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Alanaratq--In this paper, the stochastic linear dynamic system 
with uncertain parametric perturbations and uncertain noise 
covariances is studied. Based on minimax theory and the 
Bellman-Gronwall inequality, a sufficient condition for 
robust stability is derived. Finally, a robust LQG optimal 
control design technique is employed to treat this problem. 

1. Introduction 
A REMARKABLE property of the LQG optimal control 
problem is that the optimal control law designed by the LQ 
optimal method is generated from the estimated state, which 
is generated by the Kalman-Bucy filter. That is, the so-called 
LQG problem combines the available theory of optimal 
quadratic control with that of optimal estimation to provide a 
unified design procedure (Kwakernaak and Sivan, 1972). The 
LOG optimal control design for a linear stochastic system 
apparently requires an exact system model for a real plant 
and requires an accurate description of the statistical 
behaviour of the noise signal. 

Some schemes have previously been proposed around the 
subject about the form of uncertain disturbances or noises 
such as Johnson (1971) who has mentioned that the 
disturbances, which are both not known beforehand and not 
accessible for measurement but do have a known set of 
possible waveforms, can be modelled as a state-space 
description which characterizes these possible waveform 
modes of disturbances. Johnson (1984) extended the kind of 
disturbance-accommodating control (DAC) theory in John- 
son (1971) to both noise-type disturbances and waveform- 
type disturbances. Looze et al. (1983) employed the minimax 
approach to treat the linear stochastic systems with noise 
uncertainty. 

Another problem is that any system model of a real plant 
is at best an approximation of reality such that the 
parameters of the system model are some approximate 
values. Thau and Kestenbaum (1974) discussed the effect of 
modelling errors on linear state reconstruction and regulator 
via the techniques of Liapunov equation and Bellman- 
Gronwall inequality. Several papers such as Doyle and Stein 
(1981) and Lchtomaki et al. (1981) suggested a robust LQG 
control design from the concept of a singular value in the 
s-domain to cope with the unstructured perturbations. 

However, in an actual control system, both plant 
parameters and noise may not be known precisely. In order 
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to make the control design more practical, a robust LQG 
design for the stochastic systems with uncertain parameters 
and uncertain noises is proposed. Based on minimax theory 
and Bellman-Oronwall inequality, a sufficient condition of 
robust stability is derived. 

This paper is organized as follows. Section 2 gives a 
description of a conventional LQG optimal design. The 
problem formulation is given in Section 3. Some robust 
stability criteria are derived and a robust LQG design 
algorithm is proposed in Section 4. An example and 
conclusions are given in Sections 5 and 6, respectively. 

Throughout this paper, we will use the following notation: 
R* set of real vectors with dimensions a 
R axb set of real matrices with dimensions a by b 
~.i(A) ith eigenvalue of A 
IJA li maximum singular value of matrix A, i.e. 

IIAII -~ max V().t(ATA)) 
i 

Ilxll Ilxll _a V(E(xWx)), x ~ R ° 
coy [., -] covariance function 
E[-] expected value operator 
tr [-] trace operator 
6(.) Dirac delta function 
Re [.] real part of a complex number. 

2. Description of conventional LQG optimal control problem 
The conventional LOG optimal design is to control the 

stochastic continuous linear systems optimally under the 
quadratic criterion and under the assumption that the 
continuous linear system is driven by a white Gaussian 
process with known statistics. 

Let us consider a linear time-invariant system described by 

k(t) = Ax(t) + Bu(t) + ~(t) (la) 

y(t) = Cx(t) + O(t) (Ib) 

where state x(t) is an R" vector; control u(t) is an R" 
vector; observation y(t) is an R" vector; process noise ~(t) is 
an R ~ vector; and observation noise O(t) is an R" vector. 

