accumulated difference
of the guaranteed minimum transmission rate and the assigned rate is greater than the

average value, more resource is assigned. As to the NRT best-effort connections, this

function is simply bypassed.
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4.4.3 The Fairness Compensation Function F;(t)

The fairness compensation function is to ensure that RT connections using dedicated
channels have the relative priority over NRT connections using shared channels. It is also
the way that the radio resource shared by all NRT connections is assigned according to
a predefined target weighting factor. With the pre-defined target weighting factor w; for
NRT connections ¢ for 1 < ¢ < N, the radio resources are here expected to be allocated
to any two any connections, ¢ and k, so that their average assigned transmission rates,

E[r;(t)] and E[r(t)], can be achieved by g[[:;((?)]] = - [40]. The fairness compensation

function for connection i till time ¢, F;(t), is defined by,

) B if + € {RT connections},
Filt) = { Go + [(w; —w; () — )™ + 1], if i € {NRT connections}, (4.8)

where (3; is the priority bias for RT connections to differentiate with NRT connections, 3,
is the basic reference value set for NRT connections, ()" = maz{x,0}, and w;(t) is the
moving-average of r;(t). For RT connections, the weighted fairness is not considered
and only priority bias is set due to their QoS-driven nature. For NRT connections,
[(w; — w;(t) — )T + 1] = maz{(w; —w;(t)), 1}, where (w; —w;(t)) indicates the unfairness
of connections 7, and the F;(t) is limited by (3, after w;(t) is above w; and will make no
further effects on the utility. The more extent of the unfairness of connection i is, the
larger the F;(t) will be; then more resource will be scheduled to connection i, and the
(w; — w;(t)) will be smaller afterwards. In the stationary situation, the unfairness of all
NRT connections should be almost the same via the linear feedback control.

The target weighting factor w; is defined as the target average transmission rate of
NRT connection 4. It is considered to be a function of its equivalent traffic source rate s;,

mean link gain (;, mean interference level Z;, and its guaranteed minimum transmission
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rate, R .. The w; is given by

PG st
w; = Max { = vl L A 4.9)
{L— (R Xest ™ } (

where (]Ev—f));“ is the required Ej/Ny to achieve BE R of connection ¢ using the least-order
modulation scheme. The s} can be given according to the effective bandwidth method
proposed in [71]. The wj; is proportional to its mean maximum transmission rate, jl_jm(“i%g},
and its normalized effective bandwidth, iﬁs—k The lower bound Ry, ; for w; is to avooid
the starvation problem of the connection 7 in bad link condition. Note that R}, ; = 0 for
the best-effort connection, and the target weighting factor of the best-effort connection is
usually less than that of the interactive connection.

The priority bias g; for RT connection i is a relative margin for ¢(t) over the link
gains of NRT connections, and is a function of its transmission suspension threshold

¢, the average of the mean link gains of all NRT connections (ypp, and the Ey/Ng

requirements. The [; is given by

5 — (CNfT_ ()i ) G (4.10)

The 3; makes the product R;(t) - F;(t) of the RT connection i greater than the product of

NRT connections till {;(¢) > ¢. Therefore, RT connections can share the radio resource

with relatively higher priority over NRT connections via the setting of priority bias [;.

4.5 Design of the CNNU-based Scheduler

Fig. 4.1 shows the block diagram of the CNNU-based scheduler. It contains a wutility
Junction (UF) preprocessor, a radio-resource range (RIR) decision maker, and a CNN
processor. The proposed CNNU-based scheduler takes the link information, interference,

delay, queue length, and spreading factor of all connections as inputs, and finally outputs
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Figure 4.1: The block diagram of CNNU-based scheduler.

the optimal normalized radio resource assignment vector ¢ (t) = (ci(t),. .., c%(t)), where
ci(t), 1 <i < N, is expressed by K bits.

The UF preprocessor first calculates the utility function U;(t) given in Eq. (4.1),
1 <i < N. Then it normalizes U;(t) by a compression function (1 — e~"%®)  expresses

(1 —e M) to be an 1 x K vector given by

(1 —e®y. 27t (1 —emt®) . 07k (1 — emoth®) 97K

and finally constructs an N x K input matrix [Yz(,ﬂ for the CNN processor, where

Yl(,i) = (1 — ¢79%®) . 27k Notice that o is a constant related to the slope and the
linear region of the compression function. The compression function (1 — e “%®) nor-
malizes U;(t) € [0,00) into the unit range of [0,1). A good compression function is the
one with broad linear range so that the individual utility function is normalized linearly
within a reasonable range. The UF preprocessor also determines a vector of modulation
order [M,,] for all connections and outputs to the RR decision maker. The RR decision
maker determines the upper limit for the radio resource assignment for every connection %

and expresses it by an 1 X K vector which is the upper limit multiplied by the bit-weighted

vector (271,...,27% ... 27%) 1 < i < N. Note that, with given spreading factor SF; and
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queue length Q;(t) for connection 4, its radio resource assignment ¢;(¢) is upper limited

W-logy M, Q;(8)/Ty
SF;Ri(t) ' Ri(t)

by mm{ }, which will be further discussed in section 4.5.2. Then the

RR decision maker constructs the second input matrix [Y.f,?}, 1<i<N,1<k<K,of

%

Wilogy M, Qi(t)/ Ty
SE-Ri(H) 0 Ri(t)

which the element Yl(i) is given by (mm{ }) -27%. The CNN processor

2)

receives input matrices, {Yi(l)} and {Yq(k }, and determines the optimal radio resource as-

LR

signment vector 2*(t). During the computation process, denote by 7 the instantaneous
time index of the CNN and by ¢(¢, 7) the instantaneous radio resource assignment vector
at time 7 during the frame ¢. For each ¢;(t,7), 1 < i < N, it is represented by K bits,

Xir(1), 1 <k <K, and ¢(t,7) can be expressed by
K
Gt ) =Y Xip(r)- 278 (4.11)
k=1

When the CNN processor arrives at an equilibrium, the output will converge to the optimal
radio resource assignment vector, ie., im, o ¢(t,7) = ¢ (1) .

