

國立交通大學

電子工程學系 電子研究所碩士班

碩 士 論 文

適用於第三代無線行動通訊之雙模式通道解碼器的設計

A Dual Mode Channel Decoder

 for 3GPP2 Mobile Wireless Communications

學生 ： 施彥旭

指導教授 ： 李鎮宜 教授

中華民國九十三年六月

適用於第三代無線行動通訊之雙模式通道解碼器的設計

A Dual Mode Channel Decoder

for 3GPP2 Mobile Wireless Communications

研 究 生：施彥旭 Student：Yen-Hsu Shih

指導教授：李鎮宜 Advisor：Chen-Yi Lee

國 立 交 通 大 學
電子工程學系 電子研究所 碩士班

碩 士 論 文

A Thesis
Submitted to Department of Electronics

College of Electrical Engineering and Computer Science
National Chiao Tung University

in Partial Fulfillment of the Requirements
for the Degree of
Master of Science

in

Electronics Engineering

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

適用於第三代無線行動通訊之雙模式通道解碼器的設計

學生：施彥旭 指導教授：李鎮宜 教授

國立交通大學

電子工程學系 電子研究所碩士班

摘要

近年來，由於無線通訊應用的快速成長，前置錯誤更正碼的重要性與日俱增。其中，

具有高解碼能力的迴旋碼與渦輪碼皆被廣泛運用。以第三代無線行動通訊標準為例，迴

旋碼與渦輪碼同時被規範為其通道解碼器。以硬體實現的觀點而言，為兩者分別設計其

專用的解碼器並不經濟。

本論文主旨即在設計一適用於第三代行動通訊標準之雙模式通道解碼器。此設計同

時支援最大區塊長度為 20,730 之渦輪解碼器及不同編碼率的維特比解碼器。其最大資料

輸出率分別可達每秒 4.52Mb及 5.26Mb。為減少外部記憶體的存取次數，我們採用一快

取記憶體作為輸入緩衝器。經由有效率的打散器設計，記憶體需求與控制單元複雜度均

可有效縮小。本架構以Verilog硬體描述語言撰寫，合成後邏輯閘數大約為 11 萬 5 千個。

使用 0.18um製程實作晶片，晶片面積約 11.56mm2，經過儀器量測在 100MHz的時脈速

度可正常運作，其晶片面積僅 11.56mm2。以固定六次迴圈的渦輪碼解碼模式下，平均

只需要 83mW的功率消耗即可達到標準所規範的最大資料輸出率每秒 3.09Mb。

A Dual Mode Channel Decoder for 3GPP2 Mobile Wireless

Communications

Student : Yen-Hsu Shih Advisor : Dr. Chen-Yi Lee

Institute of Electronics Engineering

National Chiao Tung University

ABSTRACT

In the recent years, forward error correction schemes is rising and flourishing due to

widespread increase of wireless communication applications. Among these standards, turbo

codes and convolutional codes are usually adopted at the same time because of their high

error correcting ability. However, to design the hardware functional block for each decoder is

inefficient. In this thesis, a unified turbo and Viterbi decoder architecture for 3GPP2 standard

is presented. The turbo decoding with a maximum block length of 20,730 and Viterbi

decoding with various code rates are implemented to provide maximum data rate of 4.52Mb/s

and 5.26Mb/s respectively at a clock rate of 100MHz. The memory access is reduced by the

input caching scheme, and the system complexity is lowered by the efficient interleaver

design. This chip is fabricated in a 0.18 µm six-metal standard CMOS process. The chip die

size is 3.4 x 3.4 mm2 with the core size of 2.7 x 2.7 mm2. It contains 115k gates excluding the

embedded memory. The measured power dissipation is 83mW while working at the clock rate

of 66MHz to decode a 3.1Mb/s turbo encoded data stream with six iterations.

誌 謝

隨著鳳凰花開，轉眼間又到了畢業的季節。在這二年的碩士生涯中，首先我要向指

導教授李鎮宜博士表達最誠摯的謝意。由於老師指導有方，讓我能在短時間內找到正確

的研究方向；在遇到挫折時也能從經驗中學習，培養正確的研究精神。另外，我也要感

謝 Si2 實驗室中的每一位成員。在這裡的每個人研究領域或有不同，但都願意彼此幫助，

讓我不僅了解團隊工作的重要性，更令人倍感溫馨；尤其我要感謝林建青學長，在我研

究過程中不厭其煩地提供不少建議。最後，我要謝謝在背後默默支持著我的家人和朋

友，讓我順利完成了這份學業。在大家的鼓勵下，讓我過得更多采多姿，我一定不會忘

記這段令人充滿回憶的生活。

Contents

CHAPTER 1 INTRODUCTION...1

1.1 MOTIVATION..1

1.2 DESIGN SPECIFICATION..3

1.3 THESIS ORGANIZATION..3

CHAPTER 2 TURBO CODING AND DECODING...4

2.1 PRINCIPLE OF TURBO CODEC ...4

2.1.1 Turbo Encoding ..4

2.1.2 Turbo Interleaver..6

2.1.3 Turbo Decoding ..7

2.1.4 Error floor effect...9

2.2 MAP DECODING ALGORITHM FOR TURBO DECODING ...10

2.2.1 The MAP algorithm ..10

2.2.2 The Max-Log-MAP algorithm ..14

2.2.3 The Log-MAP algorithm...15

2.2.4 SNR sensitivity of Max-Log-MAP and Log-MAP algorithm17

2.3 SLIDING WINDOWED APPROACH ...17

CHAPTER 3 PRINCIPLE OF CONVOLUTIONAL CODEC..20

3.1 CONVOLUTIONAL CODE ..20

 i

3.2 VITERBI DECODING ...21

3.3 TRACE-BACK METHOD ..23

3.4 SUMMARY ...25

CHAPTER 4 FIXED POINT ANALYSIS OF DUAL MODE TURBO/VITERBI

DECODER ..26

4.1 FIXED POINT ANALYSIS FOR TURBO DECODER ..26

4.1.1 Input LLR Representation...26

4.1.2 Extrinsic Data Representation..29

4.1.3 Bit width of Internal Variables..30

4.1.4 Performance under Fixed Point Simulation...34

4.2 FIXED POINT ANALYSIS OF VITERBI DECODER ..35

4.3 SUMMARY ...39

CHAPTER 5 ARCHITECTURE OF PROPOSED DUAL MODE TURBO/VITERBI

DECODER ..40

5.1 ARCHITECTURE OF INTEGRATED TURBO/VITERBI DECODER40

5.2 ARCHITECTURE OF TURBO DECODER ..42

5.2.1 Single MAP Decoder design...43

5.2.2 Cache design ..44

5.2.3 Transition Metric Unit (TMU)..45

5.2.4 ACS Unit ...46

5.2.5 LLR unit ..47

5.2.6 Interleaver design...48

5.3 ARCHITECTURE OF VITERBI DECODER ..50

5.3.1 Transition Metric Unit (TMU)..51

5.3.2 Survivor Memory Management ..52

 ii

5.4 SUMMARY ...55

CHAPTER 6 CHIP IMPLEMENTATION ..56

6.1 CHIP SPECIFICATION...56

6.2 COMPARISON WITH OTHER SIMILAR WORK...58

6.3 SUMMARY ...59

CHAPTER 7 CONCLUSION AND FUTURE WORK...60

7.1 CONCLUSION ...60

7.2 FUTURE WORK ..60

BIBLIOGRAPHY...61

 iii

List of Figures

FIG. 2.1 TURBO ENCODER FOR 3GPP2 STANDARD ...5

FIG. 2.2 TRELLIS TERMINATION ...5

FIG. 2.3 TURBO INTERLEAVER FOR 3GPP2 STANDARD ..6

FIG. 2.4 TURBO DECODING FLOWCHART ..8

FIG. 2.5 PERFORMANCE COMPARISON UNDER DIFFERENT ITERATION NUMBERS IN 3GPP2

STANDARD ...9

FIG. 2.6 TRELLIS DIAGRAM OF TURBO CODE IN 3GPP2 STANDARD .. 11

FIG. 2.7 THE WINDOWED MAP ALGORITHM ..18

FIG. 2.8: PERFORMANCE COMPARISON AMONG DIFFERENT SUB-BLOCK LENGTHS IN 3GPP2

STANDARD ...19

FIG. 3.1 RATE 1/2 CONVOLUTIONAL ENCODER WITH THE CONSTRAINT LENGTH OF 920

FIG. 3.2 A SYSTEM PLATFORM OF THE CONVOLUTIONAL CODEC ..21

FIG. 3.3 TRELLIS DIAGRAM OF THE (2, 1, 2) CONVOLUTIONAL CODE AND ITS SURVIVOR MEMORY

..23

FIG. 3.4 TRACE-BACK PROCEDURE OF THE CONVOLUTIONAL CODE ...24

FIG. 3.5 THE SIMULATION RESULT OF VITERBI DECODER UNDER DIFFERENT TRACE-BACK

LENGTHS..25

FIG. 4.1 FIXED POINT SIMULATION RESULT OF THE INPUT SYMBOLS WITH BPSK MODULATION

AND RATE 1/2 TURBO DECODING..28

FIG. 4.2 FIXED POINT SIMULATION RESULT OF THE INPUT SYMBOLS WITH 16-QAM MODULATION

 iv

AND RATE 1/5 TURBO DECODING..28

FIG. 4.3 FIXED POINT SIMULATION RESULT OF THE EXTRINSIC INFORMATION.............................30

FIG. 4.4 AN EIGHT-STATE TRELLIS DIAGRAM ILLUSTRATING MESSAGE PASSING WITHIN 3 TRELLIS

SECTIONS. ..32

FIG. 4.5 FIXED POINT ANALYSIS WITH DIFFERENT BIT-WIDTH OF PATH METRICS IN TURBO

DECODING..34

FIG. 4.6 DESIGN LOSS OF FIXED POINT TURBO DECODER ..35

FIG. 4.7 THE PERFORMANCE OF VITERBI DECODER WITH DIFFERENT QUANTIZATION LEVELS36

FIG. 4.8 THE CONVERGENCE OF ANY TWO SURVIVOR PATHS IN VITERBI ALGORITHM37

FIG. 4.9 THE PERFORMANCE OF VITERBI DECODER UNDER DIFFERENT BIT-WIDTHS OF PATH

METRIC ..38

FIG. 4.10 THE PERFORMANCE ANALYSIS ON SYSTEM PERFORMANCE FOR EACH KIND OF CODE

RATE ..38

FIG. 5.1 THE PROPOSED ARCHITECTURE OF INTEGRATED TURBO/VITERBI DECODER..................41

FIG. 5.2 THE ARCHITECTURE OF INTEGRATED TURBO/VITERBI DECODER IN TURBO MODE42

FIG. 5.3 A SINGLE MAP DECODER ARCHITECTURE FOR TURBO DECODING.................................43

FIG. 5.4 THE INPUT CACHE ARCHITECTURE ..44

FIG. 5.5 THE DETAIL TIMING CHART OF THE PROPOSED INPUT CACHE...45

FIG. 5.6 THE TMU ARCHITECTURE FOR TURBO DECODER..46

FIG. 5.7 THE ACS ARCHITECTURE FOR DUAL MODE TURBO/VITERBI DECODER47

FIG. 5.8 THE LLR UNIT ARCHITECTURE FOR TURBO DECODER...48

FIG. 5.9 THE ARCHITECTURE OF SHARED MEMORY DESIGN IN TURBO DECODER.........................49

FIG. 5.10 THE ADDRESS GENERATOR FOR THE INTERLEAVER OF 3GPP2 TURBO DECODER50

FIG. 5.11 THE ARCHITECTURE OF INTEGRATED TURBO/VITERBI DECODER IN VITERBI MODE51

FIG. 5.12 THE ARCHITECTURE OF TMU CELL ..52

FIG. 5.13 THE 3-POINTER EVEN ALGORITHM FOR SURVIVOR MEMORY MANAGEMENT54

 v

FIG. 5.14 THE ARCHITECTURE OF SURVIVOR MEMORY MANAGEMENT..54

FIG. 6.1 THE MICROPHOTO OF THE DECODER CHIP ...57

 vi

List of Tables

TABLE 1.1: DIFFERENCE OF FEC SPECIFICATION BETWEEN 3GPP AND 3GPP2 STANDARDS........2

TABLE 1.2 SPECIFICATION OF CHANNEL CODING IN 3GPP2 STANDARD3

TABLE 2.1 TURBO INTERLEAVER PARAMETERS ..7

TABLE 4.1 SUMMARY OF BIT-WIDTH DECISION FOR TURBO MODE ..39

TABLE 4.2 SUMMARY OF BIT-WIDTH DECISION FOR VITERBI MODE..39

TABLE 4.3 A COMPARISON OF BIT-WIDTH DECISION WITH [19] FOR TURBO MODE39

TABLE 6.1 SUMMARY OF THE DECODER CHIP ...57

TABLE 6.2 POWER MEASUREMENT RESULT OF THE DECODER CHIP...58

TABLE 6.3 COMPARISON WITH OTHER SIMILAR WORK ...59

 vii

Chapter 1
Introduction

1.1 Motivation
In the last decade, the digital technologies were introduced for wireless communications

to replace analogy system due to increased traffic, speech privacy, new services (data

