
 i

應用於系統單晶片中介面相符驗證之正規

方法

研究生 : 楊 雅 菁 指導教授 : 周 景 揚 博士

國 立 交 通 大 學

電 子 工 程 學 系 電 子 研 究 所 碩 士 班

摘 要

在系統單晶片的整合過程中，驗證所要整合到系統中的區塊是否符合其介面協定，

乃是一不可忽略之重要步驟。然而，現存的幾種方法各有其實用上之限制：以模擬為基

礎的方法常常忽略了沒有被模擬到的情況而發生錯誤，而正規方法容易遭遇記憶體不足

及執行時間過長的問題。此論文為此種介面協定之相符驗證提出一新穎的演算法。此法

乃是將介面協定之特性表示成一有限狀態機，然後在較電路層級更高的有限狀態機層

級，以正規方法來驗證介面的邏輯。相較於以其他特性規格語言來表示介面協定之特

性，有限狀態機的表示法更為系統化，這大大地降低了特性表示不完全的可能性。此外，

理論推算及實驗結果都顯示此演算法能在合理的時間及記憶體需求內完成驗證。

 ii

A Formal Approach for Interface
Compliance Verification in SoC

Student : Ya-Ching Yang Advisor : Dr. Jing-Yang Jou

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

ABSTRACT

Verifying whether a building block conforms to certain interface protocol is one of the

important steps while constructing a system-on-a-chip (SoC). However, most existing

methods have their own limitations. Simulation-based methods have the false positive

problem while formal property checking methods may suffer from memory explosion and

excessive runtime. In this thesis, we propose a novel branch-and-bound algorithm for

interface protocol compliance verification. The properties of the interface protocol are

specified as a specification FSM, and the interface logic is formally verified at the higher

FSM level. Using the FSM for property specification is relatively systematic than using

other proprietary property languages, which greatly reduces the possibility of incomplete

property identification. And it is shown theoretically and experimentally that the proposed

algorithm can finish in reasonable time and space complexity.

 iii

Acknowledgements

I would like to express my sincere gratitude to my advisors, Professor Jing-Yang Jou and

Professor Juinn-Dar Huang, for their insightful suggestion and patient guidance throughout

the course of this work. I am also indebted to Chia-Chih Yen and Che-Hua Shih, for their

great help and constructive suggestions on my research. Special thanks to all members in

the EDA lab and 412 lab for their friendship and company. Finally, I have to show my

greatest appreciation to my family and my friends for their love and encouragement.

 iv

Contents

摘要 ………………………………………………………………..………………………..i
Abstract …………………………………………………………………………..………….ii
Acknowledgements ...………………………………………………………….…………...iii
Contents ……………………………………………………………………….……………iv
Lists of Tables ……………………………………………………………….…………….vi
Lists of Figures …………………………………………………………….……………..vii
Chapter 1 Introduction ..1

1.1 Related works ...3
1.1.1 Simulation-based verification...3
1.1.2 Formal verification ...5
1.1.3 Assertion-based verification...5

1.2 Motivation ..6
1.3 Our approach ..7

Chapter 2 Preliminaries...8
2.1 Bus signals..8
2.2 FSM ..9
2.3 EFSM..10
2.4 Monitor ...12
2.5 Specification FSM ..12

2.5.1 A spec FSM example..13
2.5.2 Correctness of the spec FSM..14
2.5.3 Advantages ...15
2.5.4 Limitations of expression power ..15
2.5.5 Compliance verification with the spec FSM ..16

Chapter 3 Our Approach ...17
3.1 Problem formulation...17
3.2 Observations ...18
3.3 Solution...19
3.4 Algorithm ...21
3.5 Complexity analysis ...22

3.5.1 Time complexity...22
3.5.2 Space complexity..23

Chapter 4 Extension ..25
4.1 Spec EFSM...25
4.2 Extended algorithm ..26

 v

4.3 Complexity analysis ...28
4.3.1 Time complexity...28
4.3.2 Space complexity..29

4.4 Other extensions ...30
Chapter 5 Experimental Results..31

5.1 Program implementation ..31
5.1.1 Input file format..31
5.1.2 Input file check ...32
5.1.3 Counterexample..33

5.2 Result analysis ..34
Chapter 6 Conclusions and Future Work ..38

6.1 Contributions ..38
6.2 Comparisons ...39
6.3 Future work ..39

Reference………………………………………………………………………………….41
Vita.………………………………………………………………………………………..45

 vi

List of Tables

Table 1. The DUVs and the verification results. ..36
Table 2. Complexity comparison..37

 vii

List of Figures

Figure 1-1. An IP core reused in different system platforms..2
Figure 1-2. Typical compliance verification flows...3
Figure 2-1. Notations of bus signals...9
Figure 2-2. An example of FSM...10
Figure 2-3. An EFSM example...12
Figure 2-4. A part of the spec FSM of the AMBA AHB slave protocol...................................14
Figure 3-1. The FSM of an AHB slave interface design. ...18
Figure 3-2. The tree-growing process...21
Figure 4-1. Specify the same protocol in (a) FSM and (b) EFSM ...26
Figure 4-2. (a) A wrong implementation of the protocol in Figure 4-1 and (b) the tree

generated by the extended algorithm..27
Figure 5-1. The spec EFSM of Figure 4-1 in the enhanced BLIF. ...32
Figure 5-2. The report of catching a bug in the spec FSM of AHB slave protocol..................33
Figure 5-3. The verification result of the design in Figure 4-2(a). ...34

 1

Chapter 1

Introduction

In modern system-on-a-chip (SoC) designs, certain number of building blocks should be

reusable intellectual property (IP) cores to accelerate the design process. To achieve an even

higher level of reusability, the platform-based design methodology, in which all IP cores are

pre-verified, is usually adopted. Figure 1-1 illustrates how an IP core is reused in typical

platform-based designs. An IP core is wrapped with the appropriate interface (I/F) logic that

complies with certain I/F protocol (usually an on-chip bus protocol) so that it can

concordantly communicate with other IP cores within the system. When the IP core is

desired in another platform utilizing a different I/F protocol, all one has to do is simply

changing the I/F logic wrapper without altering the core function logic. Thus, by separating

the core function logic from the I/F logic, the IP core can be easily and quickly integrated into

different system platforms utilizing different I/F protocols [1]. In addition, even under a

given I/F protocol, the I/F logic can still vary in a big dynamic range due to numerous valid

 2

configurations and options. Therefore, the interface compliance must be verified thoroughly

during SoC integration.

Figure 1-1. An IP core reused in different system platforms.

Generally, the compliance verification process can be divided into two phases. The

first phase, the property specification phase, is to translate the interface protocols into

properties. Many property languages or specification styles can be adopted to specify the

protocols. How to select among these styles depends on whether the verification tool in use

supports this style and whether this style meets your requirements. The second phase, the

verification phase, is to verify the design against those properties. There are two major

categories for this verification phase: simulation-based (dynamic) methods and formal (static)

ones. The methods in both categories have their own advantages and limitations.

