IEEE 802.16a » P i1 &+ < 44 5 £:84%2 + 7

B9 P34 8 A B ML T B e E IR

Study and DSP Implementation of IEEE 802.16a
TDD OFDMA Uplink Synchronization

Bopod ke

R KA L

IEEE 802.16a 4 FFEE1 & 2 A4 % £33 2 } FRHPEIFHE &
BEAGILE L PR R

Study and DSP Implementation of IEEE 802.16a
TDD OFDMA Uplink Synchronization

S A N e Student : Hsiao Ching Lin

ERE R L Advisor : Dr. David W. Lin

B 2R, x F
T IARE K T ALY TR LT

A A

A Thesis
Submitted to Department of Electronics Engineering & Institute of Electronics
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
in
Electronics Engineering

June 2004
Hsinchu, Taiwan, Republic of China

P w4 L = or 20

|EEE 802.16a 4 P¥ 1 It 2 A 47 5 & i8de2 b (7
o ¥ PR 54 & BB A BRI F L PR TR

e

2 AAE S 1 (OFDM) $LA™ § 2k 2l % 5ed e3F § BAL o b &

=

\
s
»e

Bl ® g FAEFRE S LA SO A R F 2L F R R
{2z mfee brpm=e? o AP R* Fit W dT FIRALPEELIDT A
B ERRBRE T O Gl b 4] o 2 B L AT B %k B £ Innovative
Integration = @ 7 Quixote B A T "a4EHF > B P X E ST RE S P
TMS320C6416 » 2 B4 5% ~ HFF L it L E o
A ARt (7R AT o b T B R R TRTRE R L GRIE BT

SPER o dod BRI € ' K F R R R (guard interval) * kpr b § F BT a8 R
FAPEAF (IS Faaed o APRYEFRAHL S 5 5 - Bl OFDM &
S4FF 2 B H % B (quard interval) @] OFDM & = (symbol) + v enf 4o p i o

P2d ERFEFRI-PApMEG BRADP M F - B L f—‘rié;ﬂi%]'é‘&ﬁ?

3 (preamble) 2|%7 i3 ip] OFDM 7 = (symbol) ## Fr B 4opF il o A 8 2% &
AR S N e i NE AR B SR g i R il o S Kl e I R @@?J
¥ F 3 (preamble) i¥4p B & (correlation) 4 4735 3| & 5 & = 4p B P cnpF P o

B ERABREAR IR NELAFRR AP AR R FFEED C
AR A B P RE Y R A BF R Y R B 5T B —THS320C64X
MR ez w i o B fs 0 AP AT IMELEIE B b T TR 8
#3714 & o

bARwe AP FAPALBELE S S ERRBRT L TR
W o BF AP A BHMELAIT Band (FIRE o B8 0 AN PR e
BT BengF B de i AR e 2 F P R in - BT TR SR BT

e 4 AN
o EHREE

Study and DSP Implementation of IEEE 802.16a
TDD OFDMA Uplink Synchronization

Student: Hsiao Ching Lin Advisor: Dr. David W. Lin

Department of Electronics Engineering
Institute of Electronics

National Chiao Tung University

Abstract

OFDM is an effective transmission scheme-to cope with many transmission
impairments, such as multipath fading and narrowband interference. Multiuser OFDM
can provide highly flexible to allocate the bandwidth according to the needs of users.
In this thesis, we focus on the TDD OFDMA uplink synchronization based on IEEE
802.16a. We use digital signal processor to implement uplink synchronization
schemes. The digital signal processing environment is Innovative Integration’s
Quixote personal computer card, which hosts Texas Instruments’ TMS320C6416
which is a powerful signal processor with strong arithmetic operation capability.

Time synchronization is performed to detect the start time of symbols for uplink
synchronization. Time synchronization errors would decrease the ability of guard
interval to avoid ISI introduced by multipath channel. There are two stages in the

uplink synchronization. The first stages use the guard interval to estimate the OFDM

symbol start time roughly. The reason of using the guard interval is that it provides
strong autocorrelation within an OFDM symbol. The second stage uses the preamble
information to detect the symbol start time exactly. We present two schemes to do the
second stage. One is using the correlation of received signal with preamble in the time
domain and the other is in the frequency domain. The symbol start time is determined
as the location with maximum correlation value.

In order to decrease the computation complexity on the DSP, we rewrite the
original floating-point C programs to fixed-point version and further refine our codes
by taking into account the features of the DSP chip, TMS320C6416, to produce a
more efficient program. Overall, the final version for uplink synchronization schemes
is 374 times faster than the original version.

In this thesis, we first introduce to the TDD OFDMA uplink synchronization
schemes. Second, we describe ‘the.environment of DSP implementation. Finally, we
discuss the optimization methods using the features of C64x and present experimental

results on the speed and the synchronization performance.

A RF DR R i BB KRS 2 E ORI E e hA E o
FEE A REY bR ARSI S uE A hE s AP R G A
B 7B L EHARRR RS B PR LR -

P BB AT S E MR ACI R %R G R R 0 ¢ S AR RS
BEROR G p AERHME R E g E LR BRI A g

PRI AT S B N F BN R LN B I TN Y

7

2y

FOEF GG o T Apitsh R hied Ty 2 BB EREE TR

Bl o AR RFADFAAN %o BANRFERYF P LA Grenpe s

o
T
%
;

B3

& Fend F o R A ENTTT X B S R S BAL T A gl

=

\"’ﬁ;‘
’
E
o

Bt o AP H iz JREE A SRR AR, -

Contents

1

2

Introduction 1
Techniques for Uplink Synchronization 3
2.1 Background 3
2.2 Overviewof IEEE802.16a 5
2.2.1 OFDMA Carrier Allocation 5
2.2.2 OFDMA Frame Structure 6
2.2.3 System Architecture o 8
2.3 UL Synchronization Approagh® . cidiiee . . o o o o oo 11
2.4 UL Synchronization . . 5% . . o v i o 11
2.4.1 Stage I: Using CP CorrelationProperty 11
2.4.2 Stage Il: Using-Preamble Correlation-Property 13
2.5 UL Synchronization Result , . <ot . . .« oL 17
2.5.1 Preamble Correlation in Frequency Domain Approach 20
2.5.2 Preamble Correlation.in Time Domain Approach 21

2.5.3 Comparison of UL Synchronization Using Time Domain Approach
and Frequency Domain Approach 23
DSP Introduction 26
3.1 DSPBoard Introduction [11] 26
3.2 DSPCorelntroduction [13] 28
3.3 Data Transmission Mechanism [15] 37
3.4 Code Composer Studio Introduction [16], [17] 40
DSP Implementation 42
4.1 Procedure of the ImplementationWork 42
4.2 Optimization Method 43
4.2.1 Configuring the Setting of Compiler Options 43
422 UsinglIntrinsics[19] L 46
4.2.3 Software Pipelining. 46
4.2.4 Data Type Modification 48
4.3 Framing/Deframing Structure 50
431 Framing 50
432 Deframing 51
44 IFFT/FFT Structure o 53

Vi

45 Transmission Filtering 61

45.1 Oversampling and SRRC Filter in the Transmitter 61
45.2 Downsampling and SRRC Filter in the Receiver 61
4.6 Uplink Synchronization Using Time Domain Approach 64
4.6.1 CPCorrelation 64
4.6.2 Preamble_correlation 65
4.6.3 Complexity Analysis 72
4.7 Conclusionin Optimization 74
Conclusion and Future Work 76
51 Conclusion 76
5.2 Potential FutureWork L 77

vii

List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
211

212

2.13
2.14
2.15
2.16

2.17
2.18

2.19
2.20

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1

OFDM symbol structure intime. 3
[llustration of carrier usage iInOFDMA UL. 5
Carrier allocation in the OFDMA UL (from[4]). 6
Frame structure of the TDD OFDMA system (from[4]). 7
UL transmitter structure. 8
UL receiver structure. 9
Pseudo Random Binary Sequence (PRBS) generator for pilot modulation. 10
Method of UL synchronization.. 11
The structure of the ML time offset estimator (from [8]). 12
The structure of the proposed-symbol time estimator. 13
Three UL signals arrive at different times, and the CP correlation peak

may occur between them (from [B])-f .o v . . o L oL 14
The received samples and the time plan of the UL synchronization stage
IH(from[5]).. e e 14
Illustration of UL synchronization stage I} in frequency domain (from [5]). 15
Illustration of UL synchronization stage I in time domain (from [5]). . . 16
Frame structure used in UL synchronization. 19
Error distribution under different maximum Doppler shifts using frequency
domainapproach. 20
Error distribution under different maximum Doppler shifts using time do-

main approach. 21
The multipath delay spread and the relative average power (The definition

of the Refinthe nextfigure). 22

Performance of UL time synchronization under different Doppler spreads. 23
Comparison of UL synchronization using frequency domain and time do-

main approach at velocity of 60 km/hr. oL 24
Block diagram of Quixote (from [12]). 27
Technical specification of Quixote (from [12]). 29
Block diagram for C6416 DSP (from [14]). 32
TMS320C6416 DSP core data paths (from [14]). 33
Block diagram for C62x and C64x DSP core (from [15]). 37
Block diagram of DSP streaming mode (from [11]). 39
Simplified code composer studio development flow (from [17]). 40
Code development flow of C6000 (from [19]). 44

viii

4.2
4.3
4.4

4.5

4.6

4.7

4.8

4.9

4.10
411
412
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
421

4.22

C64x fixed-point pipelinephases.
The fixed-point data formats at the TX side and the RX side.
Error distribution under different maximum Doppler shifts using time do-
main approach in fixed-point version.
Ccode forPRBSgenerator.
Compiler’s feedback for PRBS generator loop.
Two versions of C programs for framing.
Compiler’s feedback for framing loop before and after optimization. . . .
Apartof Ccode forframing.
A part of C code for deframing.
A part of assembly code for DSP_fft32x32.
C code for mulsum() in TX.SRRC().
C code and compiler’s feedback for mul_sum() loop.
C code and compiler’s feedback for Rx_.SRRC() loop.
C code in CP_correlation() before optimization.
C code in CP_correlation() after optimization.
Compiler’s feedback for CP_correlation() loop before optimization.
Compiler’s feedback for CP_correlation() loop after optimization.

C code in Preamble_correlation() before.optimization.
C code in Preamble_correlation().after.optimization.
Compiler’s feedback for:Preamble correlation() loop before and after op-
timization. 2.0 L S T
Comparison between floating-point version and fixed-point version.

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1
3.2
3.3

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
4.14
4.15
4.16

OFDMA UL Carrier Allocations 7
Complexity for ML estimator and the Proposed Symbol Time Estimator . 13
Comparisons of Computational Complexity for Different FFT Algorithms 17
Complexity for Time Domain Approach and Frequency Domain Approach 17

System Parameters Used in Our Study 18
Characteristics of the ETSI “Vehicular A” Channel Environment 18
Relations Between Spread and Maximum Doppler Shift at Carrier Fre-

qguency 6GHz and Subcarrier Spacing 558 kHz 19
Characteristics of TI C64161T. Processors (from [14]) 30
Functional Units (.L, .S) and Operations Performed (from [15]) 34
Functional Units (.M, .D) and Operations Performed (from [15]) 36
Compiler Options to Avoid on Performance Critical Code (from [19]) . . 45
Compiler Options for Performance(from [19]) 47
Breakdown of Clock Cycles for Framing()+. 52
Breakdown of Clock Cycles for Deframing() 55
IFFT/FFT Function e 56
Comparison of Different IFFT/FFT 58
Complexity and Performance of IFFT/FFT Implementation 58
Used Compiler Intrinsics in DSP_ifft32x32/DSP fft32x32 59
Breakdown of Clock Cyclesfor IFFT() 60
Breakdown of Clock Cyclesfor FFT() 60
Breakdown of Clock Cycles for TXSRRC() 61
Breakdown of Clock Cyclesfor RX.SRRC() 64
Breakdown of Clock Cycles for CP_correlation() 66
Breakdown of Clock Cycles for Preamble_correlation() 72
Complexity and Performance of CP Correlation Implementation 73
Complexity and Performance of Preamble Correlation Implementation . . 74

Chapter 1

| ntroduction

Orthogonal frequency-division multiple access (OFDMA) technique has attracted serious
attention in the last few years and has been proposed for the uplink of wireless commu-
nication systems [1], [2] and cable TV (CATV) networks [3]. In this thesis, we focus on
uplink synchronization based on IEEE 802.16a WirelessMAN OFDMA system [4].

Our intent is to implement the uplink synchronization scheme by using digital signal
processor (DSP). In order to verify the accuracy of the fixed-point uplink synchronization
scheme, the framing/deframing structure, IFFT/FET block and Tx/Rx SRRC filter have
been also implemented.

The environment of our DSP implementation involves a host PC, DSP board and
DSP chip on the board. The DSP chip is Texas Instruments (T1)’s TMS320C6416. The
TMS320C6416 is a fixed-point DSP with 1.67 ns instruction cycle time. It adopts the ad-
vanced VelociTI Very Long Instruction Word (VLIW) architecture that enables sustained
throughput of eight instructions in parallel and thus allows the processor running faster.
In addition, the C64x device comes with on-chip program and data memories, which may
be configured as cache on some devices. The DSP board we use is Innovative Integra-
tion (I1)’s Quixote. It is a PCI bus compatible DSP card housing one TI TMS320C3416
processor.

Our work is based on the code from [5]. In order to reduce the computation complex-

ity, we rewrite the original 32-bit floating-point version to 16-bit fixed-point version. We

also do some optimization methods to facilitate better parallelism after compilation.

The thesis is organized as follows. In chapter 2, we introduce the techniques for
uplink synchronization in detail. Chapter 3 introduces the DSP board and the DSP chip.
Chapter 4 discusses the optimization methods based on DSP properties and presents the
optimization results. Finally, the conclusion is given in chapter 5 and we point out some

potential future work.

Chapter 2

Techniquesfor Uplink Synchronization

2.1 Background

The basic idea of orthogonal frequency-division multiplexing (OFDM) is to divide the
available spectrum into a number of subchannels. To obtain high spectral efficiency, the
frequency response of the subchannels are-overlapping but orthogonal, hence the name
OFDM. By introducing a cyclic jprefix (CP), the orthogonality can be completely main-
tained even through the signal passes through-a-time-dispersive channel. The cyclic prefix
is a copy of the last part of the OFDM symbol which is prepended to the transmitted sym-
bol, as shown in Figure 2.1 [6].

Orthogonal frequency-division multiaccess (OFDMA) is a multiplexing technique in
which several users simultaneously transmit their own data by modulating an exclusive
set of orthogonal subcarriers. Its main advantage is that separating different users through

frequency-division multiaccess (FDMA) techniques at the subcarrier level can mitigate

Ts

Figure 2.1: OFDM symbol structure in time.

multiaccess interference (MAI) within a cell [7]. Also, compared with single-carrier
multiaccess, OFDMA offers increased robustness to narrowband interferences, allows
straightforward dynamic channel assignment, and does not need adaptive time-domain
equalizers, since channel estimation is performed in the frequency domain through one-
tap multipliers.

For all this to be true, however, proper time and frequency synchronization is neces-
sary to maintain orthogonality among the active users. Frequency offset due to Doppler
shifts and/or oscillator instabilities produce interchannel interference (ICI) that must be
counteracted to avoid severe error-rate degradations. Timing errors result in intersymbol
interference (I1SI) between consecutive OFDM symbols. Using a guard interval (cyclic
prefix) provides intrinsic protection against timing errors at the expense of some reduc-
tion in the data throughput due to the €xtra overhead. However, timing accuracy becomes
a stringent requirement in practical applications where, to minimize the overhead, the
cyclic prefix is made only just greater than‘the length: of the channel impulse response
(CIR).

In this thesis, we consider the IEEE'802.16a WirelessMAN OFDMA system [4]. Ac-
cording to the IEEE 802.16a standard, the duplexing method of OFDMA system in 2-11
GHz band shall be either FDD or TDD in licensed bands and TDD in license-exempt
bands. The traffic requirements of the downlink (DL) and uplink (UL) transmissions are
usually different. Compared with FDD mode, TDD mode supports more flexibility for
different traffic transport capacity. That is why we choose to study the TDD mode in this
thesis.

In this work, we focus on IEEE 802.16a TDD OFDMA uplink synchronization tech-
niques. According to IEEE 802.16a standard, all SSs shall acquire and adjust their timing
such that all uplink OFDM symbols arrive time coincident at the base station to a accuracy
of 50% of the minimum guard-interval or better. For the same reason, both the transmitted

center frequency and the symbol clock frequency shall be synchronized to the BS with a

32 used carriers (including pilot carriers)

pilot pilot
A A
T -
VA Y A
Guadband | | | . DC carrier & ‘ . | Guard band
N H H N HE H L >
Groupl Group?2 Group53

The 1696 used carriers = 1536 data carriers + 160 pilot carriers

+ subchanne! 1 A subchannel 2

Figure 2.2: Illustration of carrier usage in OFDMA UL.

tolerance of maximum 2% of the carrier spacing, which equals to 111.6 Hz in our work.

