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摘 要 

在系統單晶片的整合過程中，驗證所要整合到系統中的區塊是否符合其介面協定，

乃是一不可忽略之重要步驟。然而，現存的幾種方法各有其實用上之限制：以模擬為基

礎的方法常常忽略了沒有被模擬到的情況而發生錯誤，而正規方法容易遭遇記憶體不足

及執行時間過長的問題。此論文為此種介面協定之相符驗證提出一新穎的演算法。此法

乃是將介面協定之特性表示成一有限狀態機，然後在較電路層級更高的有限狀態機層

級，以正規方法來驗證介面的邏輯。相較於以其他特性規格語言來表示介面協定之特

性，有限狀態機的表示法更為系統化，這大大地降低了特性表示不完全的可能性。此外，

理論推算及實驗結果都顯示此演算法能在合理的時間及記憶體需求內完成驗證。 
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ABSTRACT 

Verifying whether a building block conforms to certain interface protocol is one of the 

important steps while constructing a system-on-a-chip (SoC).  However, most existing 

methods have their own limitations.  Simulation-based methods have the false positive 

problem while formal property checking methods may suffer from memory explosion and 

excessive runtime.  In this thesis, we propose a novel branch-and-bound algorithm for 

interface protocol compliance verification.  The properties of the interface protocol are 

specified as a specification FSM, and the interface logic is formally verified at the higher 

FSM level.  Using the FSM for property specification is relatively systematic than using 

other proprietary property languages, which greatly reduces the possibility of incomplete 

property identification.  And it is shown theoretically and experimentally that the proposed 

algorithm can finish in reasonable time and space complexity. 
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Chapter 1              

Introduction 

 

In modern system-on-a-chip (SoC) designs, certain number of building blocks should be 

reusable intellectual property (IP) cores to accelerate the design process.  To achieve an even 

higher level of reusability, the platform-based design methodology, in which all IP cores are 

pre-verified, is usually adopted.  Figure 1-1 illustrates how an IP core is reused in typical 

platform-based designs.  An IP core is wrapped with the appropriate interface (I/F) logic that 

complies with certain I/F protocol (usually an on-chip bus protocol) so that it can 

concordantly communicate with other IP cores within the system.  When the IP core is 

desired in another platform utilizing a different I/F protocol, all one has to do is simply 

changing the I/F logic wrapper without altering the core function logic.  Thus, by separating 

the core function logic from the I/F logic, the IP core can be easily and quickly integrated into 

different system platforms utilizing different I/F protocols [1].  In addition, even under a 

given I/F protocol, the I/F logic can still vary in a big dynamic range due to numerous valid 
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configurations and options.  Therefore, the interface compliance must be verified thoroughly 

during SoC integration. 

 

 

 

 

 

 

 

Figure 1-1. An IP core reused in different system platforms. 

 

Generally, the compliance verification process can be divided into two phases.  The 

first phase, the property specification phase, is to translate the interface protocols into 

properties.  Many property languages or specification styles can be adopted to specify the 

protocols.  How to select among these styles depends on whether the verification tool in use 

supports this style and whether this style meets your requirements.  The second phase, the 

verification phase, is to verify the design against those properties.  There are two major 

categories for this verification phase: simulation-based (dynamic) methods and formal (static) 

ones.  The methods in both categories have their own advantages and limitations.  

Figure 1-2 illustrates this typical verification process.  The two phases are clearly 

shown in the figure.  The details in each block are explained in later sections. 
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Figure 1-2. Typical compliance verification flows. 

 

Most works on compliance verification involve both phases.  They may choose 

different ways to specify properties in combination with different ways to accomplish the 

verification.  In the following section, some studies of these works are given.  The 

characteristics of their property specifying styles and verification schemes are also discussed.   

 

1.1 Related works 
 

1.1.1 Simulation-based verification 

The simulation-based verification approach is age-old but popular.  Several researches 

are based on this approach [2-8].  In [2], properties of a protocol specification are 

represented in HDL monitors.  This specification style can be simulated by HDL simulators 

without extra interpretation.  In addition, the outputs of the monitors can tell the correctness 
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of the design under verification (DUV).  Based on this, a systematic method of representing 

properties of an I/F protocol as a monitor FSM is proposed in [3].  This work also defines its 

own coverage metrics to measure the quality of the simulation trace.  Some other works 

focus on the automation of the verification process from high-level specification styles.  In 

[4], the high-level specification style is based on the extension of regular expressions, and 

then a linear-time algorithm of translating the specification style into monitor circuits is 

proposed.  Similar work of generating monitor circuits is done in [5], but the specification 

style of this work is the GSTE assertion graphs.  In [6-7], input constraints and biasing are 

considered.  They propose methods for automatically generating inputs that are legal and 

even biased to enhance the effectiveness of the simulation patterns.   

Besides academic researches, there are some commercial products developed for 

compliance verification.  For example, the commercial tool ACT [9] is available for 

verifying AMBA [10] compliance.  Furthermore, Synopsys DesignWare provides 

verification IPs [11] for some popular interface protocols like PCI, USB, and AMBA.  The 

verification IPs includes monitors, master IPs, and slave IPs.  They provide a system 

environment so that the DUVs can be pre-verified before being integrated into real systems. 

Although all works mentioned above greatly facilitate the simulation process, all 

simulation-based approaches encounter an unavoidable problem: the compliance can never be 

assured no matter how high the coverage is or how many cycles the simulation lasts for.  The 

bugs of the design may lie in the corner where the simulation trace never reaches.  In other 

words, the design might still be wrong while all simulation results tell that the design is 

correct.  This false positive situation is the most severe problem of simulation-based 

verification. 
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1.1.2 Formal verification 

Formal verification can avoid this kind of false positive problem [12-15].  Model 

checking techniques [16] are used for I/F protocol compliance verification in [12-14].  In 

these works, properties of the I/F protocol are specified in the CTL language, and then the 

model checker verifies the DUV against these properties and gives a counterexample if an 

error in the DUV is found.  Once the model checker reports a success, the design is 

guaranteed to be 100% compliant with these properties.   

