
國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

IEEE 802.16a 分時雙工正交分頻多重進接之上行

同步技術研討與在數位訊號處理器上的實現

Study and DSP Implementation of IEEE 802.16a

TDD OFDMA Uplink Synchronization

研 究 生: 林筱晴

指導教授: 林大衛 博士

 中 華 民 國 九 十 三 年 六 月

IEEE 802.16a 分時雙工正交分頻多重進接之上行同步技術研討與在

數位訊號處理器上的實現

Study and DSP Implementation of IEEE 802.16a

TDD OFDMA Uplink Synchronization

研 究 生: 林筱晴 Student：Hsiao Ching Lin

指導教授: 林大衛 博士 Advisor：Dr. David W. Lin

國 立 交 通 大 學

電子工程學系 電子研究所碩士班

碩 士 論 文

A Thesis

Submitted to Department of Electronics Engineering & Institute of Electronics

College of Electrical Engineering and Computer Science

National Chiao Tung University

in Partial Fulfillment of the Requirements

for the Degree of

Master

in

Electronics Engineering

June 2004
Hsinchu, Taiwan, Republic of China

中 華 民 國 九 十 三 年 六 月

 i

IEEE 802.16a 分時雙工正交分頻多重進接之上行

同步技術研討與在數位訊號處理器上的實現

研究生：林筱晴 指導教授：林大衛 博士

國立交通大學

電子工程學系 電子研究所碩士班

摘要

正交分頻多工 (OFDM) 技術可有效地解決通訊系統中的許多問題，如多重

路徑衰落、窄頻干擾等，多用戶正交分頻多工系統能依據使用者之需求將頻寬作

更有效之分配。在本篇論文中，我們使用數位訊號處理器去實現分時雙工正交分

頻多重進接環境下的上行同步機制。此數位訊號處理器的環境是 Innovative

Integration 公司的 Quixote 個人電腦插板，其上裝置為德州儀器公司的

TMS320C6416，是個擁有強大數學運算功能的處理器。

我們所處理的上行同步架構如下。上行傳輸需要作時間同步以偵測信號到達

的時間，如果估測錯誤會降低間格區間 (guard interval) 用來防止多重路徑延遲

造成符元間 (ISI) 干擾的能力。我們將上行同步分為兩級，第一級利用 OFDM 系

統特有之間格區間(guard interval) 估測 OFDM 符元(symbol) 大略的開始時間，

此乃由於間格區間使單一符元內具有高度的自相關。第二級利用上行傳輸前置資

 ii

訊 (preamble) 判斷估測 OFDM 符元(symbol) 精確的開始時間。我們嘗試用兩

種方式作時間同步的第二級，分別為在時間域及頻率域對收到的訊號與上行傳輸

前置資訊 (preamble) 作相關性 (correlation) 分析，找到具有最大相關性的時間。

為了降低在數位訊號處理器上的運算複雜度，我們先將原始的浮點運算 C

程式版本修改為實數運算的程式版本，接著再考慮數位訊號處理器—TMS320C64X

的特性來修改之前的程式。最後，我們在數位訊號處理器上加速了上行同步機制

達 374 倍。

在本篇論文中，我們首先簡介分時雙工正交分頻多重進接環境下的上行同步

機制。接著，我們介紹數位訊號處理器的運作環境。最後，我們描述利用數位訊

號處理器的特點以加速程式的方法並且提供一些關於執行速度與同步機制效能

方面的實驗結果。

 iii

Study and DSP Implementation of IEEE 802.16a

TDD OFDMA Uplink Synchronization

Student：Hsiao Ching Lin Advisor：Dr. David W. Lin

Department of Electronics Engineering

Institute of Electronics

National Chiao Tung University

Abstract

OFDM is an effective transmission scheme to cope with many transmission

impairments, such as multipath fading and narrowband interference. Multiuser OFDM

can provide highly flexible to allocate the bandwidth according to the needs of users.

In this thesis, we focus on the TDD OFDMA uplink synchronization based on IEEE

802.16a. We use digital signal processor to implement uplink synchronization

schemes. The digital signal processing environment is Innovative Integration’s

Quixote personal computer card, which hosts Texas Instruments’ TMS320C6416

which is a powerful signal processor with strong arithmetic operation capability.

Time synchronization is performed to detect the start time of symbols for uplink

synchronization. Time synchronization errors would decrease the ability of guard

interval to avoid ISI introduced by multipath channel. There are two stages in the

uplink synchronization. The first stages use the guard interval to estimate the OFDM

 iv

symbol start time roughly. The reason of using the guard interval is that it provides

strong autocorrelation within an OFDM symbol. The second stage uses the preamble

information to detect the symbol start time exactly. We present two schemes to do the

second stage. One is using the correlation of received signal with preamble in the time

domain and the other is in the frequency domain. The symbol start time is determined

as the location with maximum correlation value.

In order to decrease the computation complexity on the DSP, we rewrite the

original floating-point C programs to fixed-point version and further refine our codes

by taking into account the features of the DSP chip, TMS320C6416, to produce a

more efficient program. Overall, the final version for uplink synchronization schemes

is 374 times faster than the original version.

In this thesis, we first introduce to the TDD OFDMA uplink synchronization

schemes. Second, we describe the environment of DSP implementation. Finally, we

discuss the optimization methods using the features of C64x and present experimental

results on the speed and the synchronization performance.

 v

誌謝

 本論文承蒙恩師林大衛教授細心的指導與教誨，方得以順利完成。在兩年的

研究所生涯中，林教授不僅在學術研究上予以學生指導，在研究態度上亦給予相

當多的建議，在此對林教授獻上最大的感激之意。

此外，感謝通訊電子與訊號處理實驗室所有的成員，包含各位師長、同學、

學長姐與學弟妹們。我要感謝吳俊榮學長、洪昆健學長與林郁男學長給予我在研

究過程上的指導與建議，還有宗書、盈縈、明哲、明瑋、建統、仰哲、岳賢等同

學與學弟妹與我彼此勉勵、互相討論，讓我在這兩年的研究生涯充滿歡樂與回憶。

最後，我要感謝我的家人和朋友，在我的求學過程當中總是不斷的鼓勵我，

提供我心靈上的支持，陪我走過我的不安、徬徨、憂愁，也與我分享我的驕傲、

快樂、心得。

在此，我誠摯的對這些幫助過我的人表達我的謝意。

林筱晴

民國九十三年六月 於新竹

Contents

1 Introduction 1

2 Techniques for Uplink Synchronization 3
2.1 Background . 3
2.2 Overview of IEEE 802.16a . 5

2.2.1 OFDMA Carrier Allocation . 5
2.2.2 OFDMA Frame Structure . 6
2.2.3 System Architecture . 8

2.3 UL Synchronization Approach . 11
2.4 UL Synchronization . 11

2.4.1 Stage I: Using CP Correlation Property 11
2.4.2 Stage II: Using Preamble Correlation Property 13

2.5 UL Synchronization Result . 17
2.5.1 Preamble Correlation in Frequency Domain Approach 20
2.5.2 Preamble Correlation in Time Domain Approach 21
2.5.3 Comparison of UL Synchronization Using Time Domain Approach

and Frequency Domain Approach 23

3 DSP Introduction 26
3.1 DSP Board Introduction [11] . 26
3.2 DSP Core Introduction [13] . 28
3.3 Data Transmission Mechanism [15] . 37
3.4 Code Composer Studio Introduction [16], [17] 40

4 DSP Implementation 42
4.1 Procedure of the Implementation Work 42
4.2 Optimization Method . 43

4.2.1 Configuring the Setting of Compiler Options 43
4.2.2 Using Intrinsics [19] . 46
4.2.3 Software Pipelining . 46
4.2.4 Data Type Modification . 48

4.3 Framing/Deframing Structure . 50
4.3.1 Framing . 50
4.3.2 Deframing . 51

4.4 IFFT/FFT Structure . 53

vi

4.5 Transmission Filtering . 61
4.5.1 Oversampling and SRRC Filter in the Transmitter 61
4.5.2 Downsampling and SRRC Filter in the Receiver 61

4.6 Uplink Synchronization Using Time Domain Approach 64
4.6.1 CP Correlation . 64
4.6.2 Preamble correlation . 65
4.6.3 Complexity Analysis . 72

4.7 Conclusion in Optimization . 74

5 Conclusion and Future Work 76
5.1 Conclusion . 76
5.2 Potential Future Work . 77

vii

List of Figures

2.1 OFDM symbol structure in time. 3
2.2 Illustration of carrier usage in OFDMA UL. 5
2.3 Carrier allocation in the OFDMA UL (from [4]). 6
2.4 Frame structure of the TDD OFDMA system (from [4]). 7
2.5 UL transmitter structure. 8
2.6 UL receiver structure. 9
2.7 Pseudo Random Binary Sequence (PRBS) generator for pilot modulation. 10
2.8 Method of UL synchronization. 11
2.9 The structure of the ML time offset estimator (from [8]). 12
2.10 The structure of the proposed symbol time estimator. 13
2.11 Three UL signals arrive at different times, and the CP correlation peak

may occur between them (from [5]). 14
2.12 The received samples and the time plan of the UL synchronization stage

II (from [5]). 14
2.13 Illustration of UL synchronization stage II in frequency domain (from [5]). 15
2.14 Illustration of UL synchronization stage II in time domain (from [5]). . . 16
2.15 Frame structure used in UL synchronization. 19
2.16 Error distribution under different maximum Doppler shifts using frequency

domain approach. 20
2.17 Error distribution under different maximum Doppler shifts using time do-

main approach. 21
2.18 The multipath delay spread and the relative average power (The definition

of the Ref in the next figure). 22
2.19 Performance of UL time synchronization under different Doppler spreads. 23
2.20 Comparison of UL synchronization using frequency domain and time do-

main approach at velocity of 60 km/hr. 24

3.1 Block diagram of Quixote (from [12]). 27
3.2 Technical specification of Quixote (from [12]). 29
3.3 Block diagram for C6416 DSP (from [14]). 32
3.4 TMS320C6416 DSP core data paths (from [14]). 33
3.5 Block diagram for C62x and C64x DSP core (from [15]). 37
3.6 Block diagram of DSP streaming mode (from [11]). 39
3.7 Simplified code composer studio development flow (from [17]). 40

4.1 Code development flow of C6000 (from [19]). 44

viii

4.2 C64x fixed-point pipeline phases. 47
4.3 The fixed-point data formats at the TX side and the RX side. 49
4.4 Error distribution under different maximum Doppler shifts using time do-

main approach in fixed-point version. 50
4.5 C code for PRBS generator. 51
4.6 Compiler’s feedback for PRBS generator loop. 52
4.7 Two versions of C programs for framing. 53
4.8 Compiler’s feedback for framing loop before and after optimization. . . . 54
4.9 A part of C code for framing. 55
4.10 A part of C code for deframing. 55
4.11 A part of assembly code for DSP fft32x32. 59
4.12 C code for mul sum() in Tx SRRC(). 62
4.13 C code and compiler’s feedback for mul sum() loop. 63
4.14 C code and compiler’s feedback for Rx SRRC() loop. 64
4.15 C code in CP correlation() before optimization. 65
4.16 C code in CP correlation() after optimization. 66
4.17 Compiler’s feedback for CP correlation() loop before optimization. 67
4.18 Compiler’s feedback for CP correlation() loop after optimization. 68
4.19 C code in Preamble correlation() before optimization. 69
4.20 C code in Preamble correlation() after optimization. 70
4.21 Compiler’s feedback for Preamble correlation() loop before and after op-

timization. 71
4.22 Comparison between floating-point version and fixed-point version. . . . 74

ix

List of Tables

2.1 OFDMA UL Carrier Allocations . 7
2.2 Complexity for ML estimator and the Proposed Symbol Time Estimator . 13
2.3 Comparisons of Computational Complexity for Different FFT Algorithms 17
2.4 Complexity for Time Domain Approach and Frequency Domain Approach 17
2.5 System Parameters Used in Our Study 18
2.6 Characteristics of the ETSI “Vehicular A” Channel Environment 18
2.7 Relations Between Spread and Maximum Doppler Shift at Carrier Fre-

quency 6GHz and Subcarrier Spacing 5.58 kHz 19

3.1 Characteristics of TI C6416T Processors (from [14]) 30
3.2 Functional Units (.L, .S) and Operations Performed (from [15]) 34
3.3 Functional Units (.M, .D) and Operations Performed (from [15]) 36