These limitations are very useful for®UL synchronization scheme.

2.2 Overview of | EEE"802.16a

2.2.1 OFDMA Carrier Allocation

The FFT size used in the 802.16a OFDMA system is 2048, so there are 2048 carriers in
a channel. These carriers are divided into as three types: data carriers that are used for
data transmission, pilot carriers for various estimation purposes, and null carriers (guard
bands and DC carrier) which transmit nothing at all. The data and pilot carriers together
are termed the used carriers for they transmit useful information. The allocation is as
shown in Figure 2.2 for UL.

In the uplink, the set of used carriers is first partitioned into 32 subchannels, and then
the pilot carriers are allocated within each subchannel. Each subchannel may be trans-
mitted from a different SS. The used carriers of the UL transmission are partitioned into
fixed-location pilots, variable location pilots, and data subchannels. Within each subchan-
nel, there are 48 data carriers, 1 fixed-location pilot carrier, and 4 variable-location pilot

carriers. The allocation of pilot carriers is illustrated in Fig. 2.3.

.
o

inde

I||I||IH|I|||I|IHIIH|I|!I|IHIIHIIIIIHIHIIIIIII
| | A | |
0 13 2627 10 52

0 2 15

2 5 2 42 52

! I|||||||H||||||||H||H|||'|||H||H|||||\||H|||||||
I I | | | |

0 1 17 26 30 14 52

a
el =~'>I||I||IHII|||I|IHIIH|I|!I|IHIIHIIIIIHIHII|I|||
| | | | L
0 9 27 26 36 49 52

Allocation Key D Variable Location Pilot I Fixed-location Pilot Dlﬁ.lm

Figure 2.3: Carrier allocationsinsthe OFDMA UL (from [4]).

The fixed-location pilot is always.at-carrier, 26 in the subchannel. The variable-
location pilots change locations in each.symbol; repeating every 13 symbols, according
toL, =0,2,4,6,8,10,12,1,3,5,7,9,11, where £k = 0 to 12. For £ = 0 the variable
location pilots are positioned at indices 0, 13, 27, 40. For other £ values these locations
change by adding L, to each index. Thus due to the motion of the variable-location pilots,
the locations of data carriers also change with each symbol [4]. The parameters of the UL

are also shown in Table 2.1.

2.2.2 OFDMA Frame Structure

Figure 2.4 shows the TDD OFDMA frame structure. The frame structure is built from
BS and SS transmissions. Each TDD OFDMA frame is composed of a DL subframe and
a UL subframe. The duration of a frame is allowed from 2 ms to 20 ms and is specified
by the frame duration code. A subframe contains several transmission bursts, which are

composed of multiples of FEC blocks.

I2QUINU [SUUEYDQNS

Table 2.1: OFDMA UL Carrier Allocations

| Parameter | UL Value
Number of DC carriers 1
Number of guard carriers, left 176
Number of guard carriers, right 175
Number of used carriers (Nyseq) 1696
Number of total carriers (V) 2048
NvarLocPilots 128
Number of fixed-location pilots 32
Number of variable-location pilots which 0
coincide with fixed-location pilots
Number of total pilots 160
Number of data carriers 1536
Nsubch(mnels 32
Nyubearriers PEr subchannel 53
Number of data carriers per subchannel 48
PermutationBasey 3,18,2,8,16,10,11,15,
26,22, 6,9,27,20,25,1,
29,7,21,5,28,31,23,17,
4,24,0,13,21,19,14,30

OFDMA symbol number

1

-

Koy kel B2 g R+d g htd g RS) RO) KT) AR A R 1O R T B4 12 k13 k+14)
o I DI Frome Prefis | 5 I Frme Prefix
! =
2] °H | UL burst #1
2 o =
3 DL-MAP DL burst #3 Z b
i |
5—
;' o) I
97] = | ot 19
o] UL-MAP DL burst #1 £ | UL burst 22
2] & | UL-MAP
] |
i BT |
6l
?_
: 2
1: é L UL burst 3 DL burst #1
-1 DL burst #2 DL burst #3 2 |
1] l
5 |
= 1 DL burst #2
B — Ranging subchannel

=aHm- -
- DI TG Ul RTG

Figure 2.4: Frame structure of the TDD OFDMA system (from [4]).

Parameters: No_OFDM_symbol/ No_subchannel/OFDM_symbol_offset_Subchannel_offset

Jreamny modulation >
' Add virtual |
ﬁg:]t?ﬂg - is’;rgg » Carriers R
burst data (padding zero) —
—| scrambler —» FEC |-+ data modulation > =
=l |] e o o
— PIS 5 |
—» [FFT |- iMB —+ add prefix -*;-* t4 -+ LPF (SRRC filter) > channel >
S : :
R e - | | e L Oy Sy S
interpolator

Figure 2.5: UL transmitter structure.

From the UL-MAPs, the subscribers-know their usable subchannels and transmission
time. The first symbol of the UL subframe-is-the all-pilot preamble where the SS should
send a preamble on all its allocated subchannels. The;number of symbols of the UL is
3N + 1, one for the preamble andthe others-data-transmitted bursts. The Tx/Rx transition
gap (TTG) and Rx/Tx transition gap (RTG) shall be inserted between the downlink and
uplink and at the end of each frame respectively to allow the BS to turn around. After the
TTG, the BS receiver shall look for the first symbols of a UL burst. After the RTG, the SS
receivers shall look for the first symbols of QPSK modulated data in the DL burst. TTG

and RTG shall be at least 5 us and an integer multiple of four samples in duration.

2.2.3 System Architecture

Figure 2.5 shows the system structure of the UL transmitter.

The data is scrambled and FEC coded, while the preambles and pilots are not coded.
The BS has to receive various bursts from different SSs at the same time. Each SS has
to support one kind of coding and modulation types in a frame. The framing is used

to arrange the coded data, MAPs, preamble or pilots to the corresponding carriers and

LPF 4 L, uplink ce | sp [#
(SRRC filter) |] * 4 synchromization | | remeval 2048 FFT

Channel P/s . FEC
/ Estimation 1702 [data deframing [e de-scrambler f——»

Figure 2.6: UL receiver structure.

symbols following the specified frame structure and carrier allocation. After framing,
the used carriers and null carriers are ordered properly and fed into the 2048-point IFFT
block in parallel. The IFFT results are output sequentially and shaped by the pulse shaping
block.

The system structure of the UL.receiver.is.as shown in Figure 2.6. The receiver oper-
ation is in some sense the reverse-of the transmitter.. Two blocks are added: synchronizer
and channel estimator. These twa blocks-and the-FEC decoder are the most sophisticated
elements of the receiver.

In framing/deframing structure, we need some information such as carrier allocation
and UL parameters shown in Table 2.1. Pilot carriers shall be inserted into each data burst
in order to constitute the symbol and they shall be modulated according to their carrier
location within the OFDMA symbol. The PRBS generator is used to produce a sequence,
wy, Where k corresponds to the carrier index. The value of the pilot modulation on carrier
k is then derived from wj. The polynomial for the PRBS generator is X'* + X° + 1, as
Figure 2.7 shows.

For the UL, the initialization vector of the PRBS is [10101010101]. The PRBS shall
be initialized so that its first output bit coincides with the first usable carrier. A new value
shall be generated by the PRBS on every usable carrier. Each pilot shall be transmitted

with a boosting of 2.5 dB over the average power of each data tone. The pilot carriers

msb Ish

Initialization DL 1 1 1 111 1 1 1 1 1
Sequences UL:1 0 I 0 1 0 1 0 1 0 I

P2 134567 (8|9 (10]11

Figure 2.7: Pseudo Random Binary Sequence (PRBS) generator for pilot modulation.

shall be modulated according to the following formulas:

Re{c} =

(= —wyg), Im{c} =0.

w1 oo
DO | =

For the UL preamble, all the used.carri€rs are pilots. The initial vector of the PRBS
is the same as the normal UL pilot-modulation. The pilots shall not be boosted and is
modulated as

Rﬂ@}:%%—mxlm@ﬁza

The details for the Tx/Rx SRRC filter we use are based on [5]. In order to provide
the ability to simulate path delays at non-integer sample times, an interpolator is added
to the transmitter to yield 4-times oversampled transmitter output. As the ideal lowpass
interpolation filter cannot be implemented exactly, the easier realized square root raised

cosine (SRRC) filter is used instead. The impulse response of the filter is given by

sin<7r ! (1—a))+4a ! COS(?T : (1+a))

Tsample Tsam;ule Tsample

Tt (1 _ (4044)2)

Tsample Tsample

SRRC(t) =

7

where « is the roll-off factor. The reason of adopting the SRRC filter is that for this filter
the transmitter and receiver filters are matched to each other and there is no inter-sample
interference introduced in the receiver. In our work, the pulse-shaping block is regard as

the interpolator with 4-time oversampling and the roll-off factor 0.155 SRRC filter.

10

Stage 1: Using CP _| Stage 2: Using Preamble
Correlation Property i Correlation Property

Figure 2.8: Method of UL synchronization.

2.3 UL Synchronization Approach

After doing DL synchronization, the mobile enters the time and frequency grid with a low
offset in time and frequency. The UL synchronization is unlike the DL synchronization
which requires complex frame synchronization at initialization. No frequency synchro-
nization is done in UL normal transmission. What the BS has to do is to detect the exact
UL symbol arrival time. The BS shall detect the arrival time of the first coming signal to
keep the symbol ISI free.

There are two stages in UL synchronization; which is shown in Figure 2.8. The first
stage uses cyclic prefix information to detect-symbol start time roughly. The second stage
uses preamble information to detect’'symbol start time exactly. We present two schemes
to do the second stage. One is using the correlation of received signal with preamble
in the time domain and the other is in the frequency domain. The symbol start time is

determined as the location with maximum correlation value.

2.4 UL Synchronization
2.4.1 Stage I: Using CP Correlation Property

OFDM/OFDMA signals have strong auto-correlation properties of the waveforms. This
autocorrelation is a consequence of the cyclic prefix part of the waveform. The algorithm
in [2] and [8] uses the maximum likelihood (ML) criterion to estimate the time offset.
Under the assumption that received samples are jointly Gaussian distributed and uncorre-

lated except for the pairs of identical samples contained in the cyclic prefix, symbol time

11

correlation averaging ,‘

ia o) g
@ (X))o | Sliding g (1 > 4 = Lt
- |
aL delay 1 _| ;
symbol |
r(k) delay N i
samples

argmax{|.|} ————®

|2 .2 £
II I delay 1

* i-a; symbol AI parameter extraction

idi Pl Y
Y RNy
energy

| ?
[==33

Figure 2.9: The structure of the ML time offset estimator (from [8]).

offset 6 is given by

~

0 = argmax {I(0)] =p®(0)}, (2.1)

where
OHL1

L) = Dommtkmt (kF N),

k=6
1 0+L=1

Z)P+ Ir(k+ NP7,

and p = vaf}fzﬁl with SNR being signal to noise ratio. Estimator (2.1) exploits the correla-
tion introduced by the cyclic prefix to estimate the offsets. The structure of the time offset
estimator is shown in Figure 2.9. Its strength is that it is independent of the modulation
and it does not need pilot symbols. It is a one-shot estimator in the sense that the estimates
are based on the observation of one OFDM symbol.

The symbol time offset estimator can be viewed as consisting of two parts: the cor-
relation T'(6) which correlates the received sampled baseband signal, r, with a delayed
version of itself, and a part that compensates for the difference in energy in the correlated
samples. In order to reduce the complexity, we only employ the correlation part in our
work. As the samples of different OFDM symbols are uncorrelated, the peak of the slid-

ing sum of r(k)r*(k + N) would occur when the samples r(6),---,r(6 + N+ L —1) are

12

sliding sum
r(k+2048) (.)F _’(x'—\}_' (length =L = . » arg max [— time offset
= (CP length)
Delay 2048
samples

Figure 2.10: The structure of the proposed symbol time estimator.

Table 2.2: Complexity for ML estimator and the Proposed Symbol Time Estimator

| | No. of Real Multiplications | No. of Real Additions |

ML time offset estimator 2048 2045
Proposed symbol time estimator 1024 1022

all within the same OFDM symbol. Then, the symbol time offset estimator becomes
R 0+L—1
0 = argmiax | door(k)ri(k + N)|. (2.2)
k=0
Figure 2.10 shows the structure of this estimator.

Table 2.2 shows a comparisonof the complexity for ML time offset estimator and the
proposed symbol time estimator. In this table, we consider the complexity for the first
256 samples.

Different users’ transmitted signals may not arrive at the same time, but the correlation
peak may occur between them, as shown in Figure 2.11 for an example of three users. If
we use the detected peak location as the symbol start time, the corresponding useful time
will include a part of the guard interval of the next symbol for the earlier arriving signals.
Therefore, we have to find the exact instant of the first arriving signal to avoid ISI. This

is why we use preamble information in stage Il. In stage Il, we use preamble correlation

property to detect the symbol start time exactly.

2.4.2 Stage Il: Using Preamble Correlation Property

In stage I, the symbol (frame) start time is roughly detected by using CP correlation peak.

We know that the actual arrival time of the first arriving signal is likely before the detected

13

= useful time

Figure 2.11: Three UL signals arrive at different times, and the CP correlation peak may
occur between them (from [5]).

CP correlation peak location

Y

T

The corresponding detected useful time | o —------ >

|
|
A A : A A
Useful time |
| i . P E—
|

|
stagelll stage H
start time stop time

Figure 2.12: The received samples and the time plan-of the UL synchronization stage 11
(from [5]).

time. In stage 11, we use preamble information to detect the symbol start time exactly. We
present two schemes to do stage Il. One is using the correlation of received signal with
preamble in the frequency domain and the other is in the time domain. Figure 2.12 shows
the received samples of the BS and the time relation for stage II.

As the user arrival time may vary as much as 50% of the guard interval, we apply the
FFT and preamble correlation for the samples up to 50% of the guard interval earlier than

the corresponding detected useful time.
24.2.1 Frequency Domain Approach

In this section, we describe the UL synchronization stage Il using the correlation of re-

ceived signal with preamble in frequency domain. Figure 2.13 illustrates the processing

14

From stage |1 start time to stop time At stage |l stop time

! |
! |
! reference |
! carriersof SS 1 |
| : together detector |, . |peak location -
sampleswithin 3 : : L and .. Firstarriving signal
useful time 7 :' a § reference : : |\ | peskvalue start time
ed carri carriers of SSk !
! used carrier k < e summed dgtﬁor L compatator
} together |

Figure 2.13: Illustration of UL synchronization stage Il in frequency domain (from [5]).

conducted in stage Il. The FFT outputs are correlated with the preamble reference val-
ues. As the BS knows the allocation status of UL subchannel, the frequency correlation
is taken over all the subchannels used by each SS. When a new sample is received, the
frequency is updated. The correlation peak value and location of each SS is recorded.
This procedure is continued until the end of the corresponding useful time.

Then, the peak locations of different $Ss are compared as follows. We start by as-
suming SS1 as the first coming signal. The peak location of SS2 is compared with that
of SS1. If the peak location of SS2 is earlier than SS1, then we check the peak correla-
tion value. The peak value is normalized by the number of subchannels each SS uses. If
(peak_value/subchannel_num) of SS2 is larger than SS1, the first coming signal is set to

SS2. After all SSs are compared, we get the start location of the first coming signal.
2.4.2.2 TimeDomain Approach

In this section, we describe the UL synchronization stage Il using the correlation of re-
ceived signal with preamble in time domain.

Since the carriers are orthogonal to each other, so are the subchannels. After IFFT, the
time domain signals which occupy different subchannels are uncorrelated if the channel
has zero delay spread. For the UL preamble, the transmitted value of each carrier is speci-
fied by the BS. Thus the signal transmitted by each SS in the UL preamble is deterministic

and the BS can produce the same signals as all SSs by taking IFFT. In this scheme, stage

15

referencefor SS1
r1(0)~r1(2047)

S S wr;r%fplz&% ~ ek L~ sarttimeof SS1
r(k)~r(k+2047) — :
wr;rc;:‘pf&% - dgte;lior —= start time of SSk

reference for SSk
rk(0)~rk(2047)

Figure 2.14: lllustration of UL synchronization stage Il in time domain (from [5]).

| is the same as the previous scheme, and stage Il is as shown in Figure 2.14.