However, properties in CTL are not easily thorough and the process of extracting 

properties from a specification document written by natural languages is generally 

complicated and painful.  It is very likely that some properties are actually implied by the 

specification but accidentally not extracted and thus ignored during the formal verification.  

Moreover, memory explosion and excessively long runtime may be further serious problems 

while the size of the design increases.  All these issues potentially prevent model checking 

techniques from being effectively and efficiently applied on interface compliance verification. 

 

1.1.3 Assertion-based verification 

Recently, the assertion-based verification (ABV) methodology is getting popular and 

several property specification languages (such as PSL [17], OVL [18], OVA [19], and SVA 

[20]) are developed to provide alternative ways to specify properties in additional to CTL.  

These emerging languages are relatively more easily understood than CTL at the semantic and 

syntactic level.  Furthermore, these languages are supported in both simulation-based and 

formal verification tools.  However, no matter what emerging property specification 

language is used, either the (simulation-based) dynamic ABV or (formal) static ABV 

inherently suffers from the same problems in traditional dynamic or static verification 
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mentioned previously. 

 

1.2 Motivation 

 

The property specification style in our work is directly inspired by [2-3].  The work in 

[2] gives clear and useful concepts of using HDL monitors as the interface protocol 

specifications, and then [3] gives the concepts of specifying monitors in the higher FSM level.  

Both works have the advantage that all engineers are familiar with these styles, HDL and 

FSM.  Hence, engineers are very likely to accept the styles because no particular 

specification languages need to be learned.  Our specification style, the specification FSM, is 

actually a variation of [3].  It inherits the advantage of comprehensibility and simplicity from 

[2-3]. 

However, the works in [2-3] use the simulation-based approach in the verification phase.  

They inevitably suffer the false positive problem which we try to avoid.  Therefore, a novel 

formal verification approach using this friendly specification style has to be developed.  

A similar work that specifies properties as state machines and verifies using formal 

techniques is proposed in [21].  However, this work specifies one single property in one state 

machine.  If we specify an interface protocol in this method, the specification becomes many 

unorganized state machines.  This leads to the same incomplete property identification 

problem as in traditional property languages.  Moreover, verification efficiency may decline 

because it is disorderly and unsystematic. 
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1.3 Our approach 

 

Our approach, unlike any of above, intends to formally verify whether the I/F logic is 

compliant with the I/F protocol at the FSM level.  The properties of the I/F protocol are 

specified as a specification FSM.  We believe that this style is more readable and systematic 

than other specification styles proposed in [2,4,5,17-20,22-24] and thus enables complete 

property extraction.  The golden specification FSM is only created once for a specific I/F 

protocol and then can be used to verify all designs claimed to be compliant with.  

Developing the FSM of the I/F logic is generally essential since it is one of the design steps 

(before the HDL coding) under a typical modern design flow.  Since the verification is 

applied at the higher FSM level and only the separated interface logic is under verification, 

our approach can effectively and efficiently complete the verification even if it is a formal 

method indeed. 

The rest of this thesis is organized as follows.  Chapter 2 introduces necessary 

terminology, concepts, and the specification style of our compliance verification.  In Chapter 

3, our novel branch-and-bound algorithm that formally verifies the compliance between the 

DUV FSM and the golden specification FSM of the interface protocol is given in detail.  

Chapter 4 extends the algorithm to handle the compliance verification in which the 

specification is modeled as the EFSM.  Chapter 5 shows the experimental results, and the 

concluding remarks are given in Chapter 6. 
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Chapter 2                

Preliminaries 
 

2.1 Bus signals 

 

Typical I/O signals of a bus interface logic are shown in Figure 2-1. 

Ibus  the set of input signals from bus to I/F 

Obus  the set of output signals from I/F to bus 

Icore  the set of input signals from core to I/F 

Ocore  the set of output signals from I/F to core 

Iext  the set of external input signals to core 

Oext  the set of external output signals of core 

 

In addition, 

Ictrl   Ictrl ⊆ Ibus, the subset of bus inputs that directly controls the bus behavior from 

the protocol perspective 

Octrl  Octrl ⊆ Obus, the subset of bus outputs that directly controls the bus behavior from  

the protocol perspective 
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Figure 2-1. Notations of bus signals. 

 

Use the AMBA AHB slave interface [10] as an example, 

Ibus  = { HSEL, HREADYin, HADDR, HWRITE, HTRANS, HSIZE, HBURST, HWDATA, 

       HMASTER, HMASTERLOCK } 

Obus  = { HREADY, HRESP, HRDATA, HSPLIT } 

Ictrl  = { HSEL, HREADYin, HTRANS } 

Octrl  = { HREADY, HRESP, HSPLIT } 

 

It is not uncommon that just a small portion of bus I/F signals are classified into Ictrl and 

Octrl.  For example, what value that the address/data bus exactly carries does not affect the 

bus behavior at the protocol level.  Note also that Icore, Ocore, Iext, and Oext may differ from 

design to design. 

 

2.2 FSM 

 

The FSM is a quintuple M=(Q, Σ, ∆, σ, q0) where 

Q     the set of symbols denoting states 

Σ            the set of symbols denoting inputs 

interface

 core

bus 

bus component 

Ibus Obus

Ocore Icore

Iext Oext 
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∆            the set of symbols denoting outputs 

σ: Q×BΣ → Q×B∆  the transition function  

q0     q0 ∈ Q, the initial state  

Additionally, 

|eqi|     the number of outgoing transition edges of the state qi 

fqi,qj:BΣ×B∆→B   the Boolean function s.t. fqi,qj(x, y)=1 iff σ(qi, x)=(qj, y) 

 

Figure 2-2 gives an example to illustrate above terminology.  In all state transition 

graphs in this thesis, the initial states are specified in bold circles.  In the example FSM, 

 

 

Q = { s1, s2, s3 },  Σ = { i1, i2 },  ∆ = { o1},  q0 = s1, 

|es1| = 2,  fs1,s2 = i1’ • o1. 