In the following, the design of the CNN processor for the CNNU-based scheduler
is described. Characteristics of the original CNN proposed in [66] is first briefed, and
a cost function corresponding to the system utility function with system constraints is
formulated. A modified architecture for CNN processor is then presented, based on the

Lyapunov method. The stability of the neural network is also verified.

4.5.1 Preliminaries for Cellular Neural Networks

Consider a neural network with N x K neurons arranged in a rectangular array, where
neuron (4, k) is denoted by z; ;. The output of z; at time 7, denoted by X, (7), can be
expressed by X; (1) = f (Xi(ysk) (7')), where f(z) = %Hx\ — |z —1]] + % is the activation
function of z;; and Xl(z) (7) is the state variable of z;; at time 7. Xi(;) (7) consists of the
recurrent inputs, external inputs, and a bias current. For each neuron z;;, it connects

with all other neurons within its neighborhood, denoted by 7, (i, k). The area of Z,(i, k)
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is determined according to the design of the neural network. Generally, the dynamics of

the CNN at time 7 is represented by

dxX)(r X9 (r
s (1) = = i (7) + Aiksie - Xip(T) + Bigsig - Yip
dr v
+ Y A XM+ Y0 Biggim e Yim + Vig, (4.12)
.Zj,mGZn(i,k) Zj,-m,EZn(’L',k)

where v is a time constant for all neurons, A, ;. ;, is the recurrent interconnection weight
from neuron z;,, to 2k, B;xjm is the control weight of external input from 2;,, to z;,
Y;m is the external input to the neuron z;,,, and V;; is the bias current to z;; which
is usually a fixed value V. It is worth mentioning that A; ., > 1/v is hold so that the
neuron z;;, will eventually enter into a saturation region [66]. Also, the interconnection
weights are assumed to be symmetric, that is, A;j.;m = Ajmik, thus the CNN is stable
[66].

An energy function at time 7 which decreases along the trajectories of Eq. (4.12) is

generally expressed by [66]

1 N K 1 K N K
E(r) = —52 AzkszEk(T)_izzzzAlkij]m@')sz(T)
=1 k=1 i=1 k=1 j=1m=1
1 N K N K N K
52;22; ZlB,ijm Xi,k(T)_z;Z%,k'Xi,k<T>~ (413)
=1 k=1j=1m= i=1 k=1

At the stable state, outputs of neurons will arrive at an equilibrium of that the energy
function is minimized. If the energy function is properly designed and acts as a cost
function, such an optimization problem can be solved via the Lyapunov method [67],
[68]-[69]. By the Lyapunov method, the CNN can be designed with a set of prescribed
trajectories. The trajectories are described by the gradient of the Lyapunov function E(7)
which is the energy of the CNN network at time 7. With an appropriate energy function
designed according to the cost function, the minimization of the cost can be achieved

along the designed trajectories. In the mean time, it can be proved that the architecture
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of the designed CNN can be related with the energy function by

IXR(r) _ XQR0)  9EE) (14)
dr v OX;r(T) ‘

Using Eq. (4.14), the desired system parameters of inter-connection weights, control

weights, and bias currents can be found from the trajectories of energy function.

4.5.2 Formulation of Cost Function for CNN Processor

The cost function of CNN [68] for frame ¢ at time 7, denoted by H(t, 7), consists of a cost
function for the utility function, denoted by H, (¢, 7), in conjunction with cost functions
for system constraints ¥, and Wy, denoted by Hy, (¢, 7) and Hy, (1, 7), respectively. The
constraint ¥y = {¢(t) : ;cn (t) < 1} is because the system transmission power is limited
by a maximum power budget P*_ .. Notice that the assigned transmission rate r;(t) of
connection  for frame ¢ is determined according to both the ¢;(f) and the modulation order
M,,; the r;(t) is further limited by the minimum spreading factor SF; and the waiting

queue length Q;(t); and too large ¢;(t) with excess allocated power makes no effects on

r:(t). Also the constraint Wy = {E(t) co(t) < min { M;flwog;]é) : Q;g%)Tf } ,Vz’}, where R;(t)
is the radio resource function indicating the maximum achievable transmission rate for

connection 7 at time t. The constraint W, indicates no further utility can be gained if r;(t)

Wlogy M., )
3

exceeds the supported rate which is the rate when the power ratio ¢;(t) equals ( SERG

or the necessary rate to transmit all remaining packets in Q;(¢), where the necessary rate

is the rate when ¢;(¢) equals (%) The H(t, 7) has the form of

H(t,7) = H,(t,7)+He, (&, 7) + Hy, (t, 7). (4.15)

The H,(t,7) is defined to be the difference between an overall normalized utility
function and its maximum, and the overall normalized utility function is defined as

SNt 1) (1 —e M), When SN ;(t,7) <1, 2N ei(t,7) - (1 — e 9% ®) is bounded
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by 1. Thus the H,(t,7) is given by
N
Ha(t ) = m [1 S e (1 e—U“i@)] , (1.16)
i=1
where 7 is the coefficient for the H,, (¢, 7).

The Hy, (t,7) is defined as

2

N
H‘Ifl IL T =" [Z Cz ] R <417)
=1

where 1, = 1 -u (Zf\;l ci(t,T) — 1> +ny (1 —u (Zﬁil ci(t,T) — 1)), u(-) is the unit-step
function, n; is the slope constant for the cost increment when the total radio resource is
greater than the maximum, and 7, is the slope constant for the cost increment otherwise.
The ranges of 1" and n; should be further investigated to ensure the stability and the

desired output pattern of the CNN processor.

W-log, M,

The Hy, (t, 7) is defined to be proportional to the difference {ci (t,7) —min { SERD

Q;g)(gf H if ¢;(t, 7) > min { Vlggg%j\é? , Q;éti)é;ff }; otherwise, no cost will be incurred because

the radio resource will be allocated to other connections for efficiency. It is given by

Hy, (L, 7) =10 i ((c (t,7) —min { VgFlogéJé/; | Q;g)(i)Tf }) +) ’ . (418)

i=1

where 7 is the coefficient for the Hy, (¢, 7).