The received samples are correlated with reference data string. Each reference data
string is the IFFT output according to the subchannels used by each SS. When the next
sample arrives, the correlation is calculated again. The start and stop times of the correla-
tion are the same as shown in Figure 2.12.

The complexity of time domain correlation is less than frequency domain correlation.
This is because we need to do FFT in frequency domain correlation. In order to reduce
the complexity of FFT, the conventional FET.is-only applied once. When a new data value

is received, the simplified FFT below is used:

-2k

Xn(k) = [anl(k) — ZTp-nN + xn] 6]7, (23)

where N is the FFT size, k is the carrier index, n is sample number, and z,, is the new
incoming sample. The simplified FFT requires 2N complex additions and N complex
multiplications. Table 2.3 shows a comparison of computational complexity for different
FFT algorithm [9].

Table 2.4 shows a comparison of the complexity for time domain approach and fre-
quency domain approach. For time domain correlation, only 2048 complex multiplica-
tions and 2047 complex additions are needed. In our simulation, the guard interval is 256
samples and hence stage Il is applied to 128 sample locations. For frequency domain

correlation, computation complexity depends on different type of FFT algorithm. After

16

Table 2.3: Comparisons of Computational Complexity for Different FFT Algorithms

| Complexity | No. of Real Multiplications | No. of Real Additions |

Radix-2 FFT *Nlog, N - IN +38 2Nlog, N - IN +38
Radix-4 FFT eNlogy N — 3N +3 2 Nlogy N —3N +3
Radix-8 FFT 2N(logyN—3)+4 | ENlogy N — 2N +4
Split-radix-4/2 FFT Nlog, N — 3N +4 3Nlogy, N — 3N +4
Simplified FFT AN 6N

Table 2.4: Complexity for Time Domain Approach and Frequency Domain Approach

| Complexity | No. of Real Multiplications | No. of Real Additions |
| Time domain approach | 1048576 | 1048320 |
Frequency domain approach
Radix-2 + Simplified FFT 2115592 2108163
Radix-4 + Simplified FFT 2108163 2673155
Radix-8 + Simplified FFT 2106030 2671022
Split-radix-4/2 + Simplified FFT 2105348 2670340

calculation, the needed multiplications.and-additions of frequency domain correlation is

about 2 times that of time domain correlation.

2.5 UL Synchronization Result

Table 2.5 specifies the transmission parameters for our simulation. The uplink and down-
link use the same frequency bands. The intercarrier spacing is thus 5.58 kHz and the
symbol length (without cyclic prefix) is 179.2 usec.

In this section, we select the channel environment defined by ETSI for the evaluation
of UMTS radio interface proposals. The time-varying channel impulse response for these

models can be described by

h(r,t) = Zai(t)é(T - 7). (2.4)

This equation defines the channel impulse response at time ¢ as a function of the lag 7.

In this thesis, we will evaluate our synchronization algorithm for the choices of «; and 7;

17

Table 2.5: System Parameters Used in Our Study

Number of carriers (N) 2048
Center frequency 6 GHz
Uplink / Downlink bandwidth (BW) 10 MHz
Carrier spacing (A f) 5.58 kHz
Sampling frequency (f;) 11.43 MHz
OFDM symbol time (7%) 201.6 p sec (2304 samples)
Useful time (73) 179.2 psec (2048 samples)
Cyclic prefix time (7,) 22.4 psec (256 samples)

Table 2.6: Characteristics of the ETSI “Vehicular A” Channel Environment

tap | relative delay (nsec or sample number) average power
(nsec) (4 oversampling) (normal) | (dB) (normal scale) (normalized)
1 0 0 0 0 1.0000 0.4850
2 | 310 14 4 -1.0 0.7943 0.3852
3 | 710 32 8 -9.0 0.1259 0.0610
4 | 1090 50 12 -10.0 0.1000 0.0485
5 | 1730 79 20 -15:0 0.0316 0.0153
6 | 2510 115 29 -20.0 0.0100 0.0049

associated with the “Vehicular A channel environment [10]. The channel taps «;(t) are
complex independent stochastic variables, fading with Jakes’ Doppler spectrum, with a
maximum Doppler frequency of 240 Hz, reflecting a mobile speed of approximately 120
km/hr (and scatterers uniformly distributed around the mobile). The real-valued 7; and
the variance of the complex-valued «; are given in [10] and repeated in Table 2.6.

The SNR is chosen to be 10 dB in the fading channels. Note that the receiver SNR
specified in 802.16a is from 9.4 dB to 24.4 dB, so 10 dB , which is almost the worst
condition, is a reasonable value for simulation. The maximum Doppler shifts of our
simulation are shown in Table 2.7 for the speed from 0 km/hr to 100 km/hr.

The frame structure used in UL synchronization simulation is as shown in Figure 2.15.
UL burstl is transmitted by SS1 using 8 subchannels. UL burst2 is transmitted by SS2
using 16 subchannels. UL burst3 is transmitted by SS3 using 8 subchannels. The TTG

and RTG each occupies 136 sample times. No ranging subchannel is provided.

18

Table 2.7: Relations Between Spread and Maximum Doppler Shift at Carrier Frequency
6GHz and Subcarrier Spacing 5.58 kHz

| Speed (km/hr) | Doppler shift (Hz) | fiT, |

0 0 0
20 111 0.0224
40 222 0.0448
60 333 0.0672
80 444 0.0896

100 556 0.112

OFDMA symbol-number

\j

k-3n S S k-1 k | k+1 | k+2 | k+3
T
£ 5 —
5] DL-MAP g | L burst #1
= § : UL burst DL-MAP
6_] o |
7]
8_| T L
8_ |
= 10_]
k= |
% L] DL burst @ |
1 o |
T | E UL burst #2
S | 17 <3 |
5|1 s
o) | I I
3 | 27 |
22_] |
= .
gg: DL burst @ |
—] o
27 S : UL burst #3
28_] 5+
29_| g__—‘ |
T — ., ' s
- - -
DL TTG UL RTG

Figure 2.15: Frame structure used in UL synchronization.

19

Time synchronization errors under different Doppler shifts

1.00

0.95

(.90

Probability

0.85

0.80

D_.S 1 1 1 1
0.000 0.023 0.030 0.075 0.100

Daoppler shift (f;,T.)

|—.—e:':r_\:- 10 (zamples) =il rror < 1) —ye—crror < 3() s—e—crror < 40 |

Figure 2.16: Error distribution under different maximum Doppler shifts using frequency
domain approach.

The arriving times of burstl and burst2 differ by 25% of the guard interval, which
Is 64 sample time, while burst3 lags burstl by 50% of the guard interval, which is 128

sample times.

2.5.1 Preamble Correlation in Frequency Domain Approach

The probability of symbol time synchronization error for the first coming user is as shown
in Figure 2.16.

The reason for using the carrier correlation to find the symbol start time is that if there
is a time offset, the carrier phases will rotate. The phase rotation reduces the correlation.
If there is no Doppler shift, the synchronization is always correct. For larger Doppler

shifts, the inter-carrier interference causes serious variation of the post-FFT carrier values.

20

Time synchronization errors under different Doppler shifts

R NS, s — e S e e————

0.97 b =X = gm = mm o e e e

0.95

003 fommm oo

Frobability

001 fmmmmm A oo o

1 0 R, W SR

0.87

0.85 ' ' ' '
0.000 0.025 0.050 0.075 0.100

Doppler shift (f;T.)

|+em:|r- 8 (samples) =—e—crror = § ==—S—arror < 4 s—fe——rrore 2 |

Figure 2.17: Error distribution under different maximum Doppler shifts using time do-
main approach.

Moreover, the signals passing through different fading channels of different SSs would
affect each other. Thus the synchronization performance is decreased as the Doppler
spread increases. We can see the performance drops significantly when the maximum

Doppler shift is larger than 0.025f,T5.

2.5.2 Preamble Correlation in Time Domain Approach

Figure 2.17 shows the symbol time synchronization errors of the first coming signal under
different Doppler spreads.

If the Doppler shift is zero (speed = 0 km/hr), we can always detect the correct symbol
start time of the first coming signal. When the speed increases, the distribution of the
time synchronization errors is closely related to the multipath channel. We have used this

channel model to obtain the time synchronization error distribution shown in Figure 2.18.

21

a5

5 041 —

o)

o

b 03

5

-

s

v 02

=

=

2

& 0.1

0 1 1 1 I 1 1 1 IHI 1 1 IHI 1 1 1 1 1 1 I|_|I 1 1 1 1 1 1 1 le—l
0 5 10 15 20 25 30

Multipath delay (samples)

Figure 2.18: The multipath delay:spread and the relative average power (The definition of
the Ref in the next figure).

Comparing the time synchronization error distribution with the model, we see that
the different time offsets obtained at synchronizer output almost concur with the sample
number of the multipath delays. Furthermore, the occurrence probabilities at the different
time offsets are proportional to the relative average power of the paths. The Doppler shift
has no obvious effects on this synchronization scheme except when it is very small.

As the correlation is done for each SS, we can detect the arriving time of each later ar-
riving signal. The time error distributions of the other SSs are similar to the previous con-
dition. Thus, Figure 2.19 shows that correlation in time domain approach is ideal for fixed
environments. For the mobile environments, the performance depends on how dispersive
the multipath channel is. For different SSs, the errors under different Doppler shifts (ex-
cluding the zero shift) are averaged and the probabilities are shown in Figure 2.19.

Now that the estimated time offset is approximately equal to the multipath delay, we

22

Time synchronization error distribution of UL synchronization
using time domain correlation approach

1.00 - \l\
0.90 ' i L

080k 1]

0.70 - LT ———
0.60 < | Al |) y B

Probability >°
040 H

= e / i o .. 0.000
il | ey Ay g

0.10 |
0.00 =

(des]

12 14 16 =
18 20 99
- 24 26 og
=0 28 30
Time error (samples)

1

Figure 2.19: Performance of UL-time synchfonization‘:under different Doppler spreads.

can safely say that, considering the guard interval, the minimum value of it should be
larger than 2 times the channel delay spread plus the sacrificed part of guard interval due

to pulse shaping. From Figure 2.17, 8 sample times earlier is reasonable for Doppler shift

smaller than 0.1 f,7. In our simulation, this value is equal to

2 % 2.51 + QZ = 5.72 i sec.

mazimum delay spread 8 sample time

2.5.3 Comparison of UL Synchronization Using Time Domain Ap-
proach and Frequency Domain Approach

Figure 2.20 shows the time synchronization error distribution of UL synchronization us-

ing frequency domain and time domain approach when the maximum Doppler shift is

0.067 (velocity 60 km/hr).

23

Symbol time synchronization error for time domain approach
(for speed = 60 km/hr, £,T, = 0.067)

Probability

0.05 ——r
g I Y e e A A | 11 11 |_IIH—|IIIIII_|IIIIIIII_IIIIIIIIIII

-40 -35 -30 -25 -20 -15 -10 -5 O 5 10 15 20 25 30 35 40

Svmbol time synchronization error (samples)

Symbol time synchronization error for frequency domain
approach
(for speed = 60 km/hr, £,T, = 0.067)

Probability

0.05]—
Il—l|||I—l_l—.IILl—|IILIIIIIIIII_IIII_|IIIII 11 —ir‘ull—UﬂH||||||||||||||||||I_||

-40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40

Symbol time synchronization error (samples)

Figure 2.20: Comparison of UL synchronization using frequency domain and time do-
main approach at velocity of 60 km/hr.

24

Although the time offset estimated with correlation in frequency domain approach is
to some degree related with the channel delay, it is more dispersive than correlation in
time domain approach. The percentage of errors that are larger than 40 samples cannot
be neglected. So the ability of the guard interval to counter the channel impulse response
decreases. Moreover, the peak location of post-FFT correlation for the later signals cannot
be used due to their low accuracy. This is because for larger Doppler shifts, the inter-
carrier interference causes serious variation of the post-FFT carrier values. Comparing
these two schemes, the correlation in time domain is more accurate and demands less

complexity.

25

Chapter 3

DSP I ntroduction

In this thesis, we use digital signal processor (DSP) to implement the framing/deframing
operation, the Tx/Rx SRRC filter, and the uplink synchronization scheme. The DSP board
we use is Innovative Integration’s Quixote, which is powered by the TMS320C6416 DSP
from Texas Instruments (TI).

In this chapter, we focus on the environment.of DSP implementation, which involves
the host PC, the Quixote DSP beard, and the C6416 DSP chip on the board. First, we
introduce the DSP board and then the ‘DSP core...Fhe communication mechanism be-
tween the DSP core and the peripherals is also introduced. Last, we describe the code

development on the T1 DSP.

3.1 DSP Board Introduction [11]

Quixote is Innovative Integration’s Velocia-family baseboard for wireless, RADAR, ul-
trasound, high energy physics and other demanding applications requiring speed and pro-
cessing power. It combines a 600 MHz 32-bit fixed-point Texas Instruments C6416 DSP
with two- or six- million-gate Xilinx Virtex-1l FPGA. Figure 3.1 gives a block diagram of
Quixote [12].

Quixote has a 32 MB SDRAM for use by the C6416 DSP. When used with the ad-
vanced cache controller on the C6416 DSP, the SDRAM provides a large, fast external

memory pool for DSP data and code. The C6416 cache controller is said to be effective

26

PLL Clock (out)

e - ZBT SBSRAM ZBT SBSRAM SDRAM
o Ext Clock (in) 4 Mbyte s 4 Mbyte s 32mB
o Ext Trigger JTAG
O | o i F|F0 32K/channel TMS320C6416 DSP
g Ot 0 Analog V0 i cach direction 600 MHz
- o, ks [ViroxireaA |
O 0 i 15t
with 5 pale filers EMIE A
@] _Analog Comparaior_| 64-bit/100MHz
MDA-50 Di ita\ Vo 2Mgats o Gilgale ——— ,|cB 5P (2)
Timer/Triggers 100Mbps

CMC Site

1 (future PMC support)
'

____________________ ’
’
Fmm e Fd
H e
PCl to StarFabric * [
Bridge e i
R - m———— 4 s
f /o
R e £ Emmmrmmena
PICMG 217 y

Switched Fabric g

s
Data Packing/

256164 bit
Mode Gontral FIFD

Xilinx
Doc

Frogrammable
Intrpotation

15 tap £ 5
loagle Datz Unpacting/
cozfiicients Mads Gontrol

256164 bit
FIFO

ofisgigain |
Correction

Converter
iming

P—

Triggzring
Control/Status

16-Dit 00MEHz
— : EMIF B
I 3
BLL each dire:
Timebase
10-105 MHz

Quixote Block Diagram

E——
PXl Triggers

PCl 64/66

To/From CE416
EMIFA Interface

. —hntemupl(s) to
Chd14

To/From
PLL Signal

Enlarged view of Xilinx Virtex Il FPGA

Figure 3.1: Block diagram of Quixote (from [12]).

to over 80% of on-chip memory performance for most DSP applications.

The analog interface offers 105 MHz 14-bit 1/Q input channels and 105 MHz output

channels, all tightly coupled to the FPGA external interface. A 64-bit 33 MHz PCI in-

terface and one PMC site facilitate integration in PCI systems and support the addition

of off-the shelf and custom PMC mezzanine boards. Finally, a PCI-to-StarFabric bridge

chip offers two full duplex 2.5 Gbps ports to the new PICMG 2.17 switched interconnect

backplane, for up to 625 MBytes/sec board-to-board or chassis-to-chassis communica-

tion.

Figure 3.2 shows the technical specification of the Quixote [12]. In our work, we

only focus on the C6416 DSP chip to implement OFDMA synchronization structure and

27

some related block. However, our goal is to implement the overall OFDMA system,
including source coding, channel coding, framing/deframing, IFFT/FFT block, channel
model, synchronization scheme and channel estimation, on several Quixote board. In
the future work, we need to use the PCI-to-StarFabric bridge chip to do board-to-board

communication.

3.2 DSP Corelntroduction [13]

TMS320C6416T DSP core is the latest architecture of 32-bit fixed-point DSP generation
in the C6000 DSP platform. It has 600 MHz clock rate and 4800 MIPS.

Table 3.1 provides an overview of the C6416 DSP. The table shows significant features
of the C6416 devices, including the capacity of on-chip RAM, the peripherals, the CPU
frequency, and the package type with-pin count.

C6416 DSP uses a two-level-cache-based' architecture. The Level 1 program cache
(L1P) is a 16K-Byte direct mapped cache'and the Level 1 data cache (L1D) is a 16K-
Byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1024K-
Byte memory space that is shared between program and data space. L2 memory can be
configured as mapped memory or combinations of cache and mapped memory.