 

 

 

 

 

Figure 2-2. An example of FSM. 

 

2.3 EFSM 

 

The extended finite state machine (EFSM) [25] is a 7-tuple M=(Q, Σ, ∆, x, T, q0, x0) 

where 

Q    the set of symbols denoting states 

Σ      the set of symbols denoting inputs 

s1

s2 s3

0- / 1  

-- / 0 -1 / 1  

-0 / 0  

1- / 0  

i1 i2 / o1 
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∆     the set of symbols denoting outputs 

x      the set of symbols denoting variables  

x0    the initial values of variables in x 

q0        q0 ∈ Q, the initial state  

T               the set of transitions t’s, each t is a 6-tuple t=(st, qt, it, ot, Pt, At)  

              where 

    st, qt, it, ot  current state, next state, set of input values, set of output values 

    Pt(x), At(x) the predicate and the action on current variables 

 

Additionally, we further define: 

Pqi,qj(x)        the predicate of the transition from the state qi to qj 

Aqi,qj(x)      the action of the transition from the state qi to qj  

 

A transition t=(st, qt, it, ot, Pt, At) means if the input value is in it and the predicate Pt(x) 

is evaluated true, then the EFSM outputs ot, performs the action x = At(x) and moves from 

the current state st to the next state qt at the next cycle.  Figure 2-3 illustrates an EFSM 

example.  This EFSM contains only one variable v.  In the state s1, if the input value is 0 

and v>1, the EFSM outputs 0, and increases v by 1 while jumping to the next state s2 at the 

next cycle.  The notations Pqi,qj(x) and Aqi,qj(x) are defined for the algorithm development 

in Section 4.2.  In Figure 2-3, 

Ps1,s2(v) = TRUE      if v>1 

        FALSE     otherwise 

As1,s2(v) = v + 1 

 

EFSMs are particularly suitable for specifying counters.  Therefore, they can be 

utilized to specify interface protocols much more clearly.  The details are discussed in 
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Section 4.1. 

 

 

 

 

 

Figure 2-3. An EFSM example. 

 

2.4 Monitor 

 

A monitor of a component can tell if the component behaves according to the protocol 

by observing its inputs and outputs.  In other words, the monitor takes the inputs and 

outputs of the bus component as its own inputs, and determines the correctness of the 

component. 

 

2.5 Specification FSM 

 

In our approach, the properties of the protocol specification are represented in the 

specification FSM, or spec FSM.  It specifies whether the output response of a specific 

implementation (DUV) is legal or not under a given input sequence.  In other words, the 

spec FSM actually acts as a functional monitor of the DUV.  It observes both the input and 

output sequence and determine the correctness of its behavior.  The possible DUV 

behaviors are concluded to be:  

1. don’t-care: The behavior is not defined since the input sequence is not supposed to  

appear. 

s1

s2 s3

(v>1,0) / (v++,0)  

(TRUE,0) / (v=0,0) (v==0,0) / (v=1,0)  

(v≠0,0) / (v++,0)  

(v≤1,1) / (v--,0)  

(predicate, input value) / (action, output value)
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2. legal: The output sequence is allowed by the protocol under a valid input sequence.  

3. illegal: The output sequence is prohibited by the protocol under a valid input sequence.  

For differentiating these behaviors, in every spec FSM, two special states are defined: 

vio and dc.  The spec FSM moves to the state dc if a don’t-care input sequence is applied 

to the DUV.  If the DUV behaves illegally under a valid input sequence, the spec FSM 

moves to the state vio.  If the DUV behaves legally under a valid input sequence, the spec 

FSM moves among other normal states excluding the state dc and vio.  Accordingly, the 

spec FSM is a finite state machine M=(Q, Σ, ∆, σ, q0) whose behavior is a monitor of 

certain interface logic where Q contains all normal states along with two extra special states 

vio and dc, Σ = Ictrl ∪ Octrl, and ∆ = φ.  Note that, unlike typical functional monitor designs, 

the output set ∆ of a spec FSM is empty.  Because there is no need for extra outputs to 

indicate whether the DUV behavior is legal, illegal, or don’t-care.  Instead, the special 

states can indicate these situations as well.  More details about how to construct a spec 

FSM are similar to those in [3].   

 

2.5.1 A spec FSM example 

A part of the spec FSM for the AMBA AHB slave protocol is given in Figure 2-4 as an 

example.  Other parts are not shown for clean appearance.  In the state idle/busy, if 

HREADY is not asserted or HRESP is not set to OKAY, the spec FSM moves to the state vio 

(e9).  This implies that a slave cannot respond anything but OKAY to an IDLE or BUSY 

transfer, which is explicitly defined in the AMBA specification.  In addition, in the state 

orig, if a transfer is initiated by asserting HSEL and HREADYin as well as setting HTRANS 

to SEQ, the spec FSM moves to the state dc (e3).  This infers that the master should never 

set HTRANS to SEQ for the first transfer, which is an input constraint to the slave. These 

inputs can be treated as don’t-cares since they are not supposed to appear.  
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Figure 2-4. A part of the spec FSM of the AMBA AHB slave protocol. 

 

2.5.2 Correctness of the spec FSM 

We find a simple but effective method to check whether the given spec FSM is correct.  

The proposed method does not intend to guarantee that the spec FSM would completely and 

correctly represent the protocol.  Instead, it is able to point out obvious errors in the spec 

FSM. 