transmission), and robustness of transmission (enhanced coding technique). These include the

global system of mobile communications (GSM) which is a mobile radio standard with the

most subscribers worldwide. It adopts time-division multiple access (TDMA) system and

provides the maximum data rate of 9.6 Kb/s. Obviously, this data rate cannot satisfy the

demand of multimedia document transfer in 21st century. Besides, the number of customer is

increasing much faster than expected. However, the TDMA system is a dimension-limited

system. The number of dimensions is determined by the number of time slot. No additional

users are allowed once all time slots are assigned. Hence, third generation mobile radio

systems are proposed to meet the market requirement with higher rate data service and higher

capacity.

 Up to now, Third Generation Partnership Projects 3GPP [1] and 3GPP2 [2] defined detail

standard providing maximum data rate of about 2 Mb/s and 3 Mb/s, respectively. On the other

hand, code division multiple access (CDMA) proposal was brought up due to its higher

capacity. Unlike TDMA system, the number of CDMA channels depends on the level of total

interference that can be tolerated in the system. Forward error correction code plays an

 1

important role here since it can improve the tolerance for interference and thus increase the

capacity of CDMA system. In both 3GPP and 3GPP2 standards, turbo code and high

complexity convolutional code ((3, 1, 8) and (6, 1, 8) respectively) are instituted so that

transmission quality can be guaranteed.

 In 3GPP2 mobile wireless communication standard, larger block length is specified in

turbo code while comparing with 3GPP standard (about 4 times larger). Besides, the code rate

of turbo code and convolutional code are reduced to 1/5 and 1/6 respectively. These make the

integration of Viterbi decoder and turbo decoder more difficult due to higher complexity.

Moreover, 3GPP2 standard provides higher data rate of up to 3.09 Mb/s, which indicates an

intensive demand of memory bandwidth. The above-mentioned will cause more challenge

while designing the unified decoder if embedded memory size and power dissipation issues

are taken into account. Hence, we would like to address a solution for channel decoder

compatible with 3GPP2 standard to solve both area and power problems by proposing a novel

architecture to implement a dual mode turbo/Viterbi decoder. Table 1.1 shows the main

difference of 3GPP and 3GPP2 standards in turbo code and convolutional code.

Table 1.1: Difference of FEC specification between 3GPP and 3GPP2 standards.

 3GPP 3GPP2

Code Rate 1/3 1/5
Turbo Code

Maximum block length 5114 20730

Convolutional Code Code Rate 1/2, 1/3 1/2, 1/3, 1/4, or 1/6

 Maximum Data Rate 2 Mb/s 3.09 Mb/s

 2

1.2 Design Specification
Our objective is to design a turbo and Viterbi decoder single chip for 3GPP2 standard.

The detail specification of turbo code and convolutional code is listed in Table 1.2.

Table 1.2 Specification of channel coding in 3GPP2 standard

Constraint length 4

Generator function ⎥
⎦

⎤
⎢
⎣

⎡
++

+++
++
++

32

32

32

3

1
1

1
11

DD
DDD

DD
DDTurbo Code

Required data rate 3.09 Mb/s

Constraint length 9

Generator function (CR=1/6) [457, 755, 511, 637, 625, 727](octal)

Generator function (CR=1/4) [765, 671, 513, 473] (octal)

Generator function (CR=1/3) [557, 663, 711] (octal)

Generator function (CR=1/2) [753, 561] (octal)

Convolutional Code

Required data rate 1.036 Mb/s

1.3 Thesis Organization
This thesis consists of 7 chapters. In chapter 2, we’ll focus on interpreting turbo coding

and decoding algorithm and its relative techniques. The reader is assumed to be familiar with

Viterbi algorithm and thus only a brief description is made in Chapter 3. Chapter 4 explains

how we decide the fix-point resolution in our design. Some simulation results will also be

shown here. In chapter 5, we present the proposed architecture. For clearness, operating flow

for turbo mode and Viterbi mode will be discussed separately. In addition, several

characteristic of our design will be stated here. Chapter 6 outlines the specification of our

implemented chip. We also provide some comparisons with other similar works. Finally,

conclusion and future work are made in chapter 7.
 3

Chapter 2
Turbo Coding and Decoding

The parallel concatenated convolutional code (PCCC), named turbo code [3], was first

proposed by C. Berrou, A. Glavieux, and P. Thitimajshima in 1993. It has been proved to have

a performance close to Shannon limit with simple constituent codes concatenated by an

interleaver. This new technique is now adopted in both 3GPP and 3GPP2 standards due to its

excellent error correction ability. In this chapter, we’ll describe the principle of both turbo

encoding and turbo decoding methods. The error floor effect in turbo decoding and some

decoding techniques will also be interpreted here.

2.1 Principle of Turbo codec

2.1.1 Turbo Encoding

The turbo encoder is composed of two recursive systematic convolutional (RSC)

encoders, which are connected in parallel but separated by a turbo interleaver. The two RSC

encoders are also called constituent codes of the turbo code. The block diagram of the turbo

encoder is illustrated in Fig. 2.1. Note that the same input data are encoded by each RSC

encoder but in different order. In 3GPP2 standard, each input bit is encoded as one systematic

bit and two parity-check bits for each RSC encoder. Thus, the code rate of each component

encoder is 1/3. In order to increase the code rate of turbo code, the systematic bits of the

second RSC encoder are not transmitted. Therefore, the output encoded sequence should be

{X, Y0, Y1, Y0’, Y1’}, and the overall code rate is 1/5.

 4

Control

X

Y0

Y1

Turbo
Interleaver

Control

X＇

Y0'

Y1'

Input
message

Fig. 2.1 Turbo encoder for 3GPP2 standard

After encoding all input messages, we have to generate several tail bits to set both

component encoders back to zero state. However, it’s impossible for a RSC encoder to return

zero state by inserting dummy zeros into the encoder directly. Thus, a simple solution is

provided in Fig. 2.2. While encoding input messages, the switch is set to position “A”. Once

messages of whole block are encoded, the position of switch is changed to “B” for three

additional cycles. This will force all registers to zeros and thus back to zero state.

Systematic bit

Parity-check bit

Input
message

A

B

Fig. 2.2 Trellis Termination

 5

2.1.2 Turbo Interleaver

The interleaver plays a very important role in turbo encoder. First of all, a proper coding

gain can be achieved with small memory RSC encoders since the interleaver scrambles a long

block message. Besides, the interleaver de-correlates the input of two RSC encoders so that

iterative decoding algorithm can be applied between two component decoders. Theoretically,

the block size of interleaver is one of the major factors to lower the upper bound on bit error

probability of the turbo code system. The performance upper-bound of turbo code

corresponding to a uniform random interleaver has been evaluated in [4]. The result shows

that the bit-error-probability upper bound of turbo code is approximately proportional to 1/N,

where N is the block size of turbo interleaver. The factor “1/N” is also called the interleaver

gain.

Fig. 2.3 shows the address generator of turbo interleaver in 3GPP2 standard. It provides

a maximum block size of 20,730 and minimum block size of 378. Detail supported block

sizes and its corresponding “n” value are listed in Table 2.1.

Add 1
and Select the

n LSBs

Table
Lookup

Bit
Reverse

Multiply
and

Select the
n LSBs

Discard
If

Input≧
Nturbo

n bits

n bits

MSBs

LSBsn bits

5 bits5 LSBs

n MSBs

(n+5)-bit
counter

Interleaver
output
address

(i4…i0) (i0…i4)

Fig. 2.3 Turbo Interleaver for 3GPP2 standard

 6

Table 2.1 Turbo interleaver parameters

Turbo Interleaver Block size Turbo interleaver parameter (n)

378 4

402 4

570 5

762 5

786 5

1,146 6

1,530 6

1,554 6

2,298 7

2,322 7

3,066 7

3,090 7

3,858 7

4,602 8

6,138 8

9,210 9

12,282 9

20,730 10

2.1.3 Turbo Decoding

A general idea for iterative turbo decoding is illustrated in Fig. 2.4, where rs is the

received systematic information, rp1 is the received parity information generated by the first

 7

RSC encoder, and rp2 is the received parity information generated by the second RSC encoder.

The iterative turbo decoding consists of two constituent decoders, which are soft-in/soft-out

(SISO) decoders concatenated serially via one interleaver and one de-interleaver. An

additional interleaver is used to interleave the input systematic information and then provides

the interleaved data to the second SISO decoder. Two component decoders can be

implemented based on either soft-output Viterbi algorithm (SOVA) [5] or maximum a

posteriori probability (MAP) algorithm [6], which will be discussed particularly in the next

section. During iterative decoding process, each constituent decoder delivers the extrinsic

information Lex(u) which is taken as a priori information for the other constituent decoder.

That is and . As the number of iterations increases,

better coding gain is expected. However, the correlation between two SISO decoders is also

raised up. Therefore, there is no significant performance improvement if the number of

iterations reaches a threshold. Fig. 2.5 shows the performance comparison under different

iteration numbers in 3GPP2 standard.

1 2() ()in k ex kL u L u= 2 1() (in k ex kL u L u=)

SISO
Decoder1

SISO
Decoder2

Interleaver

De-
Interleaver

Interleaver

Lex1(u)

L1(u)rs

rp1

rp2

Lex1(u)
~ ^

L2(u)̂

Lex2(u)
~

Lex2(u)

Fig. 2.4 Turbo decoding flowchart

 8

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Performance of Turbo Decoder under different iteration number
(N=20730, 16-QAM, Code Rate=1/5)

SNR

B
E

R
1 iteration
4 iterations
6 iterations
8 iterations
10 iterations

Fig. 2.5 Performance comparison under different iteration numbers in 3GPP2 standard

2.1.4 Error floor effect

Although turbo coding provides an excellent performance, the bit-error-rate certainly

starts to decrease quite slowly at high signal-to-noise ratio (SNR). This phenomenon can be

observed in Fig. 2.5. It is due to relative small free distance of turbo codes, and is called an

“error floor” [7]. Consider the relation of the minimum free distance and the bit error

probability in turbo coding, which can be expressed by

0

2 b
b free

EP Q d R
N

⎛ ⎞
∝ ⎜⎜

⎝ ⎠
⎟⎟ (2. 1)

where dfree is the minimum free distance and Eb/N0 is the SNR. At low SNR, the major part of

errors can be corrected by iterative decoding since systematic information and parity

information can be regarded as highly independent events. However, as the channel provides

 9

a reliable transmission, the dependency of the systematic and parity information grows up and

the interleaver does little contribution on iterative decoding. Thus, the error correction ability

is limited on the weak constituent code only. To overcome this issue, we can increase the

interleaver size to lower the position of the error floor or concatenate a block code, e.g. BCH

code, as an outer code to remove the left error bits. For more details, please refer to [4] [8].