4.1 Compiler Options to Avoid on Performance Critical Code (from [19]) . . 45
4.2 Compiler Options for Performance (from [19]) 47
4.3 Breakdown of Clock Cycles for Framing() 52
4.4 Breakdown of Clock Cycles for Deframing() 55
4.5 IFFT/FFT Function . 56
4.6 Comparison of Different IFFT/FFT . 58
4.7 Complexity and Performance of IFFT/FFT Implementation 58
4.8 Used Compiler Intrinsics in DSP ifft32x32/DSP fft32x32 59
4.9 Breakdown of Clock Cycles for IFFT() 60
4.10 Breakdown of Clock Cycles for FFT() 60
4.11 Breakdown of Clock Cycles for TX SRRC() 61
4.12 Breakdown of Clock Cycles for RX SRRC() 64
4.13 Breakdown of Clock Cycles for CP correlation() 66
4.14 Breakdown of Clock Cycles for Preamble correlation() 72
4.15 Complexity and Performance of CP Correlation Implementation 73
4.16 Complexity and Performance of Preamble Correlation Implementation . . 74

x

Chapter 1

Introduction

Orthogonal frequency-division multiple access (OFDMA) technique has attracted serious

attention in the last few years and has been proposed for the uplink of wireless commu-

nication systems [1], [2] and cable TV (CATV) networks [3]. In this thesis, we focus on

uplink synchronization based on IEEE 802.16a WirelessMAN OFDMA system [4].

Our intent is to implement the uplink synchronization scheme by using digital signal

processor (DSP). In order to verify the accuracy of the fixed-point uplink synchronization

scheme, the framing/deframing structure, IFFT/FFT block and Tx/Rx SRRC filter have

been also implemented.

The environment of our DSP implementation involves a host PC, DSP board and

DSP chip on the board. The DSP chip is Texas Instruments (TI)’s TMS320C6416. The

TMS320C6416 is a fixed-point DSP with 1.67 ns instruction cycle time. It adopts the ad-

vanced VelociTI Very Long Instruction Word (VLIW) architecture that enables sustained

throughput of eight instructions in parallel and thus allows the processor running faster.

In addition, the C64x device comes with on-chip program and data memories, which may

be configured as cache on some devices. The DSP board we use is Innovative Integra-

tion (II)’s Quixote. It is a PCI bus compatible DSP card housing one TI TMS320C3416

processor.

Our work is based on the code from [5]. In order to reduce the computation complex-

ity, we rewrite the original 32-bit floating-point version to 16-bit fixed-point version. We

1

also do some optimization methods to facilitate better parallelism after compilation.

The thesis is organized as follows. In chapter 2, we introduce the techniques for

uplink synchronization in detail. Chapter 3 introduces the DSP board and the DSP chip.

Chapter 4 discusses the optimization methods based on DSP properties and presents the

optimization results. Finally, the conclusion is given in chapter 5 and we point out some

potential future work.

2

Chapter 2

Techniques for Uplink Synchronization

2.1 Background

The basic idea of orthogonal frequency-division multiplexing (OFDM) is to divide the

available spectrum into a number of subchannels. To obtain high spectral efficiency, the

frequency response of the subchannels are overlapping but orthogonal, hence the name

OFDM. By introducing a cyclic prefix (CP), the orthogonality can be completely main-

tained even through the signal passes through a time-dispersive channel. The cyclic prefix

is a copy of the last part of the OFDM symbol which is prepended to the transmitted sym-

bol, as shown in Figure 2.1 [6].

Orthogonal frequency-division multiaccess (OFDMA) is a multiplexing technique in

which several users simultaneously transmit their own data by modulating an exclusive

set of orthogonal subcarriers. Its main advantage is that separating different users through

frequency-division multiaccess (FDMA) techniques at the subcarrier level can mitigate

Figure 2.1: OFDM symbol structure in time.

3

multiaccess interference (MAI) within a cell [7]. Also, compared with single-carrier

multiaccess, OFDMA offers increased robustness to narrowband interferences, allows

straightforward dynamic channel assignment, and does not need adaptive time-domain

equalizers, since channel estimation is performed in the frequency domain through one-

tap multipliers.

For all this to be true, however, proper time and frequency synchronization is neces-

sary to maintain orthogonality among the active users. Frequency offset due to Doppler

shifts and/or oscillator instabilities produce interchannel interference (ICI) that must be

counteracted to avoid severe error-rate degradations. Timing errors result in intersymbol

interference (ISI) between consecutive OFDM symbols. Using a guard interval (cyclic

prefix) provides intrinsic protection against timing errors at the expense of some reduc-

tion in the data throughput due to the extra overhead. However, timing accuracy becomes

a stringent requirement in practical applications where, to minimize the overhead, the

cyclic prefix is made only just greater than the length of the channel impulse response

(CIR).

In this thesis, we consider the IEEE 802.16a WirelessMAN OFDMA system [4]. Ac-

cording to the IEEE 802.16a standard, the duplexing method of OFDMA system in 2–11

GHz band shall be either FDD or TDD in licensed bands and TDD in license-exempt

bands. The traffic requirements of the downlink (DL) and uplink (UL) transmissions are

usually different. Compared with FDD mode, TDD mode supports more flexibility for

different traffic transport capacity. That is why we choose to study the TDD mode in this

thesis.

In this work, we focus on IEEE 802.16a TDD OFDMA uplink synchronization tech-

niques. According to IEEE 802.16a standard, all SSs shall acquire and adjust their timing

such that all uplink OFDM symbols arrive time coincident at the base station to a accuracy

of 50% of the minimum guard-interval or better. For the same reason, both the transmitted

center frequency and the symbol clock frequency shall be synchronized to the BS with a

4

Group 1 Group 2

Guard band Guard band

Group53

The 1696 used carriers = 1536 data carriers + 160 pilot carriers

DC carrier

pilot pilot

32 used carriers (including pilot carriers)

subchannel 2subchannel 1

Figure 2.2: Illustration of carrier usage in OFDMA UL.

tolerance of maximum 2% of the carrier spacing, which equals to 111.6 Hz in our work.

These limitations are very useful for UL synchronization scheme.

2.2 Overview of IEEE 802.16a

2.2.1 OFDMA Carrier Allocation

The FFT size used in the 802.16a OFDMA system is 2048, so there are 2048 carriers in

a channel. These carriers are divided into as three types: data carriers that are used for

data transmission, pilot carriers for various estimation purposes, and null carriers (guard

bands and DC carrier) which transmit nothing at all. The data and pilot carriers together

are termed the used carriers for they transmit useful information. The allocation is as

shown in Figure 2.2 for UL.

In the uplink, the set of used carriers is first partitioned into 32 subchannels, and then

the pilot carriers are allocated within each subchannel. Each subchannel may be trans-

mitted from a different SS. The used carriers of the UL transmission are partitioned into

fixed-location pilots, variable location pilots, and data subchannels. Within each subchan-

nel, there are 48 data carriers, 1 fixed-location pilot carrier, and 4 variable-location pilot

carriers. The allocation of pilot carriers is illustrated in Fig. 2.3.

5

Figure 2.3: Carrier allocation in the OFDMA UL (from [4]).

The fixed-location pilot is always at carrier 26 in the subchannel. The variable-

location pilots change locations in each symbol, repeating every 13 symbols, according

to
���������
	��
�������
������������	������
���
���
�������������

where � � 0 to 12. For � ���
the variable

location pilots are positioned at indices 0, 13, 27, 40. For other � values these locations

change by adding
� �

to each index. Thus due to the motion of the variable-location pilots,

the locations of data carriers also change with each symbol [4]. The parameters of the UL

are also shown in Table 2.1.

2.2.2 OFDMA Frame Structure

Figure 2.4 shows the TDD OFDMA frame structure. The frame structure is built from

BS and SS transmissions. Each TDD OFDMA frame is composed of a DL subframe and

a UL subframe. The duration of a frame is allowed from 2 ms to 20 ms and is specified

by the frame duration code. A subframe contains several transmission bursts, which are

composed of multiples of FEC blocks.

6

Table 2.1: OFDMA UL Carrier Allocations

Parameter UL Value

Number of DC carriers 1
Number of guard carriers, left 176

Number of guard carriers, right 175
Number of used carriers (���������) 1696

Number of total carriers (�) 2048
�	��
���
���������������� 128

Number of fixed-location pilots 32
Number of variable-location pilots which 0

coincide with fixed-location pilots
Number of total pilots 160

Number of data carriers 1536
�����������
"!#!$���%� 32

�����&���'
"�����(���"� per subchannel 53
Number of data carriers per subchannel 48)	*$+-,/.10�230"4�57698:2<;=*$>

3,18,2,8,16,10,11,15,
26,22, 6, 9,27,20,25,1,
29,7,21,5,28,31,23,17,
4,24,0,13,21,19,14,30

Figure 2.4: Frame structure of the TDD OFDMA system (from [4]).

7

Figure 2.5: UL transmitter structure.

From the UL-MAPs, the subscribers know their usable subchannels and transmission

time. The first symbol of the UL subframe is the all-pilot preamble where the SS should

send a preamble on all its allocated subchannels. The number of symbols of the UL is
� ��� � , one for the preamble and the others data transmitted bursts. The Tx/Rx transition

gap (TTG) and Rx/Tx transition gap (RTG) shall be inserted between the downlink and

uplink and at the end of each frame respectively to allow the BS to turn around. After the

TTG, the BS receiver shall look for the first symbols of a UL burst. After the RTG, the SS

receivers shall look for the first symbols of QPSK modulated data in the DL burst. TTG

and RTG shall be at least 5 � s and an integer multiple of four samples in duration.

2.2.3 System Architecture

Figure 2.5 shows the system structure of the UL transmitter.

The data is scrambled and FEC coded, while the preambles and pilots are not coded.

The BS has to receive various bursts from different SSs at the same time. Each SS has

to support one kind of coding and modulation types in a frame. The framing is used

to arrange the coded data, MAPs, preamble or pilots to the corresponding carriers and

8

Figure 2.6: UL receiver structure.

symbols following the specified frame structure and carrier allocation. After framing,

the used carriers and null carriers are ordered properly and fed into the 2048-point IFFT

block in parallel. The IFFT results are output sequentially and shaped by the pulse shaping

block.

The system structure of the UL receiver is as shown in Figure 2.6. The receiver oper-

ation is in some sense the reverse of the transmitter. Two blocks are added: synchronizer

and channel estimator. These two blocks and the FEC decoder are the most sophisticated

elements of the receiver.

In framing/deframing structure, we need some information such as carrier allocation

and UL parameters shown in Table 2.1. Pilot carriers shall be inserted into each data burst

in order to constitute the symbol and they shall be modulated according to their carrier

location within the OFDMA symbol. The PRBS generator is used to produce a sequence,

� � , where � corresponds to the carrier index. The value of the pilot modulation on carrier

� is then derived from � � . The polynomial for the PRBS generator is
�����
�
���
�
�
, as

Figure 2.7 shows.