There are two rules to check the given spec FSM: 

1. All input combinations of a normal state must be fully specified. 

2. The outgoing edges of a normal state must be mutually disjoint. 

These rules are not advanced but trivial.  They are simply the rules for the fully 

specified deterministic FSM.  But they do help a lot in practice.  In our experiments, this 

check is done by our program automatically.  It catches several bugs in the first version of 

the spec FSMs of AHB slave and WISHBONE slave protocols.  These results are shown in 

Chapter 5. 

e5 

e6 
e6

e7 
e5 

e8 

e2 

e1 e3 

e4 

e9 

seq/ 
nseq

orig

idle/ 
busy 

wait 

e10e5 
e8 

e6 

e10

e7 

e7 

e1: HSEL + HREADYin 
e2: HSEL • HREADYin • (HTRANS=NSEQ) 
e3: HSEL • HREADYin • (HTRANS=SEQ) 
e4: HSEL • HREADYin • (HTRANS=IDLE||BUSY)
e5: HSEL • (HTRANS=IDLE||BUSY) •  
   HREADY • (HRESP=OKAY) 
e6: HSEL • (HTRANS=SEQ||NSEQ) •  
   HREADY • (HRESP=OKAY) 
e7: HSEL • HREADY • (HRESP=OKAY) 
e8: HREADY • (HRESP≠OKAY) 
e9: HREADY + (HRESP≠OKAY) 
e10: HREADY • (HRESP=OKAY) 

vio 

dc 



 15

 

2.5.3 Advantages 

To translate an interface specification from a document into a spec FSM is relatively 

systematic than into rule-based properties (in CTL or emerging property languages).  

While building the spec FSM, all possible combinations of Ictrl and Octrl are examined for 

each normal state since all normal states must be fully specified.  This means that all 

possible situations of each state are taken into consideration.  For property-based methods, 

however, it is hard to determine whether all properties are completely identified or not. 

Nevereless, translation from specification documents into formal forms is really not an 

easy work no matter in which approach.  But in our approach, this translation can be done 

once and for all, no matter what function the DUV supports (for example, retry-capable or 

not) or what internal situation of the DUV determines the bus outputs (for example, respond 

ERROR upon address error or upon data overflow).  This greatly facilitates the verification 

flow. 

 

2.5.4 Limitations of expression power 

Although the spec FSM provides a systematic way for property specification, it is not 

omnipotent.  For example, a typical liveness property, which says “ack should always be 

asserted at some time after req is asserted”, cannot be explicitly represented in the spec 

FSM.  Because it takes infinite states to represent the infinite future cycles.  But if we are 

able to set a deadline for such liveness property, it may be clearly specified in some way.  

For example, the property “ack should always be asserted within 16 cycles after req is 

asserted” can be easily represented.  This is the case for most interface hardware designs 

since the hardware cannot be designed to respond in infinite future. 

Despite this limitation, our approach is still valuable.  All other specification 
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languages have their own advantages and limitations.  But our method is suitable for 

interface protocols since the interface logics are mostly control FSMs.  

 

2.5.5 Compliance verification with the spec FSM 

By introducing the spec FSM, a DUV is said to be compliant with the specification if 

and only if there exists no valid input sequence (of any arbitrary length) along with the 

corresponding DUV output sequence that can drive the spec FSM into its state vio.  
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Chapter 3                     

Our Approach 
 

3.1 Problem formulation 

 

Now the problem of interface compliance verification can be interpreted as the 

compliance verification between the DUV FSM and the spec FSM.  It can be further 

formulated as: 

 

Given the spec FSM Ms = (Qs, Σs, φ, σs, qs0)  

where Σs =Ictrl ∪ Octrl 

and the DUV FSM Md = (Qd, Σd, ∆d, σd, qd0) 

     where Σd = Ibus ∪ Icore  

and  ∆d=Obus ∪ Ocore, 

verify if the DUV FSM complies with the spec FSM. 
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For the spec FSM, Σs =Ictrl ∪ Octrl infers that it considers only the signals that affect the 

bus behavior.  Other signals like the address or data bus can be neglected to reduce the 

complexity.  For the DUV FSM, Σd = Ibus ∪ Icore and ∆d=Obus  ∪ Ocore infers that it can 

contain self-defined core signals along with bus signals.  Therefore, the DUV FSMs of the 

same protocol may contain different functional logic because of different core functions.  

But our algorithm can verify only the protocol part and cleverly neglect the functional logic 

that differs from design to design. 

 

3.2 Observations 

 

Figure 3-1 shows the FSM of an example AHB slave interface design.  Its outputs in 

Figure 3-1 from left to right are HREADY, HRESP[1], HRESP[0].  When it detects a write 

request from a master, it moves to the state write and responds OKAY to indicate that the 

write operation is done.  When it detects a read request from a master, it first moves to the 

state prep to insert a wait cycle, and then moves to the state read and responds OKAY to 

indicate that the read operation is done at the next cycle.  Otherwise, it stays in the state 

sleep when the slave is not requested or is requested for an IDLE or BUSY transfer. 

 

 

 

 

 

 

 

Figure 3-1. The FSM of an AHB slave interface design. 

 

eS :  HSEL + HREADYin +   
     (HTRANS=IDLE||BUSY) 
eR :  HSEL • HWRITE • HREADYin •  
     (HTRANS=NSEQ||SEQ) 
eW :  HSEL • HWRITE • HREADYin •  
     (HTRANS=NSEQ||SEQ) 
 

sleep 

prep 

read 

write

eS / 100

eW / 100

eR / 100 

eR / 000 

eS / 100 

eW / 100 

eW / 000 

eS / 000 
eR / 100 

eR / 100 

eW / 100 

eS / 100 
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How do we verify if the FSM in Figure 3-1 complies with the protocol in Figure 2-4?  

Note that this is not simply the FSM equivalence checking problem since these two FSMs 

are intrinsically different (with different I/O sets).  Besides, there is neither a subset nor a 

superset relation between these two FSMs.  However, the states in these two FSMs do 

have some sort of corresponding relations.  For example, when the DUV FSM is in the 

state sleep, the spec FSM may be in the state orig, because both of them mean the slave is 

not requested.  These two states are named as a corresponding state pair. 

However, the corresponding relation among states is not always 1-to-1.  It can also be 

n-to-1 or 1-to-n.  This is the reason why the DUV FSM is not simply a subset or superset 

of the spec FSM.  For example, the state orig and the state idle/busy in the spec FSM are 

both able to correspond to the state sleep in the DUV FSM because the DUV responds 

identically when it is not requested or is requested for an IDLE or BUSY transfer.  In 

addition, the state seq/nseq in the spec FSM is able to correspond to the state read and write 

in the DUV FSM because they all represent the data transfer requests. 