2.2 MAP Decoding algorithm for Turbo Decoding
It has been proved that the MAP algorithm is the optimal decoding method for turbo

code while comparing with SOVA [9]. Unlike Viterbi algorithm which utilizes maximum

likelihood (ML) algorithm to find the codewords with minimum error probability, the MAP

algorithm minimizes the symbol (or bit) error probability. In this section, we’ll focus on

introducing the turbo decoding methods based on MAP algorithm [6] [10]. Although SOVA is

also one of the commonly used techniques for turbo decoding, we’ll skip it since it’s not

adopted in our proposed design. To understand more detail about SOVA, please refer to [5].

And some comparisons of MAP algorithm and SOVA applied in turbo code system are shown

in [9].

2.2.1 The MAP algorithm

The main idea of MAP algorithm is to compute the log-likelihood ratio (LLR) of the

transmitted information bit uk conditioned on the received information rk for 1≦k≦N, where

N is the block length of encoded message.

(1|ˆ() (|) log
(1|

k
k k

k

P uL u L u
P u

)
)

= +
= =

= −
rr
r

 (2. 2)

Here r is the vector of received soft values, and can be represented as [r1,r2, …, rn] where n is

the number of output bits for each encoded bit in the constituent code. Let’s consider the

trellis diagram of turbo code in 3GPP2 standard, which is shown in Fig. 2.6 as an example.

 10

Note that the solid lines represent the transitions corresponding to an information bit uk of -1,

while the dotted lines represent the transitions corresponding to an information bit uk of +1.

Then, the equation can be further expressed as

(1|)ˆ() log log
(1|)

k

k

k -1 k
u =+1k

k
k k

u =-1

P(s ,s ,)
P uL u
P u P(s ,s ,)

= +
= =

= − -1 k

∑
∑

r
r
r r

. (2. 3)

where the numerator and denominator are the sum of joint probabilities for all existing

transitions from state sk-1 to state sk that corresponding to an information bit uk of +1 and -1

respectively.

Sk Sk+1uk= 1

Forward Direction
for computing α uk=+1

Backward Direction
for computing β

Fig. 2.6 Trellis diagram of turbo code in 3GPP2 standard

Assume the encoded data is transmitted through the discrete memoryless channel (DMC), and

then the term P(sk-1,sk,r) can be decomposed as three terms:

 11

1 1 1

1 1 1

() (,) ()

(, ,) (,) (, |) (|

k k k k k k k

k k k j k k k k j k k

s s s s

P s s P s r P s s P r s

e e eα γ β− − −

− − < − >= ⋅ ⋅

= ⋅ ⋅

)r r
. (2. 4)

Here is the joint probability of state s1 1()k kseα − − k-1 and received symbols rj from the beginning

of the block up to time index “k-1”. Similarly, ()k kseβ is that of state sk and received symbols

rj from the end of block back to time index “k”. By shifting the value “k”, it can be perceived

that α is the forward recursion of the MAP algorithm, and can be formulated as

1 1

1

() (,) ()k k k k k k k

k

s s s

s
e e eα γ α− −

−

= ⋅ 1s −∑ . (2. 5)

The same as above, the backward recursion β can be formulated as

1 1 1() (,) ()k k k k k k k

k

s s s s

s
e e eβ γ− − −= ⋅ β∑ . (2. 6)

Note that since the trellis of turbo code diverges from state zero and converges to state zero,

the initial condition of the forward recursion and backward recursion should be set as

0 0

0 0

()
0

()

1, for 0
0, otherwise

s

s

e
e

α

α

⎧ s= =
⎨

=⎩
 (2. 7)

and

()

()

1, for 0
0, otherwise

N N

N N

s
N

s

e
e

β

β

⎧ s= =
⎨

=⎩
 (2. 8)

For any existing transitions from sk-1 to sk, the branch transition probability 1(,)k k ks seγ − can be

further decomposed as

1(,)
1

1 1

(, |)
(|) (| ,)
() (|)

k k ks s
k k k

k k k k k

k k k

e P s s
P s s P s s
P u P u

γ −
−

− −

=
= ⋅
= ⋅

r
r

r
. (2. 9)

Here, the term “P(uk)” is well-known as a priori probability. According to the definition of

LLR, which is

(() log
(1

k
k

k

P uL u
P u

1)
)

= +
=

= −
, (2. 10)

P(uk) can be rewritten as

 12

()

()

() / 2
() / 2

()

() / 2

(1)
1

1

 .

k

k

k
k k

k

k k

L u

k L u

L u
L u u

L u

L u u
k

eP u
e

e e
e

A e

±

±

−
⋅

−

⋅

= ± =
+

= ⋅
+

= ⋅

 (2. 11)

where the term Ak is equal for all transitions at the same time index, and thus will cancel out

in (2. 3). On the other hand, the value of P(rk|uk) is dependent on channel characteristic. For

an additive white Gaussian noise (AWGN) channel, the LLR of rk conditioned on uk can be

expressed as

2
, ,

1 0
1

2
, ,

1 0
1

, ,
1

(| 1)() log
(| 1)

exp(())

log
exp(())

k

k

k k
k k

k k
n

s
k v k v

v
u

n
s

k v k v
v
u

n

c k v k v
v

P uL u
P u

E r x
N

E r x
N

L r x

=
=+

=
=−

=

= +
=

= −

− −

=
− −

= ⋅ ⋅

∏

∏

∑

rr
r

 (2. 12)

where Lc=4Es/N0 and is called the channel reliability. Here, xk,v is the v-th transmitted symbol

while encoding uk. For systematic codes, xk,1 is equal to uk. Now we can obtain the value of

P(rk|uk) by using the technique in (2. 11) but substitute L(uk) with L(rk|uk).

,1 , ,
2

1 1(|) exp()
2 2

n

k k k c k k c k v k v
v

P u B L r u L r x
=

= ⋅ + ∑r (2. 13)

For the same reason in (2. 11), Bk will also cancel out in (2. 3). Combining (2. 11) and (2. 13),

the γk in (2. 9) can be reduced to

1(,)
,1 , ,

2

1exp (())
2

k k k

n
s s

k k c k k k c k v k v
v

e A B L r L u u L r xγ −

=

⎛ ⎞⎛ ⎞
= ⋅ ⋅ + ⋅ +⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠
∑ . (2. 14)

Substituting (2. 5), (2. 6), (2. 14) into (2. 4), we can derive the a posteriori LLR in the form of

 13

1 1 1

1

1 1 1

1

() (,) ()

(,)
1

() (,) ()

(,)
1

,1

ˆ() log

() ()

k k k k k k k

k k
k

k k k k k k k

k k
k

s s s s

s s
u

k s s s s

s s
u

c k k ex k

e e e

L u
e e e

L r L u L u

α γ β

α γ β

− − −

−

− − −

−

=+

=−

⋅ ⋅

=
⋅ ⋅

= + +

∑

∑ (2. 15)

where

, ,
1 1 2

1

, ,
1 1 2

1

1
2() ()

(,)
1

1
2() ()

(,)
1

() log

n

c k v k v
k k v k k

k k
k

n

c k v k v
k k v k k

k k
k

L r x
s s

s s
u

ex k
L r x

s s

s s
u

e e e

L u

e e e

α β

α β

− − =

−

− − =

−

=+

=−

∑
⋅ ⋅

=
∑

⋅ ⋅

∑

∑
. (2. 16)

The term Lex(uk) is called extrinsic information since it’s a function of the redundant

information that comes from the encoder. It removes the information about the systematic

input and a priori information from . Therefore, this term is useful to estimate a priori

probability for the next component decoder, and great performance improvement in iterative

MAP decoding can be achieved.

ˆ()kL u

2.2.2 The Max-Log-MAP algorithm

As we can see, the MAP algorithm involves too many exponentiations and

multiplications. These are quite complex for hardware realization. Thus, an approximation of

MAP algorithm termed Max-Log-MAP algorithm [11] was derived for simple implementation

of MAP decoders. Instead of calculating keγ , keα , and keβ directly, all computations are

done in logarithm domain. Here we define γk, αk, and βk as transition metric, forward path

metric and backward path metric respectively. γk can be formulated as

1(,) log (, |k k k k k ks s P s s 1)γ − −= r . (2. 17)

Similarly, referring to (2. 4), αk and βk can be expressed as

() log (,)k k k j ks P sα <= r (2. 18)

and

 14

1 1() log (|k k j k ks P)sβ − − >= r (2. 19)

respectively. After substituting (2. 17), (2. 18), and (2. 19), in (2. 15) can be re-written

as

ˆ()kL u

()

()
1

1

1 1 1
(,)

1

1 1 1
(,)

1

exp () (,) ()

ˆ() log
exp () (,) ()

k k
k

k k
k

k k k k k k k
s s

u
k

k k k k k k k
s s

u

s s s s

L u
s s s s

α γ β

α γ β

−

−

− − −

=+

− − −

=−

+ +

=
+ +

∑

∑
. (2. 20)

By utilizing the approximation of

1 2
1 2log() max(, , ,)n

ne e eδδ δ δ δ δ+ + + ≈ , (2. 21)

ˆ()kL u can be further simplified to

()

()

1

1

1 1 1(,)
1

1 1 1(,)
1

ˆ() max () (,) ()

max () (,) () .

k k
k

k k
k

k k k k k k ks s
u

k k k k k k ks s
u

L u s s s s

s s s s

α γ β

α γ β

−

−

− − −

=+

− − −

=−

= + +

− + +

k

 (2. 22)

This computation consists of forward and backward recursions that repetitively compute the

αk and βk, and can be expressed by

()
1

1 1 1,
() max () (,)

k k
k k k k k k ks u

s s sα α γ
−

− − −= + s (2. 23)

and

()1 1 1,
() max () (,)

k k
k k k k k k ks u

s s sβ β γ− − −= + s . (2. 24)

Both equations are add-compare-select (ACS) operations, which are similar to the path metric

updating of Viterbi algorithm.

2.2.3 The Log-MAP algorithm

It can be figured out easily that Max-Log-MAP algorithm is a sub-optimal solution for

turbo decoding since an approximation of (2. 21) is used to reduce the complexity of MAP

algorithm. This problem can be solved by Log-MAP algorithm [11]. It employs the Jacobian

algorithm

 15

1 21 2
1 2

1 2 1 2

log() max(,) log(1)
max(,) (),c

e e e
f

δ δδ δ δ δ
δ δ δ δ

− −+ = + +

= + −
 (2. 25)

where fc(|δ1-δ2|) is a correction function, and thus the performance can be improved. It has

been proved that (2. 21) can be computed exactly by a recursive operation of (2. 25) [9].