C6416 DSP chip also has two high-performance embedded coprocessors, which are
Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP). The two co-
processors are very useful for channel decoding. Communications between the VCP/TCP
and the CPU are carried through the EDMA controller. The enhanced direct memory ac-
cess (EDMA) controller transfers data between the memory without passing through the
DSP core.

The external memory interface (EMIF) provides the interface for the DSP core to
connect with several external devices, allowing additional data and program space. C6416
DSP has two EMIFs: the 64-bit EMIF A is interfaced to the SDRAM and the Virtex-I
FPGA while the 16-bit EMIF B is primarily used for the streaming PCI interface.

28

Digital Signal Processor

Texas Instruments TMS320C6416
720MHz (1GHz when available)
32-bit fixed-point DSP

16 KB data L1 cache

16 KB program L1 cache

1Mbyte L2 cache

(3) 32-bit timers

54 EDMA channels

FPGA

Xilinx Virtex-Il XC2V2000 or XC2V6000
Interface DSP/Virtex

EMIF A, 64 bit/100MHz interface
Mirrored EMIFB to PCI interface
(2) Sync serial ports (McBSP) at 100Mbit/sec. each

Memory

32 Mbytes of SDRAM; 8 Mbytes zero bus
furnaround SBSRAM (Quixote Il or Ill only)

32 MB flash EEPROM for FPGA configuration
bitstream

512 Byte serial EEPROM for converter calibration
coeff.

CompactPCl bus

64/32 bit, 3.3/5Y, B6MHz, Local bus 33MHz
Capable of 264/132Mbytes/sec respectively
Controller auto-detects host bus type
Busmaster or slave operation

(16) 32-bit bi-directional mailboxes

FIFO interface to DSP-100 MHz, 16-bit, EMIF B

Digital 1/0

40 bits /0, 3.3V
f4bit /0 via PMC site Jn4 connector

Timebase

PLL timebase using 5ppm 14.4MHz TCXO
oscillator

With Prescalar and M/N type VCO
Frequency Range 25-105MHz

External clock input on SMB connector

PXI compatible

Synchronize with cormon friggers or clocks
5 PXI Triggers, 1 Star Trigger

A/D Channels

(2) 14-bit Analog Devices ADB645 converters
Sampling Rate 30-105MHz
DC-coupled input

Input Range

+2V, single ended, 50 Ohm impedance
Input Filter

5 pole, analog low pass anti-alias filter
Standard config -3dB rolloff at 33MHz
Digital gain/offset correction in logic

D/A Channels

(2) 14-bit Analog Devices AD3764 converters
Sampling Rate DC to 105MHz

Output Range

+2V Single ended, 50 chm impedance
Qutput Filter

5 pole analog smoothing filter

-3dB rolloff at 33MHz

Digital gain/offset correction in logic
Custom filters may be added

External Clock - SMB connector
External Interrupt - SMB connector
Analog Gomparatar Input - SMB connector

32-bit DIO, Timers, Start/Stop Triggers — MDRS0
connector

DSP JTAG — 14-pin 0.1" shrouded male header
Virtex-Il JTAG — 14-pin 2mm male header

Physical Size

6U CompactPCl card

Cooling

On-card fan for the FPGA with integrated heat
sink

Power Requirements

+8V 1.94; 3.3V 1.1A; =12V 0.07A;
Tofal <15W

Development Languages

DSP
C or assembler using Code Gomposer Studio and
Pismo Toolset

FPGA
VHDL using Xilin ISE and ModelSim

Host
Borland C+ + Builder or Microsoft VC++

Triggering Modes DSP Operating system
Continuous, single-shot, re-triggered modas DSP/BIOS I
Software selectable start/stop triggers include
software driven, external stop/start, number of Support PCOS
points Windows2000/XP

Connectors Host PC

PICMG 2.17 compliant cPC! interface tai. 2 2004)

IEEE 1386 compliant PMC site, Jn1-Jn4
conneclors

A/D and D/A - SMB connectors (4)

Intel processor recommended for max speed in
applications using Channelized Mode and
Analysis Components, which utilize MIMX
technology

Software Selection Guide for Quixote

Software Package Description Usage/Requirements Page Recommendations

Pismo Toolset Peripheral libraries needed for developing code on this card. Includeshost Requires CCStudio®. 98 Indudes Caliente DLL and Armada.

applications, target examples in source form demonstrating use of Windows2000/%P compatible.
peripherals on the card, DSP-BIOS peripheral device driver.
Quixote VHDL Source code of the Quixote Virtex Il Framework controlling all interfacesto - Requires Xilin iSE tools for further 128 Recommended for experienced FPGA design developers who

the FPGA and some signal processing. integration with custom firmware

ModelSim highly recommended

use Quixote for custom firmware development/implementation.

Caliente DLL Dynamic link library (DLL] for the Quixote. Requires ANSI-compliant C/C++
compiler. For example, Microsoft Visual

C/C++or Borland C++ Builder.

Required for interfacing Host side code to DSP.

CCStudio 'C6000 Integrated development environment (IDE) for Target side
development/debugging from Texas Instruments.

Requires XDS-510 compatible JTAG 91
emulator for debugging capabilities.

Required for all first time users. Recommend use with
Innovative Integration plug-n-play PCLITAG emulator.

Armada Hostside development package using a revolutionary integrated
development environment (IDE). Allows user to build/debug sophisticated
data acq apps fully using MS Windows graphical environment quickly with
Innovative Integration's Visual Companent Libraries (VCL) of MFC Classes.

Requires Borland C++ Builder* or 103
Micrasoft Visual C++.

Offers easiest interface while providing the most flexibility and
performance. Tiesinto a plethora of 3rd party components.

The Quixote Development Package contains all software packages listed ahove. *Contact Innovative Integration for current release version.

Figure 3.2: Technical specification of Quixote (from [12]).

29

Table 3.1: Characteristics of TI C6416T Processors (from [14])

HARDWARE FEATURES

C6414T, C6415T. and C6416T

Peripherals

Not all peripherals pins
are available at the same
time. (For more details,
see the Device
Configuration section.)

Peripheral performance is
dependent on chip-level
configuration.

EMIFA (64-bit bus width)
(default clock source = AECLKIN)

1

EMIFB (16-bit bus width)
(default clock source = BECLKIN)

1

EDMA (64 independent channels)

1

HPI (32- or 16-bit user selectable)

1 (HPI16 or HP132)

PCI (32-bit)

1 [CB415T/C6416T only]

McBSPs
(default internal clock source = CPU/4 clock
frequency)

3

UTOPIA (8-bit moade)

1 [C6415T/C6416T only]

32-Bit Timers

(default internal clock source = CPU/8 clock 3
frequency)
General-Purpose Input/Output 0 (GPO) 16

Decoder Coprocessors

VGF

1 [C6416T only]

TGP

1 [C6416T only]

On-Chip Memory

Size (Bytes)

1056K

Organization

16K-Byte (16KB) L1 Program (L1P) Cache
16KB L1 Data (L1D) Cache
1024KB Unified Mapped RAM/Cache (L2)

CPUID + CPU Rev ID

Control Status Register (CSR.[31:16])

0x0C01

Silicon Revision Identification Register

DEVICE_REV[20:16] Silicon Revision

Device 1D (DEVICE_REV [20:16]) PRl

Address: 0x01B0 0200 1o HOLHATIDHIH
Frequency MHz 600, 720, 1000 (1-GHz)

1.67 ns (C6414T/15TA6T - 6 [600 MHz])
Cycle Time ns 1.39 ns (C6414T/15TABT - 7 [720 MHz])
1 ns (CB414T15TAET -1 [1 GHz])
1.1V (-600)

o Gora (V) 12V (-720, 1 G)

VO (V) 33V
PLL Options CLKIN frequency multiplier Bypass (x1), x6, x12, x20
BGA Package 23 x 23 mm 532-Pin BGA (GLZ)
Process Technology um 0.09 um

Product Preview (PP)
Product Status Advance Information (Al) PP

Production Data (PD)

30

Figure 3.3 shows the block diagram of the C6416 DSP chip.

The DSP core features two sets of functional units. Each set contains four units and a
register file. One set contains functional units .L1, .S1, .M1, and .D1; the other set con-
tains units .D2, .M2, .S2, and .L2. The two register files each contain 32 32-bit registers
for a total of 64 general-purpose registers.

In addition to support the packed 16-bit and 32-/40-bit fixed-point data types found in
the C62x VelociTl VLIW architecture, the C64x register files also support packed 8-bit
data and 64-bit fixed-point data types. The two sets of functional units, along with two
register files, compose sides A and B of the DSP core. The four functional units on each
side of the CPU can freely share the 32 registers belonging to that side.

Additionally, each side features a “data cross path” — a single data bus connected to
all the registers on the other side, by.which the two sets of functional units can access
data from the register files on the opposite side. . The C6416 DSP core pipelines data-
cross-path accesses over multiple clock cycles. This allows the same register to be used
as a data-cross-path operand by multiplefunctional units in the same execute packet.

All functional units in the C6416 CPU can‘access operands via the data cross path.
Register access by functional units on the same side of the DSP core as the register file
can service all the units in a single clock cycle. Figure 3.4 shows the data path of the
C6416 DSP chip.

On the DSP core, a delay clock is introduced whenever an instruction attempts to read
a register via a data cross path if that register was updated in the previous clock cycle.

Another key feature of the C6416 DSP core is the load/store architecture, where all
instructions operate on registers. The function units .L and .S are described in Table 3.2.

The two .S and .L functional units perform a general set of arithmetic, logical, and
branch functions with results available every clock cycle. The arithmetic and logical
functions on the C64x CPU include single 32-bit, dual 16-bit, and quad 8-bit operations.

Two sets of data-addressing units (.D1 and .D2) are responsible for all data transfers

31

SBSRAM

vept

ToPt

EMIF A

ZBT SRAM
FIFOQ
SRAM

ROM/FLASH

I/0 Devices

UTOPIA:
Up to 400 Mbps
Master ATMC

MeBSPs:
Framing Chips:
H.100, MVIP,
SCSA, T1,E1
ACST7 Devices,
SPI Devices,
Codecs

[Csoraw_Je
[Ceesmav_Jer

!

- EMIFB

Timer 2

Timer 1

Timer 0

JBL

. McBSP2 e
(e il
— |
= |
| or |
| |
- |
- I'| McBsPi* 4|—b—
\
| |
(I _
McBSPO J+>
16 GPIO[&:0] |, |
| GPIO[15:9] —i
a2 | |
1 Il
| |
| |
| |
| |
Interrupt
Selector [+

Enhanced
DMA
Controller
(84-channel)

Ce4x Digital Signal Processor

L1P Cache
Direct-Mapped
16K Bytez Total

L 4

C64x DSP Core

Inztruction Fetch Control
Registers
Ingtruction Digpatch
Advanoced Instruction Packet
Control
Inatruction Decode Legic
Data Path A Data Path B
Test
A Register File B Register File
I A31-A1E I B31-B18 | Nibaticed
‘ A15-A0 | | B15-BO | In-Circuit
2y t i t Emulation
I L1 I 81 I .M1I .o I I .nD2 I M2 I .82 I .LZI Interrupt
L2 Control
Memory y L
1024K
Bytes
v
L1D Cache
2-Way Set-Azzociative
16K Bytes Total
Boot Configuration
PLL Power-Down
(x1, x6, x12, Logic
and x20)

Figure 3.3: Block diagram for C6416 DSP (from [14]).

32

srci <—G:77
Hl src2 ¢

dst
long dst B
long src f+—

b

v

ST1b (Store Data) %gg; /
ST1a (Store Data) + a s
long src |+)
long dst » Register
dst File A
gy sred (AD-A31)

Data Path A sre2

r

See Note A

long dst See Note A

dst
M1 srcl

v ¥

src2

LD1b (Load Data) —32MSBs ,
LD1a (Load Data) —32LSBs
dst

DA1 (Address) D1 srel

LR 4

r

src2

2X

1X

src2

DA2 (Address) D2 greq

dst

LD2a (Load Data) —32LSBs
LD2b (Load Data)

src2

M2 srcl
dst

long dst

r

See Note A
See Note A

v

Register
File B
(B0- B31)

sre2

Data Path B S

= srcl

dst
long dst
long src

32 MSBs
32 LSBs

ST2a (Store Data)
8T2b (Store Data) +

long src
long dst
dst

L2 src2

srcl

aedltlanalle sllalia

Control Register
File

Figure 3.4: TMS320C6416 DSP core data paths (from [14]).

NOTE A: For the .M functional units, the long dst is 32 MSBs and the dstis 32 LSBs.

33

Table 3.2: Functional Units (.L, .S) and Operations Performed (from [15])

| Function Unit

Fixed-Point Operations

Lunit (L1, .L2)

Sunit (.S1, .S2)

32/40-bit arithmetic and compare operations
32-bit it logical operations

Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts

Data packing/unpacking

5-bit constant generation

Dual 16-bit arithmetic.operations

Quad 8-bit-arithmetic operations

Dual 16-bit'min/max operations

Quad 8-bit-min/max-operations

Quad 8-bit subtract with absolute value

32-bit arithmetic operations

32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations

Branches

Constant generation

Register transfers to/from control register file (.S2 only)
Byte shifts

Data packing/unpacking

Dual 16-bit compare operations

Quad 8-bit compare operations

Dual 16-bit shift operations

Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

34

between the register files and the memory. The data address driven by the .D units allows
data addresses generated from one register file to be used to load or store data to or from
the other register file. The C6416 .D units can load and store bytes (8 bits), half-words
(16 bits), and words (32 bits) with a single instruction. And with the new data path
extensions, the C6416 .D unit can load and store doublewords (64 bits) with a single
instruction. Furthermore, the non-aligned load and store instructions allow the .D units
to access words and doublewords on any byte boundary. The C6416 DSP core supports
a variety of indirect addressing modes using either linear- or circular-addressing with 5-
or 15-bit offsets. All instructions are conditional, and most can access any one of the 64
registers. Some registers, however, are singled out to support specific addressing modes
or to hold the condition for conditional instructions (if the condition is not automatically
true).

The two .M functional units perform all multiplication operations. Each of the C64x
.M units can perform two 16x16=bit multiplies or four 8x8-bit multiplies per clock cycle.
The .M unit can also perform 16 *32-bit multiply operations, dual 16 16-bit multiplies
with add/subtract operations, and quad 8 8-bit multiplies with add operations. In addition
to standard multiplies, the C64x .M units include bit-count, rotate, Galois field multiplies,
and bidirectional variable shift hardware. The function units .M and .D are described in
Table 3.3.

The processing flow begins when a 256-bit-wide instruction fetch packet is fetched
from a program memory. The 32-bit instructions destined for the individual functional
units are “linked” together by “1” bits in the least significant bit (LSB) position of the
instructions. The instructions that are “chained” together for simultaneous execution (up
to eight in total) compose an execute packet. A 0 in the LSB of an instruction breaks
the chain, effectively placing the instructions that follow it in the next execute packet. A
C6416 DSP device enhancement now allows execute packets to cross fetch-packet bound-

aries. In the TMS320C62x/TMS320C67x DSP devices, if an execute packet crosses the

35

Table 3.3: Functional Units (.M, .D) and Operations Performed (from [15])

| Function Unit

Fixed-Point Operations

"M unit (M1, .M2)

.D unit (.D1, .D2)

16 x 16 multiply operations

16 x 32 multiply operations

Quad 8 x 8 multiply operations

Dual 16 x 16 multiply operations

Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operations
Bit expansion

Bit interleaving/de-interleaving

Galois Field Multiply

Rotation

Variable shift operations

32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset

Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant offset
Load and store non-aligned-words and double words

5-bit canstant offset generation

32-bit logical operations

Dual 16-bit arithmetic-operations

fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet,

while the remainder of the current fetch packet is padded with NOP instructions.

In the C64x DSP device, the execute boundary restrictions have been removed, thereby,
eliminating all of the NOPs added to pad the fetch packet, and thus, decreasing the over-
all code size. The number of execute packets within a fetch packet can vary from one to
eight. Execute packets are dispatched to their respective functional units at the rate of one
per clock cycle and the next 256-bit fetch packet is not fetched until all the execute pack-
ets from the current fetch packet have been dispatched. After decoding, the instructions
simultaneously drive all active functional units for a maximum execution rate of eight
instructions every clock cycle. While most results are stored in 32-bit registers, they can

be subsequently moved to memory as bytes, half-words, words, or doublewords. All load

and store instructions are byte-, half-word-, word-, or doubleword-addressable.