For the UL, the initialization vector of the PRBS is � ���������������������	� . The PRBS shall

be initialized so that its first output bit coincides with the first usable carrier. A new value

shall be generated by the PRBS on every usable carrier. Each pilot shall be transmitted

with a boosting of 2.5 dB over the average power of each data tone. The pilot carriers

9

Figure 2.7: Pseudo Random Binary Sequence (PRBS) generator for pilot modulation.

shall be modulated according to the following formulas:

� *���� ��� � �
��� �		� � ��
 �
�<,����
��� � ���

For the UL preamble, all the used carriers are pilots. The initial vector of the PRBS

is the same as the normal UL pilot modulation. The pilots shall not be boosted and is

modulated as � *���� ��� � 	 � �	 � � ��
 �
�<,����
��� � ���
The details for the Tx/Rx SRRC filter we use are based on [5]. In order to provide

the ability to simulate path delays at non-integer sample times, an interpolator is added

to the transmitter to yield 4-times oversampled transmitter output. As the ideal lowpass

interpolation filter cannot be implemented exactly, the easier realized square root raised

cosine (SRRC) filter is used instead. The impulse response of the filter is given by

� ����� � 0�
 ����������� ��! �"$#&%('*) � � �,+
.- � � + ��! �"$#&%('*)0/�1 �2��� ��! �"$#&%('*) � � �3+
.-
� ��! �"$#4%$'*) � � �5� � + ��! �"$#4%$'*)
.67- �

where + is the roll-off factor. The reason of adopting the SRRC filter is that for this filter

the transmitter and receiver filters are matched to each other and there is no inter-sample

interference introduced in the receiver. In our work, the pulse-shaping block is regard as

the interpolator with 4-time oversampling and the roll-off factor 0.155 SRRC filter.

10

Figure 2.8: Method of UL synchronization.

2.3 UL Synchronization Approach

After doing DL synchronization, the mobile enters the time and frequency grid with a low

offset in time and frequency. The UL synchronization is unlike the DL synchronization

which requires complex frame synchronization at initialization. No frequency synchro-

nization is done in UL normal transmission. What the BS has to do is to detect the exact

UL symbol arrival time. The BS shall detect the arrival time of the first coming signal to

keep the symbol ISI free.

There are two stages in UL synchronization, which is shown in Figure 2.8. The first

stage uses cyclic prefix information to detect symbol start time roughly. The second stage

uses preamble information to detect symbol start time exactly. We present two schemes

to do the second stage. One is using the correlation of received signal with preamble

in the time domain and the other is in the frequency domain. The symbol start time is

determined as the location with maximum correlation value.

2.4 UL Synchronization

2.4.1 Stage I: Using CP Correlation Property

OFDM/OFDMA signals have strong auto-correlation properties of the waveforms. This

autocorrelation is a consequence of the cyclic prefix part of the waveform. The algorithm

in [2] and [8] uses the maximum likelihood (ML) criterion to estimate the time offset.

Under the assumption that received samples are jointly Gaussian distributed and uncorre-

lated except for the pairs of identical samples contained in the cyclic prefix, symbol time

11

Figure 2.9: The structure of the ML time offset estimator (from [8]).

offset �� is given by

�� �������	�
��� ��
 � � �
�
 ������� �
7� � (2.1)

where
� � �
������
�� ��

���
�

+ � �
�+�� � � � �

�
��� �
 � �

	 ���

�� ��
���
�

 + � �
�
 6 �
 + � � � �
�
 6 �

and � � �� "!�� "! � � with SNR being signal to noise ratio. Estimator (2.1) exploits the correla-

tion introduced by the cyclic prefix to estimate the offsets. The structure of the time offset

estimator is shown in Figure 2.9. Its strength is that it is independent of the modulation

and it does not need pilot symbols. It is a one-shot estimator in the sense that the estimates

are based on the observation of one OFDM symbol.

The symbol time offset estimator can be viewed as consisting of two parts: the cor-

relation
� � �
 which correlates the received sampled baseband signal,

+
, with a delayed

version of itself, and a part that compensates for the difference in energy in the correlated

samples. In order to reduce the complexity, we only employ the correlation part in our

work. As the samples of different OFDM symbols are uncorrelated, the peak of the slid-

ing sum of
+ � �
�+ � � � � �

would occur when the samples
+ � �
 �$#%#%# � + � � � � � � � �
 are

12

Figure 2.10: The structure of the proposed symbol time estimator.

Table 2.2: Complexity for ML estimator and the Proposed Symbol Time Estimator

No. of Real Multiplications No. of Real Additions

ML time offset estimator
	 ��� � 	���� �

Proposed symbol time estimator
����	 � ��� 	�	

all within the same OFDM symbol. Then, the symbol time offset estimator becomes

�� ����� � �
��� �
�
�
�
�

���
�� ��
���
�

+ � �
�+�� � � � �
 �
�
�
�
�

�
(2.2)

Figure 2.10 shows the structure of this estimator.

Table 2.2 shows a comparison of the complexity for ML time offset estimator and the

proposed symbol time estimator. In this table, we consider the complexity for the first

256 samples.

Different users’ transmitted signals may not arrive at the same time, but the correlation

peak may occur between them, as shown in Figure 2.11 for an example of three users. If

we use the detected peak location as the symbol start time, the corresponding useful time

will include a part of the guard interval of the next symbol for the earlier arriving signals.

Therefore, we have to find the exact instant of the first arriving signal to avoid ISI. This

is why we use preamble information in stage II. In stage II, we use preamble correlation

property to detect the symbol start time exactly.

2.4.2 Stage II: Using Preamble Correlation Property

In stage I, the symbol (frame) start time is roughly detected by using CP correlation peak.

We know that the actual arrival time of the first arriving signal is likely before the detected

13

CP

CP

CP

CP

CP

CP

useful time

Figure 2.11: Three UL signals arrive at different times, and the CP correlation peak may
occur between them (from [5]).

CP correlation peak location

The corresponding detected useful time

Useful time

stage II
stop timestart time

stage II

Figure 2.12: The received samples and the time plan of the UL synchronization stage II
(from [5]).

time. In stage II, we use preamble information to detect the symbol start time exactly. We

present two schemes to do stage II. One is using the correlation of received signal with

preamble in the frequency domain and the other is in the time domain. Figure 2.12 shows

the received samples of the BS and the time relation for stage II.

As the user arrival time may vary as much as 50% of the guard interval, we apply the

FFT and preamble correlation for the samples up to 50% of the guard interval earlier than

the corresponding detected useful time.

2.4.2.1 Frequency Domain Approach

In this section, we describe the UL synchronization stage II using the correlation of re-

ceived signal with preamble in frequency domain. Figure 2.13 illustrates the processing

14

peak
detector

peak
detector

peak location
and

peak value
compatator

FFTsamples within
useful time

used carrier 1

used carrier k

reference

reference

together

together

carriers of SS 1
 are summed

carriers of SS k
 are summed

First arriving signal
start time

From stage II start time to stop time At stage II stop time

Figure 2.13: Illustration of UL synchronization stage II in frequency domain (from [5]).

conducted in stage II. The FFT outputs are correlated with the preamble reference val-

ues. As the BS knows the allocation status of UL subchannel, the frequency correlation

is taken over all the subchannels used by each SS. When a new sample is received, the

frequency is updated. The correlation peak value and location of each SS is recorded.

This procedure is continued until the end of the corresponding useful time.

Then, the peak locations of different SSs are compared as follows. We start by as-

suming SS1 as the first coming signal. The peak location of SS2 is compared with that

of SS1. If the peak location of SS2 is earlier than SS1, then we check the peak correla-

tion value. The peak value is normalized by the number of subchannels each SS uses. If

(peak value/subchannel num) of SS2 is larger than SS1, the first coming signal is set to

SS2. After all SSs are compared, we get the start location of the first coming signal.

2.4.2.2 Time Domain Approach

In this section, we describe the UL synchronization stage II using the correlation of re-

ceived signal with preamble in time domain.

Since the carriers are orthogonal to each other, so are the subchannels. After IFFT, the

time domain signals which occupy different subchannels are uncorrelated if the channel

has zero delay spread. For the UL preamble, the transmitted value of each carrier is speci-

fied by the BS. Thus the signal transmitted by each SS in the UL preamble is deterministic

and the BS can produce the same signals as all SSs by taking IFFT. In this scheme, stage

15

sum of 2048
samples

sum of 2048
samples

r(k)~r(k+2047)

reference for SS 1

reference for SS k

r1(0)~r1(2047)

rk(0)~rk(2047)

peak
detector

peak
detector start time of SS 1

start time of SS k

Figure 2.14: Illustration of UL synchronization stage II in time domain (from [5]).

I is the same as the previous scheme, and stage II is as shown in Figure 2.14.

The received samples are correlated with reference data string. Each reference data

string is the IFFT output according to the subchannels used by each SS. When the next

sample arrives, the correlation is calculated again. The start and stop times of the correla-

tion are the same as shown in Figure 2.12.

The complexity of time domain correlation is less than frequency domain correlation.

This is because we need to do FFT in frequency domain correlation. In order to reduce

the complexity of FFT, the conventional FFT is only applied once. When a new data value

is received, the simplified FFT below is used:

� ! � �
 � � � !�� � � �
 ���1!�� ���1! �7*������
	� � (2.3)

where � is the FFT size, � is the carrier index,
6

is sample number, and � ! is the new

incoming sample. The simplified FFT requires
	 � complex additions and � complex

multiplications. Table 2.3 shows a comparison of computational complexity for different

FFT algorithm [9].

Table 2.4 shows a comparison of the complexity for time domain approach and fre-

quency domain approach. For time domain correlation, only 2048 complex multiplica-

tions and 2047 complex additions are needed. In our simulation, the guard interval is 256

samples and hence stage II is applied to 128 sample locations. For frequency domain

correlation, computation complexity depends on different type of FFT algorithm. After

16

Table 2.3: Comparisons of Computational Complexity for Different FFT Algorithms

Complexity No. of Real Multiplications No. of Real Additions

Radix-2 FFT
6� � � 1 � 6 � ���6 � � � �6 � � 1 � 6 � ���6 � � �

Radix-4 FFT
�� � � 1 � 6 � � � � � � 6 �� � � 1 � 6 � � � � � �

Radix-8 FFT
6 �6�� � � � 1 � 6 � � �
 � � �

�6�� � � 1 � 6 � � 6 �� � � �
Split-radix-4/2 FFT � � 1 � 6 � � � � � � � � � 1 � 6 � � � � � �

Simplified FFT
� � � �

Table 2.4: Complexity for Time Domain Approach and Frequency Domain Approach

Complexity No. of Real Multiplications No. of Real Additions

Time domain approach 1048576
��������� 	��

Frequency domain approach
Radix-2 + Simplified FFT

	�����������	 	������������
Radix-4 + Simplified FFT

	������������ 	�� ���������
Radix-8 + Simplified FFT

	������������ 	�� ����� 	�	
Split-radix-4/2 + Simplified FFT

	���� ��� � � 	�� � ����� �

calculation, the needed multiplications and additions of frequency domain correlation is

about 2 times that of time domain correlation.

2.5 UL Synchronization Result

Table 2.5 specifies the transmission parameters for our simulation. The uplink and down-

link use the same frequency bands. The intercarrier spacing is thus 5.58 kHz and the

symbol length (without cyclic prefix) is 179.2 � sec.

In this section, we select the channel environment defined by ETSI for the evaluation

of UMTS radio interface proposals. The time-varying channel impulse response for these

models can be described by

� �
	 � 0�
 � �
� + ��� 0�
�� �
	��
	��
 � (2.4)

This equation defines the channel impulse response at time
0

as a function of the lag 	 .