11 2 1 2log() log(),
max(log ,) (log)

max(,) ()

n n n

n c n

n c n

e e e e e e e e
f

f

δ δ δδ δ δ δ δ

δ δ

δ δ δ δ

−+ + + = ∆ + ∆ = + + + =

= ∆ + ∆ −

= + −

 (2. 26)

Substituting (2. 18) and (2. 19) into (2. 25), the forward and backward recursions can be

represented as

()
1

1 1 1,
() max* () (,)

k k
k k k k k k ks u

s s sα α γ
−

− − −= + s (2. 27)

and

()1 1 1,
() max* () (,)

k k
k k k k k k ks u

s s sβ β γ− − −= + s , (2. 28)

where the max*(.) operation is defined as

1 2
1 2 1 2max*(,) max(,) log(1)e δ δδ δ δ δ − −= + + . (2. 29)

Finally, can be obtained by ˆ()kL u

()

()

1

1

1 1 1(,)
1

1 1 1(,)
1

ˆ() max * () (,) ()

max * () (,) () .

k k
k

k k
k

k k k k k k ks s
u

k k k k k k ks s
u

L u s s s s

s s s s

α γ β

α γ β

−

−

− − −

=+

− − −

=−

= + +

− + +

k

 (2. 30)

 The performance of Log-MAP algorithm is identical to that of MAP algorithm. However,

the complexity is also increased compared with Max-Log-MAP algorithm since computing

fc(.) still involves complicated exponentiations and multiplications. Thus, the values of fc(.)

are usually stored in a pre-computed table and Log-MAP algorithm can be implemented by

table look-up. It has been found that excellent performance can be obtained with 8 stored

values and |δ1-δ2| ranging between 0 and 5, and no improvement is achieved with a finer

 16

representation [9].

2.2.4 SNR sensitivity of Max-Log-MAP and Log-MAP algorithm

Referring to (2.13) and its followed deductions, it’s evident that both MAP and log-MAP

algorithm requires SNR estimation to obtain the value of channel reliability, i.e. Lc.

Unfortunately, accurate estimation cannot be achieved easily. Several papers have discussed

the effect of SNR mismatch in turbo decoding. In [12], the simulations show that about -3 to

+6dB SNR estimation offset is tolerable before significant performance degradation. However,

Max-Log-MAP algorithm is able to provide a SNR independent scheme if a priori

information is initialized with a reasonable value, such as all zeros for each state [13]. Due to

the linearity of max(.) operations, the term Lc can be canceled out while computing .

The comparison of Max-Log-MAP and Log-MAP algorithm under different SNR estimation

offsets was made in [13].

ˆ()kL u

Although Log-MAP algorithm provides the performance better than that of

Max-Log-MAP algorithm, it suffers the risk of serious SNR mismatch offset. Thus, channel

characteristics play an important role in practical implementation. It has been concluded in

[13] that if channel characteristics change over time, the Max-Log-MAP decoder is suitable to

be the constituent decoder in turbo decoding. Otherwise, Log-MAP decoder should be

preferable in the aspect of coding gain.

2.3 Sliding Windowed Approach
As what we described in the previous section, the MAP-series algorithm (including MAP

algorithm, Max-Log-MAP algorithm, and Log-MAP algorithm) requires the entire block

message to be received before decoding procedure can be started since backward path metric

 17

computation needs information at the end of trellis. This restriction enlarges the memory

requirement for hardware implementation of turbo decoder. For example, the maximum block

length of 3GPP2 standard is 20730, which means 20730 metrics should be stored. Besides,

long output latency is also introduced. This is disadvantageous for turbo code in real-time

application.

A simple method to solve these problems is to divide data stream into many sub-blocks.

However, the last bits in these sub-blocks suffer lower error tolerance because of the lack of

initial metrics for backward recursion. Thus, a sliding windowed approach was proposed in

[14] and later on in [15] to overcome this drawback. It utilizes the fact that the backward path

metrics can be highly reliable even without knowing the initial state if the backward recursion

goes long enough. The windowed processing schedule used in our design is illustrated in Fig.

2.7 and the detail operating flow is described as follows.

i i+1 i+2 i+3... ...
α

α

α

α

β1

β1

β1

β1

β2

β2

β2

β2

t1

t2

t3

t4

sub-block

Fig. 2.7 The windowed MAP algorithm

Initially, the received data block is divided into many sub-blocks, with a sub-block length

of L. L is called the convergence length. Typically, it’s about five times the constraint length

of the encoder. In 3GPP2 standard, the constraint length is 4. For each sub-block i, the

 18

forward recursion computes the forward path metrics α and storing these values into memory.

In parallel, an additional backward recursion β1 is performed in the next sub-block i+1. Once

β1 operation in sub-block i+1 is finished, the last backward path metric obtained for each state

is regarded as a reliable initial β for sub-block i to start its backward recursion, which is

labeled as β2 in Fig. 2.7. Finally, the can be computed by α, βˆ()kL u 2, and γ. Fig. 2.8 shows

the influence of different sub-block lengths on the performance of turbo code.

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Performance of Turbo Decoder under different sub-block length
(N=20730, 16-QAM, Code Rate=1/5, 6 iterations)

sublen=N
sublen=24
sublen=20
sublen=16
sublen=12

Fig. 2.8: Performance comparison among different sub-block lengths in 3GPP2 standard

 19

Chapter 3
Principle of Convolutional codec

3.1 Convolutional Code

For the convolutional code, its encoder is constructed with several memory elements and

modulo-2 adders. In general, it is usually expressed as a (n, k, v) convolutional encoder where

n, k, v are the number of output, the number of input and the number of memory elements

respectively. 3GPP2 standard specifies rate 1/2, 1/3, 1/4, and 1/6 convolutional codes. All of

them have a constraint length of 9. An example of rate 1/2 convolutional encoder with the

generator matrix of [753, 561](octal) is illustrated in Fig. 3.1. For each input information bit, it

generates two code symbols (c0 and c1) by the generator matrix. The generator matrices for

other code rate convolutional codes are listed in Table 1.2. The convolutional encoder should

be initialized with all-zero state.

g0

g1

Input
information

c0

c1

Fig. 3.1 Rate 1/2 convolutional encoder with the constraint length of 9

 20

3.2 Viterbi Decoding
Up to now, Viterbi algorithm [16] is the optimal solution to decode the convolutional

code. It utilizes the maximum likelihood decoding algorithm and searches the shortest path

through a weighted graph. In fact, Viterbi algorithm has become a standard due to its fairly

decoding complexity. Before explaining Viterbi algorithm, a system platform, which is shown

in Fig. 3.2, should be interpreted first.

Convolutional
Encoder Modulator Viterbi

DecoderChannel
m c x r m̂

Fig. 3.2 A system platform of the convolutional codec

Initially, the message sequence m is encoded into the codeword sequence c. After signal

modulation, the modulated sequence x is transmitted into the channel. In the receiver, the

sequence r is received. The major concept of Viterbi algorithm is to find the maximum

likelihood sequence according to r. Theoretically, it’s equivalent to maximize the

probability of P(m|r). Using Baye’s rule

m̂

() (|)(|)
()

P m P mP m
P
⋅

=
rr

r
 (3. 1)

where P(r) is independent of m. Thus, what the decoder does is to maximize the probability of

P(r | m). Assume the length of the received sequence is τ; then P(r | m) can be expressed as

1

21
, ,

2
1 0

() (|)

(|)

()1 exp
22

t t
t

n
t i t i

t i

P m P x

P x

r x

τ

τ

σπσ

=

−

= =

=

=

⎛ ⎞−
= −⎜ ⎟⎜ ⎟

⎝ ⎠

∏

∏∏

r r

r (3. 2)

Similarly, these works can be transformed to logarithm domain to reduce computing

complexity. The probability P(r|m) in logarithm domain is given by

 21

1
log (|) log (|)t t

t
P m P x

τ

=

= ∑r r (3. 3)

For AWGN channel, (3. 3) can be further rewritten as

() ()

21
, ,

2
1 0

21
, ,

2
1 0

()1log () log exp
22

()
log 2 log

2 2

n
t i t i

t i

n
t i t i

t i

x
P m

r xn n

τ

τ

σπσ

τ π τ σ
σ

−

= =

−

= =

⎛ ⎞−
= −⎜ ⎟⎜ ⎟

⎝ ⎠
−

= − − −

∑ ∏

∑∑

r
r

 (3. 4)

In other words, to maximize the probability of P(r | m) is to minimize Euclidean distance.
21

, ,
2

1 0

()
2

n
t i t i

t i

r xτ

σ

−

= =

−
∑∑ (3. 5)

In order to compute Euclidean distance, Viterbi algorithm defines the branch metric (BM, also

called transition metric, or simply TM) 1(,)t t ts sλ − and the path metric as follows. ,t sΓ
k

1

21
, ,

1 2 0,1,...,2
0

()
(,)

2 v
t

n
t i t i

t t t S
i

r x
s sλ

σ −

−

− =
=

−
= ∑ (3. 6)

()1, 1, 1min (,)
k tt s t s t t ts sλ

−− −Γ = Γ + (3. 7)

It is clear that the path metric is the minimum Euclidean distance for state s,t sΓ
k

)

t. At each

time index, the decoder computes and compares the metrics of all branches that entering the

state. The branch with the minimum metric and its corresponding decision bit will be

preserved and others will be eliminated. The history record of the decision bits is called

survivor. According to the minimum path metric at each time index, the maximum likelihood

sequence can be estimated.

Finally, the steps of Viterbi algorithm can be summarized as follows.

1. Initialize all path metric storages and survivor memory.

2. According to the received sequence r, compute the branch metric 1(,t t ts sλ − for each

state transition.

3. Accumulate the path metric with the branch metric that will converge toward the same

 22

state.

4. Update the path metric storage for each state according to the following principle.

()1, 1,min (,)
k tt s t s t t ts sλ

−− −Γ = Γ + 1

The decision bit of each state is also stored into survivor memory at the same time.

5. Decode the message sequence according to the minimum path metric and the survivor.

6. Repeat this process until all messages are decoded.

3.3 Trace-back Method
The trace-back method is a technique to trace the maximum likelihood sequence in the

survivor memory. Here we’ll use a (2, 1, 2) convolutional code with the generator matrix of

[111, 101]binary as the example. Its trellis diagram and the corresponding contents of the

survivor memory are shown in Fig. 3.3. In this figure, all dotted lines represent the eliminated

paths. Once the upper path entering into this state is chosen, the decision bit is set as zero;

otherwise, it’ll be set to one.

1

0

0

0

0

0

0

1

0

0

1

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

1

rk=11
λ = 2

0

1

1

0
2

1

1

Γ = 0

Γ = 3

Γ = 2

Γ = 3

S00

S01

S10

S11

Fig. 3.3 Trellis diagram of the (2, 1, 2) convolutional code and its survivor memory

 23

After all symbols are received, the maximum likelihood sequence can be decided by

trace-back method. This procedure starts from the state with minimum path metric happened

in S00. By recursively shifting the state number left and inserting the decision bit stored in the

survivor memory back to the right hand side, decoding procedure can be completed. The

overall trace-back operation of the example in Fig. 3.3 is illustrated with Fig. 3.4.

0

0

1

1

1

1

1

rk=11
λ = 2

0

1

1

0
2

1

1

Γ = 0

Γ = 3

Γ = 2

Γ = 3

S00

S01

S10

S11

1

1

1

1

1

0

0

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

1

Fig. 3.4 Trace-back procedure of the convolutional code

In fact, the length of received symbols may be quite long. If we don’t start the trace-back

operation until all symbols are received, an extremely large survivor memory is required. This

is impossible for chip realization. Thus, a suitable trace-back length should be defined without

serious performance degradation. Similar to what we introduced in section 2.3, it’s about five

times the constraint length of the encoder. A simulation result under different trace-back

lengths is shown in Fig. 3.5.