Figure 1-2 illustrates this typical verification process. The two phases are clearly

shown in the figure. The details in each block are explained in later sections.

platform A

IP core 2

IP core 1

platform B

IP core 3

interface B

interface B

IP core 1

interface A

interface A

 3

Figure 1-2. Typical compliance verification flows.

Most works on compliance verification involve both phases. They may choose

different ways to specify properties in combination with different ways to accomplish the

verification. In the following section, some studies of these works are given. The

characteristics of their property specifying styles and verification schemes are also discussed.

1.1 Related works

1.1.1 Simulation-based verification

The simulation-based verification approach is age-old but popular. Several researches

are based on this approach [2-8]. In [2], properties of a protocol specification are

represented in HDL monitors. This specification style can be simulated by HDL simulators

without extra interpretation. In addition, the outputs of the monitors can tell the correctness

interface
protocol

specification
document

properties
and

input constraints

design under
verification

(DUV)

model
checker

simulatortestbench

success messages
or failure with a
counterexample

data and
waveforms

 4

of the design under verification (DUV). Based on this, a systematic method of representing

properties of an I/F protocol as a monitor FSM is proposed in [3]. This work also defines its

own coverage metrics to measure the quality of the simulation trace. Some other works

focus on the automation of the verification process from high-level specification styles. In

[4], the high-level specification style is based on the extension of regular expressions, and

then a linear-time algorithm of translating the specification style into monitor circuits is

proposed. Similar work of generating monitor circuits is done in [5], but the specification

style of this work is the GSTE assertion graphs. In [6-7], input constraints and biasing are

considered. They propose methods for automatically generating inputs that are legal and

even biased to enhance the effectiveness of the simulation patterns.

Besides academic researches, there are some commercial products developed for

compliance verification. For example, the commercial tool ACT [9] is available for

verifying AMBA [10] compliance. Furthermore, Synopsys DesignWare provides

verification IPs [11] for some popular interface protocols like PCI, USB, and AMBA. The

verification IPs includes monitors, master IPs, and slave IPs. They provide a system

environment so that the DUVs can be pre-verified before being integrated into real systems.

Although all works mentioned above greatly facilitate the simulation process, all

simulation-based approaches encounter an unavoidable problem: the compliance can never be

assured no matter how high the coverage is or how many cycles the simulation lasts for. The

bugs of the design may lie in the corner where the simulation trace never reaches. In other

words, the design might still be wrong while all simulation results tell that the design is

correct. This false positive situation is the most severe problem of simulation-based

verification.

 5

1.1.2 Formal verification

Formal verification can avoid this kind of false positive problem [12-15]. Model

checking techniques [16] are used for I/F protocol compliance verification in [12-14]. In

these works, properties of the I/F protocol are specified in the CTL language, and then the

model checker verifies the DUV against these properties and gives a counterexample if an

error in the DUV is found. Once the model checker reports a success, the design is

guaranteed to be 100% compliant with these properties.

However, properties in CTL are not easily thorough and the process of extracting

properties from a specification document written by natural languages is generally

complicated and painful. It is very likely that some properties are actually implied by the

specification but accidentally not extracted and thus ignored during the formal verification.

Moreover, memory explosion and excessively long runtime may be further serious problems

while the size of the design increases. All these issues potentially prevent model checking

techniques from being effectively and efficiently applied on interface compliance verification.

1.1.3 Assertion-based verification

Recently, the assertion-based verification (ABV) methodology is getting popular and

several property specification languages (such as PSL [17], OVL [18], OVA [19], and SVA

[20]) are developed to provide alternative ways to specify properties in additional to CTL.

These emerging languages are relatively more easily understood than CTL at the semantic and

syntactic level. Furthermore, these languages are supported in both simulation-based and

formal verification tools. However, no matter what emerging property specification

language is used, either the (simulation-based) dynamic ABV or (formal) static ABV

inherently suffers from the same problems in traditional dynamic or static verification

 6

mentioned previously.

1.2 Motivation

The property specification style in our work is directly inspired by [2-3]. The work in

[2] gives clear and useful concepts of using HDL monitors as the interface protocol

specifications, and then [3] gives the concepts of specifying monitors in the higher FSM level.

Both works have the advantage that all engineers are familiar with these styles, HDL and

FSM. Hence, engineers are very likely to accept the styles because no particular

specification languages need to be learned. Our specification style, the specification FSM, is

actually a variation of [3]. It inherits the advantage of comprehensibility and simplicity from

[2-3].

However, the works in [2-3] use the simulation-based approach in the verification phase.

They inevitably suffer the false positive problem which we try to avoid. Therefore, a novel

formal verification approach using this friendly specification style has to be developed.

A similar work that specifies properties as state machines and verifies using formal

techniques is proposed in [21]. However, this work specifies one single property in one state

machine. If we specify an interface protocol in this method, the specification becomes many

unorganized state machines. This leads to the same incomplete property identification

problem as in traditional property languages. Moreover, verification efficiency may decline

because it is disorderly and unsystematic.

 7

1.3 Our approach

Our approach, unlike any of above, intends to formally verify whether the I/F logic is

compliant with the I/F protocol at the FSM level. The properties of the I/F protocol are

specified as a specification FSM. We believe that this style is more readable and systematic

than other specification styles proposed in [2,4,5,17-20,22-24] and thus enables complete

property extraction. The golden specification FSM is only created once for a specific I/F

protocol and then can be used to verify all designs claimed to be compliant with.

Developing the FSM of the I/F logic is generally essential since it is one of the design steps

(before the HDL coding) under a typical modern design flow. Since the verification is

applied at the higher FSM level and only the separated interface logic is under verification,

our approach can effectively and efficiently complete the verification even if it is a formal

method indeed.

The rest of this thesis is organized as follows. Chapter 2 introduces necessary

terminology, concepts, and the specification style of our compliance verification. In Chapter

3, our novel branch-and-bound algorithm that formally verifies the compliance between the

DUV FSM and the golden specification FSM of the interface protocol is given in detail.

Chapter 4 extends the algorithm to handle the compliance verification in which the

specification is modeled as the EFSM. Chapter 5 shows the experimental results, and the

concluding remarks are given in Chapter 6.

 8

Chapter 2

Preliminaries

2.1 Bus signals

Typical I/O signals of a bus interface logic are shown in Figure 2-1.

Ibus the set of input signals from bus to I/F

Obus the set of output signals from I/F to bus

Icore the set of input signals from core to I/F

Ocore the set of output signals from I/F to core

Iext the set of external input signals to core

Oext the set of external output signals of core

In addition,

Ictrl Ictrl ⊆ Ibus, the subset of bus inputs that directly controls the bus behavior from

the protocol perspective

Octrl Octrl ⊆ Obus, the subset of bus outputs that directly controls the bus behavior from

the protocol perspective

 9

Figure 2-1. Notations of bus signals.