Since this compliance verification is neither equivalence checking nor subset/superset 

checking, the problem must be solved by other means.  Actually, the discussions in this 

section suggest that the DUV is proved to be compliant if and only if all possible 

corresponding state pairs are examined and none of them includes the state vio.  Hence the 

issue becomes how to exhaustively explore all possible corresponding state pairs for the 

given FSMs. 

 

3.3 Solution 

 

An intuitive idea about finding all possible corresponding state pairs is to grow a tree 

whose nodes are the corresponding state pairs (or state pairs in short).  The root node 
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consists of the two initial states.  If there exist certain values of inputs and outputs that 

make the DUV FSM and the spec FSM move from the initial state to the state A and B, 

respectively, then node (A, B) is produced as a child of the root node. 

Figure 3-2 illustrates the tree-growing process.  node1 is the state pair of the initial 

states in Figure 2-4 and Figure 3-1.  Consider the outgoing edge e2 of orig in Figure 2-4 

and the outgoing edge eW/100 of sleep in Figure 3-1, the intersection of the Boolean 

functions of these two edges (forig,seq/nseq • fsleep,write) is not equal to 0.   

 

( forig,seq/nseq =HSEL•HREADYin•(HTRANS=NSEQ) 

fsleep,write=HSEL•HWRITE•HREADYin•(HTRANS=NSEQ||SEQ)•HREADY•(HRESP=OKAY) 

=>  forig,seq/nseq • fsleep,write 

=HSEL•HWRITE•HREADYin•(HTRANS=NSEQ)•HREADY•(HRESP=OKAY)  

 ≠ 0 ) 

This infers that there exists certain input along with the corresponding output that can 

simultaneously drive both transitions.  For example, the input 

“HSEL=HWRITE=HREADYin=1, HTRANS=NSEQ”, which drives ew, along with the output 

100, can drive e2 as well.  Hence, node5 (seq/nseq, write) is created as a child of node1.  

Similarly, all outgoing edges of orig versus all outgoing edges of sleep have to be 

considered in the above manner.  Then we can get all children of node1 as shown in Figure 

3-2. 

In this way, the process exhaustively grows all children and all grandchildren of the 

root node and so on.  Finally all possible state pairs are present as nodes in this tree.  

However, this tree can have an infinite depth and thus the tree-growing process seems 

infeasible.  Therefore, certain bounding condition is required to prune the tree to be finite 

without losing any possible corresponding state pair. 

In fact, we can stop growing children of a node if this node has been present in the tree.  
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For example, in Figure 3-2, we do not have to grow children of node2 since they should be 

the same as those of node1.  This bounding condition does not fail to find any possible 

state pair.  Because the sub-trees growing from node1 is identical to those growing from 

node2, all possible state pairs growing from node2 can also be found in those growing from 

node1.  Hence, growing the tree rooted from node2 is completely unnecessary. 

 

 

 

 

 

Figure 3-2. The tree-growing process. 

 

3.4 Algorithm 

 

In summary, our branch-and-bound algorithm starts to grow a tree from the initial state 

pair.  It keeps growing child nodes for each node unless the node has been present in the 

tree or a violation to the protocol is found.  The formal description of the algorithm is 

shown in the next page.  In the algorithm, S denotes the stack containing all nodes that 

have been present in the tree.  qs and qd denote the states of the spec FSM and the DUV 

FSM, respectively.  qs0 and qd0 are the initial states.  The function grow_tree performs 

the branch-and-bound operations on the node.  The equation fqs,qi• fqd,qj ≠0 means the 

intersection of the Boolean functions of the selected edges is nonzero.  That is, there exists 

certain I/O value that can make the spec FSM and the DUV FSM move from the current 

states, qs and qd, to the next states, qi and qj, respectively.  If this condition holds and the 

next state pair has not been present in the tree (i.e., (qi,qj)∉S), the next state pair (qi,qj) is 

created as a child node of the current state pair (qs,qd) by performing the function 

seq/nseq, prep seq/nseq, write idle/busy, sleeporig, sleep 

orig, sleep
1

2 3 4 5
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grow_tree(qi,qj).  Note that if the next state of the spec FSM is vio (i.e., qi=vio), the 

tree-growing process stops and the error trace is given as a counterexample.  Furthermore, 

if the next state of the spec FSM is dc (i.e., qi=dc), the function grow_tree(qi,qj) is not 

performed since the input value that drives the transitions from qs and qd to qi and qj is 

illegal, which means this condition is not supposed to take place. 

S=φ ; 

grow_tree(qs0 ,qd0) ; 

 

grow_tree (qs ,qd) { 

 S = S ∪ (qs ,qd) ; 

 for i=1 to |eqs|    // for all outgoing edges of the state qs 

     for j=1 to |eqd|   // for all outgoing edges of the state qd 

     if (  fqs,qi• fqd,qj ≠0 && (qi,qj)∉S  )  

          if (qi≠dc && qi≠vio ) 

           grow_tree(qi ,qj) ; 

          else if (qi == vio) 

              give a counterexample and exit; 

} 

3.5 Complexity analysis 
 

3.5.1 Time complexity 

 

The time complexity is estimated by the iteration count in the tree: 

 

iteration count = ∑
=

N

n 1

(|eqs,n|×|eqd,n|) ,                                  ( 3 - 1 )  
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time complexity = O( ∑
=

N

n 1

(|eqs,n|×|eqd,n|) ) .                           (3-2) 

 

In the above equations, |eqs,n| and |eqd,n| denote |eqs| and |eqd| at the n-th recursion, and N 

denotes the number of recursion times.  For the worst case,  

 

N = |Qs|×|Qd|,                                                    ( 3 - 3 ) 

|eqs,n| = |Qs|,                                                   ( 3 - 4 ) 

|eqd,n| = |Qd|,                                                ( 3 - 5 ) 

=> worst-case iteration count = ( |Qs| × |Qd| )2 ,                           (3-6) 

=> worst-case time complexity = O( ( |Qs| × |Qd| )2 ) .                      (3-7) 

 

Equation (3-3) holds only when all combinations of states in two FSMs are valid state 

pairs.  Equation (3-4) and (3-5) hold only when the graph representations of two FSMs are 

complete graphs.  However, these worst-case conditions rarely occur.  Actually, 

experimental results show that the iteration count is typically far lower than this upper 

bound. 