 24

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Performance of Viterbi Decoder under different trace-back length
(16-level soft-input, QPSK, Code Rate=1/2)

SNR

B
E

R
tblen=32
tblen=64
tblen=96

Fig. 3.5 The simulation result of Viterbi decoder under different trace-back lengths

3.4 Summary
In this chapter, we have made some brief descriptions about convolutional code. Viterbi

algorithm, which is widely applied in convolutional decoding, is also presented here. Due to

power-saving issue, instead of using register-exchange method, we use trace-back method to

manage the storage of the survivor sequences. A suitable track-back length is chosen

according to the simulation result shown in Fig. 3.5. This will help us reduce the memory

requirement with little performance degradation.

 25

Chapter 4
Fixed Point Analysis of Dual Mode
Turbo/Viterbi Decoder

Turbo decoding uses SISO decoders to achieve a fairly good coding performance. In

previous chapter, we analyze several factors that affect the characterization of turbo code by

importing floating point information as the required soft-input. However, all soft-inputs

should be bounded since infinite precision is impossible to be achieved for the practical

implementation. In general, coding performance may suffer quantization loss due to internal

bit-width limitation. A trade-off between hardware cost and the performance must be

concerned before the chip implementation. For turbo decoder, the Max-Log-MAP decoder is

adopted as our SISO decoder because of the lack of the channel characteristics in our 3GPP2

simulation platform. Thus, the following fixed point analysis will base on the Max-Log-MAP

algorithm. For Viterbi decoder, a sixteen level soft-input precision is proposed. The relative

bit-width for path metric computation is also discussed here. In this chapter, we’ll show an

optimal solution that the hardware cost can be minimized without critical performance

degradation for turbo/Viterbi decoder in 3GPP2 standard.

4.1 Fixed Point Analysis for Turbo Decoder

4.1.1 Input LLR Representation

Quantization of input LLR will directly influence not only the performance of Turbo

decoding but also the memory requirement of the design. The reason is obvious that since the
 26

received systematic symbols should be interleaved for the second SISO decoder, the memory

size will be directly proportional to the bit-width of systematic symbol. To determine the

acceptable finite precision of the input LLR, several simulations under AWGN channel with

BPSK and 16-QAM have been performed using a floating point turbo decoder with quantized

input LLRs. Note that the value of channel reliability “Lc” can be assumed as 1 for the

practical implementation without performance degradation. Hence, the received symbol

vector introduced in section 2.2 can be regarded as input LLR directly. Fig. 4.1 plots the

quantization loss of the bounded input symbols with BPSK modulation and rate 1/2 turbo

decoding. Fig. 4.2 shows the same simulation but with 16-QAM modulation and rate 1/5

turbo decoding. The former case is used while data and signaling are transmitted from a

mobile station to a base station; and the later case is used while data are sent in the opposite

direction. The dotted line is a rough threshold corresponding to 5% frame error rate (FER),

which is the target FER specified in 3GPP2 standard. Note that a.b shown in these figures

denotes the quantization scheme where a is the number of bits used for the integer part, and b

is the number of bits used for the fractional part. Simulation result shows that the performance

of 3.3 scheme is slightly worse than that of 4.2 scheme in Fig. 4.2. Nevertheless, the

performance is going to be better than others in Fig. 4.1, and thus is recommended for the

Max-Log-MAP decoder.

 27

-2.25 -2 -1.5 -1
10-9

10-8

10
-7

10-6

10-5

10-4

10
-3

10-2

10-1

100

Performance of turbo Decoder under different fixed point input format
(N=20730, BPSK, Code Rate=1/2, 6 iterations)

SNR

B
E

R

floating point
3.3 format
4.2 format
3.2 format

Fig. 4.1 Fixed point simulation result of the input symbols with BPSK modulation

and rate 1/2 turbo decoding

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
10

-7

10-6

10
-5

10-4

10
-3

10-2

10
-1

100

Performance of Turbo Decoder under different fixed point input format
(N=20739, 16-QAM, Code Rate=1/5, 6 iterations)

SNR

B
E

R

floating point
3.3 format
3.2 format
4.2 format

Fig. 4.2 Fixed point simulation result of the input symbols with 16-QAM modulation

and rate 1/5 turbo decoding

 28

4.1.2 Extrinsic Data Representation

Extrinsic data provides important information for turbo codes to perform the iterative

decoding. Quantization of extrinsic information should be done carefully or the effect of

iterative decoding will be lessened. Strictly to say, 8-bit integer is necessary for our proposed

design to avoid overflow, which will be explained later in section 4.1.3. However, this is a

heavy burden in hardware implementation since it should be interleaved or de-interleaved to

be a priori information of the other SISO decoder for turbo decoding, and thus large memory

is required. Thus, a fixed point simulation of the extrinsic data for cost consideration is

performed, as shown in Fig. 4.3. Note that any extrinsic information exceeding the range that

can be expressed is pulled back the nearest value instead of truncating it directly. This will

ensure that no meaningless performance degradation occurs. The idea comes from the fact

that the extrinsic data is averagely small while channel noise is averagely high. On the

contrary, it will be large if channel provides good transmission quality. In the former case, the

data value is small so that bit-width requirement can be surely truncated. In the later case,

since the transmission quality is good, the extrinsic information just needs to be large enough

with little influence on the error correction ability of iterative decoding. Therefore, the

bit-width can be reduced for both cases. We can see that with four or more extrinsic data

integer bits, the performance is close to that of floating point simulation result. So, the 4.2

scheme should be the best choice.

 29

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Performance of Turbo Decoder under different extrinsic data bounds
(N=20730, 16-QAM, Code Rate=1/5, 6 iterations)

floating point
5.2 format
4.2 format
3.2 format

Fig. 4.3 Fixed point simulation result of the extrinsic information

4.1.3 Bit width of Internal Variables

In previous sections, we had determined the range of all input information, including

input LLRs and a priori data that comes from the extrinsic data of the other SISO decoder.

According to the bounded inputs, the bit width of internal variables, γk, αk, and βk, for

Max-Log-MAP decoding can be derived. Firstly, the bound of kγ can be decided by (2.14)

and (2.17). Given integer range of Bin for input LLRs and that of BLex for a priori data, the

maximum difference of kγ is denoted as kγ∆ and derived by

k inn B BLexγ∆ ≤ × + (4. 1)

In 3GPP2 standard, the code rate of component encoder is 1/3 and thus the value “n” in (2.14)

should be 3. For Bin=8 (3-bit integer) and BLex=16 (4-bit integer), the maximum difference of

kγ in our design should be 40, and thus 6-bit integer are required.

 30

In spite of the recursion of αk and βk computation, the range of the differences between

path metrics is still bounded and provided with the following theorem by [17] and [18].

Theorem: For an RSC encoder with m shift-registers and a maximum Hamming distance of

dm between any two paths across m trellis sections, the difference of path metrics is bounded

by

k Lex mm B d Binα∆ ≤ × + × (4. 2)

and

k Lex mm B d Binβ∆ ≤ × + × (4. 3)

The theorem utilizes the fact that the probabilities of any two states at time index k

originate from the same set of states at time index k-m. Thus, the difference of any two path

metrics at time index k is dependent only on the branch metrics from time index k-m to k. Fig.

4.4 illustrates the paths of metrics passing with m=3. Let Smax be the state with maximum path

metric at time index k, and Smin be that with minimum path metric at time index k. Then, the

bound can be expressed as

max min max min() ()S S M Mα α− = − (4. 4)

where Mmax and Mmin are the accumulated branch metrics from time index k-m to k for Smax

and Smin respectively. The result tells us clearly that the bound is determined by the maximum

difference of branch metrics within m trellis sections. For 3GPP2 standard, these two paths

are labeled in Fig. 4.4. For Bin=8 and BLex=16, the corresponding bound is 96 and its relative

bit-width for integer part is 7.

 31

kk-1k-2k-3 000 000 000

111

100

11
0

110

systematic
1st parity

2nd parity

Smin

Smax

time index

Fig. 4.4 An eight-state trellis diagram illustrating message passing within 3 trellis sections.

After evaluating the bounds of kγ , kα , and kβ , the bound on the magnitude of the

output LLR, , can be derived with the following theorem by [17] and [18]. ˆ()kL u

Theorem: Given kα∆ as the bound of the difference of the forward path metric, and kγ∆

as the bound of the difference of the branch metric, the magnitude of the output LLR is

bounded by

ˆ()k kL u kα γ≤ ∆ + ∆ (4. 5)

 32

The theorem is simply derived from the definition of listed in (2.15). Replace

α

ˆ()kL u

k-1(sk-1) and γk(sk-1,sk) in the numerator of (2.15) by max(αk-1) and max(γk), respectively. Also

replace αk-1(sk-1) and γk(sk-1,sk) in the denominator of (2.15) by min(αk-1) and min(γk),

respectively. Then (2.15) can be extended to

1 1 1
, 1

1 1 1
, 1

max () max (,) ()
ˆ() ln

min () min (,) ()
k k

k k

k k k k k k k
S u

k
k k k k k k k

S u

S S S
L u

S S S

α γ β

α γ β

− − −
=+

− − −
=−

⋅ ⋅
≤

⋅ ⋅

S

S

∑
∑

 (4. 6)

Since each state at time index k originates from two branches, exactly one of which is

corresponding to an information bit of 0 and the other one must be corresponding to an

information bit of 1, we can obtain

, 1 , 1
() ()

k k k k

k k k k
S u S u

Sβ
=+ =−

= Sβ∑ ∑ (4. 7)

and (4. 6) can be further simplified as

1ˆ()k kL u kα γ−≤ ∆ + ∆ (4. 8)

Similarly, by replacing αk-1(sk-1) and γk(sk-1,sk) in the numerator of (2.15) by min(αk-1) and

min(γk), respectively, and those in the denominator of (2.15) by max(αk-1) and max(γk),

respectively, the lower bound of can be obtained by ˆ()kL u

1ˆ()k kL u kα γ−≥ −∆ − ∆ (4. 9)

Theoretically, the range of in our proposed design should be between -136 and +136.

However, the probability of

ˆ()kL u

ˆ() 128kL u ≥ is extremely small. For cost consideration, we can

use only 8 bits to represent the integer part of with little performance degradation. ˆ()kL u

Finally, the bound on the magnitude of the extrinsic information can be derived

base on (2. 15) and formulated as follows.

()ex kL u

,1ˆ() () ()ex k k c k kL u L u L r L u≤ − − (4. 10)

In our case, the corresponding bound should be () 124ex kL u ≤ . Hence, the suitable bit-width

 33

for is the same as that of . ()ex kL u ˆ()kL u

4.1.4 Performance under Fixed Point Simulation

After confirming the bound of each internal variable, a simulation for cost-down of path

metric storage is performed in Fig. 4.5. For the 6.2 scheme, the performance is matched to

that of 7.2 scheme, which is the upper bound of the path metric. This result is not strange. The

drastic condition discussed in section 4.1.3 will occur unless all received input symbols,

including a priori probability, simultaneously reach the relative large values cross three time

sections in trellis successively. Such event is seldom observed. Consequently, the 6.2 scheme

is chosen in our design. Finally, we simulate the performance of whole turbo decoder under

complete fixed point condition. In Fig. 4.6, it shows that there is only about 0.25 dB design

loss compared with the floating point simulation result in AWGN channel.

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Performance of Turbo Decoder under different PM bit-width
(N=20730, 16-QAM, Code Rate=1/5, 6 iterations)

SNR

B
E

R

7.2 fomat
6.2 fomat
5.2 fomat

Fig. 4.5 Fixed point analysis with different bit-width of path metrics in turbo decoding

 34

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R
Performance comparison between floating point and fixed point scheme

(N=20730, 16-QAM, Code Rate=1/5, 6 iterations)

floating point scheme
fixed point scheme

Fig. 4.6 Design loss of fixed point turbo decoder

4.2 Fixed Point Analysis of Viterbi Decoder
Soft decision Viterbi decoder provides a better error correction capability. With

increasing quantization level, the error probability can be further reduced with a penalty of

linearly increased complexity. However, the degree of improvement will saturate as the

quantization level reaches a threshold. A simulation to evaluate the performance improvement

with different quantization level is done and shown in Fig. 4.7. All schemes are set to be

uniform quantization and optimal step size. The BER curve with 128-level soft-input is

assumed to be the performance limitation of code rate 1/2 256-state Viterbi decoding. As we

can see, the improvement from the scheme with 8-level soft-input to that with 16-level is up

to 0.4dB. Nevertheless, the 32-level scheme gains about only 0.2dB from 16-level scheme.