Use the AMBA AHB slave interface [10] as an example,

Ibus = { HSEL, HREADYin, HADDR, HWRITE, HTRANS, HSIZE, HBURST, HWDATA,

 HMASTER, HMASTERLOCK }

Obus = { HREADY, HRESP, HRDATA, HSPLIT }

Ictrl = { HSEL, HREADYin, HTRANS }

Octrl = { HREADY, HRESP, HSPLIT }

It is not uncommon that just a small portion of bus I/F signals are classified into Ictrl and

Octrl. For example, what value that the address/data bus exactly carries does not affect the

bus behavior at the protocol level. Note also that Icore, Ocore, Iext, and Oext may differ from

design to design.

2.2 FSM

The FSM is a quintuple M=(Q, Σ, ∆, σ, q0) where

Q the set of symbols denoting states

Σ the set of symbols denoting inputs

interface

 core

bus

bus component

Ibus Obus

Ocore Icore

Iext Oext

 10

∆ the set of symbols denoting outputs

σ: Q×BΣ → Q×B∆ the transition function

q0 q0 ∈ Q, the initial state

Additionally,

|eqi| the number of outgoing transition edges of the state qi

fqi,qj:BΣ×B∆→B the Boolean function s.t. fqi,qj(x, y)=1 iff σ(qi, x)=(qj, y)

Figure 2-2 gives an example to illustrate above terminology. In all state transition

graphs in this thesis, the initial states are specified in bold circles. In the example FSM,

Q = { s1, s2, s3 }, Σ = { i1, i2 }, ∆ = { o1}, q0 = s1,

|es1| = 2, fs1,s2 = i1’ • o1.

Figure 2-2. An example of FSM.

2.3 EFSM

The extended finite state machine (EFSM) [25] is a 7-tuple M=(Q, Σ, ∆, x, T, q0, x0)

where

Q the set of symbols denoting states

Σ the set of symbols denoting inputs

s1

s2 s3

0- / 1

-- / 0 -1 / 1

-0 / 0

1- / 0

i1 i2 / o1

 11

∆ the set of symbols denoting outputs

x the set of symbols denoting variables

x0 the initial values of variables in x

q0 q0 ∈ Q, the initial state

T the set of transitions t’s, each t is a 6-tuple t=(st, qt, it, ot, Pt, At)

 where

 st, qt, it, ot current state, next state, set of input values, set of output values

 Pt(x), At(x) the predicate and the action on current variables

Additionally, we further define:

Pqi,qj(x) the predicate of the transition from the state qi to qj

Aqi,qj(x) the action of the transition from the state qi to qj

A transition t=(st, qt, it, ot, Pt, At) means if the input value is in it and the predicate Pt(x)

is evaluated true, then the EFSM outputs ot, performs the action x = At(x) and moves from

the current state st to the next state qt at the next cycle. Figure 2-3 illustrates an EFSM

example. This EFSM contains only one variable v. In the state s1, if the input value is 0

and v>1, the EFSM outputs 0, and increases v by 1 while jumping to the next state s2 at the

next cycle. The notations Pqi,qj(x) and Aqi,qj(x) are defined for the algorithm development

in Section 4.2. In Figure 2-3,

Ps1,s2(v) = TRUE if v>1

 FALSE otherwise

As1,s2(v) = v + 1

EFSMs are particularly suitable for specifying counters. Therefore, they can be

utilized to specify interface protocols much more clearly. The details are discussed in

 12

Section 4.1.

Figure 2-3. An EFSM example.

2.4 Monitor

A monitor of a component can tell if the component behaves according to the protocol

by observing its inputs and outputs. In other words, the monitor takes the inputs and

outputs of the bus component as its own inputs, and determines the correctness of the

component.

2.5 Specification FSM

In our approach, the properties of the protocol specification are represented in the

specification FSM, or spec FSM. It specifies whether the output response of a specific

implementation (DUV) is legal or not under a given input sequence. In other words, the

spec FSM actually acts as a functional monitor of the DUV. It observes both the input and

output sequence and determine the correctness of its behavior. The possible DUV

behaviors are concluded to be:

1. don’t-care: The behavior is not defined since the input sequence is not supposed to

appear.

s1

s2 s3

(v>1,0) / (v++,0)

(TRUE,0) / (v=0,0) (v==0,0) / (v=1,0)

(v≠0,0) / (v++,0)

(v≤1,1) / (v--,0)

(predicate, input value) / (action, output value)

 13

2. legal: The output sequence is allowed by the protocol under a valid input sequence.

3. illegal: The output sequence is prohibited by the protocol under a valid input sequence.

For differentiating these behaviors, in every spec FSM, two special states are defined:

vio and dc. The spec FSM moves to the state dc if a don’t-care input sequence is applied

to the DUV. If the DUV behaves illegally under a valid input sequence, the spec FSM

moves to the state vio. If the DUV behaves legally under a valid input sequence, the spec

FSM moves among other normal states excluding the state dc and vio. Accordingly, the

spec FSM is a finite state machine M=(Q, Σ, ∆, σ, q0) whose behavior is a monitor of

certain interface logic where Q contains all normal states along with two extra special states

vio and dc, Σ = Ictrl ∪ Octrl, and ∆ = φ. Note that, unlike typical functional monitor designs,

the output set ∆ of a spec FSM is empty. Because there is no need for extra outputs to

indicate whether the DUV behavior is legal, illegal, or don’t-care. Instead, the special

states can indicate these situations as well. More details about how to construct a spec

FSM are similar to those in [3].

2.5.1 A spec FSM example

A part of the spec FSM for the AMBA AHB slave protocol is given in Figure 2-4 as an

example. Other parts are not shown for clean appearance. In the state idle/busy, if

HREADY is not asserted or HRESP is not set to OKAY, the spec FSM moves to the state vio

(e9). This implies that a slave cannot respond anything but OKAY to an IDLE or BUSY

transfer, which is explicitly defined in the AMBA specification. In addition, in the state

orig, if a transfer is initiated by asserting HSEL and HREADYin as well as setting HTRANS

to SEQ, the spec FSM moves to the state dc (e3). This infers that the master should never

set HTRANS to SEQ for the first transfer, which is an input constraint to the slave. These

inputs can be treated as don’t-cares since they are not supposed to appear.

 14

Figure 2-4. A part of the spec FSM of the AMBA AHB slave protocol.

2.5.2 Correctness of the spec FSM

We find a simple but effective method to check whether the given spec FSM is correct.

The proposed method does not intend to guarantee that the spec FSM would completely and

correctly represent the protocol. Instead, it is able to point out obvious errors in the spec

FSM.