It is assumed that the noise processes (~(t)}, (0(t)} are 
stationary white Gaussian with the following properties: 

E[#(t)] = E[O(t)] = 0 (2a) 

cov [~(t), ~0r)] = F,a(t - r), Z >- 0 (2b) 

cov [0(t), 0(r)] = O~(t - O, O >- 0. (2c) 

Meanwhile, { ~(t) } and { O(t) } are independent of each other. 
The performance index J to be minimized will be chosen as 

= lira 1E~fr(x 'r( t )Qx(t )  + puT(t)Ru(t)) dt} (3) J 
r ~ T  (Jo 

where R = R  T>0 ;  Q = QT>0.  
The optimal admissible control u*(t), which minimizes the 

performance index J in (3) subject to dynamic system (1), is 
given by 

u *  ( t )  = - G~(t) (4a) 
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where 

G = 1 R_]B~p (4b) 
O 

0 = PA + AXP + Q - 1 PBR_]BTp (4c) 
P 

and ,~(t) is the output of the Kaiman-Bucy filter given by 

J~(t) = A£(t) + Bu(t) + K(y(t)  - C$(t)) (5a) 

K = ~ c T o  -1 (Sb) 

0 = A X  + ~..A T "~ E --  ~ . C T O - 1 C  ~r~. (5c) 

3. Problem formulation 
In practical design, the effects like ignored dynamics, 

iinearization or order reduction will cause the uncertainties 
of parameters of the system model and some other effects 
such as nonstationarity, and non-Gaussian type will also 
cause some uncertainties in statistical descriptions. In order 
to be faithful to a practical plant, the system model including 
the statistics of noise perturbations must be considered by a 
more general form to describe the dynamic processes. We 
reformulate the system model as 

~(t) = (A + &A(t))x(t) + (B + AB(t))u(t) + ~(t) (6a) 

y(t) = (C + AC(t))x(t) + O(t) (6b) 

where x, y, A, B, C, ~, and 0 are defined as in system (1). 
AA(t), AB(t), and AC(t), respectively, are the parametric 
uncertainties of matrices A, B, and C which are considered 
as the nominal system parameters and are assumed to be 
bounded in a non-empty set described as 

AA(t) e {IIAA(t)II ~ ~r) (7a) 

AB(t) e {IIAB(t)II -<- /$) (7b) 

AC(t) 6 (IIAC(t)II ~ ~') (7c) 

where a¢, /3, and y are some positive constants obtained by 
experiences or experiments. 

The covariances of process noise and measurement noise 
in (2) are not fixed and are assumed to be bounded in a 
non-empty set described as 

-- e S~ = {11~ - Foil <-- rh, ~ > 0} (ga) 

OeSo  = (110-Ooll  < n2, O > 0 )  (8b) 

where ~ and Oo are the nominal parts estimated for actual 
noise ~(t) and O(t), respectively; and r h and r/2 are the 
experimental values of the deviation from the nominal values 
",Eo and O0, respectively. 

In the face of these widespread objective environments, 
the conventional LQG design method may not produce a 
stabilizing controller for the overall system. Thus, some new 
problems are raised which need to be addressed and stated as 
follows. When such a stochastic linear time-invariant but 
parameter-perturbed and noise-uncertain system model (6) 
with conditions (7) and (8) are given, what is the robust 
condition which will guarantee that a linear controller will 
stabilize and regulate the overall closed-loop system? Under 
the above mentioned parameter perturbation and noise 
uncertainty, how do we design a robust LQG optimal 
controller in accordance with the robust condition such that 
the overall closed-loop stochastic system has enough robust 
stability? 

4. The design of a robust LQG system 
The design issue seems complicated because it involves the 

effect of parameter variations and uncertain noise covari- 
antes which are equivalently important to affect the 
controller design. Nonetheless, two design steps are provided 
to tackle the robust control design problem. The first step is 
to use the minimax approach to treat uncertain noise. After 
the problem of uncertain noise has been coped with, we take 
step 2 by using the Beliman-Gronwall inequality (Vid- 
yasagar, 1978) to override the effect of parametric 
perturbation. 

4.1. A minimax approach for uncertain none spectra--step 
1. In the first step, we pretend that the system model is 
correct except that the noise covariances are not sure. The 
linear time-invariant stochastic system model becomes 

£(t) = Ax(t) + Bu(t) + ~(t) (9a) 

y(t) = Cx(t) + O(t) (gb) 

with conditions (8). 
A useful approach for control design in the presence of 

inaccurate noise covariances is to employ the minimax 
control scheme which minimizes the worst-case performance. 
We will apply this approach and adopt the schemes 
developed in the works of Looze et al. (1983), Martin and 
Mintz (1983), and Verdu and Poor (1984) to consider the 
problem of designing a linear minimax control law for system 
(9). 

Let the performance index to be minimized be quadratic as 
follows: 

J=~m®E{lfoT(XT(t)Qx(t)+puX(t)Ru(t) )dt}  (10) 

where Q = QT>O, R = R X > 0  and it is assumed that 
[,4, Qlr~] is observable and [A, ~trz] is controllable. 