 35

Hence we can conclude that the 16-level soft decision yields a good trade-off between

performance and complexity and thus is chosen for the proposed design.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
10

-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR

B
E

R

Performance of Viterbi Decoder under different soft-input level
(QPSK, Code Rate=1/2, tblen=64)

8 level
16 level
32 level
128 level

Fig. 4.7 The performance of Viterbi decoder with different quantization levels

To restrict the difference of any two states at any time is also a critical issue for Viterbi

decoding. According to Viterbi algorithm, it supposes that all survivor paths will converge to

the same node among the truncation length L. This assumption can be expressed by Fig. 4.8.

A principle of choosing the truncation length is introduced in section 3.3. Computing all path

metrics from t=0, we can get

1 1()k S k L−Γ = Γ + Γ (4. 11)

2 2()k S k L−Γ = Γ + Γ (4. 12)

Then, the difference of any two path metrics can be written as

 36

1 2 1 2() ()k kS SΓ − Γ = Γ − Γ ≤ BL (4. 13)

where B denotes the maximum value of the branch metric.

L
t=0 t=k-L t=k

Γk-L

Γk(S1)

Γk(S2)

Γ1

Γ2

Fig. 4.8 The convergence of any two survivor paths in Viterbi algorithm

In 3GPP2 standard, the minimum code rate is 1/6. Combining with 16-level soft input,

the value of B is 90. Therefore, the upper bound of path metric in our proposed design should

be 5760, which means 13 bits at most are required theoretically. However, this case rarely

happens. In fact, the bit-width of path metric will directly influence the size of its storage. A

simulation for the cost consideration of path metric storage was done and the result is shown

in Fig. 4.9. It indicates that obvious performance degradation occurs while 9-bit scheme is

adopted. Therefore, we’ll use 10 bits for path metric representation in Viterbi decoder, and

corresponding storage requirement should be at least 2560 bits. Finally, a performance

analysis on system performance for each supported code rate is concluded in Fig. 4.10.

 37

-5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1
10-7

10-6

10-5

10-4

10-3

10-2

10-1

Performance of Viterbi Decoder under different PM bit-width
(16-level soft-input, QPSK, Code Rate=1/6, tblen=64)

SNR

B
E

R

PM bit-width=9
PM bit-width=10
PM bit-width=11
PM bit-width=13

Fig. 4.9 The performance of Viterbi decoder under different bit-widths of path metric

-5 -4 -3 -2 -1 0 1 2 3 4 5
10

-8

10
-7

10-6

10
-5

10
-4

10-3

10
-2

10
-1

100

SNR

B
E

R

Overall performance of Viterbi Decoder under different code rate (QPSK)

Code Rate 1/2
Code Rate 1/3
Code Rate 1/4
Code Rate 1/6

Fig. 4.10 The performance analysis on system performance for each kind of code rate

 38

4.3 Summary
In this chapter, some fixed point performance analysis for internal variables is done for

both operating modes. Summaries of bit-width decision for turbo mode and Viterbi mode are

made in Table 4.1 and Table 4.2 respectively. It is verified that the design loss is only about

0.25dB for both turbo mode and Viterbi mode. A comparison with other similar work [19] for

turbo mode is also made in Table 4.3. It shows that the results are nearly the same.

Table 4.1 Summary of bit-width decision for turbo mode

Variables Lcrk,v L(uk) γ∆ α∆ β∆ ˆ()kL u Lex(uk)

Bounds ~−∞ +∞ -8 ~ +8 40 96 96 -136 ~ 136 -124 ~ 124

Bit-width 6 (3.3) 6 (4.2) 8 (6.2) 8 (6.2) 8 (6.2) 9 (7.2) 9 (7.2)

Table 4.2 Summary of bit-width decision for Viterbi mode

Variables soft input ∆BM ∆PM

Bounds 0 ~ 15 0 ~ 90 0 ~ 5760

Bit-width 4 7 10

Table 4.3 A comparison of bit-width decision with [19] for turbo mode

Variables Lcrk,v L(uk) γ∆ α∆ β∆ ˆ()kL u Lex(uk)

our work 6 (3.3) 6 (4.2) 8 (6.2) 8 (6.2) 8 (6.2) 9 (7.2) 9 (7.2)

[19] 5 (3.2) 6 (4.2) 5* 6* 6* 8* 8*

* required bits for integer part only.

 39

Chapter 5
Architecture of Proposed Dual Mode
Turbo/Viterbi Decoder

5.1 Architecture of Integrated Turbo/Viterbi Decoder
Because of the trellis decoding structure of both decoders, the combination takes the

advantage of resource sharing in the ACS and memory unit, leading to a much compact

architecture for 3GPP2 system. The proposed architecture of integrated turbo/Viterbi decoder

is shown in Fig. 5.1. The shared components are represented with gray blocks. A specified

input is used to switch the operating mode of the proposed design. While the turbo mode is

activated, the components for Viterbi mode are all disabled by gated clock and vice versa.

This will guarantee that redundant power consumption can be avoided in both operating

modes.

According to the operating mode, the input data goes through the input cache or

transition metric unit (TMU, also called branch metric unit or simply BMU) of Viterbi

decoder (VD) for turbo mode and Viterbi mode, respectively. In turbo mode, the sliding

windowed approach introduced in section 2.3 is adopted with a sub-block length of 20. The

data output of the input cache will later go through three additional TMU for data preparation.

The overall architecture consists of 24 ACS units, which are separated into 3 blocks to

complete α, β1, and β2 recursions in parallel in Turbo mode. In Viterbi mode, only 16 of 24

ACS units are used for trellis decoding. The path metrics in both algorithms are obtained by

accumulating branch metrics. Finally, the data output of ACS units may be imported into LLR

 40

computation unit to do iterative decoding for turbo mode or into path metric unit (PMU) of

VD so that trace back can be done periodically in Viterbi mode.

In Fig. 5.1, the memory occupies a significant area of our design. It includes input cache,

forward path metric storage of turbo decoder, and interleaver/de-interleaver memory shared

with survivor memory in Viterbi mode. To save chip area, time-multiplexing method is

utilized to provide double memory access frequency so that all memory blocks but input

cache are implemented with single-port SRAM.

SRAM
TD: systematic symbols
VD: survivor memory

Input
cache

Cache
controller

VD
TMUTMU(α)

ACS
(α)

ACS
(β2)

ACS
(β1)

VD
PMU SRAM(α)

SRAM
TD: extrinsic symbols
VD: survivor memory

LLR
unit

TD
LIFO

VD
LIFO

TMU(β1)TMU(β2)

Interleaver
address

generator

Fig. 5.1 The proposed architecture of integrated turbo/Viterbi decoder

 41

5.2 Architecture of Turbo Decoder
The architecture of integrated turbo/Viterbi decoder operated in turbo mode is shown in

Fig. 5.1, in which all disabled blocks and unconnected lines are represented by dotted lines.

Although iterative decoding with ten iterations provides 0.2dB coding gain compared with

that with six iterations, the former scheme is not adopted in our design due to its longer output

latency and higher power dissipation. Detail operating flow is described as follows.

SRAM
TD: systematic symbols
VD: survivor memory

Input
cache

Cache
controller

VD
TMUTMU(α)

ACS
(α)

ACS
(β2)

ACS
(β1)

VD
PMU SRAM(α)

SRAM
TD: extrinsic symbols
VD: survivor memory

LLR
unit

TD
LIFO

VD
LIFO

TMU(β1)TMU(β2)

Interleaver
address

generator

Fig. 5.2 The architecture of integrated turbo/Viterbi decoder in turbo mode

 42

5.2.1 Single MAP Decoder design

In general, the block diagram of turbo decoder can be expressed as Fig. 2.4, which

consists of two MAP decoders, two interleavers, and one de-interleaver. To implement the

turbo decoder according to this diagram directly is too complicated and not efficient. Since

two constituent decoders are identical, a single MAP decoder is proposed to not only reduce

design cost but also simplify the control logic for two SISO decoders.

To achieve a single MAP decoder architecture, a full decoding iteration is split into two

phases. In the first phase for the SISO decoder1, the MAP decoder reads systematic data,

parity data and extrinsic values which come from the other decoder after de-interleaving. The

output extrinsic data are stored in memory. As in the second phase for the SISO decoder2, the

MAP decoder copes with permuted systematic data, parity data from the second encoder, and

a priori values which are the interleaved extrinsic output from SISO decoder1. A simplified

architecture of Fig. 2.4 is illustrated in Fig. 5.3. Note that there is an additional input cache

and only one memory block for extrinsic data storage here. These will be introduced later in

sub-sections 5.2.2 and 5.2.6 respectively.

r0

r1
r2

MAP
Decoder

SRAM
20730x6

Input
cache

60x24

SRAM
20730x6

Lex(u)

Interleaver
address generator

L(u)

Lex(u)~

^

Fig. 5.3 A single MAP decoder architecture for turbo decoding

 43

5.2.2 Cache design

As what we mentioned in the previous section, a sliding windowed approach is adopted

in our design. Referring to Fig. 2.7, the data of each sub-block needs to be read three times by

ACS-β1, ACS-α, and ACS-β2 units separately. Thus, an input cache is implemented to reduce

repeated accesses of external memory, and power-down can also be achieved. The cache

keeps three consecutive sub-blocks, and is equipped with one writing port for data updating

and three reading ports for ACS units. As shown in Fig. 5.4, the cache is implemented by a

dual-port SRAM with the size of 60x24 bits, and uses time multiplexed approach to provide

four data ports. A set of additional registers is employed at output port-2 to guarantee that all

outputs of the cache will be synchronized at the same clock rising edge. Detail timing chart is

shown in Fig. 5.5.

dual-port
60×24

memory

2x clock rate

D

I

O0

O1

O2

Input port-0

Output port-1

Output port-2

Output port-3

Address-0

Address-1

Address-2

Address-3

Fig. 5.4 The input cache architecture

 44

Port A

Port B RD α RD β2

data for computing β1

data for computing β2

data for computing α

clock for
MAP decoer

clock for
cache

…………

…………

…………

…………

…………

RD β1WR data

Fig. 5.5 The detail timing chart of the proposed input cache

5.2.3 Transition Metric Unit (TMU)

In 3GPP2 standard, eight branch metrics are required for LLR computation. According to

the formula listed in (2. 14), each branch metric is obtained by adding or subtracting received

symbols and a priori data together depending on the branch codewords. Implementing it

directly will consume lots of adders and subtractors. A simple method to overcome this

problem is to use an equivalent formula listed in (5. 1)

()1 ,1 ,
2

(,) ()
n

k k k c k k k c k v k v
v

s s L r L u u L r xγ −
=

,= + ⋅ + ⋅∑ (5. 1)

where { }0,1ku = . By multiplying with uk=0, some terms can be removed without changing

the difference of branch metrics. The modified architecture of TMU is shown in Fig. 5.6.