 

3.5.2 Space complexity 

 

In the above algorithm, the space complexity is dominated by the size of two stacks.  

One is the visited-node stack, i.e., S in the algorithm.  The other is the error-trace stack, 

which is not explicitly specified in the algorithm.  The visited-node stack contains the 

corresponding state pairs that are already visited.  The error-trace stack contains the I/O 

values and state conditions from the initial node to the node that the violation occurs.  Note 

that the visited-node stack is always needed, while the error-trace stack is used only when a 
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violation occurs. 

The size of the visited-node stack is affected by the number of corresponding state 

pairs, where as the size of the error-trace stack is affected by the depth of the violation.  

But anyhow, the worst-case space complexity of both stacks can be expressed as: 

worst-case space complexity = O( |Qs| × |Qd| ).                           (3-8) 

Because |Qs|×|Qd| is equal to the maximum number of state pairs, and also equal to the 

maximum depth of the tree. 
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Chapter 4                

Extension 
 

4.1 Spec EFSM 

 

Timing constraints are not uncommonly encountered in interface protocols.  However, 

they cannot be easily specified in spec FSM sometimes.  For example, a simple interface 

protocol, which defines “ack must be asserted within 16 cycles after req is asserted”, is 

specified as the spec FSM in Figure 4-1(a).  It requires so many states to represent such a 

simple protocol.  Instead, if we specify this protocol in EFSM by introducing a variable 

count as in Figure 4-1(b), the representation becomes much clearer and easier.   

Similar to the spec FSM, the spec EFSM is an EFSM M=(Q, Σ, ∆, x, T, q0, x0) whose 

behavior is a monitor of certain interface logic where Q contains all normal states along 

with two extra special states vio and dc, Σ = Ictrl ∪ Octrl, and ∆ = φ.  The predicates and 

actions provide a convenient way to specify timing constraints that are frequently 

encountered in interface protocols. 
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(a)                           (b) 

 

 

 

 

 

 

Figure 4-1. Specify the same protocol in (a) FSM and (b) EFSM 

 

4.2 Extended algorithm 

 

Meanwhile, the original algorithm should also be extended to handle the spec EFSM.  

Similarly, the extended algorithm grows a tree from each node unless the node has been 

present in the tree.  The only difference now is that the node contains not only a state pair 

but also the values of the corresponding variables.  A simple example is given in Figure 

4-2.  Figure 4-2(a) gives an erroneous implementation of the interface protocol in Figure 

4-1.  This design violates the protocol because it may not assert ack within 16 cycles if it 

sticks in the state wait.  One possible scenario for the tree-growing process to find the 

violation is shown in Figure 4-2(b).  The words in each node from left to right denote the 

spec EFSM state, the DUV state, and the value of the variable count.  The nodes in the 

right branch illustrate the difference between the original algorithm and the extended one.  

As shown, the extended algorithm does not stop at the node (ans, wait, 14) although this 

node has the same state pair as its parent node (ans, wait, 15).  The reason is that the extra 

variable count needs to be considered as well. 

 

 

req 

ack 

ack 
ack 

req 

ack 

ack

…
 

 …
 

ack 

idle 

ans1
ans2

ans16 
ack

vio

req / count=15 

ack  req

  ack, count≠0  
  / count--

idle ans 

ack, count==0 
vio
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(a)                             (b) 

 

 

 

 

 

Figure 4-2. (a) A wrong implementation of the protocol in Figure 4-1 and (b) 
the tree generated by the extended algorithm. 

 

The extended algorithm is given below (the modified parts are shaded).  Similar to 

the algorithm in Section 3.4, S contains the nodes that have been present in the tree, and the 

function extended_grow_tree performs the branch-and-bound operations.  But some 

extension is made here.  The node now contains not only qs and qd but also x, the variable 

value because the variable value has to be considered as well.  Moreover, in the function 

extended_grow_tree, the condition that a child node is created includes not only fqs,qi•fqd,qj 

≠0 and (qi, qj, x’)∉S, but also Pqs,qi(x)==true, which means the predicate of current 

transition edge must be evaluated true.  It is because the transitions can never take place if 

the predicate is not evaluated true. 

 

Given the spec EFSM Ms = (Qs, Σs, φ, x, T, qs0, x0) 

                  where Σs =Ictrl ∪ Octrl 

and the DUV FSM Md = (Qd, Σd, ∆d, σd, qd0) 

         where Σd = Ibus ∪ Icore  

                  and  ∆d=Obus ∪ Ocore, 

verify the compliance with the following algorithm: 

 

req / ack 

req / ack 

req / ack 

req / ack  

orig wait
…

 
idle,orig,15

idle,orig,15 
ans,wait,15 

ans,wait,0 

vio,wait,0 

ans,wait,14 
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S=φ ; 

extended_grow_tree(qs0 ,qd0, x0) ; 

 

extended_grow_tree (qs, qd, x) { 

    S = S ∪ (qs, qd, x) ; 

    for i=1 to |eqs|     // for all outgoing edges of the state qs 

          for j=1 to |eqd| {   // for all outgoing edges of the state qd 

                x’= Aqs,qi(x);   // perform the action to the variable 

                if (fqs,qi•fqd,qj ≠0 && Pqs,qi(x)==true && (qi, qj, x’)∉S)  

                    if (qi≠dc && qi≠vio ) 

                      extended_grow_tree(qi, qj, x’) ; 

                  else if (qi == vio) 

                      give a counterexample and exit ; 

         }   

    } 

 

4.3 Complexity analysis 
 

4.3.1 Time complexity 

 

The time complexity analysis of the extended algorithm is similar to the discussions in 

Section 3.5.1.  The iteration count is equal to (3-1).  That is,  

iteration count =    (|eqs,n|×|eqd,n|)                                   ( 3 - 1 )  

              where  |eqs,n| and |eqd,n| denote |eqs| and |eqd| at the n-th recursion,   

              and    N denotes the number of recursion times. 