In this thesis, we will evaluate our synchronization algorithm for the choices of + � and 	��
17

Table 2.5: System Parameters Used in Our Study

Number of carriers (�)
	���� �

Center frequency
�

GHz
Uplink / Downlink bandwidth (

8��
)

���
MHz

Carrier spacing (���)
� � � �

kHz
Sampling frequency (���) ��� � ���

MHz
OFDM symbol time (�9�) 	���� � �

� ��� / (2304 samples)
Useful time (� �) ������� 	

� ��� / (2048 samples)
Cyclic prefix time (�	�) 	�	 � �

� ��� / (256 samples)

Table 2.6: Characteristics of the ETSI “Vehicular A” Channel Environment

tap relative delay (nsec or sample number) average power
(nsec) (4 oversampling) (normal) (dB) (normal scale) (normalized)

1 0 0 0 0 1.0000 0.4850
2 310 14 4 -1.0 0.7943 0.3852
3 710 32 8 -9.0 0.1259 0.0610
4 1090 50 12 -10.0 0.1000 0.0485
5 1730 79 20 -15.0 0.0316 0.0153
6 2510 115 29 -20.0 0.0100 0.0049

associated with the “Vehicular A” channel environment [10]. The channel taps + ��� 0�
 are

complex independent stochastic variables, fading with Jakes’ Doppler spectrum, with a

maximum Doppler frequency of 240 Hz, reflecting a mobile speed of approximately 120

km/hr (and scatterers uniformly distributed around the mobile). The real-valued 	7� and

the variance of the complex-valued + � are given in [10] and repeated in Table 2.6.

The SNR is chosen to be 10 dB in the fading channels. Note that the receiver SNR

specified in 802.16a is from 9.4 dB to 24.4 dB, so 10 dB , which is almost the worst

condition, is a reasonable value for simulation. The maximum Doppler shifts of our

simulation are shown in Table 2.7 for the speed from 0 km/hr to 100 km/hr.

The frame structure used in UL synchronization simulation is as shown in Figure 2.15.

UL burst1 is transmitted by SS1 using 8 subchannels. UL burst2 is transmitted by SS2

using 16 subchannels. UL burst3 is transmitted by SS3 using 8 subchannels. The TTG

and RTG each occupies 136 sample times. No ranging subchannel is provided.

18

Table 2.7: Relations Between Spread and Maximum Doppler Shift at Carrier Frequency
6GHz and Subcarrier Spacing 5.58 kHz

Speed (km/hr) Doppler shift (Hz) ��� � �
0 0 0

20 111 0.0224
40 222 0.0448
60 333 0.0672
80 444 0.0896
100 556 0.112

0

2

4

Pr
ea

m
bl

e
Pr

ea
m

bl
e

Pr
ea

m
bl

e

UL burst #1

UL burst #2

UL burst #3

k k+1 k+2 k+3

1

5
6
7
8
9

3

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

k−3n k−1

TTG RTGDL UL

su
bc

ha
nn

el
 n

um
be

r

OFDMA symbol number

DL burst

DL burst

DL−MAP
DL−MAP

Figure 2.15: Frame structure used in UL synchronization.

19

Figure 2.16: Error distribution under different maximum Doppler shifts using frequency
domain approach.

The arriving times of burst1 and burst2 differ by 25% of the guard interval, which

is 64 sample time, while burst3 lags burst1 by 50% of the guard interval, which is 128

sample times.

2.5.1 Preamble Correlation in Frequency Domain Approach

The probability of symbol time synchronization error for the first coming user is as shown

in Figure 2.16.

The reason for using the carrier correlation to find the symbol start time is that if there

is a time offset, the carrier phases will rotate. The phase rotation reduces the correlation.

If there is no Doppler shift, the synchronization is always correct. For larger Doppler

shifts, the inter-carrier interference causes serious variation of the post-FFT carrier values.

20

Figure 2.17: Error distribution under different maximum Doppler shifts using time do-
main approach.

Moreover, the signals passing through different fading channels of different SSs would

affect each other. Thus the synchronization performance is decreased as the Doppler

spread increases. We can see the performance drops significantly when the maximum

Doppler shift is larger than 0.025 ��� � � .

2.5.2 Preamble Correlation in Time Domain Approach

Figure 2.17 shows the symbol time synchronization errors of the first coming signal under

different Doppler spreads.

If the Doppler shift is zero (speed = 0 km/hr), we can always detect the correct symbol

start time of the first coming signal. When the speed increases, the distribution of the

time synchronization errors is closely related to the multipath channel. We have used this

channel model to obtain the time synchronization error distribution shown in Figure 2.18.

21

Figure 2.18: The multipath delay spread and the relative average power (The definition of
the Ref in the next figure).

Comparing the time synchronization error distribution with the model, we see that

the different time offsets obtained at synchronizer output almost concur with the sample

number of the multipath delays. Furthermore, the occurrence probabilities at the different

time offsets are proportional to the relative average power of the paths. The Doppler shift

has no obvious effects on this synchronization scheme except when it is very small.

As the correlation is done for each SS, we can detect the arriving time of each later ar-

riving signal. The time error distributions of the other SSs are similar to the previous con-

dition. Thus, Figure 2.19 shows that correlation in time domain approach is ideal for fixed

environments. For the mobile environments, the performance depends on how dispersive

the multipath channel is. For different SSs, the errors under different Doppler shifts (ex-

cluding the zero shift) are averaged and the probabilities are shown in Figure 2.19.

Now that the estimated time offset is approximately equal to the multipath delay, we

22

Figure 2.19: Performance of UL time synchronization under different Doppler spreads.

can safely say that, considering the guard interval, the minimum value of it should be

larger than 2 times the channel delay spread plus the sacrificed part of guard interval due

to pulse shaping. From Figure 2.17, 8 sample times earlier is reasonable for Doppler shift

smaller than 0.1 � � �9� . In our simulation, this value is equal to

	 � 	 � ���
� ��� �

�
�� � � � � �"����
�	 ��
 � ��
 �
�

��� �
���
����

�'
 �
 � � ��� � �
� � � ��	

� � � / �

2.5.3 Comparison of UL Synchronization Using Time Domain Ap-
proach and Frequency Domain Approach

Figure 2.20 shows the time synchronization error distribution of UL synchronization us-

ing frequency domain and time domain approach when the maximum Doppler shift is

0.067 (velocity 60 km/hr).

23

Figure 2.20: Comparison of UL synchronization using frequency domain and time do-
main approach at velocity of 60 km/hr.

24

Although the time offset estimated with correlation in frequency domain approach is

to some degree related with the channel delay, it is more dispersive than correlation in

time domain approach. The percentage of errors that are larger than 40 samples cannot

be neglected. So the ability of the guard interval to counter the channel impulse response

decreases. Moreover, the peak location of post-FFT correlation for the later signals cannot

be used due to their low accuracy. This is because for larger Doppler shifts, the inter-

carrier interference causes serious variation of the post-FFT carrier values. Comparing

these two schemes, the correlation in time domain is more accurate and demands less

complexity.

25

Chapter 3

DSP Introduction

In this thesis, we use digital signal processor (DSP) to implement the framing/deframing

operation, the Tx/Rx SRRC filter, and the uplink synchronization scheme. The DSP board

we use is Innovative Integration’s Quixote, which is powered by the TMS320C6416 DSP

from Texas Instruments (TI).

In this chapter, we focus on the environment of DSP implementation, which involves

the host PC, the Quixote DSP board, and the C6416 DSP chip on the board. First, we

introduce the DSP board and then the DSP core. The communication mechanism be-

tween the DSP core and the peripherals is also introduced. Last, we describe the code

development on the TI DSP.

3.1 DSP Board Introduction [11]

Quixote is Innovative Integration’s Velocia-family baseboard for wireless, RADAR, ul-

trasound, high energy physics and other demanding applications requiring speed and pro-

cessing power. It combines a 600 MHz 32-bit fixed-point Texas Instruments C6416 DSP

with two- or six- million-gate Xilinx Virtex-ll FPGA. Figure 3.1 gives a block diagram of

Quixote [12].

Quixote has a 32 MB SDRAM for use by the C6416 DSP. When used with the ad-

vanced cache controller on the C6416 DSP, the SDRAM provides a large, fast external

memory pool for DSP data and code. The C6416 cache controller is said to be effective

26

Figure 3.1: Block diagram of Quixote (from [12]).

to over 80% of on-chip memory performance for most DSP applications.

The analog interface offers 105 MHz 14-bit I/Q input channels and 105 MHz output

channels, all tightly coupled to the FPGA external interface. A 64-bit 33 MHz PCI in-

terface and one PMC site facilitate integration in PCI systems and support the addition

of off-the shelf and custom PMC mezzanine boards. Finally, a PCI-to-StarFabric bridge

chip offers two full duplex 2.5 Gbps ports to the new PICMG 2.17 switched interconnect

backplane, for up to 625 MBytes/sec board-to-board or chassis-to-chassis communica-

tion.

Figure 3.2 shows the technical specification of the Quixote [12]. In our work, we

only focus on the C6416 DSP chip to implement OFDMA synchronization structure and

27

some related block. However, our goal is to implement the overall OFDMA system,

including source coding, channel coding, framing/deframing, IFFT/FFT block, channel

model, synchronization scheme and channel estimation, on several Quixote board. In

the future work, we need to use the PCI-to-StarFabric bridge chip to do board-to-board

communication.

3.2 DSP Core Introduction [13]

TMS320C6416T DSP core is the latest architecture of 32-bit fixed-point DSP generation

in the C6000 DSP platform. It has 600 MHz clock rate and 4800 MIPS.

Table 3.1 provides an overview of the C6416 DSP. The table shows significant features

of the C6416 devices, including the capacity of on-chip RAM, the peripherals, the CPU

frequency, and the package type with pin count.

C6416 DSP uses a two-level cache-based architecture. The Level 1 program cache

(L1P) is a 16K-Byte direct mapped cache and the Level 1 data cache (L1D) is a 16K-

Byte 2-way set-associative cache. The Level 2 memory/cache (L2) consists of an 1024K-

Byte memory space that is shared between program and data space. L2 memory can be

configured as mapped memory or combinations of cache and mapped memory.

C6416 DSP chip also has two high-performance embedded coprocessors, which are

Viterbi Decoder Coprocessor (VCP) and Turbo Decoder Coprocessor (TCP). The two co-

processors are very useful for channel decoding. Communications between the VCP/TCP

and the CPU are carried through the EDMA controller. The enhanced direct memory ac-

cess (EDMA) controller transfers data between the memory without passing through the

DSP core.

The external memory interface (EMIF) provides the interface for the DSP core to

connect with several external devices, allowing additional data and program space. C6416

DSP has two EMIFs: the 64-bit EMIF A is interfaced to the SDRAM and the Virtex-ll

FPGA while the 16-bit EMIF B is primarily used for the streaming PCI interface.

28

Figure 3.2: Technical specification of Quixote (from [12]).

29

Table 3.1: Characteristics of TI C6416T Processors (from [14])

30

Figure 3.3 shows the block diagram of the C6416 DSP chip.

The DSP core features two sets of functional units. Each set contains four units and a

register file. One set contains functional units .L1, .S1, .M1, and .D1; the other set con-

tains units .D2, .M2, .S2, and .L2. The two register files each contain 32 32-bit registers

for a total of 64 general-purpose registers.

In addition to support the packed 16-bit and 32-/40-bit fixed-point data types found in

the C62x VelociTI VLIW architecture, the C64x register files also support packed 8-bit

data and 64-bit fixed-point data types. The two sets of functional units, along with two

register files, compose sides A and B of the DSP core. The four functional units on each

side of the CPU can freely share the 32 registers belonging to that side.