There are two rules to check the given spec FSM:

1. All input combinations of a normal state must be fully specified.

2. The outgoing edges of a normal state must be mutually disjoint.

These rules are not advanced but trivial. They are simply the rules for the fully

specified deterministic FSM. But they do help a lot in practice. In our experiments, this

check is done by our program automatically. It catches several bugs in the first version of

the spec FSMs of AHB slave and WISHBONE slave protocols. These results are shown in

Chapter 5.

e5

e6
e6

e7
e5

e8

e2

e1 e3

e4

e9

seq/
nseq

orig

idle/
busy

wait

e10e5
e8

e6

e10

e7

e7

e1: HSEL + HREADYin
e2: HSEL • HREADYin • (HTRANS=NSEQ)
e3: HSEL • HREADYin • (HTRANS=SEQ)
e4: HSEL • HREADYin • (HTRANS=IDLE||BUSY)
e5: HSEL • (HTRANS=IDLE||BUSY) •
 HREADY • (HRESP=OKAY)
e6: HSEL • (HTRANS=SEQ||NSEQ) •
 HREADY • (HRESP=OKAY)
e7: HSEL • HREADY • (HRESP=OKAY)
e8: HREADY • (HRESP≠OKAY)
e9: HREADY + (HRESP≠OKAY)
e10: HREADY • (HRESP=OKAY)

vio

dc

 15

2.5.3 Advantages

To translate an interface specification from a document into a spec FSM is relatively

systematic than into rule-based properties (in CTL or emerging property languages).

While building the spec FSM, all possible combinations of Ictrl and Octrl are examined for

each normal state since all normal states must be fully specified. This means that all

possible situations of each state are taken into consideration. For property-based methods,

however, it is hard to determine whether all properties are completely identified or not.

Nevereless, translation from specification documents into formal forms is really not an

easy work no matter in which approach. But in our approach, this translation can be done

once and for all, no matter what function the DUV supports (for example, retry-capable or

not) or what internal situation of the DUV determines the bus outputs (for example, respond

ERROR upon address error or upon data overflow). This greatly facilitates the verification

flow.

2.5.4 Limitations of expression power

Although the spec FSM provides a systematic way for property specification, it is not

omnipotent. For example, a typical liveness property, which says “ack should always be

asserted at some time after req is asserted”, cannot be explicitly represented in the spec

FSM. Because it takes infinite states to represent the infinite future cycles. But if we are

able to set a deadline for such liveness property, it may be clearly specified in some way.

For example, the property “ack should always be asserted within 16 cycles after req is

asserted” can be easily represented. This is the case for most interface hardware designs

since the hardware cannot be designed to respond in infinite future.

Despite this limitation, our approach is still valuable. All other specification

 16

languages have their own advantages and limitations. But our method is suitable for

interface protocols since the interface logics are mostly control FSMs.

2.5.5 Compliance verification with the spec FSM

By introducing the spec FSM, a DUV is said to be compliant with the specification if

and only if there exists no valid input sequence (of any arbitrary length) along with the

corresponding DUV output sequence that can drive the spec FSM into its state vio.

 17

Chapter 3

Our Approach

3.1 Problem formulation

Now the problem of interface compliance verification can be interpreted as the

compliance verification between the DUV FSM and the spec FSM. It can be further

formulated as:

Given the spec FSM Ms = (Qs, Σs, φ, σs, qs0)

where Σs =Ictrl ∪ Octrl

and the DUV FSM Md = (Qd, Σd, ∆d, σd, qd0)

 where Σd = Ibus ∪ Icore

and ∆d=Obus ∪ Ocore,

verify if the DUV FSM complies with the spec FSM.

 18

For the spec FSM, Σs =Ictrl ∪ Octrl infers that it considers only the signals that affect the

bus behavior. Other signals like the address or data bus can be neglected to reduce the

complexity. For the DUV FSM, Σd = Ibus ∪ Icore and ∆d=Obus ∪ Ocore infers that it can

contain self-defined core signals along with bus signals. Therefore, the DUV FSMs of the

same protocol may contain different functional logic because of different core functions.

But our algorithm can verify only the protocol part and cleverly neglect the functional logic

that differs from design to design.

3.2 Observations

Figure 3-1 shows the FSM of an example AHB slave interface design. Its outputs in

Figure 3-1 from left to right are HREADY, HRESP[1], HRESP[0]. When it detects a write

request from a master, it moves to the state write and responds OKAY to indicate that the

write operation is done. When it detects a read request from a master, it first moves to the

state prep to insert a wait cycle, and then moves to the state read and responds OKAY to

indicate that the read operation is done at the next cycle. Otherwise, it stays in the state

sleep when the slave is not requested or is requested for an IDLE or BUSY transfer.

Figure 3-1. The FSM of an AHB slave interface design.

eS : HSEL + HREADYin +
 (HTRANS=IDLE||BUSY)
eR : HSEL • HWRITE • HREADYin •
 (HTRANS=NSEQ||SEQ)
eW : HSEL • HWRITE • HREADYin •
 (HTRANS=NSEQ||SEQ)

sleep

prep

read

write

eS / 100

eW / 100

eR / 100

eR / 000

eS / 100

eW / 100

eW / 000

eS / 000
eR / 100

eR / 100

eW / 100

eS / 100

 19

How do we verify if the FSM in Figure 3-1 complies with the protocol in Figure 2-4?

Note that this is not simply the FSM equivalence checking problem since these two FSMs

are intrinsically different (with different I/O sets). Besides, there is neither a subset nor a

superset relation between these two FSMs. However, the states in these two FSMs do

have some sort of corresponding relations. For example, when the DUV FSM is in the

state sleep, the spec FSM may be in the state orig, because both of them mean the slave is

not requested. These two states are named as a corresponding state pair.

However, the corresponding relation among states is not always 1-to-1. It can also be

n-to-1 or 1-to-n. This is the reason why the DUV FSM is not simply a subset or superset

of the spec FSM. For example, the state orig and the state idle/busy in the spec FSM are

both able to correspond to the state sleep in the DUV FSM because the DUV responds

identically when it is not requested or is requested for an IDLE or BUSY transfer. In

addition, the state seq/nseq in the spec FSM is able to correspond to the state read and write

in the DUV FSM because they all represent the data transfer requests.

Since this compliance verification is neither equivalence checking nor subset/superset

checking, the problem must be solved by other means. Actually, the discussions in this

section suggest that the DUV is proved to be compliant if and only if all possible

corresponding state pairs are examined and none of them includes the state vio. Hence the

issue becomes how to exhaustively explore all possible corresponding state pairs for the

given FSMs.