∑
=

N

n 1
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For the worst case, 

N = |Qs|×|Qd|×|range(A(x))|,                                           ( 4 - 1 ) 

|eqs,n| = |Qs|,                                                   ( 4 - 2 ) 

|eqd,n| = |Qd|,                                                ( 4 - 3 ) 

=> worst-case iteration count = |range(A(x))| × (|Qs|×|Qd|)2 ,                (4-4) 

=> worst-case time complexity = O( |range(A(x))| × (|Qs|×|Qd|)2 ) .           (4-5) 

 

The term range(A(x)) denotes the value range of the function A(x), and thus 

|range(A(x))| denotes the number of possible values of x.  Equation (4-1) holds when all 

combinations of two states and variable values are possible, and equation (4-2) and (4-3) 

holds when the graphic representations of two FSMs are complete graphs.  Worst case like 

this rarely happens. 

How exactly does the complexity change after this extension?  Let us compare (4-5) 

to (3-7), although (4-5) is multiplied by a factor of |range(A(x))|, |Qs| of (4-5) is greatly 

reduced in general.  Hence, the complexity does not increase significantly as expected. 

 

4.3.2 Space complexity 

 

Since the original state pair (qs, qd) is modified as (qs, qd, x), the original maximum 

number of state pairs |Qs|×|Qd| should be modified as |range(A(x))|×|Qs|×|Qd| as well.  

This is the same case for the maximum depth of the tree.  These modifications directly 

affect the maximum size of the visited-node stack and the error-trace stack, which further 

changes the worst-case space complexity.  Therefore, the worst-case space complexity 

becomes: 
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worst-case space complexity = O( |range(A(x))| × |Qs| × |Qd| ).              (4-6) 

 

4.4 Other extensions 

 

Except for the EFSM, the FSM has other variations, for example, the interacting FSM.  

Theoretically, these variations can be transformed into the equivalent FSMs.  Therefore, 

they can be candidates of other extensions to our approach.  For example, some concurrent 

behaviors of interface protocols can be modeled by the interacting FSM easily.  However, 

the transformation process imposes a heavy burden on the algorithm but improves only little 

expressing ability.  Therefore, only the EFSM extension is implemented since the trade is 

worthwhile. 
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Chapter 5                  

Experimental Results 
 

5.1 Program implementation 

 

The proposed approach has been implemented in C.  Our implementation can either 

formally prove that the given design is fully compliant with certain interface protocol or 

report a precise input sequence as a counterexample to show how the given design fails in 

the compliance verification.  Additionally, the program can automatically check the 

correctness of the spec (E)FSM with the method in Section 2.5.2. 

 

5.1.1 Input file format 

Both the spec (E)FSM and the DUV FSM are accepted in the enhanced BLIF(Berkeley 

Logic Interchange Format) [26].  This format extends the BLIF with some syntax capable 

to describe the reasons of each transition as well as predicates and actions required by the 

EFSM model.  Figure 5-1 shows an example in this format.  The words after the character 
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# are comments.  These comments clearly explain the syntax. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1. The spec EFSM of Figure 4-1 in the enhanced BLIF. 

 

The reason column in the enhanced BLIF provides a way to specify the meaning of 

each transition.  With these reasons, we can provide more meaningful counterexamples to 

improve the compliance verification. 

 

5.1.2 Input file check 

Our implementation can check the input files with the schemes described in Section 

2.5.2.  In the experiments, it really catches several bugs in the original spec FSMs of the 

 

.model      the_req_ack_protocol   #model name 

.inputs     req ack     #input names 

.variables count 0     #variable and its initial value 

                                                                                 

.start_kiss 

.i 2   #input number 

.o 0   #output number 

.s 3   #state number 

.r idle  #initial state 

                                              

#input value c_st    n_st    reason         predicate action         

                    

0-        idle    idle  Not_Requested 

1-        idle    ans     Receive_Request        NULL          count = 15      

-1        ans     idle    Acknowledge 

-0        ans     ans     Not_Acknowledge_Yet   count != 0    count - 1 

-0        ans     vio     Ack_Exceed_16cycles   count == 0       

                                                                                 

.end_kiss 

.end 
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AHB slave and the WISHBONE slave protocols.  One of the bugs is shown in Figure 5-2.  

This bug is arisen from omitting the edge e4 in Figure 2-4.  That is, this transition is 

accidentally ignored in the original spec FSM.  If we do not check with this method and 

neglect this transition in the spec FSM, the verification result may not be correct.  

 

 

 

 

 

 

 

 

 

 

 

Figure 5-2. The report of catching a bug in the spec FSM of AHB slave protocol.  

 
 

5.1.3 Counterexample 

Our implementation gives very useful error-trace messages.  It tells not only the I/O 

values and the state transitions, but also the reason of each transition.  The error-trace 

message when verifying the design in Figure 4-2(a) is given in Figure 5-3. As we can see, 

 

 

 

 

 

******************************************** 

 Result of pre-processing 

******************************************** 

 Pre-process file golden_AHB_slave.txt ... 

        ERROR!In state orig : 

          Input 1100000 not specified! 

 Please modify input file golden_AHB_slave.txt! 

                                                            

 Verification aborted! No result reported. 
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Figure 5-3. The verification result of the design in Figure 4-2(a). 

the reason column tells the physical meaning of the current status.  These reasons, along 

with the detail I/O sequence and state transitions, greatly facilitates the debugging of the 

interface design. 