Consequently, the cost function H(t, 7) is given by

2

H(t, 1) = 10 :1—§ci(t,7) (1—6—0“7:@))%771- &ci(t,T)—1}

i=1 i=1

+ 7 i ((cz'(t,T) —mm{méﬂlog;i]g; Qg)(gf }>+)2 . (419)

=1

4.5.3 The Architecture of CNN Processor

According to the cost function H(¢, 7) at time ¢, the energy function E(7) can be de-

signed for the CNN processor in the CNNU-based scheduler. However, some modifications
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should be made to ensure the correctness of the desired output and the stability of the
CNN processor. Firstly, ¢;(t) is substituted by Eq. (4.11). The terms with only scalar are
replaced by the terms consisted of state variable outputs; this just makes the resulting
energy the same or a constant shift, which would be independent of the output pattern.
Also, some additional auxiliary terms can be included to facilitate the convergence of

CNN processor. Consequently, F(7) is given by

B(r) = —m z<zxi,k<f>~2—’<>~<1—e-0'“i“>>]

+1 i (% Xip(r)-27F) — 1) : (ﬁ(ﬁ Xip(r) - 2’“))

i=1 k=1

1
2
P e[ Wology M, Q)T
(303 ot 2= min et ST} )

w[3]

+ 73

& Xalr) -2

where 73 is a constant for additional auxiliary terms. The first item differs from the

% (;1 Xia(r) (1= Xin(r)) 21@)} . (4.20)

i=1

corresponding cost in Eq. (4.19) in that the scalar 1 is ignored. The YN (XK X; . (7) -
27F) . (1 — e=%®) is bounded above by 1 and has the same minimum as in the cost
function. For the second and third terms, the quadratic forms in Eq. (4.19) are replaced
by convex functions which merely contain state variable X; ;(7) without any scalar. The
local minimums would be the same; the resulting energy at any equilibrium would be
shifted by a constant value, compared to the cost in Eq. (4.19) and independent of the
inputs and the output pattern. The last term of Eq. (4.20) is an auxiliary factor which
emerges to ensure the convergence because the energy function due to this auxiliary term
approaches zero only when every state variable outputs approaches either one or zero.
By Eq. (4.14) and Eq. (4.20), the dynamics of each neuron in the proposed CNN for

the CNNU-based scheduler can be expressed by
dX(S) X(S) N K
;Ic (7—> _ ik (T) + 1 (1 N efaui(t)) . 2*76 —n (Z Z Xi,k(T> . 2*]@ _ 1) . 2*k
-

Vg i1 k—1
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K —m . W 10g2 Ml-ii Ql(t>/Tf : —k
-2 <Z AKL',m(T) -2 o mzn{ SE; - ’R,,L(t) ’ ,R,@(t) }) .

m=1

—n3 (1 — 2X; (7)) - 27%

X&)

K
W - log, M,
k=1

SE; - Ri(t)

Vi

K W -log, M, Qi(t)/T
- u (Z_l Xign(7) -2 — min { T OR Q’l(%i)(g) : }) '

mz’n{W -log, M,,, Qi(t)/Tf} L9k _ ( i i - 2 (MR -Xj,m(T))

SE-Ri(t) T Ralt)

=157 m=1
K K . [ W -log, M,,
) (m_g;# ["1 B <mz Him(r) 277 = m”{ SE-Rill)
%}ﬂ L (mtk) sz(ﬂ) 2k 27k (4.21)

where 1, is modified to 2* to retain the stability and desired output pattern of the designed
CNN.
From Eq. (4.12) and Eq. (4.21), the recurrent interconnection weights, the external

control weights, and the bias current can be determined by
ok . (Wilogy Me, Qi _ —k
Ai,k;i;k = —Th - 2 2k e -u (25:1 Xi,k - mm{ SF(Z.).g';Zzi(t)l ) Qéi)(i)Tf }) -2 2k + 2773 -2 k»
Bil,k;i;k = +T]07 ©/
[ Wiogy M, Qi(t)/T
Blir =+ u(Sf Xop = min { 5rms, Rz‘St>f}) )
Aigigim = —m - 27 %™ (1 — 5k,m)(5z’,jvv_l 771](427(”(773/' (1 —diy)
. -log "y Q:(t)/T _ m
—TN2 U <Zl{~(=1 Xi,k —nmin { SF7g7§7(t) " TR ! }) ) 5',j -2k )7
Vik = m-27F —ny- 278,

o

where B}, ., and B?, ., are the external control weights for first and second external

inputs, Y;(,i) = (1 — e“’“’?(t)) -27% and Yf? = min { M;;vog;]\(i) ’ Q;g)(gf } - 27% respectively,
and o,, =1if z =y, d;, = 0 otherwise.
The range of coefficients no, n1 (0", n7), 12, and 13 must be properly selected to ensure

the stability and the desired response. For a tolerant error level e, which is the maximum
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difference between stable output lim,_.o ¢(¢, 7) and the optimum ¢ (), the range of these

coeflicients are obtained as follows
0<m <,
n > 2%,
-3
no> R, (4.23)
T2 Z 2K7
N3 > % + %

\

We have proved that with a matrix of given utility function and a matrix of radio resource
assignment ratio upper limits, the proposed CNN architecture will converge to the neigh-
borhood of the optimal pattern ¢ (t) within the difference € with the range of coefficients
given in Bq. (4.41). If ¢ < 27K, the CNN converges to ¢ (t) exactly shown in ?? .

However, the complexity of the interconnection is in the order of [N x K|V*K  which
is almost infeasible for practical implementation. In the next subsection, an equivalent
two-layer structure for the CNN processor is proposed to efficiently reduce the complexity
of interconnection.