3.3 Solution

An intuitive idea about finding all possible corresponding state pairs is to grow a tree

whose nodes are the corresponding state pairs (or state pairs in short). The root node

 20

consists of the two initial states. If there exist certain values of inputs and outputs that

make the DUV FSM and the spec FSM move from the initial state to the state A and B,

respectively, then node (A, B) is produced as a child of the root node.

Figure 3-2 illustrates the tree-growing process. node1 is the state pair of the initial

states in Figure 2-4 and Figure 3-1. Consider the outgoing edge e2 of orig in Figure 2-4

and the outgoing edge eW/100 of sleep in Figure 3-1, the intersection of the Boolean

functions of these two edges (forig,seq/nseq • fsleep,write) is not equal to 0.

(forig,seq/nseq =HSEL•HREADYin•(HTRANS=NSEQ)

fsleep,write=HSEL•HWRITE•HREADYin•(HTRANS=NSEQ||SEQ)•HREADY•(HRESP=OKAY)

=> forig,seq/nseq • fsleep,write

=HSEL•HWRITE•HREADYin•(HTRANS=NSEQ)•HREADY•(HRESP=OKAY)

 ≠ 0)

This infers that there exists certain input along with the corresponding output that can

simultaneously drive both transitions. For example, the input

“HSEL=HWRITE=HREADYin=1, HTRANS=NSEQ”, which drives ew, along with the output

100, can drive e2 as well. Hence, node5 (seq/nseq, write) is created as a child of node1.

Similarly, all outgoing edges of orig versus all outgoing edges of sleep have to be

considered in the above manner. Then we can get all children of node1 as shown in Figure

3-2.

In this way, the process exhaustively grows all children and all grandchildren of the

root node and so on. Finally all possible state pairs are present as nodes in this tree.

However, this tree can have an infinite depth and thus the tree-growing process seems

infeasible. Therefore, certain bounding condition is required to prune the tree to be finite

without losing any possible corresponding state pair.

In fact, we can stop growing children of a node if this node has been present in the tree.

 21

For example, in Figure 3-2, we do not have to grow children of node2 since they should be

the same as those of node1. This bounding condition does not fail to find any possible

state pair. Because the sub-trees growing from node1 is identical to those growing from

node2, all possible state pairs growing from node2 can also be found in those growing from

node1. Hence, growing the tree rooted from node2 is completely unnecessary.

Figure 3-2. The tree-growing process.

3.4 Algorithm

In summary, our branch-and-bound algorithm starts to grow a tree from the initial state

pair. It keeps growing child nodes for each node unless the node has been present in the

tree or a violation to the protocol is found. The formal description of the algorithm is

shown in the next page. In the algorithm, S denotes the stack containing all nodes that

have been present in the tree. qs and qd denote the states of the spec FSM and the DUV

FSM, respectively. qs0 and qd0 are the initial states. The function grow_tree performs

the branch-and-bound operations on the node. The equation fqs,qi• fqd,qj ≠0 means the

intersection of the Boolean functions of the selected edges is nonzero. That is, there exists

certain I/O value that can make the spec FSM and the DUV FSM move from the current

states, qs and qd, to the next states, qi and qj, respectively. If this condition holds and the

next state pair has not been present in the tree (i.e., (qi,qj)∉S), the next state pair (qi,qj) is

created as a child node of the current state pair (qs,qd) by performing the function

seq/nseq, prep seq/nseq, write idle/busy, sleeporig, sleep

orig, sleep
1

2 3 4 5

 22

grow_tree(qi,qj). Note that if the next state of the spec FSM is vio (i.e., qi=vio), the

tree-growing process stops and the error trace is given as a counterexample. Furthermore,

if the next state of the spec FSM is dc (i.e., qi=dc), the function grow_tree(qi,qj) is not

performed since the input value that drives the transitions from qs and qd to qi and qj is

illegal, which means this condition is not supposed to take place.

S=φ ;

grow_tree(qs0 ,qd0) ;

grow_tree (qs ,qd) {

 S = S ∪ (qs ,qd) ;

 for i=1 to |eqs| // for all outgoing edges of the state qs

 for j=1 to |eqd| // for all outgoing edges of the state qd

 if (fqs,qi• fqd,qj ≠0 && (qi,qj)∉S)

 if (qi≠dc && qi≠vio)

 grow_tree(qi ,qj) ;

 else if (qi == vio)

 give a counterexample and exit;

}

3.5 Complexity analysis

3.5.1 Time complexity

The time complexity is estimated by the iteration count in the tree:

iteration count = ∑
=

N

n 1

(|eqs,n|×|eqd,n|) , (3 - 1)

 23

time complexity = O(∑
=

N

n 1

(|eqs,n|×|eqd,n|)) . (3-2)

In the above equations, |eqs,n| and |eqd,n| denote |eqs| and |eqd| at the n-th recursion, and N

denotes the number of recursion times. For the worst case,

N = |Qs|×|Qd|, (3 - 3)

|eqs,n| = |Qs|, (3 - 4)

|eqd,n| = |Qd|, (3 - 5)

=> worst-case iteration count = (|Qs| × |Qd|)2 , (3-6)

=> worst-case time complexity = O((|Qs| × |Qd|)2) . (3-7)

Equation (3-3) holds only when all combinations of states in two FSMs are valid state

pairs. Equation (3-4) and (3-5) hold only when the graph representations of two FSMs are

complete graphs. However, these worst-case conditions rarely occur. Actually,

experimental results show that the iteration count is typically far lower than this upper

bound.

3.5.2 Space complexity

In the above algorithm, the space complexity is dominated by the size of two stacks.

One is the visited-node stack, i.e., S in the algorithm. The other is the error-trace stack,

which is not explicitly specified in the algorithm. The visited-node stack contains the

corresponding state pairs that are already visited. The error-trace stack contains the I/O

values and state conditions from the initial node to the node that the violation occurs. Note

that the visited-node stack is always needed, while the error-trace stack is used only when a

 24

violation occurs.

The size of the visited-node stack is affected by the number of corresponding state

pairs, where as the size of the error-trace stack is affected by the depth of the violation.

But anyhow, the worst-case space complexity of both stacks can be expressed as:

worst-case space complexity = O(|Qs| × |Qd|). (3-8)

Because |Qs|×|Qd| is equal to the maximum number of state pairs, and also equal to the

maximum depth of the tree.

 25

Chapter 4

Extension

4.1 Spec EFSM

Timing constraints are not uncommonly encountered in interface protocols. However,

they cannot be easily specified in spec FSM sometimes. For example, a simple interface

protocol, which defines “ack must be asserted within 16 cycles after req is asserted”, is

specified as the spec FSM in Figure 4-1(a). It requires so many states to represent such a

simple protocol. Instead, if we specify this protocol in EFSM by introducing a variable

count as in Figure 4-1(b), the representation becomes much clearer and easier.