 45

rs

rp1

rp2

L(uk)

+

+
+

+

+

0 TM000

TM001

TM010

TM011

TM100

TM101

TM110

TM111

Fig. 5.6 The TMU architecture for turbo decoder

5.2.4 ACS Unit

The trellis diagram of both turbo code and convolutional code can be decomposed into

many basic butterfly units. Each one can be implemented by the ACS units. Due to

accumulating the branch metrics, the normalization is necessary to prevent error due to

overflow. Several methods of the normalization had been developed [20]. These include reset,

variable shift, fixed shift, and modulo normalization [21]. In our proposed design, the last one

scheme is adopted. The key idea of the modulo normalization is not to avoid the overflow, but

to accommodate the overflow. Therefore, it can rescale the path metrics locally, and can be

implemented by the 2’s complement adders. The penalty of the modulo normalization is that

the extra one bit is required for all components in each ACS unit. Compared with other

normalization schemes, its overhead is quite small.

The design of ACS unit should be compatible for both Max-Log-MAP algorithm and

Viterbi algorithm. Referring to (2. 23) and (2. 24), we can easily find that both α and β

recursions perform the same add-compare-select operations as that in Viterbi decoder. The

 46

ACS architecture for dual mode turbo/Viterbi decoder is shown in Fig. 5.7. The detail

bit-width information is also shown here.

+

+

+

9

9

11

11
11

11

2

11
α0

γ0

α1

γ1

Fig. 5.7 The ACS architecture for dual mode turbo/Viterbi decoder

5.2.5 LLR unit

LLR unit is a function-block that responses to compute a posteriori LLR and extrinsic

information according to the path metrics and branch metrics. The proposed architecture is

shown in Fig. 5.8. By gathering the forward path metrics from SRAM storing α, the backward

path metrics from ACS-β2 units and branch metrics from TMU-β2, the LLR for each branch

can be figured out in 16 LLR-unit cells. After taking the maximum LLRs for both uk=+1 and

-1, the a posteriori LLR can be obtained according to (2. 22). The extrinsic information is also

acquired base on (2. 15). Responding to section 4.1.2, the extrinsic data should be bounded

with 4.2 format for cost consideration. Any values exceeding the range will be pull back to

+7.75 or -8.00 according to their sign bits. Finally, an additional Last-in-first-out (LIFO) is

used for symbol re-ordering due to backward LLR computations.

 47

ACS
ACSACS

8 LLR-unit
cells

branches for uk= +1

ACSACS
ACS

8 LLR-unit
cells

Max

Max

branches for uk= -1

systematic
input LLR

pipeline
registers

a priori
data

−

+ −

9

5

6

9

bounded
Lex

hard-decision
output

TD
LIFO

extrinsic
information

LLR unit

clock

clock

1

69

9

Fig. 5.8 The LLR unit architecture for turbo decoder

5.2.6 Interleaver design

The embedded interleaver/de-interleaver that supports a maximum block length of

20,730 is designed to reduce the amount of time required to permute symbols. Although

interleaver and de-interleaver must co-exist in turbo decoder, memory sharing between them

can be realized because of the single MAP decoder design. As what we mentioned in section

5.2.1, in the first phase for the SISO decoder1, the single MAP decoder reads a priori

information from the memory in sequence. Once the extrinsic data is generated from the MAP

decoder, it can be written into the memory in sequence, too. By the similar way, in the second

phase for the SISO decoder2, the MAP decoder reads a priori information from the memory

in permuted order. Once the extrinsic data is generated from the MAP decoder, it can be

written into the memory in permuted order, too. The key point is that since the data is read

first, there is no conflict while updating data. This idea can be illustrated with Fig. 5.9. In

order to write and read data from memory at the same time, two memory blocks are required

for the block interleaver in traditional architecture. However, this is a heavy burden for the

chip implementation because of the large block length. To write and read data at the same

 48

time without increasing memory size, the time multiplexed approach is utilized to provide two

data ports. Therefore, the clock rate for SRAM storing extrinsic symbols should be twice of

that in the MAP decoder.

MAP
Decoder

Shared memory for
interleaver/
deinterleaver

Read
Address
Generator

Write
Address
Generator

Fig. 5.9 The architecture of shared memory design in turbo decoder

The permutation realized by address management operates on the fly with the MAP

decoder, which results in no additional delay within each iteration. Fig. 5.10 shows the

address generator for interleaving operation. A large memory of address table with a size of

310.95kb can be eliminated by the on the fly address calculator. However, in 3GPP2 standard,

the generator may produce invalid addresses and stall the MAP decoder, which will introduce

redundant latency and thus decrease the throughput rate. This problem can be solved by a

duplicated address generator since it is guaranteed that there must be at least one valid address

among any two successive permuted addresses. While an invalid address is observed, the

address from the other generator is adopted. Two SRAMs of 20,730 words are included in the

proposed decoder to store systematic and extrinsic symbols respectively. And both of them are

single-port structures to avoid the area overhead of multi-port memory.

 49

ROM
table

Bit reverse

1

Mode
control

Bus
concatenation

Interleaved
Address

10

10
10

15
+

counter

b9
b8
b7
b6
b5
b4
b3
b2
b1
b0

b0 b1 b2 b3 b4

b0b1b2b3b4

5
LSB

5
LSB

MSB

Fig. 5.10 The address generator for the interleaver of 3GPP2 turbo decoder

5.3 Architecture of Viterbi Decoder
In Viterbi mode, 256 states trellis decoding is implemented with 1/2, 1/3, 1/4, and 1/6

code rate. The architecture of the Viterbi decoder is based on the accomplished hardware

components in the turbo decoder. Since the maximum throughput rate specified in 3GPP2

standard is not so critical, the fully parallel architecture is not necessary here. Fig. 5.11 shows

the architecture of integrated turbo/Viterbi decoder operated in Viterbi mode. 16 of 24 ACS

units included in ACS-α and ACS-β1 are employed to finish 256 ACS operations within 16

cycles. The memory for interleaver in turbo decoder is treated as the survivor memory.

Detailed operating flow is described as follows.

 50

SRAM
TD: systematic symbols
VD: survivor memory

Input
cache

Cache
controller

VD
TMUTMU(α)

ACS
(α)

ACS
(β2)

ACS
(β1)

VD
PMU

SRAM(α)
20x72

SRAM
TD: extrinsic symbols
VD: survivor memory

LLR
unit

TD
LIFO

VD
LIFO

TMU(β1)TMU(β2)

Control

Fig. 5.11 The architecture of integrated turbo/Viterbi decoder in Viterbi mode

5.3.1 Transition Metric Unit (TMU)

Due to limited number of ACS units, the ACS operations for each time index in the

trellis have to be separated into 16 cycles. Thus, different branch codewords may occur in

every ACS unit according to the different cycle count. A TMU cell is designed for Viterbi

decoding to deal with this problem. The architecture of TMU cell is shown in Fig. 5.12. The

 51

TMU controller exports miscellaneous codewords base on current operating code rate and

cycle count. After that, the transition metrics are obtained by accumulating the difference of

soft-input symbols and codewords. In the TMU, there are 32 TMU cells assigned for 16 ACS

units to complete all branch metric computations.

csa csa

TMU controller

csa

csa

Adder

c0
c1

c2

c3
c4

c5

code rate cycle count

TM (λ)

4

4

4

4

4

4

4 4 4 4 4 4

Fig. 5.12 The architecture of TMU cell

5.3.2 Survivor Memory Management

Several survivor memory management methods had been introduced in [22]. Among

them, a modified 3-pointer even algorithm is employed to achieve high-speed trace-back

operation. By this method, the amount of the survivor memory required must be triple of that

of traditional scheme. These memory blocks are distinguished into six banks; each one has a

length of L/2 where L is the truncation length. The basic idea is illustrated in Fig. 5.13. In this

graph, one WRITE (WR), two TRACE-BACK (TB) and one DECODE (DC) operations are

 52

preceded in parallel. The detail descriptions are listed as follows.

 WRITE (WR)

The 16 decision bits made by ACS units are written into survivor memory. For each

cycle, the WRITE pointer is moved forwardly to avoid data conflicting. To complete

256-state decision bit selections, the WRITE operation is also divided into 16 cycles.

 TRACE-BACK (TB1 and TB2)

The TRACK-BACK operation starts from the time index t=3L/2. Since each memory

bank has a length of L/2, two TRACE-BACK operations must be performed in two

memory banks to achieve trace-back method before decoding. In this step, the pointer is

moved backwardly. The decision bit, Dt, is chosen from 256 survivor paths according to

the method introduced in section 3.3. A track-backed state St-1 is obtained by St-1 = (St

<<1) | Dt, where << denotes the left shift operation and | denotes the OR operations.

 DECODE (DC)

An additional DECODE operation is used to finish Viterbi decoding after the

completeness of TRACK-BACK in the previous bank. The action of DECODE operation

is exactly the same as that of TRACK-BACK operation. Because of backwardly

decoding, the decoding sequence is in reverse order and thus an additional LIFO buffer

of length L/2 is required to perform bit re-ordering.

Based on the 3-pointer even algorithm, the modified architecture takes 16 cycles to WRITE, 2

cycles to TRACE-BACK, 1 cycle to DECODE, and thus totally 19 cycles to realize Viterbi

decoding for each time section in trellis diagram. For clearness, the architecture of Survivor

memory management is shown in Fig. 5.14.

 53

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

idle

0

L/2

L

3L/2

2L

3L

4L

5L/2

7L/2

9L/2

…

L/2 L/211 L/2 L/211 L/2 L/211

WR TB1 TB2 DC
Time

Fig. 5.13 The 3-pointer even algorithm for survivor memory management

ACS
ACS
ACS

ACS16 ACS units

ACSU

single-port
3072x16 SRAM

 64×PM 64×PM 64×PM 64×PM 256x PM
PMU

SMU
Controller

LIFO
Buffer

decode
message

Fig. 5.14 The architecture of survivor memory management

 54

5.4 Summary
In this chapter, we have presented the architecture of our proposed design and introduced

all components for each mode separately. In turbo mode, the kernel of MAP decoder,

including ACS units, can be operated at a lower clock rate due to two-phase clock design. A

dual-port input cache is embedded to reduce times of external memory access. Both features

make power consumption be even lowered down while operating in turbo mode. Moreover,

the efficient interleaver design removes the redundant memory block employed in

interleaver/de-interleaver. In Viterbi mode, a modified 3-pointer even algorithm is used to

increase the throughput rate. Based on 16 shared ACS units, each decoded bit can be obtained

every 19 cycles.

 55

Chapter 6
Chip Implementation

6.1 Chip specification

The decoder is implemented by the cell-based design flow, and fabricated in a 0.18 µm

1P6M standard CMOS process. In turbo decoding mode, two clock domains are used in

memory and datapath respectively. The lower clock rate is achieved by clock gated from the

input clock. The double clock rate provides the memory with higher bandwidth, and the

single-port memory is sufficient in the proposed design except the cache memory. The chip

size is 11.56mm2 with the core size of 7.29mm2. The total gate count is about 115k gates

including the path metric memory for Viterbi decoder. Three single-port and one dual-port

SRAM are embedded in the chip with a total size of 251.6kb. The maximum IR drop that

occurs in MAP decoder is about 5.7mV while the supply voltage is 1.8V. This will assure the

stable and correct operation. The detail chip specification is summarized in Table 6.1. The

microphoto of the chip is shown in Fig. 6.1.

The chip has been tested and can work at 100MHz (50MHz in datapath) under 1.60 ~

1.98V supply voltage, which can provide 4.52Mb/s for turbo decoding in six iterations and

5.26Mb/s for Viterbi decoding. Table 6.2 shows the power measurement result while decoding

turbo codes and convolutional codes. Note that 1Mb/s is the average throughput rate in

3GPP2 standard.