To effectively reduce the complexity of interconnections, we propose an equivalent
two-layer structure for the CNN processor which involves the first decision layer, {z} ,J,
with state variable output X; x(7), and the second output layer, [zf k}, with state variable
output ¢(t, 7). Fig. 4.2 shows the architecture of the two-layered CNN processor. The
decision layer consists of N x K neurons; the output layer is with an (N+1)x1 array, where
the output of the first neuron is the summation of all the others. The interconnections

between the neurons of decision layer and those of output layer are defined by
e For the first decision layer to the second output layer, the connection weight between

X k(1) and ¢;(t, 7) is 27%, Vk if j = 4; is zero if j # .

e For the second output layer feedback to the first decision layer, only the first neuron
output is connected to the X;(7) of the decision layer with the interconnection

weight n, - 27 for Vi.
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Figure 4.2: The two-layer structure of CNN processor.
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4.5.4 The Two-Layer Structure for CNN Processor

The recurrent interconnection weights and the external control weights for the first

decision layer defined in Eq. (4.22) are then modified to be

Aigire == 27 —mp - u (Zle Xik —min { VZ}(’%% , Q’;%Tf }) - 27%F 4 2,

Bil,k;i;k =T

Bl = u (SR Xig —min { it @O L) (4.24)
Aikgm =~ u (Zlle Xip — min { M;;;?gfaj\é’ , Q?}é?(gf }) 0y 2_(k+m),

Vik = - 278 — 1,

For the second output layer, there are no external inputs, and only recurrent intercon-
nection weights exist. The interconnection weight between ¢; (¢, 7) and ¢;(¢, 7) is given by
do,; with ¢ = 0.

It can be shown that the two-layer structured CNN processor has the same energy
function and the local minimum as the single-layer one defined by Eq. (4.22). However,
the complexity of interconnections in the former one is proportional to [3N x K + N,

NxK

which is significantly lower than [N x K] in the latter one.

4.6 The Discussion for Stability and Convergence of
CNN Processor

4.6.1 The relationship between the dynamics each cell and En-
ergy function of CNN

Lemma 1:

With energy function defined in Eq. (4.13), the Eq. (4.12) can be expressed in terms of

Lyapunov function by

dXin(r)  Xul(r)  OE(7)
Cdr v 0Xuk(r) (4.25)

Proof:
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The assumptions on interconnection weights and external control weights are given by

. 1, Zjim S Zn(l, k’) . 1, Zjim < ZR(Z,}C)
Avkgm = { 0, otherwise and Bigigm = 0, otherwise -(4.26)

With a given Lyapunov function E(7),

1 1
E(r) = 5 >N A i Xig(1)? — 3 S Ak Xin (7) X (7)
P ik m
1
=5 2.2 2.2 BisimYimXin(7) = 2.2 Vig - X (7). (4.27)
i kG m ik

With condition Eq. (4.26), the partial derivative of Lyapunov function with respect to

Xix(7) as follows:

3E(T) 1 1
— = AikirXi -3 A k;mXiom -3 BitijmYjm — Vi
8X27k (7_) ’ka '7k 1k (T) 2 ; ; ,k,j, 9 (T> 2 ; ; akx?a 7y ka
1 1
= AiginXin(r) = 5 Yo AikymXim(T) =5 Y. BikymYim
25.mE€Zn (Z,k) 2j,m€Zn (i,k)
—Vig- (4.28)

Therefore, the dynamics of each neuron in Eq. (4.12) can be easily rewitten by Eq. (4.25).

[
With this relationship, we get some view [urther inside the dynamics of CNN model in
the sense of Lyapunov function. The direction of the change rate (slope) of each neuron
is proportional to the partial derivative of Lyapunov function. When the CNN with

pre-defined trajectories are designed, Lyapunov method is a good approach.

4.6.2 The Stability of Designed CNN

Lemma 2:

The energy function defined in Eq. (4.13) will decrease along with time, namely, dlflf) <0.

Proof:
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dE(T) o f: f: 0 [sz(7'> . Q_k (1 oU (t)ﬂ dXi,k(T> dXz(,;c)(T)
dr o i=1 k=1 OXix(T) dXi(;) (1) dr
Al N E dXon(r) dx{)
+1) ( Xik T)~2’“> e gk
G L axm
K X, (r) dX8)(r
—m Z Z ( ) . k ( . 2,]{:

gy Bl X5 ]
= dX () dr J
+mié(1 —2X,,(7)) ;Zj((zl’}i:)) : dXéT)( )
o g 2

al K )
+12 E@,i : {(Z_ Xim(T) - 277 — 1/}271,) (Z dX;p(7) ) dXz,il;( ) ' 2/4)}

= dXx$) ()
dXip(r) dX5(7)

+73 > Y (1 —2X;,(7))

i=1 k=1 dX l(i) (1) dr
where 19 ; = min { W;?géﬂé; ; Q;é?(gf }, and ¢y ; = (EkK_l Xig(r) - 27F — oy 1)
From the definition of activation of each neuron, X ’;ET)) has following values:
2,k
dX;p(r) [ 1, 0<X¥(r) <1 )
@y Yo, o> x® () B (4.30)
dX;y(7) ;o WU> Ay (1) or i (7T) >

For the transient process of the CNN, that is, {0 < Xi(;) (1) < 1}, V(i, k), the Eq.
(4.29) can be rearranged by
dE(r) dx ) (7)

> Wl (BT R e

=1 k=1
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N K N K dX,L(S) .
+?71 (Z Z AXL'yk(T) . 271C _ 1) Z Z C,lk ( ) 2,]{3
=1 k=1 i=1 k=1 T
b3 (35 Kintr) 277 ) (5 P g
=1 m=1 =1 T
330 (1 = 2X () L)
i=1 k=1 dr

N K N K
= >3 m (- O 2 (33 Xyulr) -2 - 1) 2

=1 k=1 j=1m=1

. dXi(S) T
bt (3 Xo(r) 2 =)+ (1= 2000 b P
m=1

N K XK? ) N K
S o (1 - e-m@)) 27 DY Xym(r) 27— 1] - 27h

i=1 k=1 v o1 me1

S dXi(s) T
+ 2o (Z Xin(7) - 277" = 1/)2,1') + s (1 - 2X¢,k(7'))} : dii()
m=1
s 2
_ vy X3 (r)
i=1 k=1 dr
=0 (4.31)
When each neuron arrives at saturation region, dg(;) =0. n
Lemma 3:

With any given external input vectors and any initial states, the energy function will

dE(T) — 0.

approach a stable state. We have lim, .o F(7) = const and lim, o “5-

Proof:
We first prove that |E(7)| is bounded. With X;,(7) € (0,1), and > | S8 | (X@,k (7)2*’“) <

1 in any transient and steady states, Eq. (4.20) can be re-written as:

2

N
U Cotd
1B < 5‘)[1—2(1_6 um)] o (V- 1)?
=1
P N 2
+ 5'2(1—%4') + 3 N?
=1
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< (772—0+n1> (N =17+ (%Jrns) N2
(4.32)
Since N is finite, the therefore ||FE(7)|| is bounded in any trajectory. For a more tight

upper and lower bound for ||E(7)||, we can further have

Since |E(7)| < Epqe and dgf) < 0, we can easily have

lim F(1) = const.