Additionally, each side features a “data cross path” — a single data bus connected to

all the registers on the other side, by which the two sets of functional units can access

data from the register files on the opposite side. The C6416 DSP core pipelines data-

cross-path accesses over multiple clock cycles. This allows the same register to be used

as a data-cross-path operand by multiple functional units in the same execute packet.

All functional units in the C6416 CPU can access operands via the data cross path.

Register access by functional units on the same side of the DSP core as the register file

can service all the units in a single clock cycle. Figure 3.4 shows the data path of the

C6416 DSP chip.

On the DSP core, a delay clock is introduced whenever an instruction attempts to read

a register via a data cross path if that register was updated in the previous clock cycle.

Another key feature of the C6416 DSP core is the load/store architecture, where all

instructions operate on registers. The function units .L and .S are described in Table 3.2.

The two .S and .L functional units perform a general set of arithmetic, logical, and

branch functions with results available every clock cycle. The arithmetic and logical

functions on the C64x CPU include single 32-bit, dual 16-bit, and quad 8-bit operations.

Two sets of data-addressing units (.D1 and .D2) are responsible for all data transfers

31

Figure 3.3: Block diagram for C6416 DSP (from [14]).

32

Figure 3.4: TMS320C6416 DSP core data paths (from [14]).

33

Table 3.2: Functional Units (.L, .S) and Operations Performed (from [15])

Function Unit Fixed-Point Operations

.L unit (.L1, .L2) 32/40-bit arithmetic and compare operations
32-bit it logical operations
Leftmost 1 or 0 counting for 32 bits
Normalization count for 32 and 40 bits
Byte shifts
Data packing/unpacking
5-bit constant generation
Dual 16-bit arithmetic operations
Quad 8-bit arithmetic operations
Dual 16-bit min/max operations
Quad 8-bit min/max operations
Quad 8-bit subtract with absolute value

.S unit (.S1, .S2) 32-bit arithmetic operations
32/40-bit shifts and 32-bit bit-field operations
32-bit logical operations
Branches
Constant generation
Register transfers to/from control register file (.S2 only)
Byte shifts
Data packing/unpacking
Dual 16-bit compare operations
Quad 8-bit compare operations
Dual 16-bit shift operations
Dual 16-bit saturated arithmetic operations
Quad 8-bit saturated arithmetic operations

34

between the register files and the memory. The data address driven by the .D units allows

data addresses generated from one register file to be used to load or store data to or from

the other register file. The C6416 .D units can load and store bytes (8 bits), half-words

(16 bits), and words (32 bits) with a single instruction. And with the new data path

extensions, the C6416 .D unit can load and store doublewords (64 bits) with a single

instruction. Furthermore, the non-aligned load and store instructions allow the .D units

to access words and doublewords on any byte boundary. The C6416 DSP core supports

a variety of indirect addressing modes using either linear- or circular-addressing with 5-

or 15-bit offsets. All instructions are conditional, and most can access any one of the 64

registers. Some registers, however, are singled out to support specific addressing modes

or to hold the condition for conditional instructions (if the condition is not automatically

true).

The two .M functional units perform all multiplication operations. Each of the C64x

.M units can perform two 16x16-bit multiplies or four 8x8-bit multiplies per clock cycle.

The .M unit can also perform 16 32-bit multiply operations, dual 16 16-bit multiplies

with add/subtract operations, and quad 8 8-bit multiplies with add operations. In addition

to standard multiplies, the C64x .M units include bit-count, rotate, Galois field multiplies,

and bidirectional variable shift hardware. The function units .M and .D are described in

Table 3.3.

The processing flow begins when a 256-bit-wide instruction fetch packet is fetched

from a program memory. The 32-bit instructions destined for the individual functional

units are “linked” together by “1” bits in the least significant bit (LSB) position of the

instructions. The instructions that are “chained” together for simultaneous execution (up

to eight in total) compose an execute packet. A 0 in the LSB of an instruction breaks

the chain, effectively placing the instructions that follow it in the next execute packet. A

C6416 DSP device enhancement now allows execute packets to cross fetch-packet bound-

aries. In the TMS320C62x/TMS320C67x DSP devices, if an execute packet crosses the

35

Table 3.3: Functional Units (.M, .D) and Operations Performed (from [15])

Function Unit Fixed-Point Operations

.M unit (.M1, .M2) 16 x 16 multiply operations
16 x 32 multiply operations
Quad 8 x 8 multiply operations
Dual 16 x 16 multiply operations
Dual 16 x 16 multiply with add/subtract operations
Quad 8 x 8 multiply with add operations
Bit expansion
Bit interleaving/de-interleaving
Galois Field Multiply
Rotation
Variable shift operations

.D unit (.D1, .D2) 32-bit add, subtract, linear and circular address calculation
Loads and stores with 5-bit constant offset
Loads and stores with 15-bit constant offset (.D2 only)
Load and store double words with 5-bit constant offset
Load and store non-aligned words and double words
5-bit constant offset generation
32-bit logical operations
Dual 16-bit arithmetic operations

fetch-packet boundary (256 bits wide), the assembler places it in the next fetch packet,

while the remainder of the current fetch packet is padded with NOP instructions.

In the C64x DSP device, the execute boundary restrictions have been removed, thereby,

eliminating all of the NOPs added to pad the fetch packet, and thus, decreasing the over-

all code size. The number of execute packets within a fetch packet can vary from one to

eight. Execute packets are dispatched to their respective functional units at the rate of one

per clock cycle and the next 256-bit fetch packet is not fetched until all the execute pack-

ets from the current fetch packet have been dispatched. After decoding, the instructions

simultaneously drive all active functional units for a maximum execution rate of eight

instructions every clock cycle. While most results are stored in 32-bit registers, they can

be subsequently moved to memory as bytes, half-words, words, or doublewords. All load

and store instructions are byte-, half-word-, word-, or doubleword-addressable.

36

Figure 3.5: Block diagram for C62x and C64x DSP core (from [15]).

Figure 3.5 compares the difference between the C62x DSP core and the C64x DSP

core. By doubling the registers in the register file and doubling the width of the data

path as well as utilizing advanced instruction packing, the C6000 compiler can improve

performance with even fewer restrictions placed upon it by the architecture. These ad-

ditions and others make the C64x an even better compiler target than the original C62x

architecture, while reducing code size by up to 25%.

3.3 Data Transmission Mechanism [15]

Many applications of the Matador family baseboards involve communication with the

host CPU in some manner. All applications at a minimum must be reset and downloaded

from the host, even if they are isolated from the host after that. Other applications need

to interact with a host program during the lifetime of the program. This may vary from a

small amount of information to acquiring large amounts of data.

Some examples:

37

� Passing parameters to the program at start time.

� Receiving progress information and results from the application.

� Passing updated parameters during the run of the program, such as the frequency

and amplitude of a wave to be produced on the target.

� Receiving alert information from the target.

� Receiving snapshots of data from the target.

� Sending a sample waveform to be generated to the target.

� Receiving full rate data.

� Sending data to be streamed at full rate.

These different requirements require different levels of support to efficiently accom-

plish. The simplest method supported is a mapping of Standard C++ I/O to the Uniter-

minal applet that allows console-type I/O on the host. This allows simple data input and

control and the sending of text strings to the user. The next level of support is given by

the Packetized Message Interface. This allows more complicated medium rate transfer of

commands and information between the host and target. It requires more software support

on the host than the Standard I/O does. For full rate data transfers the hardware supports

the creation of data streaming to the host, for the maximum ability to move data between

the target and host. On Quixote baseboard, a second type of busmaster communication

between target and host is available for use, the CPU Busmaster interface.

The primary CPU busmaster interface is based on the streaming model, where logi-

cally data is an stream between the source and destination. The model os more efficient

because the signaling between the two parties in the transfer can be kept to a minimum and

transfers can be buffered for maximum throughput. In addition, the Busmaster streaming

interface is fully handshook, so that no data loss can occur in the process of streaming.

38

Figure 3.6: Block diagram of DSP streaming mode (from [11]).

For example, if the application cannot process blocks fast enough, the buffers will fill,

then the busmaster region will fill, then busmastering will stop until the application re-

sumes processing. When the busmaster stops, the DSP will no longer be able to add data

to the PCI interface FIFO.

The DSP Streaming interface is bi-directional. Two streams can run simultaneously,

one running from the analog peripherals through the DSP into the application. This is

called the “Incoming Stream”. The other stream runs out to the analog peripherals. This

is the “Outgoing Stream”. In both cases, the DSP needs to act as a mediator, since there is

no direct access to analog peripherals from the host. Figure 3.6 shows the block diagram

of the DSP streaming mode.

DSP Streaming is initiated and started on the Host, using the Caliente component. On

the target, the DSP interface uses a pair of DSP/BIOS Device Drivers, PciIn (on the Out-

going Stream) and PciOut (on the Incoming Stream), provided in the Pismo peripheral

libraries for the DSP. They use burst-mode and are capable of copying blocks of data be-

tween target SDRAM and host bus-master memory via the PCI interface at instantaneous

rates up 264 MB/sec.

39

Figure 3.7: Simplified code composer studio development flow (from [17]).

In addition to the busmaster streaming interface, the DSP and the host also have a

lower bandwidth communication link called packetized message interface for sending

commands or side information between the host PC and the target DSP.

3.4 Code Composer Studio Introduction [16], [17]

TI’s Code Composer Studio (CCS) is a useful GUI tool to develop DSP codes. The CCS

contains simple components: concept/design, code/build, debug, analyze, and extends the

basic code generation tools with a set of debugging and real-time analysis capabilities.

The phases of the development cycle are shown in Figure 3.7.

We briefly describe some of its features related our implementation. The details can

be found in [16] and [17].

1. Compiles your C code to generate the Common Object File Format (COFF) output

file.

2. Choose Run, Halt, Animate, or Run Free to start or stop to execution your program.

3. When the DSP halts, check the memory sections.

4. Probes the PC file stream into or from the target memory locations.

5. Counts the instruction cycles from the profile.

We can divide the software development into three steps.

40

Step 1: Write the C program like standard ANSI C code. Then use the debugger to profile

the C code to identify the inefficient areas in the code.

Step 2: Use the optimization techniques and intrinsic function to improve the perfor-

mance. Refine the C code procedures such as data type modifiers, compiler options,

intrinsics, and so on.

Step 3: Find the most time-critical areas and use the linear assembly code to replace the

C code. We can use the assembly optimizer to optimize the code.

In our work, we only focus on step 1 and step 2. Details for the optimization methods

are shown in the next chapter.

41

Chapter 4

DSP Implementation

In the earlier chapters, the backgrounds of uplink synchronization scheme and its related

function are given. We also described the environment of the DSP implementation. In

this chapter, we discuss the DSP implementation of uplink synchronization and its related

work on C6416 DSP. First, we describe the procedure of our implementation work. Sec-

ond, we illustrate some optimization methods using the features of C6416 and applied to

our implementation. Third, we discuss the progress in each part of our system with dif-

ferent methods. Because the compiler changes the C program into assembly code, we can

see the parallel situation from the assembly code. The profile is for comparison between

the original floating-point code and the optimized fixed-point code. Finally at the end of

this chapter, we present some experimental results on the speed and the synchronization

performance of our implementation.

4.1 Procedure of the Implementation Work

Traditional development flows in the DSP industry have involved validating a C model

for correctness on a host PC or UNIX workstation and than painstakingly porting that C

code to hand coded DSP assembly language. The recommended code development flow

involves utilizing the C6000 code generation tools to aid in optimization rather than forc-

ing the programmer to code by hand in assembly. These advantages allow the compiler

to do all the laborious work of instruction selection, parallelizing, pipelining, and register

42

allocation. Figure 4.1 shows the phases in the 3-step software development flow.