If we assume that --- and O are a known pair in the sets S e 
and S e of (8), (4)-(5) is the solution to the stochastic 
regulator system (9) with cost functional (10). 

Our consideration of controls generated by causal and 
measurable functions of the system states is restricted to a 
non-empty set denoted by ~ which is the class of all 
admissible linear controls with the same type as (4a). The 
following attempt is then to choose an optimal control u, a 
member of the set ~ ,  in the sense that the optimal control 
minimizes the worst possible performance (10) under a 
certain pair (~-, O ) e  S~ × So. The problem, now, can be 
stated in mathematic language as the minimax problem 

rain maxJ(u, ~, O). (11) 
~ E .~,+ _~s~ 

eese 

We wish to find a saddle-point solution of problem (11) 
which has an important relation to optimal stochastic 
regulator design with the worst case of noise uncertainties. 
The following facts based on the theorems in Looze et al. 
(1983) are helpful for understanding Theorem 1 below. 

Fact 1. There exists a triplet (u. ,  ~ . ,  O . )  e ~+  × S t × So 
satisfying the saddle-point condition 

J(u . ,  ~, O) < J ( u . ,  ~,., O.)'<J(u, ~, ,  0 . ) ,  

ue~+~, '~¢St ,  OeSo  (12) 

if and only if the values of (11) are equal to 

max min J(u, ~, 0).  (13) 
-Es~ ue~+ 
o~so • 

Pact 2. The cost function J defined in (10) subject to system 
(9) with control of the form of (4) and (5) can be calculated 
and arranged to the following new formulation: 

J = tr [-~P] + tr [(E + KOKT)X] (14a) 

where X is the unique positive semidefinite solution of 

(A - K c ) T x  + X(A - KC) + OG'rRG = 0. (14b) 

Combining the concept of Fact 1 with the result of Fact 2, 
we can obtain the following theorem which guarantees the 
existence of a saddle point at which an equivalence between 
a saddle-point solution to minimax problem (11) and an 
optimal stochastic regulator solution of (4) and (5) 
corresponding to a particular (~', O) pair is established. 

Theorem 1. If S~ and So are convex and compact sets, a 
saddle-point solution (Uo, ~ . ,  O . )  for the minimax problem 
(11) exists and satisfies 

tr [~Y] ~- tr [~.Y] E~S~ (15a) 

tr[OK.XKV.]<-tr[O.K.XKV.] O~S~ (15b) 
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where K, is the Kalman-Bucy filter gain of (5b) 
corresponding to F., and O, ,  X is given by (14b), and Y is 
the solution of 

(A - K , c ) T y  + Y(A - g , c )  
+ Q + P K , C +  "r T C K . P = O  (16) 

and P is given by (4c). Then, the minimax controller is 
simply the optimal stoclmstic regulator designed for the 
particular pair (E., O. )  which satisfies (15) and is called a 
least favourable pair. 

Proof. See Looze et al. (1983). • 

Because the two sets S~ and So defined in (8) are 
equivalent to 

S~ = {.~: F.o- T/II--< E <-- -Zo + T/:I, E > 0} (17a) 

So = {O: Oo - %I <- O < Oo + T/2I, O > 0} (17b) 

the maximal elements are Eo+ rhI and Oo+ v/2I and the 
following lemma provides a minimax controller for our 
problem defined by (9)-(11). 

Lemma 1. The robust controller for system (9) with 
uncertain noise covariance is the minimax controller to solve 
(11) with least favourable noise covariances F.o+ThI and 
Oo + %I, i.e. 

u( t )  = - G . ~ ( t )  (18a) 

G = 1 R - a B T p  (18b) 
O 

0 = PA + ATp  + Q - 1 PBR_lBwp  (18c) 
P 

and 

,~(t) = A.~(t) + Bu(t) + K(y( t )  - C$(t)) (19a) 

/~" = zc ' r(Oo + T/:I) -1 (19b) 

O = A Z + Z A T  + ( ~ - o + q I I ) - Z c T ( O o + r l 2 I ) ) - a C Z  (19c) 

Proof. See I.ooze et al. (1983). • 

4.2. A norm approach--step 2. The minimax control 
problem (11) is still not suitable for the system with both 
uncertain noise covariances and parametric variations, i.e. in 
order to override the effect of parameter perturbations, it is 
necessary to impose some restrictions or make some 
modification to the minimax controller in (18) and (19). 
Before taking one step ahead, we claim that a sufficient 
robust condition is desirable for checking whether the 
stability of the closed-loop system of (6), designed by a 
minimax controller (18) and (19) under both parameter 
perturbations and noise uncertainties described in (7) and 
(8), is preserved or not. 