36

Cé2x/Ce7x CPU Céd4x CPU

CE2%/CETX CPU C64x CPU
Instruction fetch Instru;tlon .fetch Confrol registers oo
Control Instruction dispatch =%
—— ; Interrupt . ; 28
Instruction dispatch registers Advanced instruction Ad g 5‘5
control packing emﬁgﬁgn £3
Instruction decode Emulation Instruction decode
Data path 1 Data path 2
Data path 1 Data path 2
Register file A Register file B
A15-A0 B15-B0O
Register file A Register file B o he
pisier ok geer 1t | A31-A16 | | B31-B15

g [

Dual 32-bit load/store path

(dual 64-bit load path — C67x only) Duajes itloadislore paties

Figure 3.5: Block diagram for C62x.and €64x DSP core (from [15]).

Figure 3.5 compares the difference between-the C62x DSP core and the C64x DSP
core. By doubling the registers in“the register file'and doubling the width of the data
path as well as utilizing advanced instruction packing, the C6000 compiler can improve
performance with even fewer restrictions placed upon it by the architecture. These ad-
ditions and others make the C64x an even better compiler target than the original C62x

architecture, while reducing code size by up to 25%.

3.3 Data Transmission M echanism [15]

Many applications of the Matador family baseboards involve communication with the
host CPU in some manner. All applications at a minimum must be reset and downloaded
from the host, even if they are isolated from the host after that. Other applications need
to interact with a host program during the lifetime of the program. This may vary from a
small amount of information to acquiring large amounts of data.

Some examples:

37

e Passing parameters to the program at start time.
e Receiving progress information and results from the application.

e Passing updated parameters during the run of the program, such as the frequency

and amplitude of a wave to be produced on the target.
e Receiving alert information from the target.
e Receiving snapshots of data from the target.
e Sending a sample waveform to be generated to the target.
e Receiving full rate data.
e Sending data to be streamed at full rate.

These different requirements.require different levels of support to efficiently accom-
plish. The simplest method supported is-a‘mapping of Standard C++ 1/O to the Uniter-
minal applet that allows console-type 1/O on the host. This allows simple data input and
control and the sending of text strings to the user. The next level of support is given by
the Packetized Message Interface. This allows more complicated medium rate transfer of
commands and information between the host and target. It requires more software support
on the host than the Standard 1/0 does. For full rate data transfers the hardware supports
the creation of data streaming to the host, for the maximum ability to move data between
the target and host. On Quixote baseboard, a second type of busmaster communication
between target and host is available for use, the CPU Busmaster interface.

The primary CPU busmaster interface is based on the streaming model, where logi-
cally data is an stream between the source and destination. The model os more efficient
because the signaling between the two parties in the transfer can be kept to a minimum and
transfers can be buffered for maximum throughput. In addition, the Busmaster streaming

interface is fully handshook, so that no data loss can occur in the process of streaming.

38

DSP Baseboard

Peripheral I/O
|(Analog, Digital)
Hardware

DSP

PCI Bus to
Application

Figure 3.6: Block diagram of DSP streaming mode (from [11]).

For example, if the application cannot process.blocks fast enough, the buffers will fill,
then the busmaster region will fill, then busmastering:will stop until the application re-
sumes processing. When the busmaster stops, the DSP-will no longer be able to add data
to the PCI interface FIFO.

The DSP Streaming interface is bi-directional. Two streams can run simultaneously,
one running from the analog peripherals through the DSP into the application. This is
called the “Incoming Stream”. The other stream runs out to the analog peripherals. This
is the “Outgoing Stream”. In both cases, the DSP needs to act as a mediator, since there is
no direct access to analog peripherals from the host. Figure 3.6 shows the block diagram
of the DSP streaming mode.

DSP Streaming is initiated and started on the Host, using the Caliente component. On
the target, the DSP interface uses a pair of DSP/BIOS Device Drivers, Pciln (on the Out-
going Stream) and PciOut (on the Incoming Stream), provided in the Pismo peripheral
libraries for the DSP. They use burst-mode and are capable of copying blocks of data be-
tween target SDRAM and host bus-master memory via the PCI interface at instantaneous

rates up 264 MB/sec.

39

Design
conceptual
planning

Code & build
create project,
write sourcecode,
configuration file

Debug
Syntax checking,
probe points,
logaing, etc.

Analyze
real-time
debugging,
statistics, tracing

T

T

T

T

Figure 3.7: Simplified code composer studio development flow (from [17]).

In addition to the busmaster streaming interface, the DSP and the host also have a

lower bandwidth communication link called packetized message interface for sending

commands or side information between the host PC and the target DSP.

3.4 Code Composer Studio Introduction [16], [17]

TI’s Code Composer Studio (CCS) is a useful GUI tool to develop DSP codes. The CCS
contains simple components: concept/design, code/build, debug, analyze, and extends the

basic code generation tools witha set-of debugging and real-time analysis capabilities.

The phases of the development cycle are shown in Figure 3.7.

We briefly describe some of its features related our implementation. The details can

be found in [16] and [17].

1. Compiles your C code to generate the Common Object File Format (COFF) output

file.

2. Choose Run, Halt, Animate, or Run Free to start or stop to execution your program.

3. When the DSP halts, check the memory sections.

4. Probes the PC file stream into or from the target memory locations.

5. Counts the instruction cycles from the profile.

We can divide the software development into three steps.

40

Step 1: Write the C program like standard ANSI C code. Then use the debugger to profile

the C code to identify the inefficient areas in the code.

Step 2: Use the optimization techniques and intrinsic function to improve the perfor-
mance. Refine the C code procedures such as data type modifiers, compiler options,

intrinsics, and so on.

Step 3: Find the most time-critical areas and use the linear assembly code to replace the

C code. We can use the assembly optimizer to optimize the code.

In our work, we only focus on step 1 and step 2. Details for the optimization methods

are shown in the next chapter.

41

Chapter 4

DSP Implementation

In the earlier chapters, the backgrounds of uplink synchronization scheme and its related
function are given. We also described the environment of the DSP implementation. In
this chapter, we discuss the DSP implementation of uplink synchronization and its related
work on C6416 DSP. First, we describe the procedure of our implementation work. Sec-
ond, we illustrate some optimization methods using the features of C6416 and applied to
our implementation. Third, we discuss the-progress in-each part of our system with dif-
ferent methods. Because the compiler changesthe C program into assembly code, we can
see the parallel situation from the assembly‘code. The profile is for comparison between
the original floating-point code and the optimized fixed-point code. Finally at the end of
this chapter, we present some experimental results on the speed and the synchronization

performance of our implementation.

4.1 Procedure of the Implementation Work

Traditional development flows in the DSP industry have involved validating a C model
for correctness on a host PC or UNIX workstation and than painstakingly porting that C
code to hand coded DSP assembly language. The recommended code development flow
involves utilizing the C6000 code generation tools to aid in optimization rather than forc-
ing the programmer to code by hand in assembly. These advantages allow the compiler

to do all the laborious work of instruction selection, parallelizing, pipelining, and register

42

allocation. Figure 4.1 shows the phases in the 3-step software development flow.

4.2 Optimization Method

Speeding up the execution time of the OFDMA framing/deframing structure, the SRRC
filter, and the uplink synchronization scheme is the main task of our implementation.
In this section, we introduce the supported by the special features of C64x DSP. The

experimental results are discussed in the next section.

4.2.1 Configuring the Setting of Compiler Options

As we mentioned in section 3.4, the Code Composer Studio (CCS) is a useful GUI tool
for us to develop DSP codes. CCS compiles the C code and assembles it into the Common
Object File Format (COFF) file format::Compiler options control the operation of both the
compiler and the programs it runs: Praper configuration of the compiler options helps the
compiler to generate efficient assembly codes. The compiler tools include a shell program
(c16x), which you use to compile; assembly optimize, assemble, and link program in a
single step. The options described in Table 4:1 are obsolete or intended for debugging,
and could potentially decrease performance and increase code size. Avoid using these
options with performance critical code.

The options in Table 4.2 can improve performance but require certain characteristics
to be true.

Details for total compiler options can be found in [18]. The compiler option we usu-
ally use is —03, which represents the highest level of optimization available. In addition
to the optimization described in Table 4.2, —03 can perform other code size reducing op-
timization like: eliminating unused assignments, eliminating local and global common
subunused assignments, and removing functions that are never called.

In addition, we can specify program-level optimization by using the —pm option with

the —03 option. With program-level optimization, all of the source files are compiled

43

Phase 1:
Develop C Code

Write C code

¥

Compile

v

Profile

Yes

No

Complete

Refine C code

Phase 2:
Refine C Code

¥

Compile

v

Profile

Yes
optimization?,

Complete

Phase 3:
Write Linear
Assembly

Write linear assembly

¥
Assembly optimize
¥
Profile
No
Yes

(Complete)

Figure 4.1: Code development flow of C6000 (from [19]).

44

Table 4.1: Compiler Options to Avoid on Performance Critical Code (from [19])

Option Description
—gi—s/ These options limit the amount of optimization across C state-

—ss/-mg ments leading to larger code size and slower execution.

—mu Disables software pipelining for debugging. Use —ms2/-ms3
instead to reduce code size which will disable software pipelin-
ing among other code size optimizations.

—01/-o0 Always use —02/—-03 to maximize compiler analysis and opli-
mization. Use code size flags (—msn) to tradeoff between per-
formance and code size.

—mz Obsolete. On pre-3.00 tools, this option may have improved

your code, but with 3.00+ compilers, this option will decrease
performance and increase code size.

into one intermediate file giving:the compiler complete program view during compila-

tion. This creates significant advantage for determining pointer locations passed into a

function. Once the compiler determines two pointers do not access the same memory

location, substantial improvements can be made in software pipelined loops. Because the

compiler has access to the entire program, it performs several additional optimizations

rarely applied during file-level optimization:

o If a particular argument in a function always has the same value, the compiler re-

places the argument with the value and passes the value instead of the argument.

e |f areturn value of a function is never used, the compiler deletes the return code in

the function.

e If a function is not called, directly or indirectly, the compiler removes the function.

Also, using the —pm option can lead to better schedules for our loops. If the number of

iterations of a loop is determined by a value passed into the function, and the compiler can

45

determine what that value is from the caller, then the compiler will have more information

about the minimum trip count of the loop leading to a better resulting schedule.

4.2.2 Using Intrinsics [19]

The C6000 compiler provides intrinsics, special functions that map directly to C64x in-
structions, to optimize our C code quickly. All instructions that are not easily expressed
in C code are supported as intrinsics. Intrinsics are specified with a leading underscore
(L) and are accessed by calling them as we call a function. The table of TMS320C6000

C/C++ compiler intrinsics can be found in [19].

4.2.3 Software Pipelining

Pipeline is used to parallelize instructionexecution. The C64x pipeline has several fea-
tures that improves performance. ..Figure 412 shows'all the phases in each stage of the
C64x pipeline in sequential order, from left to right [13]. As shown in Figure 4.2, the
C64x has 11 phases, and the phases. are.grouped-into 3-pipeline stages: program fetch, in-
struction decode and execution. In the execution stage, most of the C64x instructions are
done in one phase. However, the load instruction needs five execution phases, the store
instruction needs three execution phases, the multiplication needs four execution phases,
and the branch needs six execution phases. If the sequential instructions need the result
of these kinds of multi-cycle instructions, there is a delay before the result is written to
the register file and available. Thus the NOP instruction is added to the program by the
compiler to represent one cycle delay. So 4, 2, 3, 5 NOPs are added following the load,
store, multiplication and branch instructions respectively.

Software pipelining is a technique which can be used to schedule instruction from a
loop so that multiple iterations of the loop execution in parallel. It is a great way to im-
prove performance. The concept of software pipelining consists of implementing parallel
instructions, filling delay slots with useful instructions, loop unrolling and maximizing

functional units usage. When we use the -02 or -03 compiler options, the compiler at-

46

Table 4.2: Compiler Options for Performance (from [19])

Option Description

—mh=n=% Allows speculative execution. The appropriate amount of pad-
el ding must be available in data memory to insure correct execu-
tion. This is normally not a problem but must be adhered to.

—mi<n=% Describes the interrupt threshold to the compiler. If you know
that NO interrupts will occur in your code, the compiler can
avoid enabling and disabling interrupts before and after sofi-
ware pipelined loops for a code size and performance improve-
ment. In addition, there is potential for performance improve-
ment where interrupt registers may be utilized in high register
presure loops.(See the TMS320C6000 Programmer’s Guide
(SPRU1398))

—rmii

—mitk Enables the compiler to use assumptions that allow it to be
more aggressive with certain optimizations. When used on lin-
ear assembly files, it acts like a .no_mdep directive that has

been defined for those linear assembly files. (See the
TME320C6000 Programmer’'s Guide (SPRU19E))

—03f Represents the highest level of optimization available. Various
loop optimizations are performed, such as software pipelining,
unroliing, and SIMD. Various file level charactenstics are also
used to improve performance.

—op2% Specifies that the module contains no functions or variables that
are called or modified from outside the source code provided to
the compiler. This improves variable analysis and allowed as-
sumptions.

—pm# Combines source files to perform program-level cptimization.

T Although —o3 is praferable, at a minimum use the —o option.
* Use the —pm option for as much of your program as possille.
& These options imply assertions about your application.

» DP = DC
S B N 7 .
Program Fetch Instruction Decoding Execution

8
!
o
E
!
w3

Figure 4.2: C64x fixed-point pipeline phases.

47

tempts to software pipeline code with the information that it gathers from the program.
If the compiler can gather the more information from the program, the result schedule
can be better. We may help the optimization work if the compiler by providing some

information to the compiler as described below.
L oop unrolling

Loop unrolling expands small loops so that all iterations of the loop appear. It can increase
the number of instructions available to execute in parallel. The compiler may automat-
ically unroll the loop or be suggested using the UNROLL pragma. The syntax of the
UNROLL pragma is:
#pragma UNROLL(n)
If possible, the compiler unrolls.the loop so there are n copies of the original loop.

But under the conditions listed below, the compiler will not do software pipelining [19]:
1. If aregister value lives too‘long,.the code is not software-pipelined.

2. If a loop has complex condition‘code-within the body that requires more than five

condition registers, the loop is not software pipelined.

3. A software-pipelined loop cannot contain function calls, including code that calls

the run-time support routines.

4. In a sequence of nested loops, the innermost loop is the only one that can be

software-pipelined.

5. If a loop contains conditional break, it is not software-pipelined.

4.2.4 Data Type Modification

The TMS320C6416 is a fixed-point DSP, so floating-point operations on C6416 DSP are
inefficient. This is the main reason we rewrite the original floating-point C code to fixed-

point version. We should use the 16-bit data type for multiplication inputs whenever

48

The fixed-point data formats at the TX side

) Framing Q01 ppr QLS 7y sRre 2B mET s Q5

The fixed-point data formats at the RX side

Q.15 Rx_SRRC Q.15 CP_ Q.15 Prcamb}c Q.15 FET Q16.15)
Correlation Correlation

De-framing —»

Figure 4.3: The fixed-point data formats at the TX side and the RX side.

possible because this data type can provide the most efficient use of the 16-bit multiplier
in C64x DSP. Figure 4.3 shows the data formats at the TX side and the RX side.

In the original floating-point version, TX_SRRC, Rx_SRRC and SYNC function need
lots of 32-bit by 32-bit floating-point multiply operations. In fixed-point version, we use
16-bit by 16-bit fixed-point multiply.eperationstgsinstead. In UL, the ranges of data val-
ues before IFFT and after FFT are’1, -1]. Also, the data values after IFFT and before FFT
are less than 1. Therefore, we set the put/output data-formats for Tx SRRC, Rx_SRRC
and SYNC as Q.15, which places the sign bitinthe leftmost and the remainder 15 bits are
fraction component. Compared with the other 16-bit data type, Q.15 can support the best
precision for the data which is less than 1.

We use the IFFT/FFT function from T1 C64x DSP library, which supports two types
of IFFT/FFT. The former is 32-bit input/output data type; the latter is 16-bit input/output
data type. The main reason we choose 32-bit input/output data type is that IFFT/FFT
data input must be scaled by the length of IFFT/FFT to prevent overflow. According to
IEEE 802.164a, length of IFFT/FFT is 21, If we choose 16-bit data type before IFFT,
only 4 bits can be used to represent the fixed-point value. In our implementation, the data
formats before IFFT is Q16.15. Q16.15 places the sign bit in the leftmost, followed by
16 bits integer and 15 bits fraction component. Compared with the other 32-bit data type,
Q16.15 can be easily transformed to the 16-bit Q.15 data type.

In order to evaluate the precision of fixed-point format, we compare the uplink syn-

49

Time synchronization errors under different Doppler shifts

1.00

095 --

0.90

0.85

Probability

0.75

0.70 L
0.000 0.025 0.050 0.075 0.100

Doppler shift (f,T,)

‘—.—eu‘or <8 (samples) —d—error < 6 =S—-error < 4 —&—error <2 ‘

Figure 4.4: Error distribution under.differentymaximum Doppler shifts using time domain
approach in fixed-point version.

chronization performance between_floating-point system and fixed-point system. Fig-
ure 4.4 shows the symbol time synchronization errors of the first coming signal under
different Doppler spreads using fixed-point version.