4.2 Optimization Method

Speeding up the execution time of the OFDMA framing/deframing structure, the SRRC

filter, and the uplink synchronization scheme is the main task of our implementation.

In this section, we introduce the supported by the special features of C64x DSP. The

experimental results are discussed in the next section.

4.2.1 Configuring the Setting of Compiler Options

As we mentioned in section 3.4, the Code Composer Studio (CCS) is a useful GUI tool

for us to develop DSP codes. CCS compiles the C code and assembles it into the Common

Object File Format (COFF) file format. Compiler options control the operation of both the

compiler and the programs it runs. Proper configuration of the compiler options helps the

compiler to generate efficient assembly codes. The compiler tools include a shell program

(c16x), which you use to compile, assembly optimize, assemble, and link program in a

single step. The options described in Table 4.1 are obsolete or intended for debugging,

and could potentially decrease performance and increase code size. Avoid using these

options with performance critical code.

The options in Table 4.2 can improve performance but require certain characteristics

to be true.

Details for total compiler options can be found in [18]. The compiler option we usu-

ally use is –o3, which represents the highest level of optimization available. In addition

to the optimization described in Table 4.2, –o3 can perform other code size reducing op-

timization like: eliminating unused assignments, eliminating local and global common

subunused assignments, and removing functions that are never called.

In addition, we can specify program-level optimization by using the –pm option with

the –o3 option. With program-level optimization, all of the source files are compiled

43

Figure 4.1: Code development flow of C6000 (from [19]).

44

Table 4.1: Compiler Options to Avoid on Performance Critical Code (from [19])

into one intermediate file giving the compiler complete program view during compila-

tion. This creates significant advantage for determining pointer locations passed into a

function. Once the compiler determines two pointers do not access the same memory

location, substantial improvements can be made in software pipelined loops. Because the

compiler has access to the entire program, it performs several additional optimizations

rarely applied during file-level optimization:

� If a particular argument in a function always has the same value, the compiler re-

places the argument with the value and passes the value instead of the argument.

� If a return value of a function is never used, the compiler deletes the return code in

the function.

� If a function is not called, directly or indirectly, the compiler removes the function.

Also, using the –pm option can lead to better schedules for our loops. If the number of

iterations of a loop is determined by a value passed into the function, and the compiler can

45

determine what that value is from the caller, then the compiler will have more information

about the minimum trip count of the loop leading to a better resulting schedule.

4.2.2 Using Intrinsics [19]

The C6000 compiler provides intrinsics, special functions that map directly to C64x in-

structions, to optimize our C code quickly. All instructions that are not easily expressed

in C code are supported as intrinsics. Intrinsics are specified with a leading underscore

() and are accessed by calling them as we call a function. The table of TMS320C6000

C/C++ compiler intrinsics can be found in [19].

4.2.3 Software Pipelining

Pipeline is used to parallelize instruction execution. The C64x pipeline has several fea-

tures that improves performance. Figure 4.2 shows all the phases in each stage of the

C64x pipeline in sequential order, from left to right [13]. As shown in Figure 4.2, the

C64x has 11 phases, and the phases are grouped into 3 pipeline stages: program fetch, in-

struction decode and execution. In the execution stage, most of the C64x instructions are

done in one phase. However, the load instruction needs five execution phases, the store

instruction needs three execution phases, the multiplication needs four execution phases,

and the branch needs six execution phases. If the sequential instructions need the result

of these kinds of multi-cycle instructions, there is a delay before the result is written to

the register file and available. Thus the NOP instruction is added to the program by the

compiler to represent one cycle delay. So 4, 2, 3, 5 NOPs are added following the load,

store, multiplication and branch instructions respectively.

Software pipelining is a technique which can be used to schedule instruction from a

loop so that multiple iterations of the loop execution in parallel. It is a great way to im-

prove performance. The concept of software pipelining consists of implementing parallel

instructions, filling delay slots with useful instructions, loop unrolling and maximizing

functional units usage. When we use the -o2 or -o3 compiler options, the compiler at-

46

Table 4.2: Compiler Options for Performance (from [19])

Figure 4.2: C64x fixed-point pipeline phases.

47

tempts to software pipeline code with the information that it gathers from the program.

If the compiler can gather the more information from the program, the result schedule

can be better. We may help the optimization work if the compiler by providing some

information to the compiler as described below.

Loop unrolling

Loop unrolling expands small loops so that all iterations of the loop appear. It can increase

the number of instructions available to execute in parallel. The compiler may automat-

ically unroll the loop or be suggested using the
� � ��� � � pragma. The syntax of the

� � ��� � � pragma is:
��� +�2��<, 2�� � ��� � � � 6

If possible, the compiler unrolls the loop so there are
6

copies of the original loop.

But under the conditions listed below, the compiler will not do software pipelining [19]:

1. If a register value lives too long, the code is not software-pipelined.

2. If a loop has complex condition code within the body that requires more than five

condition registers, the loop is not software pipelined.

3. A software-pipelined loop cannot contain function calls, including code that calls

the run-time support routines.

4. In a sequence of nested loops, the innermost loop is the only one that can be

software-pipelined.

5. If a loop contains conditional break, it is not software-pipelined.

4.2.4 Data Type Modification

The TMS320C6416 is a fixed-point DSP, so floating-point operations on C6416 DSP are

inefficient. This is the main reason we rewrite the original floating-point C code to fixed-

point version. We should use the 16-bit data type for multiplication inputs whenever

48

Figure 4.3: The fixed-point data formats at the TX side and the RX side.

possible because this data type can provide the most efficient use of the 16-bit multiplier

in C64x DSP. Figure 4.3 shows the data formats at the TX side and the RX side.

In the original floating-point version, Tx SRRC, Rx SRRC and SYNC function need

lots of 32-bit by 32-bit floating-point multiply operations. In fixed-point version, we use

16-bit by 16-bit fixed-point multiply operations to instead. In UL, the ranges of data val-

ues before IFFT and after FFT are [1, -1]. Also, the data values after IFFT and before FFT

are less than 1. Therefore, we set the input/output data formats for Tx SRRC, Rx SRRC

and SYNC as Q.15, which places the sign bit in the leftmost and the remainder 15 bits are

fraction component. Compared with the other 16-bit data type, Q.15 can support the best

precision for the data which is less than 1.

We use the IFFT/FFT function from TI C64x DSP library, which supports two types

of IFFT/FFT. The former is 32-bit input/output data type; the latter is 16-bit input/output

data type. The main reason we choose 32-bit input/output data type is that IFFT/FFT

data input must be scaled by the length of IFFT/FFT to prevent overflow. According to

IEEE 802.16a, length of IFFT/FFT is
	 ���

. If we choose 16-bit data type before IFFT,

only 4 bits can be used to represent the fixed-point value. In our implementation, the data

formats before IFFT is Q16.15. Q16.15 places the sign bit in the leftmost, followed by

16 bits integer and 15 bits fraction component. Compared with the other 32-bit data type,

Q16.15 can be easily transformed to the 16-bit Q.15 data type.

In order to evaluate the precision of fixed-point format, we compare the uplink syn-

49

Figure 4.4: Error distribution under different maximum Doppler shifts using time domain
approach in fixed-point version.

chronization performance between floating-point system and fixed-point system. Fig-

ure 4.4 shows the symbol time synchronization errors of the first coming signal under

different Doppler spreads using fixed-point version.

Compared with Figure ??, the uplink synchronization performance of the fixed-point

version is very close to that of the floating-point version. Therefore, the Q.15 format

fixed-point number is precise enough to the synchronization process.

4.3 Framing/Deframing Structure

4.3.1 Framing

In the original floating-point code, we implement the pseudo random binary sequence

(PRBS) generator to do pilot/preamble modulation in framing structure. The polynomial

for the PRBS generator is
� ���
�
���
�
�
, as Figure 2.7 shows. However, the initialization

vector of the PRBS is fixed. In the revised version, we only need to compute he PRBS

50

Figure 4.5: C code for PRBS generator.

� � for the first symbol and use the same value for the other symbol. Figures 4.5 and 4.6

show the C code and the compiler’s feedback for PRBS generator.

We also do some data type modification to reduce the complexity and to fit the data

type of the other program. The two versions of the C code are shown in Figure 4.7 and

the compiler’s feedback are shown in Figure 4.8.

However, it also has disqualified loop in our fixed-point version, which shown in

Figure 4.9. This is because we cannot remove the call function fread() in the for loop.

Table 4.3 shows a comparison of the performance for the floating-point version and

the fixed-point version. Both versions use –o3 compiler option to do file-level software

pipelining.

4.3.2 Deframing

Compared with framing structure, deframing structure is used after the 2048 FFT block.

We need to implement the PRBS generator to do pilot/preamble modulation in framing

51

Figure 4.6: Compiler’s feedback for PRBS generator loop.

Table 4.3: Breakdown of Clock Cycles for Framing()

Number of Frames =1
Frame size=4*OFDMA Symbols Floating-point version Fixed-point version

Code size (bytes)
��� ��� 	������

Number of execution
� �

Max. cycles
��������	 � ��������� 	

Min. cycles
��� 	 ����� ���������

Avg. cycles
��� � 	�� � ��	 �������

Total cycles
� � ������� � ���������

52

Figure 4.7: Two versions of C programs for framing.

structure. However, we need to do in deframing structure is to remove the pilot/preamble

data. That is to say, we do not need to implement the PRBS generator in deframing

structure. That is why the complexity for the framing structure is much more than the

deframing structure We also do some data type modification to fit the data type of the

other related code.

Like framing(), we also have a disqualified loop in our fixed-point version, which

shown in Figure 4.10. This is because we cannot remove the call function fwrite() in the

for loop.

Table 4.4 shows a comparison of the performance for the floating-point version and

the fixed-point version.

4.4 IFFT/FFT Structure

In OFDMA system, the modulation/demodulation block can be done efficiently using

IFFT/FFT algorithm. According to standard IEEE 802.16a, length of IFFT/FFT (�) is

2048. In the original program, it handles the 32-bit floating-point data type input, output

53

Figure 4.8: Compiler’s feedback for framing loop before and after optimization.

54

Figure 4.9: A part of C code for framing.

Figure 4.10: A part of C code for deframing.

Table 4.4: Breakdown of Clock Cycles for Deframing()

Number of Frames =1
Frame size=4*OFDMA Symbols Floating-point version Fixed-point version

Code size (bytes)
����� 	 ����� 	

Number of execution
� �

Max. cycles
������� �������

Min. cycles
��� ���

Avg. cycles
	�����	 	�����	

Total cycles
��� ��� ��� ���

55

Table 4.5: IFFT/FFT Function

Functions Description

DSP fft32x32 Extended precision, mixed radix FFT, rounding,
digit reversal, out of place.

Input and output: 32 bits, Twiddle factor: 32 bits.
DSP fft32x32s Extended precision, mixed radix FFT, digit reversal,

out of place, with scaling and rounding.
Input and output: 32 bits, Twiddle factor: 32 bits.

DSP ifft32x32 Extended precision, mixed radix IFFT, digit reversal,
out of place, with scaling and rounding.

Input and output: 32 bits, Twiddle factor: 32 bits.

and twiddle factor. In order to reduce the computation complexity due to lots of the

floating-point multiply operations, we use the IFFT/FFT function from TI C64x DSP

library (DSPLIB) to instead.

DSPLIB is an optimized DSP Function Library for C programmers using TMS320C64x

devices. It includes many C-callable, assembly-optimized, general-purpose signal pro-

cessing routines. These routines are typically used in computation-intensive real-time

applications where optimal execution speed is critical. By using these routines, we can

achieve execution speeds considerably faster than equivalent code written in standard

ANSI C language.