Considering the stochastic control system with the worst 
case of uncertain noise and plant perturbation, and 
subtracting (19a) from (6a), we have 

Yc(t) - ~(t) = (A - l(C)(x(t) - ,~(t)) + AA(t)x( t)  + A B(t)u(t) 

- [(AC(t)x(t)  + ~(t) - [(O(t), (20) 

Defining .~(t) __a x(t) - ~(t), (20) becomes 

~(t) = (A - [(C)$(t) + AA(t)x(t)  

+ AB(t)u(t)  - l (AC(t)x( t)  + ~(t) - l(O(t). (21) 

Substituting the control law (18a) into (6a) and combining 
(6a) with (21), we obtain 

~(t)/  ~" A - KC] \~(t)]  

{ AA(t) - AB(t )G A n ( t ) G ] ( x ( t ) ]  
~AA( t ) -  AB(t )G - / ( A C ( t )  AB(t )G]kX(t )]  

+(I I 0 ~(~(t)~ (22) 
- K / \ O ( t ) ] "  

• and 

Let us define 

(x(t)~ (23a) 
~(t) a= \~(t) /  

( "-0 BG ) (23b) A ~  A BG A - K C  

A.4p(t) -~ ( /XA(t) - AB(t)G AB(t )G]  (23c) 
\ A A ( t ) -  A B ( t ) G -  KAC(t )  AB( t )G]  

n(t) a_ ( ~(t) ] (23e) 
\ O(t)]" 

Then (22) can be rewritten as 

~(t) = AX(t) + A.4p(t)X(t) + Gn(t) (24) 
where 

cov [n(t), n(t)] = (=-o + ~h I O )  
0 Oo + %I ' 

If we define 

• (t) = exp (,4t) (25) 

the solution of (24) can be obtained as 

i(t) = ~,(t)~(0) + f~ ~(t ~') AAp('g).l~ (1:) dr  

I2 + ~(t - r)Gn(~) dr. (26) 

Because the eigenvalues of fi, in (23b) are all in the 
left-hand half of the s-plane, there exists a positive constant 
value # such that - #  is the real part of the eigenvalue of A 
nearest to the imaginary axis, i.e. 

- #  = max (Re [).t(,4)]). (27) / 

It is known that if all the eigenvalues of ,,i lie in the 
left-hand half of the s-plane, the matrix ~(t)  in (25) is 
bounded as a function of t such that from Chen (1984) the 
following inequality holds: 

IIO(t)ll-<m e x p ( - ~ ) ,  t>-0 (28) 

where m is a certain appropriate positive constant and # 
satisfies (27). 

We require the overall closed-loop system composing of 
the perturbed plant (6)-(8) and minimax controller (18) and 
(19) to be stable. From (24), to achieve stability, the state 
~(t) must converge asymptotically. The following theorem 
provides a sufficient condition to guarantee the asymptoticai 
stability of the closed-loop system. 

Theorem 2. Let ~ satisfy (27) and suppose the following 
inequality holds: 

~ > m(2tr + 2fl IIGI{ + 3' II/(ID (29) 

then the minimax controller (18) and (19) stabilizes the 
regulator system (6) with parametric variations of (7) and 
uncertain noise covariances of (8), and the output of the 
overall closed-loop system will converge asymptotically to 
some small fixed value which is dependent on the intensity of 
noise uncertainties as t--, ~o. 

Proof. See appendix. • 

Remark 1. 
(1) Since A/]p(t) in (24) is uncertain, the true value of 

IIAAp(t)ll is unknown. From (A3), (2oc + 2fl IIGII + y II/~ll) 
is the worst estimation of ]lA.4p(t)ll. Therefore, the ratio 
((2a+2#llGll+Yll f~l l) / l l&/]p(t)[I)  can be used as a 
measure of the conservatism o f  the Bellman-Gronwall test in 
stability analysis. 