Similar to the spec FSM, the spec EFSM is an EFSM M=(Q, Σ, ∆, x, T, q0, x0) whose

behavior is a monitor of certain interface logic where Q contains all normal states along

with two extra special states vio and dc, Σ = Ictrl ∪ Octrl, and ∆ = φ. The predicates and

actions provide a convenient way to specify timing constraints that are frequently

encountered in interface protocols.

 26

(a) (b)

Figure 4-1. Specify the same protocol in (a) FSM and (b) EFSM

4.2 Extended algorithm

Meanwhile, the original algorithm should also be extended to handle the spec EFSM.

Similarly, the extended algorithm grows a tree from each node unless the node has been

present in the tree. The only difference now is that the node contains not only a state pair

but also the values of the corresponding variables. A simple example is given in Figure

4-2. Figure 4-2(a) gives an erroneous implementation of the interface protocol in Figure

4-1. This design violates the protocol because it may not assert ack within 16 cycles if it

sticks in the state wait. One possible scenario for the tree-growing process to find the

violation is shown in Figure 4-2(b). The words in each node from left to right denote the

spec EFSM state, the DUV state, and the value of the variable count. The nodes in the

right branch illustrate the difference between the original algorithm and the extended one.

As shown, the extended algorithm does not stop at the node (ans, wait, 14) although this

node has the same state pair as its parent node (ans, wait, 15). The reason is that the extra

variable count needs to be considered as well.

req

ack

ack
ack

req

ack

ack

…

 …

ack

idle

ans1
ans2

ans16
ack

vio

req / count=15

ack req

 ack, count≠0
 / count--

idle ans

ack, count==0
vio

 27

(a) (b)

Figure 4-2. (a) A wrong implementation of the protocol in Figure 4-1 and (b)
the tree generated by the extended algorithm.

The extended algorithm is given below (the modified parts are shaded). Similar to

the algorithm in Section 3.4, S contains the nodes that have been present in the tree, and the

function extended_grow_tree performs the branch-and-bound operations. But some

extension is made here. The node now contains not only qs and qd but also x, the variable

value because the variable value has to be considered as well. Moreover, in the function

extended_grow_tree, the condition that a child node is created includes not only fqs,qi•fqd,qj

≠0 and (qi, qj, x’)∉S, but also Pqs,qi(x)==true, which means the predicate of current

transition edge must be evaluated true. It is because the transitions can never take place if

the predicate is not evaluated true.

Given the spec EFSM Ms = (Qs, Σs, φ, x, T, qs0, x0)

 where Σs =Ictrl ∪ Octrl

and the DUV FSM Md = (Qd, Σd, ∆d, σd, qd0)

 where Σd = Ibus ∪ Icore

 and ∆d=Obus ∪ Ocore,

verify the compliance with the following algorithm:

req / ack

req / ack

req / ack

req / ack

orig wait
…

idle,orig,15

idle,orig,15
ans,wait,15

ans,wait,0

vio,wait,0

ans,wait,14

 28

S=φ ;

extended_grow_tree(qs0 ,qd0, x0) ;

extended_grow_tree (qs, qd, x) {

 S = S ∪ (qs, qd, x) ;

 for i=1 to |eqs| // for all outgoing edges of the state qs

 for j=1 to |eqd| { // for all outgoing edges of the state qd

 x’= Aqs,qi(x); // perform the action to the variable

 if (fqs,qi•fqd,qj ≠0 && Pqs,qi(x)==true && (qi, qj, x’)∉S)

 if (qi≠dc && qi≠vio)

 extended_grow_tree(qi, qj, x’) ;

 else if (qi == vio)

 give a counterexample and exit ;

 }

 }

4.3 Complexity analysis

4.3.1 Time complexity

The time complexity analysis of the extended algorithm is similar to the discussions in

Section 3.5.1. The iteration count is equal to (3-1). That is,

iteration count = (|eqs,n|×|eqd,n|) (3 - 1)

 where |eqs,n| and |eqd,n| denote |eqs| and |eqd| at the n-th recursion,

 and N denotes the number of recursion times.

∑
=

N

n 1

 29

For the worst case,

N = |Qs|×|Qd|×|range(A(x))|, (4 - 1)

|eqs,n| = |Qs|, (4 - 2)

|eqd,n| = |Qd|, (4 - 3)

=> worst-case iteration count = |range(A(x))| × (|Qs|×|Qd|)2 , (4-4)

=> worst-case time complexity = O(|range(A(x))| × (|Qs|×|Qd|)2) . (4-5)

The term range(A(x)) denotes the value range of the function A(x), and thus

|range(A(x))| denotes the number of possible values of x. Equation (4-1) holds when all

combinations of two states and variable values are possible, and equation (4-2) and (4-3)

holds when the graphic representations of two FSMs are complete graphs. Worst case like

this rarely happens.

How exactly does the complexity change after this extension? Let us compare (4-5)

to (3-7), although (4-5) is multiplied by a factor of |range(A(x))|, |Qs| of (4-5) is greatly

reduced in general. Hence, the complexity does not increase significantly as expected.

4.3.2 Space complexity

Since the original state pair (qs, qd) is modified as (qs, qd, x), the original maximum

number of state pairs |Qs|×|Qd| should be modified as |range(A(x))|×|Qs|×|Qd| as well.

This is the same case for the maximum depth of the tree. These modifications directly

affect the maximum size of the visited-node stack and the error-trace stack, which further

changes the worst-case space complexity. Therefore, the worst-case space complexity

becomes:

 30

worst-case space complexity = O(|range(A(x))| × |Qs| × |Qd|). (4-6)

4.4 Other extensions

Except for the EFSM, the FSM has other variations, for example, the interacting FSM.

Theoretically, these variations can be transformed into the equivalent FSMs. Therefore,

they can be candidates of other extensions to our approach. For example, some concurrent

behaviors of interface protocols can be modeled by the interacting FSM easily. However,

the transformation process imposes a heavy burden on the algorithm but improves only little

expressing ability. Therefore, only the EFSM extension is implemented since the trade is

worthwhile.

 31

Chapter 5

Experimental Results

5.1 Program implementation

The proposed approach has been implemented in C. Our implementation can either

formally prove that the given design is fully compliant with certain interface protocol or

report a precise input sequence as a counterexample to show how the given design fails in

the compliance verification. Additionally, the program can automatically check the

correctness of the spec (E)FSM with the method in Section 2.5.2.

5.1.1 Input file format

Both the spec (E)FSM and the DUV FSM are accepted in the enhanced BLIF(Berkeley

Logic Interchange Format) [26]. This format extends the BLIF with some syntax capable

to describe the reasons of each transition as well as predicates and actions required by the

EFSM model. Figure 5-1 shows an example in this format. The words after the character

 32

are comments. These comments clearly explain the syntax.

Figure 5-1. The spec EFSM of Figure 4-1 in the enhanced BLIF.