 

5.2 Result analysis 
 

In order to investigate the effectiveness and efficiency of the proposed algorithm, 

compliance verification is conducted over a set of real AMBA AHB-compliant and 

******************************************** 

 Result of this compliance verification 

******************************************** 

  DESIGN VIOLATES SPEC. : Ack_Exceed_16cycles 

                                                                                 

  DUV input names:   req 

  DUV output names:  ack 

 

  Error trace shown below: 

    c_stSPEC(DUV)      input   output n_stSPEC(DUV)  reason 

    ------------------------------------------------------------------------- 

    idle(orig)          1       0       ans(wait)       Receive_Request 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       ans(wait)       Not_Acknowledge_Yet 

    ans(wait)           1       0       vio(wait)       Ack_Exceed_16cycles 

                                                                                 

                                                                                 

Time elapsed: < 1 sec. 
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WISHBONE-compliant [27] designs.  In addition, to check whether the proposed 

algorithm can find the design flaws as expected, some errors are intentionally injected into 

the design con7 and mac as two additional benchmark designs con7_err and mac_err, 

respectively.  The experimental results are shown in Table 1.   

There are some facts worthy to be mentioned in Table 1.  As it is shown, all the 

designs under verification support different functional modes of the protocols, but the same 

spec (E)FSM can be used to verify all designs of the same protocol without altering.  

Furthermore, the two injected errors are successfully found.  The error in the design 

con7_err is caused by a self-loop of the state performing the WAIT response.  Thus the 

design may respond WAIT more than 16 cycles, which is not recommended in the AHB 

protocol.  This is an error that designers are very likely to commit if they don’t deal with 

the WAIT response carefully.  The other error in the design mac_err is a little more 

complex.  When an IDLE transfer is initiated after an ERROR response, the design does 

not respond OKAY but respond ERROR instead, which causes a violation to the AHB 

protocol.  This error is not uncommon because the two-cycle ERROR response is 

intrinsically more complicated and error-prone.  With our verification approach, these 

errors and the reasons leading to them are clearly identified.  
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Table 1. The DUVs and the verification results. 

 

I/F protocol 

type 
DUV result supporting function reason of violation 

spi [28] compliance
NORMAL and 

ERROR response 
- 

WISHBONE 

slave 

(spec FSM) ac3 ctrl[28] compliance NORMAL response - 

con7 compliance
OKAY and WAIT 

response 
- 

mac compliance
OKAY and ERROR 

response 
- 

remap compliance
OKAY, ERROR, and 

RETRY response 
- 

con7_err violation 
OKAY and WAIT 

response 
Wait>16cycles 

AMBA AHB 

slave 

(spec EFSM) 

mac_err violation 
OKAY and ERROR 

response 
Not_Respond_Okay

The complexity comparison is shown in Table 2.  It clearly demonstrates that our 

algorithm can correctly complete the formal compliance verification for all given designs.  

The results also indicate that the actual time and space requirements are far less than the 

estimated ones from the worst-case analysis.  As a matter of fact, each verification run 

listed in Table 1 finishes within just 1 second.  It shows that our algorithm is capable of 

completing the formal compliance verification in reasonable time.  Though we cannot find 

even larger real designs for investigation, we believe our algorithm can handle FSMs 

containing hundreds of states that are more complicated than FSMs of most practical 

designs. 
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Table 2. Complexity comparison. 

 

I/F protocol type DUV 
stack size 

( |S| ) 

|range(A(x))|

× |Qs|×|Qd| 

iteration 

count 

|range(A(x))|× 

(|Qs|×|Qd|)2 

spi [28] 14 7x3=21 180 (7×3)2=442 WISHBONE slave 

(spec FSM) ac3 ctrl [28] 23 7x5=35 221 (7×5)2=1225 

con7 11 16x7x4=448 204 16×(7×4)2=12544 

mac 8 16x7x6=672 191 16×(7×6)2=28224 

remap 8 16x7x6=672 136 16×(7×6)2=28224 

con7_err 20 16x7x4=448 42 16×(7×4)2=12544 

AMBA AHB slave 

(spec EFSM) 

mac_err 6 16x7x6=672 57 16×(7×6)2=28224 
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Chapter 6                   

Conclusions and Future Work 
 

In this thesis, we first introduce the spec FSM to systematically represent an interface 

protocol specification.  A method of checking the correctness of the spec FSM is also 

given.  We further show how to formulate the interface compliance verification as the 

compliance verification between the spec FSM and the DUV FSM.  A novel 

branch-and-bound algorithm is then proposed to formally solve the FSM compliance 

problem.  The proposed algorithm is further extended to handle the spec EFSM, which is 

capable of efficiently modeling more complicated interface protocols.  Experimental 

results demonstrate that our approach can effectively and efficiently verify the interface 

compliance over a set of real designs. 

 

6.1 Contributions 

 

The main contributions of this work are summarized as follows: 
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 property specification 

1. A method of specifying the interface protocol specification as the 

specification (E)FSM is proposed. 

2. A simple but effective way to check the correctness of the spec (E)FSM is 

given. 

 verification technique 

1. A reasonable problem formulation that focuses on interface logic at FSM 

level is proposed.  

2. A formal algorithm is developed for interface compliance verification. 

 

6.2 Comparisons 

 

In comparison with other specification styles and property languages, our specification 

style, the specification (E)FSM, is relatively systematic and easily comprehensible that it is 

more likely to specify the properties more completely.  In comparison with dynamic 

simulation-based methods, our method is formal thus does not have the false positive 

problem.  In comparison with static formal methods, our algorithm hardly suffers from 

memory explosion and excessive runtime issues in practice.  Therefore, the proposed 

technique is extremely useful for interface compliance verification broadly demanded by 

modern platform-based SoC designs. 

 

6.3 Future work 

 

Our approach may probably be enhanced to verify designs in different abstract level.  

For example, it can be used to verify RTL designs by extracting FSMs from RTL codes.  



 40

But the overhead introduced by transforming between different abstract levels needs to be 

considered carefully.  Moreover, different verification schemes using the same spec 

(E)FSM can be developed.  For example, in addition to this formal approach, the spec 

(E)FSM may turn into a monitor in simulation-based verification.  Combining both 

simulation-based and formal approaches with the same spec (E)FSM will greatly facilitate 

the verification. 
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