Compared with Figure ??, the uplink synchronization performance of the fixed-point
version is very close to that of the floating-point version. Therefore, the Q.15 format

fixed-point number is precise enough to the synchronization process.
4.3 Framing/Deframing Structure

4.3.1 Framing

In the original floating-point code, we implement the pseudo random binary sequence
(PRBS) generator to do pilot/preamble modulation in framing structure. The polynomial
for the PRBS generator is X! + X + 1, as Figure 2.7 shows. However, the initialization

vector of the PRBS is fixed. In the revised version, we only need to compute he PRBS

50

void PREZ pilot{unsigned char wk[Z12]){
unzigned short PRE3, msb &, FREZ right 2, 1i:
unsigned char temp, 1, rev:
PRES=0x0555;
for(i=0;1i<212;i++)
i
tenmp=(unsigned char) (PEE3) ;
for [j=rev=0; j < &; J++)1
ff bit - reverse for wk
rev = lrev =< 1) | (temp & 1):
temp >>= 1:
h

wk[i] =rew;

PRES right Z = (PRE3) >> 2]
msh & =({0x00FF) &((FRE3) * (PRE3 right 2));
FREES = (PREEZ >»> 8) * (msh 8 << 3):

Figure 4.5:<C code for PRBS generator.

wy, for the first symbol and use the same value for the other symbol. Figures 4.5 and 4.6
show the C code and the compiler’sfeedback for PRBS generator.

We also do some data type modification to reduce the complexity and to fit the data
type of the other program. The two versions of the C code are shown in Figure 4.7 and
the compiler’s feedback are shown in Figure 4.8.

However, it also has disqualified loop in our fixed-point version, which shown in
Figure 4.9. This is because we cannot remove the call function fread() in the for loop.

Table 4.3 shows a comparison of the performance for the floating-point version and

the fixed-point version. Both versions use —03 compiler option to do file-level software

pipelining.
4.3.2 Deframing

Compared with framing structure, deframing structure is used after the 2048 FFT block.

We need to implement the PRBS generator to do pilot/preamble modulation in framing

o1

JOFTWARE FIFPELINE INFORMATION

Loop source line N
Loop opening hrace source line @ 142
Loop closing brace source line : 154
Loop Unroll Multiple i
Enown Minirwan Trip Count 106
Friown Maximum Trip Count : 10a
Enown Max Trip Count Factor : 106
Loop Carried Dependency Bound(*) : 11
Tnpartitioned Resource Eound 11
Partitioned Resource Bound(®) v 13

Fezource Partition:
A—=ide BE-=ide

L units u] u}

.3 units = s it

I units 1 1

M units u] u}

. X cross paths 4 3

. T address paths 1 1

Long read paths a a

Long write paths u} o

Logical ops (.L3) u] a [.L or .3 unit)
bddition ops [.L3D) 14 24 [.L or .23 or .DI unit)
Bound{.L .3 .L3) 5 7

Bound{.L .3 .D .L3 .L3D) g 13+
3earching for software pipeline schedule at ...
ii = 13 Did not find schedule

ii = 14 3Fchedule found with 2 iterations in parallel done
Epilog not remowved
Collapsed epilog stages HEN |
Collapsed prolog stages i

Hinimwuwn recquired memory pad @ 0 hytes

Hinimun safe trip count : 1 j(after unrolling)

Figure 4.6: Compiler’s feedback for PRBS generator loop.

Table 4.3: Breakdown of Clock Cycles for Framing()

Number of Frames =1
Frame size=4*OFDMA Symbols | Floating-point version | Fixed-point version
Code size (bytes) 1944 2144
Number of execution 4 4
Max. cycles 161128 161902
Min. cycles 102416 11434
Avg. cycles 146253 124089
Total cycles 585013 496357

52

f % hefore modification #/
/7 UL preamble
for (n=0; n<Nsubcarrier; n++){
carrier n s = Nsubchannels*n + (perbase[(n+ps*s)% (Nsubchannels)] +
IDcell® (unsigned shortlceil (| (float) (n+1)/ (float)Nsubchannels)))% (Nsubchannels) ;

ifi [[wk[carrier_n_s/&]ﬁ<[carrier_n_s%8]]&[DXSD]]==DXSD 1
frameout [Z¥carrier n s]= FIEXED DOUBLE CONST(-1):;
else
fraweout[Z*carrier n s]= FIXED DOUELE CONST(1]:
framecut [Z¥%carrier n s+1]=0:
i
f% after wodification #/
ff UL preawmble
for (n=0; n<Nsubcarrier; n++){
k = (n<32) 7 1:2: ffoeili((float) (n+l)/ (float)Nsubchannels)) :
carrier n s=Nsubchannels¥*n+ (perbase[(n+ps*s) % (Nsubchannels)]+
IDhzell*k) % (Nsubchannels)

ifi [[wk[carrier_n_s/&]ﬁ<[carrier_n_s%8]]&[DXSD]]==DXSD 1
framecut[2¥carrier n s]= FIZED DOUELE CONST(-1):
else
frameout[2%carrier n s]= FIXED DOUELE CONST(1]:
framecut [Z¥%carrier n s+1]=0:

Figure 4.7: Two versions of C programs for framing.

structure. However, we need to do in-deframing:structure is to remove the pilot/preamble
data. That is to say, we do not-need.to-implement the PRBS generator in deframing
structure. That is why the complexity for the framing structure is much more than the
deframing structure We also do some data type modification to fit the data type of the
other related code.

Like framing(), we also have a disqualified loop in our fixed-point version, which
shown in Figure 4.10. This is because we cannot remove the call function fwrite() in the
for loop.

Table 4.4 shows a comparison of the performance for the floating-point version and

the fixed-point version.

4.4 |FFT/FFT Structure

In OFDMA system, the modulation/demodulation block can be done efficiently using
IFFT/FFT algorithm. According to standard IEEE 802.16a, length of IFFT/FFT () is

2048. In the original program, it handles the 32-bit floating-point data type input, output

53

/% before modification */

g SOFTWARE FIPELINE INFORMATICH
e Dizqualified loop: bad loop structure

SOFTWARE PIPELIMNE INFORMATICHN
Loop source line HEE
Loop opening brace source line : 76
Loop closing bhrace source line @ 95

o Frnown Minimanm Trip Count : 53
A Enown Maximun Trip Count : 53
A Enown Max Trip Count Factor H=N]
a Loop Carried Dependency Bound(®) : 23
; Unpartitioned Resource EBound HER=
o Partitioned Resource EBound|¥) PR

Fesource Partition:
b-=ide BE-=ide

H L units a 1

2 B units =1 oy

] .Dunit= o 2

] LM ounits a 3

A X cross paths o 3

A . T address paths . 1

a Long read paths] o

; Long write paths u] a

o Logical ops [.L3) a a [.L or .3 unit)
2 dddition ops [.L3D) 11 11 [.L or .53 or .DIv unit)
H Bound(.L .3 .L3) 4 5

H Boundi(.L .5 .I .L3 .L3D) g g

Searching for software pipeline schedule at
ii = 23 Did not find =chedule

] ii = 24 3Fchedule found with 2 iterations in parallel done
A Epilog not removed

H Collapsed epilog stages HER |

; Prolog not removed

2 Collapsed prolog stages Hamn!

o Hinimwon required mwemory pad : 0 bytes

2 Winimwumw safe trip count L

Figure 4.8: Compiler’s feedback for framing loop before and after optimization.

54

f/nDn_preamble carrier allocation
for (n=0;n<Nsubcarrier;:n++) {
carrier n 3 = Nsubchannels?*n+ (perbase[(n+ps*s) s (Nsubchannels)]+
IDcell® (unsigned short)ceilii(float) (n+1)/ (float)Nsubchannels))% (Naubchannels) ;

if {n==26 || n==L || n==(L+13)] || n==(L+27) || n==(L+40)){
if t[wk[carrier_n_s/ﬁ]{{[carrier_n_s%ajJ&[DKBDJJ==DKBD 1
frameout [2*carrier n s]= FIXED DOUBELE CONST(-1.33333333):
else
frameout [Z*carrier n s]= FIZED DOUBLE CONST(1.33333333):

frameout [Z*carrier n s+1]=0;

else{
fread(readin,sizeocf (float) ,2,1in);
frameout[2*earrier n s]=readin[0];
frameout[2*earrier n s+l1]=readin[1]:

Figure 4.9: A part of C code for framing.

for (n=0;n<Nsubcarrier;n++) {

if(n'=26 £&£ n'=L && n'=(L+13) ££ n'=(L+27) && n'=(L+40)) ffpilots: no handling

{
k = [(n<3z) 7 1:2; fSfoeil [((float) (n+l1)/ (float)Nsubchannels)) ;
carrier n s=Nsubchannels¥n+(perhase[(n+ps*s) % (Nsubchannels)]+
IDcell*k) % (Nsubchannels)
readout [0] =framein[z*carrier n s]:
readout[l1] =framein[z*ecarrier n =+1];
fwrite (readout,sizecf (FIXED) ,2,0ut) ;

Figure 4.10: A part of C code for deframing.

Table 4.4: Breakdown of Clock Cycles for Deframing()

Number of Frames =1
Frame size=4*OFDMA Symbols | Floating-point version | Fixed-point version
Code size (bytes) 1992 1992
Number of execution 4 4
Max. cycles 3010 3010
Min. cycles 93 93
Avg. cycles 2112 2112
Total cycles 8451 8451

55

Table 4.5: IFFT/FFT Function

| Functions | Description |

DSP_fft32x32 Extended precision, mixed radix FFT, rounding,
digit reversal, out of place.

Input and output: 32 bits, Twiddle factor: 32 bits.

DSP_fft32x32s | Extended precision, mixed radix FFT, digit reversal,
out of place, with scaling and rounding.

Input and output: 32 bits, Twiddle factor: 32 bits.

DSP_ifft32x32 | Extended precision, mixed radix IFFT, digit reversal,
out of place, with scaling and rounding.

Input and output: 32 bits, Twiddle factor: 32 bits.

and twiddle factor. In order to reduce the computation complexity due to lots of the
floating-point multiply operations, we use the IFFT/FFT function from Tl C64x DSP
library (DSPLIB) to instead.

DSPLIB is an optimized DSP Function Library.for'C programmers using TMS320C64x
devices. It includes many C-callable, assembly-optimized, general-purpose signal pro-
cessing routines. These routines-are typically-used in computation-intensive real-time
applications where optimal execution‘speed-is critical. By using these routines, we can
achieve execution speeds considerably faster than equivalent code written in standard
ANSI C language.

T1 DSPLIB can support several types of FFT function, which are given in [20]. The
original floating-point FFT code uses 32-bit data type input, output and twiddle factors.
In order to maintain the precision, we consider the following IFFT/FFT function shown
in Table 4.5.

Complex forward mixed radix 32- x 32-bit FFT with rounding (DSP _fft32x32) com-
putes an extended precision complex forward mixed radix FFT with rounding and digit
reversal. Input data z[], output data y[] and coefficients w[] are 32-bit. The output is re-
turned in the separate array y[] in normal order. The code uses a special ordering of FFT

coefficients (also called twiddle factors) and memory accesses to improve performance

56

in the presence of cache. The FFT coefficients (twiddle factors) are generated using the
program “tw_fft32x32”. No scaling is done with the routine; thus the input data must be
scaled by 2!°82 Y to completely prevent overflow. The routine uses log, N — 1 stages of
Cooley Tukey radix-4 DIF FFT and performs either a radix-2 or radix-4 DIF FFT on the
last stage depending on N. If IV is a power of 4, then this last stage is also a radix-4
transform, otherwise it is a radix-2 transform. In our work, we have 5 stages of radix-4
transform and 1 stage radix-2 transform.

Complex forward mixed radix 32- x 32-bit FFT with scaling (DSP _fft32x32s) com-
putes an extended precision complex forward mixed radix FFT with scaling, rounding and
digit reversal. DSP_fft32x32s and DSP _fft32x32 are very similar. The only difference is
that for DSP_fft32x32s, scaling by 2 takes place at each radix-4 stage except for the last
one. A radix-4 stage can add a maximum of 2 bits, which would require scaling by 4 to
completely prevent overflow. Thus, the input data‘must be scaled by 21082 N—ceilllogaN—1]

Complex inverse mixed radix-32- x 32-bit FFT with rounding (DSP_ifft32x32) com-
putes an extended precision complex ‘inverse mixed-radix FFT with rounding and digit
reversal. In reality we can re-use DSP_fft32x32'to perform IFFT, by first conjugating the
input, performing the FFT, conjugating again. This allows DSP _fft32x32 to perform the
IFFT as well. However if the double conjugation needs to be avoided then this routine
uses the same twiddle factors as the FFT and performs an IFFT. The change in the sign of
the twiddle factors is adjusted for in the routine. Hence this routine uses the same twiddle
factors as the DSP_fft32x32 routine.

Table 4.6 shows a comparison of the two FFT functions for NV = 2048. In order to
achieve better precision, we adopt DSP_ifft32x32 and DSP _fft32x32 to do IFFT/FFT.

As Table 2.3 shows, it needs 19203 real multiplications and 64259 real additions for
radix-4 DIF IFFT/FFT theoretically. Practically, the time DSP_ifft32x32/DSP _fft32x32
needed is 28811 clock cycles. We list the complexity and performance of IFFT/FFT in
Table 4.7.

S7

Table 4.6: Comparison of Different IFFT/FFT

Function DEP_ff52x52 DEP_fit%ixSls DEP_ifft32x32
Code 3ize (Bytes) L S)
Clock Cyeles 22211 22811 28811
Scaled Bits 11 & 11
Architecture 5 stages of radix-4 transform and 1 stage radiz-2 transform

Table 4.7: Complexity and Performance of IFFT/FFT Implementation

Needed Number of | Equivalent Number of | Performance
Clock Cycles Clock Cycles

[IFFT/FFT | 20311 | 28811 [705% |

Figure 4.11 shows a part of hand assembly code for DSP_fft32x32.

The reason for DSP_ifft32x32/DSP_fft32x32 only need fewer cycles is that it use some
intrinsics to reduce complexity. The 32 by.32 multiplies are done with a 1.5 bit loss in
accuracy. This comes about because the contribution of the low 16 bits to the 32 bit result
is not computed. In addition the contribution of the low * high term is shifted by 16 as
opposed to 15, for a loss of 0.5 bits after rounding. The real part of complex multiply is

given by

(X +7Y)x (C+jS) = _mpyhir(sil0, yt1 0) + _mpyhir(col0, xt1_0)

+ (_dotprsu2(ytl Oxt1 0, si10c010) << 1)

where the functions _mpyhir and _dotprsu2 are shown in Table 4.8.
Tables 4.9 and 4.10 show a comparison of the IFFT/FFT performance for the floating-

point version and the fixed-point version.

58

[4 pro]STDU
SUE
ADDAH
ADD
MPYHIE
MPTHIE
PACKZ
SUE
ADDAH

[!'B_proz] STDW
MPYHIE
MPYHIE
PACKZ
PACKZ
SUE
v
BDEC
MPYHIE
MPTHIE
PACKHZ
LDDW
LDDW
SUE
ADD

[4 prolSTDW
ADDAH
DOTERSUZ .
NPYHIE
PACKHZ
PACKZ
SUE
ADD

LDETE
L1
D1
LEE
M2
CM1E
L3532
N &
D2
D1T1
M2
M1
.51
L2
L1X
32X
.31
M2
M1
L3532
LDETL
LDATE
LEE
L1E
LDETE
D1

Hz

M1
L1
32
JLEX
L31E

E v 12 1:B ¥ 12 0, *B x_[B 12
L pie, A p3e, Loy 111
Ly 11 O, A p23r, Ay 110

E pOr, A plr, E v h2 0O

B co30, B yrz, E p4de

L =ilD, B_xtl, L ple

B =il0, B zolDd, B =il0col0
L xho, L xh20, A4 =tO

E v _h2 O, E polr, E_y hZ O

L w hl 1:4 v hl O, *A x 1[0]
B =130, BE_xtz, E pSe

A coZO, A yrOo, 4 pic

A =iZ0, A o020, A siZ0coz0
B co30, E_=i30, BE_co30si30
E fft jmp, &4 3, L ifj

L3, E]

LOOFP_¥, i

B co30, B_xtz, E p4r

L =iZ0, A yr0, L pir

B ytz, B_xtz, B yrixca

*B_wil[B 3],
*h wO[A 3],
B xpil,
B xpo,
E v h2a 1:B ¥ hZ 0O,

A coZ0:d =iz20
E colD:EBE _=il0
A xlipl, B x11
A x1ip0O, A xhOo

*B x_ [B_h2]

Loy 11 1, A p23z, Ay 11 1
B_wytixtz, E =i30co30, B p45r
A coZO, A xt0, A par

A yto, A xt0, A yrOxtO

E col0, E_=il0, E_col0silOo
E_xpoO, A xlip0, E x10

B xpl, A xl1pl, A xhl

1 :[25,2]

:[25,217[11+1] =coz0%ytO-

s[23,2]

s[25,2]v[h2] =

$[15,3]
$[15,3]
$[15,3]
$[15,3]
1 [26,2]
:[16,3]
i [16,3]
i [16,3]
i [16,3]
i [16,3]
B =P
;L 6.4]
$[37,1]
[17,3]
[17,3]
[17,3]
[7,4]
[7,4]
[7,4]
[7,4]
[28,2]
[28,2]
: 018,31
:[18,3]
:[18,3]
:[18,3]
:[&,4]
:[&,4]

B L T T

i

2i20%xt0) >>15
[sil0*ycil+
colld*xtl)>>15

[1»>16
xtO=xhO-xhz0

[1>>16

[1>>16

ify = (3 - f£ft_Jjmp)
®x11=x[1]-x[11p1]

xhO=x[0] +x[11]

[1>>16
x10=x[0] -x[11]
xhl=x[1]+=x[1l1lp1]

Figure 4.11: A part of assembly‘code for DSP_fft32x32.