The reason column in the enhanced BLIF provides a way to specify the meaning of

each transition. With these reasons, we can provide more meaningful counterexamples to

improve the compliance verification.

5.1.2 Input file check

Our implementation can check the input files with the schemes described in Section

2.5.2. In the experiments, it really catches several bugs in the original spec FSMs of the

.model the_req_ack_protocol #model name

.inputs req ack #input names

.variables count 0 #variable and its initial value

.start_kiss

.i 2 #input number

.o 0 #output number

.s 3 #state number

.r idle #initial state

#input value c_st n_st reason predicate action

0- idle idle Not_Requested

1- idle ans Receive_Request NULL count = 15

-1 ans idle Acknowledge

-0 ans ans Not_Acknowledge_Yet count != 0 count - 1

-0 ans vio Ack_Exceed_16cycles count == 0

.end_kiss

.end

 33

AHB slave and the WISHBONE slave protocols. One of the bugs is shown in Figure 5-2.

This bug is arisen from omitting the edge e4 in Figure 2-4. That is, this transition is

accidentally ignored in the original spec FSM. If we do not check with this method and

neglect this transition in the spec FSM, the verification result may not be correct.

Figure 5-2. The report of catching a bug in the spec FSM of AHB slave protocol.

5.1.3 Counterexample

Our implementation gives very useful error-trace messages. It tells not only the I/O

values and the state transitions, but also the reason of each transition. The error-trace

message when verifying the design in Figure 4-2(a) is given in Figure 5-3. As we can see,

**

 Result of pre-processing

**

 Pre-process file golden_AHB_slave.txt ...

 ERROR!In state orig :

 Input 1100000 not specified!

 Please modify input file golden_AHB_slave.txt!

 Verification aborted! No result reported.

 34

Figure 5-3. The verification result of the design in Figure 4-2(a).

the reason column tells the physical meaning of the current status. These reasons, along

with the detail I/O sequence and state transitions, greatly facilitates the debugging of the

interface design.

5.2 Result analysis

In order to investigate the effectiveness and efficiency of the proposed algorithm,

compliance verification is conducted over a set of real AMBA AHB-compliant and

**

 Result of this compliance verification

**

 DESIGN VIOLATES SPEC. : Ack_Exceed_16cycles

 DUV input names: req

 DUV output names: ack

 Error trace shown below:

 c_stSPEC(DUV) input output n_stSPEC(DUV) reason

 idle(orig) 1 0 ans(wait) Receive_Request

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 ans(wait) Not_Acknowledge_Yet

 ans(wait) 1 0 vio(wait) Ack_Exceed_16cycles

Time elapsed: < 1 sec.

 35

WISHBONE-compliant [27] designs. In addition, to check whether the proposed

algorithm can find the design flaws as expected, some errors are intentionally injected into

the design con7 and mac as two additional benchmark designs con7_err and mac_err,

respectively. The experimental results are shown in Table 1.

There are some facts worthy to be mentioned in Table 1. As it is shown, all the

designs under verification support different functional modes of the protocols, but the same

spec (E)FSM can be used to verify all designs of the same protocol without altering.

Furthermore, the two injected errors are successfully found. The error in the design

con7_err is caused by a self-loop of the state performing the WAIT response. Thus the

design may respond WAIT more than 16 cycles, which is not recommended in the AHB

protocol. This is an error that designers are very likely to commit if they don’t deal with

the WAIT response carefully. The other error in the design mac_err is a little more

complex. When an IDLE transfer is initiated after an ERROR response, the design does

not respond OKAY but respond ERROR instead, which causes a violation to the AHB

protocol. This error is not uncommon because the two-cycle ERROR response is

intrinsically more complicated and error-prone. With our verification approach, these

errors and the reasons leading to them are clearly identified.

 36

Table 1. The DUVs and the verification results.

I/F protocol

type
DUV result supporting function reason of violation

spi [28] compliance
NORMAL and

ERROR response
-

WISHBONE

slave

(spec FSM) ac3 ctrl[28] compliance NORMAL response -

con7 compliance
OKAY and WAIT

response
-

mac compliance
OKAY and ERROR

response
-

remap compliance
OKAY, ERROR, and

RETRY response
-

con7_err violation
OKAY and WAIT

response
Wait>16cycles

AMBA AHB

slave

(spec EFSM)

mac_err violation
OKAY and ERROR

response
Not_Respond_Okay

The complexity comparison is shown in Table 2. It clearly demonstrates that our

algorithm can correctly complete the formal compliance verification for all given designs.

The results also indicate that the actual time and space requirements are far less than the

estimated ones from the worst-case analysis. As a matter of fact, each verification run

listed in Table 1 finishes within just 1 second. It shows that our algorithm is capable of

completing the formal compliance verification in reasonable time. Though we cannot find

even larger real designs for investigation, we believe our algorithm can handle FSMs

containing hundreds of states that are more complicated than FSMs of most practical

designs.

 37

Table 2. Complexity comparison.

I/F protocol type DUV
stack size

(|S|)

|range(A(x))|

× |Qs|×|Qd|

iteration

count

|range(A(x))|×

(|Qs|×|Qd|)2

spi [28] 14 7x3=21 180 (7×3)2=442 WISHBONE slave

(spec FSM) ac3 ctrl [28] 23 7x5=35 221 (7×5)2=1225

con7 11 16x7x4=448 204 16×(7×4)2=12544

mac 8 16x7x6=672 191 16×(7×6)2=28224

remap 8 16x7x6=672 136 16×(7×6)2=28224

con7_err 20 16x7x4=448 42 16×(7×4)2=12544

AMBA AHB slave

(spec EFSM)

mac_err 6 16x7x6=672 57 16×(7×6)2=28224

 38

Chapter 6

Conclusions and Future Work

In this thesis, we first introduce the spec FSM to systematically represent an interface

protocol specification. A method of checking the correctness of the spec FSM is also

given. We further show how to formulate the interface compliance verification as the

compliance verification between the spec FSM and the DUV FSM. A novel

branch-and-bound algorithm is then proposed to formally solve the FSM compliance

problem. The proposed algorithm is further extended to handle the spec EFSM, which is

capable of efficiently modeling more complicated interface protocols. Experimental

results demonstrate that our approach can effectively and efficiently verify the interface

compliance over a set of real designs.

6.1 Contributions

The main contributions of this work are summarized as follows:

 39

 property specification

1. A method of specifying the interface protocol specification as the

specification (E)FSM is proposed.

2. A simple but effective way to check the correctness of the spec (E)FSM is

given.

 verification technique

1. A reasonable problem formulation that focuses on interface logic at FSM

level is proposed.