(2) The physical meaning of (29) is that if #, the degree of 
stability of the minimax optimal controller in Lemma 1, is 
large enough to override the effect caused by the parameter 
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perturbation, then the LOG optimal perturbed system is 
robustly stable. n 

As the parameter and noise uncertainties in the system of 

(1) If n2 > p1 and only p, cannot satisfy (32), then some 
appropriate p’ or p in (30) has to be selected in order to 
satisfy (32). 

(6) become larger, inequality (29) may not hold. In order to 
overcome this design difficulty, we propose the following 
exponential weighting method by increasing the relative 
degree of stability (i.e. increase the robust stability) for the 
optimal regulator and the Kalman-Bucy filter. They are 
stated respectively in the following two remarks. 

(2) If r~, >nz and only ,nz cannot satisfy (32). then an 
appropriate n” in (31) has to be selected in order to satisfy 
(32). 

(3) If p1 and p2 both cannot satisfy (32) then some 
appropriate n’ and p in (30) and n’ in (31) have to be 
selected to satisfy (32). 

Remark 2 (Anderson and Moore, 1971). 5. Example 

(1) If v’ is a non-negative constant and the following 
steady-state version of the Riccati equation in (18~) is 
changed as 

The following example is given to illustrate our approach. 
Consider the following stochastic linear dynamic system: 

P(A + ~‘1) + (A + p’I)‘P -$PBR-‘B”.P + Q = 0 (30) 

then all the eigenvalues of matrix (A - BG) have real parts 
less than -f~‘. The above result is equivalent to imposing the 
following exponential weighting cost functional to the 
stochastic system: 

with 
EN’)1 = E[Wl = 0 

cov [H’), E(t)1 = =ow - 4 
cov [e(t), e(t)] = 8,6(’ - t) 

where 
I= IimE ( TITexp (2Fc’t)(xT(r)f?x(t) + ~u~(r)Ru(r)) dr]. 1 

7-m 

(2) If u’ is chosen so large that the poles of A - BG are 
pushed extremely far to the left, a very high-gain 
high-bandwidth control will occur. In this situation p in (30) 
can be specified to achieve robust stability in (29) by 
increasing p from 0 to m. 

Remark 3 (Anderson, 1973; Sorenson and Sacks, 1971). If p’ 
is a non-negative constant and the following steady-state 
version of the Riccati equation in (19~) is changed 

(A + p”I)t: + Z(A + ~“1)~ + (& + ‘hI) 

- ZCT(8” + r/g)-‘cz = 0 (31) 

all eigenvalues of matrix (A - RC) have real parts less than 
-$‘. Similarly, the Riccati equation in (31) is equivalent to 
obtaining an optimal filter by minimizing the following cost 
function: 

J= ;w~f 
I 

7 
{(v(t) - Cw(t))‘@;‘(t)(Y(‘) 

0 

where 
- CW(t)) + (5T(‘)%L’W&‘))I d’ 

e,(t) = exp (-2p”t)@(t) 
and 

S*(t) = exp (-2p”t)Z(t). n 

From the analysis in Remarks 2 and 3, it is seen that if we 
choose (30) and (31) instead of (18c) and (19c), respectively, 
the minimax controller in Lemma 1 will shift all the 
eigenvalues of the closed-loop system to the left-hand side at 
least -mitt {r’, p”}, i.e. the value of p in (29) increases by a 
value min {r’, $). Let 

-p, 2 m;x {Re [&(A - BG)]) 

-p, 2 m;x {Re [I,(A - kc)]}. 

From (23b), using the separation principle, the robust 
stability in (29) is equivalent to 

P = min (ri. Pz) >m(2a + 28 Wll + Y 11~11). (32) 

A robust LQG optimal design algorithm is proposed as 
foIIows. 

Step 1. Design a minimax control system (18) and (19) 
and check whether condition (29) is satisfactorv or not. If 
(29) is not satisfied, we go to step 2; otherwise, we complete 
the design. 

Step 2. Based on a minimax control system, there are 
three situations to be considered repeatedly until one of 
them holds. 

(33b) 

and 

We call system (33) a nominal system and this system suffers 
some uncertainties as foll0ws: 

+ Abu(t) + g(t) (34a) 

with 

cov [E(r), 5(r)] = 26(‘- z) 

cov [e(t), e(f)] = m(t - 5) 

EkXt)l = E[eWl = 0 

where A,,, b,, and C,, are the same as above 

(354 

Ab= c 
0 0 

l is an uncertain value varying in (-0.05 0.051 

AC(t) = ( o’2 “0”” (‘) o, 1 s;n (‘)) (35c) 

z+={&-(‘; ;7)s8sG+(o; i7)] (35d) 

Suppose the weighting matrices are given as 

Q=(; ;j, R=l, and p=l. 