Table 4.8: Used Compiler Intrinsics in DSP_ifft32x32/DSP _fft32x32

C Compiler Intrinsic |

Description |

int _mpyhir (int srcl, int src2);

Produces a signed 16 by 32 multiply.

int _dotprsu?2 (int srcl, uint src2);

The product of the first signed pair of
16-bit values is added to the product of
the unsigned second pair of 16-bit values
in srcl and src2.
215 is added and the result is sign
shifted right by 16.

59

Table 4.9: Breakdown of Clock Cycles for IFFT()

Number of Frames =1
Frame size=4*OFDMA Symbols

Floating-point version

Fixed-point version

Code size (bytes) 632 936
Number of execution 4 4
Max. cycles 21278850 35710
Min. cycles 20850744 35710
Avg. cycles 21164023 35710
Total cycles 84656093 142840

Table 4.10: Breakdown of Clock Cycles for FFT()

Number of Frames =1
Frame size=4*OFDMA Symbols

Floating-point version

Fixed-point version

Code size (bytes) 356 276
Number of execution 4 4
Max. cycles 22151436 32247
Min. cycles 22151436 32247
Avg. cycles 22151436 32247
Total cycles 88605744 128988

60

Table 4.11: Breakdown of Clock Cycles for TX_SRRC()

Number of Frames =1
Frame size=4*OFDMA Symbols | Floating-point version | Fixed-point version
Code size (bytes) 1864 1624

Number of execution 4 4
Max. cycles 48790975 6199459
Min. cycles 48772795 6199459
Avg. cycles 48782144 6199459
Total cycles 195128576 24797836

4.5 Transmission Filtering

4.5.1 Oversampling and SRRC Filter in the Transmitter

In order to provide the ability to simulate path delays at non-integer sample times, an
interpolator is added to the transmitter to yield.4-times oversampled transmitter output.
In our system, we adopt the 57-taps- SRRC filter with-o = 0.155. For the same reason,
we shorten the data type from 32-bit.floating-point to 16-bit fixed-point in the revised
program.

When we use —03 compiler option, the compiler can do software pipelining automati-
cally. However, Tx_SRRC() still has the disqualified loop in the call function mul_sum(),
which shown in Figure 4.12.

This is because the call function mul_sum() has serious data dependency problem.
mul_sum() is frequently used in Tx_SRRC(). This is the main reason why Tx_SRRC()
cannot achieve real-time processing.

Table 4.11 shows a comparison of the performance for the floating-point and the fixed-

point version. The fixed-point version is 7.87 times faster than the floating-point version.

4.5.2 Downsampling and SRRC Filter in the Receiver

Unlike Tx_SRRC(), RX_SRRC() has the qualified loop in the call function mul_sum(),

which shown in Figure 4.13.

61

woild mwual swm(FIXED #input, int j, FIXED #output, char tail)
{
char m, n:
FIZED DOUBLE TempOut0=0, TempOutl=0, TewmpOutz=0, TempOut3i=0;
for {m=mul per point;m>=({wul per point-3):m--j
1
TempoutO=TempOutO+input [m] *LPF _coefficient Ofm]:
if|{ (n=(w-1)) =>=0)
H
ifi{!ltail)
1
TempOutl=TempOutl+input [in] *LPF coefficient 1[n];
TempoutZ=TewmpOutZ+input [m] *LPF coefficient 2[n]:
Tempout3i=Tempout3+input [m] *LPF_coefficient 3[n]:

else

TempOoutl=Tempoutl+input [n] FLPF_coefficient 1[n];
TempOutZ=TempOutZ+input [n] *LPF_coefficient 2[n];
TempOut3i=TempOut3+input [n] *LPF coefficient 3[n]:;

H

output [0] =TempCutl>>15;
output[1] =Tempoutl>>15;
output[2] =Tempoutz>>15;
output [3] =Tempoutid>>15;

Lot LA PR PR PR PN VSO VRN PR PR P SO PU VU YU IS PR PR VU POV SO S PR PR DU P PN VU YO PRI TR TR PRI PR U YUY SOV S PR DU P PN VO U RO FRUG TR PR PR VU YO VSV ST PR TS DU PN VI VN VRO TR TR TR VU PN VU VU R TR TR RN TSN T *
i JOFTWARE PIPELINE INFORMATICN
iy Disgqualified loop: bad loop structure

T e e e e e e e e e e e e o e w

Figure 4.12: C code for mul_sum() in TX_SRRC().

62

wvoid mul sum{ FIXED *input, FIZED *output]{

char m;

FIXED DOUELE AccBuf=0;

for (w=0;w<57w++) AccBuf=AccBuf+ (FIZED DOUBLE) (input[m] *LPF coefficient[m]):
foutput = AeccBuf > 15;

S3CFTWAEE FIPELIME INFORMATICH

Loop source line = GBS
Loop opening brace source line @ EB6
Loop closing brace source line @ 66
Loop Unroll Multiple HEE 34
Enown Minimum Trip Count 14
Enown Maximum Trip Count : 14
Enown Max Trip Count Factor : 14
Loop Carried Dependency Bound(™) : 0O
Unpartitioned Resource Eound HE]
Partitioned Resource EBoundi(?*) : 2

FEesource Partition:
L-zide B-=side

.L units a o

.8 units a 1

I units ZF]

LM ounits ZF u]

X cross paths n]]

. T address paths 2 1

Long read paths n] o

Long write paths a o

Logical ops= (.L3) a] [.L or .3 unit)
Addition ops [.L3D) 2] [.L or .23 or .D unit)
Bound{.L .3 .L3) u] 1

Bound({.L .5 .I .LZ .L3D) e 1
Searching for software pipeline schedule at
ii = 2 Sechedule found with 6 iterations in parallel done

Collapsed epilog stages v

Proloy not entirely removed

Collapsed prolog stages : 3

Miniwwan recuired mewmory pad @ 40 hytes

Miniwwun safe trip count : 1 (after unrolling)

Figure 4.13: C code and compiler’s feedback for mul _sum() loop.

63

for(j=0;]3<29:3++)

fread (3RRC_tewp,sizeof (FIXED) ,2,1n);
SERC buffer real[28-3]=3RRC_temp[0] ;
SERC buffer imag[Z28-3]=3RRC_temp[1]:

Tty PR PR VN VU VSO PR PR PR POV SNV 0T PR TR TSN T S0 SO0 S PR PR TS DU V0 VN VU PR DU TR PR VU VEN R FRNC TR TR VU0 VUN VU0 VUL T DU PR VU VYO0 T PRI DU ST SOV TR PRI TR PN TS VI VRN VR PR P S PR VU VSN VR PR TR TR PR VRN YU VO, *
= SOFTWARE PIPELINE INFORMATION

e Disqualified loop: loop contains a call

O o e oo oo e] o e e o o o o o o o e e o e e e e oo e e] o o e o o o o L

Figure 4.14: C code and compiler’s feedback for Rx_SRRC() loop.

Table 4.12: Breakdown of Clock Cycles for RX_SRRC()

Number of Frames =1
Frame size=4*OFDMA Symbols | Floating-point version | Fixed-point version
Code size (bytes) 508 564
Number of execution 9216 9216
Max. cycles 23985 11991
Min. cycles 16866 2301
Avg. cycles 21868 2302
Total cycles 302305027 21215706

However, Rx_SRRC() also has the disqualified loop, which shown in Figure 4.14.
This is because the for loop contains the call function fread().
Table 4.12 shows a comparison of the performance for the floating-point and the fixed-

point version. The fixed-point version is 14.25 times faster than the floating-point version.

4.6 Uplink Synchronization Using Time Domain Approach

The main operations in the uplink synchronization are CP correlation and preamble cor-

relation. In this section, the preamble correlation is used by time domain approach.

4.6.1 CP_Correlation

CP_correlation() is the function to do the unlink synchronization stage I. In the original

program, we need to use 32-bit by 32-bit floating-point multiply operations. In T1 C6416

64

f% before modification %/
for (i=0; i<CP_downsampling samples;:i++)
i
*CP_real=*CP real+sync_buffer 1 real[i] *syne buffer 1 real[i+2045]+
sync_buffer 1 imagl[i] *sync buffer 1 imag[i+2048] :;
*CP imag=*CP imag+sync buffer 1 real[i] *syne buffer 1 imag[i+2048] -
syne_buffer 1 imag[i] *sync buffer 1 real[i+2045]:

Figure 4.15: C code in CP_correlation() before optimization.

DSP, the .M unit deals with 16-bit by 16-bit fixed-point multiply operations. In the revised
program, we shorten the data type from 32-bit floating-point to 16-bit fixed-point.

Software pipelining is also used in this function to improve the performance. In addi-
tion to use —03 compiler option to do software pipelining, we also do loop unrolling by
hand. The two versions of the C code are_shown in Figures 4.15 and 4.16. The clock
cycles of the two versions are 5474:and 1291. That is, the modified version is 4.24 times
faster than the original version.

After loop unrolling, some Kinds of-the original ‘code can be viewed as calculating
ali] * alj] + a[i + 1] * a[j + 1] where.a[7] is a 16-bit value. In this condition, the com-
piler use the C6000 instruction DOTP2 to replace the two 16-bit by 16-bit fixed-point
multiply operations and one 16-bit by 16-bit fixed-point addition operation. Details for
the instruction DOTP2 can be found in [13]. This is the main reason why we can reduce
the complexity. Figures 4.17 and 4.18 show the compiler’s feedback for the loop in the
CP_correlation function.

A comparison of the performance for the floating-point and the fixed-point version is
shown in Table 4.13. The fixed-point version is 13.39 times faster than the floating-point

version.

4.6.2 Preamble_correlation

Preamble_correlation() is the function to do the unlink synchronization stage 11 by using

time domain approach. Like CP_correlation(), Preamble _correlation() also needs to com-

65

/% after modification */

for (1=0;i<CP_downsampling samples:i=i+3)

i *CP_real=*CP real+sync buffer 1 realli] #sync _buffer 1 real[i+z2045]+
sync_buffer 1 imag(i] #sync_buffer 1 imag[i+z2045]+
sync_buffer 1 reall[i+l] *sync _buffer 1 real[i4+2049]+
sync_buffer 1 imag[i+l] *sync _buffer 1 imag[i+2049] +
sync_buffer 1 real[i+Z] *sync buffer 1 resal[i42Z050]+
syne buffer 1 imag[i+2] fsynce buffer 1 imag[i+2050] +
syne buffer 1 real[i+3] fsyne buffer 1 real[1i+4Z051]+
sync buffer 1 imag[i+3] *sync buffer 1 imag[i+2051]+
sync_buffer 1 real[i+4] *sync buffer 1 real[1+Z2052]+
sync_buffer 1 imag[i+4] *sync _buffer 1 imag[i+2052]+
sync_buffer 1 real[i+5] *sync buffer 1 real[i4+2053]+
sync_buffer 1 imag[i+5] *sync _buffer 1 imag[i+2053]+
sync_buffer 1 reall[i+6] *sync _buffer 1 real[i+2054]+
sync_buffer 1 imag[i+6] *synce buffer 1 imag[i+2054] +
sync_buffer 1 reall[i+7] *sync _buffer 1 real[i4+2055]+
sync_buffer 1 imag[i+7] *sync _buffer 1 imag[i+2055];

TCP dimag=¥CP imag+sync buffer 1 resl[i] #zyne buffer 1 imag[i+2048] -
syne buffer 1 imag[i] #zyne buffer 1 real[i4+2048]+
sync _buffer 1 real[i+l] *sync buffer 1 imag[i+2043] -
sync_buffer 1 imag[i+l1] *sync _buffer 1 real[i+2043]+
sync_buffer 1 real[i+Z] *sync_buffer 1 imag[i+Z050] -
sync_buffer 1 imag[i+Z] *sync buffer 1 real[i+2050]+
sync_buffer 1 real[i+3] *sync _buffer 1 imag[i+Z051] -
sync_buffer 1 imag[i+3] *sync _buffer 1 real[i+2051]+
sync_buffer 1 reall[i+4] *synec _buffer 1 imag[i+2052] -
sync_buffer 1 imag[i+4] *sync _buffer 1 real[i4+2052]+
sync_buffer 1 real[i+5] *syne buffer 1 imag[i+2053] -
syne buffer 1 imag[i+5] f2ynce buffer 1 real[14Z053]+
sync _buffer 1 real[i+6] *sync buffer 1 imag[i+Z054] -
sync_buffer 1 imag[i+6] *sync _buffer 1 real[i+2054]+
sync_buffer 1 real[i+7] *sync_buffer 1 imag[i+Z055] -
sync_buffer 1 imag[i+7] *sync _buffer 1 real[i+42055];

Figure 4.16: C code in CP_correlation() after optimization.

Table 4.13: Breakdown of Clock Cycles for CP _correlation()

Number of Frames =1
Frame size=4*OFDMA Symbols | Floating-point version | Fixed-point version
Code size (bytes) 860 756
Number of execution 512 512
Max. cycles 56247 1291
Min. cycles 660 99
Avg. cycles 768 o7
Total cycles 393507 29396

66

Loop source line 95

Loop cpening brace source line @ 99

Loop closing brace source line : 104
Loop Unroll Multiple HEE S 4
Enown Minimum Trip Count 1 64
Enown Maximum Trip Count HEN T
Enown Max Trip Count Factor HEN T
Loop Carried Dependency Bound(™) : 76
Unpartitioned Resource Bound o
Partitioned Resource Bound(*) : 16

Resource Fartition:
A-zide E-zide

L units=s a a

.2 units 1 a

I units=s 1z 12

M ounits= 4 4

¥ zross paths 5 5

. T address paths 16+ 16+

Long read paths u] u]

Long write paths u] u]

Logical ops (.L3) 1 2 [.L or .3 unit)
Addition ops [.L3D) =] [[.L or .3 or .D unit)
Bound(.L .5 .L3) 1 1

EBEound(.L .3 .D .L3 .L3I) =1 7

SGearching for software pipeline schedule at
ii = 76 Did not find schedule
ii 77 Did not find schedule
ii 79 Did not find schedule
Disgqualified loop: did not find schedule

Figure 4.17: Compiler’s feedback for CP_correlation() loop before optimization.

67

Loop source line » 98
Loop opening brace source line @ 99
Loop closing brace source line @ 132
Enown Minirgn Trip Count i
Fnown Maximum Trip Count i
Enown Max Trip Count Factor Higsic !
Loop Carried Dependency Bound(®) : 38
Unpartitioned Resource Bound g
Partitioned Resource Bound(*) r 16

Resource Partition:
h-zide E-zide

L unics= a a

3 units 1 a

D units 4 a8

M ounits a9 7

.X cross paths & 1g%*

. T address paths =] 11

Long read paths u] u]

Long write paths u] u]

Logical ops (.L3) u] u] [.L or .5 unit)
Addition ops [.L3D) 1 29 [.L or .53 or .D unit)
Bound(|.L .3 .L3) 1 a

Eound({.L .3 .I .L3 .L3D) 2 13

Searching for software pipeline schedule at
ii = 38 Schedule found with 2 iterations in parallel done

Epilog not removed
Collap=sed epilog stages
Collapsed prolog stages
Hinimum regquired memory pad
Minirmum safe trip count

Figure 4.18: Compiler’s feedback for CP_correlation() loop after optimization.