2. A formal algorithm is developed for interface compliance verification.

6.2 Comparisons

In comparison with other specification styles and property languages, our specification

style, the specification (E)FSM, is relatively systematic and easily comprehensible that it is

more likely to specify the properties more completely. In comparison with dynamic

simulation-based methods, our method is formal thus does not have the false positive

problem. In comparison with static formal methods, our algorithm hardly suffers from

memory explosion and excessive runtime issues in practice. Therefore, the proposed

technique is extremely useful for interface compliance verification broadly demanded by

modern platform-based SoC designs.

6.3 Future work

Our approach may probably be enhanced to verify designs in different abstract level.

For example, it can be used to verify RTL designs by extracting FSMs from RTL codes.

 40

But the overhead introduced by transforming between different abstract levels needs to be

considered carefully. Moreover, different verification schemes using the same spec

(E)FSM can be developed. For example, in addition to this formal approach, the spec

(E)FSM may turn into a monitor in simulation-based verification. Combining both

simulation-based and formal approaches with the same spec (E)FSM will greatly facilitate

the verification.

 41

References

[1] VSI Alliance, Virtual Component Interface (VCI) Standard - OCB 2 1.0,

http://www.vsia.org, Mar. 2000.

[2] Kanna Shimuzu, David L. Dill, and Alan J. Hu, “Monitor-Based Formal Specification

of PCI,” in Proceedings of the 3th International Conference on Formal Methods in

Computer-Aided Design, Nov. 2000, pp. 335-353.

[3] Hue-Min Lin, Chia-Chih Yen, Che-Hua Shih, and Jing-Yang Jou, “On Compliance

Test of On-Chip Bus for SOC,” in Proceedings of the Asia and South Pacific Design

Automation Conference, Jan. 2004, pp. 328-333.

[4] Marcio T. Oliviera and Alan J. Hu, “High-Level Specification and Automatic

Generation of IP Interface Monitors,” in Proceedings of the 39th Design Automation

Conference, June 2002, pp. 129-134.

[5] Alan J. Hu, Jeremy Casus, and Jin Yang, “Efficient Generation of Monitor Circuits for

GSTE Assertion Graphs,” in Proceedings of the 2003 IEEE/ACM International

Conference on Computer-Aided Design, Nov. 2003, pp. 154-159.

[6] Jun Yuan, Kurt Shultz, Carl Pixley, Hillel Miller, and Adnan Aziz, “Modeling Design

Constraints and Biasing in Simulation Using BDDs,” in Proceedings of the 1999

IEEE/ACM International Conference on Computer-Aided Design, Nov. 1999, pp.

584-589.

[7] Kanna Shimizu and David L. Dill, “Deriving a Simulation Input Generator and a

Coverage Metric From a Formal Specification,” in Proceedings of the 39th Design

Automation Conference, June 2002, pp. 801-806.

 42

[8] Serdar Tasiran, Yuan Yu, and Brannon Baston, “Using a Formal Specification and a

Model Checker to Monitor and Direct Simulation,” in Proceedings of the 40th Design

Automation Conference, June 2003, pp. 356-361.

[9] Andy Nightingale and John Goodenough, “Testing for AMBA Compliance,” in

Proceedings of the 14th Annual IEEE International ASIC/SOC Conference, Sept. 2001,

pp. 301-305.

[10] ARM Limited, AMBA Specification (Rev 2.0), 13 May 1999.

[11] http://www.synopsys.com/products/designware/docs/vip/

[12] Pankaj Chauhan, Edmund M. Clarke, Yuan Lu and Dong Wang, “Verifying IP-Core

Based System-On-Chip Designs,” in Proceedings of the 12th Annual IEEE

International ASIC/SOC Conference, Sept. 1999, pp. 27-31.

[13] Ilan Beer, Shoham Ben-David, Cindy Eisner, Yechiel Engel, Raanan Gewitzman and

Avner Landver, “Establishing PCI Compliance Using Formal Verification: A Case

Study,” in Proceedings of the 14th International Phoenix Conference on Computation

and Communications, Mar. 1995, pp. 373-377.

[14] Abhik Roychoudhury, Tulika Mitra, and S.R. Karri, “Using Formal Techniques to

Debug the AMBA System-on-Chip Bus Protocol,” in Proceedings of the Design,

Automation and Test in Europe Conference and Exhibition, 2003, pp. 828-833.

[15] Lubomir Ivanov and Ramakrishna Nunna, “Specification and Formal Verification of

Interconnect Bus Protocols,” in Proceedings of the 43rd IEEE Midwest Symposium on

Circuits and Systems, Aug. 2000, pp. 378-382.

[16] K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.

[17] http://www.eda.org/vfv/docs/psl_lrm-1.01.pdf/.

[18] http://www.verificationlib.org/.

 43

[19] http://www.opervera.org/.

[20] http://www.systemverilog.org/.

[21] Yatin V. Hoskote, Jacob A. Abraham, and Donald S. Fussell, “Automated Verification

of Teporal Properties Specified as State Machines in VHDL,” in Proceedings of the 5th

Great Lakes Symposium on VLSI, Mar. 1995, pp. 100-105.

[22] Annette Bunker and Ganesh Gopalakrishnan, “Using Live Sequence Charts for

Hardware Protocol Specification and Compliance Verification,” in Proceedings of the

IEEE International High Level Design Validation and Test Workshop, Nov. 2001, pp.

95-100.

[23] Annette Bunker, Ganesh Gopalakrishnan, and Sally A. McKee, “Formal Hardware

Specification Languages for Protocol Compliance Verification,” ACM Transactions on

Design Automation of Electronic Systems, vol. 9, no. 1, Jan. 2004.

[24] Kanna Suimizu, David L. Dill, and Ching-Tsun Chou, “A Specification Methodology

by a Collection of Compact Properties as Applied to the Intel® Itanium Processor

Bus Protocol,” in Proceedings of the 11th IFIP WG 10.5 Advanced Research Working

Conference on Correct Hardware Design and Verification Methods, Sept. 2001, pp.

340-354.

[25] Cedric Besse and Ana Cavalli, “An Automatic and Optimized Test Generation

Technique Applying to TCP/IP Protocol,” in Proceedings of the 14th IEEE

International Conference on Automated Software Engineering, Oct. 1999, pp. 73-80.

[26] University of California Berkeley, Berkeley Logic Interchange Format (BLIF), Sept.

1996.

[27] OpenCores Organization, Specification for the: WISHBONE System-on-Chip (SoC)

Interconnection Architecture for Portable IP Cores, Rev. B.3, 2002.

 44

[28] http://www.opencores.org/.

 45

Vita

Ya-Ching Yang was born in Taipei, Taiwan on February 9, 1980. She received the

B.S. degree in Electronics Engineering from National Chiao Tung University in June 2002.

From September 2002, she is a graduate student of Professor Jing-Yang Jou in the Institute

of Electronics, National Chiao Tung University. Her research interests include verification

and Electronic Design Automation (EDA). She received the M.S. degree from National

Chiao Tung University in June 2004.