How do we design a robust LQG optimal controller to 
stabilize the stochastic linear dynamic system (34) with 
uncertain parameters and noise covariances? 

Solution. First, we c0nstruct a minimax controller to 
overcOme the problem of the uncertain noise covariances. 
From the definition of SE and S, in (35d) and (35e). we can 
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obtain the following description: 

I1= - ~11 <0.7 ~- r/] 
IlO - Ooll < 0.9 __a ~2. 

The minimax control system according to (18) and (19) is 
described as follows: 

,~t(t) 
u(t )= -G(ycz(t)) (36a) 

(~,(t)~ ~(t) 
= + bo,,(,) ~(t) / 

[ \y2(t)/ ~°\~2(t )] J 
where 

and 

(36b) 

(37a) 

(37b) 

c = [0.3345 0.5471] 

: 0.7414 -00 9  
\ -0.2191 0.2687]" 

The definitions in (35a)-(35c) lead to 

IIAA(t)II -< 2 =~ 0~; IlAbll <0.05 ~ p; and 
IIAC(t)ll < 0.2 ~ y. 

The robust inequality (32) does not hold because 

max {Re [~.,(A - bG)]) = -1.9408 = -p, (38a) 
i 

max {Re [;t,(A -/(C)]} = -3.4879 = -/z 2 (38b) 
i 

and 

right-hand side of inequality (32) = 4.2215. (38c) 

From (38), we must take the third case of step 2 in the 
design algorithm by selecting an appropriate pair, p '  and p", 
to increase the robust stability. We find that the choice of 
p ' =  3 and /~"= 4 is adequate for our design because from 
(32) we obtain 

/~ = 6.4067 > m(2oc + 2fl lIGII + Y II/(ll) =6.1295. 

So, the robust LQG optimal controller for system (34) 
with uncertain parameters and noise covariances is 

_ ~1(t) 
u(t)- - G  ( .~(t))  

:~t(t) _ ~l(t) ~(Yl ( t )~  r {Xl(t)~] 
( .~2(t))-  Ao(~2(t))+ bou(t) + [\y2(t) ] - "~°':~2(t)] J 

with 
G = [-5.297 16.0997] 

/ ~ = (  1 .7708-0.3035~ 
\-0.9943 0.9596]" 

The result of simulation is shown in Figs 1 and 2. 

6. Conclusions 
In this paper, a compact form of the sufficient condition is 

obtained for robust stability of LQG optimal systems and a 
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FIG. 1. The simulation of time response for state xl(t) in the 
example. 
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FIG. 2. The simulation of time response for state x2(t) in the 
example. 

design algorithm is also proposed to cope with such a 
complicated environment of the stochastic processes with 
uncertain parameters and uncertain noise covariances. The 
design philosophy is to combine the concept of minimax 
design and robust stabilization of parameter perturbation 
together. The property of exponential weight in cost function 
proposed by Anderson and Moore (1971) or Anderson 
(1973), and Sorenson and Sacks (1971) are employed to 
implement the robust LQG optimal controller with enough 
stability degree to override the effects of parameter 
perturbation and noise uncertainty. A simulation example 
has illustrated the good asymptotical stability of this method. 
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Appendix. Proof  o f  Theorem 2 
From (26), we have 

£(t) = *( t ) / (0)  + *( t  - ~)Zk,4p(r)/(t) d r  

£, + q~(t - r )Gn( r )  dr. 

When we take the norm operation to both sides of (26), 
the following inequality is obtained: 

Ili(t)ll < II~(t)ll I1,~(0)11 

fo' II~(t - r)ll II&~ip(r)~(r)ll d r  + 

+ I I ~ ( t -  r)ll IIGII IIn(t)ll dr. (A1) 

Since, from (23c) 

A- " - - ' "  [ & A ( t ) x ( t ) -  AB(t )G$(t )  \ 
p(t)x~t) = k&A(t)x(t)  - AB(t)GX(t)  - KAC(t)x( t )]"  

(A2) 

Consequently from (23), (28) and (A2), we find that 

IIZ~p(t)x(t)ll 

<-II&A(t)x(t) - AB(t)G$(t)II + II~A(t)x(t) 