TI DSPLIB can support several types of FFT function, which are given in [20]. The

original floating-point FFT code uses 32-bit data type input, output and twiddle factors.

In order to maintain the precision, we consider the following IFFT/FFT function shown

in Table 4.5.

Complex forward mixed radix 32- � 32-bit FFT with rounding (DSP fft32x32) com-

putes an extended precision complex forward mixed radix FFT with rounding and digit

reversal. Input data � � � , output data � � � and coefficients � � � are 32-bit. The output is re-

turned in the separate array y[] in normal order. The code uses a special ordering of FFT

coefficients (also called twiddle factors) and memory accesses to improve performance

56

in the presence of cache. The FFT coefficients (twiddle factors) are generated using the

program “tw fft32x32”. No scaling is done with the routine; thus the input data must be

scaled by
	������

�

to completely prevent overflow. The routine uses
� 1 � � � � �

stages of

Cooley Tukey radix-4 DIF FFT and performs either a radix-2 or radix-4 DIF FFT on the

last stage depending on � . If � is a power of 4, then this last stage is also a radix-4

transform, otherwise it is a radix-2 transform. In our work, we have 5 stages of radix-4

transform and 1 stage radix-2 transform.

Complex forward mixed radix 32- � 32-bit FFT with scaling (DSP fft32x32s) com-

putes an extended precision complex forward mixed radix FFT with scaling, rounding and

digit reversal. DSP fft32x32s and DSP fft32x32 are very similar. The only difference is

that for DSP fft32x32s, scaling by 2 takes place at each radix-4 stage except for the last

one. A radix-4 stage can add a maximum of 2 bits, which would require scaling by 4 to

completely prevent overflow. Thus, the input data must be scaled by
	 �����

�
 �<��������� � � ��� � �
	 .

Complex inverse mixed radix 32- � 32-bit FFT with rounding (DSP ifft32x32) com-

putes an extended precision complex inverse mixed radix FFT with rounding and digit

reversal. In reality we can re-use DSP fft32x32 to perform IFFT, by first conjugating the

input, performing the FFT, conjugating again. This allows DSP fft32x32 to perform the

IFFT as well. However if the double conjugation needs to be avoided then this routine

uses the same twiddle factors as the FFT and performs an IFFT. The change in the sign of

the twiddle factors is adjusted for in the routine. Hence this routine uses the same twiddle

factors as the DSP fft32x32 routine.

Table 4.6 shows a comparison of the two FFT functions for � = 2048. In order to

achieve better precision, we adopt DSP ifft32x32 and DSP fft32x32 to do IFFT/FFT.

As Table 2.3 shows, it needs 19203 real multiplications and 64259 real additions for

radix-4 DIF IFFT/FFT theoretically. Practically, the time DSP ifft32x32/DSP fft32x32

needed is 28811 clock cycles. We list the complexity and performance of IFFT/FFT in

Table 4.7.

57

Table 4.6: Comparison of Different IFFT/FFT

Table 4.7: Complexity and Performance of IFFT/FFT Implementation

Needed Number of Equivalent Number of Performance
Clock Cycles Clock Cycles

IFFT/FFT 20311 28811 70.5%

Figure 4.11 shows a part of hand assembly code for DSP fft32x32.

The reason for DSP ifft32x32/DSP fft32x32 only need fewer cycles is that it use some

intrinsics to reduce complexity. The 32 by 32 multiplies are done with a 1.5 bit loss in

accuracy. This comes about because the contribution of the low 16 bits to the 32 bit result

is not computed. In addition the contribution of the low * high term is shifted by 16 as

opposed to 15, for a loss of 0.5 bits after rounding. The real part of complex multiply is

given by

� � �����
 � � � ��� �
 �
mpyhir(si10, yt1 0) + mpyhir(co10, xt1 0)

� � dotprsu2(yt1 0xt1 0, si10co10) ��� �

where the functions mpyhir and dotprsu2 are shown in Table 4.8.

Tables 4.9 and 4.10 show a comparison of the IFFT/FFT performance for the floating-

point version and the fixed-point version.

58

Figure 4.11: A part of assembly code for DSP fft32x32.

Table 4.8: Used Compiler Intrinsics in DSP ifft32x32/DSP fft32x32

C Compiler Intrinsic Description

int mpyhir (int src1, int src2); Produces a signed 16 by 32 multiply.
int dotprsu2 (int src1, uint src2); The product of the first signed pair of

16-bit values is added to the product of
the unsigned second pair of 16-bit values

in src1 and src2.	 � �
is added and the result is sign

shifted right by 16.

59

Table 4.9: Breakdown of Clock Cycles for IFFT()

Number of Frames =1
Frame size=4*OFDMA Symbols Floating-point version Fixed-point version

Code size (bytes)
����	 �����

Number of execution
� �

Max. cycles
	���	���������� � �������

Min. cycles
	���� ��� � ��� � �������

Avg. cycles
	�������� ��	�� � �������

Total cycles
����� ��������� ��� 	�� � �

Table 4.10: Breakdown of Clock Cycles for FFT()

Number of Frames =1
Frame size=4*OFDMA Symbols Floating-point version Fixed-point version

Code size (bytes)
� � � 	����

Number of execution
� �

Max. cycles
	�	������������ � 	�	 � �

Min. cycles
	�	�������� ��� � 	�	 � �

Avg. cycles
	�	������������ � 	�	 � �

Total cycles
������� ��� ��� ��	��������

60

Table 4.11: Breakdown of Clock Cycles for TX SRRC()

Number of Frames =1
Frame size=4*OFDMA Symbols Floating-point version Fixed-point version

Code size (bytes)
������� ��� 	 �

Number of execution
� �

Max. cycles
��� ����������� ��������� ���

Min. cycles
� ������	������ ������� � ���

Avg. cycles
��� ��� 	������ ��������� ���

Total cycles
��� ����	�� ��� � 	 � ��� � �����

4.5 Transmission Filtering

4.5.1 Oversampling and SRRC Filter in the Transmitter

In order to provide the ability to simulate path delays at non-integer sample times, an

interpolator is added to the transmitter to yield 4-times oversampled transmitter output.

In our system, we adopt the 57-taps SRRC filter with + � ��� �����
. For the same reason,

we shorten the data type from 32-bit floating-point to 16-bit fixed-point in the revised

program.

When we use –o3 compiler option, the compiler can do software pipelining automati-

cally. However, Tx SRRC() still has the disqualified loop in the call function mul sum(),

which shown in Figure 4.12.

This is because the call function mul sum() has serious data dependency problem.

mul sum() is frequently used in Tx SRRC(). This is the main reason why Tx SRRC()

cannot achieve real-time processing.

Table 4.11 shows a comparison of the performance for the floating-point and the fixed-

point version. The fixed-point version is 7.87 times faster than the floating-point version.

4.5.2 Downsampling and SRRC Filter in the Receiver

Unlike Tx SRRC(), Rx SRRC() has the qualified loop in the call function mul sum(),

which shown in Figure 4.13.

61

Figure 4.12: C code for mul sum() in Tx SRRC().

62

Figure 4.13: C code and compiler’s feedback for mul sum() loop.

63

Figure 4.14: C code and compiler’s feedback for Rx SRRC() loop.

Table 4.12: Breakdown of Clock Cycles for RX SRRC()

Number of Frames =1
Frame size=4*OFDMA Symbols Floating-point version Fixed-point version

Code size (bytes)
����� �����

Number of execution
� 	���� � 	����

Max. cycles
	�������� ���������

Min. cycles
��������� 	������

Avg. cycles
	�������� 	���� 	

Total cycles
��� 	 ��� ��� 	�� 	���	����������

However, Rx SRRC() also has the disqualified loop, which shown in Figure 4.14.

This is because the for loop contains the call function fread().

Table 4.12 shows a comparison of the performance for the floating-point and the fixed-

point version. The fixed-point version is 14.25 times faster than the floating-point version.

4.6 Uplink Synchronization Using Time Domain Approach

The main operations in the uplink synchronization are CP correlation and preamble cor-

relation. In this section, the preamble correlation is used by time domain approach.

4.6.1 CP Correlation

CP correlation() is the function to do the unlink synchronization stage I. In the original

program, we need to use 32-bit by 32-bit floating-point multiply operations. In TI C6416

64

Figure 4.15: C code in CP correlation() before optimization.

DSP, the .M unit deals with 16-bit by 16-bit fixed-point multiply operations. In the revised

program, we shorten the data type from 32-bit floating-point to 16-bit fixed-point.

Software pipelining is also used in this function to improve the performance. In addi-

tion to use –o3 compiler option to do software pipelining, we also do loop unrolling by

hand. The two versions of the C code are shown in Figures 4.15 and 4.16. The clock

cycles of the two versions are 5474 and 1291. That is, the modified version is 4.24 times

faster than the original version.

After loop unrolling, some kinds of the original code can be viewed as calculating
2 � 4 ��� 2 � � � � 2 � 4 � �	��� 2 � � � �	� where

2 � 4 � is a 16-bit value. In this condition, the com-

piler use the C6000 instruction DOTP2 to replace the two 16-bit by 16-bit fixed-point

multiply operations and one 16-bit by 16-bit fixed-point addition operation. Details for

the instruction DOTP2 can be found in [13]. This is the main reason why we can reduce

the complexity. Figures 4.17 and 4.18 show the compiler’s feedback for the loop in the

CP correlation function.

A comparison of the performance for the floating-point and the fixed-point version is

shown in Table 4.13. The fixed-point version is 13.39 times faster than the floating-point

version.

4.6.2 Preamble correlation

Preamble correlation() is the function to do the unlink synchronization stage II by using

time domain approach. Like CP correlation(), Preamble correlation() also needs to com-

65

Figure 4.16: C code in CP correlation() after optimization.

Table 4.13: Breakdown of Clock Cycles for CP correlation()

Number of Frames =1
Frame size=4*OFDMA Symbols Floating-point version Fixed-point version

Code size (bytes)
����� �����

Number of execution
����	 ����	

Max. cycles
��� 	 � � ��	 ���

Min. cycles
����� ���

Avg. cycles
����� ���

Total cycles
����� ��� � 	��������

66

Figure 4.17: Compiler’s feedback for CP correlation() loop before optimization.

67

Figure 4.18: Compiler’s feedback for CP correlation() loop after optimization.

68

Figure 4.19: C code in Preamble correlation() before optimization.

pute a lot of 32-bit by 32-bit floating-point multiply operations to get the symbol start

time accuracy. In order to reduce the complexity, we need to shorten the data type from

32-bit floating-point to 16-bit fixed-point in order to satisfy the characteristics of C6416

DSP.

In the original program, it needs to call complex mul() function in for loop. We rewrite

this part by doing complex multiplications directly to decrease the number of NOPs and

achieve better pipelining. Figures 4.19 and 4.20 show the two versions of the code.

The clock cycles of the two versions are 258148 and 8327. That is, the modified

version is 31 times faster than the original version. Figure 4.21 shows the compiler’s

feedback for the loop in the Preamble correlation function. When we remove the call

function complex mul() in the for loop, software pipelining can be done better. That is

the main reason why we can reduce the complexity.

Table 4.14 shows a comparison of the performance for the floating-point and the fixed-

point version. The fixed-point version is 379.53 times faster than the floating-point ver-

69

Figure 4.20: C code in Preamble correlation() after optimization.

70

Figure 4.21: Compiler’s feedback for Preamble correlation() loop before and after opti-
mization.