T—00

Define the function jlk(j( (7)) of X (1) and the input vector U (t) for state variable

Xip(T) by
~7i,k (X(T),Z_/;) = _Xi,k (T) + 1o (1 — efaui(t)> .9k
N K
— (Z Z Xip(T) - o~k _ 1) .ok
=1 k=1

K
— P (Z Xim(r) 27" — l/fz,i) 2R — iy (1 — 22X (7))(4.33)

m=1

And also define the function Jyg ()? (1) by

Jve(X X HJz C(2Xp(T) = 1) (4.34)

Lemma /4: Equilibrium Criteria
For a output pattern X (1) € {0,1}"*% it is an equilibria for the network defined in Eq.
(4.21) if the condition

N

Top(X(T),U(t)) > 0 (4.35)

holds.
Proof:

According to the activation function f (Xﬁc) (7)) of each neuron and Eq. (4.21), a state
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variable output attains an equilibria when the state variable reaches the saturation region,

that is, dXd—j(T) =0, and

(4.36)

ax () (r)
dr

From = 0 and the definition in Eq. (4.33), we have

Jir(X(7)) = —Xip(r) +m0 (1 - fgui(t)) L2k

Based on Eq. (4.21), the criteria in Eq. (4.36) can be rewritten by

(s) S ] > 0, as Xi’k(T) =1
X0 - s { 20 2O (4.38)

where 0 (X; (7)) = X;x(7) is the diract-function with unit value if X, ;(7) = 1. Then the

criteria in Eq. (4.38) is equivalent to

vy ) >0, as Xig(r) =1
T (X(7),U) { 20, s Xip(r) =0 (4.39)
Therefore, the resulting criteria for a state variable is

T (f((ﬂ,&) (2Xip(r) = 1) > 0. (1.10)

With a given output pattern X (7), the intersection of equilibrium criteria for all state
variables defined in Eq. (4.35) should be hold. |

Before the lemma of desired output pattern property, the range of the coefficients of
terms in the energy function is given to ensure the convergence of desired output pattern.

For auxiliary term 1 only, il can be given by
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> 28«

N> n

o <ms— 2,

m >>ng > 19 >0,
For auxiliary terms, it can be given by

34 M1
> 2 + 2

m > 25
m+2>mn>2—mn, (4.42)
5 = 11, and 7 - (1 - e—UUz‘(t)> <1

Lemma 5:

As lim .o d]:JiS-T) =0, im0 X; (1) = const,V(i, k). And the resulting output locates in

the reasonable state space, that is, )?(T) e v Nw,.

Proof:

First, we show that the output of each neuron will eventually arrive at saturation region.
According to Theorem 5 in [66], the sufficient and necessary condition to force the state

variable into saturation region is that

1
Aikife > —. (4.43)
Vi

It can be further interpreted as

ax;3 (r) X | o
T = —T + E,k;i,kXi,k(T> + P <X >
1 (s) (s) < A/>
= —(p- X — X, PX
v (p f ( ik (T)) i,k (T)> +
0, Xi(;) (1) € Saturation Region ’ '

where p = v, - Tl(?m > 1. Since p — 1 > 0, the differential equation has the form of

positive feedback, and it will have Xﬁc) (7) enter the saturation region of which the value
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is determined by ® ()?’) For vy - A i = —1 — 22 +2n3 with g, >> 1, it can be seen

ax® (m)

that 14 - Ak < 0 when ¢ = 1. In this case, —4~

< 0 for Vz;, so that the constraint
U; can be fulfilled. After ¢; =0, v - Aj ik = —2m° — 202, + 21n3. Since 73 > % + 2, it

can be found that

Uk Aikie = —27710 — oo + 213
> 3—1—2-%—2—772@,@'

> 1, (4.45)

the condition Eq. (4.43) holds, and every output of the state variable will eventually
enters the saturation region under constraint W;.

It is left to be proved that the stable output patterns locate in the state space. To
prove the completeness of the state space defined by ¥y N Wy, we first prove that all
desired output patterns {)? (1) e ¥ N \Ilg} are equilibria of the CNN. We then show that
all )?(T) converges into {¥; N Wy},

For any given j((T) € U NPy, we have SN, K X, 0(7)-27F <1 and ¢, = 0, and
also K | X (1) - 27F < by and ¢o; = 0 for Vi. For X; (1) = 0 for V(i, k), the Eq.
(4.33) is

T (X)) =

=1 k=1
N K
< |mo (1 —e ”W)) + 2 (1 =33 Xiw(r) -2 ) — 1y — 2] 2k
=1 k=1
N K
< —|mo-e old; (t) +QZZX”<(T) 21€‘| ka
i=1 k=1
<0, (4.46)

where (19 < 13 — 2) is given from Eq. (4.41). Then,
Ti ke (;((T)Jjo C2Xp(r) = 1) = =Tip, <)?(r),zj{> >0
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for all X;x(7) =0.
For X;(7) =1 for V(i, k), the Eq. (4.33) would be

Tk ()?(T)ij) = [770 (1 — e“’“f(t)) +2 (1 - i i X x(7) - 2—k> 4 T,gl Lok

i=1 k=1

>5-27% >0 (4.47)
where 73 > 0 is given from Eq. (4.41). Then,
ik <}(7)>a> C2Xik(T) = 1) = Tix (J?(T),fl> >0

for all X;,(7) = 1. In summary, we can conclude that the elements X of ¥, NP, satisfies
condition Eq. (4.35) and are all stable equilibria.
We now prove that ¥; N ¥, contains all equilibria of the CNN. Define €2* to be the

collection of all equilibria for Eq. (4.35), that is,

o= {X Jop(X) > o}.