68

/% before modification */
for (user=0;user<2;user++)
i
real=0;
irag=0;
for (i=0:;i<Z048; i++)
{
if (user==0)
conplex_mul (grefl[Z*i], srefi[Z*i+1], &sync_buffer 1 real[2047-1i],
gzyne_buffer 1 imag[2047-i], &£temp real, stemp imag)
else //user==1
complex mul (Eref2 [2%i], sref2 [2%i+41], &sync_buffer 1 real[2047-1i],
gzync_buffer 1 imag[2047-i], &temp real, temp imag)
real=real+temp_real;
imag=imag+temp imag:
i
temp=(real>>15) ¥ (real>>15) +(imag>>15) ¥ (itmag>>15) ;
if (cemp>peak[user]]
{
peak[user] =temp:
location[user] =count;
i
}
void complex wul (FIZED *inl resal, FIXED #inl imag, FIXED *inZ real, FIXED *in2 imag,
FIXED DOUBLE *out_real, FIXED DOUELE *out_imag)
{
#out_resl= (FIXED DOUBLE) (FIXED MOUL(*inl real, (*inZ real))+FIXED MUL (*inl imad, (YinZ imag)));
*out_imag= (FIXZED DOUBLE) (FIXED MUL (*inl imag, (*inZ real))-FIZED MUL (*inl real, (*inZ_ imag)));

Figure 4.19: C code in Preamble_correlation() before optimization.

pute a lot of 32-bit by 32-bit floating-point-multiply operations to get the symbol start
time accuracy. In order to reducethe complexity, we-need to shorten the data type from
32-bit floating-point to 16-bit fixed-point in-order to satisfy the characteristics of C6416
DSP.

In the original program, it needs to call complex_mul() function in for loop. We rewrite
this part by doing complex multiplications directly to decrease the number of NOPs and
achieve better pipelining. Figures 4.19 and 4.20 show the two versions of the code.

The clock cycles of the two versions are 258148 and 8327. That is, the modified
version is 31 times faster than the original version. Figure 4.21 shows the compiler’s
feedback for the loop in the Preamble_correlation function. When we remove the call
function complex_mul() in the for loop, software pipelining can be done better. That is
the main reason why we can reduce the complexity.

Table 4.14 shows a comparison of the performance for the floating-point and the fixed-

point version. The fixed-point version is 379.53 times faster than the floating-point ver-

69

A% after wodification *f
for (user=0;user<2;user++)
{
real=0;
imag=0;
for(i=0;i<2045; i++)
{
if (user==0)
{
real=real+ refl[2%i] ¥sync buffer 1 real[z2047-1]
+refl[2%i+1] *syne _buffer 1 imag[2047-1];
imag=imag+refl[2*i+1] *syne buffer 1 real[Z2047-1]
-refl[2¥%i] *sync_buffer 1 imag[2047-1];
H
else f/user==
{
real=real+ refiZ[Z¥%i]¥sync buffer 1 reall[2047-1]
+refZ[2%i+1] *sync_lhuffer 1 imag[Z2047-1]:
imag=imag+refi [2*1i+1] *ayne buffer 1 real[2047-1]
—refZ[2%i] *syne buffer 1 imag[2047-1i]:

H
tewp=(real>>15) *(real>>15)+ (imag>>15) * (imag>>15) ;2
if (temprpeak[user])
{

peak[user]=temp;

location[user] =count;

Figure 4.20: C code in Preamble_correlation() after optimization.

70

/% before modification */

e e e 2] w
iy SOFTWARE PIPELINE INFORMATION
) Dizqusalified loop: kad loop structure

G LU VU P PRI VU VU PRI PR VOO VU PR PR VU PR TR VUN VIR PR VU VIR PRI DU VU VIR PR VU VU PR PR VU VI TR VU VU PR PR VN VI PR VU VU PRI TR VOO VR PR VU VIR PRI PR VU VI DU VU VU PR TR VUN VI PR VU VI PRI PR VU VR PR VU VN PR PR YU TR TR PR VI *

L LR R CR P LR C P CR LR L R LR LR LR LR LU R LR LR CR LR PR LR L R LR LR LU R LR PR LR LR LU0 LR LR LR LR LR LU0 LR LR PRI LR LR P LR LR AP R LI LR LR L L R L U L LR LU LU R LU LA TR LR *
; JOFTWARE PIPELINE INFORMATICI

- Loop source line y AR

- Loop opening brace source line : 195

» Loop closing brace source line @ 226

- Loop Unroll Multiple T AX
- Enown Miniwum Trip Counht : 51z
- Ernown Maximwum Trip Count : 51z
- Enown Max Trip Count Factor : 51z
¥ Loop Carried Dependency Bound(®) : 2

; Tnpartitioned Resource EBound HE =]

¥ Partitioned Resource Bound(¥®) HE=]

Fesource Partition:
h-side E-side

units o
units
units
units
cross paths
. T address paths
Long read paths
Long write paths
Logical ops [.LS)
dddition op=s ([.L3D)
Bound(.L .5 .L3)
Bound({.L .3 .I .L3 .L3D)
Searching for software pipeline schedule at

ii = & &chedule found with 3 iterations in parallel done
Epilog not entirely retmowved
Collapsed epilog stages r Al
Prolog not remowved
Collapsed prolog stages HEmn!
Hinimun redquired wemory pad @ 16 bytes
5 Minimuwn safe trip count 1 2 [(after unrolling)

i
o o

o+
Y

Moo oW

[.L or .5 unit)
[.L or .3 or .D unit)

[l N e R R o IO =Y 1
Lo T w0 e R O o IOY Y 1

=%
=%

Figure 4.21: Compiler’s feedback for Preamble_correlation() loop before and after opti-
mization.

71

Table 4.14: Breakdown of Clock Cycles for Preamble_correlation()

Number of Frames =1
Frame size=4*OFDMA Symbols | Floating-point version | Fixed-point version
Code size (bytes) 808 1416
Number of execution 256 256
Max. cycles 3160370 8327
Min. cycles 3160370 8327
Avg. cycles 3160370 8327
Total cycles 809054720 2131712

sion.

4.6.3 Complexity Analysis

The DSP chip has 2 units to perform multiplication and 6 units for addition. When we
analyze the complexity, we focus on the muiltiplications and the additions in our program.
The data amount we consider is‘4 OFDMA symbols,-equal to a frame. Each OFDMA
symbol has 2304 samples. We only dowuplink-syrachronization scheme on the first symbol
of one frame.

Figure 2.10 shows the structure of this time offset estimator using CP correlation
information. For the first 256 samples, the real multiplications we need is

256 % 4 = 1024.
—~~

complex multiplication

The real addition we need is

256 x 2 +255 x 2 = 1022.
~~ <~

from complex multiplication complex addition
For the other samples, the multiplications we need is
2 X 4 + 2 =10.

~— ~
complex multiplication modulus

The real additions we need is

2 X 2 + 1 = 9.
~~ ~—~
from complex multiplication from modulus

72

Table 4.15: Complexity and Performance of CP Correlation Implementation

Number of Frames =1 | Needed Number of | Equivalent Number of | Performance
Clock Cycles Clock Cycles

CP Correlation Case 1 682 1201 52.85%

CP Correlation Case 2 6 55 10.61%

The total real multiplications per frame is

1024 + 10 x 511 = 6134.
<~

range

The total real additions per frame is

1022 4+ 5 x 511 = 3577.
<~

range

We list the complexity and performance of CP correlation in Table 4.15.
Figure 2.14 shows the structure-usingpreamble correlation information. For each user,

the real multiplications we need is:

2048 x 4 X- 128 = 1048576.
—~— <~

complex multiplication .~Tang

8

The real additions we need is:

2048 x 2 x 128 42047 x 2 x 128 = 1048320.
~~ ~~ ~~ ~~
from complex multiplication Tange complex addition Tange

In our work, the number of users is 2. The total multiplications per frame is

1048576 x 2 = 2097152.
<~

user num

The total additions per frame is

1048320 x 2 = 2096640.
<~

user num
The total clock cycles we need is

1 1
2097152 x 3 + 2096640 x 6= 1398016.

We list the complexity and performance of preamble correlation in Table 4.16.

73

Table 4.16: Complexity and Performance of Preamble Correlation Implementation

Number of Frames =1 | Needed Number of | Equivalent Number of | Performance
Clock Cycles Clock Cycles

| Preamble Correlation | 1398016 | 2131712 | 65.58% |

10006

800

600

M ccles

O Float-point version

400

B Fixed-point version

200

framing IFFT TX_SERC EX_SERC §YNC FFT deframing

functions

Figure 4.22: Comparison between floating-pointversion and fixed-point version.

4.7 Conclusion in Optimization

Figure 4.22 shows the comparison between floating-point version and fixed-point version.
The clock cycle for IFFT/FFT is reduced from 84.6 and 88.6 Mcycles to 0.14 and 0.12
Mcycles, which is 99.83% and 99.85% reduction. The clock cycle for Tx _SRRC/Rx_SRRC
is reduced from 195.1 and 302.3 Mcycles to 24.7 and 21.2 Mcycles, which is 87.29% and
92.98% reduction. The clock cycle for SYNC is reduced from 809.4 Mcycles to 2.1
Mcycles, which is 99.73% reduction.

Framing/deframing and IFFT/FFT can achieve real-time computation, but SYNC and
Tx_SRRC/Rx_SRRC cannot for frame size=4xOFDMA symbols. The major reason
SYNC cannot aceieve real-time for frame size =4xOFDMA symbols is that the DSP
can only support 0.97 Mcycles but the SYNC function needs 2.1 Mcycles theoretically
and 4.3Mcycles practically. The SYNC function can achieve real-time computation for

frame size=19x OFDMA symbols. However, TXx_SSRRC/Rx_SRRC cannot achieve real-

74

time computation by using larger frame size. We need to rewrite TXx_SRRC/Rx_SRRC

function to do real-time processing.

75

Chapter 5

Conclusion and Future Work

5.1 Conclusion

We considered implementation of TDD OFDMA uplink synchronization scheme on TI’s
C6416 digital signal processor. The implementation is based on the code from [5], which
is floating-point version. We rewrote the-original‘code to fixed-point version. In or-
der to verify the accuracy of the fixed-point uplink synchronization scheme, the fram-
ing/deframing structure, Tx/Rx SRRCfilter-and IFFT/FFT have been also implemented.
For DSP implementation, we use.seme optimization methods to reduce computation
complexity. We use the software pipeline for faster execution. In our work, we try to
make use of the eight functional units of C6416 DSP and increase the parallel instructions
as much as we can. We use the TI DSPLIB function DSP _ifft32x32 and DSP _fft32x32
from TI’s DSPLIB to replace the original floating-point IFFT/FFT function. Overall, the
clock cycle for IFFT/FFT is reduced from 84.6 and 88.6 Mcycles to 0.14 and 0.12 Mcy-
cles, which is 99.83% and 99.85% reduction. The clock cycle for Tx_SRRC/Rx_SRRC
is reduced from 195.1 and 302.3 Mcycles to 24.7 and 21.2 Mcycles, which is 87.29%
and 92.98% reduction. The clock cycle for SYNC is reduced from 809.4 Mcycles to 2.1
Mcycles, which is 99.73% reduction. However, due to the malfunction of the Quixote
board, we are not able to actually transmit data between the DSP board and the host PC.
We are forced to simulate on the TI1 DSP simulator, which is built in the TI code composer

studio. Therefore, the simulation profile shown in this thesis may not be the exact profile

76

obtained from the DSP emulator operated on Quixote board. But we believe that the opti-
mizations we have done based on the DSP simulator are also valid on Quixote board, and
the improving rate should also be similar.

We introduced the TDD OFDMA uplink synchronization schemes in chapter 2. In
uplink, two methods were presented to do time synchronization. One is using the corre-
lation in the frequency domain and the other is in the time domain. The correlation in the
time domain has better performance when the channel is not slow fading. The time syn-
chronization errors are in some degree correlated to the channel model. Thus the guard
interval should be at least larger than two times of the delay spread. The DSP system was
introduced in chapter 3. We briefly described the structure of the Quixote DSP board,
the C6416 DSP chips ,the transmission mechanism and the Code Composer Studio. We
implemented our program into the DSP. The process and performance were recorded in

chapter 4.

5.2 Potential FutureWork

Due to the board hardware defect and/or system software bug, we are unable to run and
test our implementation on the DSP baseboard yet. The DSP implementation should be
executed on the DSP baseboard, and the streaming interface is needed to connect to the
Host PC in real time execution. The Host PC reads in the source data from the file in the
memory, and then it transfers the data to DSP through the streaming interface. After DSP

has processed data, it transfers data back to the Host PC.

77

Bibliography

[1]

[2]

3]

[4]

[5]

S. Kaiser and K. Fazel, “A spread-spectrum multicarrier multiple-access system for
mobile communications,” Proc. 1st Int. Workshop on Multicarrier Spread Spectrum,

pp. 45-56, Apr. 1997.

J. J. van de Beek, P. O. Borjesson, M. L. Boucheret, D. Landstrom, J. M. Arenas,
P. Odling, C. Ostberg, M. Wahlgvist, and S. K. Wilson, “A time and frequency
synchronization scheme for multiuser OFDM;*IEEE J. Select. Areas Commun., vol.

17, pp. 1900-914, Nov. 1999.

H. Sari and G. Karam, “Orthogonal frequency-division multiple access and its ap-
plication to CATV networks,” Eur., Trans. Telecommun., vol. 9, pp. 507-516, Dec.
1998.

IEEE Std 802.16a-2003, IEEE Standard for Local and Metropolitan Area Networks
— Part 16: Air Interface for Fixed Broadband Wireless Access Systems — Amend-
ment 2: Medium Access Control Modifications and Additional Physical Layer Spec-

ifications for 2-11GHz. New York: IEEE, April 1, 2003.

M. T. Lin, “Fixed and mobile wireless communication based on IEEE 802.16a TDD
OFDMA: Transmission filtering and synchronization,” M.S. thesis, Department of
Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,

June 2003.

78

[6] O. Edfors, M. Sandell, J. J. van de Beek, D. Landstrom, and F.
Sjoberg, “An introduction to orthogonal frequency-division multiplexing,”

http://courses.ece.uiuc.edu/ece459/spring02/ofdmtutorial.pdf.

[7] M. Morelli, “Timing and Frequency Synchronization for the Uplink of an OFDMA
System,” IEEE Trans. Commun., vol. 52, pp. 296-306, Feb. 2004.

[8] J. J. van de Beek et al., “ML estimation of time and frequency offset in OFDM
systems,” IEEE Trans. Signal Processing, vol. 45, no. 7, pp. 1800-1805, July 1997.

[9] C. K. Chang, “Investigation and design of FFT core for OFDM communication sys-
tems,” M.S. thesis, Department of Electronics Engineering, National Chiao Tung

University, Hsinchu, Taiwan, R.O.C., June 2002.

[10] ETSISMG, “Overall requirements ontheradio interface(s) of the UMTS,” Technical
Report ETR/SMG-21.02, v.3.0.0., ETSI, Valbonne, France, 1997.

[11] Innovative Integration, Quixote User’s Manual, Dec. 2003.

[12] Innovative Integration, Quixote Data Sheet, http://www.innovative-

dsp.com/support/datasheets/quixote.pdf.

[13] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide, liter-
ature no. SPRU189F, Oct. 2000.

[14] Texas Instruments, TMS320C6414T, TMS320C6415T, TMS320C6416T Fixed-Point
Digital Signal Processors, literature no. SPRS226A, Mar. 2004.

[15] Texas Instruments, TMS320C64x Technical Overview, literature no. SPRU395B,
Jan. 2001.

[16] Texas Instruments, Code Composer User’s Guide, literature no. SPRU296, Feb.
1999.

79

[17] Texas Instruments, TMS320C6000 Code Composer Studio Getting Started Guide,
literature no. SPRU509D, Aug. 2003.

[18] Texas Instruments, TMS320C6000 Optimizing Compiler User Guide, literature no.
SPRU187K, Oct. 2002.

[19] Texas Instruments, TMS320C6000 Programmer’s Guide, literature no. SPRU198G,
Aug. 2002.

[20] Texas Instruments, TMS320C64x DSP Library Programmer’s Reference, literature
no. SPRU565B, Oct. 2003.

80

o

Hfem AR L4 EL D AR AR - &2 BENRE

)

iiﬂﬁﬁélﬁﬁﬁ’j%kﬁi8@»@iii4§§;p;%$§,ﬁ;
MM AR GApMAT « AFY L2 E#2 P BERALE - AL HhY P S
FIEEE 802.16a A~ PFfE1 it 2 A4 5 £:8422 F 7k LT 3427 A fic 3 5

R BN R P RS RAES FE D K BELAIE R L dg e