71

Table 4.14: Breakdown of Clock Cycles for Preamble correlation()

Number of Frames =1
Frame size=4*OFDMA Symbols Floating-point version Fixed-point version

Code size (bytes)
����� �������

Number of execution
	���� 	����

Max. cycles
������������� ����	��

Min. cycles
��������� � � ��� 	��

Avg. cycles
������������� ����	��

Total cycles
������� � � ��	 � 	�����������	

sion.

4.6.3 Complexity Analysis

The DSP chip has 2 units to perform multiplication and 6 units for addition. When we

analyze the complexity, we focus on the multiplications and the additions in our program.

The data amount we consider is 4 OFDMA symbols, equal to a frame. Each OFDMA

symbol has 2304 samples. We only do uplink synchronization scheme on the first symbol

of one frame.

Figure 2.10 shows the structure of this time offset estimator using CP correlation

information. For the first 256 samples, the real multiplications we need is

	���� � �
����� �

��� �
 ��� � � �&�����
&� ����
"������!
� ��� 	 � �

The real addition we need is

	�� � � 	
� �����

� ��� � ��� �
 � � � � ��� ���
 � ����
�������!
�
	���� � 	

����� �

��� �
 ��� �
��"� �(������!
� ��� 	�	 �

For the other samples, the multiplications we need is

	 � �
���
���

�'� �
 ��� � � �&�����
 � ����
����(��!
�

	
���
���

� ��� �&�����
� ��� �

The real additions we need is

	 � 	
���
���

� � � � �'� �
 ��� � � �&�����
 � ����
����(��!
�

�
� �����

� � � � � ��� ��� ���
� � �

72

Table 4.15: Complexity and Performance of CP Correlation Implementation

Number of Frames =1 Needed Number of Equivalent Number of Performance
Clock Cycles Clock Cycles

CP Correlation Case 1
��� 	 ��	���� ��	 � � ���

CP Correlation Case 2
� ��� ����� �����

The total real multiplications per frame is

��� 	 �
�
��� � �����

� ������
"! ���
� ������� �

The total real additions per frame is

����	�	
�
� � �����

� ��� ��
"! ���
� � ����� �

We list the complexity and performance of CP correlation in Table 4.15.

Figure 2.14 shows the structure using preamble correlation information. For each user,

the real multiplications we need is:

	�� � � � �
� ��� �

��� �
 ��� � � �&�����
&� ����
"������!
� ��	��

� ������
"! ���
� ����� � ��� ���

The real additions we need is:

	 ��� � � 	
���
���

� � � � �'� �
 ��� � � �&�����
&� ����
"������!
� ��	��

� ������
"! ���
�
	���� � � 	

����� �

�'� �
 ��� �
��"�"�%������!
� ��	��

� ��� ��
"! ���
� ��� � ��� 	�� �

In our work, the number of users is 2. The total multiplications per frame is

����� � ��� � � 	
� ��� ��#�'��� !#� �

� 	���� ������	&�
The total additions per frame is

����� ��� 	 � � 	
� ��� ��#�'��� !#� �

� 	���������� � �
The total clock cycles we need is

	 ��� ������	 �
�
	 � 	���������� � �

�
� � ������������� �

We list the complexity and performance of preamble correlation in Table 4.16.

73

Table 4.16: Complexity and Performance of Preamble Correlation Implementation

Number of Frames =1 Needed Number of Equivalent Number of Performance
Clock Cycles Clock Cycles

Preamble Correlation
������������� 	�����������	 � � � ��� �

Figure 4.22: Comparison between floating-point version and fixed-point version.

4.7 Conclusion in Optimization

Figure 4.22 shows the comparison between floating-point version and fixed-point version.

The clock cycle for IFFT/FFT is reduced from 84.6 and 88.6 Mcycles to 0.14 and 0.12

Mcycles, which is 99.83% and 99.85% reduction. The clock cycle for Tx SRRC/Rx SRRC

is reduced from 195.1 and 302.3 Mcycles to 24.7 and 21.2 Mcycles, which is 87.29% and

92.98% reduction. The clock cycle for SYNC is reduced from 809.4 Mcycles to 2.1

Mcycles, which is 99.73% reduction.

Framing/deframing and IFFT/FFT can achieve real-time computation, but SYNC and

Tx SRRC/Rx SRRC cannot for frame size=4 � OFDMA symbols. The major reason

SYNC cannot aceieve real-time for frame size =4 � OFDMA symbols is that the DSP

can only support 0.97 Mcycles but the SYNC function needs 2.1 Mcycles theoretically

and 4.3Mcycles practically. The SYNC function can achieve real-time computation for

frame size=19 � OFDMA symbols. However, Tx SRRC/Rx SRRC cannot achieve real-

74

time computation by using larger frame size. We need to rewrite Tx SRRC/Rx SRRC

function to do real-time processing.

75

Chapter 5

Conclusion and Future Work

5.1 Conclusion

We considered implementation of TDD OFDMA uplink synchronization scheme on TI’s

C6416 digital signal processor. The implementation is based on the code from [5], which

is floating-point version. We rewrote the original code to fixed-point version. In or-

der to verify the accuracy of the fixed-point uplink synchronization scheme, the fram-

ing/deframing structure, Tx/Rx SRRC filter and IFFT/FFT have been also implemented.

For DSP implementation, we use some optimization methods to reduce computation

complexity. We use the software pipeline for faster execution. In our work, we try to

make use of the eight functional units of C6416 DSP and increase the parallel instructions

as much as we can. We use the TI DSPLIB function DSP ifft32x32 and DSP fft32x32

from TI’s DSPLIB to replace the original floating-point IFFT/FFT function. Overall, the

clock cycle for IFFT/FFT is reduced from 84.6 and 88.6 Mcycles to 0.14 and 0.12 Mcy-

cles, which is 99.83% and 99.85% reduction. The clock cycle for Tx SRRC/Rx SRRC

is reduced from 195.1 and 302.3 Mcycles to 24.7 and 21.2 Mcycles, which is 87.29%

and 92.98% reduction. The clock cycle for SYNC is reduced from 809.4 Mcycles to 2.1

Mcycles, which is 99.73% reduction. However, due to the malfunction of the Quixote

board, we are not able to actually transmit data between the DSP board and the host PC.

We are forced to simulate on the TI DSP simulator, which is built in the TI code composer

studio. Therefore, the simulation profile shown in this thesis may not be the exact profile

76

obtained from the DSP emulator operated on Quixote board. But we believe that the opti-

mizations we have done based on the DSP simulator are also valid on Quixote board, and

the improving rate should also be similar.

We introduced the TDD OFDMA uplink synchronization schemes in chapter 2. In

uplink, two methods were presented to do time synchronization. One is using the corre-

lation in the frequency domain and the other is in the time domain. The correlation in the

time domain has better performance when the channel is not slow fading. The time syn-

chronization errors are in some degree correlated to the channel model. Thus the guard

interval should be at least larger than two times of the delay spread. The DSP system was

introduced in chapter 3. We briefly described the structure of the Quixote DSP board,

the C6416 DSP chips ,the transmission mechanism and the Code Composer Studio. We

implemented our program into the DSP. The process and performance were recorded in

chapter 4.

5.2 Potential Future Work

Due to the board hardware defect and/or system software bug, we are unable to run and

test our implementation on the DSP baseboard yet. The DSP implementation should be

executed on the DSP baseboard, and the streaming interface is needed to connect to the

Host PC in real time execution. The Host PC reads in the source data from the file in the

memory, and then it transfers the data to DSP through the streaming interface. After DSP

has processed data, it transfers data back to the Host PC.

77

Bibliography

[1] S. Kaiser and K. Fazel, “A spread-spectrum multicarrier multiple-access system for

mobile communications,” Proc. 1st Int. Workshop on Multicarrier Spread Spectrum,

pp. 45–56, Apr. 1997.

[2] J. J. van de Beek, P. O. Borjesson, M. L. Boucheret, D. Landstrom, J. M. Arenas,

P. Odling, C. Ostberg, M. Wahlqvist, and S. K. Wilson, “A time and frequency

synchronization scheme for multiuser OFDM,” IEEE J. Select. Areas Commun., vol.

17, pp. 1900–914, Nov. 1999.

[3] H. Sari and G. Karam, “Orthogonal frequency-division multiple access and its ap-

plication to CATV networks,” Eur. Trans. Telecommun., vol. 9, pp. 507–516, Dec.

1998.

[4] IEEE Std 802.16a-2003, IEEE Standard for Local and Metropolitan Area Networks

— Part 16: Air Interface for Fixed Broadband Wireless Access Systems — Amend-

ment 2: Medium Access Control Modifications and Additional Physical Layer Spec-

ifications for 2–11GHz. New York: IEEE, April 1, 2003.

[5] M. T. Lin, “Fixed and mobile wireless communication based on IEEE 802.16a TDD

OFDMA: Transmission filtering and synchronization,” M.S. thesis, Department of

Electronics Engineering, National Chiao Tung University, Hsinchu, Taiwan, R.O.C.,

June 2003.

78

[6] O. Edfors, M. Sandell, J. J. van de Beek, D. Landstrom, and F.

Sjoberg, “An introduction to orthogonal frequency-division multiplexing,”

http://courses.ece.uiuc.edu/ece459/spring02/ofdmtutorial.pdf.

[7] M. Morelli, “Timing and Frequency Synchronization for the Uplink of an OFDMA

System,” IEEE Trans. Commun., vol. 52, pp. 296–306, Feb. 2004.

[8] J. J. van de Beek et al., “ML estimation of time and frequency offset in OFDM

systems,” IEEE Trans. Signal Processing, vol. 45, no. 7, pp. 1800–1805, July 1997.

[9] C. K. Chang, “Investigation and design of FFT core for OFDM communication sys-

tems,” M.S. thesis, Department of Electronics Engineering, National Chiao Tung

University, Hsinchu, Taiwan, R.O.C., June 2002.

[10] ETSI SMG, “Overall requirements on the radio interface(s) of the UMTS,” Technical

Report ETR/SMG-21.02, v.3.0.0., ETSI, Valbonne, France, 1997.

[11] Innovative Integration, Quixote User’s Manual, Dec. 2003.

[12] Innovative Integration, Quixote Data Sheet, http://www.innovative-

dsp.com/support/datasheets/quixote.pdf.

[13] Texas Instruments, TMS320C6000 CPU and Instruction Set Reference Guide, liter-

ature no. SPRU189F, Oct. 2000.

[14] Texas Instruments, TMS320C6414T, TMS320C6415T, TMS320C6416T Fixed-Point

Digital Signal Processors, literature no. SPRS226A, Mar. 2004.

[15] Texas Instruments, TMS320C64x Technical Overview, literature no. SPRU395B,

Jan. 2001.

[16] Texas Instruments, Code Composer User’s Guide, literature no. SPRU296, Feb.

1999.

79

[17] Texas Instruments, TMS320C6000 Code Composer Studio Getting Started Guide,

literature no. SPRU509D, Aug. 2003.

[18] Texas Instruments, TMS320C6000 Optimizing Compiler User Guide, literature no.

SPRU187K, Oct. 2002.

[19] Texas Instruments, TMS320C6000 Programmer’s Guide, literature no. SPRU198G,

Aug. 2002.

[20] Texas Instruments, TMS320C64x DSP Library Programmer’s Reference, literature

no. SPRU565B, Oct. 2003.

80

作者簡歷

 林筱晴，民國六十九年十二月出生於桃園縣。民國九十一年六月畢業於國立

交通大學電子工程學系，並於同年九月進入國立交通大學電子研究所就讀，從事

通訊系統方面相關研究。民國九十三年六月取得碩士學位，碩士論文題目為

『IEEE 802.16a 分時雙工正交分頻多重進接之上行同步技術研討與在數位訊號

處理器上的實現』。研究範圍與興趣包括：通訊系統、信號處理及通道編碼。