Then we claim that

QF C . (4.48)
Define

M@K () = Y Xjulr)-2m—1, (4.49)

(Gm)#(i,k)

and also
m#£k

We first consider the case that the selected equilibrium X satisfies constraint v, with
¢2i = 0. For X; (1) = 1, Eq. (4.33) is greater than zero. Assume A (i, k) > —27F 4 2K+1

and therefore ¢ = 1.
T (X0U) = [ (1= e 8O) 227 = 2 As i, () + 5] -2
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< [770 +n3 — 2m - Q’ﬂ Lok
< [770 + 15 — (0 +1m3) - 2K_k} 2"

<0 Vk < K, (4.51)

with the range of n; > (1o + n3) - 257! given from Eq. (4.41). This contradicts Eq. (4.35)
and Aq(z, k) must be equal to or less than zero. Therefore, if the output of the state
variable X ;(7) = 1 and constraint Wy is satisfied,

Similarly, with 7, > (19 +n3) - 2571, we can also obtain the same conclusion.

On the other hand, for X, ;(7) = 0, Eq. (4.33) is less than zero. For any time 7, when

X(1) & ¥y N Wy, equivalently ¢; = 1 or ¢o; = 1, and the output of the specific state

variable X; (1) = 0, it can be directly shown that

Tk ()?(T)Jj[) = [770 (1 - B_Uu"’(t)> —2m (g: i Xip(r) - 27F — 1)

< 0. (4.52)

This result indicates that when the constraints are not satisfied, the state variables will
be inhibited to reach the stable equilibrium in the state space. As long as the output of
a specific state variable reaches lower saturation region, it will then be stable, and the
equilibrium will be dominant by other state variables in upper saturation region. From
the both cases, X; (1) = 0 and X, (7) = 1, we can conclude that VX € O must belong

to the state space, and Q* C Uy, [ |

103



Denote by V.¥; the boundary surface of ¥; with width 27¢, defined by

V.Y, = {)?(T)

(1 _ ||5<(T)||) <2 X e, }

When ¢ = K, VW, is the collection of the vertex of ¥y.

For a given desired level €, the range of all coefficients are modified as follows

, —

= = : (4.53)

Mo < 13,
m >>mns > > 0.

And denote €2 as the collection of all equilibrium for the CNN with Eq. (4.53) for a given

E.

Lemma 6:

For a given desired level & and the ranges of all coefficients in Eq. (4.53), any equilibrium
output X of the proposed CNN locates in V ¥y N W,.

Proof:  With Eq. (4.53), it can be easily shown that f defined in Lemma 5 belongs to
¥, NY,y. We now show that with a given e, QF C V. ¥ NW,. Since any X of 2 belongs to
v, Ny, we have Zf\il 21521 Xix(r)-27% < 1and ¢ = 0, and also Z,ﬁ(zl X (1) 27F < by
and ¢o; = 0 for Vi. Assume A4 (i, k) given in Eq. (4.49) is greater than or equal to 27°.
For X; () = 0 for ¥(i, k), the Eq. (4.33) is

IR IR N K
Tk (X(ﬂ,u) = |m (1 — e_"u"(t)) + n (1 =33 Xiwlr) - 2—k> - ngl Lok
i=1 k=1
> [no (1= e 7O) — Ay (i, k) — 0| - 27
> 1 [e*UW'f) — 2\ (i, /g)} Lok (4.54)
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where Ay (i, k) = (ijzl S Xjm(T) - 27™ — 1> as X; (1) = 0. We can show that for

the definition of U;(t) and the proper selection of o, the following property holds,

lim P, Uil <93l Y
Then, Eq. (4.54) becomes

N

ik ()?(r),u> >y [270 = 2N B)| -2, (4.55)

Zx(ﬁﬁxa)-@wao—ly:—mk(ivxa>>o
for all X;(7) =0. |
Define 27¢-neighborhood of X as the set {)? ||)? - )?*|| <275, VX € V.U, N \Ilg}.
In the following, we prove that the energy function is absolutely monotonic in the region

V¥ N WP,y and the optimality is guaranteed within the radius 27¢ around the optimum.

Lemma 7:

With a given set of utility values Zj{(t), there exists an optimal output pattern, de-
noted by X *, with lowest cost. Then, the equilibrium of the CNN converges to the
27%-neighborhood of X *.

Proof:

N RN

Define by E (X(T),Z/{(t)

\Ifg> the energy function of the output pattern at equilibrium
X (1), the given utility vector Z:{(t) at time ¢, and the system constraint Ws. Let A(X) be
the difference (1 — ||)? II) with a given equilibrium X. For VX € V.U, Ny, the function

E <)?(T>,Zj{(t>‘ ‘I'g) is shown to become

B(xXmaw|e) = -x ¥+ (1-80)-2) - (1-400)
_ _;%.?“)_(1_&(5()2)
_ _Q+XA”)+A@V, (4.56)
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= (1)
where Y = ( N if;), . ) is the vector of the first external input of all neurons. With
- L)
given ¢, the A(X) is less than 27°. In Eq. (4.56), the first item (1 + XY ) is mono-
tonic in every dimension, and has no local minimum other than X *. From Lemma 1 and

Lemma 6,

dE(T) e el (1) . =% = (1)
o~ <0and — {1+ XY will eventually converge to — (1 + X Y
with the difference less than 27°. If we select ¢ > K/2, the second term is bounded

by A(X)? < 275 and it will change the equilibrium point to another. Therefore, the

equilibrium of the CNN converges to the 27*-neighborhood of X . [ |

4.6.3 Concluding Remarks of Designing Energy Function Based
CNN by Lyapunov Method

Here are some conclusions on designing a CNN with desired trajectories:

1. Investigate the dynamics of each neuron,and the relationship between the energy

OF X(T)) and dX; 1 (7)
—ar

function and each neuron,namely, X d

2. Identify the state variables and its desired output variable in terms of the considered

problem.