- AB(t)G~(t)  - lCAC(t)x(t)ll 

<-2 II&A(t)x(t)ll + 2 IIAB(t)G$(t)II 

+ IIRII IIAC(t)x(t)ll 

--2or IIx(t)ll + 2/3 IIGII II$(t)ll + Y IIKII IIx(t)ll 

2a~ II$(t)ll + 2fl IlOll II$(t)ll + ~' II/¢11 II,~(t)ll 

= ( 2 ~  + 2f l  IIGII + ~' IIKII) II-~(t)ll ( A 3 )  

IIGII ~ IIIII + IIIII + IIKII - 2 + IIRII (A4) 

IIn(t)ll < II~(t)ll + II 0(t)ll 
--- ~/(tr (~o + rhI)) + ~/(tr (Oo + r/:I)) (A5) 

II~(t)lt < m exp ( - ~ t )  (A6) 

then inequality (A1) becomes 

II~(t)ll ~ m I1~(0)11 exp ( - / a )  

+ m e x p ( - ~ ( t -  ~)) 

x (2e  + 2/3 IIGII + r IIKII) II$(r)ll d t  

J j  m(~/(tr (-So + r/tI)) + X/(tr (Oo + r/:I)) + 

x (2 + IIRll) exp (-?~(t - r)) d~. (A7) 

Multiplying both sides of (A7) by exp (/at) leads to 

]]i(t)]] exp (~t) 

f~ (X/( 
-< m II•(0)ll + m tr (Et~ + r/tl)) 

+ X/(tr (Oo + r/2I)))(2 + II/(11) exp (~t)  d r  

£ + m(2a, + 2/3 Ilall + ~' II/(ll) II~(t)ll exp (/~r) dr  

= m I1-~(0)11 + (exp (/~t) - 1)((V(tr (-~,, + rhI)) 

+ V(tr (Oo + 02I)))(2 + IIRIf))/~ 

+ m(2ac + 2/3 ItG[I + y II/(11) II,~(r)ll exp (~r) dr. 

By applying the Bellman-Gronwall  inequality to the above 
inequality, we get the following inequality: 

II$(t)ll exp(la)<-c(t)  + m(2tr + 2fl IIG[I + Y II/(ll) 

f2 x exp(m(2ol+  2/3 IIGtl 

+ ~' II/(ll)(t - s ) ) c ( s ) d s  (A8) 
where 

c(t) = m I1~(0)11 + (exp (m) - 1)(k/( tr (Eo + r/¿l)) 

+ X/(tr (Oo + r/2I)))(2 + IIRII)/ta. 

Multiplying e x p ( - / a )  to both sides of (A7) and 
integrating the second term, we obtain the following result: 

II$(t)l /-  m IIx(0)l[ exp (-/zt)  

+ (rn(~/(tr (~.o + 01I)) + V~(tr (Oo + 02I)) 

x (2 + IIKII)(1 - exp ( - / a ) ) ) / #  

+ (/an I1~(0)11 - (V'(tr ( ~  + rhI)) 

+ ~/(tr (Oo + r/zI)))(2 + IIKII)) 

x (exp ((2mot + 2m/3 llall  + m y  [I/([I - tot) 

- exp ( - / a ) ) / g  

+ m(2tr + 2fl IIGII + Y IIKll)(X/(tr ('-o + r/lI)) 

+ X/(tr (Oo + r/2I)))(2 + II/¢11)(1 - exp (2mtr + 2raft IIa[I 

+ m~, II/~'11 - to t ) /  

(g(g - m(2~r + 2/3 IIGII + ~' II/¢11))). (A9) 

S ince /~>0  and we assume # > m(2ot + 2/3 IIGll + Y II/(ll). 
I[$(t)ll in (A9) will converge to a certain value as t----~ oo 

(m(X/(tr (-Zo + rhI)) + ~/(tr (Oo + ~/:I)))(2 + Ilgll))/~ 

+ (m(2ol + 2fl IIGll + Y Ilgll)(~/(tr (-% + r/tl)) 

+ X/(tr (Oo + r/:I)))(2 + II/¢11))/ 

(/~(g - m(2o~  + 2/3 IIG[I + Y IIKII))) 

which is dependent on the density of external noises. Hence, 
the system is asymptotically stable. The proof is completed. 