 56

Table 6.1 Summary of the decoder chip

Technology 0.18 µm CMOS

Package 84 CLCC

Supply voltage 1.8V core/ 3.3V IO

Chip size 11.56 mm2

Embedded SRAM 251.64kb

Supported code rate
1/5 for turbo code

1/2, 1/3, 1/4, 1/6 for Viterbi mode

Maximum data rate
4.52Mb/s for turbo mode

5.26Mb/s for Viterbi mode

SRAM
TD: systematic symbols

VD: survivor memory

SRAM
TD: extrinsic symbols
VD: survivor memory

Input
cache SRAM (α)

MAP
DecoderTMU PMU

Fig. 6.1 The microphoto of the decoder chip

 57

Table 6.2 Power measurement result of the decoder chip

Mode Data rate Clock rate Block length Power

4.52Mb/s 100MHz 20,730 121 mW

66MHz 20,730 83 mW
3.1Mb/s

100MHz 378 81 mW

25MHz 20,730 29.5 mW

Turbo mode

1Mb/s
33MHz 378 28.8 mW

5.26Mb/s 100MHz Code Rate = 1/2 116.46 mW
Viterbi mode

1Mb/s 20MHz Code Rate = 1/2 25.1 mW

6.2 Comparison with other similar work
Up to now, there is no issue in IEEE publication about dual mode channel decoder

implementation for 3GPP2 standard. Thus, we make a comparison with the unified channel

decoder for 3GPP standard in [23] shown in Table 6.3. Due to lower code rate specified in

both turbo mode and Viterbi mode, the gate count is larger than that of [23]. However, the

proposed design is more economic in power dissipation as a whole.

 58

Table 6.3 Comparison with other similar work

 The proposed design [26] [23]

Technology 0.18 CMOS 0.18 CMOS

Compatible Standard 3GPP2 3GPP

Gate Count 115,000 85,000

Core Size 7.29 mm2 9 mm2

Supply Voltage 1.8V 1.8V

Maximum Clock Rate 100MHz 110.8MHz

Maximum Throughput Rate

(Turbo Mode)
4.52 Mb/s with 6 iterations

2.5 Mb/s with 10 iterations

4.1 Mb/s with 6 iterations

Power (Turbo Mode)
83 mW@66MHz

(3.1 Mb/s)

292 mW@88MHz

(2.048 Mb/s)

Power (Viterbi Mode)
25.1 mW

(1 Mb/s)

116.8 mW

(1 Mb/s)

Embedded Memory Size 251.64 Kb 239 Kb

6.3 Summary
In this chapter, a chip implementation result is presented. The turbo decoding is able to

achieve a maximum data rate of 4.52Mb/s with relative lower power consumption. The

Viterbi decoding consists of 256 states and uses the same datapaths as those of the turbo

decoder. Various coding rates, including 1/2, 1/3, 1/4, and 1/6, are supported. As compared to

the unified channel decoder in where 292mW is required to decode a 2Mb/s data stream with

ten iterations, the proposed design is more efficient in power dissipation.

 59

Chapter 7
Conclusion and Future Work

7.1 Conclusion

In this thesis, we talked about an implementation method for a dual mode Turbo/Viterbi

decoder compatible for 3GPP2 standard. The chip is completed by verilog-HDL and UMC

0.18µm standard cell library. The chip die size is 3.40 x 3.40 mm2 with the core size of 2.70 x

2.70 mm2. It contains 115k gate counts of logic cell. The maximum iteration number for turbo

decoding is fixed to six. With supply voltage of 1.8V, the power consumption in Turbo mode

is about 83mW while working at 66MHz to achieve 3.1 Mb/s throughput rate; and that in

Viterbi mode is about 25.1mW while working at 20MHz to achieve 1Mb/s throughput rate.

7.2 Future Work
Up to now, the early termination scheme is regarded as the most efficient way to reduce

the power consumption in turbo decoders. It uses several characteristics in turbo decoding to

judge if decoding sequence is nearly correct before maximum iteration number is achieved.

Once iterative decoding can be stopped earlier, then the power can be saved. In [24], an

iteration stopping criterion has been devised based on the cross entropy between the a

posteriori probabilities of two SISO decoders for each iteration. In [25], two further

simplified criteria were proposed for cost down. Although the performance of our design in

the aspect of power consumption listed in Table 6.2 is attractive, there is no early termination

technique used in it. This may be an aspect that we can try to better our design.

 60

Bibliography

[1] Technical Specification Group Radio Access Network; Multiplexing and channel coding

(FDD), 3GPP TS 25.212, V3.11.0, Sep 2002

[2] Physical Layer Standard for cdma2000 Spread Spectrum Systems, 3GPP2 Std.
C.S0002-C, May 2002.

[3] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon Limit Error-Correcting
Coding and Decoding: turbo-codes,” in IEEE Int. conf. Communications (ICC),
pp.1064-1070, May 1993.

[4] D.Divsalar, S. Dolinar, R. J. McEliece, and F. Pollara, “Performance Analysis of Turbo
Codes,” in IEEE Military Communication conf., vol. 1, 5-8, pp. 91-96, Nov. 1995.

[5] J. Hagenauer and P. Hoeher, “A Viterbi Algorithm with Soft-decision Outputs and its
Applications,” in IEEE GLOBE-COM, Dallas, TX, pp. 47.1.1-47.1.7, Nov. 1989.

[6] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal Decoding of Linear Codes for
Minimizing Symbol,” in IEEE Trans. Inform. Theory, no.IT-20, pp 284-287, Mar, 1974.

[7] J. H. Andersen, “‘Turbo’ Coding for Deep Space Application,” in IEEE International
Symposium on Inform. Theory, 17-22, pp.36, Sep. 1995.

[8] J. H. Andersen, “Turbo codes extended with outer BCH code,” in Electronics Letters,
vol. 32, no. 22, 24, pp.2059-2060, Oct. 1996.

[9] P. Robertson, E.Villebrun and P. Hoeher, “A Comparison of Optimal and Sub-optimal
MAP Decoding Algorithms operating in the Log Domain,” Proc. ICC’95, Seattle, June
1995.

[10] J. Hagenauer, E. Offer, and L. Papke, “Iterative Decoding of Binary Block and
Convolutional Codes,” IEEE Trans. Inform. Theory, vol. 42, no. 2, pp. 429-445, Mar.
1996.

 61

[11] J. A. Erfanian, S. Pasupathy, and G.Gulak, “Reduced Complexity Symbol Detectors with
Parallel Structures for ISI Channels,” IEEE Trans. Commun., vol. 42, no. 2/3/4,
pp.1261-1271, Feb./Mar./Apr. 1994.

[12] T. A. Summers and S. G. Wilson, “SNR Mismatch and Online Estimation in Turbo
Decoding,” IEEE Trans. Commun., vol. 46, pp.421-423, Apr. 1998.

[13] A. Worm, P. Hoeher, N. Wehn, “Turbo-Decoding Without SNR Estimation,” IEEE
Commun. Letters, vol. 4, no. 6, pp.193-195, June 2000.

[14] S. A. Barbulescu, “Iterative decoding of turbo codes and other concatenated codes,”
University of South Australia, PhD Dissertation, Aug. 1995.

[15] S. A. Barbulescu, “On Sliding Window and Interleaver Design,” Electronics Letters, vol.
37, no. 21, pp.1299-1300, Oct. 2001.

[16] A. J. Viterbi, “Error bounds for convolutional codes and asymptotically optimum
decoding algorithm,” IEEE Trans. Inform. Theory, vol. IT-13, no. 2, pp.260-269, Mar.
1973.

[17] Y. Wu and B. D. Woerner, “Internal data width in SISO decoding module with modular
renormalization,” in IEEE Vehic. Tech. Conf., vol. 1, pp. 675-679, May 2000.

[18] Y. Wu, B. D. Woerner, and T. K. Blankenship, “Data Width Requirements in SISO
Decoding With Module Normalization,” in IEEE Trans. On Commun., vol. 49, no. 11,
pp. 1861-1868, Nov. 2001.

[19] T. K. Blankenship and B. Classon, “Fixed-Point Performance of Low-Complexity Turbo
Decoding Algorithms,” in IEEE Vehic. Tech. Conf., vol. 2 pp. 1483-1487, May 2001.

[20] C. B. Shung, P. H. Siegel, G. Ungerboeck and H. K. Thapar, “VLSI architectures for
metric normalization in the Viterbi algorithm,” IEEE International Conference on
Communications, vol. 4, pp.1723-1728, Apr. 1990.

[21] A. P. Hekstra, “An Alternative to Metric Rescaling in Viterbi Decoders,” IEEE Trans.
Commun., vol. 37, no. 11, pp. 1220-1222, Nov. 1989.

 62

[22] G. Feygin and P. G. Gulak, “Architectural Tradeoffs for Survivor Sequence Memory
Management in Viterbi Decoder,” IEEE Trans. On Commun., vol. 41, no. 3, pp. 425-429,
Mar. 1993.

[23] M. A. Bickerstaff, D. Garrate, T. Prokop, C. Thomas, B. Widdup, G. Zhou, L. M. Davis,
G. Woodward, C. Nicol, R. H. Yan, “ A Unified Turbo/Viterbi Channel Decoder for
3GPP Mobile Wireless in 0.18-μm CMOS”, in IEEE Journal of Solid-State Circuits,
vol.37, no.11, Nov. 2002

[24] M. Moher, “Decoding via Cross Entropy Minimization,” in Proc. IEEE Globecom Conf.,
Houston, TX, Dec. 1993, pp.809-813.

[25] R. Y. Shao, S. Lin, and M. P. C. Fossorier, “Two Simple Stopping Criteria for Turbo
Decoding,” IEEE Trans. On Commun., vol. 47, no. 8, pp.1117-1120, Aug. 1999.

[26] C. C. Lin, Y. H. Shih, H. C. Chang, and C. Y. Lee, “A Dual Mode Channel Decoder for
3GPP2 Mobile Wireless Communications,” Proc. 30th Eur. Solid State Circuits Conf.
(ESSCIRC), 2004.

[27] 李鎮宜, 林建青, 施彥旭, “低複雜度之渦輪解碼器架構,” 中華民國專利申請中, 交
通大學申請案編號: 04(專)A015

 63

作 者 簡 歷

 姓名 ：施彥旭

 出生地 ：台灣省彰化縣

 出生日期：1980. 11. 4

 學歷： 1986. 9 ~ 1992. 6 彰化縣立鹿港國民小學

 1992. 9 ~ 1995. 6 彰化市私立精誠高級中學附設國中部

 1995. 9 ~ 1998. 6 彰化市私立精誠高級中學

 1998. 9 ~ 2002. 6 國立交通大學 電子工程系 學士

 2002. 9 ~ 2004. 6 國立交通大學 電子研究所 系統組 碩士

得 獎 事 績

 九十一學年度 第二學期電子研究所書卷獎

九十二學年度 全國大專院校 FPGA 系統設計競賽 Xilinx 研究所組特優

 九十三學年度 斐陶斐榮譽學會新榮譽會員

 64

發 表 論 文

 Yew-San Lee, Cheng-Mou Yu, Hung-Kuo Wei, Yen-Hsu Shih, Chen-Yi Lee,

“A novel DCT-based bit plane error resilient entropy coding scheme

and codec for wireless image communication,” in IEEE ISCAS, May

2002.

 Hung-Kuo Wei, Yew-San Lee, Yen-Hsu Shih, Chen-Yi Lee, “A novel fixed

bit plane error resilient image coding for wireless multimedia

transmission,” in IEEE ICIP, Sep. 2002.

 Chien-Ching Lin, Yen-Hsu Shih, Hsie-Chia Chang, and Chen-Yi Lee, “A

Dual Mode Channel Decoder for 3GPP2 Mobile Wireless

Communications,” in IEEE ESSCIRC, 2004

 65