3. Based on the objective function O(7) and the system constraints Wy,. .., formulate

the cost function in the form as H(7) = noO(7) + ) mCu, (7).

4. Transform the cost function into energy function, and add some auxiliary terms to
aid the convergence. Examine the physical meaning and the moving direction of each
component of the energy function. Make sure that each component of the energy
function is in the form of convex or decreasing function along with the trajectories

or/and in time so that a local minimum exists.

5. Partially differentiate the energy function with respect to the state variable out-

put, and find out the connection weights, including recurrent inter-connection and
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external control weights, and also the bias current.

6. Verify that the equilibrium states exists, and that the state variables outputs in
equilibrium state locate in the reasonable state space, and the output patterns has
the lowest energy than any other pattern in the state space with given external

inputs.
Remarks on auxiliary terms in Lyapunov function

These are some experiences to design a stable circuit. In addition to the objective
function and the system constraint function, we can add several auxiliary components
with unchanged objective into the Lyapunov function. Notice that ”"unchanged objective”
indicates that the auxiliary terms al equilibrium states are constant or zero so that the
desired output pattern for the original objective function remains. The first one is to
nudge the state variable outputs to the stable region. In this case,the cost of a state in

different region with unchanged objective can be expressed as

N (o, VX (r) € X* = {0,1}
C e (X(T)) _ { X)X YA S o) , (4.57)

where p(X;.(7), X*) denotes the distance between point Z and the saturation set X*.
Since at the equilibrium states this auxiliary term entails no further cost, this cost is only
nonzero when the states are in transient situation if stable states are known. The second
is in general to aid the Lemma 3 being hold where energy function is drawn to decrease
along with time.

It is important for the designer to check whether the objective function is monotoni-
cally decreasing or partially (transiently) increasing to reach the equilibrium states. If it
is monotonically decreasing, the convergence process has been well designed. Otherwise,

some other auxiliary constraints might be added to ensure the convergence.
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In this work, for example, ¢;(0) = >, X;x(0) is set higher than the eventual output
value. A possibility of initial value could be v»;. Along with time, the ¢;(7) will be
decayed. There are two possible transient situations: one is intra ¢;(7) inter-change
between different bits when ¢;(7) decreases; the other is that ¢;(7) increases as ¢;(7)
decreases. In the first case, some MSB (more significant bit) becomes zero and other

LSBs (less significant bit) become 1, that is,

Xip(t—=1)=1—,X;4(1) =0,

Xim(T—1)=1—=,X; (1) =1, for m <k (4.58)

In this situation, the cost (energy) related to ¢;(7) decreases, however,we should make
sure that the decrease of X; x(7) will force some {X;,,(7), Im < k} to be increased rather
than that X;,,(7), Ym < k merely remains the same when X; () becomes zero.

In the second case, it involves that some ¢;(7) releases the resource for other connec-
tions, and at the same time, some ¢;(7) increases. The energy must be decreased even
in this second case because that the release of resource of connection j for connection
¢ must be owing to higher (1 — e_"ui(t)) than (1 — e“’“j(t)>. This transition of value of
¢;(T) implies lower energy (higher system utility) achieved. However,two tasks must be
considered. The transition between j and i makes lower energy (the correct direction),
and the decrement of ¢;(7) encourages the increment of ¢;(7). These auxiliary terms
may facilitate the convergence process and the desired output states, however, it can be
implicitly incorporated in other terms.

Note that in item 3, objective function usually relates to the external inputs, and
those constraints consist of the interconnections between state variables. In item 4, for a
formal Lyapunov function, the coefficients of quadratic terms (of state variable X?,) are
negative, those cross-product terms are usually negative (X, - X; ), those products of

state variables and static inputs are usually positive, and the products of state variables
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and bias currents are usually positive.

4.7 Simulation Results and Discussion

In the simulation scenario, five types of services are assumed in three service classes.
Type-1 service is assumed to be real-time class of traffic with peak rate 15kbps, activity
factor 0.57, Py = 0.05, D* = 40ms, and BER* = 1072, Type-2 (type-3) service is
assumed to be non-real-time interactive class of traffic with Pareto process [75] of which
the mean rate is 8kbps (12kbps) , R; ,=7.2kbps (R ,=11kbps), and BER* = 10°°
(BER* = 107°). Moreover, type-4 (type-5) service is assumed to be non-real-time best
effort class of traffic in batch Poisson distribution with mean rate 6kbps (15kbps) and
mean batch size 1.2k bits (1.2k bits). Only BER* = 1075 QoS requirement is guaranteed.
The proportion in the number of connections from type-1 to type-5 is kept at 1:1:1:1:1.
Also, four modulation schemes, BPSK, QPSK, 16QAM, and 64QAM, are available for
transmission as the BER requirement can be fulfilled and the remaining queue is enough.

We compare the proposed CNNU-based scheduler with the exponential rule (EXP)
scheduling scheme. The performance measures are such as the average system through-
put, the average packet dropping ratio of RT connections, Pp, the average transmissio
rate of NRT interactive connections, R,,, the ratio of RT connections in which their packet
dropping ratio requirement is not guaranteed, ¢p,, the ratio of NRT interactive connec-
tions in which their minimum transmission rate requirement is not guaranteed, ¢g,,, and
the fairness variance index of NRT connections, F,. The F, is defined for measuring the

variance of fairness to share the radio resource among all NRT connections. It is given by

1 NZNRT Elry(1)] :
T w;
Fv _ - i 4
N

war TSN E (8] M w,

where N

vrr 18 the number of NRT connections. The fairness variance index shows the

variance of the normalized radio resource allocated and the normalized proportion of
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Figure 4.3: The average system throughput

resource desired to share.

Fig. 4.3 shows the average system throughput. It can be found that the CNNU-based
scheduler has higher system throughput than the EXP scheduling scheme by more than
9% as the number of connections is greater than 200, and by higher than 15% as the
number of connections increases up to 250. At around this point of 250 connections,
the QoS requirements of RT connections begin to violate if the CNNU-based scheduler
is adopted, while the exponential rule algorithm has begun to violate drastically the
QoS requirement of minimum transmission rate, R, ;, ¢ € NRT, at the point of 175
connections. In summary, CNNU can always has a higher system capacity and a larger
the QoS guaranteed region. This is because the CNN processor can quickly determine
the optimal radio resource vector, and the CNNU-based scheduler can efficiently adapt
to the link variation and effectively keep the QoS requirements guaranteed for different
traffic classes. The priority bias makes the RT connections share the radio resource with

relatively higher priority over NRT connections and, at the same time, ensures the average

packet dropping ratio requirement of each connection according to its location dependent
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Figure 4.4: QoS performance measures of P, and R,,

information. Beyond the point of 250 connections, the throughput of EXP scheme is
almost saturated, while the throughput of the CNNU-based scheduler continue to grow
up with slightly lower slope. It is because the throughput of CNNU-based scheduler can
achieve better utilization of multiuser diversity gain than that of the EXP scheduling
scheme.

Fig. 4.4 depicts the comparison of performance measures, the average packet dropping
ratio of type-1 RT connections Pp and the average transmission rate of type-2 and type-
3 NRT interaction connections R,,. It can be found that the Pp of the CNNU-based
scheduler is always slightly greater than that of the EXP scheme; on the other hand, the
R,, of type-2 and type-3 connections of the CNNU-based scheduler are all greater than
that of EXP scheme after the number of connections is greater than 125. It also shows that

both of these QoS performance measures are guaranteed for the CNNU-based scheduler
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Figure 4.5: The ratio ¢p, for RT connections and the ratio ¢g, for NRT interactive
connections

as the number of connections are less than 250, while these are guaranteed for the EXP
scheme as the number of connections are less than 175. This shows that the CNNU-based
scheduler has larger QoS guarantee region with differentiated QoS requirements and also
higher average system throughput within this QoS guarantee region shown in Fig. 4.3.
The maximum achievable throughput in QoS guarantee region of CNNU-based scheduler
is higher than that of EXP scheme by 256%. The reason is that the CNNU-based scheduler
can take advantages from the link adaptation and compensate the connections when their
QoS requirements are about violated.

Fig. 4.5 shows the ratio ¢p, of RT connections and ¢p,, of NRT interactive connec-
tions. The first glance of Fig. 4.5 indicates that the ratios of ¢p, and ¢p, are greater

than zero at any traffic load conditions due to the existence of connections with very bad
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link quality. It can be also found that within the light traffic load region ( less than 150
connections), both ¢p, and ¢g,, of CNNU-based scheduler are slightly higher than that
of the EXP scheme, but the two averaged QoS performance measures are still guaran-
teed, which have been described in Fig. 4.4. As the number of connections greater than
175, ¢g, of the EXP scheme becomes higher than that of CNNU-based scheduler, and
increases drastically compared with CNNU-based scheduler after the number of connec-
tions greater than 200. The ratio ¢p, of the CNNU-based scheduler is always larger than
that of the EXP scheme in this region. These results comes from that the EXP scheme
mainly allocate the radio resource to compensate the connections with high likelihood to
violate their QoS requirements, and the EXP scheme has lower ratios of ¢p, and ¢g,,
when the system is not overloaded. However, the capacity with guaranteed QoS require-
ments will be reduced. On the other hand, the CNNU-based scheduler jointly takes radio
the resource efficiency and the deviation of QoS requirements measures into account, and
its capacity is therefore enlarged, however, the resulting unguaranteed ratios, ¢p, and
Or,,, is getting larger. Moreover, the ratios ¢p, and ¢p,, of CNNU-based scheduler are
closed, while for exponential rule algorithm, its ¢p,, is getting much higher than ¢p, in
heavy load conditions. This shows that CNNU-based scheduler can effectively support
the differentiated QoS requirements and fully utilize the link variation simultaneously,
while exponential rule algorithm cannot adequately allocate the radio resource according
to the extent of violation of requirements and also the individual link quality. Note that
the results imply that the CNNU-based scheduler will not guarantee all the QoS require-
ments all the time, and a properly designed call admission control is required to reject
the connections with very bad link quality in terms of the current traffic load conditions.

Fig. 4.6 shows the fairness variance index of NRT connections. It can be found that

the fairness variance index of the CNNU-based scheduler retains within 1 in almost all
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Figure 4.6: The fairness variation index for NRT connections

simulation cases, and grows up slowly as the number of connections increases; the fairness
variance index of the EXP scheme, on the other hand, increases more quickly. This
is because the fairness compensation function of the CNNU-based scheduler considers
the location dependent information and aims to share the radio resource fairly as long
as the minimum rate is guaranteed, while the design of the EXP scheme ignores the
location dependent information and allocates rate fairly to all connections. The fairness
compensation function, considering location dependent information, also facilitates the

higher capacity for the CNNU-based scheduler shown in Fig. 4.3.

4.8 Concluding Remarks

This chapter presents a cellular neural netowrk and utility-based (CNNU-based) sched-
uler, which jointly considers its radio resource efficiency, diverse QoS requirements, and
fairness, to schedule the radio resource for connections in multimedia CDMA cellular sys-
tems. The utility function is defined to be the radio resource function properly weighted

by the QoS requirement deviation [unction and the [airness compensation [unction. Also,
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the cellular neural network (CNN) is adopted to solve the constrained optimization prob-
lem defined for the radio resource scheduling in a real time fashion. Simulation results
show that the CNNU-based scheduler can efficiently allocate the radio resource to achieve
higher throughput than the EXP scheduling scheme. It can also effectively support differ-
entiated QoS requirements for connections with variant traffic characteristics. Moreover,
the CNNU-based scheduler can enlarge the QoS guaranteed region under the complicated
QoS requirements environments. The CNNU-based scheduler is effective for multimedia
CDMA cellular systems with diverse of QoS requirements when both dedicated and shared
channels are adopted. However, call admission control to accept /reject the good/bad user

to ensure the operation of the CNNU-based scheduler should be further studied.
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